Sample records for vaccine induces potent

  1. Forging a potent vaccine adjuvant: CpG ODN/cationic peptide nanorings.

    PubMed

    Gungor, Bilgi; Yagci, Fuat Cem; Gursel, Ihsan; Gursel, Mayda

    Type I interferon inducers may potentially be engineered to function as antiviral and anticancer agents, or alternatively, vaccine adjuvants, all of which may have clinical applications. We recently described a simple strategy to convert a Toll-like receptor 9 (TLR9) agonist devoid of interferon α (IFNα) stimulating activity into a robust Type I interferon inducer with potent vaccine adjuvant activity.

  2. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  3. Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies.

    PubMed

    Sabo, Tamar; Kronman, Chanoch; Mazor, Ohad

    2016-01-01

    Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.

  4. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses.

    PubMed

    Pardi, Norbert; Hogan, Michael J; Naradikian, Martin S; Parkhouse, Kaela; Cain, Derek W; Jones, Letitia; Moody, M Anthony; Verkerke, Hans P; Myles, Arpita; Willis, Elinor; LaBranche, Celia C; Montefiori, David C; Lobby, Jenna L; Saunders, Kevin O; Liao, Hua-Xin; Korber, Bette T; Sutherland, Laura L; Scearce, Richard M; Hraber, Peter T; Tombácz, István; Muramatsu, Hiromi; Ni, Houping; Balikov, Daniel A; Li, Charles; Mui, Barbara L; Tam, Ying K; Krammer, Florian; Karikó, Katalin; Polacino, Patricia; Eisenlohr, Laurence C; Madden, Thomas D; Hope, Michael J; Lewis, Mark G; Lee, Kelly K; Hu, Shiu-Lok; Hensley, Scott E; Cancro, Michael P; Haynes, Barton F; Weissman, Drew

    2018-06-04

    T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4 + T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses. © 2018 Pardi et al.

  5. Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion

    PubMed Central

    Bogers, Willy M.; Oostermeijer, Herman; Mooij, Petra; Koopman, Gerrit; Verschoor, Ernst J.; Davis, David; Ulmer, Jeffrey B.; Brito, Luis A.; Cu, Yen; Banerjee, Kaustuv; Otten, Gillis R.; Burke, Brian; Dey, Antu; Heeney, Jonathan L.; Shen, Xiaoying; Tomaras, Georgia D.; Labranche, Celia; Montefiori, David C.; Liao, Hua-Xin; Haynes, Barton; Geall, Andrew J.; Barnett, Susan W.

    2015-01-01

    Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic. PMID:25234719

  6. QS-21: a potent vaccine adjuvant

    USDA-ARS?s Scientific Manuscript database

    QS-21 is an potent adjuvant derived from the bark of a Chilean tree, Quillaja saponaria. One of the advantages of this adjuvant is that it promotes a balanced humoral and cell-mediaed immune response and can be widely applicable to a variety of vaccines. This adjuvant has used for some veterinary va...

  7. Targeting the Intratumoral Dendritic Cells by the Oncolytic Adenoviral Vaccine Expressing RANTES Elicits Potent Antitumor Immunity

    PubMed Central

    Lapteva, Natalia; Aldrich, Melissa; Weksberg, David; Rollins, Lisa; Goltsova, Tatiana; Chen, Si-Yi; Huang, Xue F.

    2014-01-01

    Summary Dendritic cells (DCs) are professional antigen (Ag)-presenting cells capable of inducing immune responses to tumor Ags and, therefore, play a central role in the induction of antitumor immunity. There is a large amount of evidence, however, about paucity of tumor-associated DCs and that DCs’ immunogenic functions are suppressed in a tumor environment. Here we describe a potent in situ vaccine targeting tumoral DCs in vivo. This vaccine comprised of an oncolytic adenovirus expressing RANTES (regulated upon activation, normally T expressed, and presumably secreted) (Ad-RANTES-E1A), enhanced tumor infiltration, and maturation of Ag-presenting cells in vivo. In this study, we show that intratumoral vaccinations with Ad-RANTES-E1A induced significant primary tumor growth regression and blocked metastasis formation in JC and E.G-7 murine tumor models. This vaccine recruited DCs, macrophages, natural killer cells, and CD8+ T cells to the tumor site, and thus enhanced Ag-specific cytotoxic T lymphocyte responses and natural killer cell responses. DCs purified from the Ad-RANTES-E1A–treated E.G-7 tumors secreted significantly higher levels of interferon-γ and interleukin-12, as compared with control groups and more efficiently enhanced CD8+ T-cell response. This in situ immunization strategy could be a potent antitumor immunotherapy approach for aggressive established tumors. PMID:19238013

