Sample records for vaccine induces antibody-mediated

  1. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  2. Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses.

    PubMed

    Guarino, Cassandra; Asbie, Sanda; Rohde, Jennifer; Glaser, Amy; Wagner, Bettina

    2017-07-24

    Borrelia burgdorferi can induce Lyme disease. Approved Lyme vaccines for horses are currently not available. In an effort to protect horses, veterinarians are using Lyme vaccines licensed for dogs. However, data to assess the response of horses to, or determine the efficacy of this off-label vaccine use are missing. Here, antibodies against outer surface protein A (OspA), OspC, and OspF were quantified in diagnostic serum submissions from horses with a history of vaccination with canine Lyme vaccines. The results suggested that many horses respond with low and often short-lasting antibody responses. Subsequently, four experimental vaccination trials were performed. First, we investigated antibody responses to three canine vaccines in B. burgdorferi-naïve horses. One killed bacterin vaccine induced antibodies against OspC. OspA antibodies were low for all three vaccines and lasted less than 16weeks. The second trial tested the impact of the vaccine dose using the OspA/OspC inducing bacterin vaccine in horses. A 2mL dose produced higher OspA and OspC antibody values than a 1mL dose. However, the antibody response again quickly declined, independent of dose. Third, the horses were vaccinated with 2 doses of a recombinant OspA vaccine. Previous vaccination and/or environmental exposure enhanced the magnitude and longevity of the OspA antibody response to about 20weeks. Last, the influence of intramuscular versus subcutaneous vaccine administration was investigated for the recombinant OspA vaccine. OspA antibody responses were not influenced by injection route. The current work highlights that commercial Lyme vaccines for dogs induce only transient antibody responses in horses which can also be of low magnitude. Protection from infection with B. burgdorferi should not be automatically assumed after vaccinating horses with Lyme vaccines for dogs. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Antibody-Mediated and Cellular Immune Responses Induced in Naive Volunteers by Vaccination with Long Synthetic Peptides Derived from the Plasmodium vivax Circumsporozoite Protein

    PubMed Central

    Arévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial. PMID:21292876

  4. Modeling maternal fetal RSV F vaccine induced antibody transfer in guinea pigs.

    PubMed

    Glenn, Gregory M; Fries, Louis F; Smith, Gale; Kpamegan, Eloi; Lu, Hanxin; Guebre-Xabier, Mimi; Hickman, Somia P; Flyer, David

    2015-11-25

    Protection of newborns and young infants against RSV disease via maternal immunization mediated by transplacental transfer of antibodies is under evaluation in third-trimester pregnant women with the RSV recombinant F nanoparticle vaccine (RSV F vaccine). Since the hemichorial placental architecture in guinea pigs and humans is similar, the guinea pig model was employed to assess RSV F vaccine immunogenicity in pregnant sows and to compare RSV-specific maternal antibody levels in their pups. Thirty (30) presumptive pregnant guinea pigs were immunized on gestational day 25 and 46 with placebo (PBS), 30μg RSV F, or 30μg RSV F+400μg aluminum phosphate. Sera at delivery/birth (sows/pups) and 15 and 30 days post-partum (pups) were analyzed for the presence of anti-F IgG, palivizumab-competitive antibody (PCA) and RSV/A microneutralization (MN). The rates of pregnancy and stillbirth were similar between controls and vaccinees. The vaccine induced high levels of anti-F IgG, PCA and MN in sows, with the highest levels observed in adjuvanted vaccinees. Placental transfer to pups was proportional to the maternal antibody levels, with concentration effects observed for all immune measures. The RSV F vaccine was safe and immunogenic in pregnant guinea pigs and supported robust transplacental antibody transfer to their pups. Relative concentration of antibodies in the pups was observed even in the presence of high levels of maternal antibody. Guinea pigs may be an important safety and immunogenicity model for preclinical assessment of candidate vaccines for maternal immunization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    PubMed

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  6. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies

    PubMed Central

    Blanchfield, Kristy; Belser, Jessica A.; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R.; Levine, Min Z.; York, Ian A.

    2017-01-01

    ABSTRACT Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with

  7. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    PubMed

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced

  8. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses

    PubMed Central

    McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T.; Dennison, S. Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S. Munir; Haynes, Barton F.; Tomaras, Georgia D.

    2016-01-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced

  9. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity.

    PubMed

    Allen, Aideen C; Mills, Kingston H G

    2014-10-01

    Bordetella pertussis is a Gram-negative bacterium that causes the severe and sometimes lethal respiratory disease whooping cough in infants and children. There has been a recent resurgence in the number of cases of pertussis in several countries with high vaccine coverage. This has been linked with waning or ineffective immunity induced by current acellular pertussis vaccines. These acellular pertussis vaccines are formulated with alum as the adjuvant, which promotes strong antibody responses but is less effective at inducing Th1-type responses crucial for effective bacterial clearance. Studies in animal models have demonstrated that replacing alum with alternative adjuvants, such as toll-like receptor agonists, can promote more robust cell-mediated immunity and confer a high level of protection against infection following respiratory challenge.

  10. TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination

    PubMed Central

    Oh, Jason Z.; Ravindran, Rajesh; Chassaing, Benoit; Carvalho, Frederic A.; Maddur, Mohan S.; Bower, Maureen; Hakimpour, Paul; Gill, Kiran P.; Nakaya, Helder I.; Yarovinsky, Felix; Sartor, R. Balfour; Gewirtz, Andrew T.; Pulendran, Bali

    2014-01-01

    SUMMARY Systems biological analysis of immunity to the trivalent inactivated influenza vaccine (TIV) in humans revealed a correlation between early expression of TLR5 and the magnitude of the antibody response. Vaccination of Trl5−/− mice resulted in reduced antibody titers and lower frequencies of plasma cells, demonstrating a role for TLR5 in immunity to TIV. This was due to a failure to sense host microbiota. Thus, antibody responses in germ-free or antibiotic-treated mice were impaired, but restored by oral reconstitution with a flagellated, but not aflagellated, strain of E. coli. TLR5-mediated sensing of flagellin promoted plasma cell differentiation, directly, and by stimulating lymph node macrophages to produce plasma cell growth factors. Finally, TLR5-mediated sensing of the microbiota also impacted antibody responses to the inactivated polio vaccine, but not to adjuvanted vaccines or the live-attenuated yellow fever vaccine. These results reveal an unappreciated role for gut microbiota in promoting immunity to vaccination. PMID:25220212

  11. Vaccine induced antibodies to the first variable loop of human immunodeficiency virus type 1 gp120, mediate antibody-dependent virus inhibition in macaques.

    PubMed

    Bialuk, Izabela; Whitney, Stephen; Andresen, Vibeke; Florese, Ruth H; Nacsa, Janos; Cecchinato, Valentina; Valeri, Valerio W; Heraud, Jean-Michel; Gordon, Shari; Parks, Robyn Washington; Montefiori, David C; Venzon, David; Demberg, Thorsten; Guroff, Marjorie Robert-; Landucci, Gary; Forthal, Donald N; Franchini, Genoveffa

    2011-12-09

    The role of antibodies directed against the hyper variable envelope region V1 of human immunodeficiency virus type 1 (HIV-1), has not been thoroughly studied. We show that a vaccine able to elicit strain-specific non-neutralizing antibodies to this region of gp120 is associated with control of highly pathogenic chimeric SHIV(89.6P) replication in rhesus macaques. The vaccinated animal that had the highest titers of antibodies to the amino terminus portion of V1, prior to challenge, had secondary antibody responses that mediated cell killing by antibody-dependent cellular cytotoxicity (ADCC), as early as 2 weeks after infection and inhibited viral replication by antibody-dependent cell-mediated virus inhibition (ADCVI), by 4 weeks after infection. There was a significant inverse correlation between virus level and binding antibody titers to the envelope protein, (R=-0.83, p=0.015), and ADCVI (R=-0.84 p=0.044). Genotyping of plasma virus demonstrated in vivo selection of three SHIV(89.6P) variants with changes in potential N-linked glycosylation sites in V1. We found a significant inverse correlation between virus levels and titers of antibodies that mediated ADCVI against all the identified V1 virus variants. A significant inverse correlation was also found between neutralizing antibody titers to SHIV(89.6) and virus levels (R=-0.72 p=0.0050). However, passive inoculation of purified immunoglobulin from animal M316, the macaque that best controlled virus, to a naïve macaque, resulted in a low serum neutralizing antibodies and low ADCVI activity that failed to protect from SHIV(89.6P) challenge. Collectively, while our data suggest that anti-envelope antibodies with neutralizing and non-neutralizing Fc(R-dependent activities may be important in the control of SHIV replication, they also demonstrate that low levels of these antibodies alone are not sufficient to protect from infection. Published by Elsevier Ltd.

  12. Vaccine Induced Antibodies to the First Variable Loop of Human Immunodeficiency Virus Type 1 gp120, Mediate Antibody-Dependent Virus Inhibition in Macaques

    PubMed Central

    Bialuk, Izabela; Whitney, Stephen; Andresen, Vibeke; Florese, Ruth H.; Nacsa, Janos; Cecchinato, Valentina; Valeri, Valerio W.; Heraud, Jean-Michel; Gordon, Shari; Parks, Robyn Washington; Montefiori, David C.; Venzon, David; Demberg, Thorsten; Guroff, Marjorie Robert; Landucci, Gary; Forthal, Donald N.; Franchini, Genoveffa

    2011-01-01

    The role of antibodies directed against the hyper variable envelope region V1 of human immunodeficiency virus type 1 (HIV-1), has not been thoroughly studied. We show that a vaccine able to elicit strain-specific non-neutralizing antibodies to this region of gp120 is associated with control of highly pathogenic chimeric SHIV89.6P replication in rhesus macaques. The vaccinated animal that had the highest titers of antibodies to the amino terminus portion of V1, prior to challenge, had secondary antibody responses that mediated cell killing by antibody-dependent cellular cytotoxicity (ADCC), as early as two weeks after infection and inhibited viral replication by antibody-dependent cell-mediated virus inhibition (ADCVI), by four weeks after infection. There was a significant inverse correlation between virus level and binding antibody titers to the envelope protein, (R = -0.83, p 0.015), and ADCVI (R = -0.84 p=0.044). Genotyping of plasma virus demonstrated in vivo selection of three SHIV89.6P variants with changes in potential N-linked glycosylation sites in V1. We found a significant inverse correlation between virus levels and titers of antibodies that mediated ADCVI against all the identified V1 virus variants. A significant inverse correlation was also found between neutralizing antibody titers to SHIV89.6 and virus levels (R = -0.72 p =0.0050). However, passive inoculation of purified immunoglobulin from animal M316, the macaque that best controlled virus, to a naïve macaque, resulted in a low serum neutralizing antibodies and low ADCVI activity that failed to protect from SHIV89.6P challenge. Collectively, while our data suggest that anti-envelope antibodies with neutralizing and non-neutralizing FcγR-dependent activities may be important in the control of SHIV replication, they also demonstrate that low levels of these antibodies alone are not sufficient to protect from infection. PMID:22037204

  13. Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines

    PubMed Central

    Marcelin, Glendie; Sandbulte, Matthew R.; Webby, Richard J.

    2012-01-01

    SUMMARY Vaccines are instrumental in controlling the burden of influenza virus infection in humans and animals. Antibodies raised against both major viral surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), can contribute to protective immunity. Vaccine-induced HA antibodies have been characterized extensively, and they generally confer protection by blocking the attachment and fusion of a homologous virus onto host cells. Though not as well characterized, some functions of NA antibodies in influenza vaccine-mediated immunity have been recognized for many years. In this review we summarize the case for NA antibodies in influenza vaccine-mediated immunity. In the absence of well-matched HA antibodies, NA antibodies can provide varying degrees of protection against disease. NA proteins of seasonal influenza vaccines have been shown in some instances to elicit serum antibodies with cross-reactivity to avian- and swine-origin influenza strains, in addition to HA drift variants. NA-mediated immunity has been linked to [i] conserved NA epitopes amongst otherwise antigenically distinct strains, partly attributable to the segmented influenza viral genome; [ii] inhibition of NA enzymatic activity; and [iii] the NA content in vaccine formulations. There is potential to enhance the effectiveness of existing and future influenza vaccines by focusing greater attention on the antigenic characteristics and potency of the NA protein. PMID:22438243

  14. Design of therapeutic vaccines as a novel antibody therapy for cardiovascular diseases.

    PubMed

    Nakagami, Hironori

    2017-09-01

    Vaccines are primarily used worldwide as a preventive medicine for infectious diseases and have recently been applied to cancer. We and others have developed therapeutic vaccines designed for cardiovascular diseases that are notably different from previous vaccines. In the case of cancer vaccines, a specific protein in cancer cells is a target antigen, and the activation of cytotoxic T cells (CTL) is required to kill and remove the antigen-presenting cancer cells. Our therapeutic vaccines work against hypertension by targeting angiotensin II (Ang II) as the antigen, which is an endogenous hormone. Therapeutic vaccines must avoid CTL activation and induce the blocking antibodies for Ang II. The goal of our therapeutic vaccine for cardiovascular diseases is to induce the specific antibody response toward the target protein without inducing T-cell or antibody-mediated inflammation through the careful selection of the target antigen, carrier protein and adjuvants. The goal of our therapeutic vaccine is similar to that of antibody therapy. Recently, multiple antibody-based drugs have been developed for cancer, immune-related diseases, and dyslipidemia, which are efficient but expensive. If the effect of a therapeutic vaccine is nearly equivalent to antibody therapy as an alternative approach, the lower medical cost and improvement in drug adherence can be advantages of therapeutic vaccines. In this review, we will describe our concept of therapeutic vaccines for cardiovascular diseases and the future directions of therapeutic vaccines as novel antibody therapies. Copyright © 2017. Published by Elsevier Ltd.

  15. Persistence of yellow fever vaccine-induced antibodies after solid organ transplantation.

    PubMed

    Wyplosz, B; Burdet, C; François, H; Durrbach, A; Duclos-Vallée, J C; Mamzer-Bruneel, M-F; Poujol, P; Launay, O; Samuel, D; Vittecoq, D; Consigny, P H

    2013-09-01

    Immunization using live attenuated vaccines represents a contra-indication after solid organ transplantation (SOT): consequently, transplant candidates planning to travel in countries where yellow fever is endemic should be vaccinated prior to transplantation. The persistence of yellow fever vaccine-induced antibodies after transplantation has not been studied yet. We measured yellow-fever neutralizing antibodies in 53 SOT recipients vaccinated prior to transplantation (including 29 kidney recipients and 18 liver recipients). All but one (98%) had protective titers of antibodies after a median duration of 3 years (min.: 0.8, max.: 21) after transplantation. The median antibody level was 40 U/L (interquartile range: 40-80). For the 46 patients with a known or estimated date of vaccination, yellow-fever antibodies were still detectable after a median time of 13 years (range: 2-32 years) post-immunization. Our data suggest there is long-term persistence of antibodies to yellow fever in SOT recipients who have been vaccinated prior to transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  16. [Experimental study on TCRbeta idiotypic antigenic determinants DNA vaccine to induce anti-lymphoma antibodies].

    PubMed

    Zhang, Yeping; Zhu, Ping; Shi, Yongjin; Liu, Jihua; Pu, Dingfang; Cao, Xianghong; Zhu, Qiang; Wang, Yijia; Ma, Mingxin; Yu, Jiren

    2002-02-01

    To investigate the anti-human CEM lymphoma cell activities induced by TCR idiotypic DNA vaccine containing different antigen determinants in BALB/c mice. The specific rearranged gene fragment encoding TCRVbeta region of CEM cell line was obtained by RT-PCR technique. The PCR product was cloned into eukaryocytic expression vector pcDNA3, which was used as DNA vaccine and template for PCR amplifying different antigen determinant. Gene fragments encoding different antigen determinant were amplified and cloned into pcDNA3, separately. The experimental mice were immunized by intramuscular injection of the DNA vaccines. The specific anti-idiotype antibodies were detected by indirect immunofluorescence assay. TCRbetaV of CEM cell line contains five antigen determinants. Specific anti-idiotype antibody was detected in all of the six mice immunized with DNA vaccine containing all the five determinants (the highest titer was 1:480). Although the antibody could also be detected in four of the six mice immunized with DNA vaccine containing four of the five antigen determinants, the antibody titer was lower (the highest titer was 1:80). DNA vaccine containing two of the five determinants could not induce the specific antibody. The idiotypic DNA vaccine containing the whole TCRbetaV five antigen determinants could induce the specific anti-lymphoma idiotypic antibody in BALB/c mice.

  17. Dissection of Antibody Specificities Induced by Yellow Fever Vaccination

    PubMed Central

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X.

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors

  18. Dissection of antibody specificities induced by yellow fever vaccination.

    PubMed

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors

  19. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies.

    PubMed

    Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Kepler, Thomas B; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly E; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, M Juliana; Mascola, John R; Koup, Richard A; Corey, Lawrence; Nabel, Gary J; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S; Baden, Lindsey R; Tomaras, Georgia D; Haynes, Barton F

    2015-08-14

    An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. Copyright © 2015, American Association for the Advancement of Science.

  20. Pichia pastoris-Expressed Bivalent Virus-Like Particulate Vaccine Induces Domain III-Focused Bivalent Neutralizing Antibodies without Antibody-Dependent Enhancement in Vivo.

    PubMed

    Shukla, Rahul; Rajpoot, Ravi K; Arora, Upasana; Poddar, Ankur; Swaminathan, Sathyamangalam; Khanna, Navin

    2017-01-01

    Dengue, a significant public health problem in several countries around the world, is caused by four different serotypes of mosquito-borne dengue viruses (DENV-1, -2, -3, and -4). Antibodies to any one DENV serotype which can protect against homotypic re-infection, do not offer heterotypic cross-protection. In fact, cross-reactive antibodies may augment heterotypic DENV infection through antibody-dependent enhancement (ADE). A recently launched live attenuated vaccine (LAV) for dengue, which consists of a mixture of four chimeric yellow-fever/dengue vaccine viruses, may be linked to the induction of disease-enhancing antibodies. This is likely related to viral interference among the replicating viral strains, resulting in an unbalanced immune response, as well as to the fact that the LAV encodes prM, a DENV protein documented to elicit ADE-mediating antibodies. This makes it imperative to explore the feasibility of alternate ADE risk-free vaccine candidates. Our quest for a non-replicating vaccine centered on the DENV envelope (E) protein which mediates virus entry into the host cell and serves as an important target of the immune response. Serotype-specific neutralizing epitopes and the host receptor recognition function map to E domain III (EDIII). Recently, we found that Pichia pastoris -expressed DENV E protein, of all four serotypes, self-assembled into virus-like particles (VLPs) in the absence of prM. Significantly, these VLPs displayed EDIII and elicited EDIII-focused DENV-neutralizing antibodies in mice. We now report the creation and characterization of a novel non-replicating recombinant particulate vaccine candidate, produced by co-expressing the E proteins of DENV-1 and DENV-2 in P. pastoris . The two E proteins co-assembled into bivalent mosaic VLPs (mVLPs) designated as mE1E2 bv VLPs. The mVLP, which preserved the serotype-specific antigenic integrity of its two component proteins, elicited predominantly EDIII-focused homotypic virus

  1. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ+ CMI responses protects against a genital infection in minipigs

    PubMed Central

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter; Follmann, Frank

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia. PMID:26268662

  2. HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques

    PubMed Central

    Williams, Wilton B.; Saunders, Kevin O.; Seaton, Kelly E.; Wiehe, Kevin J.; Vandergrift, Nathan; Von Holle, Tarra A.; Trama, Ashley M.; Parks, Robert J.; Luo, Kan; Gurley, Thaddeus C.; Kepler, Thomas B.; Marshall, Dawn J.; Montefiori, David C.; Sutherland, Laura L.; Alam, Munir S.; Whitesides, John F.; Bowman, Cindy M.; Permar, Sallie R.; Graham, Barney S.; Mascola, John R.; Seed, Patrick C.; Van Rompay, Koen K. A.; Tomaras, Georgia D.; Moody, M. Anthony

    2017-01-01

    ABSTRACT Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response. IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41

  3. Antibody Immunity Induced by H7N9 Avian Influenza Vaccines: Evaluation Criteria, Affecting Factors, and Implications for Rational Vaccine Design

    PubMed Central

    Hu, Zenglei; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    Severe H7N9 avian influenza virus (AIV) infections in humans have public health authorities around the world on high alert for the potential development of a human influenza pandemic. Currently, the newly-emerged highly pathogenic avian influenza A (H7N9) virus poses a dual challenge for public health and poultry industry. Numerous H7N9 vaccine candidates have been generated using various platforms. Immunization trials in animals and humans showed that H7N9 vaccines are apparently poorly immunogenic because they induced low hemagglutination inhibition and virus neutralizing antibody titers. However, H7N9 vaccines elicit comparable levels of total hemagglutinin (HA)-reactive IgG antibody as the seasonal influenza vaccines, suggesting H7N9 vaccines are as immunogenic as their seasonal counterparts. A large fraction of overall IgG antibody is non-neutralizing antibody and they target unrecognized epitopes outside of the traditional antigenic sites in HA. Further, the Treg epitope identified in H7 HA may at least partially contribute to regulation of antibody immunity. Here, we review the latest advances for the development of H7N9 vaccines and discuss the influence of serological criteria on evaluation of immunogenicity of H7N9 vaccines. Next, we discuss factors affecting antibody immunity induced by H7N9 vaccines, including the change in antigenic epitopes in HA and the presence of the Treg epitope. Last, we present our perspectives for the unique features of antibody immunity of H7N9 vaccines and propose some future directions to improve or modify antibody response induced by H7N9 vaccines. This perspective would provide critical implications for rational design of H7N9 vaccines for human and veterinary use. PMID:29018438

  4. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  5. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  6. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines.

    PubMed

    Wong, Sook-San; DeBeauchamp, Jennifer; Zanin, Mark; Sun, Yilun; Tang, Li; Webby, Richard

    2017-01-01

    Conventional inactivated avian influenza vaccines have performed poorly in past vaccine trials, leading to the hypothesis that they are less immunogenic than seasonal influenza vaccines. We tested this hypothesis by comparing the immunogenicity of the H5N1 and H7N9 vaccines (avian influenza vaccines) to a seasonal trivalent inactivated influenza vaccine in naïve ferrets, administered with or without the adjuvants MF59 or AS03. Vaccine immunogenicity was assessed by measuring neutralizing antibody titers against hemagglutinin and neuraminidase and by hemagglutinin -specific IgG levels. Two doses of unadjuvanted vaccines induced low or no HA-specific IgG responses and hemagglutination-inhibiting titers. Adjuvanted vaccines induced comparable IgG-titers, but poorer neutralizing antibody titers for the H5 vaccine. All adjuvanted vaccines elicited detectable anti- neuraminidase -antibodies with the exception of the H5N1 vaccine, likely due to the low amounts of neuraminidase in the vaccine. Overall, the H5N1 vaccine had poorer capacity to induce neutralizing antibodies, but not HA-specific IgG, compared to H7N9 or trivalent inactivated influenza vaccine.

  7. Diversion of HIV-1 Vaccine-induced Immunity by gp41-Microbiota Cross-reactive Antibodies

    PubMed Central

    Williams, Wilton B; Liao, Hua-Xin; Moody, M. Anthony; Kepler, Thomas B.; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M.; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E.; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C.; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, Julie; Mascola, John R.; Koup, Richard A; Corey, Lawrence; Nabel, Gary J.; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S.; Baden, Lindsey R.; Tomaras, Georgia D.; Haynes, Barton F.

    2015-01-01

    A HIV-1 DNA prime-recombinant Adenovirus Type 5 (rAd5) boost vaccine failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells was to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies (mAbs) were non-neutralizing, and frequently polyreactive with host and environmental antigens including intestinal microbiota (IM). Next generation sequencing of an IGHV repertoire prior to vaccination revealed an Env-IM cross-reactive Ab that was clonally-related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. PMID:26229114

  8. Prediction of merozoite surface protein 1 and apical membrane antigen 1 vaccine efficacies against Plasmodium chabaudi malaria based on prechallenge antibody responses.

    PubMed

    Lynch, Michelle M; Cernetich-Ott, Amy; Weidanz, William P; Burns, James M

    2009-03-01

    For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 1(42) (MSP1(42)) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP1(42) (PcMSP1(42)) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP1(42) vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP1(42) vaccines.

  9. Prediction of Merozoite Surface Protein 1 and Apical Membrane Antigen 1 Vaccine Efficacies against Plasmodium chabaudi Malaria Based on Prechallenge Antibody Responses▿

    PubMed Central

    Lynch, Michelle M.; Cernetich-Ott, Amy; Weidanz, William P.; Burns, James M.

    2009-01-01

    For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 142 (MSP142) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP142 (PcMSP142) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP142 vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP142 vaccines. PMID:19116303

  10. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ⁺ CMI responses protects against a genital infection in minipigs.

    PubMed

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter; Follmann, Frank

    2016-02-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia.

  11. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    PubMed Central

    Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro

    2015-01-01

    The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ 40, and Aβ 42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ 40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies. PMID:26539559

  12. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs.

    PubMed

    Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro

    2015-01-01

    The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ 40, and Aβ 42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ 40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  13. Antibody-based vaccine strategies against intracellular pathogens.

    PubMed

    Casadevall, Arturo

    2018-04-25

    Historically, antibody-mediated immunity was considered effective against toxins, extracellular pathogens and viruses, while control of intracellular pathogens was the domain of cellular immunity. However, numerous observations in recent decades have conclusively shown that antibody can protect against intracellular pathogens. This paradigmatic shift has tremendous implications for immunology and vaccine design. For immunology the observation that antibody can protect against intracellular pathogens has led to the discovery of new mechanisms of antibody action. For vaccine design the knowledge that humoral immunity can be effective in protection means that the knowledge acquired in more than a century of antibody studies can be applied to make new vaccines against this class of pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Influencing Antibody-Mediated Attenuation of Methamphetamine CNS Distribution through Vaccine Linker Design.

    PubMed

    Gooyit, Major; Miranda, Pedro O; Wenthur, Cody J; Ducime, Alex; Janda, Kim D

    2017-03-15

    Active vaccination examining a single hapten engendered with a series of peptidic linkers has resulted in the production of antimethamphetamine antibodies. Given the limited chemical complexity of methamphetamine, the structure of the linker species embedded within the hapten could have a substantial effect on the ultimate efficacy of the resulting vaccines. Herein, we investigate linker effects by generating a series of methamphetamine haptens that harbor a linker with varying amino acid identity, peptide length, and associated carrier protein. Independent changes in each of these parameters were found to result in alterations in both the quantity and quality of the antibodies induced by vaccination. Although it was found that the consequence of the linker design was also dependent on the identity of the carrier protein, we demonstrate overall that the inclusion of a short, structurally simple, amino acid linker benefits the efficacy of a methamphetamine vaccine in limiting brain penetration of the free drug.

  15. Comparison of Biological Activity of Human Anti-Apical Membrane Antigen-1 Antibodies Induced by Natural Infection and Vaccination

    PubMed Central

    Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.

    2009-01-01

    Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299

  16. Immunization of cows with novel core glycolipid vaccine induces anti-endotoxin antibodies in bovine colostrum.

    PubMed

    Cross, Alan S; Karreman, Hubert J; Zhang, Lei; Rosenberg, Zeil; Opal, Steven M; Lees, Andrew

    2014-10-21

    Translocation of gut-derived Gram-negative bacterial (GNB) lipopolysaccharide (LPS, or endotoxin) is a source of systemic inflammation that exacerbates HIV, cardiovascular and gastrointestinal diseases and malnutrition. The oral administration of bovine colostrum (BC) reduces endotoxemia in patients with impaired gut barrier function. Consequently, BC enriched in antibodies to LPS may ameliorate endotoxemia-related morbidities. We developed a detoxified J5 LPS/group B meningococcal outer membrane protein (J5dLPS/OMP) vaccine that induces antibodies against a highly conserved core region of LPS and protects against heterologous GNB infection. We now examine the ability of this vaccine to elicit anti-core endotoxin antibodies in BC. Two cohorts of pregnant cows were immunized with this vaccine in combination with FICA (Cohort 1) or Emulsigen-D (Cohort 2) adjuvants. Antibody responses to the J5 core LPS antigen were measured in both serum and colostrum and compared to antibody levels elicited by a commercially available veterinary vaccine (J5 Bacterin) comprised of heat-killed Escherichia coli O111, J5 mutant bacteria, from which the J5 LPS was purified. The J5dLPS/OMP vaccine induced high titers of serum IgG antibody to J5 LPS in all seven cows. Both IgG and to a lesser extent IgA anti-J5 LPS antibodies were generated in the colostrum. The J5dLPS/OMP vaccine was significantly more immunogenic in mice than was the J5 Bacterin. BC enriched in anti-J5 LPS antibody reduced circulating endotoxin levels in neutropenic rats, a model of "leaky gut". The J5dLPS/OMP vaccine elicits high titers of serum anti-endotoxin antibodies in cows that is passed to the colostrum. This BC enriched in anti-core LPS antibodies has the potential to reduce endotoxemia and ameliorate endotoxin-related systemic inflammation in patients with impaired gut barrier function. Since this vaccine is significantly more immunogenic than the J5 Bacterin vaccine, this J5dLPS/OMP vaccine might prove to be

  17. [Antibody responses in Japanese volunteers after immunization with yellow fever vaccine].

    PubMed

    Taga, Kenichiro; Imura, Shunro; Hayashi, Akihiro; Kamakura, Kazumasa; Hashimoto, Satoru; Takasaki, Tomohiko; Kurane, Ichiro; Uchida, Yukinori

    2002-09-01

    To monitor the development of specific and cross-reactive antibody response in twenty Japanese volunteers after vaccination with live yellow fever vaccine. Serum samples were collected on various days after vaccination and examined for hemagglutination inhibition (HI) antibodies against yellow fever virus (YFV), Japanese encephalitis virus (JEV) and dengue virus (DV), neutralizing antibodies against YFV and JEV, and IgM antibodies against YFV. None of the volunteers had been previously immunized with this vaccine. Fifteen of 20 had pre-vaccinated with JEV 7 to 40 years before. Ten of the 20 had neutralizing antibodies against JEV before immunization. None of the 20 had detectable antibodies against YFV or DV before vaccination. On day 10th after the vaccination, neutralizing antibodies to YFV were detected in 6 of 19 volunteers and IgM antibodies against YFV were detected in 7 of 19. On day 14th, HI, neutralizing, and IgM antibodies against YFV were detected in all the tested sera. Neutralizing antibodies against JEV were developed in 2 volunteers and HI antibodies against JEV were increased in 3 of 6 volunteers respectively. On day 29th, cross-reactive HI antibodies for JEV and DV were detected in all the tested sera. The results indicate that YF vaccine induces YFV-specific antibodies in all the tested volunteers and that it also induces HI antibodies cross-reactive for JEV and DV. The YF vaccine has a strong immunogenicity because it is a live vaccine, and induces antibody against YFV predominantly. The international certificate of yellow fever vaccination becomes valid 10 days after vaccination. On day 14th after vaccination, we detected neutralizing antibodies against YFV from all tested volunteers, however, only 6 of 19 volunteers had detectable neutralizing antibody on the 10th day after vaccination. Therefore, the vaccine may not be perfectly effective on day 10th after the vaccination.

  18. Protective Effect of Vaccine Promoted Neutralizing Antibodies against the Intracellular Pathogen Chlamydia trachomatis.

    PubMed

    Olsen, Anja Weinreich; Lorenzen, Emma Kathrine; Rosenkrands, Ida; Follmann, Frank; Andersen, Peter

    2017-01-01

    There is an unmet need for a vaccine to control Chlamydia trachomatis ( C.t .) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t . serovars (Svs) D-F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4 + T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4's from SvF (extVD4 F *4), adjuvanted in CAF01. Hirep1 and extVD4 F *4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4 F *4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4 F *4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t . Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t . and support the inclusion of neutralizing targets in chlamydia vaccines.

  19. Protective Effect of Vaccine Promoted Neutralizing Antibodies against the Intracellular Pathogen Chlamydia trachomatis

    PubMed Central

    Olsen, Anja Weinreich; Lorenzen, Emma Kathrine; Rosenkrands, Ida; Follmann, Frank; Andersen, Peter

    2017-01-01

    There is an unmet need for a vaccine to control Chlamydia trachomatis (C.t.) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t. serovars (Svs) D–F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4+ T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4’s from SvF (extVD4F*4), adjuvanted in CAF01. Hirep1 and extVD4F*4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4F*4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4F*4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t. Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t. and support the inclusion of neutralizing targets in chlamydia vaccines. PMID:29312283

  20. Structural Insights into the Mechanisms of Antibody-Mediated Neutralization of Flavivirus Infection: Implications for Vaccine Development

    PubMed Central

    Pierson, Theodore C.; Fremont, Daved H.; Kuhn, Richard J.; Diamond, Michael S.

    2009-01-01

    Flaviviruses are a group of small RNA viruses that cause severe disease in humans worldwide and are the target of several vaccine development programs. A primary goal of these efforts is to elicit a protective humoral response directed against the envelope proteins arrayed on the surface of the flavivirus virion. Advances in the structural biology of these viruses has catalyzed rapid progress toward understanding the complexity of the flavivirus immunogen and the molecular basis of antibody-mediated neutralization. These insights have identified factors that govern the potency of neutralizing antibodies and will inform the design and evaluation of novel vaccines. PMID:18779049

  1. Heritability of vaccine-induced measles neutralizing antibody titers.

    PubMed

    Schaid, Daniel J; Haralambieva, Iana H; Larrabee, Beth R; Ovsyannikova, Inna G; Kennedy, Richard B; Poland, Gregory A

    2017-03-07

    Understanding how genetics influences inter-individual variation of antibody titers in response to measles vaccination is vital to understanding possible sources of vaccine failure as well as improved vaccine development. Although it is recognized that both the human leukocyte antigen (HLA) genes and the immunoglobulin allotype genes play significant roles in immune response, there is significant variation in antibody titers that is not explained by these genes. To obtain a more complete estimate of the role of the entire genome, we used a large panel of single nucleotide polymorphisms to estimate the heritability of antibody response to measles vaccine. Based on 935 subjects with European ancestry, we estimated the heritability to be 49% (standard error 0.17). We also estimated the heritability attributable to each chromosome, and found a large range in chromosome-specific heritabilities. Notably, chromosome 1 had the largest estimate (28%), while chromosome 6, which harbors HLA, had an estimated heritability of 13%. Compared with a prior study of twins in the same community, which resulted in a heritability estimate of 88.5%, our study suggests there are either many rare genetic variants, or many common genetic variants of small effect sizes that contribute to variations of antibody titers in response to measles vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Dengue vaccine-induced CD8+ T cell immunity confers protection in the context of enhancing, interfering maternal antibodies.

    PubMed

    Lam, Jian Hang; Chua, Yen Leong; Lee, Pei Xuan; Martínez Gómez, Julia María; Ooi, Eng Eong; Alonso, Sylvie

    2017-12-21

    Declining levels of maternal antibodies were shown to sensitize infants born to dengue-immune mothers to severe disease during primary infection, through the process of antibody-dependent enhancement of infection (ADE). With the recent approval for human use of Sanofi-Pasteur's chimeric dengue vaccine CYD-TDV and several vaccine candidates in clinical development, the scenario of infants born to vaccinated mothers has become a reality. This raises 2 questions: will declining levels of maternal vaccine-induced antibodies cause ADE; and, will maternal antibodies interfere with vaccination efficacy in the infant? To address these questions, the above scenario was modeled in mice. Type I IFN-deficient female mice were immunized with live attenuated DENV2 PDK53, the core component of the tetravalent DENVax candidate currently under clinical development. Pups born to PDK53-immunized dams acquired maternal antibodies that strongly neutralized parental strain 16681, but not the heterologous DENV2 strain D2Y98P-PP1, and instead caused ADE during primary infection with this strain. Furthermore, pups failed to seroconvert after PDK53 vaccination, owing to maternal antibody interference. However, a cross-protective multifunctional CD8+ T cell response did develop. Thus, our work advocates for the development of dengue vaccine candidates that induce protective CD8+ T cells despite the presence of enhancing, interfering maternal antibodies.

  3. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    PubMed

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were

  4. Influenza vaccine-mediated protection in older adults: Impact of influenza infection, cytomegalovirus serostatus and vaccine dosage.

    PubMed

    Merani, Shahzma; Kuchel, George A; Kleppinger, Alison; McElhaney, Janet E

    2018-07-01

    Age-related changes in T-cell function are associated with a loss of influenza vaccine efficacy in older adults. Both antibody and cell-mediated immunity plays a prominent role in protecting older adults, particularly against the serious complications of influenza. High dose (HD) influenza vaccines induce higher antibody titers in older adults compared to standard dose (SD) vaccines, yet its impact on T-cell memory is not clear. The aim of this study was to compare the antibody and T-cell responses in older adults randomized to receive HD or SD influenza vaccine as well as determine whether cytomegalovirus (CMV) serostatus affects the response to vaccination, and identify differences in the response to vaccination in those older adults who subsequently have an influenza infection. Older adults (≥65years) were enrolled (n=106) and randomized to receive SD or HD influenza vaccine. Blood was collected pre-vaccination, followed by 4, 10 and 20weeks post-vaccination. Serum antibody titers, as well as levels of inducible granzyme B (iGrB) and cytokines were measured in PBMCs challenged ex vivo with live influenza virus. Surveillance conducted during the influenza season identified those with laboratory confirmed influenza illness or infection. HD influenza vaccination induced a high antibody titer and IL-10 response, and a short-lived increase in Th1 responses (IFN-γ and iGrB) compared to SD vaccination in PBMCs challenged ex vivo with live influenza virus. Of the older adults who became infected with influenza, a high IL-10 and iGrB response in virus-challenged cells was observed post-infection (week 10 to 20), as well as IFN-γ and TNF-α at week 20. Additionally, CMV seropositive older adults had an impaired iGrB response to influenza virus-challenge, regardless of vaccine dose. This study illustrates that HD influenza vaccines have little impact on the development of functional T-cell memory in older adults. Furthermore, poor outcomes of influenza infection in

  5. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed Central

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  6. The reactogenicity and immunogenicity of the Urabe Am 9 live mumps vaccine and persistence of vaccine induced antibodies in healthy young children.

    PubMed

    Ehrengut, W; Georges, A M; André, F E

    1983-04-01

    The immunogenicity and reactogenicity of the Urabe Am 9 mumps virus vaccine strain were studied after the administration of different doses of the vaccine to 197 children ranging in age from seven and a half months to nine years and without a history of mumps. There was no effect of dose on the response in serum neutralizing antibodies in the range of 10(2.9) to 10(4.7) TCID50/dose. In the 90 subjects without detectable serum neutralization antibodies before vaccination seroconversion was obtained in 94.4% after 42 days. Half of a group of 34 seropositive children who were tested also showed a fourfold or greater rise in antibodies. Persistence of vaccine-enhanced haemagluttinin-inhibition (EHI) antibodies was satisfactory as only two of 46 vaccinees followed-up for between 27 and 32 months had undetectable levels of EHI antibodies and the geometric mean titre of vaccine-induced EHI antibodies had only fallen to about one-third by 32 months after vaccination. Although there was serological evidence of a subclinical re-infection in three subjects, to date none of the vaccinees has had clinical mumps indicating that the vaccine confers protection against disease. The vaccine was well tolerated. Furthermore, the majority of the few 'reactions' reported were probably not vaccine-related. It is concluded that the Urabe Am 9 is an acceptable strain for use in live mumps vaccines.

  7. Dissecting polyclonal vaccine-induced humoral immunity against HIV using Systems Serology

    PubMed Central

    Chung, Amy W.; Kumar, Manu P.; Arnold, Kelly B.; Yu, Wen Han; Schoen, Matthew K.; Dunphy, Laura J.; Suscovich, Todd J.; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E.; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E.; McElrath, M. Juliana; Schuitemaker, Hanneke; Pau, Maria G.; Baden, Lindsey R.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.; Lauffenburger, Douglas A.; Alter, Galit

    2017-01-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc-functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine-trials. Each vaccine regimen induced a unique humoral “Fc-fingerprint”. Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  8. Nonneutralizing Functional Antibodies: a New “Old” Paradigm for HIV Vaccines

    PubMed Central

    Ake, Julie; Robb, Merlin L.; Kim, Jerome H.; Plotkin, Stanley A.

    2014-01-01

    Animal and human data from various viral infections and vaccine studies suggest that nonneutralizing antibodies (nNAb) without neutralizing activity in vitro may play an important role in protection against viral infection in vivo. This was illustrated by the recent human immunodeficiency virus (HIV) RV144 vaccine efficacy trial, which demonstrated that HIV-specific IgG-mediated nNAb directed against the V2 loop of HIV type 1 envelope (Env) were inversely correlated with risk for HIV acquisition, while Env-specific plasma IgA-mediated antibodies were directly correlated with risk. However, tier 1 NAb in the subset of responders with a low level of plasma Env-specific IgA correlated with decreased risk. Nonhuman primate simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) challenge studies suggest that Env-mediated antibodies are essential and sufficient for protection. A comparison of immune responses generated in human efficacy trials reveals subtle differences in the fine specificities of the antibody responses, in particular in HIV-specific IgG subclasses. The underlying mechanisms that may have contributed to protection against HIV acquisition in humans, although not fully understood, are possibly mediated by antibody-dependent cell-mediated cytotoxicity (ADCC) and/or other nonneutralizing humoral effector functions, such as antibody-mediated phagocytosis. The presence of such functional nNAb in mucosal tissues and cervico-vaginal and rectal secretions challenges the paradigm that NAb are the predominant immune response conferring protection, although this does not negate the desirability of evoking neutralizing antibodies through vaccination. Instead, NAb and nNAb should be looked upon as complementary or synergistic humoral effector functions. Several HIV vaccine clinical trials to study these antibody responses in various prime-boost modalities in the systemic and mucosal compartments are ongoing. The induction of high

  9. A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs

    PubMed Central

    García-Nicolás, Obdulio; Ricklin, Meret E.; Liniger, Matthias; Vielle, Nathalie J.; Python, Sylvie; Souque, Philippe; Charneau, Pierre; Summerfield, Artur

    2017-01-01

    The Japanese encephalitis virus (JEV) is responsible for zoonotic severe viral encephalitis transmitted by Culex mosquitoes. Although birds are reservoirs, pigs play a role as amplifying hosts, and are affected in particular through reproductive failure. Here, we show that a lentiviral JEV vector, expressing JEV prM and E proteins (TRIP/JEV.prME), but not JEV infection induces strong antibody-dependent enhancement (ADE) activities for infection of macrophages. Such antibodies strongly promoted infection via Fc receptors. ADE was found at both neutralizing and non-neutralizing serum dilutions. Nevertheless, in vivo JEV challenge of pigs demonstrated comparable protection induced by the TRIP/JEV.prME vaccine or heterologous JEV infection. Thus, either ADE antibodies cause no harm in the presence of neutralizing antibodies or may even have protective effects in vivo in pigs. Additionally, we found that both pre-infected and vaccinated pigs were not fully protected as low levels of viral RNA were found in lymphoid and nervous system tissue in some animals. Strikingly, the virus from the pre-infection persisted in the tonsils throughout the experiment. Finally, despite the vaccination challenge, viral RNA was detected in the oronasal swabs in all vaccinated pigs. These latter data are relevant when JEV vaccination is employed in pigs. PMID:28531165

  10. Assessment of Antibodies Induced by Multivalent Transmission-Blocking Malaria Vaccines.

    PubMed

    Menon, Vinay; Kapulu, Melissa C; Taylor, Iona; Jewell, Kerry; Li, Yuanyuan; Hill, Fergal; Long, Carole A; Miura, Kazutoyo; Biswas, Sumi

    2017-01-01

    A malaria transmission-blocking vaccine would be a critical tool in achieving malaria elimination and eradication. By using chimpanzee adenovirus serotype 63 and modified vaccinia virus Ankara viral vectored vaccines, we investigated whether incorporating two antigens into one vaccine would result in higher transmission-reducing activity than one antigen. We demonstrated that when Pfs25 was administered with other antigens Pfs28 or Pfs230C, either concurrently as a mixed vaccine or co-expressed as a dual-antigen vaccine, the antibody response in mice to each antigen was comparable to a monoantigen vaccine, without immunological interference. However, we found that the transmission-reducing activity (functional activity) of dual-antigen vaccines was not additive. Dual-antigen vaccines generally only elicited similar transmission-reducing activity to monoantigen vaccines and in one instance had lower transmission-reducing activity. We found that despite the lack of immunological interference of dual-antigen vaccines, they are still not as effective at blocking malaria transmission as Pfs25-IMX313, the current leading candidate for viral vectored vaccines. Pfs25-IMX313 elicited similar quality antibodies to dual-antigen vaccines, but higher antibody titers.

  11. AAVrh.10-mediated expression of an anti-cocaine antibody mediates persistent passive immunization that suppresses cocaine-induced behavior.

    PubMed

    Rosenberg, Jonathan B; Hicks, Martin J; De, Bishnu P; Pagovich, Odelya; Frenk, Esther; Janda, Kim D; Wee, Sunmee; Koob, George F; Hackett, Neil R; Kaminsky, Stephen M; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G; Crystal, Ronald G

    2012-05-01

    Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab, an AAVrh.10 gene transfer vector expressing the heavy and light chains of the high affinity anti-cocaine monoclonal antibody GNC92H2. Intravenous administration of AAVrh.10antiCoc.Mab to mice mediated high, persistent serum levels of high-affinity, cocaine-specific antibodies that sequestered intravenously administered cocaine in the blood. With repeated intravenous cocaine challenge, naive mice exhibited hyperactivity, while the AAVrh.10antiCoc.Mab-vaccinated mice were completely resistant to the cocaine. These observations demonstrate a novel strategy for cocaine addiction by requiring only a single administration of an AAV vector mediating persistent, systemic anti-cocaine passive immunity.

  12. Cancer vaccines inducing antibody production: more pros than cons.

    PubMed

    Jensen-Jarolim, Erika; Singer, Josef

    2011-09-01

    To date, passive immunotherapy with monoclonal antibodies is a well-established option in clinical oncology. By contrast, anticancer vaccines are less advanced, with the exception of successfully applied prophylactic vaccines against oncogenic virus infections. The creation of therapeutic vaccines is still a great challenge mostly due to the self-nature of tumor antigens. Therapeutic vaccines may be based on patient-specific material including pulsed effector cells, or tumor-associated antigens and derivatives thereof, such as peptides, mimotopes and nucleic acids. The latter represents a more universal approach, which would set an ideal economic framework resulting in broad patient access. In this article we focus on cancer vaccines for antibody production, in particular mimotope vaccines. The collected evidence suggests that they will open up new treatment options in minimal residual disease and early stage disease.

  13. In elderly persons live attenuated influenza A virus vaccines do not offer an advantage over inactivated virus vaccine in inducing serum or secretory antibodies or local immunologic memory.

    PubMed Central

    Powers, D C; Fries, L F; Murphy, B R; Thumar, B; Clements, M L

    1991-01-01

    In a double-blind, randomized trial, 102 healthy elderly subjects were inoculated with one of four preparations: (i) intranasal bivalent live attenuated influenza vaccine containing cold-adapted A/Kawasaki/86 (H1N1) and cold-adapted A/Bethesda/85 (H3N2) viruses; (ii) parenteral trivalent inactivated subvirion vaccine containing A/Taiwan/86 (H1N1), A/Leningrad/86 (H3N2), and B/Ann Arbor/86 antigens; (iii) both vaccines; or (iv) placebo. To determine whether local or systemic immunization augmented mucosal immunologic memory, all volunteers were challenged intranasally 12 weeks later with the inactivated virus vaccine. We used a hemagglutination inhibition assay to measure antibodies in sera and a kinetic enzyme-linked immunosorbent assay to measure immunoglobulin G (IgG) and IgA antibodies in sera and nasal washes, respectively. In comparison with the live virus vaccine, the inactivated virus vaccine elicited higher and more frequent rises of serum antibodies, while nasal wash antibody responses were similar. The vaccine combination induced serum and local antibodies slightly more often than the inactivated vaccine alone did. Coadministration of live influenza A virus vaccine did not alter the serum antibody response to the influenza B virus component of the inactivated vaccine. The anamnestic nasal antibody response elicited by intranasal inactivated virus challenge did not differ in the live, inactivated, or combined vaccine groups from that observed in the placebo group not previously immunized. These results suggest that in elderly persons cold-adapted influenza A virus vaccines offer little advantage over inactivated virus vaccines in terms of inducing serum or secretory antibody or local immunological memory. Studies are needed to determine whether both vaccines in combination are more efficacious than inactivated vaccine alone in people in this age group. PMID:2037667

  14. The biological function of antibodies induced by the RTS,S/AS01 malaria vaccine candidate is determined by their fine specificity.

    PubMed

    Chaudhury, Sidhartha; Ockenhouse, Christian F; Regules, Jason A; Dutta, Sheetij; Wallqvist, Anders; Jongert, Erik; Waters, Norman C; Lemiale, Franck; Bergmann-Leitner, Elke

    2016-05-31

    Recent vaccine studies have shown that the magnitude of an antibody response is often insufficient to explain efficacy, suggesting that characteristics regarding the quality of the antibody response, such as its fine specificity and functional activity, may play a major role in protection. Previous studies of the lead malaria vaccine candidate, RTS,S, have shown that circumsporozoite protein (CSP)-specific antibodies and CD4(+) T cell responses are associated with protection, however the role of fine specificity and biological function of CSP-specific antibodies remains to be elucidated. Here, the relationship between fine specificity, opsonization-dependent phagocytic activity and protection in RTS,S-induced antibodies is explored. A new method for measuring the phagocytic activity mediated by CSP-specific antibodies in THP-1 cells is presented and applied to samples from a recently completed phase 2 RTS,S/AS01 clinical trial. The fine specificity of the antibody response was assessed using ELISA against three antigen constructs of CSP: the central repeat region, the C-terminal domain and the full-length protein. A multi-parameter analysis of phagocytic activity and fine-specificity data was carried out to identify potential correlates of protection in RTS,S. Results from the newly developed assay revealed that serum samples from RTS,S recipients displayed a wide range of robust and repeatable phagocytic activity. Phagocytic activity was correlated with full-length CSP and C-terminal specific antibody titres, but not to repeat region antibody titres, suggesting that phagocytic activity is primarily driven by C-terminal antibodies. Although no significant difference in overall phagocytic activity was observed with respect to protection, phagocytic activity expressed as 'opsonization index', a relative measure that normalizes phagocytic activity with CS antibody titres, was found to be significantly lower in protected subjects than non-protected subjects

  15. Anthrax Vaccine Precipitated Induces Edema Toxin-Neutralizing, Edema Factor-Specific Antibodies in Human Recipients

    PubMed Central

    Dumas, Eric K.; Gross, Timothy; Larabee, Jason; Pate, Lance; Cuthbertson, Hannah; Charlton, Sue; Hallis, Bassam; Engler, Renata J. M.; Collins, Limone C.; Spooner, Christina E.; Chen, Hua; Ballard, Jimmy; James, Judith A.

    2017-01-01

    ABSTRACT Edema toxin (ET), composed of edema factor (EF) and protective antigen (PA), is a virulence factor of Bacillus anthracis that alters host immune cell function and contributes to anthrax disease. Anthrax vaccine precipitated (AVP) contains low but detectable levels of EF and can elicit EF-specific antibodies in human recipients of AVP. Active and passive vaccination of mice with EF can contribute to protection from challenge with Bacillus anthracis spores or ET. This study compared humoral responses to ET in recipients of AVP (n = 33) versus anthrax vaccine adsorbed (AVA; n = 66), matched for number of vaccinations and time postvaccination, and further determined whether EF antibodies elicited by AVP contribute to ET neutralization. AVP induced higher incidence (77.8%) and titer (229.8 ± 58.6) of EF antibodies than AVA (4.2% and 7.8 ± 8.3, respectively), reflecting the reported low but detectable presence of EF in AVP. In contrast, PA IgG levels and ET neutralization measured using a luciferase-based cyclic AMP reporter assay were robust and did not differ between the two vaccine groups. Multiple regression analysis failed to detect an independent contribution of EF antibodies to ET neutralization in AVP recipients; however, EF antibodies purified from AVP sera neutralized ET. Serum samples from at least half of EF IgG-positive AVP recipients bound to nine decapeptides located in EF domains II and III. Although PA antibodies are primarily responsible for ET neutralization in recipients of AVP, increased amounts of an EF component should be investigated for the capacity to enhance next-generation, PA-based vaccines. PMID:28877928

  16. Duration of serum antibody responses following vaccination and revaccination of cattle with non-living commercial Pasteurella haemolytica vaccines.

    PubMed

    Confer, A W; Fulton, R W; Clinkenbeard, K D; Driskel, B A

    1998-12-01

    This study was designed to determine the duration of serum antibody responses to Pasteurella haemolytica whole cells (WC) and leukotoxin (LKT) in weanling beef cattle vaccinated with various non-living P. haemolytica vaccines. Serum antibodies to P. haemolytica antigens were determined periodically through day 140 by enzyme-linked immunosorbent assays. At day 140, cattle were revaccinated, and antibody responses periodically determined through day 196. Three vaccines were used in two experiments (A and B), OneShot, Presponse HP/tK, and Septimune PH-K. In general, all three vaccines between 7 and 14 days induced antibody responses to WC after vaccination. Antibodies to LKT were induced with OneShot and Presponse. Revaccination at days 28 and 140 usually stimulated anamnestic responses. Serum antibodies to the various antigens remained significantly increased for up to 84 days after vaccination or revaccination. The intensity and duration of antibody responses were variable depending on the experiment and vaccines used. Vaccination with OneShot usually stimulated the greatest responses to WC. Vaccination with OneShot or Presponse resulted in equivalent primary anti-LKT responses. In experiment B, spontaneous seroconversion was found in numerous calves on day 112. Revaccination of those cattle at day 140 resulted in markedly variable antibody responses such that several groups had no increase in antibody responses.

  17. GD3/proteosome vaccines induce consistent IgM antibodies against the ganglioside GD3.

    PubMed

    Livingston, P O; Calves, M J; Helling, F; Zollinger, W D; Blake, M S; Lowell, G H

    1993-09-01

    The gangliosides of melanoma and other tumours of neuroectodermal origin are suitable targets for immune intervention with tumour vaccines. The optimal vaccines in current use contain ganglioside plus bacillus Calmette-Guérin and induce considerable morbidity. We have screened a variety of new adjuvants in the mouse, and describe one antigen-delivery system, proteosomes, which is especially effective. Highly hydrophobic Neisserial outer membrane proteins (OMP) form multimolecular liposome-like vesicular structures termed proteosomes which can readily incorporate amphiphilic molecules such as GD3 ganglioside. The optimal GD3/proteosome vaccine formulation for induction of GD3 antibodies in the mouse is determined. Interestingly, the use of potent immunological adjuvants in addition to proteosomes augments the IgM and IgG antibody titres against OMP in these vaccines but GD3 antibody titres are unaffected. The application of proteosomes to enhance the immune response to GD3 extends the concept of the proteosome immunopotentiating system from lipopeptides to amphipathic carbohydrate epitopes such as cell-surface gangliosides. The demonstrated safety of meningococcal OMP in humans and the data in mice presented here suggest that proteosome vaccines have potential for augmenting the immunogenicity of amphipathic tumour antigens in humans.

  18. Safety and antibody response, including antibody persistence for 5 years, after primary vaccination or revaccination with pneumococcal polysaccharide vaccine in middle-aged and older adults.

    PubMed

    Musher, Daniel M; Manof, Susan B; Liss, Charlie; McFetridge, Richard D; Marchese, Rocio D; Bushnell, Bonnie; Alvarez, Frances; Painter, Carla; Blum, Michael D; Silber, Jeffrey L

    2010-02-15

    This study assessed antibody levels for 5 years after primary vaccination or revaccination with 23-valent pneumococcal polysaccharide vaccine (PN23). Subjects were enrolled into 4 study groups by age (50-64 or > or = 65 years) and prior vaccination status (no prior vaccination or 1 vaccination 3-5 years previously). Blood was obtained on day 0 (before primary vaccination or revaccination), day 30, day 60, and annually during years 2-5. Levels of immunoglobulin G (IgG) to 8 vaccine serotypes were measured by enzyme-linked immunosorbent assay. Of 1008 enrolled subjects, 551 completed year 5. For each serotype and age group, baseline geometric mean concentrations (GMCs) of IgG were higher in revaccination than primary vaccination subjects. Primary vaccination or revaccination with PN23 induced significant increases in levels of antibody to all serotypes tested. Although day 30 and 60 antibody levels tended to be modestly lower after revaccination, study groups had similar GMCs at later time points. For serotypes 4, 6B, 8, 9V, 12F, 14, and 23F, GMCs during years 2-5 after primary vaccination or revaccination remained higher than in vaccine-naive persons. Levels of antibody to serotype 3 returned to baseline by year 2. Both primary vaccination and revaccination with PN23 induce antibody responses that persist during 5 years of observation.

  19. AAVrh.10-Mediated Expression of an Anti-Cocaine Antibody Mediates Persistent Passive Immunization That Suppresses Cocaine-Induced Behavior

    PubMed Central

    Rosenberg, Jonathan B.; Hicks, Martin J.; De, Bishnu P.; Pagovich, Odelya; Frenk, Esther; Janda, Kim D.; Wee, Sunmee; Koob, George F.; Hackett, Neil R.; Kaminsky, Stephen M.; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G.

    2012-01-01

    Abstract Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab, an AAVrh.10 gene transfer vector expressing the heavy and light chains of the high affinity anti-cocaine monoclonal antibody GNC92H2. Intravenous administration of AAVrh.10antiCoc.Mab to mice mediated high, persistent serum levels of high-affinity, cocaine-specific antibodies that sequestered intravenously administered cocaine in the blood. With repeated intravenous cocaine challenge, naive mice exhibited hyperactivity, while the AAVrh.10antiCoc.Mab-vaccinated mice were completely resistant to the cocaine. These observations demonstrate a novel strategy for cocaine addiction by requiring only a single administration of an AAV vector mediating persistent, systemic anti-cocaine passive immunity. PMID:22486244

  20. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.

    PubMed

    Khurana, Surender; Loving, Crystal L; Manischewitz, Jody; King, Lisa R; Gauger, Phillip C; Henningson, Jamie; Vincent, Amy L; Golding, Hana

    2013-08-28

    Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

  1. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001.

    PubMed

    Costa, Matthew R; Pollara, Justin; Edwards, Regina Whitney; Seaman, Michael S; Gorny, Miroslaw K; Montefiori, David C; Liao, Hua-Xin; Ferrari, Guido; Lu, Shan; Wang, Shixia

    2016-11-15

    HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost

  2. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination.

    PubMed

    Tan, Yann-Chong; Blum, Lisa K; Kongpachith, Sarah; Ju, Chia-Hsin; Cai, Xiaoyong; Lindstrom, Tamsin M; Sokolove, Jeremy; Robinson, William H

    2014-03-01

    We developed a DNA barcoding method to enable high-throughput sequencing of the cognate heavy- and light-chain pairs of the antibodies expressed by individual B cells. We used this approach to elucidate the plasmablast antibody response to influenza vaccination. We show that >75% of the rationally selected plasmablast antibodies bind and neutralize influenza, and that antibodies from clonal families, defined by sharing both heavy-chain VJ and light-chain VJ sequence usage, do so most effectively. Vaccine-induced heavy-chain VJ regions contained on average >20 nucleotide mutations as compared to their predicted germline gene sequences, and some vaccine-induced antibodies exhibited higher binding affinities for hemagglutinins derived from prior years' seasonal influenza as compared to their affinities for the immunization strains. Our results show that influenza vaccination induces the recall of memory B cells that express antibodies that previously underwent affinity maturation against prior years' seasonal influenza, suggesting that 'original antigenic sin' shapes the antibody response to influenza vaccination. Published by Elsevier Inc.

  3. Development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies.

    PubMed

    Licari, Amelia; Castagnoli, Riccardo; De Sando, Elisabetta; Marseglia, Gian Luigi

    2017-04-01

    Given the multifaceted effector functions of IgE in immediate hypersensitivity, late-phase reactions, regulation of IgE receptor expression and immune modulation, IgE antibodies have long represented an attractive target for therapeutic agents in asthma and other allergic diseases. Effective pharmacologic blockade of the binding of IgE to its receptors has become one of most innovative therapeutic strategies in the field of allergic diseases in the last 10 years. Areas covered: The latest strategies targeting IgE include the development of a therapeutic vaccine, able to trigger our own immune systems to produce therapeutic anti-IgE antibodies, potentially providing a further step forward in the treatment of allergic diseases. The aim of this review is to discuss the discovery strategy, preclinical and early clinical development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies. Expert opinion: Outside the area of development of humanized anti-IgE monoclonal antibodies, the research field of therapeutic IgE-targeted vaccines holds potential benefits for the treatment of allergic diseases. However, most of the experimental observations in animal models have not yet been translated into new treatments and evidence of human efficacy and safety of this new therapeutic strategy are still lacking.

  4. Viral Vector Malaria Vaccines Induce High-Level T Cell and Antibody Responses in West African Children and Infants.

    PubMed

    Bliss, Carly M; Drammeh, Abdoulie; Bowyer, Georgina; Sanou, Guillaume S; Jagne, Ya Jankey; Ouedraogo, Oumarou; Edwards, Nick J; Tarama, Casimir; Ouedraogo, Nicolas; Ouedraogo, Mireille; Njie-Jobe, Jainaba; Diarra, Amidou; Afolabi, Muhammed O; Tiono, Alfred B; Yaro, Jean Baptiste; Adetifa, Uche J; Hodgson, Susanne H; Anagnostou, Nicholas A; Roberts, Rachel; Duncan, Christopher J A; Cortese, Riccardo; Viebig, Nicola K; Leroy, Odile; Lawrie, Alison M; Flanagan, Katie L; Kampmann, Beate; Imoukhuede, Egeruan B; Sirima, Sodiomon B; Bojang, Kalifa; Hill, Adrian V S; Nébié, Issa; Ewer, Katie J

    2017-02-01

    Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8 + T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8 +  and CD4 + T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Vaccine-specific antibody secreting cells are a robust early marker of LAIV-induced B-cell response in ferrets.

    PubMed

    Cherukuri, Anu; Servat, Esteban; Woo, Jennifer

    2012-01-05

    Currently, a robust set of immune correlates for live attenuated influenza vaccine (LAIV) efficacy in humans has not been fully elucidated. The serum hemagglutination inhibition (HAI) assay has been historically used to measure humoral immune responses to injectable inactivated influenza vaccination. However, serum antibody titers do not reliably reflect the complete mechanism of action of LAIV, which is an intranasally delivered vaccine and is expected to induce local mucosal and cellular immune responses in addition to humoral immune responses. Therefore, we designed a study to evaluate potential immune correlates of LAIV vaccination in the ferret animal model of influenza infection. Ferrets were vaccinated with increasing doses of LAIV and four weeks later challenged with a homologous wild-type (wt) H1N1 strain. Humoral immune responses measured following LAIV vaccination included HAI, serum antibodies and antibody secreting cells (ASC); and the responses were found to correlate with the dose level of LAIV administered in this model. Protection from wt virus challenge was determined by measuring inhibition of wt viral replication in nasal washes and in lung tissue. Results demonstrated that LAIV doses ≥ 5.0 log(10) Plaque Forming Units (PFU) elicited vaccine-specific IgG and IgA ASC frequencies and induced complete protection in the lungs. Further, we developed a novel model utilizing seropositive older ferrets to demonstrate that in the background of previous wt influenza infection LAIV induces a robust vaccine-specific B-cell response even in the absence of serum antibody response, a result that suggests that effector B-cell responses generated by LAIV are not inhibited by prior viral exposure. Finally, we demonstrated that LAIV elicits strain-specific memory B-cell responses that are measurable in a background of wt influenza infections. Taken together, results from these studies identified the antigen-specific ASC frequency as a useful early biomarker of

  6. Development of a vaccine to mitigate greenhouse gas emissions in agriculture: vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro.

    PubMed

    Wedlock, D N; Pedersen, G; Denis, M; Dey, D; Janssen, P H; Buddle, B M

    2010-02-01

    To develop an understanding of the immune responses of ruminants to methanogens, and to provide proof of a concept that harnessing the immune system of ruminants is a potentially viable approach to mitigate greenhouse gas emissions from agriculture. Four subcellular fractions, namely cytoplasmic, two cell-wall preparations, and cell wall-derived proteins were prepared from Methanobrevibacter ruminantium M1. Twenty sheep (10 months of age) were vaccinated with these fractions or with whole cells (n=4 per group). Sheep were re-vaccinated once after 3 weeks, and antibody responses to M. ruminantium M1 antigens in sera and saliva measured using ELISA at 2 weeks after the second vaccination. Antigens recognised by the antisera were visualised using Western blotting. The antisera were tested in vitro for their impact on M. ruminantium M1, measuring the effect on cell growth, methane production, and ability to induce agglutination. Basal levels (pre-vaccination) of antibodies against M. ruminantium M1 antigens were low. Vaccination with the antigenic fractions induced strong antibody responses in serum. Both IgG and IgA responses to methanogen antigens were detected in saliva following vaccination. Western blot analysis of the antisera indicated reactivity of antibodies, and a wide range of proteins was present in the different methanogen fractions. Antisera against the various fractions agglutinated methanogens in an in-vitro assay. In addition, these antisera decreased the growth of a pure culture of a methanogen and production of methane in vitro. Antigens from methanogens are immunogenic in ruminants, and antisera from sheep vaccinated with fractions of methanogens have a significant impact on these organisms, inducing cell agglutination, and decreasing growth of methanogens and production of methane. Only antisera to selected methanogen fractions were able to achieve these effects. The results demonstrate the feasibility of a vaccination strategy to mitigate emission

  7. Characterization of Epitope-Specific Anti-Respiratory Syncytial Virus (Anti-RSV) Antibody Responses after Natural Infection and after Vaccination with Formalin-Inactivated RSV

    PubMed Central

    Luytjes, Willem; Leenhouts, Kees; Rottier, Peter J. M.; van Kuppeveld, Frank J. M.; Haijema, Bert Jan

    2016-01-01

    ABSTRACT Antibodies against the fusion (F) protein of respiratory syncytial virus (RSV) play an important role in the protective immune response to this important respiratory virus. Little is known, however, about antibody levels against multiple F-specific epitopes induced by infection or after vaccination against RSV, while this is important to guide the evaluation of (novel) vaccines. In this study, we analyzed antibody levels against RSV proteins and F-specific epitopes in human sera and in sera of vaccinated and experimentally infected cotton rats and the correlation thereof with virus neutralization. Analysis of human sera revealed substantial diversity in antibody levels against F-, G (attachment)-, and F-specific epitopes between individuals. The highest correlation with virus neutralization was observed for antibodies recognizing prefusion-specific antigenic site Ø. Nevertheless, our results indicate that high levels of antibodies targeting other parts of the F protein can also mediate a potent antiviral antibody response. In agreement, sera of experimentally infected cotton rats contained high neutralizing activity despite lacking antigenic site Ø-specific antibodies. Strikingly, vaccination with formalin-inactivated RSV (FI-RSV) exclusively resulted in the induction of poorly neutralizing antibodies against postfusion-specific antigenic site I, although antigenic sites I, II, and IV were efficiently displayed in FI-RSV. The apparent immunodominance of antigenic site I in FI-RSV likely explains the low levels of neutralizing antibodies upon vaccination and challenge and may play a role in the vaccination-induced enhancement of disease observed with such preparations. IMPORTANCE RSV is an importance cause of hospitalization of infants. The development of a vaccine against RSV has been hampered by the disastrous results obtained with FI-RSV vaccine preparations in the 1960s that resulted in vaccination-induced enhancement of disease. To get a better

  8. Antibody response of sandhill and whooping cranes to an eastern equine encephalitis virus vaccine

    USGS Publications Warehouse

    Clark, G.G.; Dein, F.J.; Crabbs, C.L.; Carpenter, J.W.; Watts, D.M.

    1987-01-01

    As a possible strategy to protect whooping cranes (Grus americana) from fatal eastern equine encephalitis (EEE) viral infection, studies were conducted to determine the immune response of this species and sandhill cranes (Grus canadensis) to a formalin-inactivated EEE viral vaccine. Viral-specific neutralizing antibody was elicited in both species after intramuscular (IM) vaccination. Subcutaneous and intravenous routes of vaccination failed to elicit detectable antibody in sandhill cranes. Among the IM vaccinated cranes, the immune response was characterized by nondetectable or low antibody titers that waned rapidly following primary exposure to the vaccine. However, one or more booster doses consistently elicited detectable antibody and/or increased antibody titers in the whooping cranes. In contrast, cranes with pre-existing EEE viral antibody, apparently induced by natural infection, exhibited a rapid increase and sustained high-antibody titers. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to determine the protective efficacy of the antibody.

  9. Randomized comparative study of the serum antihemagglutinin and antineuraminidase antibody responses to six licensed trivalent influenza vaccines.

    PubMed

    Couch, Robert B; Atmar, Robert L; Keitel, Wendy A; Quarles, John M; Wells, Janet; Arden, Nancy; Niño, Diane

    2012-12-17

    Serum antibody to the hemagglutinin (HA) surface protein of influenza virus induced by influenza vaccination is a correlate of protection against influenza. The neuraminidase (NA) protein is also on the surface of the virus; antibody to it has been shown to impair virus release from infected cells and to reduce the intensity of influenza infections in animal models and in humans challenged with infectious virus. Recently we have shown that NA inhibiting antibody can independently contribute to immunity to naturally-occurring influenza immunity in the presence of antibody to the HA. The present study was conducted to evaluate induction of antibody to the NA and the HA by commercially available influenza vaccines. Healthy young adults were vaccinated with one of five commercially available trivalent inactivated vaccines or live influenza vaccine. Frequencies of serum antibody and fold geometric mean titer (GMT) increases four weeks later were measured to each of the three vaccine viruses (A/H1N1, A/H3N2, B) in hemagglutination-inhibition (HAI) and neutralization (neut) assays. Frequency and fold GMT increase in neuraminidase-inhibition (NI) antibody titers were measured to the influenza A viruses (A/H1N1, A/H3N2). No significant reactogenicity occurred among the vaccinated subjects. The Fluvirin inactivated vaccine induced more anti-HA antibody responses and a higher fold GMT increase than the other inactivated vaccines but there were no major differences in response frequencies or fold GMT increase among the inactivated vaccines. Both the frequency of antibody increase and fold GMT increase were significantly lower for live vaccine than for any inactivated vaccine in HAI and neut assays for all three vaccine viruses. Afluria inactivated vaccine induced more N1 antibody and Fluarix induced more N2 antibody than the other vaccines but all inactivated vaccines induced serum NI antibody. The live vaccine failed to elicit any NI responses for the N2 NA of A/H3N2 virus

  10. Antibody Persistence in Adults Two Years after Vaccination with an H1N1 2009 Pandemic Influenza Virus-Like Particle Vaccine

    PubMed Central

    Villasís-Keever, Miguel Ángel; Núñez-Valencia, Adriana; Boscó-Gárate, Ilka; Lozano-Dubernard, Bernardo; Lara-Puente, Horacio; Espitia, Clara; Alpuche-Aranda, Celia; Bonifaz, Laura C.; Arriaga-Pizano, Lourdes; Pastelin-Palacios, Rodolfo; Isibasi, Armando; López-Macías, Constantino

    2016-01-01

    The influenza virus is a human pathogen that causes epidemics every year, as well as potential pandemic outbreaks, as occurred in 2009. Vaccination has proven to be sufficient in the prevention and containment of viral spreading. In addition to the current egg-based vaccines, new and promising vaccine platforms, such as cell culture-derived vaccines that include virus-like particles (VLPs), have been developed. VLPs have been shown to be both safe and immunogenic against influenza infections. Although antibody persistence has been studied in traditional egg-based influenza vaccines, studies on antibody response durations induced by VLP influenza vaccines in humans are scarce. Here, we show that subjects vaccinated with an insect cell-derived VLP vaccine, in the midst of the 2009 H1N1 influenza pandemic outbreak in Mexico City, showed antibody persistence up to 24 months post-vaccination. Additionally, we found that subjects that reported being revaccinated with a subsequent inactivated influenza virus vaccine showed higher antibody titres to the pandemic influenza virus than those who were not revaccinated. These findings provide insights into the duration of the antibody responses elicited by an insect cell-derived pandemic influenza VLP vaccine and the possible effects of subsequent influenza vaccination on antibody persistence induced by this VLP vaccine in humans. PMID:26919288

  11. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies.

    PubMed

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Pertoldi, Cino; Blixenkrone-Møller, Merete

    2015-03-10

    Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of maternally-derived antibodies on serologic responses to vaccination in kittens.

    PubMed

    Digangi, Brian A; Levy, Julie K; Griffin, Brenda; Reese, Michael J; Dingman, Patricia A; Tucker, Sylvia J; Dubovi, Edward J

    2012-02-01

    The optimal vaccination protocol to induce immunity in kittens with maternal antibodies is unknown. The objective of this study was to determine the effects of maternally-derived antibody (MDA) on serologic responses to vaccination in kittens. Vaccination with a modified live virus (MLV) product was more effective than an inactivated (IA) product at inducing protective antibody titers (PAT) against feline panleukopenia virus (FPV). IA vaccination against feline herpesvirus-1 (FHV) and feline calicivirus (FCV) was more effective in the presence of low MDA than high MDA. Among kittens with low MDA, MLV vaccination against FCV was more effective than IA vaccination. A total of 15%, 44% and 4% of kittens had insufficient titers against FPV, FHV and FCV, respectively, at 17 weeks of age. Serologic response to vaccination of kittens varies based on vaccination type and MDA level. In most situations, MLV vaccination should be utilized and protocols continued beyond 14 weeks of age to optimize response by all kittens.

  13. Selective Effects of a Morphine Conjugate Vaccine on Heroin and Metabolite Distribution and Heroin-Induced Behaviors in Rats

    PubMed Central

    Pravetoni, M.; Harris, A.C.; Birnbaum, A.K.; Pentel, P.R.

    2013-01-01

    Morphine conjugate vaccines have effectively reduced behavioral effects of heroin in rodents and primates. To better understand how these effects are mediated, heroin and metabolite distribution studies were performed in rats in the presence and absence of vaccination. In non-vaccinated rats 6-monoacetylmorphine (6-MAM) was the predominant opioid in plasma and brain as early as 1 minute after i.v. administration of heroin and for up to 14 minutes. Vaccination with morphine conjugated to keyhole limpet hemocyanin (M-KLH) elicited high titers and concentrations of antibodies with high affinity for heroin, 6-MAM, and morphine. Four minutes after heroin administration vaccinated rats showed substantial retention of all three opioids in plasma compared to controls and reduced 6-MAM and morphine, but not heroin, distribution to brain. Administration of 6-MAM rather than heroin in M-KLH vaccinated rats showed a similar drug distribution pattern. Vaccination reduced heroin-induced analgesia and blocked heroin-induced locomotor activity throughout 2 weeks of repeated testing. Higher serum opioid-specific antibody concentrations were associated with higher plasma opioid concentrations, lower brain 6-MAM and morphine concentrations, and lower heroin-induced locomotor activity. Serum antibody concentrations over 0.2 mg/ml were associated with substantial effects on these measures. These data support a critical role for 6-MAM in mediating the early effects of i.v. heroin and suggest that reducing 6-MAM concentration in brain is essential to the efficacy of morphine conjugate vaccines. PMID:23220743

  14. Broadly protective anti-hemagglutinin stalk antibodies induced by live attenuated influenza vaccine expressing chimeric hemagglutinin.

    PubMed

    Isakova-Sivak, Irina; Korenkov, Daniil; Smolonogina, Tatiana; Kotomina, Tatiana; Donina, Svetlana; Matyushenko, Victoria; Mezhenskaya, Daria; Krammer, Florian; Rudenko, Larisa

    2018-05-01

    The development of influenza vaccines that can provide broad protection against all drifted seasonal virus variants, zoonotic infections and emerging pandemic strains, has been a priority for two decades. Here we propose a strategy of inducing broadly-reactive anti-stalk antibody by sequential immunizations with live attenuated influenza vaccines (LAIVs) expressing chimeric HAs (cHAs). These vaccines are designed to contain identical hemagglutinin stalk domains from H1N1 virus but antigenically unrelated globular head domains from avian influenza virus subtypes H5, H8 and H9. Mouse experiments demonstrated enhanced cross-protection of cHA-containing LAIVs compared to the relevant vaccine viruses expressing natural HAs, and this enhanced protection was driven by stalk-HA-reactive IgG antibodies. The establishment of fully functional cross-protective immunity after two doses of cHA LAIV vaccination in naïve animals suggests that a similar effect might be expected after a single cHA LAIV dose in primed individuals, or after two to three doses in naïve children. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    PubMed

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  16. Different secretory IgA antibody responses after immunization with inactivated and live poliovirus vaccines.

    PubMed

    Hanson, L A; Carlsson, B; Jalil, F; Lindblad, B S; Khan, S R; van Wezel, A L

    1984-01-01

    The influence on secretory IgA antibody levels in milk and saliva of vaccination with oral, live poliovirus vaccine ( OPV ) and inactivated poliovirus vaccine (IPV) was studied. IPV, especially the antigen-rich Dutch vaccine, more often induced increases in antibody titers in milk (50%) than did OPV (26%) (P less than .01). OPV more often decreased the antibody levels in milk (40%) than did IPV (10%) (P less than .01). It was striking that mainly high prevaccination titers were decreased. The increases of IgA antibody in saliva were less striking. IPV caused increases as often in milk as in saliva, whereas OPV more often induced increases in IgA antibody in saliva, but there was a poor correlation between the changes in antibody titers in milk and those in saliva.

  17. Bacille Calmette-Guérin (BCG) vaccination at birth and antibody responses to childhood vaccines. A randomised clinical trial.

    PubMed

    Nissen, Thomas Nørrelykke; Birk, Nina Marie; Smits, Gaby; Jeppesen, Dorthe Lisbeth; Stensballe, Lone Graff; Netea, Mihai G; van der Klis, Fiona; Benn, Christine Stabell; Pryds, Ole

    2017-04-11

    BCG vaccination has been associated with beneficial non-specific effects on child health. Some immunological studies have reported heterologous effects of vaccines on antibody responses to heterologous vaccines. Within a randomised clinical trial of Bacille Calmette-Guérin (BCG) vaccination at birth, The Danish Calmette Study, we investigated the effect of BCG at birth on the antibody response to the three routine vaccines against DiTeKiPol/Act-Hib and Prevenar 13 in a subgroup of participants. Within 7days after birth, children were randomised 1:1 to BCG vaccination or to the control group (no intervention). After three routine vaccinations given at age 3, 5 and 12months, antibodies against DiTeKiPol/Act-Hib and Prevenar 13 (Streptococcus pneumoniae serotype type 4, 6B, 9V, 14, 18C, 19F and 23F) were measured 4weeks after the third vaccine dose. Among the 300 included children (178 BCG; 122 controls), almost all children (>96%) had antibody responses above the protective levels. Overall BCG vaccination at birth did not affect the antibody level. When stratifying by 'age at randomisation' we found a possible inducing effect of BCG on antibodies against B. pertussis and all pneumococcal serotypes, when BCG was given after the first day of life. Girls had significantly higher antibody levels for Haemophilus influenza type b and pneumococcus than boys. Three routine vaccinations with DiTeKiPol/Act-Hib and Prevenar 13 induced sero-protective levels in almost all children. No overall effect of neonatal BCG vaccination was observed. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. T-cell-mediated cross-strain protective immunity elicited by prime-boost vaccination with a live attenuated influenza vaccine.

    PubMed

    Li, Junwei; Arévalo, Maria T; Chen, Yanping; Chen, Shan; Zeng, Mingtao

    2014-10-01

    Antigenic drift and shift of influenza viruses require frequent reformulation of influenza vaccines. In addition, seasonal influenza vaccines are often mismatched to the epidemic influenza strains. This stresses the need for a universal influenza vaccine. BALB/c mice were vaccinated with the trivalent live attenuated (LAIV; FluMist) or inactivated (TIV; FluZone) influenza vaccines and challenged with PR8 (H1N1), FM/47 (H1N1), or HK/68 (H3N2) influenza virus. Cytokines and antibody responses were tested by ELISA. Furthermore, different LAIV dosages were applied in BALB/c mice. LAIV vaccinated mice were also depleted of T-cells and challenged with PR8 virus. LAIV induced significant protection against challenge with the non-vaccine strain PR8 influenza virus. Furthermore, protective immunity against PR8 was dose-dependent. Of note, interleukin 2 and interferon gamma cytokine secretion in the lung alveolar fluid were significantly elevated in mice vaccinated with LAIV. Moreover, T-cell depletion of LAIV vaccinated mice compromised protection, indicating that T-cell-mediated immunity is required. In contrast, passive transfer of sera from mice vaccinated with LAIV into naïve mice failed to protect against PR8 challenge. Neutralization assays in vitro confirmed that LAIV did not induce cross-strain neutralizing antibodies against PR8 virus. Finally, we showed that three doses of LAIV also provided protection against challenge with two additional heterologous viruses, FM/47 and HK/68. These results support the potential use of the LAIV as a universal influenza vaccine under a prime-boost vaccination regimen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T-cell help

    PubMed Central

    Pandey, Manisha; Wykes, Michelle N; Hartas, Jon; Good, Michael F; Batzloff, Michael R

    2013-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Vaccination with J8, a conserved region synthetic peptide derived from the M-protein of GAS and containing only 12 amino acids from GAS, when conjugated to DT, has been shown to protect mice against a lethal GAS challenge. Protection has been previously shown to be antibody-mediated. J8 does not contain a dominant GAS-specific T-cell epitope. The current study examined long-term antibody memory and dissected the role of B and T-cells. Our results demonstrated that vaccination generates specific memory B-cells and long-lasting antibody responses. The memory B-cell response can be activated following boost with antigen or limiting numbers of whole bacteria. We further show that these memory responses protect against systemic infection with GAS. T-cell help is required for activation of memory B-cells but can be provided by naïve T-cells responding directly to GAS at the time of infection. Thus, individuals whose T-cells do not recognize the short synthetic peptide in the vaccine will be able to generate a protective and rapid memory antibody response at the time of infection. These studies significantly strengthen previous findings, which showed that protection by the J8-DT vaccine is antibody-mediated and suggest that in vaccine design for other organisms the source of T-cell help for antibody responses need not be limited to sequences from the organism itself. PMID:23401589

  20. Whole-cell pertussis vaccine induces low antibody levels in human immunodeficiency virus-infected children living in sub-Saharan Africa.

    PubMed

    Tejiokem, Mathurin C; Njamkepo, Elisabeth; Gouandjika, Ionela; Rousset, Dominique; Béniguel, Lydie; Bilong, Catherine; Tene, Gilbert; Penda, Ida; Ngongueu, Carine; Gody, Jean C; Guiso, Nicole; Baril, Laurence

    2009-04-01

    The WHO recommendations for the immunization of children infected with human immunodeficiency virus (HIV) differ slightly from the guidelines for uninfected children. The introduction of antiretroviral therapy for HIV-infected infants should considerably prolong their life expectancy. The question of the response to the whole-cell pertussis (wP) vaccine should now be addressed, particularly in countries in which pertussis remains endemic. To evaluate the persistence of antibodies to the wP vaccine in HIV-infected and uninfected children who had previously received this vaccine in routine clinical practice, we conducted a cross-sectional study of children aged 18 to 36 months, born to HIV-infected mothers and living in Cameroon or the Central African Republic. We tested blood samples for antibodies to the wP vaccine and for antibodies to diphtheria and tetanus toxoids (D and T, respectively) in the context of the use of a combined DTwP vaccine. We enrolled 50 HIV-infected children and 78 uninfected, HIV-exposed children in the study. A lower proportion of HIV-infected children than uninfected children had antibodies against the antigens tested for all valences of the DTwP vaccine. Agglutinin levels were substantially lower in HIV-infected than in HIV-exposed but uninfected children (30.0% versus 55.1%, respectively; P = 0.005). We also observed a high risk of low antibody levels in response to the DTwP vaccine in HIV-infected children with severe immunodeficiency (CD4 T-cell level, <25%). The concentrations of antibodies induced by the DTwP vaccine were lower in HIV-infected children than in uninfected children. This study supports the need for a booster dose of the DTwP vaccine in order to maintain high antibody levels in HIV-infected children.

  1. Antibody response to equine coronavirus in horses inoculated with a bovine coronavirus vaccine.

    PubMed

    Nemoto, Manabu; Kanno, Toru; Bannai, Hiroshi; Tsujimura, Koji; Yamanaka, Takashi; Kokado, Hiroshi

    2017-11-17

    A vaccine for equine coronavirus (ECoV) is so far unavailable. Bovine coronavirus (BCoV) is antigenically related to ECoV; it is therefore possible that BCoV vaccine will induce antibodies against ECoV in horses. This study investigated antibody response to ECoV in horses inoculated with BCoV vaccine. Virus neutralization tests showed that antibody titers against ECoV increased in all six horses tested at 14 days post inoculation, although the antibody titers were lower against ECoV than against BCoV. This study showed that BCoV vaccine provides horses with antibodies against ECoV to some extent. It is unclear whether antibodies provided by BCoV vaccine are effective against ECoV, and therefore ECoV challenge studies are needed to evaluate efficacy of the vaccine in the future.

  2. Influence of maternal vaccination against diphtheria, tetanus, and pertussis on the avidity of infant antibody responses to a pertussis containing vaccine in Belgium

    PubMed Central

    Caboré, Raïssa Nadège; Maertens, Kirsten; Dobly, Alexandre; Leuridan, Elke; Van Damme, Pierre; Huygen, Kris

    2017-01-01

    ABSTRACT Maternal antibodies induced by vaccination during pregnancy cross the placental barrier and can close the susceptibility gap to pertussis in young infants up to the start of primary immunization. As not only the quantity but also the quality of circulating antibodies is important for protection, we assessed whether maternal immunization affects the avidity of infant vaccine-induced IgG antibodies, in the frame of a prospective clinical trial on pregnancy vaccination in Belgium. Infants born from Tdap (Boostrix®) vaccinated (N = 55) and unvaccinated (N = 26) mothers were immunized with a hexavalent pertussis containing vaccine (Infanrix Hexa®) at 8, 12 and 16 weeks, followed by a fourth dose at 15 months of age. Right before and one month after this fourth vaccine dose, the avidity of IgG antibodies against diphtheria toxin (DT), tetanus toxin (TT), pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (Prn) was determined using 1.5 M ammonium thiocyanate as dissociating agent. In both groups, antibody avidity was moderate for TT, PT, FHA and Prn and low for DT after priming. After a fourth dose, antibody avidity increased significantly to high avidity for TT and PT, whereas it remained moderate for FHA and Prn and low for DT. The avidity correlated positively with antibody level in both study groups, yet not significantly for PT. When comparing both study groups, only PT-specific antibodies showed significantly lower avidity in infants born from vaccinated than from unvaccinated mothers after the fourth vaccine dose. The clinical significance of lower avidity of vaccine induced infant antibodies after maternal vaccination, if any, needs further investigation. PMID:28277900

  3. Influence of maternal vaccination against diphtheria, tetanus, and pertussis on the avidity of infant antibody responses to a pertussis containing vaccine in Belgium.

    PubMed

    Caboré, Raïssa Nadège; Maertens, Kirsten; Dobly, Alexandre; Leuridan, Elke; Van Damme, Pierre; Huygen, Kris

    2017-10-03

    Maternal antibodies induced by vaccination during pregnancy cross the placental barrier and can close the susceptibility gap to pertussis in young infants up to the start of primary immunization. As not only the quantity but also the quality of circulating antibodies is important for protection, we assessed whether maternal immunization affects the avidity of infant vaccine-induced IgG antibodies, in the frame of a prospective clinical trial on pregnancy vaccination in Belgium. Infants born from Tdap (Boostrix®) vaccinated (N = 55) and unvaccinated (N = 26) mothers were immunized with a hexavalent pertussis containing vaccine (Infanrix Hexa®) at 8, 12 and 16 weeks, followed by a fourth dose at 15 months of age. Right before and one month after this fourth vaccine dose, the avidity of IgG antibodies against diphtheria toxin (DT), tetanus toxin (TT), pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (Prn) was determined using 1.5 M ammonium thiocyanate as dissociating agent. In both groups, antibody avidity was moderate for TT, PT, FHA and Prn and low for DT after priming. After a fourth dose, antibody avidity increased significantly to high avidity for TT and PT, whereas it remained moderate for FHA and Prn and low for DT. The avidity correlated positively with antibody level in both study groups, yet not significantly for PT. When comparing both study groups, only PT-specific antibodies showed significantly lower avidity in infants born from vaccinated than from unvaccinated mothers after the fourth vaccine dose. The clinical significance of lower avidity of vaccine induced infant antibodies after maternal vaccination, if any, needs further investigation.

  4. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins.

    PubMed

    Wang, Sheng-Fan; Tseng, Sung-Pin; Yen, Chia-Hung; Yang, Jyh-Yuan; Tsao, Ching-Han; Shen, Chun-Wei; Chen, Kuan-Hsuan; Liu, Fu-Tong; Liu, Wu-Tse; Chen, Yi-Ming Arthur; Huang, Jason C

    2014-08-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) still carries the potential for reemergence, therefore efforts are being made to create a vaccine as a prophylactic strategy for control and prevention. Antibody-dependent enhancement (ADE) is a mechanism through which dengue viruses, feline coronaviruses, and HIV viruses take advantage of anti-viral humoral immune responses to infect host target cells. Here we describe our observations of SARS-CoV using ADE to enhance the infectivity of a HL-CZ human promonocyte cell line. Quantitative-PCR and immunofluorescence staining results indicate that SARS-CoV is capable of replication in HL-CZ cells, and of displaying virus-induced cytopathic effects and increased levels of TNF-α, IL-4 and IL-6 two days post-infection. According to flow cytometry data, the HL-CZ cells also expressed angiotensin converting enzyme 2 (ACE2, a SARS-CoV receptor) and higher levels of the FcγRII receptor. We found that higher concentrations of anti-sera against SARS-CoV neutralized SARS-CoV infection, while highly diluted anti-sera significantly increased SARS-CoV infection and induced higher levels of apoptosis. Results from infectivity assays indicate that SARS-CoV ADE is primarily mediated by diluted antibodies against envelope spike proteins rather than nucleocapsid proteins. We also generated monoclonal antibodies against SARS-CoV spike proteins and observed that most of them promoted SARS-CoV infection. Combined, our results suggest that antibodies against SARS-CoV spike proteins may trigger ADE effects. The data raise new questions regarding a potential SARS-CoV vaccine, while shedding light on mechanisms involved in SARS pathogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice.

    PubMed

    Tierney, Rob; Nakai, Toru; Parkins, Christopher J; Caposio, Patrizia; Fairweather, Neil F; Sesardic, Dorothea; Jarvis, Michael A

    2012-04-26

    The current commercially available vaccine used to prevent tetanus disease following infection with the anaerobic bacterium Clostridium tetani is safe and effective. However, tetanus remains a major source of mortality in developing countries. In 2008, neonatal tetanus was estimated to have caused >59,000 deaths, accounting for 1% of worldwide infant mortality, primarily in poorer nations. The cost of multiple vaccine doses administered by injection necessary to achieve protective levels of anti-tetanus toxoid antibodies is the primary reason for low vaccine coverage. Herein, we show that a novel vaccine strategy using a cytomegalovirus (CMV)-based vaccine platform induces protective levels of anti-tetanus antibodies that are durable (lasting >13 months) in mice following only a single dose. This study demonstrates the ability of a 'single-dose' CMV-based vaccine strategy to induce durable protection, and supports the potential for a tetanus vaccine based on CMV to impact the incidence of tetanus in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Antibody response to equine coronavirus in horses inoculated with a bovine coronavirus vaccine

    PubMed Central

    NEMOTO, Manabu; KANNO, Toru; BANNAI, Hiroshi; TSUJIMURA, Koji; YAMANAKA, Takashi; KOKADO, Hiroshi

    2017-01-01

    A vaccine for equine coronavirus (ECoV) is so far unavailable. Bovine coronavirus (BCoV) is antigenically related to ECoV; it is therefore possible that BCoV vaccine will induce antibodies against ECoV in horses. This study investigated antibody response to ECoV in horses inoculated with BCoV vaccine. Virus neutralization tests showed that antibody titers against ECoV increased in all six horses tested at 14 days post inoculation, although the antibody titers were lower against ECoV than against BCoV. This study showed that BCoV vaccine provides horses with antibodies against ECoV to some extent. It is unclear whether antibodies provided by BCoV vaccine are effective against ECoV, and therefore ECoV challenge studies are needed to evaluate efficacy of the vaccine in the future. PMID:28993568

  7. Atypical antibody responses in dengue vaccine recipients.

    PubMed

    Kanesa-Thasan, N; Sun, W; Ludwig, G V; Rossi, C; Putnak, J R; Mangiafico, J A; Innis, B L; Edelman, R

    2003-12-01

    Eight of 69 (12%) healthy adult volunteers vaccinated with monovalent live-attenuated dengue virus (DENV) vaccine candidates had atypical antibody responses, with depressed IgM:IgG antibody ratios and induction of high-titer hemagglutination-inhibiting and neutralizing (NT) antibodies to all four DENV serotypes. These features suggested flavivirus exposure prior to DENV vaccination, yet no volunteer had a history of previous flavivirus infection, flavivirus vaccination, or antibody to flaviviruses evident before DENV vaccination. Moreover, production of antibody to DENV by atypical responders (AR) was not accelerated compared with antibody responses in the 61 flavivirus-naive responders (NR). Further evaluation revealed no differences in sex, age, race, DENV vaccine candidate received, or clinical signs and symptoms following vaccination between AR and NR. However, viremia was delayed at the onset in AR compared with NR. A comparative panel of all AR and five randomly selected NR found flavivirus cross-reactive antibody after vaccination only in AR. Unexpectedly, six of eight AR had NT antibodies to yellow fever virus (YFV) > 1:10 before vaccination while NR had none (P = 0.04). The AR also universally demonstrated YFV NT antibody titers > or = 1:160 after DENV vaccination, whereas four of five NR failed to seroconvert (P = 0.02). Yellow fever virus priming broadens the antibody response to monovalent DENV vaccination. The effect of flavivirus priming on the clinical and immunologic response to tetravalent DENV vaccine remains to be determined.

  8. Persistence of antibodies 20 y after vaccination with a combined hepatitis A and B vaccine

    PubMed Central

    Van Damme, Pierre; Leroux-Roels, Geert; Suryakiran, P.; Folschweiller, Nicolas; Van Der Meeren, Olivier

    2017-01-01

    ABSTRACT Vaccination is the most effective and well-tolerated method of conferring long-term protection against hepatitis A and B viruses (HAV; HBV). Long-term studies are required to characterize the duration of protection and need for boosters. Following primary immunization of 150 and 157 healthy adults with 3-doses of combined hepatitis A/hepatitis B vaccine (HAB; Twinrix™, GSK Vaccines, Belgium) at 0-1-6 months in 2 separate studies, we measured vaccine-induced antibody persistence against HAV and HBV annually for 20 y (Study A: NCT01000324; Study B: NCT01037114). Subjects with circulating anti-HAV antibodies < 15 mIU/mL or with anti-hepatitis B surface antigen < 10 mIU/mL were offered an additional monovalent hepatitis A and/or B vaccine dose (Havrix™/Engerix™-B, GSK Vaccines, Belgium). Applying the immunogenicity results from these studies, mathematical modeling predicted long-term persistence. After 20 y, 18 and 25 subjects in studies A and B, respectively, comprised the long-term according-to-protocol cohort for immunogenicity; 100% and 96.0% retained anti-HAV antibodies ≥ 15 mIU/mL, respectively; 94.4% and 92.0% had anti-HBs antibodies ≥ 10 mIU/mL, respectively. Between Years 16–20, 4 subjects who received a challenge dose of monovalent hepatitis A vaccine (N = 2) or hepatitis B vaccine (N = 2), all mounted a strong anamnestic response suggestive of immune memory despite low antibody levels. Mathematical modeling predicts that 40 y after vaccination ≥ 97% vaccinees will maintain anti-HAV ≥ 15 mIU/mL and ≥ 50% vaccinees will retain anti-HBs ≥ 10 mIU/mL. Immunogenicity data confirm that primary immunization with 3-doses of HAB induces persisting anti-HAV and anti-HBs specific antibodies in most adults for up to 20 y; mathematical modeling predicts even longer-term protection. PMID:28281907

  9. Persistence of antibodies 20 y after vaccination with a combined hepatitis A and B vaccine.

    PubMed

    Van Damme, Pierre; Leroux-Roels, Geert; Suryakiran, P; Folschweiller, Nicolas; Van Der Meeren, Olivier

    2017-05-04

    Vaccination is the most effective and well-tolerated method of conferring long-term protection against hepatitis A and B viruses (HAV; HBV). Long-term studies are required to characterize the duration of protection and need for boosters. Following primary immunization of 150 and 157 healthy adults with 3-doses of combined hepatitis A/hepatitis B vaccine (HAB; Twinrix™, GSK Vaccines, Belgium) at 0-1-6 months in 2 separate studies, we measured vaccine-induced antibody persistence against HAV and HBV annually for 20 y (Study A: NCT01000324; Study B: NCT01037114). Subjects with circulating anti-HAV antibodies < 15 mIU/mL or with anti-hepatitis B surface antigen < 10 mIU/mL were offered an additional monovalent hepatitis A and/or B vaccine dose (Havrix™/Engerix™-B, GSK Vaccines, Belgium). Applying the immunogenicity results from these studies, mathematical modeling predicted long-term persistence. After 20 y, 18 and 25 subjects in studies A and B, respectively, comprised the long-term according-to-protocol cohort for immunogenicity; 100% and 96.0% retained anti-HAV antibodies ≥ 15 mIU/mL, respectively; 94.4% and 92.0% had anti-HBs antibodies ≥ 10 mIU/mL, respectively. Between Years 16-20, 4 subjects who received a challenge dose of monovalent hepatitis A vaccine (N = 2) or hepatitis B vaccine (N = 2), all mounted a strong anamnestic response suggestive of immune memory despite low antibody levels. Mathematical modeling predicts that 40 y after vaccination ≥ 97% vaccinees will maintain anti-HAV ≥ 15 mIU/mL and ≥ 50% vaccinees will retain anti-HBs ≥ 10 mIU/mL. Immunogenicity data confirm that primary immunization with 3-doses of HAB induces persisting anti-HAV and anti-HBs specific antibodies in most adults for up to 20 y; mathematical modeling predicts even longer-term protection.

  10. Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice.

    PubMed

    He, Wenqian; Chen, Chi-Jene; Mullarkey, Caitlin E; Hamilton, Jennifer R; Wong, Christine K; Leon, Paul E; Uccellini, Melissa B; Chromikova, Veronika; Henry, Carole; Hoffman, Kevin W; Lim, Jean K; Wilson, Patrick C; Miller, Matthew S; Krammer, Florian; Palese, Peter; Tan, Gene S

    2017-10-10

    The aim of candidate universal influenza vaccines is to provide broad protection against influenza A and B viruses. Studies have demonstrated that broadly reactive antibodies require Fc-Fc gamma receptor interactions for optimal protection; however, the innate effector cells responsible for mediating this protection remain largely unknown. Here, we examine the roles of alveolar macrophages, natural killer cells, and neutrophils in antibody-mediated protection. We demonstrate that alveolar macrophages play a dominant role in conferring protection provided by both broadly neutralizing and non-neutralizing antibodies in mice. Our data also reveal the potential mechanisms by which alveolar macrophages mediate protection in vivo, namely antibody-induced inflammation and antibody-dependent cellular phagocytosis. This study highlights the importance of innate effector cells in establishing a broad-spectrum antiviral state, as well as providing a better understanding of how multiple arms of the immune system cooperate to achieve an optimal antiviral response following influenza virus infection or immunization.Broadly reactive antibodies that recognize influenza A virus HA can be protective, but the mechanism is not completely understood. Here, He et al. show that the inflammatory response and phagocytosis mediated by the interaction between protective antibodies and macrophages are essential for protection.

  11. Antibody responses induced by Leish-Tec®, an A2-based vaccine for visceral leishmaniasis, in a heterogeneous canine population.

    PubMed

    Testasicca, Miriam C de Souza; dos Santos, Mariana Silva; Machado, Leopoldo Marques; Serufo, Angela Vieira; Doro, Daniel; Avelar, Daniel; Tibúrcio, Ana Maria Leonardi; Abrantes, Christiane de Freitas; Machado-Coelho, George Luiz Lins; Grimaldi, Gabriel; Gazzinelli, Ricardo Tostes; Fernandes, Ana Paula

    2014-08-29

    Zoonotic visceral leishmaniasis (VL) is a widespread disease, and dogs are the main reservoirs for human parasite transmission. Hence, development of an effective vaccine that prevents disease and reduces the transmission of VL is required. As euthanasia of seropositive dogs is recommended in Brazil for VL epidemiological control, to include anti-VL canine vaccines as a mass control measure it is necessary to characterize the humoral responses induced by vaccination and if they interfere with the reactivity of vaccinated dogs in serological diagnostic tests. Leish-Tec(®) is an amastigote-specific A2 recombinant protein vaccine against canine visceral leishmaniasis (CVL) that is commercially available in Brazil. Here, we tested the immunogenicity of Leish-Tec(®) in a heterogeneous dog population by measuring A2-specific antibody responses. Healthy dogs (n=140) of various breeds were allocated to two groups: one group received Leish-Tec(®) (n=70), and the other group received a placebo (n=70). Anti-A2 or anti-Leishmania promastigote antigen (LPA) antibody levels were measured by ELISA in serum samples collected before and after vaccination. An immunochromatographic test (DPP) based on the recombinant K28 antigen was also used for serodiagnosis of CVL. Vaccinated animals, except one, remained seronegative for anti-LPA total IgG and anti-K28 antibodies. Conversely, seropositivity for anti-A2 total IgG antibodies was found in 98% of animals after vaccination. This value decreased to 81.13% at 6 months before rising again (98%), after the vaccination boost. Anti-A2 IgG2 and IgG1 titers were also increased in vaccinated animals relative to control animals. These data indicate that Leish-Tec(®) is immunogenic for dogs of different genetic backgrounds and that humoral responses induced by vaccination can be detected by A2-ELISA, but do not interfere with the LPA-ELISA and DPP diagnostic tests for CVL. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparisons of the effect of naturally acquired maternal pertussis antibodies and antenatal vaccination induced maternal tetanus antibodies on infant's antibody secreting lymphocyte responses and circulating plasma antibody levels

    PubMed Central

    Ahmad, Shaikh Meshbahuddin; Alam, Md. Jahangir; Afsar, Md. Nure Alam; Huda, M. Nazmul; Kabir, Yearul; Qadri, Firdausi; Raqib, Rubhana; Stephensen, Charles B.

    2016-01-01

    ABSTRACT The goal of this study was to explore the effects of trans-placental tetanus toxoid (TT) and pertussis (PT) antibodies on an infant's response to vaccination in the context of antenatal immunization with tetanus but not with pertussis. 38 mothers received a single dose of TT vaccine during pregnancy. Infants received tetanus and pertussis vaccines at 6, 10 and 14 wk of age. TT and PT anti-IgG secretion by infant lymphocytes was measured at 15 wk. Plasma antibodies were measured at 6 wk (pre-vaccination), 15 wk and 1 y of age. Prior to vaccination, TT and PT antibody were detected in 94.6% and 15.2% of infants. At 15 wk anti-TT-IgG and anti-PT-IgG in plasma was increased by 7–9 fold over pre-vaccination levels, while at 1 y plasma anti-TT-IgG was decreased by approximately 5-fold from the peak and had returned to near the pre-vaccination level. At 1 y plasma anti-PT-IgG was decreased by 2-fold 1 yfrom the 15 wk level. However, 89.5% and 82.3% of infants at 1 y had protective levels of anti-TT and anti-PT IgG, respectively. Pre-vaccination plasma IgG levels were associated with lower vaccine-specific IgG secretion by infant lymphocytes at 15 wk (p < 0.10). This apparent inhibition was seen for anti-TT-IgG at both 15 wk (p < 0.05) and t 1 y (p < 0.10) of age. In summary, we report an apparent inhibitory effect of passively derived maternal antibody on an infants' own antibody response to the same vaccine. However, since the cut-off values for protective titers are low, infants had protective antibody levels throughout infancy. PMID:27176823

  13. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques

    PubMed Central

    Li, Hongzhao; Nykoluk, Mikaela; Li, Lin; Liu, Lewis R.; Omange, Robert W.; Soule, Geoff; Schroeder, Lukas T.; Toledo, Nikki; Kashem, Mohammad Abul; Correia-Pinto, Jorge F.; Liang, Binhua; Schultz-Darken, Nancy; Alonso, Maria J.; Whitney, James B.; Plummer, Francis A.

    2017-01-01

    Cynomolgus macaques are an increasingly important nonhuman primate model for HIV vaccine research. SIV-free animals without pre-existing anti-SIV immune responses are generally needed to evaluate the effect of vaccine-induced immune responses against the vaccine epitopes. Here, in order to select such animals for vaccine studies, we screened 108 naïve female Mauritian cynomolgus macaques for natural (baseline) antibodies to SIV antigens using a Bio-Plex multiplex system. The antigens included twelve 20mer peptides overlapping the twelve SIV protease cleavage sites (-10/+10), respectively (PCS peptides), and three non-PCS Gag or Env peptides. Natural antibodies to SIV antigens were detected in subsets of monkeys. The antibody reactivity to SIV was further confirmed by Western blot using purified recombinant SIV Gag and Env proteins. As expected, the immunization of monkeys with PCS antigens elicited anti-PCS antibodies. However, unexpectedly, antibodies to non-PCS peptides were also induced, as shown by both Bio-Plex and Western blot analyses, while the non-PCS peptides do not share sequence homology with PCS peptides. The presence of natural and vaccine cross-inducible SIV antibodies in Mauritian cynomolgus macaques should be considered in animal selection, experimental design and result interpretation, for their best use in HIV vaccine research. PMID:28982126

  14. [Immune response induced by HIV DNA vaccine combined with recombinant adeno-associated virus].

    PubMed

    Liu, Yan-zheng; Zhou, Ling; Wang, Qi; Ye, Shu-qing; Li, Hong-xia; Zeng, Yi

    2004-09-01

    HIV-1 DNA vaccine and recombinant adeno-associated virus (rAAV) expressing gagV3 gene of HIV-1 subtype B were constructed and BALB/c mice were immunized by vaccination regimen consisting of consecutive priming with DNA vaccine and boosting with rAAV vaccine; the CTL and antibody response were detected and compared with those induced by DNA vaccine or rAAV vaccine separately. HIV-1 subtype B gagV3 gene was inserted into the polyclonal site of plasmid pCI-neo, DNA vaccine pCI-gagV3 was thereby constructed; pCI-gagV3 was transfected into p815 cells, G-418-resistant cells were obtained through screening transfected cells with G418, the expression of HIV-1 antigen in G-418-resistant cells was detected by EIA; BALB/c mice were immunized with pCI-gagV3 and the immune response was tested; BALB/c mouse immunized with pCI-gagV3 and combined with rAAV expressing the same gagV3 genes were tested for antibody level in sera by EIA method and cytotoxicity response by LDH method. pCI-gagV3 could express HIV-1 gene in p815 cells; pCI-gagV3 could induce HIV-1 specific humoral and cell-mediated immune response in BALB/c mice. The HIV-1 specific antibody level was 1/20; when the ratio of effector cells: target cells was 50:1, the average specific cytotoxicity was 41.7%; there was no evident increase in the antibody level induced by pCI-gagV3 combined with rAAV, but there was increase in CTL response, the average specific cytotoxicity was 61.3% when effector cells: target cells ratio was 50:1. HIV-1 specific cytotoxicity in BALB/c mice can be increased by immunization of BALB/c mice with DNA vaccine combined with rAAV vaccine.

  15. Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection.

    PubMed

    Gouma, Sigrid; Ten Hulscher, Hinke I; Schurink-van 't Klooster, Tessa M; de Melker, Hester E; Boland, Greet J; Kaaijk, Patricia; van Els, Cécile A C M; Koopmans, Marion P G; van Binnendijk, Rob S

    2016-07-29

    Similar to other recent mumps genotype G outbreaks worldwide, most mumps patients during the recent mumps genotype G outbreaks in the Netherlands had received 2 doses of measles, mumps and rubella (MMR) vaccine during childhood. Here, we investigate the capacity of vaccine-induced antibodies to neutralize wild type mumps virus strains, including mumps virus genotype G. In this study, we tested 105 pre-outbreak serum samples from students who had received 2 MMR vaccine doses and who had no mumps virus infection (n=76), symptomatic mumps virus infection (n=10) or asymptomatic mumps virus infection (n=19) during the mumps outbreaks. In all samples, mumps-specific IgG concentrations were measured by multiplex immunoassay and neutralization titers were measured against the Jeryl Lynn vaccine strain and against wild type genotype G and genotype D mumps virus strains. The correlation between mumps-specific IgG concentrations and neutralization titers against Jeryl Lynn was poor, which suggests that IgG concentrations do not adequately represent immunological protection against mumps virus infection by antibody neutralization. Pre-outbreak neutralization titers in infected persons were significantly lower against genotype G than against the vaccine strain. Furthermore, antibody neutralization of wild type mumps virus genotype G and genotype D was significantly reduced in pre-outbreak samples from infected persons as compared with non-infected persons. No statistically significant difference was found for the vaccine strain. The sensitivity/specificity ratio was largest for neutralization of the genotype G strain as compared with the genotype D strain and the vaccine strain. The reduced neutralization of wild type mumps virus strains in MMR vaccinated persons prior to infection indicates that pre-outbreak mumps virus neutralization is partly strain-specific and that neutralization differs between infected and non-infected persons. Therefore, we recommend the use of wild

  16. [Study of neutralization antibodie induced by DNA vaccine of HCV envelope protein 2 in mice].

    PubMed

    Shao, Shengwen; Zhou, Hongchang; Tong, Yimin; Ren, Yanli; Chen, Zhihui

    2011-05-01

    To explore the feasibility of induction of neutralization antibodies against hepatitis C virus (HCV) infection by HCV envelope 2 protein (E2) DNA vaccines immunization. Two kinds of expression plasmids of HCV envelope 2 protein, plasmid pCI-1b661 Delta encoding hydrophobic carboxyl terminal truncated E2 and pCI-1b661 Delta encoding E2 with deletion of hypervariable region 1 (HVR1) and carboxyl terminal, were constructed and respectively transfeted 293T cells, and truncated E2 protein in whole cell lysate and supernatant of 293T cells were analyzed by Western blot. After BALB/c mouse were intramuscularly immunized by the plasmids, sera antibodies against HVR1 were detected by ELISA and the neutralization activity of the antibodies were assayed with HCV pseudotype particle (HCVpp). Both plasmids could express secretary truncated E2 protein. All the mice immunized with plasmid pCI-1b661 produced HVR1 antibodies,while no HVR1 antibodies were detected in pCI-1b661 Delta immunized mice. The sera neutralization percentages against HCVpp in pCI1lb661 Delta and pCI-lb661 Delta immunized mice were (78.5 +/- 13.8)% and (38.7 +/- 6.5)%, respectively (P <0.01). Sera neutralization activity against HCVpp was positive correlated with the level of HVR1 antibodies in pCI-1b661 immunized mice (r = 0.967, P<0.01). DNA vaccines expressing truncated E2 protein could induce neutralization antibodies against HCV, and neutralization antibodies mainly was consisted of the antibodies against HVR1.

  17. Crimean-Congo Hemorrhagic Fever Virus Subunit Vaccines Induce High Levels of Neutralizing Antibodies But No Protection in STAT1 Knockout Mice.

    PubMed

    Kortekaas, Jeroen; Vloet, Rianka P M; McAuley, Alexander J; Shen, Xiaoli; Bosch, Berend Jan; de Vries, Laura; Moormann, Rob J M; Bente, Dennis A

    2015-12-01

    Crimean-Congo hemorrhagic fever virus is a tick-borne bunyavirus of the Nairovirus genus that causes hemorrhagic fever in humans with high case fatality. Here, we report the development of subunit vaccines and their efficacy in signal transducer and activator of transcription 1 (STAT1) knockout mice. Ectodomains of the structural glycoproteins Gn and Gc were produced using a Drosophila insect cell-based expression system. A single vaccination of STAT129 mice with adjuvanted Gn or Gc ectodomains induced neutralizing antibody responses, which were boosted by a second vaccination. Despite these antibody responses, mice were not protected from a CCHFV challenge infection. These results suggest that neutralizing antibodies against CCHFV do not correlate with protection of STAT1 knockout mice.

  18. Roles of Alum and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency to Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine

    PubMed Central

    Ko, Eun-Ju; Lee, Young-Tae; Kim, Ki-Hye; Lee, Youri; Jung, Yu-Jin; Kim, Min-Chul; Lee, Yu-Na; Kang, Taeuk; Kang, Sang-Moo

    2016-01-01

    Vaccine adjuvant effects in CD4 deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and Alum adjuvant (MPL+Alum) in inducing immunity after immunization of CD4-knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched antibodies, IgG secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHCII KO mice suggest that MHCII positive antigen presenting cells contribute to providing alternative B cell help in CD4 deficient condition in the context of MPL+Alum adjuvanted vaccination. PMID:27881702

  19. Long-term T-cell-mediated immunologic memory to hepatitis B vaccine in young adults following neonatal vaccination.

    PubMed

    Saffar, Hiva; Saffar, Mohammed Jafar; Ajami, Abolghasem; Khalilian, Ali Reza; Shams-Esfandabad, Kian; Mirabi, Araz Mohammad

    2014-09-01

    The long-term duration of cell-mediated immunity induced by neonatal hepatitis B virus (HBV) vaccination is unknown. Study was designed to determine the cellular immunity memory status among young adults twenty years after infantile HB immunization. Study subjects were party selected from a recent seroepidemiologic study in young adults, who had been vaccinated against HBV twenty years earlier. Just before and ten to 14 days after one dose of HBV vaccine booster injection, blood samples were obtained and sera concentration of cytokines (interleukin 2 and interferon) was measured. More than twofold increase after boosting was considered positive immune response. With regard to the serum level of antibody against HBV surface antigen (HBsAb) before boosting, the subjects were divided into four groups as follow: GI, HBsAb titer < 2; GII, titer 2 to 9.9; GIII, titer 10 to 99; and GIV, titers ≥ 100 IU/L. Mean concentration level (MCL) of each cytokines for each group at preboosting and postboosting and the proportion of responders in each groups were determined. Paired descriptive statistical analysis method (t test) was used to compare the MCL of each cytokines in each and between groups and the frequency of responders in each group. Before boosting, among 176 boosted individuals, 75 (42.6%) had HBsAb 10 IU/L and were considered seroprotected. Among 101 serosusceptible persons, more than 80% of boosted individuals showed more than twofold increase in cytokines concentration, which meant positive HBsAg-specific cell-mediated immunity. MCL of both cytokines after boosting in GIV were decreased more than twofold, possibly because of recent natural boosting. Findings showed that neonatal HBV immunization was efficacious in inducing long-term immunity and cell-mediated immune memory for up to two decades, and booster vaccination are not required. Further monitoring of vaccinated subjects for HBV infections are recommended.

  20. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    PubMed Central

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  1. HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure.

    PubMed

    Kwong, Peter D; Mascola, John R

    2018-05-15

    HIV-1 vaccine development has been stymied by an inability to induce broadly reactive neutralizing antibodies to the envelope (Env) trimer, the sole viral antigen on the virion surface. Antibodies isolated from HIV-1-infected donors, however, have been shown to recognize all major exposed regions of the prefusion-closed Env trimer, and an emerging understanding of the immunological and structural characteristics of these antibodies and the epitopes they recognize is enabling new approaches to vaccine design. Antibody lineage-based design creates immunogens that activate the naive ancestor-B cell of a target antibody lineage and that mature intermediate-B cells toward effective neutralization, with proof of principle achieved with select HIV-1-neutralizing antibody lineages in human-gene knock-in mouse models. Epitope-based vaccine design involves the engineering of sites of Env vulnerability as defined by the recognition of broadly neutralizing antibodies, with cross-reactive neutralizing antibodies elicited in animal models. Both epitope-based and antibody lineage-based HIV-1 vaccine approaches are being readied for human clinical trials. Published by Elsevier Inc.

  2. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions

    PubMed Central

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Diouf, Ababacar; Galaway, Francis; de Graaf, Hans; Brendish, Nathan J.; Poulton, Ian D.; Griffiths, Oliver J.; Edwards, Nick J.; Jin, Jing; Labbé, Geneviève M.; Alanine, Daniel G.W.; Siani, Loredana; Di Marco, Stefania; Roberts, Rachel; Green, Nicky; Berrie, Eleanor; Ishizuka, Andrew S.; Nielsen, Carolyn M.; Bardelli, Martino; Partey, Frederica D.; Ofori, Michael F.; Barfod, Lea; Wambua, Juliana; Murungi, Linda M.; Osier, Faith H.; Biswas, Sumi; McCarthy, James S.; Minassian, Angela M.; Ashfield, Rebecca; Viebig, Nicola K.; Nugent, Fay L.; Douglas, Alexander D.; Wright, Gavin J.; Faust, Saul N.; Hill, Adrian V.S.; Long, Carole A.; Lawrie, Alison M.; Draper, Simon J.

    2017-01-01

    The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen — a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing. PMID:29093263

  3. Active immunization with the peptide epitope vaccine Aβ3-10-KLH induces a Th2-polarized anti-Aβ antibody response and decreases amyloid plaques in APP/PS1 transgenic mice.

    PubMed

    Ding, Li; Meng, Yuan; Zhang, Hui-Yi; Yin, Wen-Chao; Yan, Yi; Cao, Yun-Peng

    2016-11-10

    Active amyloid-β (Aβ) immunotherapy is effective in preventing Aβ deposition, facilitating plaque clearance, and improving cognitive functions in mouse models of Alzheimer's disease (AD). Developing a safe and effective AD vaccine requires a delicate balance between inducing adequate humoral immune responses and avoiding T cell-mediated autoimmune responses. In this study, we designed 2 peptide epitope vaccines, Aβ3-10-KLH and 5Aβ3-10, prepared respectively by coupling Aβ3-10 to the immunogenic carrier protein keyhole limpet hemocyanin (KLH) or by joining 5 Aβ3-10 epitopes linearly in tandem. Young APP/PS1 mice were immunized subcutaneously with Aβ3-10-KLH or 5Aβ3-10 mixed with Freund's adjuvant, and the immunopotencies of these Aβ3-10 peptide vaccines were tested. Aβ3-10-KLH elicited a robust Th2-polarized anti-Aβ antibody response and inhibited Aβ deposition in APP/PS1 mice. However, 5Aβ3-10 did not induce an effective humoral immune response. These results indicated that Aβ3-10-KLH may be a safe and efficient vaccine for AD and that conjugating the antigen to a carrier protein may be more effective than linking multiple peptide antigens in tandem in applications for antibody production and vaccine preparation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections

    PubMed Central

    Panagioti, Eleni; Klenerman, Paul; Lee, Lian N.; van der Burg, Sjoerd H.; Arens, Ramon

    2018-01-01

    For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines. PMID:29503649

  5. Trivalent influenza vaccine-induced antibody response to circulating influenza a (H3N2) viruses in 2010/11 and 2011/12 seasons.

    PubMed

    Hiroi, Satoshi; Morikawa, Saeko; Nakata, Keiko; Maeda, Akiko; Kanno, Tsuneji; Irie, Shin; Ohfuji, Satoko; Hirota, Yoshio; Kase, Tetsuo

    2015-01-01

    To evaluate antibody response induced by trivalent inactivated influenza vaccine (TIV) against circulating influenza A (H3N2) strains in healthy adults during the 2010/11 and 2011/12 seasons, a hemagglutination-inhibition (HI) assay was utilized to calculate geometric mean antibody titer (GMT), seroprotection rate (post vaccination HI titers of ≥1 :40), and seroresponse rate (4-fold increase in antibody level). In the 2010/11 season, GMT increased 1.8- to 2.0-fold following the first dose of TIV against 3 circulating strains and 2.2-fold following the second compared to before vaccination. The seroresponse rate ranged from 22% to 26% following the first dose of TIV and from 31% to 33% following the second (n = 54 ). The seroprotection rate increased from a range of 6% to 13% to a range of 26% to 33% following the first dose of TIV and to a range of 37% to 42% following the second (n = 54 ). In the 2011/12 season, GMT increased 1.4-fold against A/Osaka/110/2011 and 1.8-fold against A/Osaka/5/2012. For A/Osaka/110/2011, the seroresponse rate was 29%, and the seroprotection rate increased from 26% to 55% following vaccination (n = 31 ). For A/Osaka/5/2012, the seroresponse rate was 26%, and the seroprotection rate increased from 68% to 84% following vaccination (n = 31 ). HI assays with reference antisera demonstrated that the strains in the 2011/12 season were antigenically distinct from vaccine strain (A/Victoria/210/2009). In conclusion, the vaccination increased the seroprotection rate against circulating H3N2 strains in the 2010/11 and 2011/12 seasons. Vaccination of TIV might have potential to induce reactive antibodies against antigenically distinct circulating H3N2 viruses.

  6. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies

    PubMed Central

    von Bredow, Benjamin; Arias, Juan F.; Heyer, Lisa N.; Moldt, Brian; Le, Khoa; Robinson, James E.; Burton, Dennis R.

    2016-01-01

    ABSTRACT Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO. ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. IMPORTANCE This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. PMID:27122574

  7. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies.

    PubMed

    von Bredow, Benjamin; Arias, Juan F; Heyer, Lisa N; Moldt, Brian; Le, Khoa; Robinson, James E; Zolla-Pazner, Susan; Burton, Dennis R; Evans, David T

    2016-07-01

    Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    PubMed

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques.

    PubMed

    Kasturi, Sudhir Pai; Kozlowski, Pamela A; Nakaya, Helder I; Burger, Matheus C; Russo, Pedro; Pham, Mathew; Kovalenkov, Yevgeniy; Silveira, Eduardo L V; Havenar-Daughton, Colin; Burton, Samantha L; Kilgore, Katie M; Johnson, Mathew J; Nabi, Rafiq; Legere, Traci; Sher, Zarpheen Jinnah; Chen, Xuemin; Amara, Rama R; Hunter, Eric; Bosinger, Steven E; Spearman, Paul; Crotty, Shane; Villinger, Francois; Derdeyn, Cynthia A; Wrammert, Jens; Pulendran, Bali

    2017-02-15

    Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the

  10. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus.

    PubMed

    Friedrich, Brian M; Beasley, David W C; Rudra, Jai S

    2016-11-04

    A crucial issue in vaccine development is to balance safety with immunogenicity. The low immunogenicity of most subunit antigens warrants a search for adjuvants able to stimulate both cell-mediated and humoral immunity. In recent years, successful applications of nanotechnology and bioengineering in the field of vaccine development have enabled the production of novel adjuvant technologies. In this work, we investigated totally synthetic and supramolecular peptide hydrogels as novel vaccine adjuvants in conjunction with the immunoprotective envelope protein domain III (EIII) of West Nile virus as an immunogen in a mouse model. Our results indicate that, compared to the clinically approved adjuvant alum, peptide hydrogel adjuvanted antigen elicited stronger antibody responses and conferred significant protection against mortality after virus challenge. The high chemical definition and biocompatibility of self-assembling peptide hydrogels makes them attractive as immune adjuvants for the production of subunit vaccines against viral and bacterial infections where antibody-mediated protection is desirable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov; Feng, Yang; Wang, Yanping

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibitmore » decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.« less

  12. Vaccine-elicited SIV and HIV envelope-specific IgA and IgG memory B cells in rhesus macaque peripheral blood correlate with functional antibody responses and reduced viremia

    PubMed Central

    Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie

    2011-01-01

    An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487

  13. Intranasal vaccination with an inactivated whole influenza virus vaccine induces strong antibody responses in serum and nasal mucus of healthy adults

    PubMed Central

    Ainai, Akira; Tamura, Shin-ichi; Suzuki, Tadaki; van Riet, Elly; Ito, Ryo; Odagiri, Takato; Tashiro, Masato; Kurata, Takeshi; Hasegawa, Hideki

    2013-01-01

    Haemagglutination inhibition (HI) and neutralization (NT) titers as well as haemagglutinin (HA) specific antibody responses were examined in 50 healthy adults aged between 22 and 69 y old after two intranasal administrations of an inactivated whole virus vaccine derived from A/Victoria/210/2009 virus (45 μg HA per dose) at 3 week intervals. Serum HI titers after two-doses of the nasal vaccine showed >2.5-fold rise in the ratio of geometric mean titer upon vaccination, >40% of subjects with a ≥4-fold increase in titer and >70% of subjects with a titer of ≥1:40, all parameters associated with an effective outcome of vaccination in the criteria defined by the European Medicines Agency. Serum neutralizing antibody responses correlated with HI antibody responses, although NT titers were about 2-fold higher than HI titers. These high levels of serum responses were accompanied by high levels of HI and neutralizing antibody responses in nasal mucus as measured in concentrated nasal wash samples that were about 10 times diluted compared with natural nasal mucus. Serum and nasal HI and neutralizing antibody responses consisted of HA-specific IgG and IgA antibody responses, with IgG and IgA antibodies being dominant in serum and nasal responses, respectively. PMID:23896606

  14. Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate

    PubMed Central

    Liang, Bo; Surman, Sonja; Amaro-Carambot, Emerito; Kabatova, Barbora; Mackow, Natalie; Lingemann, Matthias; Yang, Lijuan; McLellan, Jason S.; Graham, Barney S.; Kwong, Peter D.; Schaap-Nutt, Anne; Collins, Peter L.

    2015-01-01

    ABSTRACT Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. IMPORTANCE Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F

  15. Tailoring the antibody response to aggregated Aß using novel Alzheimer-vaccines.

    PubMed

    Mandler, Markus; Santic, Radmila; Gruber, Petra; Cinar, Yeliz; Pichler, Dagmar; Funke, Susanne Aileen; Willbold, Dieter; Schneeberger, Achim; Schmidt, Walter; Mattner, Frank

    2015-01-01

    Recent evidence suggests Alzheimer-Disease (AD) to be driven by aggregated Aß. Capitalizing on the mechanism of molecular mimicry and applying several selection layers, we screened peptide libraries for moieties inducing antibodies selectively reacting with Aß-aggregates. The technology identified a pool of peptide candidates; two, AFFITOPES AD01 and AD02, were assessed as vaccination antigens and compared to Aβ1-6, the targeted epitope. When conjugated to Keyhole Limpet Hemocyanin (KLH) and adjuvanted with aluminum, all three peptides induced Aß-targeting antibodies (Abs). In contrast to Aß1-6, AD01- or AD02-induced Abs were characterized by selectivity for aggregated forms of Aß and absence of reactivity with related molecules such as Amyloid Precursor Protein (APP)/ secreted APP-alpha (sAPPa). Administration of AFFITOPE-vaccines to APP-transgenic mice was found to reduce their cerebral amyloid burden, the associated neuropathological alterations and to improve their cognitive functions. Thus, the AFFITOME-technology delivers vaccines capable of inducing a distinct Ab response. Their features may be beneficial to AD-patients, a hypothesis currently tested within a phase-II-study.

  16. Tailoring the Antibody Response to Aggregated Aß Using Novel Alzheimer-Vaccines

    PubMed Central

    Gruber, Petra; Cinar, Yeliz; Pichler, Dagmar; Funke, Susanne Aileen; Willbold, Dieter; Schneeberger, Achim; Schmidt, Walter; Mattner, Frank

    2015-01-01

    Recent evidence suggests Alzheimer-Disease (AD) to be driven by aggregated Aß. Capitalizing on the mechanism of molecular mimicry and applying several selection layers, we screened peptide libraries for moieties inducing antibodies selectively reacting with Aß-aggregates. The technology identified a pool of peptide candidates; two, AFFITOPES AD01 and AD02, were assessed as vaccination antigens and compared to Aβ1-6, the targeted epitope. When conjugated to Keyhole Limpet Hemocyanin (KLH) and adjuvanted with aluminum, all three peptides induced Aß-targeting antibodies (Abs). In contrast to Aß1-6, AD01- or AD02-induced Abs were characterized by selectivity for aggregated forms of Aß and absence of reactivity with related molecules such as Amyloid Precursor Protein (APP)/ secreted APP-alpha (sAPPa). Administration of AFFITOPE-vaccines to APP-transgenic mice was found to reduce their cerebral amyloid burden, the associated neuropathological alterations and to improve their cognitive functions. Thus, the AFFITOME-technology delivers vaccines capable of inducing a distinct Ab response. Their features may be beneficial to AD-patients, a hypothesis currently tested within a phase-II-study. PMID:25611858

  17. Controlled Human Malaria Infection (CHMI) differentially affects cell-mediated and antibody responses to CSP and AMA1 induced by adenovirus vaccines with and without DNA-priming.

    PubMed

    Sedegah, Martha; Hollingdale, Michael R; Farooq, Fouzia; Ganeshan, Harini; Belmonte, Maria; Huang, Jun; Abot, Esteban; Limbach, Keith; Chuang, Ilin; Tamminga, Cindy; Epstein, Judith E; Villasante, Eileen

    2015-01-01

    We have previously shown that a DNA-prime followed by an adenovirus-5 boost vaccine containing CSP and AMA1 (DNA/Ad) successfully protected 4 of 15 subjects to controlled human malaria infection (CHMI). However, the adenovirus-5 vaccine alone (AdCA) failed to induce protection despite eliciting cellular responses that were often higher than those induced by DNA/Ad. Here we determined the effect of CHMI on pre-CHMI cellular and antibody responses against CSP and AMA1 expressed as fold-changes in activities. Generally, in the DNA/Ad trial, CHMI caused pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the protected subjects to fall but among non-protected subjects, CHMI caused rises of pre-CHMI ELISpot IFN-γ but falls of CD8+ T cell IFN-γ responses. In contrast in the AdCA trial, CHMI caused both pre-CHMI ELISpot IFN-γ and CD8+ T cell IFN-γ responses of the AdCA subjects to fall. We suggest that the falls in activities are due to migration of peripheral CD8+ T cells to the liver in response to developing liver stage parasites, and this fall, in the DNA/Ad trial, is masked in ELISpot responses of the non-protected subjects by rises in other immune cell types. In addition, CHMI caused falls in antibody activities of protected subjects, but rises in non-protected subjects in both trials to CSP, and dramatically in the AdCA trial to AMA1, reaching 380 μg/ml that is probably due to boosting by transient blood stage infection before chloroquine treatment. Taken together, these results further define differences in cellular responses between DNA/Ad and AdCA trials, and suggest that natural transmission may boost responses induced by these malaria vaccines especially when protection is not achieved.

  18. Efficacy of two canine parvovirus vaccines for inducing seroconversion in Rottweiler and Doberman pinscher pups with various levels of maternally derived antibodies.

    PubMed

    Coyne, M J

    2000-01-01

    The study reported here investigated the efficacy of two commonly used modified-live virus vaccines to induce seroconversion against canine parvovirus (CPV) in 213 Rottweiler and Doberman pinscher pups with various titers of maternally derived CPV antibody. Beginning at 6 to 8 weeks of age, pups were given a subcutaneous vaccination every 21 days (range, 18-24 days) in the dorsal region of the neck or shoulder area. Pups vaccinated with vaccine A(a) received three vaccinations and completed the vaccination series by 12 to 14 weeks of age. Pups vaccinated with vaccine Bb received four vaccinations and completed the vaccination series by 15 to 17 weeks of age. Antibody titers against CPV in both vaccine groups were similar before vaccination. Pups in the vaccine-A group seroconverted significantly earlier than those in the vaccine-B group. After the first vaccination, more pups with a CPV-2b hemagglutination inhibition (HI) titer of < or = 1:80 responded to vaccine A than to vaccine B. In addition, CPV-2b HI titers after vaccination were also significantly (P < or = 0.05) higher for the pups in the vaccine-A group after first, second, and third vaccinations, compared with those of pups in the vaccine-B group.

  19. Eimeria maxima recombinant Gam82 gametocyte antigen vaccine protects against coccidiosis and augments humoral and cell-mediated immunity.

    PubMed

    Jang, Seung I; Lillehoj, Hyun S; Lee, Sung Hyen; Lee, Kyung Woo; Park, Myeong Seon; Cha, Sung-Rok; Lillehoj, Erik P; Subramanian, B Mohana; Sriraman, R; Srinivasan, V A

    2010-04-09

    Intestinal infection with Eimeria, the etiologic agent of avian coccidiosis, stimulates protective immunity to subsequent colonization by the homologous parasite, while cross-protection against heterologous species is poor. As a first step toward the development of a broad specificity Eimeria vaccine, this study was designed to assess a purified recombinant protein from Eimeria maxima gametocytes (Gam82) in stimulating immunity against experimental infection with live parasites. Following Gam82 intramuscular immunization and oral parasite challenge, body weight gain, fecal oocyst output, lesion scores, serum antibody response, and cytokine production were assessed to evaluate vaccination efficacy. Animals vaccinated with Gam82 and challenged with E. maxima showed lower oocyst shedding and reduced intestinal pathology compared with non-vaccinated and parasite-challenged animals. Gam82 vaccination also stimulated the production of antigen-specific serum antibodies and induced greater levels of IL-2 and IL-15 mRNAs compared with non-vaccinated controls. These results demonstrate that the Gam82 recombinant protein protects against E. maxima and augments humoral and cell-mediated immunity. Published by Elsevier Ltd.

  20. Serum antibody titers following routine rabies vaccination in African elephants.

    PubMed

    Miller, Michele A; Olea-Popelka, Francisco

    2009-10-15

    To evaluate serum antibody titers in captive African elephants (Loxodonta africana) following routine vaccination with a commercially available, inactivated rabies vaccine. Seroepidemiologic study. 14 captive African elephants from a single herd. Elephants were vaccinated as part of a routine preventive health program. Initially, elephants were vaccinated annually (2 mL, IM), and blood was collected every 4 or 6 months for measurement of rabies virus-neutralizing antibody titer by means of the rapid fluorescent focus inhibition test. Individual elephants were later switched to an intermittent vaccination schedule to allow duration of the antibody response to be determined. All elephants had detectable antibody responses following rabies vaccination, although there was great variability among individual animals in regard to antibody titers, and antibody titers could be detected as long as 24 months after vaccine administration. Young animals were found to develop an antibody titer following administration of a single dose of the rabies vaccine. Age and time since vaccination had significant effects on measured antibody titers. Results indicated that African elephants developed detectable antibody titers in response to inoculation with a standard large animal dose of a commercially available, inactivated rabies vaccine. The persistence of detectable antibody titers in some animals suggested that vaccination could be performed less frequently than once a year if antibody titers were routinely monitored.

  1. Model based estimates of long-term persistence of inactivated hepatitis A vaccine-induced antibodies in adults.

    PubMed

    Hens, Niel; Habteab Ghebretinsae, Aklilu; Hardt, Karin; Van Damme, Pierre; Van Herck, Koen

    2014-03-14

    In this paper, we review the results of existing statistical models of the long-term persistence of hepatitis A vaccine-induced antibodies in light of recently available immunogenicity data from 2 clinical trials (up to 17 years of follow-up). Healthy adult volunteers monitored annually for 17 years after the administration of the first vaccine dose in 2 double-blind, randomized clinical trials were included in this analysis. Vaccination in these studies was administered according to a 2-dose vaccination schedule: 0, 12 months in study A and 0, 6 months in study B (NCT00289757/NCT00291876). Antibodies were measured using an in-house ELISA during the first 11 years of follow-up; a commercially available ELISA was then used up to Year 17 of follow-up. Long-term antibody persistence from studies A and B was estimated using statistical models for longitudinal data. Data from studies A and B were modeled separately. A total of 173 participants in study A and 108 participants in study B were included in the analysis. A linear mixed model with 2 changepoints allowed all available results to be accounted for. Predictions based on this model indicated that 98% (95%CI: 94-100%) of participants in study A and 97% (95%CI: 94-100%) of participants in study B will remain seropositive 25 years after receiving the first vaccine dose. Other models using part of the data provided consistent results: ≥95% of the participants was projected to remain seropositive for ≥25 years. This analysis, using previously used and newly selected model structures, was consistent with former estimates of seropositivity rates ≥95% for at least 25 years. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site.

    PubMed

    Bradley, Todd; Fera, Daniela; Bhiman, Jinal; Eslamizar, Leila; Lu, Xiaozhi; Anasti, Kara; Zhang, Ruijung; Sutherland, Laura L; Scearce, Richard M; Bowman, Cindy M; Stolarchuk, Christina; Lloyd, Krissey E; Parks, Robert; Eaton, Amanda; Foulger, Andrew; Nie, Xiaoyan; Karim, Salim S Abdool; Barnett, Susan; Kelsoe, Garnett; Kepler, Thomas B; Alam, S Munir; Montefiori, David C; Moody, M Anthony; Liao, Hua-Xin; Morris, Lynn; Santra, Sampa; Harrison, Stephen C; Haynes, Barton F

    2016-01-05

    Antibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not. Here, we show that immunization with TF mutant Envs gp140 oligomers induced high-titer, V5-dependent plasma neutralization for a Tier-2 autologous TF evolved mutant virus. Structural analysis of autologous nAb DH427 revealed binding to V5, demonstrating the source of narrow nAb specificity and explaining the failure to acquire breadth. Thus, oligomeric TF Envs can elicit autologous nAbs to Tier-2 HIVs, but induction of bnAbs will require targeting of precursors of B cell lineages that can mature to heterologous neutralization. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    PubMed

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  .

  4. High-Density Peptide Arrays for Malaria Vaccine Development.

    PubMed

    Loeffler, Felix F; Pfeil, Johannes; Heiss, Kirsten

    2016-01-01

    The development of an efficacious and practicable vaccine conferring sterile immunity towards a Plasmodium infection represents a not yet achieved goal. A crucial factor for the impact of a given anti-plasmodial subunit vaccine is the identification of the most potent parasitic components required to induce protection from both infection and disease. Here, we present a method based on a novel high-density peptide array technology that allows for a flexible readout of malaria antibodies. Peptide arrays applied as a screening method can be used to identify novel immunogenic antibody epitopes under a large number of potential antigens/peptides. Ultimately, discovered antigen candidates and/or epitope sequences can be translated into vaccine prototype design. The technology can be further utilized to unravel antibody-mediated immune responses (e.g., involved in the establishment of semi-immunity) and moreover to confirm vaccine potency during the process of clinical development by verifying the induced antibody responses following vaccination.

  5. Antibody-Induced Internalization of the Human Respiratory Syncytial Virus Fusion Protein.

    PubMed

    Leemans, A; De Schryver, M; Van der Gucht, W; Heykers, A; Pintelon, I; Hotard, A L; Moore, M L; Melero, J A; McLellan, J S; Graham, B S; Broadbent, L; Power, U F; Caljon, G; Cos, P; Maes, L; Delputte, P

    2017-07-15

    Respiratory syncytial virus (RSV) infections remain a major cause of respiratory disease and hospitalizations among infants. Infection recurs frequently and establishes a weak and short-lived immunity. To date, RSV immunoprophylaxis and vaccine research is mainly focused on the RSV fusion (F) protein, but a vaccine remains elusive. The RSV F protein is a highly conserved surface glycoprotein and is the main target of neutralizing antibodies induced by natural infection. Here, we analyzed an internalization process of antigen-antibody complexes after binding of RSV-specific antibodies to RSV antigens expressed on the surface of infected cells. The RSV F protein and attachment (G) protein were found to be internalized in both infected and transfected cells after the addition of either RSV-specific polyclonal antibodies (PAbs) or RSV glycoprotein-specific monoclonal antibodies (MAbs), as determined by indirect immunofluorescence staining and flow-cytometric analysis. Internalization experiments with different cell lines, well-differentiated primary bronchial epithelial cells (WD-PBECs), and RSV isolates suggest that antibody internalization can be considered a general feature of RSV. More specifically for RSV F, the mechanism of internalization was shown to be clathrin dependent. All RSV F-targeted MAbs tested, regardless of their epitopes, induced internalization of RSV F. No differences could be observed between the different MAbs, indicating that RSV F internalization was epitope independent. Since this process can be either antiviral, by affecting virus assembly and production, or beneficial for the virus, by limiting the efficacy of antibodies and effector mechanism, further research is required to determine the extent to which this occurs in vivo and how this might impact RSV replication. IMPORTANCE Current research into the development of new immunoprophylaxis and vaccines is mainly focused on the RSV F protein since, among others, RSV F-specific antibodies are

  6. Antibody-Induced Internalization of the Human Respiratory Syncytial Virus Fusion Protein

    PubMed Central

    Leemans, A.; De Schryver, M.; Van der Gucht, W.; Heykers, A.; Pintelon, I.; Hotard, A. L.; Moore, M. L.; Melero, J. A.; McLellan, J. S.; Graham, B. S.; Broadbent, L.; Power, U. F.; Caljon, G.; Cos, P.; Maes, L.

    2017-01-01

    ABSTRACT Respiratory syncytial virus (RSV) infections remain a major cause of respiratory disease and hospitalizations among infants. Infection recurs frequently and establishes a weak and short-lived immunity. To date, RSV immunoprophylaxis and vaccine research is mainly focused on the RSV fusion (F) protein, but a vaccine remains elusive. The RSV F protein is a highly conserved surface glycoprotein and is the main target of neutralizing antibodies induced by natural infection. Here, we analyzed an internalization process of antigen-antibody complexes after binding of RSV-specific antibodies to RSV antigens expressed on the surface of infected cells. The RSV F protein and attachment (G) protein were found to be internalized in both infected and transfected cells after the addition of either RSV-specific polyclonal antibodies (PAbs) or RSV glycoprotein-specific monoclonal antibodies (MAbs), as determined by indirect immunofluorescence staining and flow-cytometric analysis. Internalization experiments with different cell lines, well-differentiated primary bronchial epithelial cells (WD-PBECs), and RSV isolates suggest that antibody internalization can be considered a general feature of RSV. More specifically for RSV F, the mechanism of internalization was shown to be clathrin dependent. All RSV F-targeted MAbs tested, regardless of their epitopes, induced internalization of RSV F. No differences could be observed between the different MAbs, indicating that RSV F internalization was epitope independent. Since this process can be either antiviral, by affecting virus assembly and production, or beneficial for the virus, by limiting the efficacy of antibodies and effector mechanism, further research is required to determine the extent to which this occurs in vivo and how this might impact RSV replication. IMPORTANCE Current research into the development of new immunoprophylaxis and vaccines is mainly focused on the RSV F protein since, among others, RSV F

  7. Antibody responses induced by Japanese whole inactivated vaccines against equine influenza virus (H3N8) belonging to Florida sublineage clade2.

    PubMed

    Yamanaka, Takashi; Bannai, Hiroshi; Nemoto, Manabu; Tsujimura, Koji; Kondo, Takashi; Matsumura, Tomio

    2011-04-01

    In 2010, the World Organisation for Animal Health recommended the inclusion of a Florida sublineage clade2 strain of equine influenza virus (H3N8), which is represented by A/equine/Richmond/1/07 (Richmond07), in equine influenza vaccines. Here, we evaluate the antigenic differences between Japanese vaccine strains and Richmond07 by performing hemagglutination inhibition (HI) assays. Ferret antiserum raised to A/equine/La Plata/93 (La Plata93), which is a Japanese vaccine strain, reacted with Richmond07 at a similar titer to La Plata93. Moreover, two hundred racehorses exhibited similar geometric mean HI antibody titers against La Plata93 and Richmond07 (73.1 and 80.8, respectively). Therefore, we can expect the antibody induced by the current Japanese vaccines to provide some protection against Richmond07-like viruses.

  8. A large population-based association study between HLA and KIR genotypes and measles vaccine antibody responses.

    PubMed

    Ovsyannikova, Inna G; Schaid, Daniel J; Larrabee, Beth R; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2017-01-01

    Human antibody response to measles vaccine is highly variable in the population. Host genes contribute to inter-individual antibody response variation. The killer cell immunoglobulin-like receptors (KIR) are recognized to interact with HLA molecules and possibly influence humoral immune response to viral antigens. To expand on and improve our previous work with HLA genes, and to explore the genetic contribution of KIR genes to the inter-individual variability in measles vaccine-induced antibody responses, we performed a large population-based study in 2,506 healthy immunized subjects (ages 11 to 41 years) to identify HLA and KIR associations with measles vaccine-induced neutralizing antibodies. After correcting for the large number of statistical tests of allele effects on measles-specific neutralizing antibody titers, no statistically significant associations were found for either HLA or KIR loci. However, suggestive associations worthy of follow-up in other cohorts include B*57:01, DQB1*06:02, and DRB1*15:05 alleles. Specifically, the B*57:01 allele (1,040 mIU/mL; p = 0.0002) was suggestive of an association with lower measles antibody titer. In contrast, the DQB1*06:02 (1,349 mIU/mL; p = 0.0004) and DRB1*15:05 (2,547 mIU/mL; p = 0.0004) alleles were suggestive of an association with higher measles antibodies. Notably, the associations with KIR genotypes were strongly nonsignificant, suggesting that KIR loci in terms of copy number and haplotypes are not likely to play a major role in antibody response to measles vaccination. These findings refine our knowledge of the role of HLA and KIR alleles in measles vaccine-induced immunity.

  9. A comparison of antibody responses to commercial equine influenza vaccines following annual booster vaccination of National Hunt horses - a randomised blind study.

    PubMed

    Gildea, Sarah; Arkins, Sean; Walsh, Cathal; Cullinane, Ann

    2011-05-17

    Protection against equine influenza virus (EIV) relies largely on the production of circulating antibodies specific for the haemagglutinin (HA) glycoprotein. The objective of this study was to determine the antibody response of National Hunt horses in training to booster vaccination. The antibody response to the six equine influenza vaccines available in Ireland (three whole inactivated vaccines, two subunit vaccines and a canary pox recombinant vaccine), was monitored by single radial haemolysis (SRH) for six months post vaccination. There was no significant difference between antibody response induced following booster vaccination with any of the six vaccines. The antibodies peaked between two and four weeks post vaccination, decreased significantly by three months post vaccination and declined to their original levels by six months post vaccination. Peak antibody response to the canary pox recombinant vaccine was delayed in comparison to the other vaccines. Although analysis of the mean SRH levels of the horses suggested that they were clinically protected post booster vaccination, analysis of the individual responses suggested that there was potential for vaccination breakdown in a manner similar to that observed previously in racing yards in Ireland. There was a significant correlation between the SRH level at the time of vaccination and the antibody response. The findings of the study suggest that it would be advantageous to monitor SRH levels and to vaccinate strategically. The revaccination of horses with low antibody levels three months post booster vaccination may have been more effective in protecting horses in this yard than the annual vaccination of horses with high SRH levels. Eighteen of the 44 (41%) horses included in this study did not demonstrate a significant rise in SRH level to H3N8 following booster vaccination. It is presumed that annual revaccination is the minimum necessary to protect all horses against EI but this assumption needs to be

  10. Evaluation of the persistence of vaccine-induced protection with human vaccines.

    PubMed

    Vidor, E

    2010-01-01

    The persistence of protection induced by vaccines is a key aspect of the implementation of human vaccination policies, particularly for ageing populations. At the time of initial licensure, the duration of protection induced by a vaccine is generally only documented by longitudinal follow up of cohorts of subjects enrolled in the pre-licensure trials over a period of 1-5 years. The follow up of these cohorts provides two types of data: antibody kinetics (or another clinically relevant immunological parameter) over time and the disease incidence. Generally, the latter trials, if implemented during the pre-licensure period, are designed to follow-up cohorts in order to demonstrate vaccine efficacy above the minimal level required for the license. For vaccines already licensed, additional tools exist. The use of immunological surrogate markers of protection is a practical way to monitor the duration of protection. Measuring the persistence of circulating antibodies is widely used in human vaccines. For several vaccines, observed data have allowed the creation of mathematical models to predict the antibody persistence over periods of time longer than those effectively documented. Clinical trials assessing the capacity of the immune system to mount a quick anamnestic response upon re-stimulation a long time after initial priming (measurement of immune memory) is also a tool employed to document the duration of protection. The waning of protection can also be demonstrated by an increase of disease incidence in the subsequent 'time-to-last-vaccine administration' age segments. Seroprevalence studies in a given age group of people that were vaccinated under real-life conditions are another way to document the persistence of protection. Finally, case-control studies in outbreak situations or in situations of persisting endemicity can also be used to document the persistence of the vaccine efficacy. All of these tools are used in the development of new vaccines, and also

  11. DNA-MVA-protein vaccination of rhesus macaques induces HIV-specific immunity in mucosal-associated lymph nodes and functional antibodies.

    PubMed

    Chege, Gerald K; Burgers, Wendy A; Müller, Tracey L; Gray, Clive M; Shephard, Enid G; Barnett, Susan W; Ferrari, Guido; Montefiori, David; Williamson, Carolyn; Williamson, Anna-Lise

    2017-02-07

    Successful future HIV vaccines are expected to generate an effective cellular and humoral response against the virus in both the peripheral blood and mucosal compartments. We previously reported the development of DNA-C and MVA-C vaccines based on HIV-1 subtype C and demonstrated their immunogenicity when given in a DNA prime-MVA boost combination in a nonhuman primate model. In the current study, rhesus macaques previously vaccinated with a DNA-C and MVA-C vaccine regimen were re-vaccinated 3.5years later with MVA-C followed by a protein vaccine based on HIV-1 subtype C envelope formulated with MF59 adjuvant (gp140Env/MF59), and finally a concurrent boost with both vaccines. A single MVA-C re-vaccination elicited T cell responses in all animals similar to previous peak responses, with 4/7 demonstrating responses >1000 SFU/10 6 PBMC. In contrast to an Env/MF59-only vaccine, concurrent boosting with MVA-C and Env/MF59 induced HIV-specific cellular responses in multiple mucosal associated lymph nodes in 6/7 animals, with high magnitude responses in some animals. Both vaccine regimens induced high titer Env-specific antibodies with ADCC activity, as well as neutralization of Tier 1 viruses and modest Tier 2 neutralization. These data demonstrate the feasibility of inducing HIV-specific immunity in the blood and mucosal sites of viral entry by means of DNA and poxvirus-vectored vaccines, in combination with a HIV envelope-based protein vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate.

    PubMed

    Liang, Bo; Surman, Sonja; Amaro-Carambot, Emerito; Kabatova, Barbora; Mackow, Natalie; Lingemann, Matthias; Yang, Lijuan; McLellan, Jason S; Graham, Barney S; Kwong, Peter D; Schaap-Nutt, Anne; Collins, Peter L; Munir, Shirin

    2015-09-01

    Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F insert. Here, we

  13. Intranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice.

    PubMed

    Kim, Eun Hye; Park, Hae-Jung; Han, Gye-Yeong; Song, Man-Ki; Pereboev, Alexander; Hong, Jeong S; Chang, Jun; Byun, Young-Ho; Seong, Baik Lin; Nguyen, Huan H

    2014-09-01

    Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus

  14. Antibody persistence after pneumococcal conjugate vaccination in patients with chronic lymphocytic leukemia.

    PubMed

    Lindström, Vesa; Aittoniemi, Janne; Salmenniemi, Urpu; Käyhty, Helena; Huhtala, Heini; Itälä-Remes, Maija; Sinisalo, Marjatta

    2018-02-08

    Patients with chronic lymphocytic leukemia (CLL) are at a high risk for infections caused by Streptococcus pneumoniae. A pneumococcal conjugate vaccine (PCV) can induce a significant antibody response for some CLL patients. In this study we investigated antibody persistence after PCV7 in patients with CLL. The study material comprised 24 patients with CLL and 8 immunocompetent controls. The median antibody concentrations five years after PCV7 were lower for six pneumococcal serotypes in patients with CLL compared to controls, but the difference was not statistically significant. Depending on the serotype, the percentage of the CLL patients with antibody levels suggested to provide protection against invasive pneumococcal disease (IPD) varied from 29 to 71% five years after vaccination. This data suggests that PCV could result in antibody persistence at least five years in CLL patients.

  15. Impact of antigens, adjuvants and strains on sexually dimorphic antibody response to vaccines in mice.

    PubMed

    Li, Xin; Guo, Sheng; Yang, Lei; Hua, Li; Li, Zhiqin; Hao, Xu; Yu, Yongli; Sun, Wei; Wang, Liying

    2017-07-01

    Sexually dimorphic antibody response to vaccines has long been noticed. In addition to sex hormones, other factors such as antigens, adjuvants and strains of mice, as shown by indirect evidence, could also impact the sexual dimorphism. To clarify this, we immunized both gender mice of distinct strains with inactivated FMDV or HBsAg with or without adjuvants, and detected the specific antibody response of the mice. We found that in absence of adjuvants, the recombinant HBsAg but not the inactivated FMDV induced enhanced IgG antibody response in the female BALB/c mice. The o/w emulsion could facilitate the HBsAg to induce the comparable level of IgG antibodies in the male BALB/c mice as that in the females. The o/w emulsion rather than ISA206, a w/o/w emulsion, could assist the inactivated FMDV to induce higher levels of IgM antibodies in the female BALB/c mice. Moreover, the sexually dimorphic antibody response varied among the ICR, BALB/c and the F1 (BALB/c × C57BL/6) mice. Thus the data suggest that antigens, adjuvants and strains all impact the sexually dimorphic antibody response to vaccines and may provide insights for developing gender-based vaccines. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Synthetic Influenza vaccine (FLU-v) stimulates cell mediated immunity in a double-blind, randomised, placebo-controlled Phase I trial.

    PubMed

    Pleguezuelos, Olga; Robinson, Stuart; Stoloff, Gregory A; Caparrós-Wanderley, Wilson

    2012-06-29

    Current Influenza vaccines elicit antibody mediated prophylactic immunity targeted to viral capsid antigens. Despite their global use these vaccines must be administered yearly to the population, cannot be manufactured until the circulating viral strain(s) have been identified and have limited efficacy. A need remains for Influenza vaccines addressing these issues and here we report the results of a Phase Ib trial of a novel synthetic Influenza vaccine (FLU-v) targeting T cell responses to NP, M1 and M2. Forty-eight healthy males aged 18-40 were recruited for this single-centre, randomised, double blind study. Volunteers received one single low (250 μg) or high (500 μg) dose of FLU-v, either alone or adjuvanted. Safety, tolerability and basic immunogenicity (IgG and IFN-γ responses) parameters were assessed pre-vaccination and for 21 days post-vaccination. FLU-v was found to be safe and well tolerated with no vaccine associated severe adverse events. Dose-dependent IFN-γ responses >2-fold the pre-vaccination level were detected in 80% and 100% of volunteers receiving, respectively, the low and high dose adjuvanted FLU-v formulations. No formulation tested induced any significant FLU-v antibody response. FLU-v is safe and induces a vaccine-specific cellular immunity. Cellular immune responses are historically known to control and mitigate infection and illness during natural infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A Chimeric Plasmodium falciparum Merozoite Surface Protein Vaccine Induces High Titers of Parasite Growth Inhibitory Antibodies

    PubMed Central

    Alaro, James R.; Partridge, Andrea; Miura, Kazutoyo; Diouf, Ababacar; Lopez, Ana M.; Angov, Evelina; Long, Carole A.

    2013-01-01

    The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmodium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119 (FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a combined formulation of rPfMSP142 and rPfMSP8 (ΔAsn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. falciparum malaria. PMID:23897613

  18. Fluorescence Adherence Inhibition Assay: A Novel Functional Assessment of Blocking Virus Attachment by Vaccine-Induced Antibodies

    PubMed Central

    Asati, Atul; Kachurina, Olga; Karol, Alex; Dhir, Vipra; Nguyen, Michael; Parkhill, Robert; Kouiavskaia, Diana; Chumakov, Konstantin; Warren, William; Kachurin, Anatoly

    2016-01-01

    Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies. Plaque reduction neutralization test, microneutralization and immunofluorescent assays are often used as gold standard virus neutralization assays. However, these methods are associated with several important prerequisites such as use of live virus requiring safety precautions, tedious evaluation procedure and long assessment time. Hence, there is a need for a robust, inexpensive high throughput functional assay that can be performed rapidly using inactivated virus, without extensive safety precautions. Herein, we report a novel high throughput Fluorescence Adherence Inhibition assay (fADI) using inactivated virus labeled with fluorescent secondary antibodies virus and Vero cells or erythrocytes as targets. It requires only few hours to assess pre-attachment neutralizing capacity of donor sera. fADI assay was tested successfully on donors immunized with polio, yellow fever and influenza vaccines. To further simplify and improve the throughput of the assay, we have developed a mathematical approach for calculating the 50% titers from a single sample dilution, without the need to analyze multi-point titration curves. Assessment of pre- and post-vaccination human sera from subjects immunized with IPOL®, YF-VAX® and 2013–2014 Fluzone® vaccines demonstrated high efficiency of the assay. The results correlated very well with microneutralization assay performed independently by the FDA Center of

  19. Strong protection induced by an experimental DIVA subunit vaccine against bluetongue virus serotype 8 in cattle.

    PubMed

    Anderson, Jenna; Hägglund, Sara; Bréard, Emmanuel; Riou, Mickaël; Zohari, Siamak; Comtet, Loic; Olofson, Ann-Sophie; Gélineau, Robert; Martin, Guillaume; Elvander, Marianne; Blomqvist, Gunilla; Zientara, Stéphan; Valarcher, Jean Francois

    2014-11-20

    Bluetongue virus (BTV) infections in ruminants pose a permanent agricultural threat since new serotypes are constantly emerging in new locations. Clinical disease is mainly observed in sheep, but cattle were unusually affected during an outbreak of BTV seroype 8 (BTV-8) in Europe. We previously developed an experimental vaccine based on recombinant viral protein 2 (VP2) of BTV-8 and non-structural proteins 1 (NS1) and NS2 of BTV-2, mixed with an immunostimulating complex (ISCOM)-matrix adjuvant. We demonstrated that bovine immune responses induced by this vaccine were as good or superior to those induced by a classic commercial inactivated vaccine. In this study, we evaluated the protective efficacy of the experimental vaccine in cattle and, based on the detection of VP7 antibodies, assessed its DIVA compliancy following virus challenge. Two groups of BTV-seronegative calves were subcutaneously immunized twice at a 3-week interval with the subunit vaccine (n=6) or with adjuvant alone (n=6). Following BTV-8 challenge 3 weeks after second immunization, controls developed viremia and fever associated with other mild clinical signs of bluetongue disease, whereas vaccinated animals were clinically and virologically protected. The vaccine-induced protection was likely mediated by high virus-neutralizing antibody titers directed against VP2 and perhaps by cellular responses to NS1 and NS2. T lymphocyte responses were cross-reactive between BTV-2 and BTV-8, suggesting that NS1 and NS2 may provide the basis of an adaptable vaccine that can be varied by using VP2 of different serotypes. The detection of different levels of VP7 antibodies in vaccinated animals and controls after challenge suggested a compliancy between the vaccine and the DIVA companion test. This BTV subunit vaccine is a promising candidate that should be further evaluated and developed to protect against different serotypes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Vaccine and Monoclonal Antibody That Enhance Mouse Resistance to Candidiasis ▿

    PubMed Central

    Xin, Hong; Cutler, Jim E.

    2011-01-01

    Previously we showed that antibodies specific for the glycan β-1,2-mannotriose [β-(Man)3] on the cell surface of Candida albicans protect mice against disseminated candidiasis (H. Xin, S. Dziadek, D. R. Bundle, and J. E. Cutler, Proc. Natl. Acad. Sci. U. S. A. 105:13526–13531, 2008). Furthermore, six 14-mer peptides that are within the N-terminal portion of C. albicans wall proteins were conjugated to the glycan in an attempt to create immunogenic glycopeptide conjugates. By a dendritic cell (DC)-based immunization approach, all were immunogenic and three of the six conjugates induced a high degree of protection in mice. Interestingly, whereas all six peptides induced antibody responses when used alone to pulse DCs for subsequent immunizations, three peptides induced protection, and one in particular, peptide Fba (derived from fructose-bisphosphate aldolase), induced robust protective responses and is the focus of the current work. Fba peptide is not restricted by the major histocompatibility complex class II (MHC-II), as it induced anti-Fba antibodies in mice of different H-2 haplotypes and in rabbits. Furthermore, the peptide induced protection against disease caused by different C. albicans strains. Partial protection was achieved when alum was used in place of DCs for Fba immunizations. The passive transfer of immune sera from Fba-vaccinated mice, but not immune serum preabsorbed with fungal cells, conferred protection in naïve mice. This result, along with our finding that a monoclonal antibody specific for the peptide, E2-9 (IgM), protected mice against candidiasis, provide strong evidence that antibodies contribute to protection. Our work demonstrates the utility of cell wall peptides alone or as glycopeptides in vaccines designed for the induction of immunity against candidiasis and monoclonal antibodies as a rapid immunoprotective approach against the disease. PMID:21832099

  1. Live attenuated duck hepatitis virus vaccine in breeder ducks: Protective efficacy and kinetics of maternally derived antibodies.

    PubMed

    Roh, Jae-Hee; Kang, Min

    2018-06-01

    Duck viral hepatitis type I is a rapidly spreading infection lethal in young ducklings, caused by the duck hepatitis A virus (DHAV). Vaccination of breeder ducks is a common practice to control DHAV. However, maintaining proper maternal antibody levels in large flocks is difficult. Therefore, a simple vaccination strategy that can induces stable high antibody levels through mass vaccination is desirable. We evaluated a DHAV vaccination strategy for breeder ducks involving oral administration under field conditions, and examined the kinetics of antibody response in the ducks and their progeny. The strategy included a primary intramuscular vaccination, followed by secondary and tertiary oral vaccinations. Five weeks after the primary vaccination, virus-neutralizing antibody titers increased by 8.4 ± 1.3 log 2 . The titers remained stable at around 9.0 ± 1.1 log 2 for up to 36 weeks. None of the progeny died when challenged with virulent DHAV at 1, 7 or 14 days of age. The transfer percentage of antibodies from the breeder ducks to their progeny was 12.8 ± 3.0%. When antibody levels of the progeny were measured from the day of hatching to 20 days of age, the levels steadily declined, reaching a mean titer of 0 log 2 at 20 days. The half-life of the maternally derived antibodies against DHAV was 3.4 ± 1.1 days. Our vaccination strategy might be effective in breeder ducks because it can be easily applied and induced strong immunity. Moreover, our results might provide a foundation for the mechanistic study of maternally derived antibodies in passive protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models.

    PubMed

    Tottey, Stephen; Shoji, Yoko; Jones, R Mark; Chichester, Jessica A; Green, Brian J; Musiychuk, Konstantin; Si, Huaxin; Manceva, Slobodanka D; Rhee, Amy; Shamloul, Moneim; Norikane, Joey; Guimarães, Rosane C; Caride, Elena; Silva, Andrea N M R; Simões, Marisol; Neves, Patricia C C; Marchevsky, Renato; Freire, Marcos S; Streatfield, Stephen J; Yusibov, Vidadi

    2018-02-01

    Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax ® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana . However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.

  3. Antibodies to the A27 protein of vaccinia virus neutralize and protect against infection but represent a minor component of Dryvax vaccine--induced immunity.

    PubMed

    He, Yong; Manischewitz, Jody; Meseda, Clement A; Merchlinsky, Michael; Vassell, Russell A; Sirota, Lev; Berkower, Ira; Golding, Hana; Weiss, Carol D

    2007-10-01

    The smallpox vaccine Dryvax, which consists of replication-competent vaccinia virus, elicits antibodies that play a major role in protection. Several vaccinia proteins generate neutralizing antibodies, but their importance for protection is unknown. We investigated the potency of antibodies to the A27 protein of the mature virion in neutralization and protection experiments and the contributions of A27 antibodies to Dryvax-induced immunity. Using a recombinant A27 protein (rA27), we confirmed that A27 contains neutralizing determinants and that vaccinia immune globulin (VIG) derived from Dryvax recipients contains reactivity to A27. However, VIG neutralization was not significantly reduced when A27 antibodies were removed, and antibodies elicited by an rA27 enhanced the protection conferred by VIG in passive transfer experiments. These findings demonstrate that A27 antibodies do not represent the major fraction of neutralizing activity in VIG and suggest that immunity may be augmented by vaccines and immune globulins that include strong antibody responses to A27.

  4. Quadrivalent Human Papillomavirus (HPV) Vaccine Induces HPV-Specific Antibodies in the Oral Cavity: Results From the Mid-Adult Male Vaccine Trial

    PubMed Central

    Pinto, Ligia A.; Kemp, Troy J.; Torres, B. Nelson; Isaacs-Soriano, Kimberly; Ingles, Donna; Abrahamsen, Martha; Pan, Yuanji; Lazcano-Ponce, Eduardo; Salmeron, Jorge; Giuliano, Anna R.

    2016-01-01

    Background. Human papillomavirus virus type 16 (HPV-16) and HPV-18 cause a large proportion of oropharyngeal cancers, which are increasing in incidence among males, and vaccine efficacy against oral HPV infections in men has not been previously evaluated. Methods. Sera and saliva collected in mouthwash and Merocel sponges at day 1 and month 7 were obtained from 150 men aged 27–45 years from Tampa, Florida, and Cuernavaca, Mexico, who received Gardasil at day 1 and months 2 and 6. Specimens were tested for anti–HPV-16 and anti–HPV-18 immunoglobulin G (IgG) levels by an L1 virus-like particle–based enzyme-linked immunosorbent assay. Results. All participants developed detectable serum anti–HPV-16 and anti–HPV-18 antibodies, and most had detectable antibodies in both oral specimen types at month 7 (HPV-16 was detected in 93.2% of mouthwash specimens and 95.7% of sponge specimens; HPV-18 was detected in 72.1% and 65.5%, respectively). Antibody concentrations in saliva were approximately 3 logs lower than in serum. HPV-16– and HPV-18–specific antibody levels, normalized to total IgG levels, in both oral specimen types at month 7 were significantly correlated with serum levels (for HPV-16, ρ was 0.90 for mouthwash specimens and 0.92 for sponge specimens; for HPV-18, ρ was 0.89 and 0.86, respectively). Conclusions. This is the first study demonstrating that vaccination of males with Gardasil induces HPV antibody levels at the oral cavity that correlate with circulating levels. PMID:27511896

  5. Antibody response in cattle after vaccination with inactivated and attenuated rabies vaccines.

    PubMed

    Rodrigues da Silva, A C; Caporale, G M; Gonçalves, C A; Targueta, M C; Comin, F; Zanetti, C R; Kotait, I

    2000-01-01

    Despite the absence of current official reports showing the number of cattle infected by rabies, it is estimated that nearly 30,000 bovines are lost each year in Brazil. In order to minimize the important economic losses, control of the disease is achieved by eliminating bat colonies and by herd vaccination. In this study, we compare the antibody response in cattle elicited by vaccination with an attenuated ERA vaccine (AEvac) and an inactivated-adjuvanted PV (IPVvac) vaccine. The antibody titers were appraised by cell-culture neutralization test and ELISA, and the percentage of seropositivity was ascertained for a period of 180 days. IPVvac elicited complete seropositivity rates from day 30 to day 150, and even on day 180, 87% of the sera showed virus-neutralizing antibody titers (VNA) higher than 0.5IU/ml. There were no significant differences between the VNA titers and seropositivity rates obtained with IPVvac in the two methods tested. AEvac, however, elicited significantly lower titers than those observed in the group receiving inactivated vaccine. In addition, the profiles of antirabies IgG antibodies, evaluated by ELISA, and VNA, appraised by cell-culture neutralization test, were slightly different, when both vaccines were compared.

  6. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak.

    PubMed

    Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy

    2008-08-15

    Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.

  7. Vaccination of dogs with canine parvovirus type 2b (CPV-2b) induces neutralising antibody responses to CPV-2a and CPV-2c.

    PubMed

    Wilson, Stephen; Illambas, Joanna; Siedek, Elisabeth; Stirling, Catrina; Thomas, Anne; Plevová, Edita; Sture, Gordon; Salt, Jeremy

    2014-09-22

    Since the identification of canine parvovirus type 2, three variants have subsequently been observed differing from the historical CPV-2 and each other by 1-2 amino acids only. As a result there has been considerable research into differential diagnostics, with some researchers indicating there is a need for new vaccines containing different strains of CPV-2. In this study we investigated whether vaccination with a CPV-2b containing vaccine would induce cross-reactive antibody responses to the other CPV-2 variants. Two studies where dogs were vaccinated with a multivalent vaccine, subsequently challenged with CPV-2b and sera samples analysed are presented. Six week old pups with defined serological status were vaccinated twice, three weeks apart and challenged either 5 weeks (MDA override study) or one year after vaccination (duration of immunity study). Sera samples were collected before each vaccination and at periods throughout each study. In each study the antibody profiles were very similar; serological responses against CPV-2a, CPV-2b and CPV-2c were higher than those for CPV-2. Nevertheless, responses against CPV-2 were well above levels considered clinically protective. In each study dogs also showed a rapid increase in antibody titres following vaccination, reached a plateau following second vaccination with a slight decline to challenge after which rapid anamnestic responses were seen. Evaluation of the serological responses suggests vaccination with CPV-2b would cross-protect against CPV-2a and CPV-2c, as well as against CPV-2 which is now extinct in the field. In conclusion we have demonstrated that vaccination of minimum aged dogs with a multivalent vaccine containing the CPV-2b variant strain will induce serological responses which are cross-reactive against all currently circulating field strains, CPV-2a and CPV-2c, and the now extinct field strain CPV-2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens.

    PubMed

    Koppad, Sanganagouda; Raj, G Dhinakar; Gopinath, V P; Kirubaharan, J John; Thangavelu, A; Thiagarajan, V

    2011-12-01

    Calcium phosphate (CaP) particles were coupled with inactivated Newcastle disease virus (NDV) vaccine. The surface morphology of CaP particles coupled to NDV was found to be spherical, smooth and with a tendency to agglomerate. The mean (± SE) size of CaP particles was found 557.44 ± 18.62 nm. The mean percent encapsulation efficiency of CaP particles coupled to NDV assessed based on total protein content and haemagglutination (HA) activity in eluate was found to be 10.72 ± 0.89 and 12.50 ± 2.09, respectively. The humoral and cell mediated immune responses induced by CaP coupled NDV vaccine were assessed in comparison to a commercial live vaccine (RDV 'F'). CaP coupled NDV vaccine elicited prolonged haemagglutination inhibition (HI) and enzyme linked immunosorbent assay (ELISA) titres in the serum even at fourth and fifth week post-vaccination (PV), unlike RDV 'F' inoculated chickens whose titres declined to insignificant levels by this time. CaP coupled NDV vaccine could stimulate HI antibodies in tracheal washings and tears from second and first week PV, respectively. IgA ELISA antibodies were also seen in tracheal washings of these birds from third week PV and in tears from second week PV. CaP coupled NDV vaccine elicited cell mediated immune responses (CMI) from two to four weeks PV. The stimulation indices obtained after stimulation with specific antigen was not significantly different between CaP coupled antigen and live NDV virus except on first week PV. However, CaP coupled antigen did not cause suppression of lympo proliferation as indicated by statistically similar responses to mitogen, concanavalin A between the two groups. Overall, CaP coupled NDV vaccine elicited stronger and prolonged immune responses in comparison to the commercial live vaccine. No increase in the serum calcium and phosphorous levels were seen in CaP coupled NDV vaccine inoculated chickens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.

    Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, asmore » well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly

  10. Durable antibody responses following one dose of the bivalent human papillomavirus L1 virus-like particle vaccine in the Costa Rica Vaccine Trial.

    PubMed

    Safaeian, Mahboobeh; Porras, Carolina; Pan, Yuanji; Kreimer, Aimee; Schiller, John T; Gonzalez, Paula; Lowy, Douglas R; Wacholder, Sholom; Schiffman, Mark; Rodriguez, Ana C; Herrero, Rolando; Kemp, Troy; Shelton, Gloriana; Quint, Wim; van Doorn, Leen-Jan; Hildesheim, Allan; Pinto, Ligia A

    2013-11-01

    The Costa Rica HPV16/18 Vaccine Trial (CVT) showed that four-year vaccine efficacy against 12-month HPV16/18 persistent infection was similarly high among women who received one, two, or the recommended three doses of the bivalent HPV16/18 L1 virus-like particle (VLP) vaccine. Live-attenuated viral vaccines, but not simple-subunit vaccines, usually induce durable lifelong antibody responses after a single dose. It is unclear whether noninfectious VLP vaccines behave more like live-virus or simple-subunit vaccines in this regard. To explore the likelihood that efficacy will persist longer term, we investigated the magnitude and durability of antibodies to this vaccine by measuring HPV16- and HPV18-specific antibodies by VLP-ELISA using serum from enrollment, vaccination, and annual visits through four years in four vaccinated groups; one-dose (n = 78), two-doses separated by one month (n = 140), two doses separated by six months (n = 52), and three scheduled doses (n = 120, randomly selected). We also tested enrollment sera from n = 113 HPV16- or HPV18 L1-seropositive women prevaccination, presumably from natural infection. At four years, 100% of women in all groups remained HPV16/18 seropositive; both HPV16/18 geometric mean titers (GMT) among the extended two-dose group were non-inferior to the three-dose group, and ELISA titers were highly correlated with neutralization titers in all groups. Compared with the natural infection group, HPV16/18 GMTs were, respectively, at least 24 and 14 times higher among the two-dose and 9 and 5 times higher among one-dose vaccinees. Antibody levels following one-dose remained stable from month 6 through month 48. Results raise the possibility that even a single dose of HPV VLPs will induce long-term protection. ©2013 AACR.

  11. ALA-PDT mediated DC vaccine for skin squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Wang, Xiuli; Chen, Wei R.

    2015-03-01

    Dendritic cell (DC) based vaccine has emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have only achieved limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secret INF-Υ and IL-12). ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumor in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing DC-based cancer vaccine, which could improve the clinical application of PDT- DC vaccines.

  12. Antibody persistence and booster responses 24-36 months after different 4CMenB vaccination schedules in infants and children: A randomised trial.

    PubMed

    Martinón-Torres, Federico; Carmona Martinez, Alfonso; Simkó, Róbert; Infante Marquez, Pilar; Arimany, Josep-Lluis; Gimenez-Sanchez, Francisco; Couceiro Gianzo, José Antonio; Kovács, Éva; Rojo, Pablo; Wang, Huajun; Bhusal, Chiranjiwi; Toneatto, Daniela

    2018-03-01

    This phase IIIb, open-label, multicentre, extension study (NCT01894919) evaluated long-term antibody persistence and booster responses in participants who received a reduced 2 + 1 or licensed 3 + 1 meningococcal serogroup B vaccine (4CMenB)-schedule (infants), or 2-dose catch-up schedule (2-10-year-olds) in parent study NCT01339923. Children aged 35 months to 12 years (N = 851) were enrolled. Follow-on participants (N = 646) were randomised 2:1 to vaccination and non-vaccination subsets; vaccination subsets received an additional 4CMenB dose. Newly enrolled vaccine-naïve participants (N = 205) received 2 catch-up doses, 1 month apart (accelerated schedule). Antibody levels were determined using human serum bactericidal assay (hSBA) against MenB indicator strains for fHbp, NadA, PorA and NHBA. Safety was also evaluated. Antibody levels declined across follow-on groups at 24-36 months versus 1 month post-vaccination. Antibody persistence and booster responses were similar between infants receiving the reduced or licensed 4CMenB-schedule. An additional dose in follow-on participants induced higher hSBA titres than a first dose in vaccine-naïve children. Two catch-up doses in vaccine-naïve participants induced robust antibody responses. No safety concerns were identified. Antibody persistence, booster responses, and safety profiles were similar with either 2 + 1 or 3 + 1 vaccination schedules. The accelerated schedule in vaccine-naïve children induced robust antibody responses. Copyright © 2017 GlaxoSmithKline SA. Published by Elsevier Ltd.. All rights reserved.

  13. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development.

    PubMed

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5-60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.

  14. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development

    PubMed Central

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5–60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development. PMID:28775720

  15. [Comparison of antibody persistence between live attenuated and inactivated hepatitis A vaccines].

    PubMed

    Liu, Huai-Feng; Zhang, Xin-Jiang; Zhang, Jian-Li

    2009-08-01

    To study the antibody persistence of live attenuated hepatitits A vaccine, and to compare the antibody between with inactivated vaccine. 211 HAV susceptible children were divided randomly into three groups, Group A was injected three doses HepA-L at 0, 6 and 12 monthes; Group B was administrated two dose HepA-L at 0 and 6 months, and group C was immunized with inactivated vaccine at month 0 and 6. Serum samples were detected for Anti-HAV at 1, 6, 7, 12, 13, 24, 84 months after vaccination in each group. The seroconversion rates reached 100% after 2nd dose in all groups. The highest GMC was 2938.1 mlU/ml, founded in group C, and it was 1315.6 mlU/ml and 1586 mlU/ml in group A and B respectively. After the 3rd dose at month 12 in group A, the antibody increased dramatic, which reached 1945.3 mlU/ml. 84 months after first dose in each group, the antibody can be detected from all subjects. Though the GMC in group A declined to 336.8 mlU/ml, it was significant higher than that in group B and C. The good booster effect with HepA-L was well observed in a short-term. The immune response induced by 2 to 3 doses HepA-L could compete with inactivated hepatitis A vaccine. However, long-term effects of both vaccines need further study.

  16. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine.

    PubMed

    Blaney, Joseph E; Marzi, Andrea; Willet, Mallory; Papaneri, Amy B; Wirblich, Christoph; Feldmann, Friederike; Holbrook, Michael; Jahrling, Peter; Feldmann, Heinz; Schnell, Matthias J

    2013-01-01

    We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.

  17. Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity.

    PubMed

    Ovsyannikova, Inna G; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2017-10-04

    Identifying genetic polymorphisms that explain variations in humoral immunity to live measles virus vaccine is of great interest. Immunoglobulin GM (heavy chain) and KM (light chain) allotypes are genetic markers known to be associated with susceptibility to several infectious diseases. We assessed associations between GM and KM genotypes and measles vaccine humoral immunity (neutralizing antibody titers) in a combined cohort (n=1796) of racially diverse healthy individuals (age 18-41years). We did not discover any significant associations between GM and/or KM genotypes and measles vaccine-induced neutralizing antibody titers. African-American subjects had higher neutralizing antibody titers than Caucasians (1260mIU/mL vs. 740mIU/mL, p=7.10×10 -13 ), and those titers remained statistically significant (p=1.68×10 -09 ) after adjusting for age at enrollment and time since last vaccination. There were no statistically significant sex-specific differences in measles-induced neutralizing antibody titers in our study (p=0.375). Our data indicate a surprising lack of evidence for an association between GM and KM genotypes and measles-specific neutralizing antibody titers, despite the importance of these immune response genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Duration of antibody response following vaccination against feline immunodeficiency virus.

    PubMed

    Westman, Mark E; Malik, Richard; Hall, Evelyn; Harris, Matthew; Hosie, Margaret J; Norris, Jacqueline M

    2017-10-01

    Objectives Recently, two point-of-care (PoC) feline immunodeficiency virus (FIV) antibody test kits (Witness and Anigen Rapid) were reported as being able to differentiate FIV-vaccinated from FIV-infected cats at a single time point, irrespective of the gap between testing and last vaccination (0-7 years). The aim of the current study was to investigate systematically anti-FIV antibody production over time in response to the recommended primary FIV vaccination series. Methods First, residual plasma from the original study was tested using a laboratory-based ELISA to determine whether negative results with PoC testing were due to reduced as opposed to absent antibodies to gp40. Second, a prospective study was performed using immunologically naive client-owned kittens and cats given a primary FIV vaccination series using a commercially available inactivated whole cell/inactivated whole virus vaccine (Fel-O-Vax FIV, three subcutaneous injections at 4 week intervals) and tested systematically (up to 11 times) over 6 months, using four commercially available PoC FIV antibody kits (SNAP FIV/FeLV Combo [detects antibodies to p15/p24], Witness FeLV/FIV [gp40], Anigen Rapid FIV/FeLV [p24/gp40] and VetScan FeLV/FIV Rapid [p24]). Results The laboratory-based ELISA showed cats from the original study vaccinated within the previous 0-15 months had detectable levels of antibodies to gp40, despite testing negative with two kits that use gp40 as a capture antigen (Witness and Anigen Rapid kits). The prospective study showed that antibody testing with SNAP Combo and VetScan Rapid was positive in all cats 2 weeks after the second primary FIV vaccination, and remained positive for the duration of the study (12/12 and 10/12 cats positive, respectively). Antibody testing with Witness and Anigen Rapid was also positive in a high proportion of cats 2 weeks after the second primary FIV vaccination (8/12 and 7/12, respectively), but antibody levels declined below the level of detection in

  19. Vaccine-induced canine distemper in European mink, Mustela lutreola.

    PubMed

    Sutherland-Smith, M R; Rideout, B A; Mikolon, A B; Appel, M J; Morris, P J; Shima, A L; Janssen, D J

    1997-09-01

    This report describes vaccine-induced canine distemper virus (CDV) infection in four European mink (Mustela lutreola) induced by the administration of a multivalent, avian-origin vaccine. Clinical signs consisting of seizures, ataxia, facial twitching, oculonasal discharge, hyperkeratosis of footpads, and anorexia developed 16-20 days postvaccination. Conjunctival smears from one animal were positive for CDV antigen by direct fluorescent antibody testing, confirming the clinical diagnosis. The four mink died 16-26 days postvaccination. Gross and microscopic lesions that were diagnostic for CDV infection included interstitial pneumonia, lymphoid depletion, nonsuppurative encephalitis, and dermatitis. Vaccine-strain virus was isolated from tissues of three animals. Cases of vaccine-induced distemper in mustelids using avian-origin vaccine have seldom been reported.

  20. Comparisons of the effect of naturally acquired maternal pertussis antibodies and antenatal vaccination induced maternal tetanus antibodies on infant's antibody secreting lymphocyte responses and circulating plasma antibody

    USDA-ARS?s Scientific Manuscript database

    The goal of this study was to explore the effects of trans-placental tetanus toxoid (TT) and pertussis (PT) antibodies on an infant's response to vaccination in the context of antenatal immunization with tetanus but not with pertussis. 38 mothers received a single dose of TT vaccine during pregnancy...

  1. Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia.

    PubMed

    Naglak, Elizabeth K; Morrison, Sandra G; Morrison, Richard P

    2017-10-01

    Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia -specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo , natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response. Copyright © 2017 Naglak et al.

  2. Duration of serum antibody response to rabies vaccination in horses.

    PubMed

    Harvey, Alison M; Watson, Johanna L; Brault, Stephanie A; Edman, Judy M; Moore, Susan M; Kass, Philip H; Wilson, W David

    2016-08-15

    OBJECTIVE To investigate the impact of age and inferred prior vaccination history on the persistence of vaccine-induced antibody against rabies in horses. DESIGN Serologic response evaluation. ANIMALS 48 horses with an undocumented vaccination history. PROCEDURES Horses were vaccinated against rabies once. Blood samples were collected prior to vaccination, 3 to 7 weeks after vaccination, and at 6-month intervals for 2 to 3 years. Serum rabies virus-neutralizing antibody (RVNA) values were measured. An RVNA value of ≥ 0.5 U/mL was used to define a predicted protective immune response on the basis of World Health Organization recommendations for humans. Values were compared between horses < 20 and ≥ 20 years of age and between horses inferred to have been previously vaccinated and those inferred to be immunologically naïve. RESULTS A protective RVNA value (≥ 0.5 U/mL) was maintained for 2 to 3 years in horses inferred to have been previously vaccinated on the basis of prevaccination RVNA values. No significant difference was evident in response to rabies vaccination or duration of protective RVNA values between horses < 20 and ≥ 20 years of age. Seven horses were poor responders to vaccination. Significant differences were identified between horses inferred to have been previously vaccinated and horses inferred to be naïve prior to the study. CONCLUSIONS AND CLINICAL RELEVANCE A rabies vaccination interval > 1 year may be appropriate for previously vaccinated horses but not for horses vaccinated only once. Additional research is required to confirm this finding and characterize the optimal primary dose series for rabies vaccination.

  3. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  4. Vaccination with an adenoviral vector that encodes and displays a retroviral antigen induces improved neutralizing antibody and CD4+ T-cell responses and confers enhanced protection.

    PubMed

    Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver

    2010-02-01

    We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.

  5. Antibody-mediated inhibition of ricin toxin retrograde transport.

    PubMed

    Yermakova, Anastasiya; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J

    2014-04-08

    Ricin is a member of the ubiquitous family of plant and bacterial AB toxins that gain entry into the cytosol of host cells through receptor-mediated endocytosis and retrograde traffic through the trans-Golgi network (TGN) and endoplasmic reticulum (ER). While a few ricin toxin-specific neutralizing monoclonal antibodies (MAbs) have been identified, the mechanisms by which these antibodies prevent toxin-induced cell death are largely unknown. Using immunofluorescence confocal microscopy and a TGN-specific sulfation assay, we demonstrate that 24B11, a MAb against ricin's binding subunit (RTB), associates with ricin in solution or when prebound to cell surfaces and then markedly enhances toxin uptake into host cells. Following endocytosis, however, toxin-antibody complexes failed to reach the TGN; instead, they were shunted to Rab7-positive late endosomes and LAMP-1-positive lysosomes. Monovalent 24B11 Fab fragments also interfered with toxin retrograde transport, indicating that neither cross-linking of membrane glycoproteins/glycolipids nor the recently identified intracellular Fc receptor is required to derail ricin en route to the TGN. Identification of the mechanism(s) by which antibodies like 24B11 neutralize ricin will advance our fundamental understanding of protein trafficking in mammalian cells and may lead to the discovery of new classes of toxin inhibitors and therapeutics for biodefense and emerging infectious diseases. IMPORTANCE Ricin is the prototypic member of the AB family of medically important plant and bacterial toxins that includes cholera and Shiga toxins. Ricin is also a category B biothreat agent. Despite ongoing efforts to develop vaccines and antibody-based therapeutics against ricin, very little is known about the mechanisms by which antibodies neutralize this toxin. In general, it is thought that antibodies simply prevent toxins from attaching to cell surface receptors or promote their clearance through Fc receptor (FcR)-mediated uptake

  6. Infants with low vaccine antibody responses have altered innate cytokine response.

    PubMed

    Surendran, Naveen; Nicolosi, Ted; Pichichero, Michael

    2016-11-11

    We recently identified a population of 10% of infants who respond with sub-protective antibody levels to most routine primary pediatric vaccinations due to altered innate and adaptive immune responses. We term these infants as low vaccine responders (LVRs). Here we report new data showing that TLR7/8 agonist - R848 stimulation of PBMCs of LVR infants elicit significantly lower IFN-α, IL-12p70 and IL-1β, while inducing higher levels of CCL5 (RANTES) compared to normal vaccine responder (NVR) infants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques.

    PubMed

    Iyer, Smita S; Gangadhara, Sailaja; Victor, Blandine; Shen, Xiaoying; Chen, Xuemin; Nabi, Rafiq; Kasturi, Sudhir P; Sabula, Michael J; Labranche, Celia C; Reddy, Pradeep B J; Tomaras, Georgia D; Montefiori, David C; Moss, Bernard; Spearman, Paul; Pulendran, Bali; Kozlowski, Pamela A; Amara, Rama Rao

    2016-10-01

    The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing

  8. Maternal derived antibodies induce vaccine-associated enhanced respiratory disease in weaned pigs challenged with heterologous virus

    USDA-ARS?s Scientific Manuscript database

    Effective vaccine immunization against influenza A viruses (IAV) in pigs in the United States is a challenge because of the great antigenic diversity of co-circulating viruses. Maternally derived antibodies (MDA) interfere with vaccine efficacy and can lead to vaccine-enhanced respiratory disease (V...

  9. Humoral, Mucosal, and Cell-Mediated Immunity Against Vaccine and Nonvaccine Genotypes After Administration of Quadrivalent Human Papillomavirus Vaccine to HIV-Infected Children

    PubMed Central

    Weinberg, Adriana; Song, Lin-Ye; Saah, Alfred; Brown, Martha; Moscicki, Anna B.; Meyer, William A.; Bryan, Janine; Levin, Myron J.

    2012-01-01

    Objectives. To characterize the immunogenicity of a quadrivalent human papillomavirus vaccine (QHPV) in human immunodeficiency virus (HIV)–infected children, we studied their immune responses to 3 or 4 doses. Methods. HIV-infected children aged 7–12 years with a CD4 cell percentage of ≥15% of lymphocytes, received 3 doses of QHPV with or without a fourth dose after 72 weeks. Type-specific and cross-reactive antibodies and cell-mediated immunity were measured. Results. Type-specific antibodies to HPV6, 11, and 16 were detected in 100% and ≥94% of children at 4 and 72 weeks, respectively, after the third QHPV dose. Corresponding numbers for HPV18 were 97% and 76%, respectively. A fourth QHPV dose increased seropositivity to ≥96% for all vaccine genotypes. Four weeks after the third QHPV dose, 67% of vaccinees seroconverted to HPV31, an HPV16-related genotype not in the vaccine; 69% and 39% of vaccinees developed mucosal HPV16 and 18 immunoglobulin G antibodies, respectively; and 60% and 52% of vaccinees developed cytotoxic T lymphocytes (CTLs) for HPV16 and 31, respectively. Conclusions. Three QHPV doses generated robust and persistent antibodies to HPV6, 11, and 16 but comparatively weaker responses to HPV18. A fourth dose increased antibodies against all vaccine genotypes in an anamnestic fashion. CTLs and mucosal antibodies against vaccine genotypes, as well as cross-reactive antibodies and CTL against nonvaccine genotypes, were detected. PMID:22859825

  10. Salivary antibody levels in adolescents in response to a meningococcal serogroup C conjugate booster vaccination nine years after priming: systemically induced local immunity and saliva as potential surveillance tool.

    PubMed

    Stoof, Susanne P; van der Klis, Fiona R M; van Rooijen, Debbie M; Bogaert, Debby; Trzciński, Krzysztof; Sanders, Elisabeth A M; Berbers, Guy A M

    2015-07-31

    In several countries large-scale immunization of children and young adults with Meningococcal serogroup C (MenC) conjugate vaccines has induced long-standing herd protection. Salivary antibodies may play an important role in mucosal protection against meningococcal acquisition and carriage. To investigate antibody levels in (pre)adolescents primed 9 years earlier with a single dose of MenC-polysaccharide tetanus toxoid conjugated (MenC-TT) vaccine and the response to a booster vaccination, with special focus on age-related differences and the relation between salivary and serum antibody levels. Nine years after priming, healthy 10- (n=91), 12- (n=91) and 15-year-olds (n=86) received a MenC-TT booster vaccination. Saliva and serum samples were collected prior to and 1 month and 1 year after vaccination. MenC-polysaccharide(MenC-PS)-specific antibody levels were measured using a fluorescent-bead-based multiplex immunoassay. Before the booster, MenC-PS-specific IgG and IgA levels in saliva and serum were low and correlated with age at priming. The booster induced a marked increase in salivary MenC-PS-specific IgG (>200-fold), but also in IgA (∼10-fold). One year after the booster, salivary IgG and IgA had remained above pre-booster levels in all age groups (∼20-fold and ∼3-fold, respectively), with persistence of highest levels in the 15-year-olds. MenC-PS-specific IgG and IgA levels in saliva strongly correlated with the levels in serum. Parenteral MenC-TT booster vaccination induces a clear increase in salivary MenC-PS-specific IgG and IgA levels and persistence of highest levels correlates with age. The strong correlation between serum and salivary antibody levels indicate that saliva may offer an easy and reliable tool for future antibody surveillance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Vaccine-Induced Env V1–V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination

    PubMed Central

    Yates, Nicole L.; Liao, Hua-Xin; Fong, Youyi; deCamp, Allan; Vandergrift, Nathan A.; Williams, William T.; Alam, S. Munir; Ferrari, Guido; Yang, Zhi-yong; Seaton, Kelly E.; Berman, Phillip W.; Alpert, Michael D.; Evans, David T.; O’Connell, Robert J.; Francis, Donald; Sinangil, Faruk; Lee, Carter; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Tartaglia, James; Pinter, Abraham; Zolla-Pazner, Susan; Gilbert, Peter B.; Nabel, Gary J.; Michael, Nelson L.; Kim, Jerome H.; Montefiori, David C.; Haynes, Barton F.; Tomaras, Georgia D.

    2014-01-01

    HIV-1–specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1–specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1–specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials. PMID:24648342

  12. Persistence of Yellow Fever vaccine-induced antibodies after cord blood stem cell transplant.

    PubMed

    Avelino-Silva, Vivian Iida; Freire, Marcos da Silva; Rocha, Vanderson; Rodrigues, Celso Arrais; Novis, Yana Sarkis; Sabino, Ester C; Kallas, Esper Georges

    2016-04-02

    We report the case of a cord blood haematopoietic stem cell transplant recipient who was vaccinated for Yellow Fever (YF) 7 days before initiating chemotherapy and had persistent YF antibodies more than 3 years after vaccination. Since the stem cell donor was never exposed to wild YF or to the YF vaccine, and our patient was not exposed to YF or revaccinated, this finding strongly suggests the persistence of recipient immunity. We briefly discuss potential consequences of incomplete elimination of recipient's leukocytes following existing haematopoietic cancer treatments.

  13. Assessment of humoral and cellular-mediated immune response in chickens treated with tilmicosin, florfenicol, or enrofloxacin at the time of Newcastle disease vaccination.

    PubMed

    Khalifeh, M S; Amawi, M M; Abu-Basha, E A; Yonis, I Bani

    2009-10-01

    The effect of tilmicosin, florfenicol, or enrofloxacin on humoral and cell-mediated immune response induced by Newcastle disease (ND) vaccination was evaluated in 20-wk-old specific-pathogen-free layer chickens. Humoral immunity was measured by detection of ND virus (NDV) antibody titer and anti-NDV IgG response using the hemagglutination inhibition (HI) test and ELISA, respectively, whereas cell-mediated immunity was evaluated by measurement of chicken interferon gamma (ChIFN-gamma) produced in splenocytes cell culture stimulated with concanavalin A, inactivated NDV antigen, or live attenuated La Sota strain using ELISA. Florfenicol hampered the ND antibody production measured by both HI and ELISA. Tilmicosin and enrofloxacin reduced the production of ND antibody in the first 3 wk after the last ND vaccination measured by HI test, which suggests that these antibiotics exert their effect mainly on the IgM isotype. The ND-vaccinated, but not treated group, showed an increase in ChIFN-gamma production after NDV antigen-specific stimulation above the nonstimulated cell culture, whereas this effect was masked in all the antibiotic-treated groups due to the stronger ChIFN-gamma production background value reported in the nonstimulated cell culture. In conclusion, our results showed, for the first time, that tilmicosin, florfenicol, or enrofloxacin reduced the humoral immune response and had beneficial effects on the cell-mediated immune response. In addition, we demonstrated that the combination of both inactivated and attenuated ND vaccine gave a strong immune response at both the humoral and cellular level.

  14. Protective effect of A/H1N1 vaccination in immune-mediated disease--a prospectively controlled vaccination study.

    PubMed

    Adler, Sabine; Krivine, Anne; Weix, Janine; Rozenberg, Flore; Launay, Odile; Huesler, Juerg; Guillevin, Loïc; Villiger, Peter M

    2012-04-01

    To assess the 2009 influenza vaccine A/H1N1 on antibody response, side effects and disease activity in patients with immune-mediated diseases. Patients with RA, SpA, vasculitis (VAS) or CTD (n = 149) and healthy individuals (n = 40) received a single dose of adjuvanted A/H1N1 influenza vaccine. Sera were obtained before vaccination, and 3 weeks, 6 weeks and 6 months thereafter. A/H1N1 antibody titres were measured by haemagglutination inhibition (HAI) assay. Seroprotection was defined as specific antibody titre ≥ 1 : 40, seroconversion as 4-fold increase in antibody titre. Titres increased significantly in patients and controls with a maximum at Week 3, declining to levels below protection at Month 6 (P < 0.001). Seroprotection was more frequently reached in SpA and CTD than in RA and VAS (80 and 82% and 57 and 47%, respectively). There was a significantly negative impact by MTX (P < 0.001), rituximab (P = 0.0031) and abatacept (P = 0.045). Other DMARDs, glucocorticoids and TNF blockers did not significantly suppress response (P = 0.06, 0.11 and 0.81, respectively). A linear decline in response was noted in patients with increasing age (P < 0.001). Disease reactivation possibly related to vaccination was suspected in 8/149 patients. No prolonged side effects or A/H1N1 infections were noted. The results show that vaccination response is a function of disease type, intensity and character of medication and age. A single injection of adjuvanted influenza vaccine is sufficient to protect a high percentage of patients. Therefore, differential vaccination recommendations might in the future reduce costs and increase vaccination acceptance.

  15. Survivors Remorse: antibody-mediated protection against HIV-1.

    PubMed

    Lewis, George K; Pazgier, Marzena; DeVico, Anthony L

    2017-01-01

    It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    PubMed

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Active Immunizations with Peptide-DC Vaccines and Passive Transfer with Antibodies Protect Neutropenic Mice against Disseminated Candidiasis

    PubMed Central

    Xin, Hong

    2015-01-01

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. PMID:26620842

  18. Seropositivity to non-vaccine incorporated genotypes induced by the bivalent and quadrivalent HPV vaccines: A systematic review and meta-analysis.

    PubMed

    Bissett, Sara L; Godi, Anna; Jit, Mark; Beddows, Simon

    2017-07-13

    Human papillomavirus vaccines have demonstrated remarkable efficacy against persistent infection and disease associated with vaccine-incorporated genotypes and a degree of efficacy against some genetically related, non-vaccine-incorporated genotypes. The vaccines differ in the extent of cross-protection against these non-vaccine genotypes. Data supporting the role for neutralizing antibodies as a correlate or surrogate of cross-protection are lacking, as is a robust assessment of the seroconversion rates against these non-vaccine genotypes. We performed a systematic review and meta-analysis of available data on vaccine-induced neutralizing antibody seropositivity to non-vaccine incorporated HPV genotypes. Of 304 articles screened, 9 were included in the analysis representing ca. 700 individuals. The pooled estimate for seropositivity against HPV31 for the bivalent vaccine (86%; 95%CI 78-91%) was higher than that for the quadrivalent vaccine (61%; 39-79%; p=0.011). The pooled estimate for seropositivity against HPV45 for the bivalent vaccine (50%; 37-64%) was also higher than that for the quadrivalent vaccine (16%; 6-36%; p=0.007). Seropositivity against HPV33, HPV52 and HPV58 were similar between the vaccines. Mean seropositivity rates across non-vaccine genotypes were positively associated with the corresponding vaccine efficacy data reported from vaccine trials. These data improve our understanding of vaccine-induced functional antibody specificity against non-vaccine incorporated genotypes and may help to parameterize vaccine-impact models and improve patient management in a post-vaccine setting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, Donald D.; Bajic, Goran; Ferdman, Jack

    Antigenic variation requires frequent revision of annual influenza vaccines. Next-generation vaccine design strategies aim to elicit a broader immunity by directing the human immune response toward conserved sites on the principal viral surface protein, the hemagglutinin (HA). We describe a group of antibodies that recognize a hitherto unappreciated, conserved site on the HA of H1 subtype influenza viruses. Mutations in that site, which required a change in the H1 component of the 2017 vaccine, had not previously “taken over” among circulating H1 viruses. Our results encourage vaccine design strategies that resurface a protein to focus the immune response on amore » specific region.« less

  20. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was

  1. CoVaccine HT™ adjuvant is superior to Freund's adjuvants in eliciting antibodies against the endogenous alarmin HMGB1.

    PubMed

    Lakhan, Nerissa; Stevens, Natalie E; Diener, Kerrilyn R; Hayball, John D

    2016-12-01

    Adjuvants are used to enhance the immune response against specific antigens for the production of antibodies, with the choice of adjuvant most critical for poorly immunogenic and self-antigens. This study quantitatively and qualitatively evaluated CoVaccine HT™ and Freund's adjuvants for eliciting therapeutic ovine polyclonal antibodies targeting the endogenous alarmin, high mobility group box-1 (HMGB1). Sheep were immunised with HMGB1 protein in CoVaccine HT™ or Freund's adjuvants, with injection site reactions and antibody titres periodically assessed. The binding affinity of antibodies for HMGB1 and their neutralisation activity was determined in-vitro, with in vivo activity confirmed using a murine model of endotoxemia. Results indicated that CoVaccine HT™ elicited significantly higher antibody tires with stronger affinity and more functional potency than antibodies induced with Freund's adjuvants. These studies provide evidence that CoVaccine HT™ is superior to Freund's adjuvants for the production of antibodies to antigens with low immunogenicity and supports the use of this alternative adjuvant for clinical and experimental use antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Vaccination, squalene and anti-squalene antibodies: facts or fiction?

    PubMed

    Lippi, Giuseppe; Targher, Giovanni; Franchini, Massimo

    2010-04-01

    Squalene, a hydrocarbon obtained for commercial purposes primarily from shark liver oil and other botanic sources, is increasingly used as an immunologic adjuvant in several vaccines, including seasonal and the novel influenza A (H1N1) 2009 pandemic flu vaccines. Nearly a decade ago, squalene was supposed to be the experimental anthrax vaccine ingredient that caused the onset of Persian Gulf War syndrome in many veterans, since antibodies to squalene were detected in the blood of most patients affected by this syndrome. This evidence has raised a widespread concern about the safety of squalene containing adjuvants (especially MF59) of influenza vaccines. Nevertheless, further clinical evidence clearly suggested that squalene is poorly immunogenic, that low titres of antibodies to squalene can be also detected in sera from healthy individuals, and that neither the presence of anti-squalene antibodies nor their titre is significantly increased by immunization with vaccines containing squalene (or MF59) as an adjuvant. This review summarizes the current scientific evidence about the relationship between squalene, anti-squalene antibodies and vaccination. Copyright 2009 Elsevier B.V. All rights reserved.

  3. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice

    PubMed Central

    Shukla, Rahul; Poddar, Ankur; Shanmugam, Rajgokul K.; White, Laura J.; Mattocks, Melissa M.; Raut, Rajendra; Perween, Ashiya; Tyagi, Poornima; de Silva, Aravinda M.; Bhaumik, Siddhartha K.; Kaja, Murali Krishna; Villinger, François; Ahmed, Rafi; Johnston, Robert E.; Khanna, Navin

    2018-01-01

    Background Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs). Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies. Methodology/principal findings We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII), which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S) antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs). These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice. Conclusions/significance Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease

  4. Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models.

    PubMed

    Saunders, Kevin O; Verkoczy, Laurent K; Jiang, Chuancang; Zhang, Jinsong; Parks, Robert; Chen, Haiyan; Housman, Max; Bouton-Verville, Hilary; Shen, Xiaoying; Trama, Ashley M; Scearce, Richard; Sutherland, Laura; Santra, Sampa; Newman, Amanda; Eaton, Amanda; Xu, Kai; Georgiev, Ivelin S; Joyce, M Gordon; Tomaras, Georgia D; Bonsignori, Mattia; Reed, Steven G; Salazar, Andres; Mascola, John R; Moody, M Anthony; Cain, Derek W; Centlivre, Mireille; Zurawski, Sandra; Zurawski, Gerard; Erickson, Harold P; Kwong, Peter D; Alam, S Munir; Levy, Yves; Montefiori, David C; Haynes, Barton F

    2017-12-26

    The events required for the induction of broad neutralizing antibodies (bnAbs) following HIV-1 envelope (Env) vaccination are unknown, and their induction in animal models as proof of concept would be critical. Here, we describe the induction of plasma antibodies capable of neutralizing heterologous primary (tier 2) HIV-1 strains in one macaque and two rabbits. Env immunogens were designed to induce CD4 binding site (CD4bs) bnAbs, but surprisingly, the macaque developed V1V2-glycan bnAbs. Env immunization of CD4bs bnAb heavy chain rearrangement (V H DJ H ) knockin mice similarly induced V1V2-glycan neutralizing antibodies (nAbs), wherein the human CD4bs V H  chains were replaced with mouse rearrangements bearing diversity region (D)-D fusions, creating antibodies with long, tyrosine-rich HCDR3s. Our results show that Env vaccination can elicit broad neutralization of tier 2 HIV-1, demonstrate that V1V2-glycan bnAbs are more readily induced than CD4bs bnAbs, and define V H replacement and diversity region fusion as potential mechanisms for generating V1V2-glycan bnAb site antibodies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Colorectal cancer vaccines: antiidiotypic antibody, recombinant protein, and viral vector.

    PubMed

    Basak, S; Eck, S; Gutzmer, R; Smith, A J; Birebent, B; Purev, E; Staib, L; Somasundaram, R; Zaloudik, J; Li, W; Jacob, L; Mitchell, E; Speicher, D; Herlyn, D

    2000-06-01

    The colorectal cancer antigen GA733 (also termed CO17-1A, KSI-4, Ep-CAM, KSA) has proved to be a useful target in passive immunotherapy with monoclonal antibody and in active immunotherapy with antiidiotypic antibodies in cancer patients. The GA733 antigen was molecularly cloned and expressed in baculovirus (BV), adenovirus (AV), and vaccinia virus (VV). Recombinant BV-, VV-, and AV-GA733 induced antigen-specific cytotoxic antibodies and proliferative and delayed-type hypersensitive lymphocytes. However, only the AV recombinant induced antigen-specific cytolytic T lymphocytes and regression of established tumors. Cured mice were protected against challenge with antigen-negative tumors, indicating antigen spreading of immune responses. In a model of active immunotherapy against the murine homologue of the human GA733 antigen, murine epithelial glycoprotein (mEGP), BV-derived mEGP protein in various adjuvants did not protect mice against a challenge with mEGP-positive tumors. AV mEGP, only when combined with interleukin-2, significantly inhibited growth of established mEGP-positive tumors. This is in contrast to the same vaccine expressing the human antigen that was effective without interleukin-2. AV GA733, in combination with interleukin-2, is a candidate vaccine for colorectal cancer patients.

  6. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    NASA Astrophysics Data System (ADS)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  7. Microneedle-mediated vaccine delivery: Harnessing cutaneous immunobiology to improve efficacy

    PubMed Central

    Al-Zahrani, S; Zaric, M; McCrudden, C; Scott, C; Kissenpfennig, A; Donnelly, Ryan F.

    2014-01-01

    Introduction We describe the use of microneedle arrays for delivery to targets within the skin itself. Breaching the skin’s stratum corneum barrier raises the possibility of administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. Areas Covered Intradermal vaccine delivery, in particular, holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed and here we discuss each one in turn. We also describe the importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination. Expert Opinion Microneedle-mediated vaccine holds enormous potential for patient benefit. In order for microneedle vaccine strategies to fulfil their potential, however, the proportion of an immune response that is due to local action of delivered vaccines on skin antigen presenting cells and what is due to a systemic effect from vaccine reaching the systemic circulation must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried- and-tested needle-and-syringe based-approaches. PMID:22475249

  8. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    PubMed

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of

  9. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species

    PubMed Central

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Background: Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Material & Methods: Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Results: Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Conclusion: Cross

  10. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species.

    PubMed

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Cross-neutralizing activities partly correlate with the

  11. Augmenting the efficacy of anti-cocaine catalytic antibodies through chimeric hapten design and combinatorial vaccination.

    PubMed

    Wenthur, Cody J; Cai, Xiaoqing; Ellis, Beverly A; Janda, Kim D

    2017-08-15

    Given the need for further improvements in anti-cocaine vaccination strategies, a chimeric hapten (GNET) was developed that combines chemically-stable structural features from steady-state haptens with the hydrolytic functionality present in transition-state mimetic haptens. Additionally, as a further investigation into the generation of an improved bifunctional antibody pool, sequential vaccination with steady-state and transition-state mimetic haptens was undertaken. While GNET induced the formation of catalytically-active antibodies, it did not improve overall behavioral efficacy. In contrast, the resulting pool of antibodies from GNE/GNT co-administration demonstrated intermediate efficacy as compared to antibodies developed from either hapten alone. Overall, improved antibody catalytic efficiency appears necessary to achieve the synergistic benefits of combining cocaine hydrolysis with peripheral sequestration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep.

    PubMed

    Chen, Weiye; Hu, Sen; Qu, Linmao; Hu, Qianqian; Zhang, Qian; Zhi, Haibing; Huang, Kehe; Bu, Zhigao

    2010-07-05

    Recombinant capripoxvirus (CPV) is a promising candidate differentiating infected from vaccinated animals (DIVA) vaccine against peste-des-petits-ruminants (PPR). In order for recombinant CPV to be successfully used in the field, there should exist dependable indicators for quality control of vaccine products, surveillance and vaccination evaluation. Viral neutralization antibody (VNA) is correlated to protection against PPR and is a technically feasible indicator for this purpose. The immunogenicity of this vectored vaccine in goats and sheep, however, has not been fully evaluated. In this study, we generated two recombinant CPV viruses, rCPV-PPRVH and rCPV-PPRVF, that express PPR virus (PPRV) glycoproteins H and F, respectively. Vaccination studies with different dosages of recombinant viruses showed that rCPV-PPRVH was a more potent inducer of PPRV VNA than rCPV-PPRVF. One dose of rCPV-PPRVH was enough to seroconvert 80% of immunized sheep. A second dose induced significantly higher PPRV VNA titers. There was no significant difference in PPRV VNA responses between goats and sheep. Subcutaneous inoculation also induced a significant PPRV VNA response. PPRV VNA could be detected for over 6 months in more than 80% of vaccinated goats and sheep. Boost vaccination at 6-month intervals induced significant re-boost efficacy of PPRV VNA in goats and sheep. More over, two doses of rCPV-PPRVH could completely overcome the interference caused by pre-existing immunity to the CPV vaccine backbone in animals. Vaccination with rCPV-PPRVH also protected goats from virulent CPV challenge. Our results demonstrate that VNA can serve as a dependent indicator for effective vaccination and immune protection of animals in the field. The recombinant CPV vaccine used in our studies could be a practical and useful candidate DIVA vaccine in countries where PPR newly emerges or where stamp-out plans are yet to be implemented. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Neutralising antibody response in domestic cats immunised with a commercial feline immunodeficiency virus (FIV) vaccine

    PubMed Central

    Bęczkowski, Paweł M.; Harris, Matthew; Techakriengkrai, Navapon; Beatty, Julia A.; Willett, Brian J.; Hosie, Margaret J.

    2015-01-01

    Across human and veterinary medicine, vaccines against only two retroviral infections have been brought to market successfully, the vaccines against feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV). FeLV vaccines have been a global success story, reducing virus prevalence in countries where uptake is high. In contrast, the more recent FIV vaccine was introduced in 2002 and the degree of protection afforded in the field remains to be established. However, given the similarities between FIV and HIV, field studies of FIV vaccine efficacy are likely to advise and inform the development of future approaches to HIV vaccination. Here we assessed the neutralising antibody response induced by FIV vaccination against a panel of FIV isolates, by testing blood samples collected from client-owned vaccinated Australian cats. We examined the molecular and phenotypic properties of 24 envs isolated from one vaccinated cat that we speculated might have become infected following natural exposure to FIV. Cats vaccinated against FIV did not display broadly neutralising antibodies, suggesting that protection may not extend to some virulent recombinant strains of FIV circulating in Australia. PMID:25613718

  14. Angiogenic cytokines are antibody targets during graft-versus-leukemia reactions

    PubMed Central

    Piesche, Matthias; Ho, Vincent T.; Kim, Haesook; Nakazaki, Yukoh; Nehil, Michael; Yaghi, Nasser; Kolodin, Dmitriy; Weiser, Jeremy; Altevogt, Peter; Kiefel, Helena; Alyea, Edwin P.; Antin, Joseph H.; Cutler, Corey; Koreth, John; Canning, Christine; Ritz, Jerome; Soiffer, Robert J.; Dranoff, Glenn

    2014-01-01

    Purpose The graft-versus-leukemia (GVL) reaction is an important example of immune-mediated tumor destruction. A coordinated humoral and cellular response accomplishes leukemia cell killing, but the specific targets remain largely uncharacterized. To learn more about the antigens that elicit antibodies during GVL reactions, we analyzed advanced myelodysplasia (MDS) and acute myeloid leukemia (AML) patients who received an autologous, granulocyte-macrophage colony stimulating factor (GM-CSF) secreting tumor cell vaccine early after allogeneic hematopoietic stem cell transplantation (HSCT). Experimental Design A combination of tumor-derived cDNA expression library screening, protein microarrays, and antigen-specific ELISAs were employed to characterize sera obtained longitudinally from 15 AML/MDS patients who were vaccinated early after allogeneic HSCT. Results A broad, therapy-induced antibody response was uncovered, which primarily targeted intracellular proteins that function in growth, transcription/translation, metabolism, and homeostasis. Unexpectedly, antibodies were also elicited against eight secreted angiogenic cytokines that play critical roles in leukemogenesis. Antibodies to the angiogenic cytokines were evident early after therapy, and in some patients manifested a diversification in reactivity over time. Patients that developed antibodies to multiple angiogenic cytokines showed prolonged remission and survival. Conclusions These results reveal a potent humoral response during GVL reactions induced with vaccination early after allogeneic HSCT and raise the possibility that antibodies, in conjunction with NK cells and T lymphocytes, may contribute to immune-mediated control of myeloid leukemias. PMID:25538258

  15. Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies.

    PubMed

    Sabo, Tamar; Kronman, Chanoch; Mazor, Ohad

    2016-01-01

    Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.

  16. Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis

    PubMed Central

    Haley, Shannon L.; Tzvetkov, Evgeni P.; Meuwissen, Samantha; Plummer, Joseph R.

    2017-01-01

    ABSTRACT Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP. IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the

  17. Use of serologic tests to predict resistance to Canine distemper virus-induced disease in vaccinated dogs.

    PubMed

    Jensen, Wayne A; Totten, Janet S; Lappin, Michael R; Schultz, Ronald D

    2015-09-01

    The objective of the current study was to determine whether detection of Canine distemper virus (CDV)-specific serum antibodies correlates with resistance to challenge with virulent virus. Virus neutralization (VN) assay results were compared with resistance to viral challenge in 2 unvaccinated Beagle puppies, 9 unvaccinated Beagle dogs (4.4-7.2 years of age), and 9 vaccinated Beagle dogs (3.7-4.7 years of age). Eight of 9 (89%) unvaccinated adult dogs exhibited clinical signs after virus challenge, and 1 (13%) dog died. As compared to adult dogs, the 2 unvaccinated puppies developed more severe clinical signs and either died or were euthanized after challenge. In contrast, no clinical signs were detected after challenge of the 9 adult vaccinated dogs with post-vaccination intervals of up to 4.4 years. In vaccinated dogs, the positive and negative predictive values of VN assay results for resistance to challenge were 100% and 0%, respectively. Results indicate that dogs vaccinated with modified live CDV can be protected from challenge for ≤4.4 years postvaccination and that detection of virus-specific antibodies is predictive of whether dogs are resistant to challenge with virulent virus. Results also indicate that CDV infection in unvaccinated dogs results in age-dependent morbidity and mortality. Knowledge of age-dependent morbidity and mortality, duration of vaccine-induced immunity, and the positive and negative predictive values of detection of virus-specific serum antibodies are useful in development of rational booster vaccination intervals for the prevention of CDV-mediated disease in adult dogs. © 2015 The Author(s).

  18. Antibody response to an anti-rabies vaccine in a dog population under field conditions in Bolivia.

    PubMed

    Suzuki, K; González, E T; Ascarrunz, G; Loza, A; Pérez, M; Ruiz, G; Rojas, L; Mancilla, K; Pereira, J A C; Guzman, J A; Pecoraro, M R

    2008-10-01

    Rabies remains an important public health issue in Bolivia, South America. Public concern and fears are most focussed on dogs as the source of rabies. The objective of the present study was to assess immunity of an inactivated suckling mouse brain vaccine against canine rabies used for the official vaccination campaigns under field conditions in an endemic area of rabies in Bolivia. A total of 236 vaccinated and 44 unvaccinated dogs in Santa Cruz de la Sierra, selected using stratified random sampling, were investigated in order to obtain owned dog characteristics and antibody titres against rabies in April 2007. The proportion of vaccinated dogs with an antibody titre exceeded the protection threshold value of 0.5 EU/ml was 58% [95% confidence intervals (CI): 52-65], indicating that vaccination is likely to elicit an antibody response (odds ratio 6.3, 95% CI: 1.2-11.5). The range of geometric mean of antibody titre for vaccinated dogs (0.89 EU/ml; 95% CI: 0.75-1.04) was considered to meet the minimal acceptable level indicating an adequate immune response to the vaccine. However, the titre level was not satisfactory in comparison with the results from other field investigations with inactivated tissue culture vaccines. It is recommended for public health authorities to (1) consider modernizing their vaccine manufacturing method because the level of immunity induced by the current vaccine is comparably low, (2) conduct frequent vaccination campaigns to maintain high levels of vaccination coverage, and (3) actively manage the domestic dog population in the study area, which is largely responsible for rabies maintenance.

  19. Characterisation of antibody responses in pigs induced by recombinant oncosphere antigens from Taenia solium.

    PubMed

    Jayashi, César M; Gonzalez, Armando E; Castillo Neyra, Ricardo; Kyngdon, Craig T; Gauci, Charles G; Lightowlers, Marshall W

    2012-12-14

    Recombinant antigens cloned from the oncosphere life cycle stage of the cestode parasite Taenia solium (T. solium) have been proven to be effective as vaccines for protecting pigs against infections with T. solium. Previous studies have defined three different host protective oncosphere antigens, TSOL18, TSOL16 and TSOL45. In this study, we evaluated the potential for combining the antigens TSOL16 and TSOL18 as a practical vaccine. Firstly, in a laboratory trial, we compared the immunogenicity of the combined antigens (TSOL16/18) versus the immunogenicity of the antigens separately. Secondly, in a field trial, we tested the ability of the TSOL16/18 vaccine to induce detectable antibody responses in animals living under environmental stress and traditionally reared in areas where T. solium cysticercosis is endemic; and finally, we characterised the immune response of the study population. Pigs of 8-16 weeks of age were vaccinated with 200 μg each of TSOL16 and TSOL18, plus 5mg of Quil-A. Specific total IgG, IgG(1) and IgG(2) antibody responses induced by TSOL16 and TSOL18 were determined with ELISA. The immunogenicity of both antigens was retained in the combined TSOL16/18 vaccine. The combined vaccine TSOL16/18 induced detectable specific anti-TSOL18 antibody responses in 100% (113/113) and specific anti-TSOL16 in 99% (112/113) of the vaccinated animals measured at 2 weeks following the booster vaccination. From the two IgG antibody subtypes analysed we found there was stronger response to IgG(2). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. DNA Vaccine Molecular Adjuvants SP-D-BAFF and SP-D-APRIL Enhance Anti-gp120 Immune Response and Increase HIV-1 Neutralizing Antibody Titers

    PubMed Central

    Gupta, Sachin; Clark, Emily S.; Termini, James M.; Boucher, Justin; Kanagavelu, Saravana; LeBranche, Celia C.; Abraham, Sakhi; Montefiori, David C.

    2015-01-01

    ABSTRACT Broadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1. IMPORTANCE Recent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These

  1. A novel DNA vaccine for reduction of PRRSV-induced negative immunomodulatory effects: A proof of concept.

    PubMed

    Suradhat, Sanipa; Wongyanin, Piya; Kesdangsakonwut, Sawang; Teankum, Komkrich; Lumyai, Mongkol; Triyarach, Sittikorn; Thanawongnuwech, Roongroje

    2015-07-31

    Viral-induced interleukin (IL)-10 and regulatory T lymphocytes (Tregs) are believed to play a major role in shaping the immunological and clinical outcomes following Porcine Reproductive and Respiratory Syndrome virus (PRRSV) infection. Recently, it has been shown that PRRSV nucleocapsid (N) protein can induce IL-10 production which is essential for induction of PRRSV-specific Tregs. We hypothesized that immunity to N protein should reduce PRRSV-induced negative immunomodulatory effects which will be essential for establishing proper anti-PRRSV immunity in infected pigs. To investigate the immunomodulatory effects of DNA vaccine encoding a linearized, truncated form of PRRSV-N protein (pORF7t) which was designed to preferentially induce cell-mediated immunity against PRRSV N protein. Immunomodulatory effects of the novel DNA vaccine were investigated in an experimental vaccinated-challenged model. In addition, long-term immunomodulatory effects of the DNA vaccine were investigated in vaccinated pigs kept at the PRRSV-positive environment until the end of the fattening period. Pigs were vaccinated either prior to or following natural PRRSV infection. The results indicated that pORF7t could modulate the anti-PRRSV immune responses and promote the control of viral replication in the vaccinated-challenged pigs. Immunized pigs exhibited increased numbers of PRRSV-specific activated CD4(+)CD25(+) lymphocytes, reduced numbers of PRRSV-specific Tregs, and rapid viral clearance following infection. In a long-term study, regardless of the time of vaccination, DNA vaccine could modulate the host immune responses, resulted in enhanced PRRSV-specific IFN-γ producing cells, and reduced numbers of PRRSV-specific Tregs, without evidence of enhanced antibody responses. No vaccine adverse reaction was observed throughout the study. This study revealed the novel concept that PRRSV-specific immunity can be modulated by induction of cell-mediated immunity against the nucleocapsid

  2. The relative contribution of antibody and CD8+ T cells to vaccine immunity against West Nile encephalitis virus.

    PubMed

    Shrestha, Bimmi; Ng, Terry; Chu, Hsien-Jue; Noll, Michelle; Diamond, Michael S

    2008-04-07

    West Nile virus (WNV) is a mosquito borne, neurotropic flavivirus that causes a severe central nervous system (CNS) infection in humans and animals. Although commercial vaccines are available for horses, none is currently approved for human use. In this study, we evaluated the efficacy and mechanism of immune protection of two candidate WNV vaccines in mice. A formalin-inactivated WNV vaccine induced higher levels of specific and neutralizing antibodies compared to a DNA plasmid vaccine that produces virus-like particles. Accordingly, partial and almost complete protection against a highly stringent lethal intracranial WNV challenge were observed in mice 60 days after single dose immunization with the DNA plasmid and inactivated virus vaccines, respectively. In mice immunized with a single dose of DNA plasmid or inactivated vaccine, antigen-specific CD8(+) T cells were induced and contributed to protective immunity as acquired or genetic deficiencies of CD8(+) T cells lowered the survival rates. In contrast, in boosted animals, WNV-specific antibody titers were higher, survival rates after challenge were greater, and an absence of CD8(+) T cells did not appreciably affect mortality. Overall, our experiments suggest that in mice, both inactivated WNV and DNA plasmid vaccines are protective after two doses, and the specific contribution of antibody and CD8(+) T cells to vaccine immunity against WNV is modulated by the prime-boost strategy.

  3. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events.

    PubMed

    Läubli, Heinz; Balmelli, Catharina; Kaufmann, Lukas; Stanczak, Michal; Syedbasha, Mohammedyaseen; Vogt, Dominik; Hertig, Astrid; Müller, Beat; Gautschi, Oliver; Stenner, Frank; Zippelius, Alfred; Egli, Adrian; Rothschild, Sacha I

    2018-05-22

    Immune checkpoint inhibiting antibodies were introduced into routine clinical practice for cancer patients. Checkpoint blockade has led to durable remissions in some patients, but may also induce immune-related adverse events (irAEs). Lung cancer patients show an increased risk for complications, when infected with influenza viruses. Therefore, vaccination is recommended. However, the efficacy and safety of influenza vaccination during checkpoint blockade and its influence on irAEs is unclear. Similarly, the influence of vaccinations on T cell-mediated immune reactions in patients during PD-1 blockade remains poorly defined. We vaccinated 23 lung cancer patients and 11 age-matched healthy controls using a trivalent inactivated influenza vaccine to investigate vaccine-induced immunity and safety during checkpoint blockade. We did not observe significant differences between patients and healthy controls in vaccine-induced antibody titers against all three viral antigens. Influenza vaccination resulted in protective titers in more than 60% of patients/participants. In cancer patients, the post-vaccine frequency of irAEs was 52.2% with a median time to occurrence of 3.2 months after vaccination. Six of 23 patients (26.1%) showed severe grade 3/4 irAEs. This frequency of irAEs might be higher than the rate previously published in the literature and the rate observed in a non-study population at our institution (all grades 25.5%, grade 3/4 9.8%). Although this is a non-randomized trial with a limited number of patients, the increased rate of immunological toxicity is concerning. This finding should be studied in a larger patient population.

  4. The Hard Way towards an Antibody-Based HIV-1 Env Vaccine: Lessons from Other Viruses

    PubMed Central

    Ringel, Oliver; Vieillard, Vincent; Debré, Patrice; Eichler, Jutta; Büning, Hildegard

    2018-01-01

    Although effective antibody-based vaccines have been developed against multiple viruses, such approaches have so far failed for the human immunodeficiency virus type 1 (HIV-1). Despite the success of anti-retroviral therapy (ART) that has turned HIV-1 infection into a chronic disease and has reduced the number of new infections worldwide, a vaccine against HIV-1 is still urgently needed. We discuss here the major reasons for the failure of “classical” vaccine approaches, which are mostly due to the biological properties of the virus itself. HIV-1 has developed multiple mechanisms of immune escape, which also account for vaccine failure. So far, no vaccine candidate has been able to induce broadly neutralizing antibodies (bnAbs) against primary patient viruses from different clades. However, such antibodies were identified in a subset of patients during chronic infection and were shown to protect from infection in animal models and to reduce viremia in first clinical trials. Their detailed characterization has guided structure-based reverse vaccinology approaches to design better HIV-1 envelope (Env) immunogens. Furthermore, conserved Env epitopes have been identified, which are promising candidates in view of clinical applications. Together with new vector-based technologies, considerable progress has been achieved in recent years towards the development of an effective antibody-based HIV-1 vaccine. PMID:29662026

  5. Facial recognition of heroin vaccine opiates: type 1 cross-reactivities of antibodies induced by hydrolytically stable haptenic surrogates of heroin, 6-acetylmorphine, and morphine.

    PubMed

    Matyas, Gary R; Rice, Kenner C; Cheng, Kejun; Li, Fuying; Antoline, Joshua F G; Iyer, Malliga R; Jacobson, Arthur E; Mayorov, Alexander V; Beck, Zoltan; Torres, Oscar B; Alving, Carl R

    2014-03-14

    Novel synthetic compounds similar to heroin and its major active metabolites, 6-acetylmorphine and morphine, were examined as potential surrogate haptens for the ability to interface with the immune system for a heroin vaccine. Recent studies have suggested that heroin-like haptens must degrade hydrolytically to induce independent immune responses both to heroin and to the metabolites, resulting in antisera containing mixtures of antibodies (type 2 cross-reactivity). To test this concept, two unique hydrolytically stable haptens were created based on presumed structural facial similarities to heroin or to its active metabolites. After conjugation of a heroin-like hapten (DiAmHap) to tetanus toxoid and mixing with liposomes containing monophosphoryl lipid A, high titers of antibodies after two injections in mice had complementary binding sites that exhibited strong type 1 ("true") specific cross-reactivity with heroin and with both of its physiologically active metabolites. Mice immunized with each surrogate hapten exhibited reduced antinociceptive effects caused by injection of heroin. This approach obviates the need to create hydrolytically unstable synthetic heroin-like compounds to induce independent immune responses to heroin and its active metabolites for vaccine development. Facial recognition of hydrolytically stable surrogate haptens by antibodies together with type 1 cross-reactivities with heroin and its metabolites can help to guide synthetic chemical strategies for efficient development of a heroin vaccine. Copyright © 2014. Published by Elsevier Ltd.

  6. Facial recognition of heroin vaccine opiates: Type 1 cross-reactivities of antibodies induced by hydrolytically stable haptenic surrogates of heroin, 6-acetylmorphine, and morphine

    PubMed Central

    Matyas, Gary R.; Rice, Kenner C.; Cheng, Kejun; Li, Fuying; Antoline, Joshua F. G.; Iyer, Malliga R.; Jacobson, Arthur E.; Mayorov, Alexander V.; Beck, Zoltan; Torres, Oscar; Alving, Carl R.

    2014-01-01

    Novel synthetic compounds similar to heroin and its major active metabolites, 6-acetylmorphine and morphine, were examined as potential surrogate haptens for the ability to interface with the immune system for a heroin vaccine. Recent studies have suggested that heroin-like haptens must degrade hydrolytically to induce independent immune responses both to heroin and to the metabolites, resulting in antisera containing mixtures of antibodies (type 2 cross-reactivity). To test this concept, two unique hydrolytically stable haptens were created based on presumed structural facial similarities to heroin or to its active metabolites. After conjugation of a heroin-like hapten (DiAmHap) to tetanus toxoid and mixing with liposomes containing monophosphoryl lipid A, high titers of antibodies after two injections in mice had complementary binding sites that exhibited strong type 1 (“true”) specific cross-reactivity with heroin and with both of its physiologically active metabolites. Mice immunized with each surrogate hapten exhibited reduced antinociceptive effects caused by injection of heroin. This approach obviates the need to create hydrolytically unstable synthetic heroin-like compounds to induce independent immune responses to heroin and its active metabolites for vaccine development. Facial recognition of hydrolytically stable surrogate haptens by antibodies together with type 1 cross-reactivities with heroin and its metabolites can help to guide synthetic chemical strategies for efficient development of a heroin vaccine. PMID:24486371

  7. Performance of high titre attenuated canine parvovirus vaccine in pups with maternally derived antibody.

    PubMed

    Burtonboy, S; Charlier, P; Hertoghs, J; Lobmann, M; Wiseman, A; Woods, S

    1991-04-20

    The performance of live, attenuated, homologous, canine parvovirus vaccines was studied in 140 puppies aged from four to 11 weeks. In the presence of maternally derived antibody the ability of the vaccines to elicit a serological response, as determined by the haemagglutination inhibition test and a standardised ELISA, was found to be dose (infectious titre) related. An experimental vaccine containing 10(7.0) TCID50 of virus induced seroconversion rates of 95, 89, 82 and 44 per cent in dogs with haemagglutination inhibition antibody titres of less than or equal to 8, 16, 32 and greater than 32, respectively. The standardised ELISA appeared to be better than the haemagglutination inhibition test with respect to variability and subjectivity, especially when titres were low.

  8. Antibodies are necessary for rVSV/ZEBOV-GP-mediated protection against lethal Ebola virus challenge in nonhuman primates.

    PubMed

    Marzi, Andrea; Engelmann, Flora; Feldmann, Friederike; Haberthur, Kristen; Shupert, W Lesley; Brining, Douglas; Scott, Dana P; Geisbert, Thomas W; Kawaoka, Yoshihiro; Katze, Michael G; Feldmann, Heinz; Messaoudi, Ilhem

    2013-01-29

    Ebola viruses cause hemorrhagic disease in humans and nonhuman primates with high fatality rates. These viruses pose a significant health concern worldwide due to the lack of approved therapeutics and vaccines as well as their potential misuse as bioterrorism agents. Although not licensed for human use, recombinant vesicular stomatitis virus (rVSV) expressing the filovirus glycoprotein (GP) has been shown to protect macaques from Ebola virus and Marburg virus infections, both prophylactically and postexposure in a homologous challenge setting. However, the immune mechanisms of protection conferred by this vaccine platform remain poorly understood. In this study, we set out to investigate the role of humoral versus cellular immunity in rVSV vaccine-mediated protection against lethal Zaire ebolavirus (ZEBOV) challenge. Groups of cynomolgus macaques were depleted of CD4+ T, CD8+ T, or CD20+ B cells before and during vaccination with rVSV/ZEBOV-GP. Unfortunately, CD20-depleted animals generated a robust IgG response. Therefore, an additional group of vaccinated animals were depleted of CD4+ T cells during challenge. All animals were subsequently challenged with a lethal dose of ZEBOV. Animals depleted of CD8+ T cells survived, suggesting a minimal role for CD8+ T cells in vaccine-mediated protection. Depletion of CD4+ T cells during vaccination caused a complete loss of glycoprotein-specific antibodies and abrogated vaccine protection. In contrast, depletion of CD4+ T cells during challenge resulted in survival of the animals, indicating a minimal role for CD4+ T-cell immunity in rVSV-mediated protection. Our results suggest that antibodies play a critical role in rVSV-mediated protection against ZEBOV.

  9. [Vaccination against viral hepatitis A and B in adults aged over 40 years--antibody persistence and immune memory].

    PubMed

    Chlibek, R; Smetana, J; Bostíková, V; Splino, M

    2011-09-01

    Primary vaccination with combined vaccine against viral hepatitis A (VHA) and viral hepatitis B (VHB) induces higher anti-hepatitis B surface (anti-HBs) antibody responses and similar anti-hepatitis A virus (anti-HAV) antibody responses in adults aged over 40 years in comparison with concomitant monovalent vaccines against VHA and VHB. Th e objectives were to assess, in a clinical study, persistence of anti-HAV and anti-HBs antibodies in adults aged over 40 years four years after primary VHA/VHB vaccination and antibody response following a booster dose of the vaccine. Five hundred and ninety-six subjects aged > 40 years were vaccinated with three doses of the combined VHA/VHB vaccine at Months 0, 1, 6 (HAB group) or with concomitant VHA and VHB vaccines at Months 0, 6 and 0, 1, 6 (ENG+HAV and HBVX+VAQ, respectively). Blood samples were collected one month following primary vaccination (Month 7) and then at one-year intervals for four years after the booster dose with the same vaccine as used for the primary vaccination. The anti-HBs and anti-HAV antibody levels were determined prior to the booster dose and at days 14 and 30 after the booster dose. At Month 7, > 97% of study subjects were seropositive for anti-HAV antibodies in all groups analyzed. Four years after primary vaccination, anti-HAV antibody seropositivity persisted in > 93% of study subjects, increasing to > 99% after the booster dose. At Month 7, the highest proportion of study subjects with anti-HBs antibody levels > or = 10 mIU/ml was found in the HAB group (91.7% versus 79.7% in the ENG+HAV group versus 71.0% in the HBVX+VAQ group). Four years after vaccination, anti-HBs antibody levels of 10 mIU/ml persisted in 57.1% of the HAB study subjects in comparison with 40.1% and 26.6% of the study subjects in the ENG+HAV and HBVX+VAQ groups, respectively. One month after the booster dose, anti-HBs antibody levels increased and antibody levels > or = 10 mIU/ml was achived in 95.2% of study subjects in the

  10. HIV-1 vaccine-specific responses induced by Listeria vector vaccines are maintained in mice subsequently infected with a model helminth parasite, Schistosoma mansoni.

    PubMed

    Shollenberger, Lisa M; Bui, Cac T; Paterson, Yvonne; Nyhoff, Lindsay; Harn, Donald A

    2013-11-19

    In areas co-endemic for helminth parasites and HIV/AIDS, infants are often administered vaccines prior to infection with immune modulatory helminth parasites. Systemic Th2 biasing and immune suppression caused by helminth infection reduces cell-mediated responses to vaccines such as tetanus toxoid and BCG. Therefore, we asked if infection with helminthes post-vaccination, alters already established vaccine induced immune responses. In our model, mice are vaccinated against HIV-1 Gag using a Listeria vaccine vector (Lm-Gag) in a prime-boost manner, then infected with the human helminth parasite Schistosoma mansoni. This allows us to determine if established vaccine responses are maintained or altered after helminth infection. Our second objective asked if helminth infection post-vaccination alters the recipient's ability to respond to a second boost. Here we compared responses between uninfected mice, schistosome infected mice, and infected mice that were given an anthelminthic, which occurred coincident with the boost or four weeks prior, as well as comparing to un-boosted mice. We report that HIV-1 vaccine-specific responses generated by Listeria vector HIV-1 vaccines are maintained following subsequent chronic schistosome infection, providing further evidence that Listeria vector vaccines induce potent vaccine-specific responses that can withstand helminth infection. We also were able to demonstrate that administration of a second Listeria boost, which markedly enhanced the immune response, was minimally impacted by schistosome infection, or anthelminthic therapy. Surprisingly, we also observed enhanced antibody responses to HIV Gag in vaccinated mice subsequently infected with schistosomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Maternal derived antibodies induce vaccine-associated enhanced respiratory disease in weaned pigs challenged with heterologous virus

    USDA-ARS?s Scientific Manuscript database

    Introduction Effective vaccine immunization against influenza A viruses (IAV) in pigs in the United States is a challenge because of the great antigenic diversity of co-circulating viruses. Another obstacle to vaccine efficacy in pigs is the presence of maternally derived antibodies (MDA), which hav...

  12. A Modular Vaccine Development Platform Based on Sortase-Mediated Site-Specific Tagging of Antigens onto Virus-Like Particles

    PubMed Central

    Tang, Shubing; Xuan, Baoqin; Ye, Xiaohua; Huang, Zhong; Qian, Zhikang

    2016-01-01

    Virus-like particles (VLPs) can be used as powerful nanoscale weapons to fight against virus infection. In addition to direct use as vaccines, VLPs have been extensively exploited as platforms on which to display foreign antigens for prophylactic vaccination and immunotherapeutic treatment. Unfortunately, fabrication of new chimeric VLP vaccines in a versatile, site-specific and highly efficient manner is beyond the capability of traditional VLP vaccine design approaches, genetic insertion and chemical conjugation. In this study, we described a greatly improved VLP display strategy by chemoenzymatic site-specific tailoring antigens on VLPs surface with high efficiency. Through the transpeptidation mediated by sortase A, one protein and two epitopes containing N-terminal oligoglycine were conjugated to the LPET motif on the surface of hepatitis B virus core protein (HBc) VLPs with high density. All of the new chimeric VLPs induced strong specific IgG responses. Furthermore, the chimeric VLPs with sortase A tagged enterovirus 71 (EV71) SP70 epitope could elicit effective antibodies against EV71 lethal challenging as well as the genetic insertion chimeric VLPs. The sortase A mediated chemoenzymatic site-specific tailoring of the HBc VLP approach shows great potential in new VLP vaccine design for its simplicity, site specificity, high efficiency, and versatility. PMID:27170066

  13. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults.

    PubMed

    Matias, Wilfredo R; Falkard, Brie; Charles, Richelle C; Mayo-Smith, Leslie M; Teng, Jessica E; Xu, Peng; Kováč, Pavol; Ryan, Edward T; Qadri, Firdausi; Franke, Molly F; Ivers, Louise C; Harris, Jason B

    2016-06-01

    The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.

  14. Antibody response and protective immunity of chickens vaccinated with booster dose of recombinant oil-adjuvanted Leucocytozoon caulleryi subunit vaccine.

    PubMed

    Umali, Dennis V; Ito, Akira; Del Valle, Fletcher P; Shirota, Kazutoshi; Katoh, Hiromitsu

    2014-12-01

    Leucocytozoon caulleryi is an economically important poultry pathogen that causes subclinical to fatal disease in chickens. Because of limited preventive and treatment options against this disease, an oil-adjuvanted recombinant vaccine (O-rR7) targeting the R7 protein of L. caulleryi second-generation schizonts was developed. Different vaccination programs, namely, single vaccination at 45 days (0.1-ml dose), single vaccination at 130 days (0.25 ml), and initial vaccination at 45 days (0.1 ml) followed by a booster dose at 130 days (0.25 ml) were explored to compare the effects of single and booster vaccination on antibody response, duration of protective immunity, and degree of clinical signs after experimental L. caulleryi infection. Of the three treatments groups, initial vaccination at 45 days followed by a booster vaccination at 130 days of age resulted to rapid increase in antibody titers, which persisted for up to 182 days. Antibody titers reached peak values 35 days and 14 days after initial and booster vaccination, respectively. In comparison, single vaccination at 45 days of age resulted in production of antibodies above 1600 ELISA units for 56 days postvaccination, and single vaccination at 130 days of age produced peak antibody titers 35 days postvaccination, which remained above 1600 ELISA units for 126 days. Experimental infection of L. caulleryi at 256 days, when antibody titers had waned, did not result to severe clinical disease in chickens that received booster vaccination, whereas mild to severe disease was observed in chickens that received a single vaccination. Evaluation of immune response at 15 and 21 days postinfection showed that chickens that received booster vaccination had a twofold increase (P < 0.01) in antibody titers as compared to those receiving a single vaccination. Administering booster shots of O-rR7 is therefore recommended, especially in farms located in areas where Leucocytozoon is endemic.

  15. Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    PubMed Central

    Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.

    2011-01-01

    Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction

  16. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, andmore » infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.« less

  17. Principles of antibody-mediated TNF receptor activation

    PubMed Central

    Wajant, H

    2015-01-01

    From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies. PMID:26292758

  18. Replacing antibodies with modified DNA aptamers in vaccine potency assays.

    PubMed

    Trausch, Jeremiah J; Shank-Retzlaff, Mary; Verch, Thorsten

    2017-10-04

    Vaccine in vitro potency assays are vital regulatory tests that are used to confirm the presence and concentration of an antigen of interest in a form that directly or indirectly relates to protective activity in patients. Current assays come in many forms, but they almost exclusively use antibody reagents for selective detection of the target antigen. Antibodies provide specific recognition of vaccine antigens but also exhibit drawbacks such as stability limitations, cost, and lot-to-lot variation, which can make it challenging to maintain the reagent throughout the lifetime of the vaccine. We explored replacing antibodies with aptamers. Aptamers are macromolecules, such as nucleic acids, which can bind to their targets with high specificity and affinity, similar to that of antibodies. Some of the advantages of using aptamers over antibodies is that aptamers can be more stable, smaller, less expensive to produce, synthesized in vitro, and logistically easier to supply throughout the multi-decade lifespan of a commercial vaccine. We created modified DNA aptamers against the common vaccine carrier protein, CRM 197 . Several aptamers were discovered and one was chosen for further characterization. The binding kinetics of the aptamer revealed an off-rate 16-fold slower than anti-CRM 197 antibodies used for comparison. The aptamers were more sensitive than available antibodies in some assay formats and comparable in others. The aptamer epitope was mapped to the receptor-binding domain of CRM 197 , a site adjacent to a known antibody binding site. These data address some key aspects for a path forward in replacing antibodies with aptamers for use as critical reagents in vaccine assays. We further highlight the possibility of using nucleic acid reagents to develop next generation potency assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Boosting heterosubtypic neutralization antibodies in recipients of 2009 pandemic H1N1 influenza vaccine.

    PubMed

    Qiu, Chao; Huang, Yang; Wang, Qian; Tian, Di; Zhang, Wanju; Hu, Yunwen; Yuan, Zhenghong; Zhang, Xiaoyan; Xu, Jianqing

    2012-01-01

    A mass vaccination has been implemented to prevent the spread of 2009 pandemic influenza virus in China. Highly limited information is available on whether this vaccine induces cross-reactive neutralization antibodies against other subtypes of influenza viruses. We employed pseudovirus-based assays to analyze heterosubtypic neutralization responses in serum samples of 23 recipients of 2009 pandemic influenza vaccine. One dose of pandemic vaccine not only stimulated good neutralization antibodies against cognate influenza virus 2009 influenza A (H1N1), but also raised broad cross-reactive neutralization activities against seasonal H3N2 and highly pathogenic avian influenza virus H5N1 and lesser to H2N2. The cross-reactive neutralization activities were completely abolished after the removal of immunoglobin G (IgG). In contrast, H1N1 vaccination alone in influenza-naive mice elicited only vigorous homologous neutralizing activities but not cross-reactive neutralization activities. Our data suggest that the cross-reactive neutralization epitopes do exist in this vaccine and could elicit significant cross-reactive neutralizing IgG antibodies in the presence of preexisting responses. The exposure to H1N1 vaccine is likely to modify the hierarchical order of preexisting immune responses to influenza viruses. These findings provide insights into the evolution of human immunity to influenza viruses after experiencing multiple influenza virus infections and vaccinations.

  20. Antibody response to vaccines for rhinotracheitis, caliciviral disease, panleukopenia, feline leukemia, and rabies in tigers (Panthera tigris) and lions (Panthera leo).

    PubMed

    Risi, Emmanuel; Agoulon, Albert; Allaire, Franck; Le Dréan-Quénec'hdu, Sophie; Martin, Virginie; Mahl, Philippe

    2012-06-01

    This article presents the results of a study of captive tigers (Panthera tigris) and lions (Panthera leo) vaccinated with a recombinant vaccine against feline leukemia virus; an inactivated adjuvanted vaccine against rabies virus; and a multivalent modified live vaccine against feline herpesvirus, calicivirus, and panleukopenia virus. The aim of the study was to assess the immune response and safety of the vaccines and to compare the effects of the administration of single (1 ml) and double (2 ml) doses. The animals were separated into two groups and received either single or double doses of vaccines, followed by blood collection for serologic response for 400 days. No serious adverse event was observed, with the exception of abortion in one lioness, potentially caused by the incorrect use of the feline panleukopenia virus modified live vaccine. There was no significant difference between single and double doses for all vaccines. The recombinant vaccine against feline leukemia virus did not induce any serologic response. The vaccines against rabies and feline herpesvirus induced a significant immune response in the tigers and lions. The vaccine against calicivirus did not induce a significant increase in antibody titers in either tigers or lions. The vaccine against feline panleukopenia virus induced a significant immune response in tigers but not in lions. This report demonstrates the value of antibody titer determination after vaccination of nondomestic felids.

  1. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria.

    PubMed

    Boyle, Michelle J; Reiling, Linda; Feng, Gaoqian; Langer, Christine; Osier, Faith H; Aspeling-Jones, Harvey; Cheng, Yik Sheng; Stubbs, Janine; Tetteh, Kevin K A; Conway, David J; McCarthy, James S; Muller, Ivo; Marsh, Kevin; Anders, Robin F; Beeson, James G

    2015-03-17

    Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes

    PubMed Central

    Liao, Shih-Fen; Liang, Chi-Hui; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S.-Y.; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-01-01

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans. PMID:23908400

  3. Immunization of fucose-containing polysaccharides from Reishi mushroom induces antibodies to tumor-associated Globo H-series epitopes.

    PubMed

    Liao, Shih-Fen; Liang, Chi-Hui; Ho, Ming-Yi; Hsu, Tsui-Ling; Tsai, Tsung-I; Hsieh, Yves S-Y; Tsai, Chih-Ming; Li, Shiou-Ting; Cheng, Yang-Yu; Tsao, Shu-Ming; Lin, Tung-Yi; Lin, Zong-Yan; Yang, Wen-Bin; Ren, Chien-Tai; Lin, Kuo-I; Khoo, Kay-Hooi; Lin, Chun-Hung; Hsu, Hsien-Yeh; Wu, Chung-Yi; Wong, Chi-Huey

    2013-08-20

    Carbohydrate-based vaccines have shown therapeutic efficacy for infectious disease and cancer. The mushroom Ganoderma lucidum (Reishi) containing complex polysaccharides has been used as antitumor supplement, but the mechanism of immune response has rarely been studied. Here, we show that the mice immunized with a l-fucose (Fuc)-enriched Reishi polysaccharide fraction (designated as FMS) induce antibodies against murine Lewis lung carcinoma cells, with increased antibody-mediated cytotoxicity and reduced production of tumor-associated inflammatory mediators (in particular, monocyte chemoattractant protein-1). The mice showed a significant increase in the peritoneal B1 B-cell population, suggesting FMS-mediated anti-glycan IgM production. Furthermore, the glycan microarray analysis of FMS-induced antisera displayed a high specificity toward tumor-associated glycans, with the antigenic structure located in the nonreducing termini (i.e., Fucα1-2Galβ1-3GalNAc-R, where Gal, GalNAc, and R represent, respectively, D-galactose, D-N-acetyl galactosamine, and reducing end), typically found in Globo H and related tumor antigens. The composition of FMS contains mainly the backbone of 1,4-mannan and 1,6-α-galactan and through the Fucα1-2Gal, Fucα1-3/4Man, Fucα1-4Xyl, and Fucα1-2Fuc linkages (where Man and Xyl represent d-mannose and d-xylose, respectively), underlying the molecular basis of the FMS-induced IgM antibodies against tumor-specific glycans.

  4. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design

    PubMed Central

    Kong, Leopold; Sattentau, Quentin J

    2012-01-01

    Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445

  5. Fully human monoclonal antibodies from antibody secreting cells after vaccination with Pneumovax®23 are serotype specific and facilitate opsonophagocytosis.

    PubMed

    Smith, Kenneth; Muther, Jennifer J; Duke, Angie L; McKee, Emily; Zheng, Nai-Ying; Wilson, Patrick C; James, Judith A

    2013-05-01

    B lymphocyte memory generates antibody-secreting cells (ASCs) that represent a source of protective antibodies that may be exploited for therapeutics. Here we vaccinated four donors with Pneumovax®23 and produced human monoclonal antibodies (hmAbs) from ASCs. We have cloned 137 hmAbs and the specificities of these antibodies encompass 19 of the 23 serotypes in the vaccine, as well as cell wall polysaccharide (CWPS). Although the majority of the antibodies are serotype specific, 12% cross-react with two serotypes. The Pneumovax®23 ASC antibody sequences are highly mutated and clonal, indicating an anamnestic response, even though this was a primary vaccination. Hmabs from 64% of the clonal families facilitate opsonophagocytosis. Although 9% of the total antibodies bind to CWPS impurity in the vaccine, none of these clonal families showed opsonophagocytic activity. Overall, these studies have allowed us to address unanswered questions in the field of human immune responses to polysaccharide vaccines, including the cross-reactivity of individual antibodies between serotypes and the percentage of antibodies that are protective after vaccination with Pneumovax®23. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Polymorphisms in the Vitamin A Receptor and Innate Immunity Genes Influence the Antibody Response to Rubella Vaccination

    PubMed Central

    Ovsyannikova, Inna G.; Haralambieva, Iana H.; Dhiman, Neelam; O’Byrne, Megan M.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2009-01-01

    Background Genetic polymorphisms play an important role in rubella vaccine-induced immunity. Methods We genotyped 714 healthy children after two age-appropriate doses of rubella-containing vaccine for 142 potential SNPs. Results Specific polymorphisms in the vitamin A receptor, RIG-I, TRIM5 and TRIM22 genes were significantly associated with rubella vaccine humoral immunity. The minor allele of the rs4416353 in the vitamin A receptor gene was associated with an allele dose-related decrease (P=.019) in rubella antibody response. The minor allele of rs6793694, in the vitamin A receptor gene, was associated with an allele dose-related antibody decrease (P=.039). The minor variant of nonsynonymous SNP rs10813831 (Arg7Cys) in the RIG-I gene was associated with an allele dose-related decrease in rubella antibody level from 37.4 IU/mL to 28.0 IU/mL (P=.035), while increased representation of the minor allele of the 5’UTR SNP (rs3824949, P=.015), in the antiretroviral TRIM5 gene, was associated with an allele dose-related increase in rubella antibody. It is of particular interest that the nonsynonymous SNP rs3740996 (His43Tyr) in the TRIM5 gene was associated with variations in rubella antibody response (P=.016) after having been previously found to have a significant functional role. Conclusions These findings further expand our immunogenetic understanding of mechanisms of rubella vaccine-induced immunity. PMID:20001730

  7. Neutralising antibody response in domestic cats immunised with a commercial feline immunodeficiency virus (FIV) vaccine.

    PubMed

    Bęczkowski, Paweł M; Harris, Matthew; Techakriengkrai, Navapon; Beatty, Julia A; Willett, Brian J; Hosie, Margaret J

    2015-02-18

    Across human and veterinary medicine, vaccines against only two retroviral infections have been brought to market successfully, the vaccines against feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV). FeLV vaccines have been a global success story, reducing virus prevalence in countries where uptake is high. In contrast, the more recent FIV vaccine was introduced in 2002 and the degree of protection afforded in the field remains to be established. However, given the similarities between FIV and HIV, field studies of FIV vaccine efficacy are likely to advise and inform the development of future approaches to HIV vaccination. Here we assessed the neutralising antibody response induced by FIV vaccination against a panel of FIV isolates, by testing blood samples collected from client-owned vaccinated Australian cats. We examined the molecular and phenotypic properties of 24 envs isolated from one vaccinated cat that we speculated might have become infected following natural exposure to FIV. Cats vaccinated against FIV did not display broadly neutralising antibodies, suggesting that protection may not extend to some virulent recombinant strains of FIV circulating in Australia. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. kgp, rgpA, and rgpB DNA vaccines induce antibody responses in experimental peri-implantitis.

    PubMed

    Guo, Meihua; Wang, Zhifeng; Fan, Xin; Bian, Yuanyuan; Wang, Tiantian; Zhu, Lina; Lan, Jing

    2014-11-01

    Peri-implantitis is the key factor for implant failure. This study aims to evaluate kgp, rgpA, and rgpB DNA vaccines to induce an immune response and prevent peri-implantitis. The kgp, rgpA, and rgpB genes were amplified by polymerase chain reaction (PCR) from Porphyromonas gingivalis (Pg) ATCC 33277 and cloned into the pVAX1 vector. Titanium implants were placed into the mandibular bone of dogs. Three months later, the animals were divided into four groups, immunized with pVAX1-kgp, pVAX1-rgpA, pVAX1-rgpB, or pVAX1. Cotton ligatures infiltrated with Pg were tied around the neck of the implants. Immunoglobulin (Ig)G and IgA antibodies were detected by enzyme-linked immunosorbent assay before and after immunization. The kgp, rgpA, and rgpB genes were successfully cloned into the pVAX1 plasmid. Animals immunized with pVAX1-kgp and pVAX1-rgpA showed higher titers of IgG and IgA antibodies compared to those before immunization (P <0.05) and compared to those that were immunized with pVAX1 and pVAX1-rgpB, whereas there were no significant differences in the animals treated with pVAX1 and pVAX1-rgpB. Furthermore, among these, the kgp DNA vaccine was more effective. The bone losses of the groups with pVAX1-kgp and pVAX1-rgpA were significantly attenuated. pVAX1-kgp and pVAX1-rgpA DNA vaccines enhanced immunity responses and significantly retarded bone loss in experimental peri-implantitis animal models, whereas pVAX1-rgpB was ineffective.

  9. A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep.

    PubMed

    Faburay, Bonto; Lebedev, Maxim; McVey, D Scott; Wilson, William; Morozov, Igor; Young, Alan; Richt, Juergen A

    2014-10-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.

  10. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    PubMed Central

    Lebedev, Maxim; McVey, D. Scott; Wilson, William; Morozov, Igor; Young, Alan

    2014-01-01

    Abstract Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxyl-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species. PMID:25325319

  11. Functional and structural characteristics of secretory IgA antibodies elicited by mucosal vaccines against influenza virus.

    PubMed

    Suzuki, Tadaki; Ainai, Akira; Hasegawa, Hideki

    2017-09-18

    Mucosal tissues are major targets for pathogens. The secretions covering mucosal surfaces contain several types of molecules that protect the host from infection. Among these, mucosal immunoglobulins, including secretory IgA (S-IgA) antibodies, are the major contributor to pathogen-specific immune responses. IgA is the primary antibody class found in many external secretions and has unique structural and functional features not observed in other antibody classes. Recently, extensive efforts have been made to develop novel vaccines that induce immunity via the mucosal route. S-IgA is a key molecule that underpins the mechanism of action of these mucosal vaccines. Thus, precise characterization of S-IgA induced by mucosal vaccines is important, if the latter are to be used successfully in a clinical setting. Intensive studies identified the fundamental characteristics of S-IgA, which was first discovered almost half a century ago. However, S-IgA itself has not gained much attention of late, despite its importance to mucosal immunity; therefore, some important questions remain. This review summarizes the current understanding of the molecular characteristics of S-IgA and its role in intranasal mucosal vaccines against influenza virus infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis.

    PubMed

    Haley, Shannon L; Tzvetkov, Evgeni P; Meuwissen, Samantha; Plummer, Joseph R; McGettigan, James P

    2017-04-15

    Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP. IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for

  13. Influenza vaccination can induce new onset anticardiolipins but not β2-glycoprotein-I antibodies among patients with systemic lupus erythematosus

    PubMed Central

    Vista, Evan S.; Crowe, Sherry R.; Thompson, Linda F.; Air, Gillian M.; Robertson, Julie M.; Guthridge, Joel M.; James, Judith A.

    2012-01-01

    Summary Background Antiphospholipid syndrome is characterized by autoantibodies against cardiolipins (aCL), lupus anticoagulant, and independent β2-glycoprotein (β2GPI). Controversy exists as to whether vaccination triggers the development of anti-phospholipid antibodies (aPL) in systemic lupus erythematosus (SLE) patients. Methods SLE patients (101) and matched controls (101) were enrolled from 2005 to 2009 and received seasonal influenza vaccinations. Sera were tested by ELISA for aCL at baseline, 2, 6, and 12 weeks after vaccination. Vaccine responses were ranked according to an overall anti-influenza antibody response index. Individuals with positive aCL were further tested for β2GPI antibodies. Results SLE patients and healthy controls developed new onset aCL post-vaccination (12/101 cases and 7/101 controls, OR 1.81, p=0.34). New onset moderate aCL are slightly enriched in African American SLE patients (5/36 cases; p=0.094). The optical density (OD) measurements for aCL reactivity in patients were significantly higher than baseline at 2 weeks (p<0.05), 6 weeks (p<0.05), and 12 weeks (p<0.05) post vaccination. No new β2GPI antibodies were detected among patients with new aCL reactivity. Vaccine response was not different between patients with and without new onset aCL reactivity (p=0.43). Conclusions This study shows transient increases in aCL, but not anti-β2GPI responses, after influenza vaccination. PMID:22235049

  14. Safety and persistence of the humoral and cellular immune responses induced by 2 doses of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine administered to infants, children and adolescents: Two open, uncontrolled studies.

    PubMed

    Garcia-Sicilia, José; Arístegui, Javier; Omeñaca, Félix; Carmona, Alfonso; Tejedor, Juan C; Merino, José M; García-Corbeira, Pilar; Walravens, Karl; Bambure, Vinod; Moris, Philippe; Caplanusi, Adrian; Gillard, Paul; Dieussaert, Ilse

    2015-01-01

    In children, 2 AS03-adjuvanted A(H1N1)pdm09 vaccine doses given 21 days apart were previously shown to induce a high humoral immune response and to have an acceptable safety profile up to 42 days following the first vaccination. Here, we analyzed the persistence data from 2 open-label studies, which assessed the safety, and humoral and cell-mediated immune responses induced by 2 doses of this vaccine. The first study was a phase II, randomized trial conducted in 104 children aged 6-35 months vaccinated with the A(H1N1)pdm09 vaccine containing 1.9 µg haemagglutinin antigen (HA) and AS03B (5.93 mg tocopherol) and the second study, a phase III, non-randomized trial conducted in 210 children and adolescents aged 3-17 years vaccinated with the A(H1N1)pdm09 vaccine containing 3.75 µg HA and AS03A (11.86 mg tocopherol). Approximately one year after the first dose, all children with available data were seropositive for haemagglutinin inhibition and neutralising antibody titres, but a decline in geometric mean antibody titres was noted. The vaccine induced a cell-mediated immune response in terms of antigen-specific CD4(+) T-cells, which persisted up to one year post-vaccination. The vaccine did not raise any safety concern, though these trials were not designed to detect rare events. In conclusion, 2 doses of the AS03-adjuvanted A(H1N1)pdm09 vaccine at 2 different dosages had a clinically acceptable safety profile, and induced high and persistent humoral and cell-mediated immune responses in children aged 6-35 months and 3-17 years. These studies have been registered at www.clinicaltrials.gov NCT00971321 and NCT00964158.

  15. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice.

    PubMed

    Caillet, Catherine; Piras, Fabienne; Bernard, Marie-Clotilde; de Montfort, Aymeric; Boudet, Florence; Vogel, Frederick R; Hoffenbach, Agnès; Moste, Catherine; Kusters, Inca

    2010-04-19

    Pandemic influenza vaccines have been manufactured using the A/California/07/2009 (H1N1) strain as recommended by the World Health Organization. We evaluated in mice the immunogenicity of pandemic (H1N1) 2009 vaccine and the impact of prior vaccination against seasonal trivalent influenza vaccines (TIV) on antibody responses against pandemic (H1N1) 2009. In naïve mice, a single dose of unadjuvanted H1N1 vaccine (3 microg of HA) was shown to elicit hemagglutination inhibition (HI) antibody titers >40, a titer associated with protection in humans against seasonal influenza. A second vaccine dose of pandemic (H1N1) 2009 vaccine strongly increased these titers, which were consistently higher in mice previously primed with TIV than in naïve mice. At a low immunization dose (0.3 microg of HA), the AF03-adjuvanted vaccine elicited higher HI antibody titers than the corresponding unadjuvanted vaccines in both naïve and TIV-primed animals, suggesting a potential for antigen dose-sparing. These results are in accordance with the use in humans of a split-virion inactivated pandemic (H1N1) 2009 vaccine formulated with or without AF03 adjuvant to protect children and young adults against influenza A (H1N1) 2009 infection. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Assessing PCV2 antibodies in field pigs vaccinated with different porcine circovirus 2 vaccines using two commercial ELISA systems.

    PubMed

    Shin, Min-Kyoung; Yoon, Seung Hyun; Kim, Myung Hwui; Lyoo, Young Soo; Suh, Seung Won; Yoo, Han Sang

    2015-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent for post-weaning, multisystemic, wasting syndrome. Consequently, serologic detection of and vaccination against PCV2 are important for the swine industry. Among several serological tests, the enzyme-linked immunosorbent assay (ELISA) is commonly used to measure anti-PCV2 antibody levels. In the present study, we used two commercial ELISA systems to comparatively evaluate anti-PCV2 antibodies in field pigs treated with three different PCV2 vaccines. Among a total of 517 serum samples, the results of the two ELISAs were fully concordant for 365 positive and 42 negative samples, indicating 78.7% agreement. In addition, the Pearson coefficient (0.636) indicated a moderate correlation between data from the two ELISAs. Results from the farms with pigs vaccinated with the three different PCV2 vaccines demonstrated that most of the vaccinated animals underwent seroconversion. However, the increase and duration of antibody titers varied depending on the vaccine, the presence of maternal antibodies, and the vaccination program. PCV2 serologic status and anti-PCV2 antibody levels of herds from this study could be utilized to determine the best timing for vaccination and assessing vaccination compliance.

  17. Comparison of selected canine vaccines for their ability to induce protective immunity against canine parvovirus infection.

    PubMed

    Larson, L J; Schultz, R D

    1997-04-01

    To compare the ability of 6 commercially available multicomponent canine vaccines to stimulate antibody production in pups with variable amounts of maternally derived canine parvovirus (CPV) antibody and to induce protective immunity against challenge exposure. Sixty-three 5- to 6-week-old Beagle pups with passively acquired CPV antibody titer between 1: 20 and 1:320. 9 pups were assigned to each of 6 vaccine groups and 1 control group. Eight pups in each group were inoculated with vaccine or saline solution twice, with 3 weeks between administrations. The ninth pup served as an uninoculated contact control. Serum samples were obtained weekly and tested for CPV antibody by hemagglutination-inhibition assay. All pups were challenge exposed with virulent CPV-2a and CPV-2b at 14 to 15 weeks of age. 3 of the vaccines failed to provide protective immunity against challenge exposure because all pups in these groups became infected and most died. A fourth vaccine protected against death, but not infection and disease. Two of the 6 vaccines induced an immune response that was protective against infection and disease. Substantial differences existed among commercial vaccines available in 1994 in their ability to immunize pups with maternally derived CPV antibody. These differences caused many vaccinated pups to be susceptible to CPV disease for variable periods because some vaccines failed to immunize. Importantly, all 4 of the vaccines that performed poorly have recently been replaced by more effective products so that the 6 vaccines now perform similarly.

  18. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5

  19. Meningococcal serogroup C immunogenicity, antibody persistence and memory B-cells induced by the monovalent meningococcal serogroup C versus quadrivalent meningococcal serogroup ACWY conjugate booster vaccine: A randomized controlled trial.

    PubMed

    van Ravenhorst, Mariëtte B; van der Klis, Fiona R M; van Rooijen, Debbie M; Knol, Mirjam J; Stoof, Susanne P; Sanders, Elisabeth A M; Berbers, Guy A M

    2017-08-24

    Adolescents are considered the key transmitters of meningococci in the population. Meningococcal serogroup C (MenC) antibody levels wane rapidly after MenC conjugate vaccination in young children, leaving adolescents with low antibody levels. In this study, we compared MenC immune responses after booster vaccination in adolescence with either tetanus toxoid conjugated MenC (MenC-TT) or MenACWY (MenACWY-TT) vaccine, and aimed to establish an optimal age for this booster. Healthy 10-, 12-, and 15-year-olds, who received a single dose of MenC-TT vaccine in early childhood, were randomized to receive MenC-TT or MenACWY-TT vaccine. MenC serum bactericidal antibody (rSBA) titers, MenC polysaccharide (PS) specific IgG, IgG1 and IgG2 and MenC-specific IgG and IgA memory B-cells were determined before, one month and one year after the booster. Non-inferiority was tested by comparing geometric mean titers (GMTs) between vaccinees at one year. Of 501 participants, 464 (92.6%) were included in the 'according to protocol' cohort analysis. At one month, all participants developed high MenC rSBA titers (>24,000 in all groups) and MenC-PS-specific IgG levels. Non-inferiority was not demonstrated one year after the booster with higher MenC GMTs after the monovalent vaccine, but 462/464 (99.6%) participants maintained protective MenC rSBA titers. IgG levels mainly consisted of IgG1, but similar levels of increase were observed for IgG1 and IgG2. Both vaccines induced a clear increase in the number of circulating MenC-PS specific IgG and IgA memory B-cells. Between one month and one year, the highest antibody decay rate was observed in the 10-year-olds. Both MenC-TT and MenACWY-TT vaccines induced robust protective MenC immune responses after the booster vaccination, although non-inferiority could not be demonstrated for the MenACWY-TT vaccine after one year. Our results underline the importance of optimal timing of a meningococcal booster vaccination to protect against MenC disease

  20. Antibody Production and Th1-biased Response Induced by an Epitope Vaccine Composed of Cholera Toxin B Unit and Helicobacter pylori Lpp20 Epitopes.

    PubMed

    Li, Yan; Chen, Zhongbiao; Ye, Jianbin; Ning, Lijun; Luo, Jun; Zhang, Lili; Jiang, Yin; Xi, Yue; Ning, Yunshan

    2016-06-01

    The epitope vaccine is an attractive potential for prophylactic and therapeutic vaccination against Helicobacter pylori (H. pylori) infection. Lpp20 is one of major protective antigens which trigger immune response after H. pylori invades host and has been considered as an excellent vaccine candidate for the control of H. pylori infection. In our previous study, one B-cell epitope and two CD4(+) T-cell epitopes of Lpp20 were identified. In this study, an epitope vaccine composed of mucosal adjuvant cholera toxin B subunit (CTB) and these three identified Lpp20 epitopes were constructed to investigate the efficacy of this epitope vaccine in mice. The epitope vaccine including CTB, one B-cell, and two CD4(+) T-cell epitopes of Lpp20 was constructed and named CTB-Lpp20, which was then expressed in Escherichia coli and used for intraperitoneal immunization in BALB/c mice. The immunogenicity, specificity, and ability to induce antibodies against Lpp20 and cytokine secretion were evaluated. After that, CTB-Lpp20 was intragastrically immunized to investigate the prophylactic and therapeutic efficacy in infected mice. The results indicated that the epitope vaccine CTB-Lpp20 possessed good immunogenicity and immunoreactivity and could elicit specific high level of antibodies against Lpp20 and the cytokine of IFN-γ and IL-17. Additionally, CTB-Lpp20 significantly decreased H. pylori colonization in H. pylori challenging mice, and the protection was correlated with IgG, IgA, and sIgA antibody and Th1-type cytokines. This study will be better for understanding the protective immunity of epitope vaccine, and CTB-Lpp20 may be an alternative strategy for combating H. pylori invasion. © 2015 John Wiley & Sons Ltd.

  1. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect

    PubMed Central

    DiLillo, David J.; Ravetch, Jeffrey V.

    2015-01-01

    Summary Passively-administered anti-tumor mAbs rapidly kill tumor targets via FcγR-mediated cytotoxicity (ADCC), a short-term process. However, anti-tumor mAb treatment can also induce a vaccinal effect, in which mAb-mediated tumor death induces a long-term anti-tumor cellular immune response. To determine how such responses are generated, we utilized a murine model of an anti-tumor vaccinal effect against a model neoantigen. We demonstrate that FcγR expression by CD11c+ antigen-presenting cells is required to generate anti-tumor T cell responses upon ADCC-mediated tumor clearance. Using FcγR-humanized mice, we demonstrate that anti-tumor huIgG1 must engage hFcγRIIIA on macrophages to mediate ADCC, but also engage hFcγRIIA, the sole hFcγR expressed by human DCs, to generate a potent vaccinal effect. Thus, while next-generation anti-tumor antibodies with enhanced binding to only hFcγRIIIA are now in clinical use, ideal anti-tumor antibodies must be optimized for both cytotoxic effects as well as hFcγRIIA engagement on DCs to stimulate long-term anti-tumor cellular immunity. PMID:25976835

  2. Prevalence and titers of yellow fever virus neutralizing antibodies in previously vaccinated adults.

    PubMed

    Miyaji, Karina Takesaki; Avelino-Silva, Vivian Iida; Simões, Marisol; Freire, Marcos da Silva; Medeiros, Carlos Roberto de; Braga, Patrícia Emilia; Neves, Maria Angélica Acalá; Lopes, Marta Heloisa; Kallas, Esper Georges; Sartori, Ana Marli Christovam

    2017-04-03

    The World Health Organization (WHO) recommends one single dose of the Yellow Fever (YF) vaccine based on studies of antibody persistency in healthy adults. We assessed the prevalence and titers of YF virus neutralizing antibodies in previously vaccinated persons aged  60 years, in comparison to younger adults. We also evaluated the correlation between antibody titers and the time since vaccination among participants who received one vaccine dose, and the seropositivity among participants vaccinated prior to or within the past 10 years. previously vaccinated healthy persons aged  18 years were included. YF virus neutralizing antibody titers were determined by means of the 50% Plaque Reduction Neutralization Test. 46 persons aged  60 years and 48 persons aged 18 to 59 years were enrolled. There was no significant difference in the prevalence of YF virus neutralizing antibodies between the two groups (p = 0.263). However, titers were significantly lower in the elderly (p = 0.022). There was no correlation between YF virus neutralizing antibody titers and the time since vaccination. There was no significant difference in seropositivity among participants vaccinated prior to or within the past 10 years. the clinical relevance of the observed difference in YF virus neutralizing antibody titers between the two groups is not clear.

  3. Adsorption of Toll-Like Receptor 4 Agonist to Alum-Based Tetanus Toxoid Vaccine Dampens Pro-T Helper 2 Activities and Enhances Antibody Responses.

    PubMed

    Bortolatto, Juliana; Mirotti, Luciana; Rodriguez, Dunia; Gomes, Eliane; Russo, Momtchilo

    2015-01-01

    Aluminum salts gels (alum) are TLR-independent adjuvants and have been used to boost antibody responses in alum-based vaccines such as diphtheria, pertussis, and tetanus toxoid (DPT) triple vaccine. However, the pro-Th2 activity of alum-based vaccine formulations has not been fully appreciated. Here we found that alum-based tetanus toxoid (TT) vaccine was biased toward a Th-2 profile as shown by TT-induced airway eosinophilic inflammation, type 2 cytokine production, and high levels of IgE anaphylactic antibodies. The adsorption into alum of prototypic TLR4 agonists such as lipopolysaccharides (LPS) derived from Escherichia coli consistently dampened TT-induced Th2 activities without inducing IFNγ or Th1-like responses in the lung. Conversely, adsorption of monophosphoryl lipid A (MPLA) extracted from Salmonella minnesota, which is a TIR-domain-containing adapter-inducing interferon-β- (TRIF-) biased TLR4 agonist, was less effective in decreasing Th-2 responses. Importantly, in a situation with antigenic competition (OVA plus TT), TT-specific IgG1 or IgG2a was decreased compared with TT sensitization. Notably, LPS increased the production of IgG1 and IgG2a TT-specific antibodies. In conclusion, the addition of LPS induces a more robust IgG1 and IgG2a TT-specific antibody production and concomitantly decreases Th2-cellular and humoral responses, indicating a potential use of alum/TLR-based vaccines.

  4. Structural basis for antibody-mediated neutralization of Lassa virus.

    PubMed

    Hastie, Kathryn M; Zandonatti, Michelle A; Kleinfelter, Lara M; Heinrich, Megan L; Rowland, Megan M; Chandran, Kartik; Branco, Luis M; Robinson, James E; Garry, Robert F; Saphire, Erica Ollmann

    2017-06-02

    The arenavirus Lassa causes severe hemorrhagic fever and a significant disease burden in West Africa every year. The glycoprotein, GPC, is the sole antigen expressed on the viral surface and the critical target for antibody-mediated neutralization. Here we present the crystal structure of the trimeric, prefusion ectodomain of Lassa GP bound to a neutralizing antibody from a human survivor at 3.2-angstrom resolution. The antibody extensively anchors two monomers together at the base of the trimer, and biochemical analysis suggests that it neutralizes by inhibiting conformational changes required for entry. This work illuminates pH-driven conformational changes in both receptor-binding and fusion subunits of Lassa virus, illustrates the unique assembly of the arenavirus glycoprotein spike, and provides a much-needed template for vaccine design against these threats to global health. Copyright © 2017, American Association for the Advancement of Science.

  5. Humoral response to influenza vaccination in relation to pre-vaccination antibody titres, vaccination history, cytomegalovirus serostatus and CD4/CD8 ratio.

    PubMed

    Strindhall, Jan; Ernerudh, Jan; Mörner, Andreas; Waalen, Kristian; Löfgren, Sture; Matussek, Andreas; Bengner, Malin

    2016-01-01

    Annual vaccination against influenza virus is generally recommended to elderly and chronically ill, but the relative importance of factors influencing the outcome is not fully understood. In this study of 88 individuals all aged 69 years, the increase in haemagglutinin-inhibiting (HI) antibodies to trivalent inactivated influenza vaccine was correlated with HI titres before vaccination, prior vaccinations against influenza, cytomegalovirus serostatus and, as an estimate of immune risk profile, the ratio between CD4 + and CD8 + T cells. Vaccine responses were impaired by high pre-existing HI antibody titres. For influenza B repeated vaccinations and an inverse CD4/CD8 ratio had a negative impact on the vaccine response. Cytomegalovirus seropositivity had no apparent effect on HI titres before or after vaccination. It is concluded that both pre-existing HI antibodies and previous vaccinations to influenza may influence the humoral response to influenza vaccination and that a CD4/CD8 ratio < 1 may indicate an impaired ability to respond to repeated antigenic stimulation.

  6. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field.

    PubMed

    Wines, Bruce D; Billings, Hugh; Mclean, Milla R; Kent, Stephen J; Hogarth, P Mark

    2017-01-01

    There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fcdependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. This brief review highlights the importance of Fc properties for immunity to HIV, particularly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ectodomains to detect functionally relevant viral antigen-specific antibodies. The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the essential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reliably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. We propose the assay has broader implications for the evaluation of the quality of antibody responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field

    PubMed Central

    Wines, Bruce D.; Billings, Hugh; Mclean, Milla R.; Kent, Stephen J.; Hogarth, P. Mark

    2017-01-01

    Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. PMID:28322167

  8. Immune response to inactivated influenza virus vaccine: antibody reactivity with epidemic influenza B viruses of two highly distinct evolutionary lineages.

    PubMed

    Pyhälä, R; Kleemola, M; Kumpulainen, V; Vartiainen, E; Lappi, S; Pönkä, A; Cantell, K

    1992-01-01

    Vaccination of adults (healthy female employees potentially capable of transmitting influenza to high-risk persons; n = 104) in autumn 1990 with a trivalent influenza virus vaccine containing B/Yamagata/16/88 induced a low antibody response to B/Finland/150/90, a recent variant of B/Victoria/2/87-like viruses, as compared with the antibody response to B/Finland/172/91, a current variant in the lineage of B/Yamagata/16/88-like viruses. Up to the end of the epidemic season, the antibody status declined but was still significantly better than before the vaccination. The results suggest that the vaccine strain was appropriate for the outbreak of 1990 to 1991 in Finland, but may provide unsatisfactory protection against B/Victoria/2/87-like viruses. Evidence is given that use of Madin-Darby canine kidney (MDCK)-grown virus as an antigen in the haemagglutination inhibition test (HI) may provide more reliable information about the protective antibodies than use of untreated or ether-treated egg-grown viruses. Significantly higher postvaccination and postepidemic antibody titres were recorded among subjects who exhibited the antibody before vaccination than among seronegative subjects. A significantly higher response rate among initially seronegative people than among seropositive people was recorded for antibody to B/Finland/150/90, but no clear evidence was obtained that the pre-existing antibody could have had a negative effect on the antibody production.

  9. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines.

    PubMed

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    2000-07-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log(10) inverse mean titer +/- standard deviation of 2.30 +/- 0.12 and 2.20 +/- 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 +/- 0.57 versus 0.40 +/- 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 +/- 0. 54 and 1.28 +/- 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 +/- 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 +/- 0.32; n = 8, P = 7 x 10(-6)). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1

  10. Vaccination against Canine Distemper Virus Infection in Infant Ferrets with and without Maternal Antibody Protection, Using Recombinant Attenuated Poxvirus Vaccines

    PubMed Central

    Welter, Janet; Taylor, Jill; Tartaglia, James; Paoletti, Enzo; Stephensen, Charles B.

    2000-01-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log10 inverse mean titer ± standard deviation of 2.30 ± 0.12 and 2.20 ± 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 ± 0.57 versus 0.40 ± 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 ± 0.54 and 1.28 ± 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 ± 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 ± 0.32; n = 8, P = 7 × 10−6). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1.63 ± 0

  11. Five-year antibody persistence in children after one dose of inactivated or live attenuated hepatitis A vaccine.

    PubMed

    Zhang, Zhilun; Zhu, Xiangjun; Hu, Yuansheng; Liang, Miao; Sun, Jin; Song, Yufei; Yang, Qi; Ji, Haiquan; Zeng, Gang; Song, Lifei; Chen, Jiangting

    2017-06-03

    In China, both inactivated hepatitis A (HA) vaccine and live attenuated HA vaccine are available. We conducted a trial to evaluate 5-year immune persistence induced by one dose of inactivated or live attenuated HA vaccines in children. Subjects with no HA vaccination history had randomly received one dose of inactivated or live attenuated HA vaccine at 18-60 months of age. Anti-HAV antibody concentrations were measured before vaccination and at the first, second, and fifth year after vaccination. Suspected cases of hepatitis A were monitored during the study period. A total of 332 subjects were enrolled and 182 provided evaluable serum samples at all planned time points. seropositive rate at 5 y was 85.9% in the inactivated HA vaccine group and 90.7% in the live attenuated HA vaccine group. GMCs were 76.3% mIU/ml (95% CI: 61.7 - 94.4) and 66.8mIU/ml (95% CI: 57.8 - 77.3), respectively. No significant difference in antibody persistence between 2 groups was found. No clinical hepatitis A case was reported. A single dose of an inactivated or live attenuated HA vaccine at 18-60 months of age resulted in high HAV seropositive rate and anti-HAV antibody concentrations that lasted for at least 5 y.

  12. Vaccine approaches conferring cross-protection against influenza viruses

    PubMed Central

    Vemula, Sai V.; Sayedahmed, Ekramy E; Sambhara, Suryaprakash; Mittal, Suresh K.

    2018-01-01

    Introduction Annual vaccination is one of the most efficient and cost-effective strategies to prevent and control influenza epidemics. Most of currently available influenza vaccines are strong inducer of antibody responses against viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), but are poor inducers of cell-mediated immune responses against conserved internal proteins. Moreover, due to the high variability of viral surface proteins because of antigenic drift or antigenic shift, many of the currently licensed vaccines confer little or no protection against drift or shift variants. Areas covered Next generation influenza vaccines that can induce humoral immune responses to receptor-binding epitopes as well as broadly neutralizing conserved epitopes, and cell-mediated immune responses against highly conserved internal proteins would be effective against variant viruses as well as a novel pandemic influenza until circulating strain-specific vaccines become available. Here we discuss vaccine approaches that have potential to provide broad spectrum protection against influenza viruses. Expert opinion Based on current progress in defining cross-protective influenza immunity, it seems that the development of a universal influenza vaccine is feasible. It would revolutionize the strategy for influenza pandemic preparedness, and significantly impact the shelf-life and protection efficacy of seasonal influenza vaccines. PMID:28925296

  13. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2.

    PubMed

    Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K

    2007-05-16

    A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.

  14. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Immunization with tumor neoantigens displayed on T7 phage nanoparticles elicits plasma antibody and vaccine-draining lymph node B cell responses.

    PubMed

    Shukla, Girja S; Sun, Yu-Jing; Pero, Stephanie C; Sholler, Giselle S; Krag, David N

    2018-06-12

    The aim of this preclinical study was to evaluate T7 bacteriophage as a nanoparticle platform for expression of neoantigens that could allow rapid generation of vaccines for potential studies in human cancer patients. We have generated recombinant T7 phage vaccines carrying neoepitopes derived from mutated proteins of B16-F10 melanoma tumor cells. With the single mutated amino acid (AA) centered, peptides were expressed on the outer coat of T7 phage. All peptides with 11 and 34 AAs were successfully expressed. Trimers of the 11-AA peptides were successfully expressed in only 3 of 8 peptides. The 11-AA peptide was better in stimulating antibodies selective for the mutated region than the longer 34-AA peptide. We observed a dose response for vaccines which provides an initial framework of the minimum phage required for vaccination. A single injection with phage-peptide vaccines in both monomer and trimer formats produced significant immune responses in mice on day 21, as assessed by lymph node cell counts, next generation sequencing (NGS), and plasma titers against T7 phage and vaccine peptides. A trimer provided no additional serum response to the monomer format. Immunization of mice with a mixture of 8 different peptide vaccines resulted in antibodies to most of the peptides. It was encouraging that induced antibodies had higher binding to the mutated peptides compared to the corresponding normal peptides. The NGS of lymph node cells demonstrated a low B cell receptor diversity and clonal hyperpolarization in vaccine-draining lymph nodes in comparison to those in unvaccinated mice nodes. The NGS data also revealed phenomenal increase in IgG and other class-switched antibodies following vaccination. These results agree with the higher plasma titers of IgG antibodies against T7 phage and vaccine peptides. Antibodies bound whole B16-F10 cells, lysates and multiple bands on Western blot. This indicates that these vaccine peptides successfully induced antibodies that

  16. A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses.

    PubMed

    Yang, Ji-Rong; Chen, Chih-Yuan; Kuo, Chuan-Yi; Cheng, Chieh-Yu; Lee, Min-Shiuh; Cheng, Ming-Chu; Yang, Yu-Chih; Wu, Chia-Ying; Wu, Ho-Sheng; Liu, Ming-Tsan; Hsiao, Pei-Wen

    2016-02-01

    Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health. In this study, we engineered a recombinant H6N1 virus-like particle (VLP) and investigated its vaccine effectiveness compared to the traditional egg-based whole inactivated virus (WIV) vaccine. The H6N1-VLPs exhibited similar morphology and functional characteristics to influenza viruses. Prime-boost intramuscular immunization in mice with unadjuvanted H6N1-VLPs were highly immunogenic and induced long-lasting antibody immunity. The functional activity of the VLP-elicited IgG antibodies was proved by in vitro seroprotective hemagglutination inhibition and microneutralization titers against the homologous human H6N1 virus, as well as in vivo viral challenge analyses which showed H6N1-VLP immunization significantly reduced viral load in the lung, and protected against human H6N1 virus infection. Of particular note, the H6N1-VLPs but not the H6N1-WIVs were able to confer cross-reactive humoral immunity; antibodies induced by H6N1-VLP vaccine robustly inhibited the hemagglutination activities and in vitro replication of distantly-related heterologous avian H6N1 viruses. Furthermore, the H6N1-VLPs were found to elicit significantly greater anti-HA2 antibody responses in immunized mice than H6N1-WIVs. Collectively, we demonstrated for the first time a novel H6N1-VLP vaccine that effectively provides broadly protective immunity against both human and avian H6N1 viruses. These results, which uncover the underlying mechanisms for induction of wide-range immunity against influenza viruses, may be useful for future influenza vaccine development. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity

    PubMed Central

    VanBlargan, Laura A.

    2016-01-01

    SUMMARY The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies. PMID:27784796

  18. Passive antibody-mediated immunotherapy for the treatment of malignant gliomas.

    PubMed

    Mitra, Siddhartha; Li, Gordon; Harsh, Griffith R

    2010-01-01

    Despite advances in understanding the molecular mechanisms of brain cancer, the outcome of patients with malignant gliomas treated according to the current standard of care remains poor. Novel therapies are needed, and immunotherapy has emerged with great promise. The diffuse infiltration of malignant gliomas is a major challenge to effective treatment; immunotherapy has the advantage of accessing the entire brain with specificity for tumor cells. Therapeutic immune approaches include cytokine therapy, passive immunotherapy, and active immunotherapy. Cytokine therapy involves the administration of immunomodulatory cytokines to activate the immune system. Active immunotherapy is the generation or augmentation of an immune response, typically by vaccination against tumor antigens. Passive immunotherapy connotes either adoptive therapy, in which tumor-specific immune cells are expanded ex vivo and reintroduced into the patient, or passive antibody-mediated therapy. In this article, the authors discuss the preclinical and clinical studies that have used passive antibody-mediated immunotherapy, otherwise known as serotherapy, for the treatment of malignant gliomas.

  19. Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination

    PubMed Central

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H.; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. IMPORTANCE Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral

  20. Stinging nettle and neem enhance antibody response to local killed and imported live infectious bursal disease vaccines in indigenous chicken in Kenya.

    PubMed

    Bwana, M O; Njagi, L W; Nyaga, P N; Mbuthia, P G; Bebora, L C; Wahome, M W; Mutinda, W U; Kitala, P M

    2018-02-01

    Immune responses are critical for protection of chickens from infectious bursal disease (IBD). In this study, the antibody response-enhancing effect of drinking water supplementation of 1% stinging nettle and neem on different IBD vaccines and vaccination regimes was evaluated, using 36 (n = 36) specific antibody negative indigenous chicks. The birds were allocated into 3 groups as follows: 1A-C, 2A-C, and 3A-B, while group 3C acted as the unvaccinated non-supplemented control. A local inactivated K1 and imported live attenuated D78 IBD vaccines were given to groups 1A-C and 3A-B at 14 and 28 d of age, respectively. A combination of K1 and D78 vaccines was given 30 d apart to groups 2A and 2B (D78 at 14 and 21 d and K1 at 44 d of age) and on the same d to group 2C at 14 and 28 d of age. Stinging nettle was given in water to groups 1B, 2B, and 2C, and neem to groups 1C, 2A, and 3B. Birds were bled weekly and immune responses monitored using indirect ELISA. Both neem and stinging nettle had antibody response-enhancing effects in groups 1B and 1C, receiving the local inactivated K1 vaccine. There were significant differences (P < 0.05) in antibody titers between groups 1A and 2C. Stinging nettle induced earlier onset of high antibody responses in group 2C and persistent titers (>3.8 log10) from the third week in group 2B. Imported live D78 vaccine induced higher antibody titers compared to the local inactivated K1 vaccine. Groups 2B and 2C receiving a combination of the local K1 and imported live attenuated D78 vaccines had the highest antibody titers. Adoption of stinging nettle supplementation and a prime-boost program involving use of a local virus isolates-derived vaccine is recommended. © 2017 Poultry Science Association Inc.

  1. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease

    PubMed Central

    Kim, Jin Hyang; Reber, Adrian J.; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A.; Jacob, Joshy; Sambhara, Suryaprakash

    2016-01-01

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses. PMID:27849030

  2. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease.

    PubMed

    Kim, Jin Hyang; Reber, Adrian J; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A; Jacob, Joshy; Sambhara, Suryaprakash

    2016-11-16

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses.

  3. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential

    PubMed Central

    Kolb, Philipp; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission. PMID:26352137

  4. Optimization of a methamphetamine conjugate vaccine for antibody production in mice.

    PubMed

    Stevens, Misty W; Gunnell, Melinda G; Tawney, Rachel; Owens, S Michael

    2016-06-01

    There are still no approved medications for treating patients who abuse methamphetamine. Active vaccines for treating abuse of nicotine and cocaine are in clinical studies, but have not proven effective seemingly due to inadequate anti-drug antibody production. The current studies aimed to optimize the composition, adjuvant and route of administration of a methamphetamine conjugate vaccine, ICKLH-SMO9, in mice with the goal of generating significantly higher antibody levels. A range of hapten epitope densities were compared, as were the adjuvants Alhydrogel and a new Toll-like receptor 4 (TLR4) agonist called GLA-SE. While methamphetamine hapten density did not strongly affect the antibody response, the adjuvant did. Glucopyranosyl lipid A in a stable oil-in-water emulsion (GLA-SE) produced much higher levels of antibody in response to immunization compared with Alhydrogel; immunization with GLA-SE also produced antibodies with higher affinities for methamphetamine. GLA-SE has been used in human studies of vaccines for influenza among others and like some other clinical TLR4 agonists, it is safe and elicits a strong immune response. GLA-SE adjuvanted vaccines are typically administered by intramuscular injection and this also proved effective in these mouse studies. Clinical studies of the ICKLH-SMO9 methamphetamine vaccine adjuvanted with GLA-SE have the potential for demonstrating efficacy by generating much higher levels of antibody than substance abuse vaccines that have unsuccessfully used aluminum-based adjuvants. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. SARS-CoV spike protein-expressing recombinant vaccinia virus efficiently induces neutralizing antibodies in rabbits pre-immunized with vaccinia virus.

    PubMed

    Kitabatake, Masahiro; Inoue, Shingo; Yasui, Fumihiko; Yokochi, Shoji; Arai, Masaaki; Morita, Kouichi; Shida, Hisatoshi; Kidokoro, Minoru; Murai, Fukashi; Le, Mai Quynh; Mizuno, Kyosuke; Matsushima, Kouji; Kohara, Michinori

    2007-01-08

    A vaccine for severe acute respiratory syndrome (SARS) is being intensively pursued against its re-emergence. We generated a SARS coronavirus (SARS-CoV) spike protein-expressing recombinant vaccinia virus (RVV-S) using highly attenuated strain LC16m8. Intradermal administration of RVV-S into rabbits induced neutralizing (NT) antibodies against SARS-CoV 1 week after administration and the NT titer reached 1:1000 after boost immunization with RVV-S. Significantly, NT antibodies against SARS-CoV were induced by administration of RVV-S to rabbits that had been pre-immunized with LC16m8. RVV-S can induce NT antibodies against SARS-CoV despite the presence of NT antibodies against VV. These results suggest that RVV-S may be a powerful SARS vaccine, including in patients previously immunized with the smallpox vaccine.

  6. Immunoglobulin E antibodies to pollens augmented in dogs by virus vaccines.

    PubMed

    Frick, O L; Brooks, D L

    1983-03-01

    An inbred "atopic dog colony" was established to study the effect of viruses on immunoregulation of immunoglobulin (Ig) E antibodies. Dogs were selected for high skin reactivity to grass and weed pollens. Their offspring were inoculated with pollen extracts in alum immediately after routine vaccinations (attenuated live-virus vaccines for canine distemper and infectious canine hepatitis, and a killed bacterin for Leptospira). Heat labile antipollen IgE antibodies were measured by passive cutaneous anaphylaxis. Pups vaccinated for canine distemper before being given pollen extracts had many more IgE antibodies than did their control littermates who were not vaccinated until after the last pollen extract injection. This may be a natural example of the "allergic break-through phenomenon."

  7. The Biological Function of Antibodies Induced by the RTS,S/AS01 Malaria Vaccine Candidate is Determined by Their Fine Specificity

    DTIC Science & Technology

    2016-05-31

    specificity, opsonization‑dependent phagocytic activity and protection in RTS,S‑induced antibodies is explored. Methods: A new method for measuring...the phagocytic activity mediated by CSP‑specific antibodies in THP‑1 cells is presented and applied to samples from a recently completed phase 2 RTS,S...repeat region, the C‑terminal domain and the full‑length protein. A multi‑parameter analysis of phagocytic activity and fine‑specific‑ ity data was

  8. Monitoring the bulk milk antibody response to bovine viral diarrhea in dairy herds vaccinated with inactivated vaccines.

    PubMed

    Gonzalez, A M; Arnaiz, I; Eiras, C; Camino, F; Sanjuán, M L; Yus, E; Diéguez, F J

    2014-01-01

    This study was designed to determine long-term responses in dairy herds after vaccination with 1 of 3 inactivated bovine viral diarrhea virus (BVDV) vaccines with regard to antibodies against p80 protein in bulk tank milk samples, as detected by ELISA. In the present study, 29 dairy herds were vaccinated with Bovilis BVD (MSD Animal Health, Milton Keynes, UK), 11 with Hiprabovis Balance (Laboratorios Hipra, Amer, Spain), and 9 with Pregsure BVD (Zoetis, Florham Park, NJ). In these herds, bulk tank milk samples were collected and examined at the time of the first vaccination and every 6 mo during a 3-yr period. Samples were analyzed with a commercial ELISA test for the p80 protein of BVDV. The results demonstrated that vaccination affected the level of antibodies against p80. Hence, vaccination status should be taken into consideration when interpreting bulk tank milk antibody tests. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. The therapeutic potential of plant-derived vaccines and antibodies.

    PubMed

    Rodgers, P B; Hamilton, W D; Adair, J R

    1999-03-01

    The production of recombinant proteins in plants is reviewed with a particular focus on plant-derived vaccines and antibodies for human healthcare. Issues relating to foreign gene expression, such as protein yield, localisation and glycosylation are also considered. Emphasis is placed on reporting progress with preclinical and clinical evaluation of plant-derived vaccines and antibodies. An assessment is made of the likely future direction of research and development in this area.

  10. Persistence of Rabies Antibody 5 Years after Postexposure Prophylaxis with Vero Cell Antirabies Vaccine and Antibody Response to a Single Booster Dose▿

    PubMed Central

    Zhang, Xiaowei; Zhu, Zhenggang; Wang, Chuanlin

    2011-01-01

    This study was done to investigate the antibody response to a Vero cell antirabies vaccine, the persistence of antibody for 5 years, and the effect of a booster dose after this interval. From August 2005 to February 2011, a total of 195 patients were enrolled into our study due to an animal bite. The Essen intramuscular (i.m.) regimen, which is recommended by the WHO for modern vaccines used in postexposure treatment, was adopted in this study. Blood samples were obtained on day 0, day 7, day 14, day 45, year 1, year 2, year 3, year 4, year 5, and year 5 plus 14 days. Immunogenicity was evaluated by the titration of neutralizing antibodies with a rapid fluorescent focus inhibition test (RFFIT). Seroconversion was expressed as the seroconversion rate (SCR). A secondary quantitative evaluation criterion, other than the seroconversion level, was the geometric mean titer (GMT). Of the 195 enrolled patients, 168 (86.4%) of them completed the whole study. No serious adverse reactions to the vaccine were reported during vaccination, the 5-year follow-up period, or revaccination. On day 14, the rabies antibody GMT value was 8.87 IU/ml in the vaccinees. During the next 5 years, the SCR in the ChengDa vaccine group gradually decreased to 34.0% at year 5, down from 90.5% at year 1. There was a significant booster effect: the GMT was 15.22 IU/ml on year 5 plus 14 days. Our findings demonstrate that the ChengDa rabies vaccine offers an alternative with a high degree of efficacy and yet limited side effects and ensures that the exposed patient will be on the safe side of the risk of rabies by the 14th day. Moreover, when followed by a booster dose 5 years later, it could boost the immunity. A further booster is effective in inducing a good neutralizing antibody response even after an interval of 5 years. PMID:21752947

  11. Persistence of rabies antibody 5 years after postexposure prophylaxis with vero cell antirabies vaccine and antibody response to a single booster dose.

    PubMed

    Zhang, Xiaowei; Zhu, Zhenggang; Wang, Chuanlin

    2011-09-01

    This study was done to investigate the antibody response to a Vero cell antirabies vaccine, the persistence of antibody for 5 years, and the effect of a booster dose after this interval. From August 2005 to February 2011, a total of 195 patients were enrolled into our study due to an animal bite. The Essen intramuscular (i.m.) regimen, which is recommended by the WHO for modern vaccines used in postexposure treatment, was adopted in this study. Blood samples were obtained on day 0, day 7, day 14, day 45, year 1, year 2, year 3, year 4, year 5, and year 5 plus 14 days. Immunogenicity was evaluated by the titration of neutralizing antibodies with a rapid fluorescent focus inhibition test (RFFIT). Seroconversion was expressed as the seroconversion rate (SCR). A secondary quantitative evaluation criterion, other than the seroconversion level, was the geometric mean titer (GMT). Of the 195 enrolled patients, 168 (86.4%) of them completed the whole study. No serious adverse reactions to the vaccine were reported during vaccination, the 5-year follow-up period, or revaccination. On day 14, the rabies antibody GMT value was 8.87 IU/ml in the vaccinees. During the next 5 years, the SCR in the ChengDa vaccine group gradually decreased to 34.0% at year 5, down from 90.5% at year 1. There was a significant booster effect: the GMT was 15.22 IU/ml on year 5 plus 14 days. Our findings demonstrate that the ChengDa rabies vaccine offers an alternative with a high degree of efficacy and yet limited side effects and ensures that the exposed patient will be on the safe side of the risk of rabies by the 14th day. Moreover, when followed by a booster dose 5 years later, it could boost the immunity. A further booster is effective in inducing a good neutralizing antibody response even after an interval of 5 years.

  12. Multi-Dimensional Measurement of Antibody-Mediated Heterosubtypic Immunity to Influenza.

    PubMed

    Wang, Jiong; Hilchey, Shannon P; Hyrien, Ollivier; Huertas, Nelson; Perry, Sheldon; Ramanunninair, Manojkumar; Bucher, Doris; Zand, Martin S

    2015-01-01

    provides a powerful tool to rapidly assess the influenza antibody repertoire in large populations and to study heterosubtypic immunity induced by influenza vaccination.

  13. Multi-Dimensional Measurement of Antibody-Mediated Heterosubtypic Immunity to Influenza

    PubMed Central

    Wang, Jiong; Hilchey, Shannon P.; Hyrien, Ollivier; Huertas, Nelson; Perry, Sheldon; Ramanunninair, Manojkumar; Bucher, Doris; Zand, Martin S.

    2015-01-01

    provides a powerful tool to rapidly assess the influenza antibody repertoire in large populations and to study heterosubtypic immunity induced by influenza vaccination. PMID:26103163

  14. Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses

    PubMed Central

    Zolla-Pazner, Susan; Edlefsen, Paul T.; Rolland, Morgane; Kong, Xiang-Peng; deCamp, Allan; Gottardo, Raphael; Williams, Constance; Tovanabutra, Sodsai; Sharpe-Cohen, Sandra; Mullins, James I.; deSouza, Mark S.; Karasavvas, Nicos; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Pitisuttihum, Punnee; Kaewkungwal, Jaranit; O'Connell, Robert J.; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Gilbert, Peter

    2014-01-01

    To evaluate the role of V3-specific IgG antibodies (Abs) in the RV144 clinical HIV vaccine trial, which reduced HIV-1 infection by 31.2%, the anti-V3 Ab response was assessed. Vaccinees' V3 Abs were highly cross-reactive with cyclic V3 peptides (cV3s) from diverse virus subtypes. Sieve analysis of CRF01_AE breakthrough viruses from 43 vaccine- and 66 placebo-recipients demonstrated an estimated vaccine efficacy of 85% against viruses with amino acids mismatching the vaccine at V3 site 317 (p = 0.004) and 52% against viruses matching the vaccine at V3 site 307 (p = 0.004). This analysis was supported by data showing that vaccinees' plasma Abs were less reactive with I307 when replaced with residues found more often in vaccinees' breakthrough viruses. Simultaneously, viruses with mutations at F317 were less infectious, possibly due to the contribution of F317 to optimal formation of the V3 hydrophobic core. These data suggest that RV144-induced V3-specific Abs imposed immune pressure on infecting viruses and inform efforts to design an HIV vaccine. PMID:25599085

  15. Transfer of Anti-Rotavirus Antibodies during Pregnancy and in Milk Following Maternal Vaccination with a Herpes Simplex Virus Type-1 Amplicon Vector.

    PubMed

    Meier, Anita F; Suter, Mark; Schraner, Elisabeth M; Humbel, Bruno M; Tobler, Kurt; Ackermann, Mathias; Laimbacher, Andrea S

    2017-02-16

    Rotaviruses (RVs) are important enteric pathogens of newborn humans and animals, causing diarrhea and in rare cases death, especially in very young individuals. Rotavirus vaccines presently used are modified live vaccines that lack complete biological safety. Previous work from our laboratory suggested that vaccines based on in situ produced, non-infectious rotavirus-like particles (RVLPs) are efficient while being entirely safe. However, using either vaccine, active mucosal immunization cannot induce protective immunity in newborns due to their immature immune system. We therefore hypothesized that offspring from vaccinated dams are passively immunized either by transfer of maternal antibodies during pregnancy or by taking up antibodies from milk. Using a codon optimized polycistronic gene expression cassette packaged into herpesvirus particles, the simultaneous expression of the RV capsid genes led to the intracellular formation of RVLPs in various cell lines. Vaccinated dams developed a strong RV specific IgG antibody response determined in sera and milk of both mother and pups. Moreover, sera of naïve pups nursed by vaccinated dams also had RV specific antibodies suggesting a lactogenic transfer of antibodies. Although full protection of pups was not achieved in this mouse model, our observations are important for the development of improved vaccines against RV in humans as well as in various animal species.

  16. Transfer of Anti-Rotavirus Antibodies during Pregnancy and in Milk Following Maternal Vaccination with a Herpes Simplex Virus Type-1 Amplicon Vector

    PubMed Central

    Meier, Anita F.; Suter, Mark; Schraner, Elisabeth M.; Humbel, Bruno M.; Tobler, Kurt; Ackermann, Mathias; Laimbacher, Andrea S.

    2017-01-01

    Rotaviruses (RVs) are important enteric pathogens of newborn humans and animals, causing diarrhea and in rare cases death, especially in very young individuals. Rotavirus vaccines presently used are modified live vaccines that lack complete biological safety. Previous work from our laboratory suggested that vaccines based on in situ produced, non-infectious rotavirus-like particles (RVLPs) are efficient while being entirely safe. However, using either vaccine, active mucosal immunization cannot induce protective immunity in newborns due to their immature immune system. We therefore hypothesized that offspring from vaccinated dams are passively immunized either by transfer of maternal antibodies during pregnancy or by taking up antibodies from milk. Using a codon optimized polycistronic gene expression cassette packaged into herpesvirus particles, the simultaneous expression of the RV capsid genes led to the intracellular formation of RVLPs in various cell lines. Vaccinated dams developed a strong RV specific IgG antibody response determined in sera and milk of both mother and pups. Moreover, sera of naïve pups nursed by vaccinated dams also had RV specific antibodies suggesting a lactogenic transfer of antibodies. Although full protection of pups was not achieved in this mouse model, our observations are important for the development of improved vaccines against RV in humans as well as in various animal species. PMID:28212334

  17. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    PubMed

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  18. Humoral and cell-mediated immune responses after a booster dose of HBV vaccine in HIV-infected children, adolescents and young adults.

    PubMed

    Giacomet, Vania; Masetti, Michela; Nannini, Pilar; Forlanini, Federica; Clerici, Mario; Zuccotti, Gian Vincenzo; Trabattoni, Daria

    2018-01-01

    HBV vaccine induces protective antibodies only in 23-56% of HIV-infected children. The aim of our study is to evaluate the immunologic effects of a booster dose of HBV vaccine in HIV-infected youth. 53 young HIV-infected patients in whom HBV vaccination did not elicit protective Ab titers were enrolled. All patients were on ART with optimal immunological and viral response. All patients received a booster dose of HBV vaccine (HBVAXPRO 10 μg i.m.). HBV-specific Ab titer, viral load and CD4+ T cells were measured at baseline (T0), T1, T6 and T12 months. In a subgroup of 16 patients HBV-specific cell mediated immune responses were evaluated at baseline, at T1 and T6. The booster dose induced seroconversion in 51% of patients at T1, 57% at T6, and49% at T12; seroconversion rate was significantly correlated with CD4+T cells at T0 and to the CD4 nadir. The booster dose induced HBV-specific cell mediated immunity at T6 mainly in Responders (Rs): Effector Memory CD8+T cells, HBV-specific TNFα-, IFNγ-, granzyme secreting CD8+ T cells and IL2-secreting CD4+ T cells were significantly increased in Rs compared to T0. In Non Responders (NRs), HBV-specific IL2-secreting CD4+ T cells, Central and Effector Memory CD8+ T cells were the only parameters modified at T6. Seroconversion induced by a booster dose of vaccine correlates with the development of T cell immunological memory in HIV-infected patients who did not respond to the standard immunization. Alternate immunization schedules need to be considered in NRs.

  19. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    PubMed

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  20. Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation of the antibody response to infection and vaccination.

    PubMed

    Polonis, Victoria R; Brown, Bruce K; Rosa Borges, Andrew; Zolla-Pazner, Susan; Dimitrov, Dimiter S; Zhang, Mei-Yun; Barnett, Susan W; Ruprecht, Ruth M; Scarlatti, Gabriella; Fenyö, Eva-Maria; Montefiori, David C; McCutchan, Francine E; Michael, Nelson L

    2008-06-05

    In AIDS vaccine development the pendulum has swung towards a renewed emphasis on the potential role for neutralizing antibodies in a successful global vaccine. It is recognized that vaccine-induced antibody performance, as assessed in the available neutralization assays, may well serve as a "gatekeeper" for HIV-1 subunit vaccine prioritization and advancement. As a result, development of a standardized platform for reproducible measurement of neutralizing antibodies has received considerable attention. Here we review current advancements in our knowledge of the performance of different types of antibodies in a traditional primary cell neutralization assay and the newer, more standardized TZM-bl reporter cell line assay. In light of recently revealed differences (see accompanying article) in the results obtained in these two neutralization formats, parallel evaluation with both platforms should be contemplated as an interim solution until a better understanding of immune correlates of protection is achieved.

  1. Sero-prevalence of virus neutralizing antibodies for rabies in different groups of dogs following vaccination.

    PubMed

    Pimburage, R M S; Gunatilake, M; Wimalaratne, O; Balasuriya, A; Perera, K A D N

    2017-05-18

    Mass vaccination of dogs is considered fundamental for national rabies control programmes in Sri Lanka, as dog is the main reservoir and transmitter of the disease. Dogs were followed to determine the sero-prevalence of antibodies to the rabies virus. Altogether 510 previously vaccinated and unvaccinated dogs with owners (domestic dogs) and dogs without owners (stray dogs) of the local guard dog breed in different age groups recruited from Kalutara District, Sri Lanka. The dogs were vaccinated with a monovalent inactivated vaccine intramuscularly and serum antibody titres on days 0, 30, 180 and 360 were determined by the Rapid Fluorescent Focus Inhibition Test (RFFIT). The results indicated, a single dose of anti-rabies vaccination fails to generate a protective level of immunity (0.5 IU/ml) which lasts until 1 year in 40.42% of dogs without owners and 57.14% of previously unvaccinated juvenile (age: 3 months to 1 year) dogs with owners. More than one vaccination would help to maintain antibody titres above the protective level in the majority of dogs. The pattern of antibody titre development in annually vaccinated and irregularly vaccinated (not annual) adult dogs with owners is closely similar irrespective of regularity in vaccination. Previously vaccinated animals have higher (2 IU/ml) antibody titres to begin with and have a higher antibody titre on day 360 too. They show a very good antibody titre by day 180. Unvaccinated animals start with low antibody titre and return to low titres by day 360, but have a satisfactory antibody titre by day 180. A single dose of anti-rabies vaccination is not sufficient for the maintenance of antibody titres for a period of 1 year in puppies, juvenile dogs with owners and in dogs without owners. Maternal antibodies do not provide adequate protection to puppies of previously vaccinated dams and puppies of previously unvaccinated dams. Immunity development after vaccination seems to be closely similar in both the groups

  2. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection.

    PubMed

    Kim, Yeu-Chun; Lee, Su-Hwa; Choi, Won-Hyung; Choi, Hyo-Jick; Goo, Tae-Won; Lee, Ju-Hie; Quan, Fu-Shi

    2016-12-01

    A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p < 0.05) reduced. All mice survived after viral challenges. These results indicate that skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.

  3. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    PubMed

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria.

    PubMed

    Snapper, Clifford M

    2016-06-24

    Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines. Published by Elsevier Ltd.

  5. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination.

    PubMed

    Wieten, Rosanne W; Jonker, Emile F F; van Leeuwen, Ester M M; Remmerswaal, Ester B M; Ten Berge, Ineke J M; de Visser, Adriëtte W; van Genderen, Perry J J; Goorhuis, Abraham; Visser, Leo G; Grobusch, Martin P; de Bree, Godelieve J

    2016-01-01

    Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07-3.1%). On day 180, these cells were still present (median 0.06%, range 0.02-0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. The presence of a functionally competent YF

  6. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination

    PubMed Central

    van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.

    2016-01-01

    Introduction Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. Methods and Findings PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07–3.1%). On day 180, these cells were still present (median 0.06%, range 0.02–0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. Conclusion The

  7. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    PubMed

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  8. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    PubMed Central

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  9. Association of deficiency in antibody response to vaccine and heterogeneity of Ehrlichia risticii strains with Potomac horse fever vaccine failure in horses.

    PubMed

    Dutta, S K; Vemulapalli, R; Biswas, B

    1998-02-01

    Ehrlichia risticii is the causative agent of Potomac horse fever (PHF), which continues to be an important disease of horses. Commercial inactivated whole-cell vaccines are regularly used for immunization of horses against the disease. However, PHF is occurring in large numbers of horses in spite of vaccination. In a limited study, 43 confirmed cases of PHF occurred between the 1994 and 1996 seasons; of these, 38 (89%) were in horses that had been vaccinated for the respective season, thereby clearly indicating vaccine failure. A field study of horses vaccinated with two PHF vaccines indicated a poor antibody response, as determined by immunofluorescence assay (IFA) titers. In a majority of horses, the final antibody titer ranged between 40 and 1,280, in spite of repeated vaccinations. None of the vaccinated horses developed in vitro neutralizing antibody in their sera. Similarly, one horse experimentally vaccinated three times with one of the vaccines showed a poor antibody response, with final IFA titers between 80 and 160. The horse did not develop in vitro neutralizing antibody or antibody against the 50/85-kDa strain-specific antigen (SSA), which is the protective antigen of the original strain, 25-D, and the variant strain of our laboratory, strain 90-12. Upon challenge infection with the 90-12 strain, the horse showed clinical signs of the disease. The horse developed neutralizing antibody and antibody to the 50/85-kDa SSA following the infection. Studies of the new E. risticii isolates from the field cases indicated that they were heterogeneous among themselves and showed differences from the 25-D and 90-12 strains as determined by IFA reactivity pattern, DNA amplification finger printing profile, and in vitro neutralization activity. Most importantly, the molecular sizes of the SSA of these isolates varied, ranging from 48 to 85 kDa. These studies suggest that the deficiency in the antibody response to the PHF vaccines and the heterogeneity of E. risticii

  10. Association of Deficiency in Antibody Response to Vaccine and Heterogeneity of Ehrlichia risticii Strains with Potomac Horse Fever Vaccine Failure in Horses

    PubMed Central

    Dutta, Sukanta K.; Vemulapalli, Ramesh; Biswas, Biswajit

    1998-01-01

    Ehrlichia risticii is the causative agent of Potomac horse fever (PHF), which continues to be an important disease of horses. Commercial inactivated whole-cell vaccines are regularly used for immunization of horses against the disease. However, PHF is occurring in large numbers of horses in spite of vaccination. In a limited study, 43 confirmed cases of PHF occurred between the 1994 and 1996 seasons; of these, 38 (89%) were in horses that had been vaccinated for the respective season, thereby clearly indicating vaccine failure. A field study of horses vaccinated with two PHF vaccines indicated a poor antibody response, as determined by immunofluorescence assay (IFA) titers. In a majority of horses, the final antibody titer ranged between 40 and 1,280, in spite of repeated vaccinations. None of the vaccinated horses developed in vitro neutralizing antibody in their sera. Similarly, one horse experimentally vaccinated three times with one of the vaccines showed a poor antibody response, with final IFA titers between 80 and 160. The horse did not develop in vitro neutralizing antibody or antibody against the 50/85-kDa strain-specific antigen (SSA), which is the protective antigen of the original strain, 25-D, and the variant strain of our laboratory, strain 90-12. Upon challenge infection with the 90-12 strain, the horse showed clinical signs of the disease. The horse developed neutralizing antibody and antibody to the 50/85-kDa SSA following the infection. Studies of the new E. risticii isolates from the field cases indicated that they were heterogeneous among themselves and showed differences from the 25-D and 90-12 strains as determined by IFA reactivity pattern, DNA amplification finger printing profile, and in vitro neutralization activity. Most importantly, the molecular sizes of the SSA of these isolates varied, ranging from 48 to 85 kDa. These studies suggest that the deficiency in the antibody response to the PHF vaccines and the heterogeneity of E. risticii

  11. Recombinant Rift Valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice

    PubMed Central

    Papin, James F.; Verardi, Paulo H.; Jones, Leslie A.; Monge-Navarro, Francisco; Brault, Aaron C.; Holbrook, Michael R.; Worthy, Melissa N.; Freiberg, Alexander N.; Yilma, Tilahun D.

    2011-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in Africa and the Arabian Peninsula caused by the highly infectious Rift Valley fever virus (RVFV) that can be lethal to humans and animals and results in major losses in the livestock industry. RVF is exotic to the United States; however, mosquito species native to this region can serve as biological vectors for the virus. Thus, accidental or malicious introduction of this virus could result in RVFV becoming endemic in North America. Such an event would likely lead to significant morbidity and mortality in humans, and devastating economic effects on the livestock industry. Currently, there are no licensed vaccines for RVF that are both safe and efficacious. To address this issue, we developed two recombinant RVFV vaccines using vaccinia virus (VACV) as a vector for use in livestock. The first vaccine, vCOGnGc, was attenuated by the deletion of a VACV gene encoding an IFN-γ binding protein, insertional inactivation of the thymidine kinase gene, and expression of RVFV glycoproteins, Gn and Gc. The second vaccine, vCOGnGcγ, is identical to the first and also expresses the human IFN-γ gene to enhance safety. Both vaccines are extremely safe; neither resulted in weight loss nor death in severe combined immunodeficient mice, and pock lesions were smaller in baboons compared with the controls. Furthermore, both vaccines induced protective levels of antibody titers in vaccinated mice and baboons. Mice were protected from lethal RVFV challenge. Thus, we have developed two safe and efficacious recombinant vaccines for RVF. PMID:21873194

  12. Similar Antibody Levels in 3-Year-Old Children Vaccinated Against Measles, Mumps, and Rubella at the Age of 12 Months or 18 Months.

    PubMed

    Kontio, Mia; Palmu, Arto A; Syrjänen, Ritva K; Lahdenkari, Mika; Ruokokoski, Esa; Davidkin, Irja; Vaarala, Outi; Melin, Merit

    2016-06-15

    Measles-mumps-rubella (MMR) vaccinations have been offered to Finnish children at 14-18 months and 6 years of age. In May 2011, the recommended age for the first vaccine dose was lowered to 12 months because of the European measles epidemic. Fingertip capillary blood samples were collected from 3-year-old Finnish children vaccinated once with MMR vaccine at 11-19 months of age. The immunoglobulin G (IgG) antibodies to all 3 MMR antigens were measured with enzyme-linked immunosorbent assay. Neutralizing antibodies and the avidity of antibodies were measured for measles virus. From April through October 2013, 187 children were enrolled. Equally high proportions of the samples were seropositive for measles virus, mumps virus, or rubella virus antibodies, and there were no significant differences in the IgG antibody concentrations in children vaccinated at 11-13 months of age, compared with those vaccinated at 17-19 months of age. However, among children vaccinated at 11-13 months of age, boys had lower antibody concentrations than girls. Neutralizing measles virus antibody titers were above the threshold for protective immunity in all 78 samples analyzed. The measles virus antibody avidity indexes were high for all children. MMR induces similar antibody responses in 12-month-old children as compared to 18-month-old children, but in boys increasing age appears to improve the antibody responses. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Decay of Sabin inactivated poliovirus vaccine (IPV)-boosted poliovirus antibodies.

    PubMed

    Resik, Sonia; Tejeda, Alina; Fonseca, Magile; Sein, Carolyn; Hung, Lai Heng; Martinez, Yenisleidys; Diaz, Manuel; Okayasu, Hiromasa; Sutter, Roland W

    We conducted a follow-on study to a phase I randomized, controlled trial conducted in Cuba, 2012, to assess the persistence of poliovirus antibodies at 21-22 months following booster dose of Sabin-IPV compared to Salk-IPV in adults who had received multiple doses of oral poliovirus vaccine (OPV) during childhood. In 2012, 60 healthy adult males aged 19-23 were randomized to receive one booster dose, of either Sabin-inactivated poliovirus vaccine (Sabin-IPV), adjuvanted Sabin-IPV (aSabin-IPV), or conventional Salk-IPV. In the original study, blood was collected at days 0 (before) and 28 (after vaccination), respectively. In this study, an additional blood sample was collected 21-22 months after vaccination, and tested for neutralizing antibodies to Sabin poliovirus types 1, 2 and 3. We collected sera from 59/60 (98.3%) subjects; 59/59 (100%) remained seropositive to all poliovirus types, 21-22 months after vaccination. The decay curves were very similar among the study groups. Between day 28 and 21-22 months, there was a reduction of ⩾87.4% in median antibody levels for all poliovirus types in all study groups, with no significant differences between the study groups. The decay of poliovirus antibodies over a 21-22-month period was similar regardless of the type of booster vaccine used, suggesting the scientific data of Salk IPV long-term persistence and decay may be broadly applicable to Sabin IPV.

  14. Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope

    PubMed Central

    Kilgore, Katie M.; Murphy, Megan K.; Burton, Samantha L.; Wetzel, Katherine S.; Smith, S. Abigail; Xiao, Peng; Reddy, Sharmila; Francella, Nicholas; Sodora, Donald L.; Silvestri, Guido; Cole, Kelly S.; Villinger, Francois; Robinson, James E.; Pulendran, Bali; Hunter, Eric; Collman, Ronald G.; Amara, Rama R.

    2015-01-01

    ABSTRACT Antibodies that can neutralize diverse viral strains are likely to be an important component of a protective human immunodeficiency virus type 1 (HIV-1) vaccine. To this end, preclinical simian immunodeficiency virus (SIV)-based nonhuman primate immunization regimens have been designed to evaluate and enhance antibody-mediated protection. However, these trials often rely on a limited selection of SIV strains with extreme neutralization phenotypes to assess vaccine-elicited antibody activity. To mirror the viral panels used to assess HIV-1 antibody breadth, we created and characterized a novel panel of 14 genetically and phenotypically diverse SIVsm envelope (Env) glycoproteins. To assess the utility of this panel, we characterized the neutralizing activity elicited by four SIVmac239 envelope-expressing DNA/modified vaccinia virus Ankara vector- and protein-based vaccination regimens that included the immunomodulatory adjuvants granulocyte-macrophage colony-stimulating factor, Toll-like receptor (TLR) ligands, and CD40 ligand. The SIVsm Env panel exhibited a spectrum of neutralization sensitivity to SIV-infected plasma pools and monoclonal antibodies, allowing categorization into three tiers. Pooled sera from 91 rhesus macaques immunized in the four trials consistently neutralized only the highly sensitive tier 1a SIVsm Envs, regardless of the immunization regimen. The inability of vaccine-mediated antibodies to neutralize the moderately resistant tier 1b and tier 2 SIVsm Envs defined here suggests that those antibodies were directed toward epitopes that are not accessible on most SIVsm Envs. To achieve a broader and more effective neutralization profile in preclinical vaccine studies that is relevant to known features of HIV-1 neutralization, more emphasis should be placed on optimizing the Env immunogen, as the neutralization profile achieved by the addition of adjuvants does not appear to supersede the neutralizing antibody profile determined by the

  15. No Difference in Antibody Responses to Tetanus Vaccine Among HIV-Exposed and -Unexposed Infants in Botswana

    PubMed Central

    Smith, Christiana; Moraka, Natasha; Ibrahim, Maryanne; Moyo, Sikhulile; Mayondi, Gloria; Kammerer, Betsy; Leidner, Jean; Gaseitsiwe, Simani; Lockman, Shahin; Weinberg, Adriana

    2017-01-01

    Abstract Background In Botswana, more than 10% of HIV-exposed, uninfected infants (HEU) are hospitalized or die in the first 6 months of life, largely due to infectious causes. Vaccine responses can act as a marker of the immune response to infectious antigens. Previous studies of antibody responses to vaccines in HEU have had conflicting results. We compared antibody titers to tetanus vaccine between HEU and HIV-unexposed infants (HUU), and explored whether tetanus antibody titers predicted risk of hospitalization in the first 2 years of life among HEU. Methods 443 HIV-infected and 451 HIV-uninfected mothers and their 453 HEU / 457 HUU live-born infants were followed in a prospective observational study in Botswana (“Tshipidi”). Quantitative tetanus toxoid IgG was measured in plasma samples from 18-month-old infants. Geometric mean antibody titers (GMT) were compared between HEU and HUU infants, and between HEU infants who were or were not hospitalized by age 2. Results Plasma was available at 18 months for 39 HEU and 42 HUU infants. Within this subset, there were 15 hospitalizations (12 in HEU) [RR of hospitalization among HEU = 1.34 (P = 0.009)]. 73% of hospitalizations overall, and 83% in HEU, were due to infection (primarily pneumonia/bronchiolitis and gastroenteritis). Among infants who had received 3 or 4 doses of tetanus vaccine by 18 months, there were no significant differences in tetanus GMT between HEU and HUU (Fig A). Among HEU who had received 3 or 4 doses of tetanus vaccine by 18 months, there were no significant differences in tetanus GMT between infants who were hospitalized and infants who were not (Fig B). Conclusion In this small sample of infants from Botswana, we did not identify differences in antibody responses to tetanus vaccine between HEU and HUU. Although HEU demonstrated an increased risk of hospitalization, response to tetanus vaccine did not appear to be a significant predictor of morbidity. It is possible that cell-mediated

  16. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle.

    PubMed

    Sharma, Vijay K; Schaut, Robert G; Loving, Crystal L

    2018-06-01

    Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaughter. Vaccination is an important strategy to reduce fecal shedding of O157 in cattle. In this study, we evaluated the immunogenicity and efficacy of an inactivated vaccine strain of O157 formulated with an adjuvant. This vaccine strain was deleted of the hha gene enabling high level expression of the locus of enterocyte effacement (LEE) encoded proteins required for O157 colonization in cattle. The inactivated vaccine strain emulsified with the adjuvant or suspended in the phosphate-buffered saline (PBS) was injected in the neck muscles of two groups of weaned calves followed by a booster three weeks later with the corresponding formulation. Animals in groups 3 and 4 were injected similarly with the adjuvant and PBS, respectively. All animals were orally inoculated three weeks post-booster vaccination with a live culture of O157. The animals vaccinated with the adjuvanted vaccine showed higher serum antibody titers to the vaccine strain and shed O157 for a shorter duration and at lower numbers compared to the animals vaccinated with the non-adjuvanted vaccine, adjuvant-only, or PBS. Western blotting of the vaccine strain lysates showed higher immunoreactivity of serum IgG in vaccinated animals to several O157-specific proteins and lipopolysaccharides (LPS). The vaccination induced IgG showed specificity to LEE-encoded proteins and outer membrane LPS as LEE and waaL deletion mutants, unable to produce LEE proteins and synthesize high molecular weight LPS, respectively, yielded significantly lower antibody titers compared to the parent vaccine strain. The positive reactivity of the immune serum was also observed for purified LEE-encoded proteins EspA and EspB. In

  17. Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques.

    PubMed

    Livingston, Brian D; Little, Stephen F; Luxembourg, Alain; Ellefsen, Barry; Hannaman, Drew

    2010-01-22

    DNA vaccination is a promising immunization strategy that could be applied in the development of vaccines for a variety of prophylactic and therapeutic indications. Utilizing anthrax protective antigen as a model antigen, we demonstrate that electroporation mediated delivery enhanced the immunogenicity of DNA vaccines in nonhuman primates over 100-fold as compared to conventional intramuscular injection. Two administrations of a DNA vaccine with electroporation elicited anthrax toxin neutralizing antibody responses in 100% of rhesus macaques. Toxin neutralizing antibodies were sustained for the nearly 1-year study duration and were correlated with protection against subsequent lethal Bacillus anthracis spore challenge. Collectively, electroporation mediated DNA vaccination conferred protection comparable to that observed following vaccination with an FDA approved anthrax vaccine.

  18. A Novel Multi-Epitope Vaccine Based on Urate Transporter 1 Alleviates Streptozotocin-Induced Diabetes by Producing Anti-URAT1 Antibody and an Immunomodulatory Effect in C57BL/6J Mice.

    PubMed

    Ma, Yanjie; Cao, Huimin; Li, Zhixin; Fang, Jinzhi; Wei, Xiaomin; Cheng, Peng; Jiao, Rui; Liu, Xiaoran; Li, Ya; Xing, Yun; Tang, Jiali; Jin, Liang; Li, Taiming

    2017-10-16

    Hyperuricemia (HUA) is related to diabetes. Uric acid-induced inflammation and oxidative stress are risk factors for diabetes and its complications. Human urate transporter 1 (URAT1) regulates the renal tubular reabsorption of uric acid. IA-2(5)-P2-1, a potent immunogenic carrier designed by our laboratory, can induce high-titer specific antibodies when it carries a B cell epitope, such as B cell epitopes of DPP4 (Dipeptidyl peptidase-4), xanthine oxidase. In this report, we describe a novel multi-epitope vaccine composing a peptide of URAT1, an anti-diabetic B epitope of insulinoma antigen-2(IA-2) and a Th2 epitope (P2:IPALDSLTPANED) of P277 peptide in human heat shock protein 60 (HSP60). Immunization with the multi-epitope vaccine in streptozotocin-induced diabetes C57BL/6J mice successfully induced specific anti-URAT1 antibody, which inhibited URAT1 action and uric acid reabsorption, and increased pancreatic insulin level with a lower insulitis incidence. Vaccination with U-IA-2(5)-P2-1 (UIP-1) significantly reduced blood glucose and uric acid level, increased Th2 cytokines interleukin (IL)-10 and IL-4, and regulated immune reactions through a balanced Th1/Th2 ratio. These results demonstrate that the URAT1-based multi-epitope peptide vaccine may be a suitable therapeutic approach for diabetes and its complications.

  19. Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination.

    PubMed

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin; Heinz, Franz X

    2014-12-01

    Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry

  20. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Squalene-containing licensed adjuvants enhance strain-specific antibody responses against the influenza hemagglutinin and induce subtype-specific antibodies against the neuraminidase.

    PubMed

    Schmidt, Rebecca; Holznagel, Edgar; Neumann, Britta; Alex, Nina; Sawatsky, Bevan; Enkirch, Theresa; Pfeffermann, Kristin; Kruip, Carina; von Messling, Veronika; Wagner, Ralf

    2016-10-17

    While seasonal influenza vaccines are usually non-adjuvanted, H1N1pdm09 vaccines were formulated with different squalene-containing adjuvants, to enable the reduction of antigen content thus increasing the number of doses available. To comparatively assess the effects of these adjuvants on antibody responses against matched and mismatched strains, and to correlate antibody levels with protection from disease, ferrets were immunized with 2μg of commercial H1N1pdm09 vaccine antigen alone or formulated with different licensed adjuvants. The use of squalene-containing adjuvants increased neutralizing antibody responses around 100-fold, and resulted in a significantly reduced viral load after challenge with a matched strain. While all animals mounted strong total antibody responses against the homologous H1N1 hemagglutinin (HA) protein, which correlated with the respective neutralizing antibody titers, no reactivity with the divergent H3, H5, H7, and H9 proteins were detected. Only the adjuvanted vaccines also induced antibodies against the neuraminidase (NA) protein, which were able to also recognize NA proteins from other N1 carrying strains. These findings not only support the use of squalene-containing adjuvants in dose-sparing strategies but also support speculations that the induction of NA-specific responses associated with the use of these adjuvants may confer partial protection to heterologous strains carrying the same NA subtype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Antibody-Dependent Cell-Mediated Viral Inhibition Emerges after Simian Immunodeficiency Virus SIVmac251 Infection of Rhesus Monkeys Coincident with gp140-Binding Antibodies and Is Effective against Neutralization-Resistant Viruses▿

    PubMed Central

    Asmal, Mohammed; Sun, Yue; Lane, Sophie; Yeh, Wendy; Schmidt, Stephen D.; Mascola, John R.; Letvin, Norman L.

    2011-01-01

    Antibody-dependent cell-mediated viral inhibition (ADCVI) is an attractive target for vaccination because it takes advantage of both the anamnestic properties of an adaptive immune response and the rapid early response characteristics of an innate immune response. Effective utilization of ADCVI in vaccine strategies will depend on an understanding of the natural history of ADCVI during acute and chronic human immunodeficiency virus type 1 (HIV-1) infection. We used the simian immunodeficiency virus (SIV)-infected rhesus monkey as a model to study the kinetics of ADCVI in early infection, the durability of ADCVI through the course of infection, and the effectiveness of ADCVI against viruses with envelope mutations that are known to confer escape from antibody neutralization. We demonstrate the development of ADCVI, capable of inhibiting viral replication 100-fold, within 3 weeks of infection, preceding the development of a comparable-titer neutralizing antibody response by weeks to months. The emergence of ADCVI was temporally associated with the emergence of gp140-binding antibodies, and in most animals, ADCVI persisted through the course of infection. Highly evolved viral envelopes from viruses isolated at late time points following infection that were resistant to plasma neutralization remained susceptible to ADCVI, suggesting that the epitope determinants of neutralization escape are not shared by antibodies that mediate ADCVI. These findings suggest that despite the ability of SIV to mutate and adapt to multiple immunologic pressures during the course of infection, SIV envelope may not escape the binding of autologous antibodies that mediate ADCVI. PMID:21450829

  3. Linear Epitopes in Vaccinia Virus A27 Are Targets of Protective Antibodies Induced by Vaccination against Smallpox.

    PubMed

    Kaever, Thomas; Matho, Michael H; Meng, Xiangzhi; Crickard, Lindsay; Schlossman, Andrew; Xiang, Yan; Crotty, Shane; Peters, Bjoern; Zajonc, Dirk M

    2016-05-01

    Vaccinia virus (VACV) A27 is a target for viral neutralization and part of the Dryvax smallpox vaccine. A27 is one of the three glycosaminoglycan (GAG) adhesion molecules and binds to heparan sulfate. To understand the function of anti-A27 antibodies, especially their protective capacity and their interaction with A27, we generated and subsequently characterized 7 murine monoclonal antibodies (MAbs), which fell into 4 distinct epitope groups (groups I to IV). The MAbs in three groups (groups I, III, and IV) bound to linear peptides, while the MAbs in group II bound only to VACV lysate and recombinant A27, suggesting that they recognized a conformational and discontinuous epitope. Only group I antibodies neutralized the mature virion in a complement-dependent manner and protected against VACV challenge, while a group II MAb partially protected against VACV challenge but did not neutralize the mature virion. The epitope for group I MAbs was mapped to a region adjacent to the GAG binding site, a finding which suggests that group I MAbs could potentially interfere with the cellular adhesion of A27. We further determined the crystal structure of the neutralizing group I MAb 1G6, as well as the nonneutralizing group IV MAb 8E3, bound to the corresponding linear epitope-containing peptides. Both the light and the heavy chains of the antibodies are important in binding to their antigens. For both antibodies, the L1 loop seems to dominate the overall polar interactions with the antigen, while for MAb 8E3, the light chain generally appears to make more contacts with the antigen. Vaccinia virus is a powerful model to study antibody responses upon vaccination, since its use as the smallpox vaccine led to the eradication of one of the world's greatest killers. The immunodominant antigens that elicit the protective antibodies are known, yet for many of these antigens, little information about their precise interaction with antibodies is available. In an attempt to better

  4. Prevalence of antibodies to canine parvovirus and reaction to vaccination in client-owned, healthy dogs.

    PubMed

    Riedl, M; Truyen, U; Reese, S; Hartmann, K

    2015-12-12

    The purpose of this population-based cohort study was to assess current prevalence of antibodies to canine parvovirus (CPV) in adult, healthy dogs, including risk factors associated with lack of antibodies, and reaction to revaccination with a modified live vaccine (MLV). One hundred dogs routinely presented for vaccination were included in the study and vaccinated with a single dose of a combined MLV. Information was collected on signalment, origin, environment, vaccination history and side effects. Prevaccination and postvaccination antibodies were detected by haemagglutination inhibition. Univariate analysis, followed by multivariate logistic regression, was used to investigate association between different variables and presence of antibodies as well as titre increase. Protective CPV antibodies were present in 86.0 per cent of dogs. Intervals of more than four years since the last vaccination and rare contacts with other dogs were determined as main risk factors for the absence of antibodies. An increase in titres only occurred in 17.0 per cent of dogs. Dogs without protective titres before vaccination or with bodyweight <10 kg were more likely to have an adequate titre increase. Based on these findings, antibody status should be determined instead of periodic vaccinations to ensure reliable protection without unnecessary vaccinations in adult dogs. British Veterinary Association.

  5. Protection by universal influenza vaccine is mediated by memory CD4 T cells.

    PubMed

    Valkenburg, Sophie A; Li, Olive T W; Li, Athena; Bull, Maireid; Waldmann, Thomas A; Perera, Liyanage P; Peiris, Malik; Poon, Leo L M

    2018-07-05

    There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4 + T cells, whereby depletion of CD4 + T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4 + T cells were needed for early antibody production and CD8 + T cell recall responses. Furthermore, influenza-specific CD4 + T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4 + and CD8 + T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations

    PubMed Central

    Karnasuta, Chitraporn; Vasan, Sandhya; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Madnote, Sirinan; Savadsuk, Hathairat; Rittiroongrad, Surawach; Puangkaew, Jiraporn; Phogat, Sanjay; Tartaglia, James; Sinangil, Faruk; de Souza, Mark S.; Excler, Jean-Louis; Kim, Jerome H.; Robb, Merlin L.; Michael, Nelson L.; Ngauy, Viseth; O'Connell, Robert J.; Karasavvas, Nicos

    2018-01-01

    Sexual transmission is the principal driver of the human immunodeficiency virus (HIV) pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080) efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2) previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE) and Case A2 (subtype B) in cervico-vaginal mucus (CVM), seminal plasma (SP) and rectal secretions (RS) from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT) to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively), followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11–17 fold) and SP (2 fold) two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS), gp70V1V2 92TH023 (CVM, SP), and Case A2 (CVM) correlated with plasma IgG levels (p<0.001). Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA) in anogenital secretions will help determine their role in preventing mucosal HIV acquisition. PMID

  7. T-cell Responses in Individuals Infected with Zika Virus and in Those Vaccinated Against Dengue Virus.

    PubMed

    Paquin-Proulx, Dominic; Leal, Fabio E; Terrassani Silveira, Cassia G; Maestri, Alvino; Brockmeyer, Claudia; Kitchen, Shannon M; Cabido, Vinicius D; Kallas, Esper G; Nixon, Douglas F

    2017-01-01

    The outbreak of Zika virus (ZIKV) infection in Brazil has raised concerns that infection during pregnancy could cause microcephaly and other severe neurodevelopmental malformations in the fetus. The mechanisms by which ZIKV causes fetal abnormalities are largely unknown. The importance of pre-infection with dengue virus (DENV), or other flaviviruses endemic to Brazil, remains to be investigated. It has been reported that antibodies directed against DENV can increase ZIKV infectivity by antibody dependent enhancement (ADE), suggesting that a history of prior DENV infection might worsen the outcome of ZIKV infection. We used bioinformatics tools to design 18 peptides from the ZIKV envelope containing predicted HLA-I T-cell epitopes and investigated T-cell cross-reactivity between ZIKV-infected individuals and DENV-vaccinated subjects by IFNγ ELISPOT. Three peptides induced IFNγ production in both ZIKV-infected subjects and in DENV-vaccinated individuals. Flow cytometry indicated that 1 ZIKV peptide induced a CD4+ T-cell response in DENV-vaccinated subjects. We demonstrated that vaccination against DENV induced a T-cell response against ZIKV and identified one such CD4+ T-cell epitope. The ZIKV-reactive CD4+ T cells induced by DENV vaccination and identified in this study could contribute to the appearance of cross-reactive antibodies mediating ADE.

  8. Diagnostic Approach for Differentiating Infected from Vaccinated Poultry on the Basis of Antibodies to NS1, the Nonstructural Protein of Influenza A Virus

    PubMed Central

    Tumpey, Terrence M.; Alvarez, Rene; Swayne, David E.; Suarez, David L.

    2005-01-01

    Vaccination programs for the control of avian influenza (AI) in poultry have limitations due to the problem of differentiating between vaccinated and virus-infected birds. We have used NS1, the conserved nonstructural protein of influenza A virus, as a differential diagnostic marker for influenza virus infection. Experimentally infected poultry were evaluated for the ability to induce antibodies reactive to NS1 recombinant protein produced in Escherichia coli or to chemically synthesized NS1 peptides. Immune sera were obtained from chickens and turkeys inoculated with live AI virus, inactivated purified vaccines, or inactivated commercial vaccines. Seroconversion to positivity for antibodies to the NS1 protein was achieved in birds experimentally infected with multiple subtypes of influenza A virus, as determined by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. In contrast, animals inoculated with inactivated gradient-purified vaccines had no seroconversion to positivity for antibodies to the NS1 protein, and animals vaccinated with commercial vaccines had low, but detectable, levels of NS1 antibodies. The use of a second ELISA with diluted sera identified a diagnostic test that results in seropositivity for antibodies to the NS1 protein only in infected birds. For the field application phase of this study, serum samples were collected from vaccinated and infected poultry, diluted, and screened for anti-NS1 antibodies. Field sera from poultry that received commercial AI vaccines were found to possess antibodies against AI virus, as measured by the standard agar gel precipitin (AGP) test, but they were negative by the NS1 ELISA. Conversely, diluted field sera from AI-infected poultry were positive for both AGP and NS1 antibodies. These results demonstrate the potential benefit of a simple, specific ELISA for anti-NS1 antibodies that may have diagnostic value for the poultry industries. PMID:15695663

  9. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design.

    PubMed

    de Goeij, Bart E C G; Peipp, Matthias; de Haij, Simone; van den Brink, Edward N; Kellner, Christian; Riedl, Thilo; de Jong, Rob; Vink, Tom; Strumane, Kristin; Bleeker, Wim K; Parren, Paul W H I

    2014-01-01

    The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA') fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA', was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA'-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.

  10. Detection of antinuclear and antilaminin antibodies in autistic children who received thimerosal-containing vaccines.

    PubMed

    Singh, Vijendra K; Rivas, Wyatt H

    2004-01-01

    Autism, a neurodevelopmental disorder, may involve autoimmune pathogenesis. Since mercury is potentially a risk factor for autoimmunity, we conducted a study of mercury-induced antinuclear and antilaminin antibodies in autistic and normal children who had been pre-administered with thimerosal-containing vaccines. Laboratory analysis by different immunoassays showed that the serum level of these two autoimmune markers did not significantly differ between autistic and normal children. This finding suggests that the mercury as in thimerosal-containing vaccines is likely not related to autoimmune phenomenon in autism.

  11. Leptospirosis in beef herds from western Canada: serum antibody titers and vaccination practices.

    PubMed

    Van De Weyer, Leanne M; Hendrick, Steve; Rosengren, Leigh; Waldner, Cheryl L

    2011-06-01

    One study described the frequency of pre-breeding vaccination for leptospirosis in 205 cow-calf herds from across western Canada and the prevalence of positive Leptospira antibody titers in unvaccinated, weaned calves from 61 of these herds. The percentages of herds vaccinated for leptospirosis were 13.7% in 2001 and 8.4% in 2002. Of 1539 calves examined, 13 (0.8%) had a positive antibody titer for a Leptospira serovar; the most common serovar detected was hardjo. A second study examined the prevalence of positive Leptospira antibody titers during the summer grazing season in 313 vaccinated and 478 unvaccinated cows from 40 cow-calf herds in southern Saskatchewan. Antibody titers for 7 Leptospira serovars were measured during the grazing season. Of the non-vaccinated cows, 9.6% were positive in the spring for serovar pomona, 6.7% for serovar grippotyphosa, and 6.1% for serovar icterohaemorrhagiae; the corresponding percentages for the fall were 5.5%, 3.0%, and 1.3%, respectively. Of 781 vaccinated and unvaccinated cows that were sampled twice, 11.3% of vaccinated cows and 2.3% of unvaccinated cows had increases in Leptospira antibody titers during the grazing season.

  12. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design.

    PubMed

    Kazi, Ada; Chuah, Candy; Majeed, Abu Bakar Abdul; Leow, Chiuan Herng; Lim, Boon Huat; Leow, Chiuan Yee

    2018-03-12

    Immunoinformatics plays a pivotal role in vaccine design, immunodiagnostic development, and antibody production. In the past, antibody design and vaccine development depended exclusively on immunological experiments which are relatively expensive and time-consuming. However, recent advances in the field of immunological bioinformatics have provided feasible tools which can be used to lessen the time and cost required for vaccine and antibody development. This approach allows the selection of immunogenic regions from the pathogen genomes. The ideal regions could be developed as potential vaccine candidates to trigger protective immune responses in the hosts. At present, epitope-based vaccines are attractive concepts which have been successfully trailed to develop vaccines which target rapidly mutating pathogens. In this article, we provide an overview of the current progress of immunoinformatics and their applications in the vaccine design, immune system modeling and therapeutics.

  13. Persistence of antibody to Hepatitis A virus 20 years after receipt of Hepatitis A vaccine in Alaska.

    PubMed

    Plumb, I D; Bulkow, L R; Bruce, M G; Hennessy, T W; Morris, J; Rudolph, K; Spradling, P; Snowball, M; McMahon, B J

    2017-07-01

    Hepatitis A vaccine is recommended for children ≥1 year old to prevent hepatitis A virus (HAV) infection. However, the duration of vaccine-induced immunity is unknown. We evaluated a cohort of Alaska Native persons 20 years after HAV vaccination. Children aged 3-6 years had been previously randomized to receive three doses of HAV vaccine (360 ELISA units/dose) at: (i) 0,1,2 months; (ii) 0,1,6 months; and (iii) 0,1,12 months. We measured anti-HAV antibody concentrations every 2-3 years; described geometric mean concentrations (GMC) and the proportion with protective antibody (≥20 mIU mL -1 ) over time; and modelled the change in GMC using fractional polynomial regression. Of the 144 participants, after 20 years 52 (36.1%) were available for the follow-up (17, 18, 17 children in Groups A, B and C, respectively). Overall, 46 (88.5%) of 52 available participants had anti-HAV antibody concentrations ≥20 mIU mL -1 , and overall GMC was 107 mIU mL -1 . Although GMC levels were lower in Group A (60; CI 34-104) than in Group B (110; CI 68-177) or Group C (184; CI 98-345) (B vs C: P=.168; A vs B/C: P=.011), there was no difference between groups after adjusting for peak antibody levels post-vaccination (P=.579). Models predicted geometric mean concentrations of 124 mIU mL -1 after 25 years, and 106 mIU mL -1 after 30 years. HAV vaccine provides protective antibody levels 20 years after childhood vaccination. Lower antibody levels in Group A may be explained by a lower initial peak response. Our results suggest a booster vaccine dose is unnecessary for at least 25-30 years. © 2017 John Wiley & Sons Ltd.

  14. The impact of vaccination on the breadth and magnitude of the antibody response to influenza A viruses in HIV-infected individuals.

    PubMed

    Kohler, Ines; Kouyos, Roger; Bianchi, Matteo; Grube, Christina; Wyrzucki, Arkadiusz; Günthard, Huldrych F; Hangartner, Lars

    2015-09-10

    HIV-positive individuals have lower antibody titers to influenza viruses than HIV-negative individuals, and the benefits of the annual vaccinations are controversially discussed. Also, there is no information about the breadth of the antibody response in HIV-infected individuals. The binding and neutralizing antibody titers to various human and nonhuman influenza A virus strain were determined in sera from 146 HIV-infected volunteers: They were compared with those found in 305 randomly selected HIV-negative donors, and put in relation to HIV-specific parameters. Univariable and multivariable regression was used to identify HIV-specific parameters associated with the measured binding and neutralizing activity. Enzyme-linked immunosorbent assays and in-vitro neutralization assays were used to determine the binding and neutralizing antibodiy titers to homo and heterosubtypic influenza A subtypes. We found that both homo and heterosubtypic antibody titers are lower in HIV-positive individuals. Vaccination promoted higher binding and neutralizing antibody titers to human but not to nonhuman isolates. HIV-induced immune damage (high viral load, low CD4 T-cell counts, and long untreated disease progression) is associated with impaired homosubtypic responses, but can have beneficial effects on the development of heterosubtypic antibodies, and an improved ratio of binding to neutralizing antibody titers to homosubtypic isolates. Our results indicate that repetitive vaccinations in HIV-positive individuals enhance antibody titers to human isolates. Interestingly, development of antibody titers to conserved heterosubtypic epitopes paradoxically appeared to profit from HIV-induced immune damage, as did the ratio of binding to neutralizing antibodies.

  15. Rabies neutralizing antibody response to different schedules of serum and vaccine inoculations in non-exposed persons

    PubMed Central

    Atanasiu, P.; Bahmanyar, M.; Baltazard, M.; Fox, J. P.; Habel, K.; Kaplan, M. M.; Kissling, R. E.; Komarov, A.; Koprowski, H.; Lépine, P.; Gallardo, F. Pérez; Schaeffer, M.

    1957-01-01

    Further studies were made on groups of adult humans, previously unexposed to rabies and with no history of rabies vaccination, who were inoculated with different schedules of phenolized inactivated vaccine given subcutaneously and high egg passage (HEP) Flury strain vaccine given intradermally, with and without inoculation of antirabies serum. Serum specimens of the inoculated individuals were studied for antibody up to the 60th day after the first inoculation of the vaccines and serum. Studies were also made on the effect of “booster” doses of HEP Flury strain vaccine given 6 months after preparatory inoculations. The results can be summarized as follows: 1. Fourteen daily inoculations of phenolized vaccine produced a superior antibody response to that obtained with 3 inoculations given 5 days apart. 2. Three intradermal inoculations of HEP Flury vaccine given 5 days apart gave a low level of antibody response, but these individuals responded efficiently by producing antibody to a “booster” dose of the same vaccine given 6 months later. 3. Administration of phenolized vaccine or of HEP Flury vaccine alone did not produce detectable antibody in most individuals until between the 10th and the 15th day after the first inoculation of the vaccine. 4. Passive antibody following inoculation of antirabies serum persisted in some individuals for as long as 42 days. Two inoculations of serum administered 5 days apart did not give levels of antibody higher than those obtained with one inoculation. 5. One inoculation of serum completely suppressed antibody response to 3 inoculations of Flury vaccine given intradermally 5 days apart, and also prevented the preparation of the individuals to respond to a later “booster” dose of this vaccine. 6. Three inoculation of phenolized vaccine given 5 days apart acted efficiently in producing antibody by the 60th day. However, the interfering action of one and two inoculations of serum was clearly defined in this schedule. 7

  16. Haemagglutination inhibition antibody levels one year after natural measles infection and vaccination.

    PubMed

    Eghafona, N O; Ahmad, A A; Ezeokoli, C D; Emejuaiwe, S O

    1991-01-01

    An assessment of haemagglutination inhibition antibody (HAI) titres of 1,163 children, comprising 739 recipients of live measles vaccines and 424 patients with natural measles infection after 1 year was made in this investigation. Statistical analysis revealed a significant difference in the levels of HAI antibodies. Of the vaccinated children a significant 67.45% showed antibody titres of less than or equal to 1:16, while only 23.48% of children with natural measles showed these antibody titres. The importance and implication of such HAI antibody titres is discussed.

  17. Antibodies induced by vaccination with purified chick embryo cell culture vaccine (PCECV) cross-neutralize non-classical bat lyssavirus strains.

    PubMed

    Malerczyk, Claudius; Selhorst, Thomas; Tordo, Noël; Moore, Susan; Müller, Thomas

    2009-08-27

    Tissue-culture vaccines like purified chick embryo cell vaccine (PCECV) have been shown to provide protection against classical rabies virus (RABV) via pre-exposure or post-exposure prophylaxis. A cross-neutralization study was conducted using a panel of 100 human sera, to determine, to what extent after vaccination with PCECV protection exists against non-classical bat lyssavirus strains like European bat lyssavirus (EBLV) type 1 and 2 and Australian bat lyssavirus (ABLV). Virus neutralizing antibody (VNA) concentrations against the rabies virus variants CVS-11, ABLV, EBLV-1 and EBLV-2 were determined by using a modified rapid fluorescent focus inhibition test. For ABLV and EBLV-2, the comparison to CVS-11 revealed almost identical results (100% adequate VNA concentrations >or=0.5 IU/mL; correlation coefficient r(2)=0.69 and 0.77, respectively), while for EBLV-1 more scattering was observed (97% adequate VNA concentrations; r(2)=0.50). In conclusion, vaccination with PCECV produces adequate VNA concentrations against classical RABV as well as non-classical lyssavirus strains ABLV, EBLV-1, and EBLV-2.

  18. Cellular immunogenicity of human papillomavirus vaccines Cervarix and Gardasil in adults with HIV infection

    PubMed Central

    Zurek Munk-Madsen, Maria; Toft, Lars; Kube, Tina; Richter, Rolf; Ostergaard, Lars; Søgaard, Ole S.; Tolstrup, Martin; Kaufmann, Andreas M.

    2018-01-01

    ABSTRACT Human papillomavirus (HPV) infection is a frequent cause of malignant and non-malignant disease, in particular among persons with HIV. HPV serotype-specific anti L1 antibodies protect against HPV infection but little is known about prophylactic HPV vaccine-induced cell-mediated immunity against HPV in high-risk individuals. We recently showed that both HPV vaccines (Gardasil® and Cervarix®) induce solid, serological immune responses in HIV-infected persons. This study aimed to characterize HPV-specific CD4 T cells in HIV-infected HPV-vaccine recipients, T cell responses being critical for B cell activation and antibody-isotype switching. Thirty HIV-infected patients on long-term antiretroviral treatment (ART) received 3 doses of either Cervarix (n = 15) or Gardasil (n = 15) vaccine at month 0, 1.5 and 6. Cryopreserved peripheral blood mononuclear cells (PBMC) from baseline, 7 and 12 months were subjected to 24-hour stimulation with specific pools of HPV L1-peptides (HPV6, 11, 16, 18, 31 and 45) and HPV E6/E7-peptide pools (HPV6/11 and HPV16/18). Fluorescence-activated cell sorting with intracellular staining (IC-FACS) against CD4, CD154, IL-2, and IFNγ was performed. Frequencies (%) of HPV-antigen specific CD4+ T cells (CD154+/IL-2+ or CD154+/ IFNγ+) were determined. Both HPV-vaccines significantly and comparably enhanced cell-mediated vaccine L1 antigen-specific immunity in HIV-positive adults receiving ART therapy at month 7 and 12 after first vaccine dose. This suggests that the vaccines induce CD4 T cellular memory despite HIV-induced immune compromisation. PMID:29172992

  19. Cellular immunogenicity of human papillomavirus vaccines Cervarix and Gardasil in adults with HIV infection.

    PubMed

    Zurek Munk-Madsen, Maria; Toft, Lars; Kube, Tina; Richter, Rolf; Ostergaard, Lars; Søgaard, Ole S; Tolstrup, Martin; Kaufmann, Andreas M

    2018-04-03

    Human papillomavirus (HPV) infection is a frequent cause of malignant and non-malignant disease, in particular among persons with HIV. HPV serotype-specific anti L1 antibodies protect against HPV infection but little is known about prophylactic HPV vaccine-induced cell-mediated immunity against HPV in high-risk individuals. We recently showed that both HPV vaccines (Gardasil® and Cervarix®) induce solid, serological immune responses in HIV-infected persons. This study aimed to characterize HPV-specific CD4 T cells in HIV-infected HPV-vaccine recipients, T cell responses being critical for B cell activation and antibody-isotype switching. Thirty HIV-infected patients on long-term antiretroviral treatment (ART) received 3 doses of either Cervarix (n = 15) or Gardasil (n = 15) vaccine at month 0, 1.5 and 6. Cryopreserved peripheral blood mononuclear cells (PBMC) from baseline, 7 and 12 months were subjected to 24-hour stimulation with specific pools of HPV L1-peptides (HPV6, 11, 16, 18, 31 and 45) and HPV E6/E7-peptide pools (HPV6/11 and HPV16/18). Fluorescence-activated cell sorting with intracellular staining (IC-FACS) against CD4, CD154, IL-2, and IFNγ was performed. Frequencies (%) of HPV-antigen specific CD4+ T cells (CD154 + /IL-2 + or CD154 + / IFNγ + ) were determined. Both HPV-vaccines significantly and comparably enhanced cell-mediated vaccine L1 antigen-specific immunity in HIV-positive adults receiving ART therapy at month 7 and 12 after first vaccine dose. This suggests that the vaccines induce CD4 T cellular memory despite HIV-induced immune compromisation.

  20. Aggregate complexes of HIV-1 induced by multimeric antibodies.

    PubMed

    Stieh, Daniel J; King, Deborah F; Klein, Katja; Liu, Pinghuang; Shen, Xiaoying; Hwang, Kwan Ki; Ferrari, Guido; Montefiori, David C; Haynes, Barton; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Michael, Nelson L; Robb, Merlin L; Kim, Jerome H; Denny, Thomas N; Tomaras, Georgia D; Shattock, Robin J

    2014-10-02

    Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.

  1. Prior Population Immunity Reduces the Expected Impact of CTL-Inducing Vaccines for Pandemic Influenza Control

    PubMed Central

    Bolton, Kirsty J.; McCaw, James M.; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie

    2015-01-01

    Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the

  2. Prior population immunity reduces the expected impact of CTL-inducing vaccines for pandemic influenza control.

    PubMed

    Bolton, Kirsty J; McCaw, James M; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie

    2015-01-01

    Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the

  3. HIV Neutralizing Antibodies Induced by Native-like Envelope Trimers

    PubMed Central

    Sanders, Rogier W.; van Gils, Marit J.; Derking, Ronald; Sok, Devin; Ketas, Thomas J.; Burger, Judith A.; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J.; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J.; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne; Julien, Jean-Philippe; Rakasz, Eva G.; Seaman, Michael S.; Guttman, Miklos; Lee, Kelly K.; Klasse, Per Johan; LaBranche, Celia; Schief, William R.; Wilson, Ian A.; Overbaugh, Julie; Burton, Dennis R.; Ward, Andrew B.; Montefiori, David C.; Dean, Hansi; Moore, John P.

    2015-01-01

    A challenge for HIV-1 immunogen design is inducing neutralizing antibodies (NAbs) against neutralization-resistant (Tier-2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation (BG505 SOSIP.664) induced NAbs potently against the sequence-matched Tier-2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (Tier-1) viruses. Tier-2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas Tier-1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous Tier-2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for developing HIV-1 vaccines aimed at inducing bNAbs. PMID:26089353

  4. Neutralizing Antibody Response in Dogs and Cats Inoculated with Commercial Inactivated Rabies Vaccines

    PubMed Central

    SHIRAISHI, Rikiya; NISHIMURA, Masaaki; NAKASHIMA, Ryuji; ENTA, Chiho; HIRAYAMA, Norio

    2013-01-01

    ABSTRACT In Japan, the import quarantine regulation against rabies has required from 2005 that dogs and cats should be inoculated with the rabies vaccine and that the neutralizing antibody titer should be confirmed to be at least 0.5 international units (IU)/ml. The fluorescent antibody virus neutralization (FAVN) test is used as an international standard method for serological testing for rabies. To achieve proper immunization of dogs and cats at the time of import and export, changes in the neutralizing antibody titer after inoculation of the rabies vaccine should be understood in detail. However, few reports have provided this information. In this study, we aimed to determine evaluated, such changes by using sera from experimental dogs and cats inoculated with the rabies vaccine, and we tested samples using the routine FAVN test. In both dogs and cats, proper, regular vaccination enabled the necessary titer of neutralizing antibodies to be maintained in the long term. However, inappropriate timing of blood sampling after vaccination could result in insufficient detected levels of neutralizing antibodies. PMID:24389741

  5. Neutralizing antibody response in dogs and cats inoculated with commercial inactivated rabies vaccines.

    PubMed

    Shiraishi, Rikiya; Nishimura, Masaaki; Nakashima, Ryuji; Enta, Chiho; Hirayama, Norio

    2014-04-01

    In Japan, the import quarantine regulation against rabies has required from 2005 that dogs and cats should be inoculated with the rabies vaccine and that the neutralizing antibody titer should be confirmed to be at least 0.5 international units (IU)/ml. The fluorescent antibody virus neutralization (FAVN) test is used as an international standard method for serological testing for rabies. To achieve proper immunization of dogs and cats at the time of import and export, changes in the neutralizing antibody titer after inoculation of the rabies vaccine should be understood in detail. However, few reports have provided this information. In this study, we aimed to determine evaluated, such changes by using sera from experimental dogs and cats inoculated with the rabies vaccine, and we tested samples using the routine FAVN test. In both dogs and cats, proper, regular vaccination enabled the necessary titer of neutralizing antibodies to be maintained in the long term. However, inappropriate timing of blood sampling after vaccination could result in insufficient detected levels of neutralizing antibodies.

  6. Neutralizing Antibodies Elicited by a Novel Detoxified Pneumolysin Derivative, PlyD1, Provide Protection against Both Pneumococcal Infection and Lung Injury

    PubMed Central

    Salha, Danielle; Szeto, Jason; Myers, Lisa; Claus, Carol; Sheung, Anthony; Tang, Mei; Ljutic, Belma; Hanwell, David; Ogilvie, Karen; Ming, Marin; Messham, Benjamin; van den Dobbelsteen, Germie; Hopfer, Robert; Ochs, Martina M.

    2012-01-01

    Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia. PMID:22473606

  7. Neutralizing antibodies elicited by a novel detoxified pneumolysin derivative, PlyD1, provide protection against both pneumococcal infection and lung injury.

    PubMed

    Salha, Danielle; Szeto, Jason; Myers, Lisa; Claus, Carol; Sheung, Anthony; Tang, Mei; Ljutic, Belma; Hanwell, David; Ogilvie, Karen; Ming, Marin; Messham, Benjamin; van den Dobbelsteen, Germie; Hopfer, Robert; Ochs, Martina M; Gallichan, Scott

    2012-06-01

    Streptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers and in vitro neutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia.

  8. Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design

    PubMed Central

    French, Martyn A.; Tjiam, M. Christian; Abudulai, Laila N.; Fernandez, Sonia

    2017-01-01

    Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting “protective” HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to Fcγ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid

  9. Impaired Antibody-mediated Protection and Defective IgA B-Cell Memory in Experimental Infection of Adults with Respiratory Syncytial Virus.

    PubMed

    Habibi, Maximillian S; Jozwik, Agnieszka; Makris, Spyridon; Dunning, Jake; Paras, Allan; DeVincenzo, John P; de Haan, Cornelis A M; Wrammert, Jens; Openshaw, Peter J M; Chiu, Christopher

    2015-05-01

    Despite relative antigenic stability, respiratory syncytial virus (RSV) reinfects throughout life. After more than 40 years of research, no effective human vaccine exists and correlates of protection remain poorly defined. Most current vaccine candidates seek to induce high levels of RSV-specific serum neutralizing antibodies, which are associated with reduced RSV-related hospitalization rates in observational studies but may not actually prevent infection. To characterize correlates of protection from infection and the generation of RSV-specific humoral memory to promote effective vaccine development. We inoculated 61 healthy adults with live RSV and studied protection from infection by serum and mucosal antibody. We analyzed RSV-specific peripheral blood plasmablast and memory B-cell frequencies and antibody longevity. Despite moderately high levels of preexisting serum antibody, 34 (56%) became infected, of whom 23 (68%) developed symptomatic colds. Prior RSV-specific nasal IgA correlated significantly more strongly with protection from polymerase chain reaction-confirmed infection than serum neutralizing antibody. Increases in virus-specific antibody titers were variable and transient in infected subjects but correlated with plasmablasts that peaked around Day 10. During convalescence, only IgG (and no IgA) RSV-specific memory B cells were detectable in peripheral blood. This contrasted with natural influenza infection, in which virus-specific IgA memory B cells were readily recovered. This observed specific defect in IgA memory may partly explain the ability of RSV to cause recurrent symptomatic infections. If so, vaccines able to induce durable RSV-specific IgA responses may be more protective than those generating systemic antibody alone.

  10. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs.

    PubMed

    Dhakal, Santosh; Hiremath, Jagadish; Bondra, Kathryn; Lakshmanappa, Yashavanth S; Shyu, Duan-Liang; Ouyang, Kang; Kang, Kyung-Il; Binjawadagi, Basavaraj; Goodman, Jonathan; Tabynov, Kairat; Krakowka, Steven; Narasimhan, Balaji; Lee, Chang Won; Renukaradhya, Gourapura J

    2017-02-10

    Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA-KAg) were prepared, which were spherical in shape with 200 to 300nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA-KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA-KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA-KAg vaccinated pig lung airways were observed. Immunologically, PLGA-KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN-γ secreting total T cells, T-helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA-NPs reduced the clinical disease and induced cross-protective cell-mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Immunogenicity of an intranasally administered modified live canine parvovirus type 2b vaccine in pups with maternally derived antibodies.

    PubMed

    Martella, Vito; Cavalli, Alessandra; Decaro, Nicola; Elia, Gabriella; Desario, Costantina; Campolo, Marco; Bozzo, Giancarlo; Tarsitano, Elvira; Buonavoglia, Canio

    2005-10-01

    The ability of a modified live canine parvovirus type 2b vaccine to elicit active immunization in pups with maternally derived antibodies (MDA) by intranasal administration was evaluated. The vaccine induced seroconversion in 100% of pups with MDA titers of < or = 80 and in 51.6% of pups with titers between 160 and 320.

  12. Cellular and humoral immunity after vaccination or natural mumps infection.

    PubMed

    Terada, Kihei; Hagihara, Kimiko; Oishi, Tomohiro; Miyata, Ippei; Akaike, Hiroto; Ogita, Satoko; Ohno, Naoki; Ouchi, Kazunobu

    2017-08-01

    This study measured cell-mediated immunity (CMI) and serum antibody to clarify the basis of breakthrough after vaccination and reinfection after mumps. From a pool of 54 college students, 17 seronegative subjects and 14 subjects with intermediate level of antibodies against mumps were vaccinated with a monovalent mumps vaccine, and CMI was assessed using interferon-γ release assay. CMI positivity according to pre-existing antibody level, defined as titer <2.0 index units, negative; 2.0-3.9 index units, intermediate; and ≥4.0 index units, positive, was 8/17 (47.1%), 9/14 (64.3%) and 19/23 (82.6%) before vaccination, respectively. Of the 17 seronegative subjects, seven (41.2%) had a history of vaccination and/or natural infection, four (57.1%) of whom were CMI positive or intermediate. Ten (71%) of 14 subjects with intermediate antibody level had a history of vaccination or natural infection, eight (80%) of whom were CMI positive or intermediate. After vaccination the interferon (IFN)-γ and antibody titers increased significantly, but seven (41.2%) of the 17 seronegative subjects and 13 (92.9%) of the 14 intermediate-level subjects tested positive for both antibody and CMI. In a comparison of the natural infection group (confirmed as IgG seropositive and/or CMI positive without vaccination) versus the vaccination group, IgG antibody titer (mean ± SD) was 14.4 ± 8.0 versus 3.6 ± 2.4 index units (P < 0.01) and IFN-γ was 122.7 ± 90.0 pg/mL versus 59.5 ± 37.8 pg/mL (P > 0.05), respectively. Vaccination or even natural mumps infection did not always induce both cellular and humoral immunity. © 2017 Japan Pediatric Society.

  13. Induction of HIV Neutralizing Antibodies against the MPER of the HIV Envelope Protein by HA/gp41 Chimeric Protein-Based DNA and VLP Vaccines

    PubMed Central

    Ye, Ling; Wen, Zhiyuan; Dong, Ke; Wang, Xi; Bu, Zhigao; Zhang, Huizhong; Compans, Richard W.; Yang, Chinglai

    2011-01-01

    Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14) in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy. PMID:21625584

  14. Influence of host related factors on the antibody response to trivalent oral polio vaccine in Tunisian infants.

    PubMed

    Triki, H; Abdallah, M V; Ben Aissa, R; Bouratbine, A; Ben Ali Kacem, M; Bouraoui, S; Koubaa, C; Zouari, S; Mohsni, E; Crainic, R; Dellagi, K

    1997-07-01

    The low efficiency of trivalent oral polio vaccine (TOPV) in inducing protective antibody titres to polio3 is a problem of great importance in many regions of the world. A prospective study was conducted in 121 Tunisian infants aged 3 months during routine immunization with TOPV under carefully controlled conditions. Seroconversion rates to polio1, polio2 and polio3, one month after the third dose, were 94.7, 100 and 89.5%, respectively. The kinetics of the antibody response showed delayed and more difficult responses to polio3 compared to polio2 and polio1. The following host related factors, previously suggested to interfere with the immune response, were assessed: maternal antibodies; breast-feeding; concurrent enteric infections; and other illnesses. The main factor associated with the lack of seroconversion was concurrent infection with non-polio enteroviruses (NPE) which was found in 50% of non-responders to polio1 and/or to polio3 during the vaccination protocol whereas no NPE was isolated in vaccine responders. The other studied factors seemed not to interfere in the infants according to the locally adopted vaccination schedule and to the specific socio-economic conditions.

  15. Gelatin-induced T-cell activation in children with nonanaphylactic-type reactions to vaccines containing gelatin.

    PubMed

    Taniguchi, K; Fujisawa, T; Ihara, T; Kamiya, H

    1998-12-01

    Many cases of anaphylactic or nonanaphylactic reactions have been reported to measles-mumps-rubella vaccine or its component vaccines that contain gelatin as a stabilizer. Increased levels of specific IgE antibodies to gelatin have been reported in children with anaphylactic reactions. However, IgE is not increased in cases of nonanaphylactic reaction, and the mechanisms of the reaction are still controversial. The study was aimed to elucidate the relationship between nonanaphylactic reaction and gelatin. We investigated in vitro induction of activated memory helper T cells (CD4(+ )CD25(+ )CD45RO+ cells) in response to gelatin in children with nonanaphylactic reactions to vaccines containing gelatin. In patients with delayed-type sensitivity to gelatin confirmed with a positive skin test response, CD4(+ )CD25(+ )CD45RO+ cells were significantly more strongly induced in culture containing gelatin than in control cultures. However, there was no significant difference between cultures with gelatin and those with control solvent in patients without reactions after vaccination. Of 76 patients with nonanaphylactic reactions after immunization with vaccine containing gelatin, 61 had an increased lymphocyte stimulation index to gelatin versus control children. These results suggest the possibility that nonanaphylactic reactions to gelatin-containing vaccine in Japan might be mediated by delayed hypersensitivity reactions against gelatin.

  16. Genomic copy number variants: evidence for association with antibody response to anthrax vaccine adsorbed.

    PubMed

    Falola, Michael I; Wiener, Howard W; Wineinger, Nathan E; Cutter, Gary R; Kimberly, Robert P; Edberg, Jeffrey C; Arnett, Donna K; Kaslow, Richard A; Tang, Jianming; Shrestha, Sadeep

    2013-01-01

    Anthrax and its etiologic agent remain a biological threat. Anthrax vaccine is highly effective, but vaccine-induced IgG antibody responses vary widely following required doses of vaccinations. Such variation can be related to genetic factors, especially genomic copy number variants (CNVs) that are known to be enriched among genes with immunologic function. We have tested this hypothesis in two study populations from a clinical trial of anthrax vaccination. We performed CNV-based genome-wide association analyses separately on 794 European Americans and 200 African-Americans. Antibodies to protective antigen were measured at week 8 (early response) and week 30 (peak response) using an enzyme-linked immunosorbent assay. We used DNA microarray data (Affymetrix 6.0) and two CNV detection algorithms, hidden markov model (PennCNV) and circular binary segmentation (GeneSpring) to determine CNVs in all individuals. Multivariable regression analyses were used to identify CNV-specific associations after adjusting for relevant non-genetic covariates. Within the 22 autosomal chromosomes, 2,943 non-overlapping CNV regions were detected by both algorithms. Genomic insertions containing HLA-DRB5, DRB1 and DQA1/DRA genes in the major histocompatibility complex (MHC) region (chromosome 6p21.3) were moderately associated with elevated early antibody response (β = 0.14, p = 1.78×10(-3)) among European Americans, and the strongest association was observed between peak antibody response and a segmental insertion on chromosome 1, containing NBPF4, NBPF5, STXMP3, CLCC1, and GPSM2 genes (β = 1.66, p = 6.06×10(-5)). For African-Americans, segmental deletions spanning PRR20, PCDH17 and PCH68 genes on chromosome 13 were associated with elevated early antibody production (β = 0.18, p = 4.47×10(-5)). Population-specific findings aside, one genomic insertion on chromosome 17 (containing NSF, ARL17 and LRRC37A genes) was associated with elevated peak antibody

  17. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination

    PubMed Central

    Martin, Judith M.; Gross, F. Liaini; Jefferson, Stacie; Cole, Kelly Stefano; Archibald, Crystal Ann; Nowalk, Mary Patricia; Susick, Michael; Moehling, Krissy; Spencer, Sarah; Chung, Jessie R.; Flannery, Brendan; Zimmerman, Richard K.

    2016-01-01

    Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure. PMID:27558294

  18. Strategies to induce broadly protective antibody responses to viral glycoproteins.

    PubMed

    Krammer, F

    2017-05-01

    Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.

  19. Antibody profiling using a recombinant protein-based multiplex ELISA array accelerates recombinant vaccine development: Case study on red sea bream iridovirus as a reverse vaccinology model.

    PubMed

    Matsuyama, Tomomasa; Sano, Natsumi; Takano, Tomokazu; Sakai, Takamitsu; Yasuike, Motoshige; Fujiwara, Atushi; Kawato, Yasuhiko; Kurita, Jun; Yoshida, Kazunori; Shimada, Yukinori; Nakayasu, Chihaya

    2018-05-03

    Predicting antigens that would be protective is crucial for the development of recombinant vaccine using genome based vaccine development, also known as reverse vaccinology. High-throughput antigen screening is effective for identifying vaccine target genes, particularly for pathogens for which minimal antigenicity data exist. Using red sea bream iridovirus (RSIV) as a research model, we developed enzyme-linked immune sorbent assay (ELISA) based RSIV-derived 72 recombinant antigen array to profile antiviral antibody responses in convalescent Japanese amberjack (Seriola quinqueradiata). Two and three genes for which the products were unrecognized and recognized, respectively, by antibodies in convalescent serum were selected for recombinant vaccine preparation, and the protective effect was examined in infection tests using Japanese amberjack and greater amberjack (S. dumerili). No protection was provided by vaccines prepared from gene products unrecognized by convalescent serum antibodies. By contrast, two vaccines prepared from gene products recognized by serum antibodies induced protective immunity in both fish species. These results indicate that ELISA array screening is effective for identifying antigens that induce protective immune responses. As this method does not require culturing of pathogens, it is also suitable for identifying protective antigens to un-culturable etiologic agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. An immunogen containing four tandem 10E8 epitope repeats with exposed key residues induces antibodies that neutralize HIV-1 and activates an ADCC reporter gene

    PubMed Central

    Sun, Zhiwu; Zhu, Yun; Wang, Qian; Ye, Ling; Dai, Yanyan; Su, Shan; Yu, Fei; Ying, Tianlei; Yang, Chinglai; Jiang, Shibo; Lu, Lu

    2016-01-01

    After three decades of intensive research efforts, an effective vaccine against HIV-1 remains to be developed. Several broadly neutralizing antibodies to HIV-1, such as 10E8, recognize the membrane proximal external region (MPER) of the HIV-1 gp41 protein. Thus, the MPER is considered to be a very important target for vaccine design. However, the MPER segment has very weak immunogenicity and tends to insert its epitope residues into the cell membrane, thereby avoiding antibody binding. To address this complication in vaccine development, we herein designed a peptide, designated 10E8-4P, containing four copies of the 10E8 epitope as an immunogen. As predicted by structural simulation, 10E8-4P exhibits a well-arranged tandem helical conformation, with the key residues in the 10E8 epitope oriented at different angles, thus suggesting that some of these key residues may be exposed outside of the lipid membrane. Compared with a peptide containing a single 10E8 epitope (10E8-1P), 10E8-4P not only exhibited better antigenicity but also elicited neutralizing antibody response against HIV-1 pseudoviruses, whereas 10E8-1P could not induce detectable neutralizing antibody response. Importantly, antibodies elicited by 10E8-4P also possessed a strong ability to activate an antibody-dependent cell-mediated cytotoxicity (ADCC) reporter gene, thus suggesting that they may have ADCC activity. Therefore, this strategy shows promise for further optimization and application in future HIV-1 vaccine design. PMID:27329850

  1. Immunogenicity of an Intranasally Administered Modified Live Canine Parvovirus Type 2b Vaccine in Pups with Maternally Derived Antibodies

    PubMed Central

    Martella, Vito; Cavalli, Alessandra; Decaro, Nicola; Elia, Gabriella; Desario, Costantina; Campolo, Marco; Bozzo, Giancarlo; Tarsitano, Elvira; Buonavoglia, Canio

    2005-01-01

    The ability of a modified live canine parvovirus type 2b vaccine to elicit active immunization in pups with maternally derived antibodies (MDA) by intranasal administration was evaluated. The vaccine induced seroconversion in 100% of pups with MDA titers of ≤80 and in 51.6% of pups with titers between 160 and 320. PMID:16210491

  2. Antibody persistence and the effect of a booster dose given 5, 10 or 15 years after vaccinating preadolescents with a recombinant hepatitis B vaccine.

    PubMed

    Gilca, Vladimir; De Serres, Gaston; Boulianne, Nicole; Murphy, Donald; De Wals, Philippe; Ouakki, Manale; Trudeau, Gisele; Massé, Richard; Dionne, Marc

    2013-01-07

    The persistence of antibody obtained post-vaccination of preadolescents with three doses of Engerix-B and the effect of a booster administered 5, 10 or 15 years later were monitored in 663 vaccinees. Five, 10 and 15 years post-vaccination >94% of subjects had detectable antibodies and 88.2%, 86.4% and 76.7% had a titre ≥10 IU/L; GMTs were 269 IU/L, 169 IU/L and 51 IU/L, respectively; 99.1-100% vaccinees reached a titre ≥10 IU/l post-booster. GMTs were 118012 IU/L, 32477 IU/L, and 13946 IU/L when the booster was administered 5, 10 or 15 years post-vaccination, respectively. We conclude that vaccination induces immunity in the great majority of vaccinees for at least 15 years. The response to a booster dose suggests persistence of immune memory in almost all vaccinees. Although a booster dose increases substantially anti-HBs titres, the clinical relevance of such an increase remains unknown. These results do not support the need of a booster for at least 15 years when vaccinating preadolescents with Engerix-B. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Antibody-Mediated Activation of FGFR1 Induces FGF23 Production and Hypophosphatemia

    PubMed Central

    Kolumam, Ganesh; Zavala-Solorio, Jose; Wyatt, Shelby K.; Gandham, Vineela D.; Carano, Richard A. D.; Sonoda, Junichiro

    2013-01-01

    The phosphaturic hormone Fibroblast Growth Factor 23 (FGF23) controls phosphate homeostasis by regulating renal expression of sodium-dependent phosphate co-transporters and cytochrome P450 enzymes involved in vitamin D catabolism. Multiple FGF Receptors (FGFRs) can act as receptors for FGF23 when bound by the co-receptor Klotho expressed in the renal tubular epithelium. FGFRs also regulate skeletal FGF23 secretion; ectopic FGFR activation is implicated in genetic conditions associated with FGF23 overproduction and hypophosphatemia. The identity of FGFRs that mediate the activity of FGF23 or that regulate skeletal FGF23 secretion remains ill defined. Here we report that pharmacological activation of FGFR1 with monoclonal anti-FGFR1 antibodies (R1MAb) in adult mice is sufficient to cause an elevation in serum FGF23 and mild hypophosphatemia. In cultured rat calvariae osteoblasts, R1MAb induces FGF23 mRNA expression and FGF23 protein secretion into the culture medium. In a cultured kidney epithelial cell line, R1MAb acts as a functional FGF23 mimetic and activates the FGF23 program. siRNA-mediated Fgfr1 knockdown induced the opposite effects. Taken together, our work reveals the central role of FGFR1 in the regulation of FGF23 production and signal transduction, and has implications in the pathogenesis of FGF23-related hypophosphatemic disorders. PMID:23451204

  4. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C) Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity

    PubMed Central

    Kim, Eun-Do; Han, Soo Jung; Byun, Young-Ho; Yoon, Sang Chul; Choi, Kyoung Sub; Seong, Baik Lin; Seo, Kyoung Yul

    2015-01-01

    The eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice. Among the adjuvants, poly (I:C) showed as much enhancement in antigen-specific serum IgG and mucosal IgA antibody production as cholera toxin (CT) after vaccinations with trivalent hemagglutinin-subunits or split H1N1 vaccine antigen in mice. Vaccination with split H1N1 eyedrop vaccine antigen plus poly(I:C) showed a similar or slightly lower efficacy in inducing antibody production than intranasal vaccination; the eyedrop vaccine-induced immunity was enough to protect mice from lethal homologous influenza A/California/04/09 (H1N1) virus challenge. Additionally, ocular inoculation with poly(I:C) plus vaccine antigen generated no signs of inflammation within 24 hours: no increases in the mRNA expression levels of inflammatory cytokines nor in the infiltration of mononuclear cells to administration sites. In contrast, CT administration induced increased expression of IL-6 cytokine mRNA and mononuclear cell infiltration in the conjunctiva within 24 hours of vaccination. Moreover, inoculated visualizing materials by eyedrop did not contaminate the surface of the olfactory bulb in mice; meanwhile, intranasally administered materials defiled the surface of the brain. On the basis of these findings, we propose that the use of eyedrop inactivated influenza vaccine plus poly(I:C) is a safe and effective mucosal vaccine strategy for inducing protective anti-influenza immunity. PMID:26355295

  5. The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response

    PubMed Central

    Flipse, Jacky; Smit, Jolanda M.

    2015-01-01

    Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection. PMID:26065421

  6. Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination

    PubMed Central

    Nivarthi, Usha K.; Kose, Nurgun; Sapparapu, Gopal; Widman, Douglas; Gallichotte, Emily; Pfaff, Jennifer M.; Doranz, Benjamin J.; Weiskopf, Daniela; Sette, Alessandro; Durbin, Anna P.; Whitehead, Steve S.; Baric, Ralph

    2016-01-01

    ABSTRACT The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination. IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody

  7. Inactivated infectious bronchitis virus vaccine encapsulated in chitosan nanoparticles induces mucosal immune responses and effective protection against challenge.

    PubMed

    Lopes, Priscila Diniz; Okino, Cintia Hiromi; Fernando, Filipe Santos; Pavani, Caren; Casagrande, Viviane Mariguela; Lopez, Renata F V; Montassier, Maria de Fátima Silva; Montassier, Helio José

    2018-05-03

    Avian infectious bronchitis virus (IBV) is one of the most important viral diseases of poultry. The mucosa of upper respiratory tract, specially the trachea, is the primary replication site for this virus. However, conventional inactivate IBV vaccines usually elicit reduced mucosal immune responses and local protection. Thus, an inactivated IBV vaccine containing BR-I genotype strain encapsulated in chitosan nanoparticles (IBV-CS) was produced by ionic gelation method to be administered by oculo-nasal route to chickens. IBV-CS vaccine administered alone resulted in markedly mucosal immune responses, characterized by high levels of anti-IBV IgA isotype antibodies and IFNγ gene expression at 1dpi. The association of live attenuated Massachusetts IBV and IBV-CS vaccine also induced strong mucosal immune responses, though a switch from IgA isotype to IgG was observed, and IFNγ gene expression peak was late (at 5 dpi). Efficacy of IBV-CS was evaluated by tracheal ciliostasis analysis, histopathology examination, and viral load determination in the trachea and kidney. The results indicated that IBV-CS vaccine administered alone or associated with a live attenuated heterologous vaccine induced both humoral and cell-mediated immune responses at the primary site of viral replication, and provided an effective protection against IBV infection at local (trachea) and systemic (kidney) sites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Immunogenicity, Safety and Antibody Persistence of a Booster Dose of Quadrivalent Meningococcal ACWY-tetanus Toxoid Conjugate Vaccine Compared with Monovalent Meningococcal Serogroup C Vaccine Administered Four Years After Primary Vaccination Using the Same Vaccines.

    PubMed

    Vesikari, Timo; Forsten, Aino; Bianco, Veronique; Van der Wielen, Marie; Miller, Jacqueline M

    2015-12-01

    We evaluated safety, immunogenicity and antibody persistence of meningococcal serogroups A, C, W and Y tetanus toxoid conjugate vaccine (MenACWY-TT) booster vaccination 4 years after priming of toddlers. This phase III, open-label, controlled study in Finland (NCT00955682) enrolled children previously randomized (3:1) at 12-23 months (NCT00474266) to receive 1 dose of MenACWY-TT or MenC conjugate vaccine (MenC-CRM197). Serum bactericidal antibody titers using rabbit (rSBA, cut-off 1:8) and human complement (hSBA, cut-off 1:8) were assessed at year 3 and 4 after priming and 1 month and 1 year after administration of a booster dose of the same vaccine given for primary vaccination. Reactogenicity and safety were assessed, and vaccination-related serious adverse events were recorded from the time of primary vaccination. Before booster (year 4), 74.1%, 40.4%, 49.3% and 58.2% of MenACWY-TT-recipients retained rSBA titers ≥1:8 for serogroups A, C, W and Y, respectively; 28.8%, 73.2%, 80.6% and 65.4% retained hSBA ≥1:8. Percentages for the MenC-CRM group were 35.6% (rSBA-MenC) and 46.9% (hSBA-MenC). After MenACWY-TT booster, ≥99.5% had rSBA ≥1:8 and hSBA ≥1:8 for each serogroup. After MenC-CRM197 booster, all children had rSBA-MenC ≥1:8 and hSBA-MenC ≥1:8. At year 5, percentages above the cut-off were ≥97.4% (rSBA) and ≥95.5% (hSBA) in MenACWY-TT-vaccinees for each serogroup. The MenACWY-TT booster dose had a clinically acceptable safety profile. No vaccine-related serious adverse events were reported. There was evidence of antibody persistence 4 years after toddlers were primed with MenACWY-TT. Booster vaccination induced robust immune responses for all serogroups with an acceptable safety profile.

  9. Biological safety concepts of genetically modified live bacterial vaccines.

    PubMed

    Frey, Joachim

    2007-07-26

    Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment

  10. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    PubMed

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  11. Antibody responses of Macaca fascicularis against a new inactivated polio vaccine derived from Sabin strains (sIPV) in DTaP-sIPV vaccine.

    PubMed

    Sato, Y; Shiosaki, K; Goto, Y; Sonoda, K; Kino, Y

    2013-05-01

    Antibody responses of Macaca fascicularis against a new tetravalent vaccine composed of diphtheria toxoid, tetanus toxoid, acellular pertussis antigens, and inactivated poliovirus derived from Sabin strains (sIPV) was investigated to predict an optimal dose of sIPV in a new tetravalent vaccine (DTaP-sIPV) prior to conducting a dose-defined clinical study. Monkeys were inoculated with DTaP-sIPVs containing three different antigen units of sIPVs: Vaccine A (types 1:2:3 = 3:100:100 DU), Vaccine B (types 1:2:3 = 1.5:50:50 DU), and Vaccine C (types 1:2:3 = 0.75:25:25 DU). There was no difference in the average titers of neutralizing antibody against the attenuated or virulent polioviruses between Vaccines A and B. The average neutralizing antibody titers of Vaccine C tended to be lower than those of Vaccines A and B. The sIPV antigens did not affect the anti-diphtheria or anti-tetanus antibody titers of DTaP-sIPV. Furthermore, the average neutralizing antibody titers of Vaccine A against the attenuated and virulent polioviruses were comparable between M. fascicularis and humans. These results suggest that M. fascicularis may be a useful animal model for predicting the antibody responses to sIPVs in humans, and that it may be likely to reduce the amount of sIPVs contained in DTaP-sIPVs, even for humans. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  12. Comparative analysis of the immune responses induced by native versus recombinant versions of the ASP-based vaccine against the bovine intestinal parasite Cooperia oncophora.

    PubMed

    González-Hernández, Ana; Borloo, Jimmy; Peelaers, Iris; Casaert, Stijn; Leclercq, Georges; Claerebout, Edwin; Geldhof, Peter

    2018-01-01

    The protective capacities of a native double-domain activation-associated secreted protein (ndd-ASP)-based vaccine against the cattle intestinal nematode Cooperia oncophora has previously been demonstrated. However, protection analysis upon vaccination with a recombinantly produced antigen has never been performed. Therefore, the aim of the current study was to test the protective potential of a Pichia-produced double-domain ASP (pdd-ASP)-based vaccine against C. oncophora. Additionally, we aimed to compare the cellular and humoral mechanisms underlying the vaccine-induced responses by the native (ndd-ASP) and recombinant vaccines. Immunisation of cattle with the native C. oncophora vaccine conferred significant levels of protection after an experimental challenge infection, whereas the recombinant vaccine did not. Moreover, vaccination with ndd-ASP resulted in a higher proliferation of CD4-T cells both systemically and in the small intestinal mucosa when compared with animals vaccinated with the recombinant antigen. In terms of humoral response, although both native and recombinant vaccines induced similar levels of antibodies, animals vaccinated with the native vaccine were able to raise antibodies with greater specificity towards ndd-ASP in comparison with antibodies raised by vaccination with the recombinant vaccine, suggesting a differential immune recognition towards the ndd-ASP and pdd-ASP. Finally, the observation that animals displaying antibodies with higher percentages of recognition towards ndd-ASP also exhibited the lowest egg counts suggests a potential relationship between antibody specificity and protection. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice

    PubMed Central

    Wang, Jiong; Hilchey, Shannon P.; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J.; Treanor, John J.; Sangster, Mark Y.

    2018-01-01

    Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity. PMID:29641537

  14. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice.

    PubMed

    Wang, Jiong; Hilchey, Shannon P; DeDiego, Marta; Perry, Sheldon; Hyrien, Ollivier; Nogales, Aitor; Garigen, Jessica; Amanat, Fatima; Huertas, Nelson; Krammer, Florian; Martinez-Sobrido, Luis; Topham, David J; Treanor, John J; Sangster, Mark Y; Zand, Martin S

    2018-01-01

    Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity.

  15. Comparison of homologous and heterologous prime-boost vaccine approaches using Modified Vaccinia Ankara and soluble protein to induce neutralizing antibodies by the human cytomegalovirus pentamer complex in mice.

    PubMed

    Chiuppesi, Flavia; Wussow, Felix; Scharf, Louise; Contreras, Heidi; Gao, Han; Meng, Zhuo; Nguyen, Jenny; Barry, Peter A; Bjorkman, Pamela J; Diamond, Don J

    2017-01-01

    Since neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) pentamer complex (PC) potently block HCMV host cell entry, anti-PC NAb induction is thought to be important for a vaccine formulation to prevent HCMV infection. By developing a vaccine strategy based on soluble PC protein and using a previously generated Modified Vaccinia Ankara vector co-expressing all five PC subunits (MVA-PC), we compared HCMV NAb induction by homologous immunization using prime-boost vaccine regimen employing only PC protein or MVA-PC and heterologous immunization using prime-boost combinations of PC protein and MVA-PC. Utilizing a recently isolated anti-PC NAb, we produced highly pure soluble PC protein that displayed conformational and linear neutralizing epitopes, interfered with HCMV entry, and was recognized by antibodies induced by HCMV during natural infection. Mice vaccinated by different immunization routes with the purified PC protein in combination with a clinically approved adjuvant formulation elicited high-titer and durable HCMV NAb. While MVA-PC and soluble PC protein either alone or in combination elicited robust HCMV NAb, significantly different potencies of these vaccine approaches were observed in dependence on immunization schedule. Using only two immunizations, vaccination with MVA-PC alone or prime-boost combinations of MVA-PC and PC protein was significantly more effective in stimulating HCMV NAb than immunization with PC protein alone. In contrast, with three immunizations, NAb induced by soluble PC protein either alone or combined with two boosts of MVA-PC increased to levels that exceeded NAb titer stimulated by MVA-PC alone. These results provide insights into the potency of soluble protein and MVA to elicit NAb by the HCMV PC via homologous and heterologous prime-boost immunization, which may contribute to develop clinically deployable vaccine strategies to prevent HCMV infection.

  16. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Tournier, Jean-Nicolas; Garin, Daniel; Crance, Jean-Marc

    2008-03-25

    This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.

  17. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation.

    PubMed

    Barrett, Alan D T

    2018-01-01

    Zika virus (ZIKV), a mosquito-borne flavivirus, was first identified in the 1940s in Uganda in Africa and emerged in the Americas in Brazil in May 2015. In the 30 months since ZIKV emerged as a major public health problem, spectacular progress has been made with vaccine development cumulating with the publication of three reports of phase 1 clinical trials in the 4th quarter of 2017. Clinical trials involving candidate DNA and purified inactivated virus vaccines showed all were safe and well-tolerated in the small number of volunteers and all induced neutralizing antibodies, although these varied by vaccine candidate and dosing regimen. These results suggest that a Zika vaccine can be developed and that phase 2 clinical trials are warranted. However, it is difficult to compare the results from the different phase 1 studies or with neutralizing antibodies induced by licensed flavivirus vaccines (Japanese encephalitis, tick-borne encephalitis, and yellow fever) as neutralizing antibody assays vary and, unfortunately, there are no standards for Zika virus neutralizing antibodies. In addition to clinical studies, substantial progress continues to be made in nonclinical development, particularly in terms of the ability of candidate vaccines to protect reproductive tissues, and the potential use of monoclonal antibodies for passive prophylaxis.

  18. Antibody persistence and immune memory 4 years post-vaccination with combined hepatitis A and B vaccine in adults aged over 40 years.

    PubMed

    Chlibek, Roman; von Sonnenburg, Frank; Van Damme, Pierre; Smetana, Jan; Tichy, Petr; Gunapalaiah, Bhavyashree; Leyssen, Maarten; Jacquet, Jeanne-Marie

    2011-01-01

    Persistence of immune response was assessed in adults aged >40 years (N = 596) following primary vaccination with combined hepatitis A/B vaccine or concomitant monovalent hepatitis A and B vaccines. Anti-hepatitis A virus antibody responses persisted for at least 4 years regardless of the vaccine used, with anti-hepatitis B surface antibody responses higher and more sustained in subjects who received the combined hepatitis A/B vaccine. Response rates to an additional dose of the same vaccine(s) used for priming were high. © 2011 International Society of Travel Medicine.

  19. Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella

    PubMed Central

    Boyd, Mary A.; Wang, Jin Y.; Tulapurkar, Mohan E.; Pasetti, Marcela F.; Levine, Myron M.; Simon, Raphael

    2016-01-01

    Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity. PMID:26998925

  20. The potential of 1018 ISS adjuvant in hepatitis B vaccines: HEPLISAV™ review.

    PubMed

    Eng, Nelson F; Bhardwaj, Nitin; Mulligan, Rebecca; Diaz-Mitoma, Francisco

    2013-08-01

    Hepatitis B (HBV) virus infects the liver, and upon chronic infection, can cause liver cirrhosis and hepatocellular carcinoma. Despite universal vaccination programs against the virus, HBV still affects over 2 billion people worldwide, with over 240 million developing a chronic infection. While current alum-adjuvanted vaccines have shown efficacy in promoting seroprotection in healthy adults, 5-10% of immune-competent populations fail to achieve long-lasting seroprotection from these formulations. Furthermore, a large proportion of immunocompromised patients fail to achieve seroprotective antibody titers after receiving these vaccines. A novel vaccine candidate, HEPLISAV™, uses immunostimulatory sequences (ISS), in its formulation that helps induce a robust humoral and cell mediated immunity against HBV. In Phase III clinical trials, HEPLISAV™ has been shown to elicit seroprotective antibody titers with fewer immunizations. Similar safety profiles are demonstrated when compared with current HBV vaccines. For these reasons, HEPLISAV™ is an attractive vaccine to combat this global disease.

  1. Waning of vaccine-induced immunity to measles in kidney transplanted children.

    PubMed

    Rocca, Salvatore; Santilli, Veronica; Cotugno, Nicola; Concato, Carlo; Manno, Emma Concetta; Nocentini, Giulia; Macchiarulo, Giulia; Cancrini, Caterina; Finocchi, Andrea; Guzzo, Isabella; Dello Strologo, Luca; Palma, Paolo

    2016-09-01

    Vaccine-preventable diseases are a significant cause of morbidity and mortality in solid organ transplant recipients who undergo immunosuppression after transplantation. Data on immune responses and long-term maintenance after vaccinations in such population are still limited.We cross-sectionally evaluated the maintenance of immune response to measles vaccine in kidney transplanted children on immunosuppressive therapy. Measles-specific enzyme-linked immunosorbent assay and B-cell enzyme-linked immunosorbent spot were performed in 74 kidney transplant patients (Tps) and in 23 healthy controls (HCs) previously vaccinated and tested for humoral protection against measles. The quality of measles antibody response was measured by avidity test. B-cell phenotype, investigated via flow cytometry, was further correlated to the ability of Tps to maintain protective humoral responses to measles over time.We observed the loss of vaccine-induced immunity against measles in 19% of Tps. Nonseroprotected children showed signs of impaired B-cell distribution as well as immune senescence and lower antibody avidity. We further reported as time elapsed between vaccination and transplantation, as well as the vaccine administration during dialysis are clinical factors affecting the maintenance of the immune memory response against measles.Tps present both quantitative and qualitative alterations in the maintenance of protective immunity to measles vaccine. Prospective studies are needed to optimize the vaccination schedules in kidney transplant recipients in order to increase the immunization coverage over time in this population.

  2. INFECTION INDUCED BY ORAL ADMINISTRATION OF ATTENUATED POLIOVIRUS TO PERSONS POSSESSING HOMOTYPIC ANTIBODY

    PubMed Central

    Horstmann, Dorothy M.; Paul, J. R.; Melnick, J. L.; Deutsch, Joyce V.

    1957-01-01

    Four of five individuals possessing homotypic antibody in titers of 8 to 64 were infected on being fed Type III (Leon KP-34) poliovirus attenuated by Sabin by passage through tissue culture. None of the infected subjects or controls showed any evidence of illness which could be attributed to virus infection. There was no evidence of spread of infection to any of the control adult wardmates of the experimental subjects, although the two groups were in close contact: none of the controls excreted virus, none showed any antibody shift. One control who had no Type III antibodies at the start of the experiment was still antibody-negative on the 63rd day of the experiment. Three of the four individuals who became infected had naturally acquired-Type III antibodies; the other had antibodies induced by formalinized vaccine. Virus excretion in the stool was of short duration (7 to 13 days) in the three with natural antibodies, and lasted at least 6 weeks after feeding in the vaccinated child. Virus in the throat was detected only in the two persons receiving the larger virus dose (107.5 TCD50). In them it was present in small amounts between the 2nd and 6th day after feeding. No virus was detected in the blood of any of the infected individuals. The antibody responses of the four infected individuals were variable. There was no clear correlation with virus dosage, amount of virus excretion in the stools, or presence of virus in the throat. Only the child whose neutralizing antibodies were "Salk" vaccine induced showed a marked CF response. The virus excreted by two of the individuals who became infected, as tested in the 2nd tissue culture passage by monkey inoculation, was slightly more neurotropic than the virus which was ingested. Virus excreted by one of these individuals behaved as a virulent strain when tested by the in vitro plaque virulence test, while that isolated from the other had the characteristics of an attenuated strain in this test. PMID:13439122

  3. MF59-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults.

    PubMed

    Banzhoff, Angelika; Gasparini, Roberto; Laghi-Pasini, Franco; Staniscia, Tommaso; Durando, Paolo; Montomoli, Emanuele; Capecchi, Pier Leopoldo; Capecchi, Pamela; di Giovanni, Pamela; Sticchi, Laura; Gentile, Chiara; Hilbert, Anke; Brauer, Volker; Tilman, Sandrine; Podda, Audino

    2009-01-01

    Pathogenic avian influenza virus (H5N1) has the potential to cause a major global pandemic in humans. Safe and effective vaccines that induce immunologic memory and broad heterotypic response are needed. Healthy adults aged 18-60 and > 60 years (n = 313 and n = 173, respectively) were randomized (1:1) to receive two primary and one booster injection of 7.5 microg or 15 microg doses of a subunit MF59-adjuvanted H5N1 (A/Vietnam/1194/2004) (clade 1) vaccine. Safety was monitored until 6 months after booster. Immunogenicity was assessed by hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization assays (MN). Mild injection-site pain was the most common adverse reaction. No serious adverse events relating to the vaccine were reported. The humoral immune responses to 7.5 microg and 15 microg doses were comparable. The rates for seroprotection (HI>40; SRH>25 mm(2); MN > or = 40) after the primary vaccination ranged 72-87%. Six months after primary vaccination with the 7.5 microg dose, 18% and 21% of non-elderly and elderly adults were seroprotected; rates increased to 90% and 84%, respectively, after the booster vaccination. In the 15 microg group, seroprotection rates among non-elderly and elderly adults increased from 25% and 62% after primary vaccination to 92% and 88% after booster vaccination, respectively. A heterologous immune response to the H5N1/turkey/Turkey/05 strain was elicited after second and booster vaccinations. Both formulations of MF59-adjuvanted influenza H5N1 vaccine were well tolerated. The European Union requirement for licensure for pre-pandemic vaccines was met by the lower dose tested. The presence of cross-reactive antibodies to a clade 2 heterologous strain demonstrates that this vaccine may be appropriate for pre-pandemic programs. (ClinicalTrials.gov) NCT00311480.

  4. Measurement of neutralizing serum antibodies of patients vaccinated with human papillomavirus L1 or L2-based immunogens using furin-cleaved HPV Pseudovirions.

    PubMed

    Wang, Joshua W; Jagu, Subhashini; Wang, Chenguang; Kitchener, Henry C; Daayana, Sai; Stern, Peter L; Pang, Susana; Day, Patricia M; Huh, Warner K; Roden, Richard B S

    2014-01-01

    Antibodies specific for neutralizing epitopes in either Human papillomavirus (HPV) capsid protein L1 or L2 can mediate protection from viral challenge and thus their accurate and sensitive measurement at high throughput is likely informative for monitoring response to prophylactic vaccination. Here we compare measurement of L1 and L2-specific neutralizing antibodies in human sera using the standard Pseudovirion-Based Neutralization Assay (L1-PBNA) with the newer Furin-Cleaved Pseudovirion-Based Neutralization Assay (FC-PBNA), a modification of the L1-PBNA intended to improve sensitivity towards L2-specific neutralizing antibodies without compromising assay of L1-specific responses. For detection of L1-specific neutralizing antibodies in human sera, the FC- PBNA and L1-PBNA assays showed similar sensitivity and a high level of correlation using WHO standard sera (n = 2), and sera from patients vaccinated with Gardasil (n = 30) or an experimental human papillomavirus type 16 (HPV16) L1 VLP vaccine (n = 70). The detection of L1-specific cross-neutralizing antibodies in these sera using pseudovirions of types phylogenetically-related to those targeted by the L1 virus-like particle (VLP) vaccines was also consistent between the two assays. However, for sera from patients (n = 17) vaccinated with an L2-based immunogen (TA-CIN), the FC-PBNA was more sensitive than the L1-PBNA in detecting L2-specific neutralizing antibodies. Further, the neutralizing antibody titers measured with the FC-PBNA correlated with those determined with the L2-PBNA, another modification of the L1-PBNA that spacio-temporally separates primary and secondary receptor engagement, as well as the protective titers measured using passive transfer studies in the murine genital-challenge model. In sum, the FC-PBNA provided sensitive measurement for both L1 VLP and L2-specific neutralizing antibody in human sera. Vaccination with TA-CIN elicits weak cross-protective antibody in a subset of

  5. Immunoglobulin M antibody response to measles virus following primary and secondary vaccination and natural virus infection.

    PubMed

    Erdman, D D; Heath, J L; Watson, J C; Markowitz, L E; Bellini, W J

    1993-09-01

    The use of IgM antibody detection for the classification of the primary and secondary measles antibody response in persons following primary and secondary vaccination and natural measles virus infection was examined. Of 32 nonimmune children receiving primary measles vaccination, 31 (97%) developed IgM antibodies, consistent with a primary antibody response. Of 21 previously vaccinated children with low levels of preexisting IgG antibodies who responded to revaccination, none developed detectable IgM antibodies, whereas 33 of 35 (94%) with no detectable preexisting IgG antibodies developed an IgM response. Of a sample of 57 measles cases with a prior history of vaccination, 55 (96%) had detectable IgM antibodies. Of these, 30 (55%) were classified as having a primary antibody response and 25 (45%) a secondary antibody response based on differences in their ratios of IgM to IgG antibodies. Differences in the severity of clinical symptoms between these 2 groups were consistent with this classification scheme. These findings suggest that 1) an IgM response follows primary measles vaccination in the immunologically naive, 2) an IgM response is absent on revaccination of those previously immunized, and 3) an IgM response may follow clinical measles virus infection independent of prior immunization status.

  6. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice.

    PubMed

    Magnusson, Sofia E; Altenburg, Arwen F; Bengtsson, Karin Lövgren; Bosman, Fons; de Vries, Rory D; Rimmelzwaan, Guus F; Stertman, Linda

    2018-04-01

    Influenza viruses continuously circulate in the human population and escape recognition by virus neutralizing antibodies induced by prior infection or vaccination through accumulation of mutations in the surface proteins hemagglutinin (HA) and neuraminidase (NA). Various strategies to develop a vaccine that provides broad protection against different influenza A viruses are under investigation, including use of recombinant (r) viral vectors and adjuvants. The replication-deficient modified vaccinia virus Ankara (MVA) is a promising vaccine vector that efficiently induces B and T cell responses specific for the antigen of interest. It is assumed that live vaccine vectors do not require an adjuvant to be immunogenic as the vector already mediates recruitment and activation of immune cells. To address this topic, BALB/c mice were vaccinated with either protein- or rMVA-based HA influenza vaccines, formulated with or without the saponin-based Matrix-M™ adjuvant. Co-formulation with Matrix-M significantly increased HA vaccine immunogenicity, resulting in antigen-specific humoral and cellular immune responses comparable to those induced by unadjuvanted rMVA-HA. Of special interest, rMVA-HA immunogenicity was also enhanced by addition of Matrix-M, demonstrated by enhanced HA inhibition antibody titres and cellular immune responses. Matrix-M added to either protein- or rMVA-based HA vaccines mediated recruitment and activation of antigen-presenting cells and lymphocytes to the draining lymph node 24 and 48 h post-vaccination. Taken together, these results suggest that adjuvants can be used not only with protein-based vaccines but also in combination with rMVA to increase vaccine immunogenicity, which may be a step forward to generate new and more effective influenza vaccines.

  7. Oral rice-based vaccine induces passive and active immunity against enterotoxigenic E. coli-mediated diarrhea in pigs.

    PubMed

    Takeyama, Natsumi; Yuki, Yoshikazu; Tokuhara, Daisuke; Oroku, Kazuki; Mejima, Mio; Kurokawa, Shiho; Kuroda, Masaharu; Kodama, Toshiaki; Nagai, Shinya; Ueda, Susumu; Kiyono, Hiroshi

    2015-09-22

    Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in both neonatal and weaned pigs. Because the cholera toxin B subunit (CTB) has a high level of amino acid identity to the ETEC heat-labile toxin (LT) B-subunit (LTB), we selected MucoRice-CTB as a vaccine candidate against ETEC-induced pig diarrhea. When pregnant sows were orally immunized with MucoRice-CTB, increased amounts of antigen-specific IgG and IgA were produced in their sera. CTB-specific IgG was secreted in the colostrum and transferred passively to the sera of suckling piglets. IgA antibodies in the colostrum and milk remained high with a booster dose after farrowing. Additionally, when weaned minipigs were orally immunized with MucoRice-CTB, production of CTB-specific intestinal SIgA, as well as systemic IgG and IgA, was induced. To evaluate the cross-protective effect of MucoRice-CTB against ETEC diarrhea, intestinal loop assay with ETEC was conducted. The fluid volume accumulated in the loops of minipigs immunized with MucoRice-CTB was significantly lower than that in control minipigs, indicating that MucoRice-CTB-induced cross-reactive immunity could protect weaned pigs from diarrhea caused by ETEC. MucoRice-CTB could be a candidate oral vaccine for inducing both passive and active immunity to protect both suckling and weaned piglets from ETEC diarrhea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Proof of principle for epitope-focused vaccine design

    PubMed Central

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Christopher; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-01-01

    Summary Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Multiple major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus (RSV), that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for research and development of a human RSV vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets including antigenically highly variable pathogens such as HIV and influenza. PMID:24499818

  9. Proof of principle for epitope-focused vaccine design

    NASA Astrophysics Data System (ADS)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  10. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    PubMed

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain.

    PubMed

    Raymond, Donald D; Stewart, Shaun M; Lee, Jiwon; Ferdman, Jack; Bajic, Goran; Do, Khoi T; Ernandes, Michael J; Suphaphiphat, Pirada; Settembre, Ethan C; Dormitzer, Philip R; Del Giudice, Giuseppe; Finco, Oretta; Kang, Tae Hyun; Ippolito, Gregory C; Georgiou, George; Kepler, Thomas B; Haynes, Barton F; Moody, M Anthony; Liao, Hua-Xin; Schmidt, Aaron G; Harrison, Stephen C

    2016-12-01

    For broad protection against infection by viruses such as influenza or HIV, vaccines should elicit antibodies that bind conserved viral epitopes, such as the receptor-binding site (RBS). RBS-directed antibodies have been described for both HIV and influenza virus, and the design of immunogens to elicit them is a goal of vaccine research in both fields. Residues in the RBS of influenza virus hemagglutinin (HA) determine a preference for the avian or human receptor, α-2,3-linked sialic acid and α-2,6-linked sialic acid, respectively. Transmission of an avian-origin virus between humans generally requires one or more mutations in the sequences encoding the influenza virus RBS to change the preferred receptor from avian to human, but passage of a human-derived vaccine candidate in chicken eggs can select for reversion to avian receptor preference. For example, the X-181 strain of the 2009 new pandemic H1N1 influenza virus, derived from the A/California/07/2009 isolate and used in essentially all vaccines since 2009, has arginine at position 226, a residue known to confer preference for an α-2,3 linkage in H1 subtype viruses; the wild-type A/California/07/2009 isolate, like most circulating human H1N1 viruses, has glutamine at position 226. We describe, from three different individuals, RBS-directed antibodies that recognize the avian-adapted H1 strain in current influenza vaccines but not the circulating new pandemic 2009 virus; Arg226 in the vaccine-strain RBS accounts for the restriction. The polyclonal sera of the three donors also reflect this preference. Therefore, when vaccines produced from strains that are never passaged in avian cells become widely available, they may prove more capable of eliciting RBS-directed, broadly neutralizing antibodies than those produced from egg-adapted viruses, extending the established benefits of current seasonal influenza immunizations.

  12. Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus.

    PubMed

    Molina, Andrea; Veramendi, Jon; Hervás-Stubbs, Sandra

    2005-11-25

    The 2L21 epitope of the VP2 protein from the canine parvovirus (CPV), fused to the cholera toxin B subunit (CTB-2L21), was expressed in transgenic tobacco chloroplasts. Mice and rabbits that received protein-enriched leaf extracts by parenteral route produced high titers of anti-2L21 antibodies able to recognize the VP2 protein. Rabbit sera were able to neutralize CPV in an in vitro infection assay with an efficacy similar to the anti-2L21 neutralizing monoclonal antibody 3C9. Anti-2L21 IgG and seric IgA antibodies were elicited when mice were gavaged with a suspension of pulverized tissues from CTB-2L21 transformed plants. Combined immunization (a single parenteral injection followed by oral boosters) shows that oral boosters help to maintain the anti-2L21 IgG response induced after a single injection, whereas parenteral administration of the antigen primes the subsequent oral boosters by promoting the induction of anti-2L21 seric IgA antibodies. Despite the induced humoral response, antibodies elicited by oral delivery did not show neutralizing capacity in the in vitro assay. The high yield of the fusion protein permits the preparation of a high number of vaccine doses from a single plant and makes feasible the oral vaccination using a small amount of crude plant material. However, a big effort has still to be done to enhance the protective efficacy of subunit vaccines by the oral route.

  13. Persistence of antibodies six years after booster vaccination with inactivated vaccine against Japanese encephalitis.

    PubMed

    Paulke-Korinek, Maria; Kollaritsch, Herwig; Kundi, Michael; Zwazl, Ines; Seidl-Friedrich, Claudia; Jelinek, Tomas

    2015-07-09

    Japanese Encephalitis (JE) virus occurs in wide regions of Asia with over 3 billion people living in areas at risk for JE. An estimated 68,000 clinical cases of JE occur every year, and vaccination is the most effective prophylactic measure. One internationally licensed vaccine containing the inactivated JE virus strain SA14-14-2 is Ixiaro (Valneva, Austria). According to recommendations, basic immunization consists of vaccinations on day 0, day 28, and a booster dose 12-24 months later. Protection in terms of neutralizing antibody titers has been assessed up to 12 months after the third dose of the vaccine. The current investigation was designed to evaluate antibody decline over time and to predict long-term duration of seroprotection after a booster dose. In a preceding trial, volunteers received basic immunization (day 0, day 28) and one booster dose against JE 15 months later. A follow up blood draw 6 years following their booster dose was carried out in 67 subjects. For antibody testing, a 50% plaque reduction neutralization test (PRNT50-test) was used. PRNT50 values of 10 and above are surrogate levels of protection according to WHO standards. Seventy-six months following the booster dose, 96% of the tested subjects had PRNT50 titers of 10 or higher. Geometric mean titer (GMT) was 148 (95% CI confidence interval: 107-207). Antibody titers were lower in volunteers 50 years of age and older. Vaccination history against other flaviviruses (yellow fever or tick borne encephalitis) did not significantly influence PRNT50 titers. A two-step log-linear decline model predicted protection against JE of approximately 14 years after the booster dose. Six years after a booster dose against JE, long-term protection could be demonstrated. According to our results, further booster doses should be scheduled 10 years following the first booster dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Immunodominance and Functional Activities of Antibody Responses to Inactivated West Nile Virus and Recombinant Subunit Vaccines in Mice▿

    PubMed Central

    Zlatkovic, Juergen; Stiasny, Karin; Heinz, Franz X.

    2011-01-01

    Factors controlling the dominance of antibody responses to specific sites in viruses and/or protein antigens are ill defined but can be of great importance for the induction of potent immune responses to vaccines. West Nile virus and other related important human-pathogenic flaviviruses display the major target of neutralizing antibodies, the E protein, in an icosahedral shell at the virion surface. Potent neutralizing antibodies were shown to react with the upper surface of domain III (DIII) of this protein. Using the West Nile virus system, we conducted a study on the immunodominance and functional quality of E-specific antibody responses after immunization of mice with soluble protein E (sE) and isolated DIII in comparison to those after immunization with inactivated whole virions. With both virion and sE, the neutralizing response was dominated by DIII-specific antibodies, but the functionality of these antibodies was almost four times higher after virion immunization. Antibodies induced by the isolated DIII had an at least 15-fold lower specific neutralizing activity than those induced by the virion, and only 50% of these antibodies were able to bind to virus particles. Our results suggest that immunization with the tightly packed E in virions focuses the DIII antibody response to the externally exposed sites of this domain which are the primary targets for virus neutralization, different from sE and isolated DIII, which also display protein surfaces that are cryptic in the virion. Despite its low potency for priming, DIII was an excellent boosting antigen, suggesting novel vaccination strategies that strengthen and focus the antibody response to critical neutralizing sites in DIII. PMID:21147919

  15. Antibody persistence of two pentavalent DTwP-HB-Hib vaccines to the age of 15-18 months, and response to the booster dose of quadrivalent DTwP-Hib vaccine.

    PubMed

    Sharma, Hitt; Yadav, Sangeeta; Lalwani, Sanjay; Kapre, Subhash; Jadhav, Suresh; Parekh, Sameer; Palkar, Sonali; Ravetkar, Satish; Bahl, Sunil; Kumar, Rakesh; Shewale, Sunil

    2013-01-07

    Antibody persistence in children following three doses of primary vaccination with diphtheria, tetanus, whole-cell-pertussis (DTwP), hepatitis B, and Haemophilus influenzae type b (Hib) vaccines (SIIL Pentavac vaccine vs. Easyfive(®) of Panacea Biotec), and response to the booster dose of DTwP-Hib (Quadrovax(®)) vaccine. Children who completed their primary immunization were assessed for antibodies at 15-18 months of age, and then given a booster dose of DTwP-Hib vaccine. Reactogenicity and safety of the booster dose was evaluated. Both pentavalent vaccines demonstrated a good immune response at 15-18 months. Following the booster dose, all vaccinated subjects achieved protective titers against diphtheria, tetanus and Hib, whereas the response to pertussis antigen was ~78%. Fever and irritability was noted in 24%, local pain in 51%, and swelling in 36% of the children following booster dose. Primary immunization with either pentavalent vaccine induced an excellent immunity lasting till the second year of life. A booster dose with DTwP-Hib (Quadrovax(®)) vaccine effectuated a good anamnestic response to all vaccine components, being specially strong for Hib in children previously vaccinated with SIIL liquid pentavalent vaccine (Pentavac(®)). Also, the safety profile of SIIL quadrivalent vaccine (Quadrovax(®)) administered as booster dose was acceptable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Passive vaccination with a human monoclonal antibody: generation of antibodies and studies for efficacy in Bacillus anthracis infections.

    PubMed

    vor dem Esche, Ulrich; Huber, Maria; Zgaga-Griesz, Andrea; Grunow, Roland; Beyer, Wolfgang; Hahn, Ulrike; Bessler, Wolfgang G

    2011-07-01

    A major difficulty in creating human monoclonal antibodies is the lack of a suitable myeloma cell line to be used for fusion experiments. In order to create fully human monoclonal antibodies for passive immunization, the human mouse heteromyeloma cell line CB-F7 was evaluated. Using this cell line, we generated human monoclonal antibodies against Bacillus anthracis toxin components. Antibodies against protective antigen (PA) and against lethal factor (LF) were obtained using peripheral blood lymphocytes (PBLs) from persons vaccinated with the UK anthrax vaccine. PBL were fused with the cell line CB-F7. We obtained several clones producing PA specific Ig and one clone (hLF1-SAN) producing a monoclonal antibody (hLF1) directed against LF. The LF binding antibody was able to neutralize Anthrax toxin activity in an in vitro neutralization assay, and preliminary in vivo studies in mice also indicated a trend towards protection. We mapped the epitope of the antibody binding to LF by dot blot analysis and ELIFA using 80 synthetic LF peptides of 20 amino acid lengths with an overlapping range of 10 amino acids. Our results suggest the binding of the monoclonal antibody to the peptide regions 121-150 or 451-470 of LF. The Fab-fragment of the antibody hLF1 was cloned in Escherichia coli and could be useful as part of a fully human monoclonal antibody for the treatment of Anthrax infections. In general, our studies show the applicability of the CB-F7 line to create fully human monoclonal antibodies for vaccination. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. Systemic Foot-and-Mouth Disease Vaccination in Cattle Promotes Specific Antibody-Secreting Cells at the Respiratory Tract and Triggers Local Anamnestic Responses upon Aerosol Infection.

    PubMed

    Pega, J; Di Giacomo, S; Bucafusco, D; Schammas, J M; Malacari, D; Barrionuevo, F; Capozzo, A V; Rodríguez, L L; Borca, M V; Pérez-Filgueira, M

    2015-09-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting biungulate species. Commercial vaccines, formulated with inactivated FMD virus (FMDV), are regularly used worldwide to control the disease. Here, we studied the generation of antibody responses in local lymphoid tissues along the respiratory system in vaccinated and further aerosol-infected cattle. Animals immunized with a high-payload monovalent FMD vaccine developed high titers of neutralizing antibodies at 7 days postvaccination (dpv), reaching a plateau at 29 dpv. FMDV-specific antibody-secreting cells (ASC), predominantly IgM, were evident at 7 dpv in the prescapular lymph node (LN) draining the vaccination site and in distal LN draining the respiratory mucosa, although in lower numbers. At 29 dpv, a significant switch to IgG1 was clear in prescapular LN, while FMDV-specific ASC were detected in all lymphoid tissues draining the respiratory tract, mostly as IgM-secreting cells. None of the animals (n = 10) exhibited FMD symptoms after oronasal challenge at 30 dpv. Three days postinfection, a large increase in ASC numbers and rapid isotype switches to IgG1 were observed, particularly in LN-draining virus replication sites already described. These results indicate for the first time that systemic FMD vaccination in cattle effectively promotes the presence of anti-FMDV ASC in lymphoid tissues associated with the respiratory system. Oronasal infection triggered an immune reaction compatible with a local anamnestic response upon contact with the replicating FMDV, suggesting that FMD vaccination induces the circulation of virus-specific B lymphocytes, including memory B cells that differentiate into ASC soon after contact with the infective virus. Over recent decades, world animal health organizations as well as national sanitary authorities have supported the use of vaccination as an essential component of the official FMD control programs in both endemic and disease-free settings. Very few

  18. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies.

    PubMed

    Ahmed, Yousuf; Tian, Meijuan; Gao, Yong

    2017-09-12

    The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.

  19. Antibody persistence and booster response 68 months after vaccination at 2-10 years of age with one dose of MenACWY-TT conjugate vaccine.

    PubMed

    Knuf, Markus; Helm, Klaus; Kolhe, Devayani; Van Der Wielen, Marie; Baine, Yaela

    2018-05-31

    We evaluated antibody persistence up to 68 months (M) post-vaccination with a quadrivalent meningococcal serogroups A, C, W and Y tetanus toxoid conjugate vaccine (MenACWY-TT) or a licensed monovalent MenC conjugate vaccine (MenC-CRM 197 ) and subsequent booster responses to MenACWY-TT in healthy European children. In the initial study (NCT00674583), healthy children, 2-10 years of age, were randomized to receive a single dose of either MenACWY-TT or MenC-CRM 197 . In the follow-up study, we present the persistence at 32, 44, 56, and 68 M post-vaccination, overall and stratified by age (2-5 and 6-10 years), and the immunogenicity and safety of MenACWY-TT administered to all study participants at M68 post-primary vaccination. At M68, 33.3% (age group 2-5 years) and 47.1% (age group 6-10 years) of the children vaccinated with MenACWY-TT, and 50.0% (age group 2-5 years) and 75.9% (age group 6-10 years) vaccinated with MenC-CRM 197 retained titers ≥1:8 for MenC, as assessed by a serum bactericidal assay using rabbit complement (rSBA). In the MenACWY-TT recipients, the percentages of children retaining rSBA titers ≥1:8 for MenA, MenW, and MenY were 81.7%, 47.3% and 66.7% in age group 2-5 years and 91.8%, 58,8% and 76.5% in age group 6-10 years, respectively. The booster dose induced robust responses (100% for all serogroups) and was well-tolerated. Antibody persistence (rSBA titers ≥ 1:8) for serogroups A, W and Y was observed in more than 50.0% of the children 68 M after receiving one dose of MenACWY-TT; for MenC, antibody persistence was observed in more than one third of MenACWY-TT and more than half of MenC-CRM 197 recipients. Vaccination with a booster dose of MenACWY-TT induced robust immune responses for all serogroups. Copyright © 2018. Published by Elsevier Ltd.

  20. Prevalence of rotavirus antibodies in breast milk and inhibitory effects to rotavirus vaccines.

    PubMed

    Trang, Nguyen V; Braeckman, Tessa; Lernout, Tinne; Hau, Vu T B; Anh, Le T K; Luan, Le T; Van Damme, Pierre; Anh, Dang D

    2014-01-01

    Rotavirus (RV) is the most common cause of childhood diarrhea worldwide, and several vaccines have been successfully developed to reduce the burden of disease. However, lower vaccine immunogenicity and efficacy in developing countries might be related to the virus-neutralizing activity of breast milk. We examined possible differences in breast milk antibody levels (total IgA antibody, RV-specific antibodies, and RV-neutralizing antibodies) between healthy mothers living in a rural area (n=145) and mothers living in an urban area (n=147) of Vietnam. Total IgA concentration was significantly higher in samples from mothers in the rural region than in samples from mothers in the urban region, whereas urban mothers had significantly higher RV-specific IgA antibody titers than did rural mothers. Neutralizing antibodies against RV strain G1P[8] were undetected in nearly one-half of the breast milk samples (45-48%), whereas the majority of the remaining samples had low antibody titers (2-16). Despite these low titers, the breast milk still reduced vaccine strain titers (2×10(6) plaque forming units/mL) up to 80% or more, even at a milk-to-virus ratio of 1:8. An increase in neutralizing anti-G1P[8] antibody titers (P<0.05) in rural infants over time suggests a continuous exposure to circulating RV. These results contribute to the understanding of the potential interference of breast milk with RV vaccine efficacy and immunogenicity in Vietnamese infants.

  1. Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination.

    PubMed

    Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan

    2014-12-01

    This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. A focused and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two to four times. The vaccines contained different combinations of HPV16 and HPV18 and early proteins, E6 and E7. The primary outcome was the cell-mediated immune response. Correlation to clinical outcome (histopathology) and human leukocyte antigen genes were secondary endpoints. All vaccines triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). Prophylactic HPV vaccines have been introduced to reduce the incidence of cervical cancer in young women. Women already infected with HPV could benefit from a therapeutic HPV vaccination. Hence, it is important to continue the development of therapeutic HPV vaccines to lower the rate of HPV-associated malignancies and crucial to evaluate vaccine efficacy clinically. This clinical review represents an attempt to elucidate the theories supporting the development of an HPV vaccine with a therapeutic effect on human papillomavirus-induced malignancies of the cervix. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  2. An improved conjugate vaccine technology; induction of antibody responses to the tumor vasculature.

    PubMed

    Huijbers, Elisabeth J M; van Beijnum, Judy R; Lê, Chung T; Langman, Sofya; Nowak-Sliwinska, Patrycja; Mayo, Kevin H; Griffioen, Arjan W

    2018-05-17

    The induction of an antibody response against self-antigens requires a conjugate vaccine technology, where the self-antigen is conjugated to a foreign protein sequence, and the co-application of a potent adjuvant. The choice of this foreign sequence is crucial as a very strong antibody response towards it may compromise the anti-self immune response. Here, we aimed to optimize the conjugate design for application of vaccination against the tumor vasculature, using two different approaches. First, the immunogenicity of the previously employed bacterial thioredoxin (TRX) was reduced by using a truncated from (TRXtr). Second, the Escherichia coli proteome was scrutinized to identify alternative proteins, based on immunogenicity and potency to increase solubility, suitable for use in a conjugate vaccine. This technology was used for vaccination against a marker of the tumor vasculature, the well-known extra domain B (EDB) of fibronectin. We demonstrate that engineering of the foreign sequence of a conjugate vaccine can significantly improve antibody production. The TRXtr construct outperformed the one containing full-length TRX, for the production of anti-self antibodies to EDB. In addition, efficient tumor growth inhibition was observed with the new TRXtr-EDB vaccine. Microvessel density was decreased and enhanced leukocyte infiltration was observed, indicative of an active immune response directed against the tumor vasculature. Summarizing, we have identified a truncated form of the foreign antigen TRX that can improve conjugate vaccine technology for induction of anti-self antibody titers. This technology was named Immuno-Boost (I-Boost). Our findings are important for the clinical development of cancer vaccines directed against self antigens, e.g. the ones selectively found in the tumor vasculature. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Long-term human serum antibody responses after immunization with whole-cell pertussis vaccine in France.

    PubMed Central

    Grimprel, E; Bégué, P; Anjak, I; Njamkepo, E; François, P; Guiso, N

    1996-01-01

    Three hundred sixty children were tested for pertussis serology 0.5 to 1.58 months after complete whole-cell pertussis vaccination. An immunoblot assay was used to detect serum antibodies to pertussis toxin, filamentous hemagglutinin, adenylate cyclase-hemolysin, and pertactin, and agglutination was used for detection of anti-agglutinogen antibodies. Antibodies against pertussis toxin, pertactin, and agglutinogens decreased rapidly after vaccination but increased secondarily, suggesting exposure to infected persons. In contrast, anti-filamentous hemagglutinin antibodies persisted and anti-adenylate cyclase-hemolysin antibodies increased continuously, suggesting either cross-reaction with non-Bordetella antigens or exposure to Bordetella isolates expressing these two antigens, including Bordetella pertussis. These data suggest that unrecognized pertussis is common in France despite massive and sustained immunization in infants and that vaccinated children become susceptible to infection more than 6 years after their last vaccination. PMID:8770511

  4. An Enhanced Synthetic Multiclade DNA Prime Induces Improved Cross-Clade-Reactive Functional Antibodies when Combined with an Adjuvanted Protein Boost in Nonhuman Primates

    PubMed Central

    Wise, Megan C.; Hutnick, Natalie A.; Pollara, Justin; Myles, Devin J. F.; Williams, Constance; Yan, Jian; LaBranche, Celia C.; Khan, Amir S.; Sardesai, Niranjan Y.; Montefiori, David; Barnett, Susan W.; Zolla-Pazner, Susan; Ferrari, Guido

    2015-01-01

    ABSTRACT The search for an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine remains a pressing need. The moderate success of the RV144 Thai clinical vaccine trial suggested that vaccine-induced HIV-1-specific antibodies can reduce the risk of HIV-1 infection. We have made several improvements to the DNA platform and have previously shown that improved DNA vaccines alone are capable of inducing both binding and neutralizing antibodies in small-animal models. In this study, we explored how an improved DNA prime and recombinant protein boost would impact HIV-specific vaccine immunogenicity in rhesus macaques (RhM). After DNA immunization with either a single HIV Env consensus sequence or multiple constructs expressing HIV subtype-specific Env consensus sequences, we detected both CD4+ and CD8+ T-cell responses to all vaccine immunogens. These T-cell responses were further increased after protein boosting to levels exceeding those of DNA-only or protein-only immunization. In addition, we observed antibodies that exhibited robust cross-clade binding and neutralizing and antibody-dependent cellular cytotoxicity (ADCC) activity after immunization with the DNA prime-protein boost regimen, with the multiple-Env formulation inducing a more robust and broader response than the single-Env formulation. The magnitude and functionality of these responses emphasize the strong priming effect improved DNA immunogens can induce, which are further expanded upon protein boost. These results support further study of an improved synthetic DNA prime together with a protein boost for enhancing anti-HIV immune responses. IMPORTANCE Even with effective antiretroviral drugs, HIV remains an enormous global health burden. Vaccine development has been problematic in part due to the high degree of diversity and poor immunogenicity of the HIV Env protein. Studies suggest that a relevant HIV vaccine will likely need to induce broad cellular and humoral responses from a simple vaccine

  5. Decreased measles antibody response after measles-mumps-rubella vaccine in infants with colds.

    PubMed

    Krober, M S; Stracener, C E; Bass, J W

    1991-04-24

    We examined the possibility that the common cold or afebrile upper respiratory tract infection might interfere with successful immunization in children who receive standard measles-mumps-rubella vaccine. Infants 15 to 18 months of age presenting at our well-child clinics for routine examination and immunizations were divided into two groups. Those infants with a history and physical findings of upper respiratory tract infection were compared with healthy control group infants who did not have upper respiratory tract infections, and who did not have a history of upper respiratory tract infection symptoms within the previous month. Both groups were studied for their serologic response to measles-mumps-rubella vaccination. Prevaccination serum samples were obtained prior to vaccine administration and postvaccination serum samples were obtained 6 to 8 weeks later. Measles antibody was measured in these serum samples by an indirect fluorescein-tagged antibody test. Ten (21%) of 47 infants with colds failed to develop measles antibody, while only one (2%) of 51 well infants failed to develop antibody. We conclude that infants with colds have a significant seroconversion failure rate associated with measles vaccine administration and that this may be the cause of some primary measles vaccine failures.

  6. Pathogenesis and mechanisms of antibody-mediated hemolysis

    PubMed Central

    Flegel, Willy A

    2015-01-01

    Background The clinical consequences of antibodies to red blood cells (RBC) have been studied for a century. Most clinically relevant antibodies can be detected by sensitive in vitro assays. Several mechanisms of antibody-mediated hemolysis are well understood. Such hemolysis following transfusion is reliably avoided in a donor/recipient pair, if one individual is negative for the cognate antigen to which the other has the antibody. Study design and results Mechanisms of antibody-mediated hemolysis were reviewed based on a presentation at the Strategies to Address Hemolytic Complications of Immune Globulin Infusions Workshop addressing intravenous immunoglobulin (IVIG) and ABO antibodies. The presented topics included the rates of intravascular and extravascular hemolysis; IgM and IgG isoagglutinins; auto- and alloantibodies; antibody specificity; A, B, A,B and A1 antigens; A1 versus A2 phenotypes; monocytes/macrophages, other immune cells and complement; monocyte monolayer assay (MMA); antibody-dependent cell-mediated cytotoxicity (ADCC); and transfusion reactions due to ABO and other antibodies. Conclusion Several clinically relevant questions remained unresolved, and diagnostic tools were lacking to routinely and reliably predict the clinical consequences of RBC antibodies. Most hemolytic transfusion reactions associated with IVIG were due to ABO antibodies. Reducing the titers of such antibodies in IVIG may lower the frequency of this kind of adverse event. The only way to stop these events is to have no anti-A or anti-B antibodies in the IVIG products. PMID:26174897

  7. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds

    PubMed Central

    Heilmann, Carsten; Weihe, Pal; Nielsen, Flemming; Mogensen, Ulla B.; Budtz-Jørgensen, Esben

    2017-01-01

    Background: Postnatal exposure to perfluorinated alkylate substances (PFASs) is associated with lower serum concentrations of specific antibodies against certain childhood vaccines at 7 y. Objectives: We prospectively followed a Faroese birth cohort to determine these associations at 13 y. Methods: In 516 subjects (79% of eligible cohort members) who were 13 years old, serum concentrations of PFASs and of antibodies against diphtheria and tetanus were measured and were compared with data from the previous examination at 7 y. Multiple regression analyses and structural equation models were applied to determine the association between postnatal PFAS exposures and antibody concentrations. Results: Serum concentrations of PFASs and antibodies generally declined from 7 y to 13 y. However, 68 subjects had visited the emergency room and had likely received a vaccination booster, and a total of 202 children showed higher vaccine antibody concentrations at 13 y than at 7 y. Therefore, separate analyses were conducted after exclusion of these two subgroups. Diphtheria antibody concentrations decreased at elevated PFAS concentrations at 13 y and 7 y; the associations were statistically significant for perfluorodecanoate (PFDA) at 7 y and for perfluorooctanoate (PFOA) at 13 y, both suggesting a decrease by ∼25% for each doubling of exposure. Structural equation models showed that a doubling in PFAS exposure at 7 y was associated with losses in diphtheria antibody concentrations at 13 y of 10–30% for the five PFASs. Few associations were observed for anti-tetanus concentrations. Conclusions: These results are in accord with previous findings of PFAS immunotoxicity at current exposure levels. https://doi.org/10.1289/EHP275 PMID:28749778

  8. Antibody response to the epsilon toxin of Clostridium perfringens following vaccination of Lama glama crias.

    PubMed

    Bentancor, Adriana B; Halperin, Pablo; Flores, Myriam; Iribarren, Fabián

    2009-09-15

    Enterotoxaemia produced by Clostridium perfringens A, C and D is an important cause of mortality in young llamas. There is no data on antibody responses following vaccination with epsilon toxin. Twenty-six L. glama crias were divided into four groups which were vaccinated with a commercial vaccine (Mancha Gangrena Enterotoxemia, Instituto Rosembusch Sociedad Anónima, Argentina) on days 0, 21 and 42 or left as unvaccinated controls. An indirect ELISA was compared with the mouse neutralization test (MNT) for measuring titers to C. perfringens type D epsilon toxin and used to determine titers in sera taken before vaccination and 16, 28, 49, 59, and 93 days later. The ELISA gave comparable results to the MNT and showed animals vaccinated once failed to develop raised titers. A week following a second vaccination, mean antibody titers rose significantly (P < 0.05) and 7/12 animals developed high titers which were present in only one animal at the end of the study (day 93). A third vaccination resulted in a decrease in mean antibody titers a week later. Llamas develop antibodies to Clostridium perfringens type D epsilon toxin after two vaccinations at a 21-day interval. Further studies are indicated to determine if these inoculations protect against enterotoxemia and the most appropriate vaccination schedule.

  9. Response to foot-and-mouth disease vaccines in newborn calves. Influence of age, colostral antibodies and adjuvants.

    PubMed Central

    Sadir, A. M.; Schudel, A. A.; Laporte, O.; Braun, M.; Margni, R. A.

    1988-01-01

    Oil-emulsified (OE) and aqueous (Aq) vaccines were prepared with the same batch of inactivated A24 8345 foot and mouth disease virus (FMDV). Calves born to vaccinated dams did not respond to the Aq vaccine 30 or 90 days post partum. When the OE vaccine was used on a similar group of calves, no responses were elicited up to 21 days post partum. However, calves 30 or more days old responded like adult cattle to the OE vaccine. When the OE vaccine was used in colostral antibody-free calves 3-30 days old, all animals showed good antibody responses but, in calves vaccinated 3 or 7 days post partum, antibodies were detectable only after a considerable period of time. Our results show that both passively acquired colostral antibodies and age are important in the response of very young calves to FMDV oil vaccines. From a practical point of view, in endemic areas where adult cattle are periodically vaccinated, vaccination of calves between 30 and 60 days post partum with OE vaccines would lead to high levels of herd protection. PMID:2828089

  10. Correlation between anthrax lethal toxin neutralizing antibody levels and survival in guinea pigs and nonhuman primates vaccinated with the AV7909 anthrax vaccine candidate.

    PubMed

    Savransky, Vladimir; Shearer, Jeffry D; Gainey, Melicia R; Sanford, Daniel C; Sivko, Gloria S; Stark, Gregory V; Li, Na; Ionin, Boris; Lacy, Michael J; Skiadopoulos, Mario H

    2017-09-05

    The anthrax vaccine candidate AV7909 is being developed as a next generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the Anthrax Vaccine Adsorbed (AVA, BioThrax®) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. The studies described here provide initial information on AV7909-induced toxin-neutralizing antibody (TNA) levels associated with the protection of animals from lethal Bacillus anthracis challenge. Guinea pigs or nonhuman primates (NHPs) were immunized on Days 0 and 28 with various dilutions of AV7909, AVA or a saline or Alhydrogel+CPG 7909 control. Animals were challenged via the inhalational route with a lethal dose of aerosolized B. anthracis (Ames strain) spores and observed for clinical signs of disease and mortality. The relationship between pre-challenge serum TNA levels and survival following challenge was determined in order to calculate a threshold TNA level associated with protection. Immunisation with AV7909 induced a rapid, highly protective TNA response in guinea pigs and NHPs. Surprisingly, the TNA threshold associated with a 70% probability of survival for AV7909 immunized animals was substantially lower than the threshold which has been established for the licensed AVA vaccine. The results of this study suggest that the TNA threshold of protection against anthrax could be modified by the addition of an immune stimulant such as CPG 7909 and that the TNA levels associated with protection may be vaccine-specific. Copyright © 2017. Published by Elsevier Ltd.

  11. Does vaccination ensure protection? Assessing diphtheria and tetanus antibody levels in a population of healthy children

    PubMed Central

    Gowin, Ewelina; Wysocki, Jacek; Kałużna, Ewelina; Świątek-Kościelna, Bogna; Wysocka-Leszczyńska, Joanna; Michalak, Michał; Januszkiewicz-Lewandowska, Danuta

    2016-01-01

    Abstract Vaccination effectiveness is proven when the disease does not develop after a patient is exposed to the pathogen. In the case of rare diseases, vaccination effectiveness is assessed by monitoring specific antibody levels in the population. Such recurrent analyses allow the evaluation of vaccination programs. The primary schedule of diphtheria and tetanus vaccinations is similar in various countries, with differences mainly in the number and timing of booster doses. The aim of the study was to assess diphtheria and tetanus antibody concentrations in a population of healthy children. Diphtheria and tetanus antibody levels were analyzed in a group of 324 children aged 18 to 180 months. All children were vaccinated in accordance with the Polish vaccination schedule. Specific antibody concentrations greater than 0.1 IU/mL were considered protective against tetanus or diphtheria. Levels above 1.0 were considered to ensure long-term protection. Protective levels of diphtheria antibodies were found in 229 patients (70.46%), and of tetanus in 306 patients (94.15%). Statistically significant differences were found in tetanus antibody levels in different age groups. Mean concentrations and the percentage of children with high tetanus antibody titers increased with age. No similar correlation was found for diphtheria antibodies. High diphtheria antibody levels co-occurred in 72% of the children with high tetanus antibody levels; 95% of the children with low tetanus antibody levels had low levels of diphtheria antibodies. The percentage of children with protective diphtheria antibody levels is lower than that in the case of tetanus antibodies, both in Poland and abroad, but the high proportion of children without diphtheria protection in Poland is an exception. This is all the more puzzling when taking into account that Polish children are administered a total of 5 doses containing a high concentration of diphtheria toxoid, at intervals shorter than 5 years. The

  12. Development of a bivalent conjugate vaccine candidate against malaria transmission and typhoid fever.

    PubMed

    An, So Jung; Scaria, Puthupparampil V; Chen, Beth; Barnafo, Emma; Muratova, Olga; Anderson, Charles; Lambert, Lynn; Chae, Myung Hwa; Yang, Jae Seung; Duffy, Patrick E

    2018-05-17

    Immune responses to poorly immunogenic antigens, such as polysaccharides, can be enhanced by conjugation to carriers. Our previous studies indicate that conjugation to Vi polysaccharide of Salmonella Typhi may also enhance immunogenicity of some protein carriers. We therefore explored the possibility of generating a bivalent vaccine against Plasmodium falciparum malaria and typhoid fever, which are co-endemic in many parts of the world, by conjugating Vi polysaccharide, an approved antigen in typhoid vaccine, to Pfs25, a malaria transmission blocking vaccine antigen in clinical trials. Vi-Pfs25 conjugates induced strong immune responses against both Vi and Pfs25 in mice, whereas the unconjugated antigens are poorly immunogenic. Functional assays of immune sera revealed potent transmission blocking activity mediated by anti-Pfs25 antibody and serum bactericidal activity due to anti-Vi antibody. Pfs25 conjugation to Vi modified the IgG isotype distribution of antisera, inducing a Th2 polarized immune response against Vi antigen. This conjugate may be further developed as a bivalent vaccine to concurrently target malaria and typhoid fever. Copyright © 2018. Published by Elsevier Ltd.

  13. HA Antibody-Mediated FcγRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids.

    PubMed

    Cox, Freek; Kwaks, Ted; Brandenburg, Boerries; Koldijk, Martin H; Klaren, Vincent; Smal, Bastiaan; Korse, Hans J W M; Geelen, Eric; Tettero, Lisanne; Zuijdgeest, David; Stoop, Esther J M; Saeland, Eirikur; Vogels, Ronald; Friesen, Robert H E; Koudstaal, Wouter; Goudsmit, Jaap

    2016-01-01

    Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc-FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies.

  14. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weibin; Chen, Aizhong; Miao, Yi

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarilymore » targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.« less

  15. Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunization

    USGS Publications Warehouse

    Corbeil, Serge; Kurath, Gael; LaPatra, Scott E.

    2000-01-01

    The DNA vaccine, pIHNVw-G, contains the gene for the glycoprotein (G) of the rhabdovirus infectious hematopoietic necrosis virus (IHNV), a major pathogen of salmon and trout. The relative efficacy of various routes of immunisation with pIHNVw-G was evaluated using 1.8 g rainbow trout fry vaccinated via intramuscular injection, scarification of the skin, intraperitoneal injection, intrabuccal administration, cutaneous particle bombardment using a gene gun, or immersion in water containing DNA vaccine-coated beads. Twenty-seven days after vaccination neutralising antibody titres were determined, and 2 days later groups of vaccinated and control unvaccinated fish were subjected to an IHNV immersion challenge. Results of the virus challenge showed that the intramuscular injection and the gene gun immunisation induced protective immunity in fry, while intraperitoneal injection provided partial protection. Neutralising antibodies were not detected in sera of vaccinated fish regardless of the route of immunisation used, suggesting that cell mediated immunity may be at least partially responsible for the observed protection.

  16. Designing a VAR2CSA-based vaccine to prevent placental malaria.

    PubMed

    Fried, Michal; Duffy, Patrick E

    2015-12-22

    Placental malaria (PM) due to Plasmodium falciparum is a major cause of maternal, fetal and infant mortality, but the mechanisms of pathogenesis and protective immunity are relatively well-understood for this condition, providing a path for vaccine development. P. falciparum parasites bind to chondroitin sulfate A (CSA) to sequester in the placenta, and women become resistant over 1-2 pregnancies as they acquire antibodies that block adhesion to CSA. The protein VAR2CSA, a member of the PfEMP1 variant surface antigen family, mediates parasite adhesion to CSA, and is the leading target for a vaccine to prevent PM. Obstacles to PM vaccine development include the large size (∼ 350 kD), high cysteine content, and sequence variation of VAR2CSA. A number of approaches have been taken to identify the combination of VAR2CSA domains and alleles that can induce broadly active antibodies that block adhesion of heterologous parasite isolates to CSA. This review summarizes these approaches, which have examined VAR2CSA fragments for binding activity, antigenicity with naturally acquired antibodies, and immunogenicity in animals for inducing anti-adhesion or surface-reactive antibodies. Two products are expected to enter human clinical studies in the near future based on N-terminal VAR2CSA fragments that have high binding affinity for CSA, and additional proteins preferentially expressed by placental parasites are also being examined for their potential contribution to a PM vaccine. Copyright © 2015. Published by Elsevier Ltd.

  17. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice.

    PubMed

    Lv, Jin; Zhang, Ying-Ying; Lu, Xun; Zhang, Hao; Wei, Lin; Gao, Jun; Hu, Bin; Hu, Wen-Wei; Hu, Dun-Zhong; Jia, Na; Feng, Xin

    2017-03-01

    The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  18. Maternal antibodies protect offspring from severe influenza infection and do not lead to detectable interference with subsequent offspring immunization.

    PubMed

    van der Lubbe, Joan E M; Vreugdenhil, Jessica; Damman, Sarra; Vaneman, Joost; Klap, Jaco; Goudsmit, Jaap; Radošević, Katarina; Roozendaal, Ramon

    2017-06-26

    Various studies have shown that infants under the age of 6 months are especially vulnerable for complications due to influenza. Currently there are no vaccines licensed for use in this age group. Vaccination of pregnant women during the last trimester, recommended by the WHO as protective measure for this vulnerable female population, may provide protection of newborns at this early age. Although it has been observed that maternal vaccination can passively transfer protection, maternal antibodies could possibly also interfere with subsequent active vaccination of the offspring. Using a mouse model, we evaluated in depth the ability of maternal influenza vaccination to protect offspring and the effect of maternal immunization on the subsequent influenza vaccination of the offspring. By varying the regimen of maternal immunization we explored the impact of different levels of maternal antibodies on the longevity of these antibodies in their progeny. We subsequently assessed to what extent maternal antibodies can mediate direct protection against influenza in their offspring, and whether these antibodies interfere with protection induced by active vaccination of the offspring. The number of immunizations of pregnant mice correlates to the level and longevity of maternal antibodies in the offspring. When these antibodies are present at time of influenza challenge they protect offspring against lethal influenza challenge, even in the absence of detectable HAI titers. Moreover, no detectable interference of passively-transferred maternal antibodies on the subsequent vaccination of the offspring was observed. In the absence of a licensed influenza vaccine for young children, vaccination of pregnant women is a promising measure to provide protection of young infants against severe influenza infection.

  19. Antibody response to 17D yellow fever vaccine in Ghanaian infants.

    PubMed Central

    Osei-Kwasi, M.; Dunyo, S. K.; Koram, K. A.; Afari, E. A.; Odoom, J. K.; Nkrumah, F. K.

    2001-01-01

    OBJECTIVES: To assess the seroresponses to yellow fever vaccination at 6 and 9 months of age; assess any possible adverse effects of immunization with the 17D yellow fever vaccine in infants, particularly at 6 months of age. METHODS: Four hundred and twenty infants who had completed BCG, OPV and DPT immunizations were randomized to receive yellow fever immunization at either 6 or 9 months. A single dose of 0.5 ml of the reconstituted vaccine was administered to each infant by subcutaneous injection. To determine the yellow fever antibody levels of the infants, each donated 1 ml whole blood prior to immunization and 3 months post-immunization. Each serum sample was titred on Vero cells against the vaccine virus. FINDINGS: The most common adverse reactions reported were fever, cough, diarrhoea and mild reactions at the inoculation site. The incidences of adverse reactions were not statistically different in both groups. None of the pre-immunization sera in both age groups had detectable yellow fever antibodies. Infants immunized at 6 months recorded seroconversion of 98.6% and those immunized at 9 months recorded 98% seroconversion. The GMT of their antibodies were 158.5 and 129.8, respectively. CONCLUSIONS: The results indicate that seroresponses to yellow fever immunization at 6 and 9 months as determined by seroconversion and GMTs of antibodies are similar. The findings of good seroresponses at 6 months without significant adverse effects would suggest that the 17D yellow fever vaccine could be recommended for use in children at 6 months in outbreak situations or in high risk endemic areas. PMID:11731813

  20. Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanoff, Walter A.; Perez, Edmundo I.; López, Tomás

    induces a structural change in a loop that is responsible for antibody binding. Our findings reveal how viruses can escape antibody neutralization and provide insight for the rational design of vaccines to elicit diverse antibodies that provide broader protection from infection.« less

  1. Comparison of immune responses to different foot-and-mouth disease genetically engineered vaccines in guinea pigs.

    PubMed

    Yao, Qingxia; Qian, Ping; Huang, Qinfeng; Cao, Yi; Chen, Huanchun

    2008-01-01

    The P12A3C gene from FMDV (serotype O) encoding the capsid precursor protein, and the highly immunogenic gene FHG, which encodes multiple epitopes of FMDV capsid proteins, were inserted into eukaryotic expression vectors to compare different candidate genetically engineered vaccines for foot-and-mouth disease (FMD). A modified live pseudorabies virus (MLPRV) was also used to deliver P12A3C. Guinea pigs were inoculated intramuscularly with the candidate vaccines to compare the ability to elicit immunity of the DNA vector and a live viral vector. An indirect enzyme-linked immunosorbent assay (iELISA), virus-neutralization test and lymphoproliferation assay were used to detect antibody and cellular responses. The group immunized with P12A3C delivered by MLPRV produced significantly greater antibody and cellular responses indicating that MLPRV has a greater ability to mediate exogenous gene delivery than the plasmid DNA vector. Comparison of the immune responses induced by P12A3C and FHG, which were both mediated by DNA plasmids, showed that FHG and P12A3C elicited similar cellular responses, while P12A3C induced higher antibody levels, suggesting that P12A3C is a more powerful immunogen than FHG. In challenge experiments, guinea pigs vaccinated with P12A3C delivered by MLPRV were protected fully from FMDV challenge, whereas guinea pigs vaccinated with P12A3C or FHG delivered by DNA plasmid were only protected partially. This study provides a basis for future construction of a genetically engineered vaccine for FMDV.

  2. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    PubMed

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  3. Cross-species malaria immunity induced by chemically attenuated parasites

    PubMed Central

    Good, Michael F.; Reiman, Jennifer M.; Rodriguez, I. Bibiana; Ito, Koichi; Yanow, Stephanie K.; El-Deeb, Ibrahim M.; Batzloff, Michael R.; Stanisic, Danielle I.; Engwerda, Christian; Spithill, Terry; Hoffman, Stephen L.; Lee, Moses; McPhun, Virginia

    2013-01-01

    Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species. PMID:23863622

  4. Vaccine-induced HIV seropositivity/reactivity in noninfected HIV vaccine recipients.

    PubMed

    Cooper, Cristine J; Metch, Barbara; Dragavon, Joan; Coombs, Robert W; Baden, Lindsey R

    2010-07-21

    Induction of protective anti-human immunodeficiency virus (HIV) immune responses is the goal of an HIV vaccine. However, this may cause a reactive result in routine HIV testing in the absence of HIV infection. To evaluate the frequency of vaccine-induced seropositivity/reactivity (VISP) in HIV vaccine trial participants. Three common US Food and Drug Administration-approved enzyme immunoassay (EIA) HIV antibody kits were used to determine VISP, and a routine diagnostic HIV algorithm was used to evaluate VISP frequency in healthy, HIV-seronegative adults who completed phase 1 (n = 25) and phase 2a (n = 2) vaccine trials conducted from 2000-2010 in the United States, South America, Thailand, and Africa. Vaccine-induced seropositivity/reactivity, defined as reactive on 1 or more EIA tests and either Western blot-negative or Western blot-indeterminate/atypical positive (profile consistent with vaccine product) and HIV-1-negative by nucleic acid testing. Among 2176 participants free of HIV infection who received a vaccine product, 908 (41.7%; 95% confidence interval [CI], 39.6%-43.8%) had VISP, but the occurrence of VISP varied substantially across different HIV vaccine product types: 399 of 460 (86.7%; 95% CI, 83.3%-89.7%) adenovirus 5 product recipients, 295 of 552 (53.4%; 95% CI, 49.2%-57.7%) recipients of poxvirus alone or as a boost, and 35 of 555 (6.3%; 95% CI, 4.4%-8.7%) of DNA-alone product recipients developed VISP. Overall, the highest proportion of VISP (891/2176 tested [40.9%]) occurred with the HIV 1/2 (rDNA) EIA kit compared with the rLAV EIA (150/700 tested [21.4%]), HIV-1 Plus O Microelisa System (193/1309 tested [14.7%]), and HIV 1/2 Peptide and HIV 1/2 Plus O (189/2150 tested [8.8%]) kits. Only 17 of the 908 participants (1.9%) with VISP tested nonreactive using the HIV 1/2 (rDNA) kit. All recipients of a glycoprotein 140 vaccine (n = 70) had VISP, with 94.3% testing reactive with all 3 EIA kits tested. Among 901 participants with VISP and a Western

  5. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR.

    PubMed

    Herbert, Rebecca; Baron, Jana; Batten, Carrie; Baron, Michael; Taylor, Geraldine

    2014-02-26

    Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.

  6. Flavivirus-induced antibody cross-reactivity

    PubMed Central

    Mansfield, Karen L.; Horton, Daniel L.; Johnson, Nicholas; Li, Li; Barrett, Alan D. T.; Smith, Derek J.; Galbraith, Sareen E.; Solomon, Tom

    2011-01-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae. PMID:21900425

  7. Flavivirus-induced antibody cross-reactivity.

    PubMed

    Mansfield, Karen L; Horton, Daniel L; Johnson, Nicholas; Li, Li; Barrett, Alan D T; Smith, Derek J; Galbraith, Sareen E; Solomon, Tom; Fooks, Anthony R

    2011-12-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.

  8. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates.

    PubMed

    Saunders, Kevin O; Santra, Sampa; Parks, Robert; Yates, Nicole L; Sutherland, Laura L; Scearce, Richard M; Balachandran, Harikrishnan; Bradley, Todd; Goodman, Derrick; Eaton, Amanda; Stanfield-Oakley, Sherry A; Tartaglia, James; Phogat, Sanjay; Pantaleo, Giuseppe; Esteban, Mariano; Gomez, Carmen E; Perdiguero, Beatriz; Jacobs, Bertram; Kibler, Karen; Korber, Bette; Montefiori, David C; Ferrari, Guido; Vandergrift, Nathan; Liao, Hua-Xin; Tomaras, Georgia D; Haynes, Barton F

    2018-04-15

    A preventive human immunodeficiency virus type 1 (HIV-1) vaccine is an essential part of the strategy to eradicate AIDS. A critical question is whether antibodies that do not neutralize primary isolate (tier 2) HIV-1 strains can protect from infection. In this study, we investigated the ability of an attenuated poxvirus vector (NYVAC) prime-envelope gp120 boost to elicit potentially protective antibody responses in a rhesus macaque model of mucosal simian-human immunodeficiency virus (SHIV) infection. NYVAC vector delivery of a group M consensus envelope, trivalent mosaic envelopes, or a natural clade B isolate B.1059 envelope elicited antibodies that mediated neutralization of tier 1 viruses, cellular cytotoxicity, and phagocytosis. None of the macaques made neutralizing antibodies against the tier 2 SHIV SF162P3 used for mucosal challenge. Significant protection from infection was not observed for the three groups of vaccinated macaques compared to unvaccinated macaques, although binding antibody to HIV-1 Env correlated with decreased viremia after challenge. Thus, NYVAC Env prime-gp120 boost vaccination elicited polyfunctional, nonneutralizing antibody responses with minimal protective activity against tier 2 SHIV mucosal challenge. IMPORTANCE The antibody responses that confer protection against HIV-1 infection remain unknown. Polyfunctional antibody responses correlated with time to infection in previous macaque studies. Determining the ability of vaccines to induce these types of responses is critical for understanding how to improve upon the one efficacious human HIV-1 vaccine trial completed thus far. We characterized the antibody responses induced by a NYVAC-protein vaccine and determined the protective capacity of polyfunctional antibody responses in an R5, tier 2 mucosal SHIV infection model. Copyright © 2018 American Society for Microbiology.

  10. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination

    PubMed Central

    Kaur, Kaval; Zheng, Nai-Ying; Smith, Kenneth; Huang, Min; Li, Lie; Pauli, Noel T.; Henry Dunand, Carole J.; Lee, Jane-Hwei; Morrissey, Michael; Wu, Yixuan; Joachims, Michelle L.; Munroe, Melissa E.; Lau, Denise; Qu, Xinyan; Krammer, Florian; Wrammert, Jens; Palese, Peter; Ahmed, Rafi; James, Judith A.; Wilson, Patrick C.

    2015-01-01

    Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus. PMID:25951191

  11. Specific-pathogen-free chickens vaccinated with a live FAdV-4 vaccine are fully protected against a severe challenge even in the absence of neutralizing antibodies.

    PubMed

    Schonewille, Esther; Jaspers, Ron; Paul, Guntram; Hess, Michael

    2010-06-01

    By adapting a very virulent fowl adenovirus serotype 4 (FAdV-4) to a fibroblast cell line (QT35) instead of growing the virus in chicken embryo liver cells or chicken kidney cells, it was possible to attenuate the virus. Birds infected with the attenuated virus (FAdV-4/QT35) on the first day of life expressed no adverse clinical signs and no mortality. Intramuscular challenge with the virulent virus grown on chicken embryo liver cells (FAdV-4/CEL) at 21 days of life induced high mortality in previously nonvaccinated birds, whereas none of the birds vaccinated at 1 day old with FAdV-4/QT35 died due to this challenge. Applying enzyme-linked immunosorbent assay and virus neutralization assay, only a weak antibody response could be detected in some birds following vaccination, a response that increased directly after challenge. Nonvaccinated birds displayed a delayed development of antibodies after challenge as compared to previously vaccinated birds. Even birds that did not develop a measurable neutralizing antibody titer prior to challenge were protected from the adverse effects of the virulent FAdV-4/CEL, a phenomenon not described so far for FAdVs. Altogether, the present investigation underlines that neutralizing antibodies are not needed to protect chickens against a severe infection with a virulent fowl adenovirus.

  12. Characterization of antibody responses to combinations of a dengue virus type 2 DNA vaccine and two dengue virus type 2 protein vaccines in rhesus macaques.

    PubMed

    Simmons, Monika; Porter, Kevin R; Hayes, Curtis G; Vaughn, David W; Putnak, Robert

    2006-10-01

    We evaluated three nonreplicating dengue virus type 2 (DENV-2) vaccines: (i) a DNA vaccine containing the prM-E gene region (D), (ii) a recombinant subunit protein vaccine containing the B domain (i.e., domain III) of the E protein as a fusion with the Escherichia coli maltose-binding protein (R), and (iii) a purified inactivated virus vaccine (P). Groups of four rhesus macaques each were primed once and boosted twice using seven different vaccination regimens. After primary vaccination, enzyme-linked immunosorbent assay (ELISA) antibody levels increased most rapidly for groups inoculated with the P and DP combination, and by 1 month after the second boost, ELISA titers were similar for all groups. The highest plaque reduction neutralization test (PRNT) titers were seen in those groups that received the DR/DR/DR combination (geometric mean titer [GMT], 510), the P/P/P vaccine (GMT, 345), the DP/DP/DP combination (GMT, 287), and the R/R/R vaccine (GMT, 200). The next highest titers were seen in animals that received the D/R/R vaccine (GMT, 186) and the D/P/P vaccine (GMT, 163). Animals that received the D/D/D vaccine had the lowest neutralizing antibody titer (GMT, 49). Both ELISA and PRNT titers declined at variable rates. The only significant protection from viremia was observed in the P-vaccinated animals (mean of 0.5 days), which also showed the highest antibody concentration, including antibodies to NS1, and highest antibody avidity at the time of challenge.

  13. Vaccination with recombinant Modified Vaccinia Ankara (MVA) viruses expressing single African horse sickness virus VP2 antigens induced cross-reactive virus neutralising antibodies (VNAb) in horses when administered in combination.

    PubMed

    Manning, Nicola Mary; Bachanek-Bankowska, Katarzyna; Mertens, Peter Paul Clement; Castillo-Olivares, Javier

    2017-10-20

    African horse sickness is a lethal viral disease of equids transmitted by biting midges of the Genus Culicoides. The disease is endemic to sub-Saharan Africa but outbreaks of high mortality and economic impact have occurred in the past in non-endemic regions of Africa, Asia and Southern Europe. Vaccination is critical for the control of this disease but only live attenuated vaccines are currently available. However, there are bio-safety concerns over the use of this type of vaccines, especially in non-endemic countries, and live attenuated vaccines do not have DIVA (Differentiation of Infected from Vaccinated Animals) capacity. In addition, large scale manufacturing of live attenuated vaccines of AHSV represents a significant environmental and health risk and level 3 bio-safety containment facilities are required for their production. A variety of different technologies have been investigated over the years to develop alternative AHSV vaccines, including the use of viral vaccine vectors such Modified Vaccinia Ankara virus (MVA). In previous studies we demonstrated that recombinant MVA expressing outer capsid protein AHSV-VP2 induced virus neutralising antibodies and protection against virulent challenge both in a mouse model and in the horse. However, AHSV-VP2 is antigenically variable and determines the existence of 9 different AHSV serotypes. Immunity against AHSV is serotype-specific and there is limited cross-reactivity between certain AHSV serotypes: 1 and 2, 3 and 7, 5 and 8, 6 and 9. In Africa, multiple serotypes circulate simultaneously and a polyvalent attenuated vaccine comprising different AHSV serotypes is used. We investigated the potential of a polyvalent AHSV vaccination strategy based on combinations of MVA-VP2 viruses each expressing a single VP2 antigen from a specific serotype. We showed that administration of 2 different recombinant MVA viruses, each expressing a single VP2 protein from AHSV serotype 4 or 9, denoted respectively as MVA-VP2

  14. Genome-Wide Characterization of Transcriptional Patterns in High and Low Antibody Responders to Rubella Vaccination

    PubMed Central

    Haralambieva, Iana H.; Oberg, Ann L.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Grill, Diane E.; Middha, Sumit; Bot, Brian M.; Wang, Vivian W.; Smith, David I.; Jacobson, Robert M.; Poland, Gregory A.

    2013-01-01

    Immune responses to current rubella vaccines demonstrate significant inter-individual variability. We performed mRNA-Seq profiling on PBMCs from high and low antibody responders to rubella vaccination to delineate transcriptional differences upon viral stimulation. Generalized linear models were used to assess the per gene fold change (FC) for stimulated versus unstimulated samples or the interaction between outcome and stimulation. Model results were evaluated by both FC and p-value. Pathway analysis and self-contained gene set tests were performed for assessment of gene group effects. Of 17,566 detected genes, we identified 1,080 highly significant differentially expressed genes upon viral stimulation (p<1.00E−15, FDR<1.00E−14), including various immune function and inflammation-related genes, genes involved in cell signaling, cell regulation and transcription, and genes with unknown function. Analysis by immune outcome and stimulation status identified 27 genes (p≤0.0006 and FDR≤0.30) that responded differently to viral stimulation in high vs. low antibody responders, including major histocompatibility complex (MHC) class I genes (HLA-A, HLA-B and B2M with p = 0.0001, p = 0.0005 and p = 0.0002, respectively), and two genes related to innate immunity and inflammation (EMR3 and MEFV with p = 1.46E−08 and p = 0.0004, respectively). Pathway and gene set analysis also revealed transcriptional differences in antigen presentation and innate/inflammatory gene sets and pathways between high and low responders. Using mRNA-Seq genome-wide transcriptional profiling, we identified antigen presentation and innate/inflammatory genes that may assist in explaining rubella vaccine-induced immune response variations. Such information may provide new scientific insights into vaccine-induced immunity useful in rational vaccine development and immune response monitoring. PMID:23658707

  15. [Effect of maternally derived antibody levels on antibody responses to canine parvovirus, canine distemper virus and infectious canine hepatitis virus after vaccinations in beagle puppies].

    PubMed

    Iida, H; Fukuda, S; Kawashima, N; Yamazaki, T; Aoki, J; Tokita, K; Morioka, K; Takarada, N; Soeda, T

    1990-01-01

    Antibody titers against canine parvovirus (CPV), canine distemper virus (CDV) and infectious canine hepatitis virus (ICHV) in serum were measured in 6 beagle dams and their 38 puppies bred in our colony, in order to clarify the effects of maternally derived antibodies to antibody responses against the viruses after vaccinations in puppies. Correlation coefficient on antibody titers between puppies and dams were CPV: r = 0. 7935, CDV: r = 0.8194 and ICHV: r = 0.8105. Mean maternal antibody positive rates in 7-day-old puppies from their dams were CPV: 67%, CDV: 46% and ICHV: 45%. Mean half-lives of the maternal antibodies in puppies were estimated to be CPV: 13.5 days, CDV: 15.1 days and ICHV: 15.4 days. The antibody response against CPV vaccination in puppies was mainly observed in dogs being titers of less 1:5 and positivity was 39% (15/38 puppies) after 1st vaccination at 42 days after birth, and 82% (31/38 puppies) after 2nd vaccination at 70 days. That against CDV vaccination (at 56 days after birth) was seen highly in dogs being titers of less 1:10 and positivity was 53% (20/38). Also that against ICHV vaccination (at 56 days after birth) was seen frequently in dogs being titers of less 20 holds and the rate was 87% (33/38). From these results, it was estimated that the age when high antibody response against each vaccination could be expected in puppies might be CPV: between 40 and 69 days, CDV: between 32 and 92 days and ICHV: between 31 and 52 days, respectively.

  16. Anti-pertussis antibody kinetics following DTaP-IPV booster vaccination in Norwegian children 7-8 years of age.

    PubMed

    Aase, Audun; Herstad, Tove Karin; Jørgensen, Silje Bakken; Leegaard, Truls Michael; Berbers, Guy; Steinbakk, Martin; Aaberge, Ingeborg

    2014-10-14

    At the age of 7-8 years a booster of diphtheria, tetanus, acellular pertussis and polio vaccine is recommended for children in Norway. In this cross-sectional study we have analysed the antibody levels against pertussis vaccine antigens in sera from 498 children aged 6-12 years. The purposes of this study were to investigate the duration of the booster response against the pertussis vaccine antigens pertussis toxin (PT) and filamentous haemagglutinin (FHA); to determine the presence of high levels of pertussis antibodies in absence of recent vaccination; and to analyse how booster immunisation may interfere with the serological pertussis diagnostics. Prior to the booster the IgG antibody levels against PT revealed a geometric mean of 7.3IU/ml. After the booster the geometric mean peak anti-PT IgG response reached to 45.6IU/ml, followed by a steady decline in antibody levels over the next few years. The IgG anti-FHA levels followed the anti-PT IgG profiles. Three years after the booster the geometric mean IgG levels were only slightly above pre-booster levels. Prior to the booster 44% of the sera contained ≤5IU/ml of anti-PT IgG compared to18% 3 years after and 30% 4 years after the booster. When recently vaccinated children were excluded, 6.2% of the children had anti-PT IgG levels above 50IU/ml which may indicate pertussis infection within the last 2 years. This study indicates that the currently used acellular pertussis vaccines induce moderate immune responses to the pertussis antigens and that the antibodies wane within few years after the booster. This lack of sustained immune response may partly be responsible for the increased number of pertussis cases observed in this age group during the last years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses.

    PubMed

    Dunkel, Amber; Shen, Shixue; LaBranche, Celia C; Montefiori, David; McGettigan, James P

    2015-11-01

    We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>10(7) focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both "free" and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines.

  18. Intrathecal antibody production in two cases of yellow fever vaccine associated neurotropic disease in Argentina.

    PubMed

    Pires-Marczeski, Fanny Clara; Martinez, Valeria Paula; Nemirovsky, Corina; Padula, Paula Julieta

    2011-12-01

    During the period 2007-2008 several epizootics of Yellow fever with dead of monkeys occurred in southeastern Brasil, Paraguay, and northeastern Argentina. In 2008 after a Yellow fever outbreak an exhaustive prevention campaign took place in Argentina using 17D live attenuated Yellow fever vaccine. This vaccine is considered one of the safest live virus vaccines, although serious adverse reactions may occur after vaccination, and vaccine-associated neurotropic disease are reported rarely. The aim of this study was to confirm two serious adverse events associated to Yellow fever vaccine in Argentina, and to describe the analysis performed to assess the origin of specific IgM against Yellow fever virus (YFV) in cerebrospinal fluid (CSF). Both cases coincided with the Yellow fever vaccine-associated neurotropic disease case definition, being clinical diagnosis longitudinal myelitis (case 1) and meningoencephalitis (case 2). Specific YFV antibodies were detected in CSF and serum samples in both cases by IgM antibody-capture ELISA. No other cause of neurological disease was identified. In order to obtain a conclusive diagnosis of central nervous system (CNS) infection the IgM antibody index (AI(IgM) ) was calculated. High AI(IgM) values were found in both cases indicating intrathecal production of antibodies and, therefore, CNS post-vaccinal YFV infection could be definitively associated to YFV vaccination. Copyright © 2011 Wiley Periodicals, Inc.

  19. Toxin-neutralizing antibodies protect against Clostridium perfringens-induced necrosis in an intestinal loop model for bovine necrohemorrhagic enteritis.

    PubMed

    Goossens, Evy; Verherstraeten, Stefanie; Valgaeren, Bonnie R; Pardon, Bart; Timbermont, Leen; Schauvliege, Stijn; Rodrigo-Mocholí, Diego; Haesebrouck, Freddy; Ducatelle, Richard; Deprez, Piet R; Van Immerseel, Filip

    2016-06-13

    Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens type A. Due to the rapid progress and fatal outcome of the disease, vaccination would be of high value. In this study, C. perfringens toxins, either as native toxins or after formaldehyde inactivation, were evaluated as possible vaccine antigens. We determined whether antisera raised in calves against these toxins were able to protect against C. perfringens challenge in an intestinal loop model for bovine necrohemorrhagic enteritis. Alpha toxin and perfringolysin O were identified as the most immunogenic proteins in the vaccine preparations. All vaccines evoked a high antibody response against the causative toxins, alpha toxin and perfringolysin O, as detected by ELISA. All antibodies were able to inhibit the activity of alpha toxin and perfringolysin O in vitro. However, the antibodies raised against the native toxins were more inhibitory to the C. perfringens-induced cytotoxicity (as tested on bovine endothelial cells) and only these antibodies protected against C. perfringens challenge in the intestinal loop model. Although immunization of calves with both native and formaldehyde inactivated toxins resulted in high antibody titers against alpha toxin and perfringolysin O, only antibodies raised against native toxins protect against C. perfringens challenge in an intestinal loop model for bovine necrohemorrhagic enteritis.

  20. Preclinical development of a vaccine 'against smoking'.

    PubMed

    Cerny, E H; Lévy, R; Mauel, J; Mpandi, M; Mutter, M; Henzelin-Nkubana, C; Patiny, L; Tuchscherer, G; Cerny, T

    2002-10-01

    Nicotine is the main culprit for dependence on tobacco-containing products, which in turn are a major etiologic factor for cardiovascular diseases and cancer. This publication describes a vaccine, which elicits antibodies against nicotine. The antibodies in the blood stream intercept the nicotine molecule on its way to its receptors and greatly diminish the nicotine influx to the brain shortly after smoking. The nicotine molecule is chemically linked to cholera toxin B as a carrier protein in order to induce antibodies. The potential to elicit antibodies after subcutaneous as well as intranasal immunization is evaluated. In order to simulate realistic conditions, nicotine pumps delivering the nicotine equivalent of 5 packages of cigarettes for 4 weeks are implanted into the mice 1 week prior to vaccination. The protective effect of the vaccine is measured 5 weeks after vaccination by comparing the influx of radiolabeled nicotine in the brains of vaccinated and non-vaccinated animals 5 min after challenge with the nicotine equivalent of 2 cigarettes. The polyclonal antibodies induced by the vaccine show a mean avidity of 1.8 x 10(7) l/Mol. Subcutaneous immunization elicits high antibody levels of the IgG class, and significant IgA antibody levels in the saliva of vaccinated mice can be found after intranasal vaccination. The protective effect also in the animals with implanted nicotine pumps is significant: less than 10% of radiolabeled nicotine found in the brains of non-vaccinated animals can be found in the brains of vaccinated animals. These data provide credible evidence that a vaccine can break the vicious circle between smoking and instant gratification by intercepting the nicotine molecule. Astonishingly, there is no sign of exhaustion of specific antibodies even under extreme conditions, which makes it highly unlikely that a smoker can overcome the protective effect of the vaccine by smoking more. Finally, the high titers of specific antibodies after 1 year

  1. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques.

    PubMed

    Florek, Nicholas W; Weinfurter, Jason T; Jegaskanda, Sinthujan; Brewoo, Joseph N; Powell, Tim D; Young, Ginger R; Das, Subash C; Hatta, Masato; Broman, Karl W; Hungnes, Olav; Dudman, Susanne G; Kawaoka, Yoshihiro; Kent, Stephen J; Stinchcomb, Dan T; Osorio, Jorge E; Friedrich, Thomas C

    2014-11-01

    Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses

  2. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  3. Antibody response and maternal immunity upon boosting PRRSV-immune sows with experimental farm-specific and commercial PRRSV vaccines.

    PubMed

    Geldhof, Marc F; Van Breedam, Wander; De Jong, Ellen; Lopez Rodriguez, Alfonso; Karniychuk, Uladzimir U; Vanhee, Merijn; Van Doorsselaere, Jan; Maes, Dominiek; Nauwynck, Hans J

    2013-12-27

    The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in pigs of all ages. Despite the frequent use of vaccines to maintain PRRSV immunity in sows, little is known on how the currently used vaccines affect the immunity against currently circulating and genetically divergent PRRSV variants in PRRSV-immune sows, i.e. sows that have a pre-existing PRRSV-specific immunity due to previous infection with or vaccination against the virus. Therefore, this study aimed to assess the capacity of commercially available attenuated/inactivated PRRSV vaccines and autogenous inactivated PRRSV vaccines - prepared according to a previously optimized in-house protocol - to boost the antibody immunity against currently circulating PRRSV variants in PRRSV-immune sows. PRRSV isolates were obtained from 3 different swine herds experiencing PRRSV-related problems, despite regular vaccination of gilts and sows against the virus. In a first part of the study, the PRRSV-specific antibody response upon booster vaccination with commercial PRRSV vaccines and inactivated farm-specific PRRSV vaccines was evaluated in PRRSV-immune, non-pregnant replacement sows from the 3 herds. A boost in virus-neutralizing antibodies against the farm-specific isolate was observed in all sow groups vaccinated with the corresponding farm-specific inactivated vaccines. Use of the commercial attenuated EU type vaccine boosted neutralizing antibodies against the farm-specific isolate in sows derived from 2 farms, while use of the commercial attenuated NA type vaccine did not boost farm-specific virus-neutralizing antibodies in any of the sow groups. Interestingly, the commercial inactivated EU type vaccine boosted farm-specific virus-neutralizing antibodies in sows from 1 farm. In the second part of the study, a field trial was performed at one of the farms to evaluate the booster effect of an inactivated farm-specific vaccine and a commercial

  4. Stalking influenza by vaccination with pre-fusion headless HA mini-stem.

    PubMed

    Valkenburg, Sophie A; Mallajosyula, V Vamsee Aditya; Li, Olive T W; Chin, Alex W H; Carnell, George; Temperton, Nigel; Varadarajan, Raghavan; Poon, Leo L M

    2016-03-07

    Inaccuracies in prediction of circulating viral strain genotypes and the possibility of novel reassortants causing a pandemic outbreak necessitate the development of an anti-influenza vaccine with increased breadth of protection and potential for rapid production and deployment. The hemagglutinin (HA) stem is a promising target for universal influenza vaccine as stem-specific antibodies have the potential to be broadly cross-reactive towards different HA subtypes. Here, we report the design of a bacterially expressed polypeptide that mimics a H5 HA stem by protein minimization to focus the antibody response towards the HA stem. The HA mini-stem folds as a trimer mimicking the HA prefusion conformation. It is resistant to thermal/chemical stress, and it binds to conformation-specific, HA stem-directed broadly neutralizing antibodies with high affinity. Mice vaccinated with the group 1 HA mini-stems are protected from morbidity and mortality against lethal challenge by both group 1 (H5 and H1) and group 2 (H3) influenza viruses, the first report of cross-group protection. Passive transfer of immune serum demonstrates the protection is mediated by stem-specific antibodies. Furthermore, antibodies induced by these HA stems have broad HA reactivity, yet they do not have antibody-dependent enhancement activity.

  5. Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.

    PubMed

    Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming

    2010-07-26

    Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.

  6. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated.

    PubMed

    Dumas, Eric K; Garman, Lori; Cuthbertson, Hannah; Charlton, Sue; Hallis, Bassam; Engler, Renata J M; Choudhari, Shyamal; Picking, William D; James, Judith A; Farris, A Darise

    2017-06-08

    A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n=39) and AVA recipients (n=78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED 50 values (AVP: 1464.0±214.7, AVA: 544.9±83.2, p<0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    PubMed

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  8. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab

    PubMed Central

    Fujii, Rika; Friedman, Eitan R.; Richards, Jacob; Tsang, Kwong Y.; Heery, Christopher R.; Schlom, Jeffrey; Hodge, James W.

    2016-01-01

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC. PMID:27172898

  9. Characterization of Heat-Stable (STa) Toxoids of Enterotoxigenic Escherichia coli Fused to Double Mutant Heat-Labile Toxin Peptide in Inducing Neutralizing Anti-STa Antibodies

    PubMed Central

    Ruan, Xiaosai; Robertson, Donald C.; Nataro, James P.; Clements, John D.

    2014-01-01

    A long-standing challenge in developing vaccines against enterotoxigenic Escherichia coli (ETEC), the most common bacteria causing diarrhea in children of developing countries and travelers to these countries, is to protect against heat-stable toxin type Ib (STa or hSTa). STa and heat-labile toxin (LT) are virulence determinants in ETEC diarrhea. LT antigens are often used in vaccine development, but STa has not been included because of its poor immunogenicity and potent toxicity. Toxic STa is not safe for vaccines, but only STa possessing toxicity is believed to be able to induce neutralizing antibodies. However, recent studies demonstrated that nontoxic STa derivatives (toxoids), after being fused to an LT protein, induced neutralizing antibodies and suggested that different STa toxoids fused to an LT protein might exhibit different STa antigenic propensity. In this study, we selected 14 STa toxoids from a mini-STa toxoid library based on toxicity reduction and reactivity to anti-native STa antibodies, and genetically fused each toxoid to a monomeric double mutant LT (dmLT) peptide for 14 STa-toxoid-dmLT toxoid fusions. These toxoid fusions were used to immunize mice and were characterized for induction of anti-STa antibody response. The results showed that different STa toxoids (in fusions) varied greatly in anti-STa antigenicity. Among them, STaN12S, STaN12T, and STaA14H were the top toxoids in inducing anti-STa antibodies. In vitro neutralization assays indicated that antibodies induced by the 3×STaN12S-dmLT fusion antigen exhibited the greatest neutralizing activity against STa toxin. These results suggested 3×STaN12S-dmLT is a preferred fusion antigen to induce an anti-STa antibody response and provided long-awaited information for effective ETEC vaccine development. PMID:24549325

  10. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d{sub 3}) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d{sub 3}. In addition, bothmore » sCD4-gp120 and sCD4-gp120-mC3d{sub 3} bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d{sub 3} or sCD4-gp120-mC3d{sub 3} elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d{sub 3}-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d{sub 3} had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.« less

  11. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1.

    PubMed

    Bower, Joseph F; Green, Thomas D; Ross, Ted M

    2004-10-25

    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.

  12. Efficacy, but not antibody titer or affinity, of a heroin hapten conjugate vaccine correlates with increasing hapten densities on tetanus toxoid, but not on CRM197 carriers.

    PubMed

    Jalah, Rashmi; Torres, Oscar B; Mayorov, Alexander V; Li, Fuying; Antoline, Joshua F G; Jacobson, Arthur E; Rice, Kenner C; Deschamps, Jeffrey R; Beck, Zoltan; Alving, Carl R; Matyas, Gary R

    2015-06-17

    Vaccines against drugs of abuse have induced antibodies in animals that blocked the biological effects of the drug by sequestering the drug in the blood and preventing it from crossing the blood-brain barrier. Drugs of abuse are too small to induce antibodies and, therefore, require conjugation of drug hapten analogs to a carrier protein. The efficacy of these conjugate vaccines depends on several factors including hapten design, coupling strategy, hapten density, carrier protein selection, and vaccine adjuvant. Previously, we have shown that 1 (MorHap), a heroin/morphine hapten, conjugated to tetanus toxoid (TT) and mixed with liposomes containing monophosphoryl lipid A [L(MPLA)] as adjuvant, partially blocked the antinociceptive effects of heroin in mice. Herein, we extended those findings, demonstrating greatly improved vaccine induced antinociceptive effects up to 3% mean maximal potential effect (%MPE). This was obtained by evaluating the effects of vaccine efficacy of hapten 1 vaccine conjugates with varying hapten densities using two different commonly used carrier proteins, TT and cross-reactive material 197 (CRM197). Immunization of mice with these conjugates mixed with L(MPLA) induced very high anti-1 IgG peak levels of 400-1500 μg/mL that bound to both heroin and its metabolites, 6-acetylmorphine and morphine. Except for the lowest hapten density for each carrier, the antibody titers and affinity were independent of hapten density. The TT carrier based vaccines induced long-lived inhibition of heroin-induced antinociception that correlated with increasing hapten density. The best formulation contained TT with the highest hapten density of ≥30 haptens/TT molecule and induced %MPE of approximately 3% after heroin challenge. In contrast, the best formulation using CRM197 was with intermediate 1 densities (10-15 haptens/CRM197 molecule), but the %MPE was approximately 13%. In addition, the chemical synthesis of 1, the optimization of the conjugation

  13. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice.

    PubMed

    Weber, Christopher; Büchner, Sarah M; Schnierle, Barbara S

    2015-04-01

    The mosquito-borne Chikungunya virus (CHIKV) causes high fever and severe joint pain in humans. It is expected to spread in the future to Europe and has recently reached the USA due to globalization, climate change and vector switch. Despite this, little is known about the virus life cycle and, so far, there is no specific treatment or vaccination against Chikungunya infections. We aimed here to identify small antigenic determinants of the CHIKV E2 protein able to induce neutralizing immune responses. E2 enables attachment of the virus to target cells and a humoral immune response against E2 should protect from CHIKV infections. Seven recombinant proteins derived from E2 and consisting of linear and/or structural antigens were created, and were expressed in and purified from E. coli. BALB/c mice were vaccinated with these recombinant proteins and the mouse sera were screened for neutralizing antibodies. Whereas a linear N-terminally exposed peptide (L) and surface-exposed parts of the E2 domain A (sA) alone did not induce neutralizing antibodies, a construct containing domain B and a part of the β-ribbon (called B+) was sufficient to induce neutralizing antibodies. Furthermore, domain sA fused to B+ (sAB+) induced the highest amount of neutralizing antibodies. Therefore, the construct sAB+ was used to generate a recombinant modified vaccinia virus Ankara (MVA), MVA-CHIKV-sAB+. Mice were vaccinated with MVA-CHIKV-sAB+ and/or the recombinant protein sAB+ and were subsequently challenged with wild-type CHIKV. Whereas four vaccinations with MVA-CHIKV-sAB+ were not sufficient to protect mice from a CHIKV infection, protein vaccination with sAB+ markedly reduced the viral titers of vaccinated mice. The recombinant protein sAB+ contains important structural antigens for a neutralizing antibody response in mice and its formulation with appropriate adjuvants might lead to a future CHIKV vaccine.

  14. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells

    PubMed Central

    Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.

    2014-01-01

    The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058

  15. Active antitumor immunity elicited by vaccine based on recombinant form of epidermal growth factor receptor.

    PubMed

    Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing

    2005-01-01

    Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.

  16. Dynamic profiles of neutralizing antibody responses elicited in rhesus monkeys immunized with a combined tetravalent DTaP-Sabin IPV candidate vaccine.

    PubMed

    Sun, Mingbo; Ma, Yan; Xu, Yinhua; Yang, Huijuan; Shi, Li; Che, Yanchun; Liao, Guoyang; Jiang, Shude; Zhang, Shumin; Li, Qihan

    2014-02-19

    The World Health Organization has recommended that a Sabin inactivated polio vaccine (IPV) should gradually and synchronously replace oral polio vaccines for routine immunizations because its benefits in eliminating vaccine-associated paralytic poliomyelitis have been reported in different phases of clinical trials. It is also considered important to explore new tetravalent diphtheria, tetanus, and acellular pertussis-Sabin IPV (DTaP-sIPV) candidate vaccines for possible use in developing countries. In this study, the immunogenicity of a combined tetravalent DTaP-sIPV candidate vaccine was investigated in primates by evaluating the neutralizing antibody responses it induced. The dynamic profiles of the antibody responses to each of the separate antigenic components and serotypes of Sabin IPV were determined and their corresponding geometric mean titers were similar to those generated by the tetravalent diphtheria, tetanus, and acellular pertussis-conventional IPV (DTaP-cIPV), the tetravalent diphtheria, tetanus, and acellular pertussis (DTaP), and Sabin IPV vaccines in the control groups. This implies that protective immunogenic effects are conferred by this combined tetravalent formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Formalin-Inactivated Coxiella burnetii Phase I Vaccine-Induced Protection Depends on B Cells To Produce Protective IgM and IgG

    PubMed Central

    Peng, Ying; Schoenlaub, Laura; Elliott, Alexandra; Mitchell, William; Zhang, Yan

    2013-01-01

    To further understand the mechanisms of formalin-inactivated Coxiella burnetii phase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+ T cell, or CD8+ T cell deficiency in mice significantly affects the ability of PIV to confer protection against a C. burnetii infection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+ T cell- or CD8+ T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+ T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+ T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibit C. burnetii infection in vivo, but only IgM from PIV-vaccinated CD4+ T cell-deficient mouse sera inhibited C. burnetii infection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection against C. burnetii infection. PMID:23545296

  18. Exploring the feasibility of an anti-idiotypic cocaine vaccine: analysis of the specificity of anticocaine antibodies (Ab1) capable of inducing Ab2beta anti-idiotypic antibodies.

    PubMed

    Schabacker, D S; Kirschbaum, K S; Segre, M

    2000-05-01

    Conventional vaccination with the cocaine molecule conjugated to a protein carrier is a new approach in the treatment of addiction. Experimentally, this strategy has been shown to alter the pharmacokinetics as well as the psychostimulant effect of a cocaine challenge. The purpose of this study was to investigate whether a more stable and less controversial molecule, an anti-idiotypic antibody, which mimics the configuration of the cocaine molecule (Ab2beta), could be successfully used instead of cocaine. Two cocaine conjugates that presented different areas of the cocaine molecule to the immune system were used to produce monoclonal antibodies specific for cocaine (Ab1). Several anti-idiotypic antibodies were then produced. Four were identified as Ab2beta, or internal images of the antigen; when injected into BALB/c mice, they elicited an anticocaine response. The anticocaine response elicited by one of the four Ab2beta (K1-4c) was sufficient to significantly reduce the level of cocaine that targeted the brain following cocaine challenge, compared with the level of cocaine found in the brain of control animals immunized with irrelevant antibody. In conclusion, the possibility of an anti-idiotypic vaccine seems to be worth pursuing.

  19. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines

    PubMed Central

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela

    2016-01-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  20. Antibody Persistence in Young Children 5 Years after Vaccination with a Combined Haemophilus influenzae Type b-Neisseria meningitidis Serogroup C Conjugate Vaccine Coadministered with Diphtheria-Tetanus-Acellular Pertussis-Based and Pneumococcal Conjugate Vaccines.

    PubMed

    Tejedor, Juan Carlos; Brzostek, Jerzy; Konior, Ryszard; Grunert, Detlef; Kolhe, Devayani; Baine, Yaela; Van Der Wielen, Marie

    2016-07-01

    We evaluated antibody persistence in children up to 5 years after administration of a combined Haemophilus influenzae type b (Hib)-Neisseria meningitidis serogroup C (MenC)-tetanus toxoid (TT) conjugate vaccine coadministered with a pneumococcal conjugate vaccine. This is the follow-up study of a randomized trial (ClinicalTrials.gov registration no. NCT00334334/00463437) in which healthy children were vaccinated (primary vaccinations at 2, 4, and 6 months of age and booster vaccination at 11 to 18 months of age) with Hib-MenC-TT or a control MenC conjugate vaccine, coadministered with diphtheria-tetanus-acellular pertussis (DTPa)-based combination vaccines (DTPa/Hib for control groups) and a pneumococcal conjugate vaccine (10-valent pneumococcal nontypeable H. influenzae protein D conjugate vaccine [PHiD-CV] or 7-valent cross-reacting material 197 [CRM197] conjugate vaccine [7vCRM]). MenC antibody titers were measured with a serum bactericidal antibody (SBA) assay using rabbit complement (i.e., rabbit SBA [rSBA]), and antibodies against Hib polyribosylribitol phosphate (PRP) were measured with an enzyme-linked immunosorbent assay. Antibody persistence up to 5 years after booster vaccination is reported for 530 children ∼6 years of age. The percentages of children with seroprotective rSBA-MenC titers were between 24.2% and 40.1% in all groups approximately 5 years after booster vaccination. More than 98.5% of children in each group retained seroprotective anti-PRP concentrations. No vaccine-related serious adverse events and no events related to a lack of vaccine efficacy were reported. Approximately 5 years after booster vaccination, the majority of children retained seroprotective anti-PRP antibody concentrations. The percentage of children retaining seroprotective rSBA-MenC titers was low (≤40%), suggesting that a significant proportion of children may be unprotected against MenC disease. (This study has been registered at ClinicalTrials.gov under

  1. Prophylactic and therapeutic vaccination with carrier-bound Bet v 1 peptides lacking allergen-specific T cell epitopes reduces Bet v 1-specific T cell responses via blocking antibodies in a murine model for birch pollen allergy.

    PubMed

    Linhart, B; Narayanan, M; Focke-Tejkl, M; Wrba, F; Vrtala, S; Valenta, R

    2014-02-01

    Vaccines consisting of allergen-derived peptides lacking IgE reactivity and allergen-specific T cell epitopes bound to allergen-unrelated carrier molecules have been suggested as candidates for allergen-specific immunotherapy. To study whether prophylactic and therapeutic vaccination with carrier-bound peptides from the major birch pollen allergen Bet v 1 lacking allergen-specific T cell epitopes has influence on Bet v 1-specific T cell responses. Three Bet v 1-derived peptides, devoid of Bet v 1-specific T cell epitopes, were coupled to KLH and adsorbed to aluminium hydroxide to obtain a Bet v 1-specific allergy vaccine. Groups of BALB/c mice were immunized with the peptide vaccine before or after sensitization to Bet v 1. Bet v 1- and peptide-specific antibody responses were analysed by ELISA. T cell and cytokine responses to Bet v 1, KLH, and the peptides were studied in proliferation assays. The effects of peptide-specific and allergen-specific antibodies on T cell responses and allergic lung inflammation were studied using specific antibodies. Prophylactic and therapeutic vaccination with carrier-bound Bet v 1 peptides induced a Bet v 1-specific IgG antibody response without priming/boosting of Bet v 1-specific T cells. Prophylactic and therapeutic vaccination of mice with the peptide vaccine induced Bet v 1-specific antibodies which suppressed Bet v 1-specific T cell responses and allergic lung inflammation. Vaccination with carrier-bound allergen-derived peptides lacking allergen-specific T cell epitopes induces allergen-specific IgG antibodies which suppress allergen-specific T cell responses and allergic lung inflammation. © 2013 John Wiley & Sons Ltd.

  2. Antibody responses to prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140.

    PubMed

    Emmer, Kristel L; Wieczorek, Lindsay; Tuyishime, Steven; Molnar, Sebastian; Polonis, Victoria R; Ertl, Hildegund C J

    2016-10-23

    Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.

  3. Antibody responses to influenza A/H1N1pdm09 virus after pandemic and seasonal influenza vaccination in healthcare workers: a five-year follow-up study.

    PubMed

    Trieu, Mai-Chi; Jul-Larsen, Åsne; Sævik, Marianne; Madsen, Anders; Nøstbakken, Jane Kristin; Zhou, Fan; Skrede, Steinar; Cox, Rebecca Jane

    2018-06-09

    The 2009 influenza pandemic was caused by A/H1N1pdm09 virus, which was subsequently included in the seasonal vaccine as the A/H1N1 strain up to 2016/17. This provided a unique opportunity to investigate the antibody response to H1N1pdm09 over time. Healthcare workers (HCWs) were immunized with the AS03-adjuvanted H1N1pdm09 vaccine in 2009 (N=250), and subsequently vaccinated with seasonal vaccines containing H1N1pdm09 for 4 seasons (repeated group), <4 seasons (occasional group), or received no further vaccinations (single group). Blood samples were collected at 21-days, 3-, 6- and 12-months after each vaccination or annually (pre-season) from 2010 in the single group. The H1N1pdm09-specific antibodies were measured by the hemagglutination inhibition (HI) assay. Pandemic vaccination robustly induced HI antibodies that persisted above the 50% protective threshold (HI titers ≥40) over 12-months post-vaccination. Previous seasonal vaccination and the duration of adverse events after pandemic vaccination influenced the decision to vaccinate in subsequent seasons. During 2010/11-2013/14, antibodies were boosted after each seasonal vaccination, although no significant difference was observed between the repeated and occasional groups. In the single group without seasonal vaccination, 32% of HCWs seroconverted (≥4 fold-increase HI titers) during the four subsequent years, most of whom had HI titers <40 prior to seroconversion. When excluding these seroconverted HCWs, HI titers gradually declined from 12- to 60-months post-pandemic vaccination. Pandemic vaccination elicited durable antibodies, supporting the incorporation of adjuvant. Our findings support the current recommendation of annual influenza vaccination in HCWs.

  4. Modulation of innate and adaptive cellular immunity relevant to HIV-1 vaccine design by seminal plasma.

    PubMed

    Selva, Kevin J; Kent, Stephen J; Parsons, Matthew S

    2017-01-28

    Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.

  5. Neutralizing antibodies respond to a bivalent dengue DNA vaccine or/and a recombinant bivalent antigen.

    PubMed

    Zhang, Zhi-Shan; Weng, Yu-Wei; Huang, Hai-Long; Zhang, Jian-Ming; Yan, Yan-Sheng

    2015-02-01

    There is currently no effective vaccine to prevent dengue infection, despite the existence of multiple studies on potential methods of immunization. The aim of the present study was to explore the effect of DNA and/or recombinant protein on levels of neutralizing antibodies. For this purpose, envelope domain IIIs of dengue serotypes 1 and 2 (DEN-1/2)were spliced by a linker (Gly‑Gly‑Ser‑Gly‑Ser)3 and cloned into the prokaryotic expression plasmid pET30a (+) and eukaryotic vector pcDNA3.1 (+). The chimeric bivalent protein was expressed in Escherichia coli, and one‑step purification by high‑performance liquid chromatography was conducted. Protein expression levels of the DNA plasmid were tested in BHK‑21 cells by indirect immunofluorescent assay. In order to explore a more effective immunization strategy and to develop neutralizing antibodies against the two serotypes, mice were inoculated with recombinant bivalent protein, the DNA vaccine, or the two given simultaneously. Presence of the specific antibodies was tested by ELISA and the presence of the neutralizing antibodies was determined by plaque reduction neutralization test. Results of the analysis indicated that the use of a combination of DNA and protein induced significantly higher titers of neutralizing antibodies against either DEN‑1 or DEN‑2 (1:64.0 and 1:76.1, respectively) compared with the DNA (1:24.7 and 1:26.9, DEN‑1 and DEN‑2, respectively) or the recombinant protein (1:34.9 and 1:45.3 in DEN‑1 and DEN‑2, respectively). The present study demonstrated that the combination of recombinant protein and DNA as an immunization strategy may be an effective method for the development of a vaccine to prevent dengue virus infection.

  6. Antibodies elicited by the first non-viral prophylactic cancer vaccine show tumor-specificity and immunotherapeutic potential

    PubMed Central

    Lohmueller, Jason J.; Sato, Shuji; Popova, Lana; Chu, Isabel M.; Tucker, Meghan A.; Barberena, Roberto; Innocenti, Gregory M.; Cudic, Mare; Ham, James D.; Cheung, Wan Cheung; Polakiewicz, Roberto D.; Finn, Olivera J.

    2016-01-01

    MUC1 is a shared tumor antigen expressed on >80% of human cancers. We completed the first prophylactic cancer vaccine clinical trial based on a non-viral antigen, MUC1, in healthy individuals at-risk for colon cancer. This trial provided a unique source of potentially effective and safe immunotherapeutic drugs, fully-human antibodies affinity-matured in a healthy host to a tumor antigen. We purified, cloned, and characterized 13 IgGs specific for several tumor-associated MUC1 epitopes with a wide range of binding affinities. These antibodies bind hypoglycosylated MUC1 on human cancer cell lines and tumor tissues but show no reactivity against fully-glycosylated MUC1 on normal cells and tissues. We found that several antibodies activate complement-mediated cytotoxicity and that T cells carrying chimeric antigen receptors with the antibody variable regions kill MUC1+ target cells, express activation markers, and produce interferon gamma. Fully-human and tumor-specific, these antibodies are candidates for further testing and development as immunotherapeutic drugs. PMID:27545199

  7. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    PubMed

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and

  8. Measles vaccination in the presence or absence of maternal measles antibody: impact on child survival.

    PubMed

    Aaby, Peter; Martins, Cesário L; Garly, May-Lill; Andersen, Andreas; Fisker, Ane B; Claesson, Mogens H; Ravn, Henrik; Rodrigues, Amabelia; Whittle, Hilton C; Benn, Christine S

    2014-08-15

    Measles vaccine (MV) has a greater effect on child survival when administered in early infancy, when maternal antibody may still be present. To test whether MV has a greater effect on overall survival if given in the presence of maternal measles antibody, we reanalyzed data from 2 previously published randomized trials of a 2-dose schedule with MV given at 4-6 months and at 9 months of age. In both trials antibody levels had been measured before early measles vaccination. In trial I (1993-1995), the mortality rate was 0.0 per 1000 person-years among children vaccinated with MV in the presence of maternal antibody and 32.3 per 1000 person-years without maternal antibody (mortality rate ratio [MRR], 0.0; 95% confidence interval [CI], 0-.52). In trial II (2003-2007), the mortality rate was 4.2 per 1000 person-years among children vaccinated in presence of maternal measles antibody and 14.5 per 1000 person-years without measles antibody (MRR, 0.29; 95% CI, .09-.91). Possible confounding factors did not explain the difference. In a combined analysis, children who had measles antibody detected when they received their first dose of MV at 4-6 months of age had lower mortality than children with no maternal antibody, the MRR being 0.22 (95% CI, .07-.64) between 4-6 months and 5 years. Child mortality in low-income countries may be reduced by vaccinating against measles in the presence of maternal antibody, using a 2-dose schedule with the first dose at 4-6 months (earlier than currently recommended) and a booster dose at 9-12 months of age. NCT00168558. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  9. Measles Vaccination in the Presence or Absence of Maternal Measles Antibody: Impact on Child Survival

    PubMed Central

    Aaby, Peter; Martins, Cesário L.; Garly, May-Lill; Andersen, Andreas; Fisker, Ane B.; Claesson, Mogens H.; Ravn, Henrik; Rodrigues, Amabelia; Whittle, Hilton C.; Benn, Christine S.

    2014-01-01

    Background. Measles vaccine (MV) has a greater effect on child survival when administered in early infancy, when maternal antibody may still be present. Methods. To test whether MV has a greater effect on overall survival if given in the presence of maternal measles antibody, we reanalyzed data from 2 previously published randomized trials of a 2-dose schedule with MV given at 4–6 months and at 9 months of age. In both trials antibody levels had been measured before early measles vaccination. Results. In trial I (1993–1995), the mortality rate was 0.0 per 1000 person-years among children vaccinated with MV in the presence of maternal antibody and 32.3 per 1000 person-years without maternal antibody (mortality rate ratio [MRR], 0.0; 95% confidence interval [CI], 0–.52). In trial II (2003–2007), the mortality rate was 4.2 per 1000 person-years among children vaccinated in presence of maternal measles antibody and 14.5 per 1000 person-years without measles antibody (MRR, 0.29; 95% CI, .09–.91). Possible confounding factors did not explain the difference. In a combined analysis, children who had measles antibody detected when they received their first dose of MV at 4–6 months of age had lower mortality than children with no maternal antibody, the MRR being 0.22 (95% CI, .07–.64) between 4–6 months and 5 years. Conclusions. Child mortality in low-income countries may be reduced by vaccinating against measles in the presence of maternal antibody, using a 2-dose schedule with the first dose at 4–6 months (earlier than currently recommended) and a booster dose at 9–12 months of age. Clinical Trials Registration. NCT00168558. PMID:24829213

  10. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates.

    PubMed

    Kielsen, Katrine; Shamim, Zaiba; Ryder, Lars P; Nielsen, Flemming; Grandjean, Philippe; Budtz-Jørgensen, Esben; Heilmann, Carsten

    2016-01-01

    Recent studies suggest that exposure to perfluorinated alkylate substances (PFASs) may induce immunosuppression in humans and animal models. In this exploratory study, 12 healthy adult volunteers were recruited. With each subject, serum-PFAS concentrations were measured and their antibody responses prospectively followed for 30 days after a booster vaccination with diphtheria and tetanus. The results indicated that serum-PFAS concentrations were positively correlated and positively associated with age and male sex. The specific antibody concentrations in serum were increased from Day 4 to Day 10 post-booster, after which a constant concentration was reached. Serum PFAS concentrations showed significant negative associations with the rate of increase in the antibody responses. Interestingly, this effect was particularly strong for the longer-chain PFASs. All significant associations remained significant after adjustment for sex and age. Although the study involved a small number of subjects, these findings of a PFAS-associated reduction of the early humoral immune response to booster vaccination in healthy adults supported previous findings of PFAS immunosuppression in larger cohorts. Furthermore, the results suggested that cellular mechanisms right after antigen exposure should be investigated more closely to identify possible mechanisms of immunosuppression from PFAS.

  11. The impact of administration of conjugate vaccines containing cross reacting material on Haemophilus influenzae type b antibody responses in infants: A systematic review and meta-analysis of randomised controlled trials.

    PubMed

    Voysey, Merryn; Sadarangani, Manish; Clutterbuck, Elizabeth; Bolgiano, Barbara; Pollard, Andrew J

    2016-07-25

    Protein-polysaccharide conjugate vaccines such as Haemophilus influenzae type b (Hib), meningococcal, and pneumococcal vaccine, induce immunological memory and longer lasting protection than plain polysaccharide vaccines. The most common proteins used as carriers are tetanus toxoid (TT) and cross reacting material-197 (CRM), a mutant form of diphtheria toxoid. CRM conjugate vaccines have been reported to suppress antibody responses to co-administered Hib-TT vaccine. We conducted a systematic review and meta-analysis of randomised controlled trials in which infants were randomised to receive meningococcal or pneumococcal conjugate vaccines along with Hib-TT. Trials of licensed vaccines with different carrier proteins were included for group C meningococcal (MenC), quadrivalent ACWY meningococcal (MenACWY), and pneumococcal vaccines. Twenty-three trials were included in the meta-analyses. Overall, administration of MenC-CRM in a 2 or 3 dose schedule resulted in a 45% reduction in Hib antibody concentrations (GMR 0.55, 95% CI 0.49-0.62). MenACWY-CRM boosted Hib antibody responses by 22% (GMR 1.22, 95% CI 1.06-1.41) whilst pneumococcal CRM conjugate vaccines had no impact on Hib antibody responses (GMR 0.91, 95% CI 0.68-1.22). The effect of CRM protein-polysaccharide conjugate vaccines on Hib antibody responses varies greatly between vaccines. Co-administration of a CRM conjugate vaccine can produce either positive or negative effects on Hib antibody responses. These inconsistencies suggest that CRM itself may not be the main driver of variability in Hib responses, and challenge current perspectives on this issue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Development of a therapeutic vaccine for the treatment of cocaine addiction.

    PubMed

    Fox, B S

    1997-12-15

    No pharmacotherapies have yet been approved for the treatment of cocaine addiction. One new approach is to block the effects of cocaine with anti-cocaine antibodies induced by a therapeutic cocaine vaccine. A cocaine vaccine has been developed which induces a cocaine-specific antibody response in rodents. The antibody binds to cocaine in the circulation and can be shown to inhibit the ability of cocaine to enter the brain. Furthermore, anti-cocaine antibody can inhibit cocaine self-administration in rats. These data suggest that a cocaine vaccine may be a powerful therapeutic tool. The intent is to immunized motivated patients with the vaccine as part of a comprehensive treatment program. If the patient uses cocaine after being vaccinated, the antibody will inhibit the reinforcing activity of cocaine and decrease the likelihood of relapse.

  13. Catecholamine plasma levels, IFN-γ serum levels and antibodies production induced by rabies vaccine in dogs selected for their paw preference.

    PubMed

    Siniscalchi, Marcello; Cirone, Francesco; Guaricci, Antonio Ciro; Quaranta, Angelo

    2014-01-01

    To explore the possible role of the sympathetic nervous activity in the asymmetrical crosstalk between the brain and immune system, catecholamine (E, NE) plasma levels, Interferon-γ (IFN-γ) serum levels and production of antibodies induced by rabies vaccine in dogs selected for their paw preference were measured. The results showed that the direction of behavioural lateralization influenced both epinephrine levels and immune response in dogs. A different kinetic of epinephrine levels after immunization was observed in left-pawed dogs compared to both right-pawed and ambidextrous dogs. The titers of antirabies antibodies were lower in left-pawed dogs than in right-pawed and ambidextrous dogs. Similarly, the IFN-γ serum levels were lower in left-pawed dogs than in the other two groups. Taken together, these findings showed that the left-pawed group appeared to be consistently the different group stressing the fundamental role played by the sympathetic nervous system as a mechanistic basis for the crosstalk between the brain and the immune system.

  14. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens

    PubMed Central

    Watson, Douglas S.; Endsley, Aaron N.; Huang, Leaf

    2012-01-01

    Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines – method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties – exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study. PMID:22306376

  15. Antibody titers and response to vaccination against hepatitis A and B in pediatric patients with portal hypertension.

    PubMed

    Rosa, Mariana Nogueira de Paula; Hessel, Gabriel; Alves De Tommaso, Adriana María

    2008-09-01

    In Brazil, approximately 130 new cases of hepatitis A per 100,000 inhabitants occur annually and 15% of the population has been in contact with hepatitis B virus. Portal hypertension causes hypersplenism and reduces T cell production, which may lead to less effective response to hepatitis vaccination. The objective of the study was to evaluate the response to hepatitis A and B vaccination in patients with portal hypertension secondary to chronic liver disease or portal vein thrombosis. Twenty-three patients (2 to 18 years) with portal hypertension seen at the Pediatric Hepatology Service of Hospital das Clínicas, Universidade Estadual de Campinas, between 1994 and 2006 were studied. Hepatitis A and B serology was tested in all patients. Patients who had not been vaccinated before their visits received the vaccines during the study period. Patients who had been vaccinated before but had negative anti-HB antibodies received a booster dose, and their serology was repeated Blood counts were performed in each patient to assess for immunosuppression. Eighteen patients received hepatitis A vaccine and all became positive for anti-HAV antibodies. All patients had received hepatitis B vaccine and 17 (73.9%) were anti-HBs positive at the time of the study The other 6 received a booster dose and became anti-HBs positive afterward. The anti-HBs-positive and -negative patients did not differ significantly in age, leukocytes, lymphocytes, or duration between the vaccination and positive serology. In this study, hepatitis A vaccines elicited a 100% response and hepatitis B vaccine conferred protection and induced an anamnestic response in pediatric patients with portal hypertension.

  16. Preclinical immunogenicity and safety of a Group A streptococcal M protein-based vaccine candidate.

    PubMed

    Batzloff, Michael R; Fane, Anne; Gorton, Davina; Pandey, Manisha; Rivera-Hernandez, Tania; Calcutt, Ainslie; Yeung, Grace; Hartas, Jon; Johnson, Linda; Rush, Catherine M; McCarthy, James; Ketheesan, Natkunam; Good, Michael F

    2016-12-01

    Streptococcus pyogenes (group A streptococcus, GAS) causes a wide range of clinical manifestations ranging from mild self-limiting pyoderma to invasive diseases such as sepsis. Also of concern are the post-infectious immune-mediated diseases including rheumatic heart disease. The development of a vaccine against GAS would have a large health impact on populations at risk of these diseases. However, there is a lack of suitable models for the safety evaluation of vaccines with respect to post-infectious complications. We have utilized the Lewis Rat model for cardiac valvulitis to evaluate the safety of the J8-DT vaccine formulation in parallel with a rabbit toxicology study. These studies demonstrated that the vaccine did not induce abnormal pathology. We also show that in mice the vaccine is highly immunogenic but that 3 doses are required to induce protection from a GAS skin challenge even though 2 doses are sufficient to induce a high antibody titer.

  17. Preclinical immunogenicity and safety of a Group A streptococcal M protein-based vaccine candidate

    PubMed Central

    Batzloff, Michael R.; Fane, Anne; Gorton, Davina; Pandey, Manisha; Rivera-Hernandez, Tania; Calcutt, Ainslie; Yeung, Grace; Hartas, Jon; Johnson, Linda; Rush, Catherine M.; McCarthy, James; Ketheesan, Natkunam; Good, Michael F.

    2016-01-01

    ABSTRACT Streptococcus pyogenes (group A streptococcus, GAS) causes a wide range of clinical manifestations ranging from mild self-limiting pyoderma to invasive diseases such as sepsis. Also of concern are the post-infectious immune-mediated diseases including rheumatic heart disease. The development of a vaccine against GAS would have a large health impact on populations at risk of these diseases. However, there is a lack of suitable models for the safety evaluation of vaccines with respect to post-infectious complications. We have utilized the Lewis Rat model for cardiac valvulitis to evaluate the safety of the J8-DT vaccine formulation in parallel with a rabbit toxicology study. These studies demonstrated that the vaccine did not induce abnormal pathology. We also show that in mice the vaccine is highly immunogenic but that 3 doses are required to induce protection from a GAS skin challenge even though 2 doses are sufficient to induce a high antibody titer. PMID:27541593

  18. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production

    PubMed Central

    Sprokholt, Joris K.; Kaptein, Tanja M.; van Hamme, John L.; Overmars, Ronald J.; Gringhuis, Sonja I.

    2017-01-01

    Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies. PMID:29186193

  19. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    PubMed Central

    Sridhar, Saranya; Brokstad, Karl A.; Cox, Rebecca J.

    2015-01-01

    Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection. PMID:26343192

  20. Diversification of the Primary Antibody Repertoire by AID-Mediated Gene Conversion.

    PubMed

    Lanning, Dennis K; Knight, Katherine L

    2015-01-01

    Gene conversion, mediated by activation-induced cytidine deaminase (AID), has been found to contribute to generation of the primary antibody repertoire in several vertebrate species. Generation of the primary antibody repertoire by gene conversion of immunoglobulin (Ig) genes occurs primarily in gut-associated lymphoid tissues (GALT) and is best described in chicken and rabbit. Here, we discuss current knowledge of the mechanism of gene conversion as well as the contribution of the microbiota in promoting gene conversion of Ig genes. Finally, we propose that the antibody diversification strategy used in GALT species, such as chicken and rabbit, is conserved in a subset of human and mouse B cells.

  1. Vaccination of pregnant cows with EspA, EspB, γ-intimin, and Shiga toxin 2 proteins from Escherichia coli O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves.

    PubMed

    Rabinovitz, B C; Gerhardt, E; Tironi Farinati, C; Abdala, A; Galarza, R; Vilte, D A; Ibarra, C; Cataldi, A; Mercado, E C

    2012-06-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of intestinal disease and hemolytic uremic syndrome, a serious systemic complication that particularly affects children. Cattle are primary reservoirs for EHEC O157:H7 and the main source of infection for humans. Vaccination of cattle with different combinations of bacterial virulence factors has shown efficacy in decreasing EHEC O157:H7 shedding. It is, therefore, important to demonstrate whether vaccination of pregnant cows with EHEC O157:H7 induces high titers of transferable antibodies to avoid early colonization of calves by the bacteria. In this study we evaluated the ability of EspA, EspB, the C-terminal fragment of 280 amino acids of γ-intimin (γ-intimin C₂₈₀) and inactivated Shiga toxin (Stx) 2 proteins to induce specific antibodies in colostrum and their passive transference to colostrum-fed calves. Friesian pregnant cows immunized by the intramuscular route mounted significantly high serum and colostrum IgG responses against EspB and γ-intimin C₂₈₀ that were efficiently transferred to their calves. Antibodies to EspB and γ-intimin C₂₈₀ were detected in milk samples of vaccinated cows at d 40 postparturition. Significant Stx2-neutralizing titers were also observed in colostrum from Stx2-vaccinated cows and sera from colostrum-fed calves. The results presented showed that bovine colostrum with increased levels of antibodies against EHEC O157:H7 may be obtained by systemic immunization of pregnant cows, and that these specific antibodies are efficiently transferred to newborn calves by feeding colostrum. Hyperimmune colostrum and milk may be an alternative to protect calves from early colonization by EHEC O157:H7 and a possible key source of antibodies to block colonization and toxic activity of this bacterium. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. HIV vaccines: new frontiers in vaccine development.

    PubMed

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  3. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    ERIC Educational Resources Information Center

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  4. The effect of age on serum antibody titers after rabies and influenza vaccination in healthy horses.

    PubMed

    Muirhead, T L; McClure, J T; Wichtel, J J; Stryhn, H; Frederick Markham, R J; McFarlane, D; Lunn, D P

    2008-01-01

    The proportion of geriatric horses within the equine population has increased in the past decade, but there is limited information on the immune function of these animals. Aged horses will have a lesser increase in serum antibody response to vaccination. Thirty-four aged healthy horses (> or = 20 years) and 29 younger adult horses (4-12 years) of various breeds. All horses were vaccinated with vaccines of killed rabies and influenza virus. Horses in each age group were allocated to receive either rabies or influenza booster vaccine 4 weeks after the initial vaccination. Serum samples were taken at 0, 4, 8, and 24 weeks. Rabies serum neutralization titers and equine influenza virus specific antibody sub-isotypes (IgGa, IgGb, IgG(T), and IgA) as well as single radial hemolysis (SRH) titers were determined. Rabies antibody titers were similar in the 2 age groups at all sampling times. Aged horses had higher IgGa and IgGb influenza antibody titers before vaccination than younger horses but similar titers after vaccination (P= .004 and P= .0027, respectively). Younger horses had significantly greater increases in titer than aged horses at all sampling times for IgGa (P= .001) and at 8 and 24 weeks for IgGb (P= .041 and .01, respectively). There was no detectable serum IgG(T) at any time point. A significant booster vaccine effect was seen for both antirabies and anti-influenza titers. Anti-influenza titer before vaccination also had a significant effect on subsequent antibody response. Healthy aged horses generated a primary immune response to a killed rabies vaccine similar to that of younger adult horses. Aged horses had a significantly reduced anamnestic response to influenza vaccine.

  5. Immunogenicity of an HPV-16 L2 DNA vaccine

    PubMed Central

    Hitzeroth, Inga I.; Passmore, Jo-Ann S.; Shephard, Enid; Stewart, Debbie; Müller, Martin; Williamson, Anna-Lise; Rybicki, Edward P.; Kast, W. Martin

    2009-01-01

    The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunised with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralising antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. PMID:19559114

  6. MF59®-Adjuvanted H5N1 Vaccine Induces Immunologic Memory and Heterotypic Antibody Responses in Non-Elderly and Elderly Adults

    PubMed Central

    Banzhoff, Angelika; Gasparini, Roberto; Laghi-Pasini, Franco; Staniscia, Tommaso; Durando, Paolo; Montomoli, Emanuele; Capecchi, Pamela; di Giovanni, Pamela; Sticchi, Laura; Gentile, Chiara; Hilbert, Anke; Brauer, Volker; Tilman, Sandrine; Podda, Audino

    2009-01-01

    Background Pathogenic avian influenza virus (H5N1) has the potential to cause a major global pandemic in humans. Safe and effective vaccines that induce immunologic memory and broad heterotypic response are needed. Methods and Findings Healthy adults aged 18–60 and >60 years (n = 313 and n = 173, respectively) were randomized (1∶1) to receive two primary and one booster injection of 7.5 μg or 15 μg doses of a subunit MF59-adjuvanted H5N1 (A/Vietnam/1194/2004) (clade 1) vaccine. Safety was monitored until 6 months after booster. Immunogenicity was assessed by hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization assays (MN). Mild injection-site pain was the most common adverse reaction. No serious adverse events relating to the vaccine were reported. The humoral immune responses to 7.5 μg and 15 μg doses were comparable. The rates for seroprotection (HI>40; SRH>25mm2; MN ≥40) after the primary vaccination ranged 72–87%. Six months after primary vaccination with the 7.5 μg dose, 18% and 21% of non-elderly and elderly adults were seroprotected; rates increased to 90% and 84%, respectively, after the booster vaccination. In the 15 μg group, seroprotection rates among non-elderly and elderly adults increased from 25% and 62% after primary vaccination to 92% and 88% after booster vaccination, respectively. A heterologous immune response to the H5N1/turkey/Turkey/05 strain was elicited after second and booster vaccinations. Conclusions Both formulations of MF59-adjuvanted influenza H5N1 vaccine were well tolerated. The European Union requirement for licensure for pre-pandemic vaccines was met by the lower dose tested. The presence of cross-reactive antibodies to a clade 2 heterologous strain demonstrates that this vaccine may be appropriate for pre-pandemic programs. Trial Registration ClinicalTrials.gov NCT00311480 PMID:19197383

  7. Five-year antibody persistence and safety following a booster dose of combined Haemophilus influenzae type b-Neisseria meningitidis serogroup C-tetanus toxoid conjugate vaccine.

    PubMed

    Tejedor, Juan Carlos; Merino, José Manuel; Moro, Manuel; Navarro, Maria-Luisa; Espín, José; Omeñaca, Félix; García-Sicilia, José; Moreno-Pérez, David; Ruiz-Contreras, Jesús; Centeno, Fernando; Barrio, Francisco; Cabanillas, Lucia; Muro, Marta; Esporrin, Carlos; De Torres, Maria Jose; Caubet, Magalie; Boutriau, Dominique; Miller, Jacqueline M; Mesaros, Narcisa

    2012-10-01

    Booster vaccination with the combined Haemophilus influenza type b-Neisseria meningitides serogroup C-tetanus toxoid vaccine (Hib-MenC-TT) has been reported to induce different MenC antibody responses depending on the priming vaccines, with a possible impact on long-term protection. Here, the five-year persistence of immune responses induced by a booster dose of Hib-MenC-TT was evaluated in toddlers primed with either Hib-MenC-TT or MenC-TT. This is the follow-up of a phase III, open, randomized study, in which a Hib-MenC-TT booster dose was given at 13.14 months of age to toddlers primed with either 3 doses of Hib-MenC-TT or 2 doses of MenC-TT in infancy. Children in the control group had received 3 primary doses and a booster dose of MenC-CRM197. Functional antibodies against MenC were measured by a serum bactericidal assay with rabbit complement (rSBA-MenC) and antibodies against Hib polyribosylribitol phosphate by enzyme-linked immunosorbent assay. Serious adverse events considered by the investigator to be possibly related to vaccination were to be reported throughout the study. At 66 months postbooster, rSBA-MenC titers ≥8 were retained by 82.6% of children primed with Hib-MenC-TT, 94.1% of children primed with MenC-TT, and 60.9% of children in the control group. All children who received the Hib-MenC-TT booster dose retained anti- polyribosylribitol phosphate concentrations ≥0.15 μg/mL. No serious adverse events considered possibly related to vaccination were reported. There is evidence of good antibody persistence against MenC and Hib for more than five years postbooster vaccination with Hib-MenC TT in toddlers primed with Hib-MenC-TT or MenC-TT.

  8. Vaccination of rhesus macaques with the anthrax vaccine adsorbed vaccine produces a serum antibody response that effectively neutralizes receptor-bound protective antigen in vitro.

    PubMed

    Clement, Kristin H; Rudge, Thomas L; Mayfield, Heather J; Carlton, Lena A; Hester, Arelis; Niemuth, Nancy A; Sabourin, Carol L; Brys, April M; Quinn, Conrad P

    2010-11-01

    Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA to the target cell surface, furin cleavage, toxin complex formation, and binding/translocation of ATx into the cell). To evaluate ATx neutralization by anti-AVA antibodies, we developed two low-temperature LTx neutralization activity (TNA) assays that distinguish antibody blocking before and after binding of PA to target cells (noncomplexed [NC] and receptor-bound [RB] TNA assays). These assays were used to investigate anti-PA antibody responses in AVA-vaccinated rhesus macaques (Macaca mulatta) that survived an aerosol challenge with Bacillus anthracis Ames spores. Results showed that macaque anti-AVA sera neutralized LTx in vitro, even when PA was prebound to cells. Neutralization titers in surviving versus nonsurviving animals and between prechallenge and postchallenge activities were highly correlated. These data demonstrate that AVA stimulates a myriad of antibodies that recognize multiple neutralizing epitopes and confirm that change, loss, or occlusion of epitopes after PA is processed from PA83 to PA63 at the cell surface does not significantly affect in vitro neutralizing efficacy. Furthermore, these data support the idea that the full-length PA83 monomer is an appropriate immunogen for inclusion in next-generation anthrax vaccines.

  9. Recombinant Hepatitis C Virus Envelope Glycoprotein Vaccine Elicits Antibodies Targeting Multiple Epitopes on the Envelope Glycoproteins Associated with Broad Cross-Neutralization

    PubMed Central

    Wong, Jason Alexander Ji-Xhin; Bhat, Rakesh; Hockman, Darren; Logan, Michael; Chen, Chao; Levin, Aviad; Frey, Sharon E.; Belshe, Robert B.; Tyrrell, D. Lorne

    2014-01-01

    ABSTRACT Although effective hepatitis C virus (HCV) antivirals are on the horizon, a global prophylactic vaccine for HCV remains elusive. The diversity of the virus is a major concern for vaccine development; there are 7 major genotypes of HCV found globally. Therefore, a successful vaccine will need to protect against HCV infection by all genotypes. Despite the diversity, many monoclonal antibodies (MAbs) with broadly cross-neutralizing activity have been described, suggesting the presence of conserved epitopes that can be targeted to prevent infection. Similarly, a vaccine comprising recombinant envelope glycoproteins (rE1E2) derived from the genotype 1a HCV-1 strain has been shown to be capable of eliciting cross-neutralizing antibodies in guinea pigs, chimpanzees, and healthy human volunteers. In order to investigate the basis for this cross-neutralization, epitope mapping of anti-E1E2 antibodies present within antisera from goats and humans immunized with HCV-1 rE1E2 was conducted through peptide mapping and competition studies with a panel of cross-neutralizing MAbs targeting various epitopes within E1E2. The immunized-goat antiserum was shown to compete with the binding of all MAbs tested (AP33, HC33.4, HC84.26, 1:7, AR3B, AR4A, AR5A, IGH526, and A4). Antisera showed the best competition against HC84.26 and AR3B and the weakest competition against AR4A. Furthermore, antisera from five immunized human vaccinees were shown to compete with five preselected MAbs (AP33, AR3B, AR4A, AR5A, and IGH526). These data show that immunization with HCV-1 rE1E2 elicits antibodies targeting multiple cross-neutralizing epitopes. Our results further support the use of such a vaccine antigen to induce cross-genotype neutralization. IMPORTANCE An effective prophylactic vaccine for HCV is needed for optimal control of the disease burden. The high diversity of HCV has posed a challenge for developing vaccines that elicit neutralizing antibodies for protection against infection

  10. Effect of complement Factor H on anti-FHbp serum bactericidal antibody responses of infant rhesus macaques boosted with a licensed meningococcal serogroup B vaccine.

    PubMed

    Giuntini, Serena; Beernink, Peter T; Granoff, Dan M

    2015-12-16

    FHbp is a major serogroup B meningococcal vaccine antigen. Binding of complement Factor H (FH) to FHbp is specific for human and some non-human primate FH. In previous studies, FH binding to FHbp vaccines impaired protective anti-FHbp antibody responses. In this study we investigated anti-FHbp antibody responses to a third dose of a licensed serogroup B vaccine (MenB-4C) in infant macaques vaccinated in a previous study with MenB-4C. Six macaques with high binding of FH to FHbp (FH(high)), and six with FH(low) baseline phenotypes, were immunized three months after dose 2. After dose 2, macaques with the FH(low) baseline phenotype had serum anti-FHbp antibodies that enhanced FH binding to FHbp (functionally converting them to a FH(high) phenotype). In this group, activation of the classical complement pathway (C4b deposition) by serum anti-FHbp antibody, and anti-FHbp serum bactericidal titers were lower after dose 3 than after dose 2 (p<0.02). In macaques with the FH(high) baseline phenotype, the respective anti-FHbp C4b deposition and bactericidal titers were similar after doses 2 and 3. Two macaques developed serum anti-FH autoantibodies after dose 2, which were not detected after dose 3. In conclusion, in macaques with the FH(low) baseline phenotype whose post-dose 2 serum anti-FHbp antibodies had converted them to FH(high), the anti-FHbp antibody repertoire to dose 3 was skewed to less protective epitopes than after dose 2. Mutant FHbp vaccines that eliminate FH binding may avoid eliciting anti-FHbp antibodies that enhance FH binding, and confer greater protection with less risk of inducing anti-FH autoantibodies than FHbp vaccines that bind FH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Single visit rabies pre-exposure priming induces a robust anamnestic antibody response after simulated post-exposure vaccination: results of a dose-finding study.

    PubMed

    Jonker, Emile F F; Visser, Leonardus G

    2017-09-01

    The current standard 3-dose intramuscular rabies PrEP schedule suffers from a number of disadvantages that severely limit accessibility and availability. The cost of is often prohibitive, it requires 3 visits to the clinic, and there are regular vaccine shortages. Volunteers ( N  = 30) were randomly assigned to 4 study arms: 1 standard dose intramuscular (IM) dose of PVRV (purified Vero cell rabies vaccine, Verorab), and 1/5th, 2/5th or 3/5th- fractional intradermal (ID) dose of PVRV in a single visit. All subjects received a simulated rabies post-exposure prophylaxis (D0, D3) 1 year later. Rabies virus neutralizing antibodies (RVNA) were determined by virus neutralization microtest (FAVN) on D0, D7, D28, Y1 and Y1 + D7. 28 out of 30 subjects (93%) seroconverted 1 month after primary vaccination; 1 subject in the 1-dose IM arm and 1 in the 1/5th-fractional dose ID arm did not. After 1 year, 22 out of 30 subjects (73%) no longer had RVNA above 0.5 IU/ml, with no discernible difference between study groups. After 1 year, all 30 subjects mounted a booster response within 7 days after simulated PEP, with the highest titers found in the single dose IM group ( P  < 0.03). This dose finding study demonstrates that priming with a single dose of rabies vaccine was sufficient to induce an adequate anamnestic antibody response to rabies PEP in all subjects 1 year later, even in those in whom the RVNA threshold of 0.5 IU/ml was not reached after priming. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Treatment with belimumab in systemic lupus erythematosus does not impair antibody response to 13-valent pneumococcal conjugate vaccine.

    PubMed

    Nagel, J; Saxne, T; Geborek, P; Bengtsson, A A; Jacobsen, S; Svaerke Joergensen, C; Nilsson, J-Å; Skattum, L; Jönsen, A; Kapetanovic, M C

    2017-09-01

    Background/purpose The objective of this study was to explore the impact of systemic lupus erythematosus and belimumab given in addition to standard of care therapy on 13-valent conjugated pneumococcal vaccine (PCV13) response. Methods Forty-seven systemic lupus erythematosus patients and 21 healthy controls were immunized with a single dose of 13-valent conjugated pneumococcal vaccine. Forty systemic lupus erythematosus patients were treated with traditional disease-modifying anti rheumatic drugs, 11 of those received belimumab in addition, and 32 patients were treated with concomitant prednisolone. Quantification of serotype specific IgG levels to 12 pneumococcal capsular polysaccharides was performed in serum taken before and four to six weeks after vaccination using multiplex fluorescent microsphere immunoassay. IgG levels against serotypes 23F and 6B were also analyzed using standard enzyme-linked immunosorbent assays. Opsonophagocytic assay was performed on serotype 23F to evaluate the functionality of the antibodies. Pre- and post-vaccination log transformed antibody levels were compared to determine the impact of systemic lupus erythematosus diagnosis and different treatments on antibody response. Results Systemic lupus erythematosus patients as a group showed lower post-vaccination antibody levels and lower fold increase of antibody levels after vaccination compared to controls ( p = 0.02 and p = 0.009, respectively). Systemic lupus erythematosus patients treated with belimumab in addition to standard of care therapy or with only hydroxychloroquine did not differ compared to controls, whereas the other treatment groups had significantly lower fold increase of post-vaccination antibody levels. Higher age was associated with lower post-vaccination antibody levels among systemic lupus erythematosus patients. Conclusion Belimumab given in addition to traditional disease-modifying anti rheumatic drugs or prednisolone did not further impair antibody

  13. Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines.

    PubMed

    Lee, Yu-Na; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Kang, Sang-Moo

    2015-10-01

    Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus.

  14. [The benefit from mumps virus IgG antibody avidity testing in the population with high vaccine coverage in the context of other serological methods for laboratory diagnosis of mumps and the current epidemiological].

    PubMed

    Limberková, R; Smíšková, D; Havlíčková, M; Herrmannová, K; Lexová, P; Marešová, V

    2016-01-01

    Regular vaccination against mumps resulted in a significant reduction in epidemic mumps in the Czech Republic. However, mumps cases have recently shown an upward trend, even in the vaccinated population where a considerable proportion of cases have occurred. The aim of this study was to find out, by mumps virus IgG antibody avidity testing, whether the high incidence of mumps in the vaccinated population is a result of primary or secondary vaccine failure and whether the vaccinated differ from the naturally immunised in anamnestic antibody avidity. Given the problematic laboratory diagnosis of mumps in the population with high vaccination coverage, the informative value of the detected IgM, IgA, and IgG antibodies was also considered as well as the potential of antibody avidity testing for improving laboratory diagnosis from a single sample of blood, the most commonly analysed clinical material, in patients with suspected mumps. Sixty-four patients laboratory confirmed with mumps, whose vaccination status was known, were included in the study (groups 1 and 2). Other study groups were 30 healthy naturally immunised subjects (group 3) and 22 vaccinated children 2-4-years of age with no etiological link to the mumps virus (group 4). The avidity index (AI) was determined using the Siemens Enzygnost Anti-Mumps/IgG kit and 6M urea, able to induce the dissociation of antigen-antibody bonds proportionally to the antibody avidity. IgM, IgG, and IgA antibodies were tested using the Siemens Enzygnost Anti-Mumps/IgM and /IgG, and Mast Diagnostica Mastazyme Mumps IgA kits. The EPIDAT system served as the data source. The results showed that the mumps virus induces antibodies with a low AI after both vaccination, even recent, and natural immunisation. Antibodies with a high AI were only detected in convalescent sera of the vaccinated patients or in re-infected, naturally immunised persons, as a result of recent contact with the mumps virus. The comparison of the results of acute

  15. Immunologic Memory Induced by a Glycoconjugate Vaccine in a Murine Adoptive Lymphocyte Transfer Model

    PubMed Central

    Guttormsen, Hilde-Kari; Wetzler, Lee M.; Finberg, Robert W.; Kasper, Dennis L.

    1998-01-01

    We have developed an adoptive cell transfer model in mice to study the ability of a glycoprotein conjugate vaccine to induce immunologic memory for the polysaccharide moiety. We used type III capsular polysaccharide from the clinically relevant pathogen group B streptococci conjugated to tetanus toxoid (GBSIII-TT) as our model vaccine. GBS are a major cause of neonatal infections in humans, and type-specific antibodies to the capsular polysaccharide protect against invasive disease. Adoptive transfer of splenocytes from mice immunized with the GBSIII-TT conjugate vaccine conferred anti-polysaccharide immunologic memory to naive recipient mice. The transfer of memory occurred in a dose-dependent manner. The observed anamnestic immune response was characterized by (i) more rapid kinetics, (ii) isotype switching from immunoglobulin M (IgM) to IgG, and (iii) 10-fold-higher levels of type III-specific IgG antibody than for the primary response in animals with cells transferred from placebo-immunized mice. The adoptive cell transfer model described in this paper can be used for at least two purposes: (i) to evaluate conjugate vaccines with different physicochemical properties for their ability to induce immunologic memory and (ii) to study the cellular interactions required for an immune response to these molecules. PMID:9573085

  16. Vaccination with nontoxic mutant toxic shock syndrome toxin 1 protects against Staphylococcus aureus infection.

    PubMed

    Hu, Dong-Liang; Omoe, Katsuhiko; Sasaki, Sanae; Sashinami, Hiroshi; Sakuraba, Hirotake; Yokomizo, Yuichi; Shinagawa, Kunihiro; Nakane, Akio

    2003-09-01

    To investigate whether vaccination with nontoxic mutant toxic shock syndrome toxin 1 (mTSST-1) can protect against Staphylococcus aureus infection, mice were vaccinated with mTSST-1 and challenged with viable S. aureus. Survival in the mTSST-1-vaccinated group was higher, and bacterial counts in organs were significantly lower than those of control mice. Passive transfer of mTSST-1-specific antibodies also provided protection against S. aureus-induced septic death. Interferon (IFN)-gamma production in the serum samples and spleens from vaccinated mice was significantly decreased compared with that in controls, whereas interleukin-10 titers were significantly higher in vaccinated mice. IFN-gamma and tumor necrosis factor-alpha production in vitro were significantly inhibited by serum samples from mTSST-1-immunized mice but not from control mice. These results suggest that vaccination with mTSST-1 devoid of superantigenic properties provides protection against S. aureus infection and that the protection might be mediated by TSST-1-neutralizing antibodies as well as by the down-regulation of IFN-gamma production.

  17. Long-term antibody response and immunologic memory in children immunized with hepatitis B vaccine at birth.

    PubMed

    Saffar, M J; Rezai, M S

    2004-12-01

    Four hundred and fifty three healthy children immunized with a course of hepatitis B vaccine beginning at birth were tested at 10-11 years of age for persistence of anti-hepatitis B-S antigen antibody (anti-HBs); and responses of children without protective antibody to different doses of hepatitis B vaccine booster were evaluated. Although nearly 42% of them were not seroprotected, but most of boosted subjects (87.3%) retained robust immunologic memory and rapidly retained a protective anti-HBs antibody titer of at least 10 IU/L after booster vaccination.

  18. The Effect of Physicochemical Modification on the Function of Antibodies Induced by Anti-Nicotine Vaccine in Mice

    PubMed Central

    Thorn, Jennifer M.; Bhattacharya, Keshab; Crutcher, Renata; Sperry, Justin; Isele, Colleen; Kelly, Barbara; Yates, Libbey; Zobel, James; Zhang, Ningli; Davis, Heather L.; McCluskie, Michael J.

    2017-01-01

    Smoking remains one of the major causes of morbidity and mortality worldwide. One approach to assisting smoking cessation is via anti-nicotine vaccines, composed of nicotine-like haptens conjugated to a carrier protein plus adjuvant(s). We have previously shown that the carrier, hapten, linker, hapten load, degree of conjugate aggregation, and presence of adducts can each influence the function (nicotine-binding capacity) of the antibody (Ab) induced. Herein, we extend those findings and show that tertiary structure is also critical to the induction of functional immune responses and that this can be influenced by conjugation conditions. We evaluated immunogenicity in mice using six lots of NIC7-CRM, a conjugate of 5-aminoethoxy-nicotine (Hapten 7), and a single point (glycine 52 to glutamic acid) mutant nontoxic form of diphtheria toxin, cross-reactive material 197 (CRM197), which were synthesized under different reaction conditions resulting in conjugates with equivalent molecular characteristics (hapten load, aggregates, adducts), but a different tertiary structure. When tested in mice, better functional responses (reduced nicotine in the brain of immunized animals relative to non-immunized controls) were obtained with conjugates with a more closed structure than those with an open conformation. These studies highlight the need for a better understanding of the physicochemical properties of small molecule conjugate vaccines. PMID:28513561

  19. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination.

    PubMed

    Lee, Jiwon; Boutz, Daniel R; Chromikova, Veronika; Joyce, M Gordon; Vollmers, Christopher; Leung, Kwanyee; Horton, Andrew P; DeKosky, Brandon J; Lee, Chang-Han; Lavinder, Jason J; Murrin, Ellen M; Chrysostomou, Constantine; Hoi, Kam Hon; Tsybovsky, Yaroslav; Thomas, Paul V; Druz, Aliaksandr; Zhang, Baoshan; Zhang, Yi; Wang, Lingshu; Kong, Wing-Pui; Park, Daechan; Popova, Lyubov I; Dekker, Cornelia L; Davis, Mark M; Carter, Chalise E; Ross, Ted M; Ellington, Andrew D; Wilson, Patrick C; Marcotte, Edward M; Mascola, John R; Ippolito, Gregory C; Krammer, Florian; Quake, Stephen R; Kwong, Peter D; Georgiou, George

    2016-12-01

    Molecular understanding of serological immunity to influenza has been confounded by the complexity of the polyclonal antibody response in humans. Here we used high-resolution proteomics analysis of immunoglobulin (referred to as Ig-seq) coupled with high-throughput sequencing of transcripts encoding B cell receptors (BCR-seq) to quantitatively determine the antibody repertoire at the individual clonotype level in the sera of young adults before and after vaccination with trivalent seasonal influenza vaccine. The serum repertoire comprised between 40 and 147 clonotypes that were specific to each of the three monovalent components of the trivalent influenza vaccine, with boosted pre-existing clonotypes accounting for ∼60% of the response. An unexpectedly high fraction of serum antibodies recognized both the H1 and H3 monovalent vaccines. Recombinant versions of these H1 + H3 cross-reactive antibodies showed broad binding to hemagglutinins (HAs) from previously circulating virus strains; several of these antibodies, which were prevalent in the serum of multiple donors, recognized the same conserved epitope in the HA head domain. Although the HA-head-specific H1 + H3 antibodies did not show neutralization activity in vitro, they protected mice against infection with the H1N1 and H3N2 virus strains when administered before or after challenge. Collectively, our data reveal unanticipated insights regarding the serological response to influenza vaccination and raise questions about the added benefits of using a quadrivalent vaccine instead of a trivalent vaccine.

  20. Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax.

    PubMed

    Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W

    2009-04-01

    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.

  1. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  2. Antibodies to parvovirus, distemper virus and adenovirus conferred to household dogs using commercial combination vaccines containing Leptospira bacterin.

    PubMed

    Taguchi, M; Namikawa, K; Maruo, T; Lynch, J; Sahara, H

    2010-12-11

    To examine how the inclusion (+) or exclusion (-) of inactivated Leptospira antigens in a vaccine for canine parvovirus type 2 (CPV-2), canine distemper virus (CDV) and canine adenovirus type 2 (CAdV-2) affects antibody titres to CPV-2, CDV and CAdV-1 antigens, household dogs were vaccinated with commercially available vaccines from one of three manufacturers. CPV-2, CDV and CAdV-1 antibody titres were measured 11 to 13 months later and compared within three different age groups and three different bodyweight groups. There were significant differences between CPV-2 antibody titres in dogs vaccinated with (+) vaccine and those vaccinated with (-) vaccine for two products in the two-year-old group and for one product in the greater than seven-year-old group; no significant differences were seen that could be attributed to bodyweight. No differences in CDV antibody titres were observed within age groups, but a significant difference was seen in the 11 to 20 kg weight group for one product. Significant differences in CAdV-1 antibody titres were seen for one product in both the two-year-old group and the ≤10 kg weight group.

  3. Orally administered adenoviral-based vaccine induces respiratory mucosal memory and protection against RSV infection in cotton rats.

    PubMed

    Joyce, Christina; Scallan, Ciaran D; Mateo, Roberto; Belshe, Robert B; Tucker, Sean N; Moore, Anne C

    2018-06-09

    A vaccine against Respiratory Syncytial Virus (RSV) is a major unmet need to prevent the significant morbidity and mortality that it causes in society. In addition to efficacy, such a vaccine must not induce adverse events, as previously occurred with a formalin-inactivated vaccine (FI-RSV). In this study, the safety, immunogenicity and efficacy of a molecularly adjuvanted adenovirus serotype 5 based RSV vaccine encoding the fusion (F) protein (Ad-RSVF) is demonstrated in cotton rats. Protective immunity to RSV was induced by Ad-RSVF when administered by an oral route as well as by intranasal and intramuscular routes. Compared to FI-RSV, the Ad-RSVF vaccine induced significantly greater neutralizing antibody responses and protection against RSV infection. Significantly, oral or intranasal immunization each induced protective multi-functional effector and memory B cell responses in the respiratory tract. This study uniquely demonstrates the capacity of an orally administered adenovirus vaccine to induce protective immunity in the respiratory tract against RSV in a pre-clinical model and supports further clinical development of this oral Ad-RSVF vaccine strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. CD4/CD8 Ratio Predicts Yellow Fever Vaccine-Induced Antibody Titers in Virologically Suppressed HIV-Infected Patients.

    PubMed

    Avelino-Silva, Vivian Iida; Miyaji, Karina Takesaki; Mathias, Augusto; Costa, Dayane Alves; de Carvalho Dias, Juliana Zanatta; Lima, Sheila Barbosa; Simoes, Marisol; Freire, Marcos S; Caiaffa-Filho, Helio H; Hong, Marisa A; Lopes, Marta H; Sartori, Ana M; Kallas, Esper G

    2016-02-01

    Yellow fever vaccine (YFV) induces weaker immune responses in HIV-infected individuals. However, little is known about YFV responses among antiretroviral-treated patients and potential immunological predictors of YFV response in this population. We enrolled 34 antiretroviral therapy (ART)-treated HIV-infected and 58 HIV-uninfected adults who received a single YFV dose to evaluate antibody levels and predictors of immunity, focusing on CD4(+) T-cell count, CD4(+)/CD8(+) ratio, and Human Pegivirus (GBV-C) viremia. Participants with other immunosuppressive conditions were excluded. Median time since YFV was nonsignificantly shorter in HIV-infected participants than in HIV-uninfected participants (42 and 69 months, respectively, P = 0.16). Mean neutralizing antibody (NAb) titers was lower in HIV-infected participants than HIV-uninfected participants (3.3 vs. 3.6 log10mIU/mL, P = 0.044), a difference that remained significant after adjustment for age, sex, and time since vaccination (P = 0.024). In HIV-infected participants, lower NAb titers were associated with longer time since YFV (rho: -0.38, P = 0.027) and lower CD4(+)/CD8(+) ratio (rho: 0.42, P = 0.014), but not CD4(+) T-cell count (P = 0.52). None of these factors were associated with NAb titers in HIV-uninfected participant. GBV-C viremia was not associated with difference in NAb titers overall or among HIV-infected participants. ART-treated HIV-infected individuals seem to have impaired and/or less durable responses to YFV than HIV-uninfected individuals, which were associated with lower CD4(+)/CD8(+) ratio, but not with CD4(+) T-cell count. These results supports the notion that low CD4(+)/CD8(+) ratio, a marker linked to persistent immune activation, is a better indicator of functional immune disturbance than CD4(+) T-cell count in patients with successful ART.

  5. Spontaneous Development of IgM Anti-Cocaine Antibodies in Habitual Cocaine Users: Effect on IgG Antibody Responses to a Cocaine Cholera Toxin B Conjugate Vaccine

    PubMed Central

    Orson, Frank M.; Rossen, Roger D.; Shen, Xiaoyun; Lopez, Angel Y.; Wu, Yan; Kosten, Thomas R.

    2014-01-01

    Background and Objectives In cocaine vaccine studies, only a minority of subjects made strong antibody responses. To investigate this issue, IgG and IgM antibody responses to cocaine and to cholera toxin B (CTB—the carrier protein used to enhance immune responses to cocaine) were measured in sera from the 55 actively vaccinated subjects in a Phase IIb randomized double-blind placebo-controlled trial (TA-CD 109). Methods Isotype specific ELISAs were used to measure IgG and IgM anti-cocaine and anti-CTB antibody in serial samples collected prior to and at intervals after immunization. We assessed IgG anti-cocaine responses of patients with pre-vaccination IgM anti-cocaine antibodies. Competitive inhibition ELISA was used to evaluate antibody specificity. Results and Conclusions Before immunization, 36/55 subjects had detectable IgM antibodies to cocaine, and 9 had IgM levels above the 95% confidence limit of 11 µg/ml. These nine had significantly reduced peak IgG anti-cocaine responses at 16 weeks, and all were below the concentration (40 µg/ml) considered necessary to discourage recreational cocaine use. The IgG anti-CTB responses of these same subjects were also reduced. Scientific Significance Subjects who develop an IgM antibody response to cocaine in the course of repeated recreational exposure to this drug are significantly less likely to produce high levels of IgG antibodies from the cocaine conjugate vaccine. The failure may be due to recreational cocaine exposure induction of a type 2 T-cell independent immune response. Such individuals will require improved vaccines and are poor candidates for the currently available vaccine. PMID:23414504

  6. Seroprevalence of antibodies against the three serotypes of poliovirus and IPV vaccine response in adult solid organ transplant candidates.

    PubMed

    Brandão, Luciana Gomes Pedro; Santoro-Lopes, Guilherme; Oliveira, Silas de Souza; da Silva, Edson Elias; do Brasil, Pedro Emmanuel Alvarenga Americano

    2018-06-21

    To assess the prevalence of protective antibody titers to polioviruses in adults candidates for solid organ transplant (SOT), and to assess the immunogenic response to inactivated polio vaccine in this population. The study included SOT candidates referred to Immunization Reference Centre of Evandro Chagas National Institute of Infectious Diseases from March 2013 to January 2016. It was conducted in 2 phases. The first one, a cross-sectional seroprevalence study, followed by an uncontrolled analysis of vaccine response among patients without protective antibody titers at baseline. Antibody titers to poliomyelitis were determined by microneutralization assay. Among 206 SOT candidates included, 156 (76%) had protective antibody titers to all poliovirus serotypes (95% CI: 70-81%). Proven history of oral vaccination in childhood was not associated with higher seroprevalence of protective antibody. In 97% of individuals without protective antibody titers at baseline, there was adequate vaccine response with one dose of inactivated polio vaccine. A relevant proportion of adult candidates for SOT does not have protective titers of antibodies to one or more poliovirus serotype. One dose of inactivated vaccine elicited protective antibody titers in 97% of these subjects and should be routinely prescribed prior to SOT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial.

    PubMed

    Ensoli, Barbara; Nchabeleng, Maphoshane; Ensoli, Fabrizio; Tripiciano, Antonella; Bellino, Stefania; Picconi, Orietta; Sgadari, Cecilia; Longo, Olimpia; Tavoschi, Lara; Joffe, Daniel; Cafaro, Aurelio; Francavilla, Vittorio; Moretti, Sonia; Pavone Cossut, Maria Rosaria; Collacchi, Barbara; Arancio, Angela; Paniccia, Giovanni; Casabianca, Anna; Magnani, Mauro; Buttò, Stefano; Levendal, Elise; Ndimande, John Velaphi; Asia, Bennett; Pillay, Yogan; Garaci, Enrico; Monini, Paolo

    2016-06-09

    Although combined antiretroviral therapy (cART) has saved millions of lives, it is incapable of full immune reconstitution and virus eradication. The transactivator of transcription (Tat) protein is a key human immunodeficiency virus (HIV) virulence factor required for virus replication and transmission. Tat is expressed and released extracellularly by infected cells also under cART and in this form induces immune dysregulation, and promotes virus reactivation, entry and spreading. Of note, anti-Tat antibodies are rare in natural infection and, when present, correlate with asymptomatic state and reduced disease progression. This suggested that induction of anti-Tat antibodies represents a pathogenesis-driven intervention to block progression and to intensify cART. Indeed Tat-based vaccination was safe, immunogenic and capable of immune restoration in an open-label, randomized phase II clinical trial conducted in 168 cART-treated volunteers in Italy. To assess whether B-clade Tat immunization would be effective also in patients with different genetic background and infecting virus, a phase II trial was conducted in South Africa. The ISS T-003 was a 48-week randomised, double-blinded, placebo-controlled trial to evaluate immunogenicity (primary endpoint) and safety (secondary endpoint) of B-clade Tat (30 μg) given intradermally, three times at 4-week intervals, in 200 HIV-infected adults on effective cART (randomised 1:1) with CD4(+) T-cell counts ≥200 cells/µL. Study outcomes also included cross-clade anti-Tat antibodies, neutralization, CD4(+) T-cell counts and therapy compliance. Immunization was safe and well-tolerated and induced durable, high titers anti-Tat B-clade antibodies in 97 % vaccinees. Anti-Tat antibodies were cross-clade (all vaccinees tested) and neutralized Tat-mediated entry of oligomeric B-clade and C-clade envelope in dendritic cells (24 participants tested). Anti-Tat antibody titers correlated positively with neutralization. Tat

  8. Anti-influenza serum and mucosal antibody responses after administration of live attenuated or inactivated influenza vaccines to HIV-infected children.

    PubMed

    Weinberg, Adriana; Song, Lin-Ye; Walker, Robert; Allende, Maria; Fenton, Terence; Patterson-Bartlett, Julie; Nachman, Sharon; Kemble, George; Yi, Ting-Ting; Defechereux, Patricia; Wara, Diane; Read, Jennifer S; Levin, Myron

    2010-10-01

    Live-attenuated influenza vaccine (LAIV) prevents more cases of influenza in immune-competent children than the trivalent inactivated vaccine (TIV). We compared the antibody responses to LAIV or TIV in HIV-infected children. Blood and saliva obtained at enrollment, 4 and 24 weeks postimmunization from 243 HIV-infected children randomly assigned to TIV or LAIV were analyzed. Both vaccines increased the anti-influenza neutralizing antibodies at 4 and 24 weeks postimmunization. At 4 weeks postimmunization, TIV recipients had 2-fold to 3-fold higher neutralizing antibody titers than LAIV recipients, but the proportions of subjects with protective titers (≥ 1:40) were similar between treatment groups (96%-100% for influenza A and 81%-88% for influenza B). Both vaccines increased salivary homotypic IgG antibodies, but not IgA antibodies. Both vaccines also increased serum heterosubtypic antibodies. Among HIV-specific characteristics, the baseline viral load correlated best with the antibody responses to either vaccine. We used LAIV-virus shedding as a surrogate of influenza infection. Influenza-specific humoral and mucosal antibody levels were significantly higher in nonshedders than in shedders. LAIV and TIV generated homotypic and heterosubtypic humoral and mucosal antibody responses in HIV-infected children. High titers of humoral or mucosal antibodies correlated with protection against viral shedding.

  9. A neonatal mouse model for the evaluation of antibodies and vaccines against coxsackievirus A6.

    PubMed

    Yang, Lisheng; Mao, Qunying; Li, Shuxuan; Gao, Fan; Zhao, Huan; Liu, Yajing; Wan, Junkai; Ye, Xiangzhong; Xia, Ningshao; Cheng, Tong; Liang, Zhenglun

    2016-10-01

    Coxsackievirus A6 (CA6) can induce atypical hand, foot, and mouth disease, which is characterized by severe rash, onychomadesis and a higher rate of infection in adults. Increasing epidemiological data indicated that outbreaks of CA6-associated hand, foot, and mouth disease have markedly increased worldwide in recent years. However, the current body of knowledge on the infection, pathogenic mechanism, and immunogenicity of CA6 is still very limited. In this study, we established the first neonatal mouse model for the evaluation of antibodies and vaccines against CA6. The CA6 strain CA6/141 could infect a one-day-old BALB/c mouse through intraperitoneal and intracerebral routes. The infected mice developed clinical symptoms, such as inactivity, wasting, hind-limb paralysis and even death. Pathological examination indicated that CA6 showed special tropism to skeletal muscles and skin, but not to nervous system or cardiac muscles. Infections with CA6 could induce vesicles in the dermis without a rash in mice, and the CA6 antigen was mainly localized in hair follicles. The strong tropism of CA6 to the skin may be related to its severe clinical features in infants. This mouse model was further applied to evaluate the efficacy of a therapeutic antibody and an experimental vaccine against CA6. A potential mAb 1D5 could fully protect mice from a lethal CA6 infection and also showed good therapeutic effects in the CA6-infected mice. In addition, an inactivated CA6 vaccine was evaluated through maternal immunization and showed 100% protection of neonatal mice from lethal CA6 challenge. Collectively, these results indicate that this infection model will be a useful tool in future studies on vaccines and antiviral reagents against CA6. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    PubMed

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  11. Antibody persistence and immunologic memory in children vaccinated with 4 doses of pneumococcal conjugate vaccines: Results from 2 long-term follow-up studies.

    PubMed

    Wysocki, Jacek; Brzostek, Jerzy; Konior, Ryszard; Panzer, Falko G; François, Nancy A; Ravula, Sudheer M; Kolhe, Devayani A; Song, Yue; Dieussaert, Ilse; Schuerman, Lode; Borys, Dorota

    2017-03-04

    To investigate long-term antibody persistence following the administration of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV), we present results of 2 follow-up studies assessing antibody persistence following 2 3+1 schedules up to 4 (NCT00624819 - Study A) and 5 years (NCT00891176 - Study B) post-booster vaccination. In Study A, antibody persistence was measured one, 2 and 4 years post-booster in children previously primed and boosted with PHiD-CV, or primed with the 7-valent pneumococcal conjugate vaccine (7vCRM) and boosted with either PHiD-CV or 7vCRM. In Study B, PHiD-CV was co-administered with meningococcal vaccines, and pneumococcal antibody persistence was measured 2, 3 and 5 years post-booster. An age-matched control group, unvaccinated against Streptococcus pneumoniae, was enrolled in Study A, allowing assessment of immunologic memory by administration of one dose of PHiD-CV to both primed (4 years post-booster) and unprimed 6-year-old children. Four years post-booster (Study A), antibody concentrations and opsonophagocytic activity (OPA) titers remained higher compared to the pre-booster timepoint, with no major differences between the 3 primed groups. Antibody persistence was also observed in Study B, with minimal differences between groups. The additional PHiD-CV dose administered 4 years post-booster in Study A elicited more robust immune responses in primed children than in unprimed children. Long-term serotype-specific antibody persistence and robust immunologic memory responses observed in these 2 studies suggest induction of long-term protection against pneumococcal disease after PHiD-CV vaccination.

  12. Long-term persistence of protective antibodies in Dutch adolescents following a meningococcal serogroup C tetanus booster vaccination.

    PubMed

    van Ravenhorst, Mariëtte B; Marinovic, Axel Bonacic; van der Klis, Fiona R M; van Rooijen, Debbie M; van Maurik, Marjan; Stoof, Susanne P; Sanders, Elisabeth A M; Berbers, Guy A M

    2016-12-07

    Due to waning immunity, infant vaccination with meningococcal serogroup C conjugated (MenCC) vaccines is insufficient to maintain long-term individual protection. Adolescent booster vaccination is thought to offer direct protection against invasive meningococcal disease (IMD) but also to reduce meningococcal carriage and transmission and in this way establish herd protection in the population. Previously, we studied antibody levels after adolescent MenCC booster vaccination. In the present study, the adolescent vaccinees were revisited after three years to determine antibody persistence and to predict long-term protection. Meningococcal serogroup C tetanus toxoid conjugated (MenC-TT) vaccine was administered to 10-, 12- and 15-year old participants who had been primed nine years earlier with a single dose of MenC-TT vaccine. Blood samples were collected before, 1month, 1year and 3years after the adolescent booster vaccination. Functional antibody levels were measured with serum bactericidal assay using rabbit complement (rSBA). Meningococcal serogroup C polysaccharide and tetanus toxoid specific antibody levels were measured using fluorescent-bead-based multiplex immunoassay. Long-term protection was estimated using longitudinal multilevel antibody decay modeling. Of the original 268 participants, 201 (75%) were revisited after 3years. All participants still had an rSBA titer above the protective threshold of ⩾8 and 98% ⩾128. The 15-year-olds showed the highest antibody titers. Using a bi-exponential decay model, the median time to fall below the protection threshold (rSBA titer <8) was 16.3years, 45.9years and around 270years following the booster for the 10-, 12- and 15-year-olds, respectively. After a first steep decline in antibody levels in the first year after the booster, antibody levels slowly declined between one and three years post-booster. A routine MenC-TT booster vaccination for adolescents in the Netherlands will likely provide long

  13. Update on progress in HIV vaccine development.

    PubMed

    Watkins, David I

    2012-01-01

    The 19th Conference on Retroviruses and Opportunistic Infections heralded the arrival of a new crop of potent, broadly neutralizing antibodies against HIV. This advance has given the entire vaccine field enormous hope that it will be possible one day to develop an antibody-based vaccine for HIV. However, substantial obstacles still exist in the induction of these antibodies by vaccination, given the enormous number of somatic mutations needed to develop these highly efficient antibodies. It is likely that follicular helper T cells will be involved in the development of these antibodies, and this will be a key area of interest in the future. Cellular immune responses will also be an important part of any vaccine regimen. Evidence showed that protection provided by an attenuated vaccine correlated with the frequency of vaccine-induced helper cells and killer cells, underlining the importance of these key immune cells. An alternative approach to the development of potent neutralizing antibodies was presented as part of an update on the Thai Phase III Vaccine Trial RV144. Data were shown suggesting that binding antibodies may play a role in protection from HIV infection.

  14. First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses.

    PubMed

    Choi, Eunsil; Michalski, Chad J; Choo, Seung Ho; Kim, Gyoung Nyoun; Banasikowska, Elizabeth; Lee, Sangkyun; Wu, Kunyu; An, Hwa-Yong; Mills, Anthony; Schneider, Stefan; Bredeek, U Fritz; Coulston, Daniel R; Ding, Shilei; Finzi, Andrés; Tian, Meijuan; Klein, Katja; Arts, Eric J; Mann, Jamie F S; Gao, Yong; Kang, C Yong

    2016-11-28

    Vaccination with inactivated (killed) whole-virus particles has been used to prevent a wide range of viral diseases. However, for an HIV vaccine this approach has been largely negated due to inherent safety concerns, despite the ability of killed whole-virus vaccines to generate a strong, predominantly antibody-mediated immune response in vivo. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence for the Env signal peptide with that of honeybee melittin signal peptide to produce a less virulent and more replication efficient virus. This genetically modified virus (gmHIV-1 NL4-3 ) was inactivated and formulated as a killed whole-HIV vaccine, and then used for a Phase I human clinical trial (Trial Registration: Clinical Trials NCT01546818). The gmHIV-1 NL4-3 was propagated in the A3.01 human T cell line followed by virus purification and inactivation with aldrithiol-2 and γ-irradiation. Thirty-three HIV-1 positive volunteers receiving cART were recruited for this observer-blinded, placebo-controlled Phase I human clinical trial to assess the safety and immunogenicity. Genetically modified and killed whole-HIV-1 vaccine, SAV001, was well tolerated with no serious adverse events. HIV-1 NL4-3 -specific PCR showed neither evidence of vaccine virus replication in the vaccine virus-infected human T lymphocytes in vitro nor in the participating volunteers receiving SAV001 vaccine. Furthermore, SAV001 with adjuvant significantly increased the pre-existing antibody response to HIV-1 proteins. Antibodies in the plasma of vaccinees were also found to recognize HIV-1 envelope protein on the surface of infected cells as well as showing an enhancement of broadly neutralizing antibodies inhibiting tier I and II of HIV-1 B, D, and A subtypes. The killed whole-HIV vaccine, SAV001, is safe and triggers anti-HIV immune responses. It remains to be determined through an appropriate trial whether this immune response prevents

  15. The Nonstructural Protein NSs Induces a Variable Antibody Response in Domestic Ruminants Naturally Infected with Rift Valley Fever Virus

    PubMed Central

    Fernandez, José-Carlos; Billecocq, Agnès; Durand, Jean Paul; Cêtre-Sossah, Catherine; Cardinale, Eric; Marianneau, Philippe; Pépin, Michel; Tordo, Noël

    2012-01-01

    Rift Valley fever (RVF) is an emerging zoonosis in Africa which has spread to Egypt, the Arabian Peninsula, Madagascar, and Comoros. RVF virus (RVFV) (Bunyaviridae family, Phlebovirus genus) causes a wide range of symptoms in humans, from benign fever to fatal hemorrhagic fever. Ruminants are severely affected by the disease, which leads to a high rate of mortality in young animals and to abortions and teratogenesis in pregnant females. Diagnostic tests include virus isolation and genome or antibody detection. During RVFV infection, the nucleoprotein encapsidating the tripartite RNA genome is expressed in large amounts and raises a robust antibody response, while the envelope glycoproteins elicit neutralizing antibodies which play a major role in protection. Much less is known about the antigenicity/immunogenicity of the nonstructural protein NSs, which is a major virulence factor. Here we have developed a competitive enzyme-linked immunosorbent assay (ELISA) enabling detection of low levels of NSs-specific antibodies in naturally infected or vaccinated ruminants. Detection of the NSs antibodies was validated by Western blotting. Altogether, our data showed that the NSs antibodies were detected in only 55% of animals naturally infected by RVFV, indicating that NSs does not induce a consistently high immune response. These results are discussed in light of differentiation between infected and vaccinated animals (DIVA) tests distinguishing naturally infected animals and those vaccinated with NSs-defective vaccines. PMID:22072723

  16. The nonstructural protein NSs induces a variable antibody response in domestic ruminants naturally infected with Rift Valley fever virus.

    PubMed

    Fernandez, José-Carlos; Billecocq, Agnès; Durand, Jean Paul; Cêtre-Sossah, Catherine; Cardinale, Eric; Marianneau, Philippe; Pépin, Michel; Tordo, Noël; Bouloy, Michèle

    2012-01-01

    Rift Valley fever (RVF) is an emerging zoonosis in Africa which has spread to Egypt, the Arabian Peninsula, Madagascar, and Comoros. RVF virus (RVFV) (Bunyaviridae family, Phlebovirus genus) causes a wide range of symptoms in humans, from benign fever to fatal hemorrhagic fever. Ruminants are severely affected by the disease, which leads to a high rate of mortality in young animals and to abortions and teratogenesis in pregnant females. Diagnostic tests include virus isolation and genome or antibody detection. During RVFV infection, the nucleoprotein encapsidating the tripartite RNA genome is expressed in large amounts and raises a robust antibody response, while the envelope glycoproteins elicit neutralizing antibodies which play a major role in protection. Much less is known about the antigenicity/immunogenicity of the nonstructural protein NSs, which is a major virulence factor. Here we have developed a competitive enzyme-linked immunosorbent assay (ELISA) enabling detection of low levels of NSs-specific antibodies in naturally infected or vaccinated ruminants. Detection of the NSs antibodies was validated by Western blotting. Altogether, our data showed that the NSs antibodies were detected in only 55% of animals naturally infected by RVFV, indicating that NSs does not induce a consistently high immune response. These results are discussed in light of differentiation between infected and vaccinated animals (DIVA) tests distinguishing naturally infected animals and those vaccinated with NSs-defective vaccines.

  17. Safety and Immunogenicity of Influenza A H5 Subunit Vaccines: Effect of Vaccine Schedule and Antigenic Variant

    PubMed Central

    Frey, Sharon E.; Graham, Irene; Mulligan, Mark J.; Edupuganti, Srilatha; Jackson, Lisa A.; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L.; Spearman, Paul; Hill, Heather; Wolff, Mark

    2011-01-01

    Background. The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). Methods. The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18–49 years of age. Results. Two doses of vaccine were required to induce antibody titers ≥1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. Conclusions. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053 PMID:21282194

  18. Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1).

    PubMed

    Wallace, Aaron; West, Kim; Rothman, Alan L; Ennis, Francis A; Lu, Shan; Wang, Shixia

    2013-10-01

    In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8(+) T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses.

  19. Subunit Rotavirus Vaccine Administered Parenterally to Rabbits Induces Active Protective Immunity

    PubMed Central

    Ciarlet, Max; Crawford, Sue E.; Barone, Christopher; Bertolotti-Ciarlet, Andrea; Ramig, Robert F.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. The immunogenicity and protective efficacy of different formulations of VLPs administered parenterally to rabbits were tested. Two doses of VLPs (2/6-, G3 2/6/7-, or P[2], G3 2/4/6/7-VLPs) or SA11 simian rotavirus in Freund’s adjuvants, QS-21 (saponin adjuvant), or aluminum phosphate (AlP) were administered. Serological and mucosal immune responses were evaluated in all vaccinated and control rabbits before and after oral challenge with 103 50% infective doses of live P[14], G3 ALA lapine rotavirus. All VLP- and SA11-vaccinated rabbits developed high levels of rotavirus-specific serum and intestinal immunoglobulin G (IgG) antibodies but not intestinal IgA antibodies. SA11 and 2/4/6/7-VLPs afforded similar but much higher mean levels of protection than 2/6/7- or 2/6-VLPs in QS-21. The presence of neutralizing antibodies to VP4 correlated (P < 0.001, r = 0.55; Pearson’s correlation coefficient) with enhanced protection rates, suggesting that these antibodies are important for protection. Although the inclusion of VP4 resulted in higher mean protection levels, high levels of protection (87 to 100%) from infection were observed in individual rabbits immunized with 2/6/7- or 2/6-VLPs in Freund’s adjuvants. Therefore, neither VP7 nor VP4 was absolutely required to achieve protection from infection in the rabbit model when Freund’s adjuvant was used. Our results show that VLPs are immunogenic when administered parenterally to rabbits and that Freund’s adjuvant is a better adjuvant than QS-21. The use of the rabbit model may help further our understanding of the critical rotavirus proteins needed to induce active protection. VLPs are a promising candidate for a parenterally administered subunit rotavirus vaccine. PMID:9765471

  20. Vaccination with Killed but Metabolically Active E. coli Over-expressing Hemagglutinin Elicits Neutralizing Antibodies to H1N1 Swine Origin Influenza A Virus

    PubMed Central

    Liu, Pei-Feng; Wang, Yanhan; Liu, Yu-Tsueng; Huang, Chun-Ming

    2017-01-01

    There is a need for a fast and simple method for vaccine production to keep up with the pace of a rapidly spreading virus in the early phases of the influenza pandemic. The use of whole viruses produced in chicken eggs or recombinant antigens purified from various expression systems has presented considerable challenges, especially with lengthy processing times. Here, we use the killed but metabolically active (KBMA) Escherichia coli (E. coli) to harbor the hemagglutinin (HA) of swine origin influenza A (H1N1) virus (S-OIV) San Diego/01/09 (SD/H1N1-S-OIV). Intranasal vaccination of mice with KBMA E. coli SD/H1N1-S-OIV HA without adding exogenous adjuvants provoked detectable neutralizing antibodies against the virus-induced hemagglutination within three weeks. Boosting vaccination enhanced the titers of neutralizing antibodies, which can decrease viral infectivity in Madin-Darby canine kidney (MDCK) cells. The antibodies were found to specifically neutralize the SD/H1N1-S-OIV-, but not seasonal influenza viruses (H1N1 and H3N2), -induced hemagglutination. The use of KBMA E. coli as an egg-free system to produce anti-influenza vaccines makes unnecessary the rigorous purification of an antigen prior to immunization, providing an alternative modality to combat influenza virus in future outbreaks. PMID:28492063