  8. Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88.

    PubMed

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; Benmohamed, Lbachir

    2012-11-01

    Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p < 0.005) after intravaginal HSV-2 challenge. Polyfunctional CD8(+) T cells, producing IFN-γ, TNF-α, and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8(+) T cell response was significantly compromised in the absence of the adapter MyD88 (p = 0.0001). Taken together, these findings indicate that targeting of the vaginal mucosa with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8(+) T cell protective immunity against sexually transmitted herpes infection and disease.

  9. A B-cell lymphoma vaccine using a depot formulation of interleukin-2 induces potent antitumor immunity despite increased numbers of intratumoral regulatory T cells.

    PubMed

    Grille, Sofía; Brugnini, Andreína; Nese, Martha; Corley, Esteban; Falkenberg, Frank W; Lens, Daniela; Chabalgoity, José A

    2010-04-01

    Therapeutic vaccination holds great potential as complementary treatment for non-Hodgkin's lymphoma. Here, we report that a therapeutic whole cell vaccine formulated with IL-2 adsorbed onto aluminum hydroxide as cytokine-depot formulation elicits potent antitumor immunity and induces delayed tumor growth, control of tumor dissemination and longer survival in mice challenged with A20-lymphoma. Therapeutic vaccination induced higher numbers of tumor's infiltrating lymphocytes (CD4(+) and CD8(+) T cells and NK cells), and the production of IFN-gamma and IL-4 by intratumoral CD4(+) T cells. Further, strong tumor antigen-specific cellular responses were detected at systemic level. Both the A20-derived antigenic material and the IL-2 depot formulation were required for induction of an effective immune response that impacted on cancer progression. All mice receiving any form of IL-2, either as part of the vaccine or alone as control, showed higher numbers of CD4(+)CD25(+/high)Foxp3(+) regulatory T cells (Treg) in the tumor, which might have a role in tumor progression in these animals. Nevertheless, for those animals that received the cytokine as part of the vaccine formulation, the overall effect was improved immune response and less disseminated disease, suggesting that therapeutic vaccination overcomes the potential detrimental effect of intratumoral Treg cells. Overall, the results presented here show that a simple vaccine formulation, that can be easily prepared under GMP conditions, is a promising strategy to be used in B-cell lymphoma and may have enough merit to be tested in clinical trials.

  10. Identification of potent biodegradable adjuvants that efficiently break self-tolerance--a key issue in the development of therapeutic vaccines.

    PubMed

    Ringvall, Maria; Huijbers, Elisabeth J M; Ahooghalandari, Parvin; Alekseeva, Ludmila; Andronova, Tatyana; Olsson, Anna-Karin; Hellman, Lars

    2009-12-10

    Monoclonal antibodies are used successfully in the treatment of many human disorders. However, these antibodies are expensive and have in many countries put a major strain on the health care economy. Therapeutic vaccines, directed against the same target molecules, may offer a solution to this problem. Vaccines usually involve lower amount of recombinant protein, approximately 10,000-20,000 times less, which is significantly more cost effective. Attempts to develop such therapeutic vaccines have also been made. However, their efficacy has been limited by the lack of potent immunostimulatory compounds, adjuvants, for human use. To address this problem we have conducted a broad screening for adjuvants that can enhance the efficacy of therapeutic vaccines, whilst at the same time being non-toxic and biodegradable. We have now identified adjuvants that show these desired characteristics. A combination of Montanide ISA720 and phosphorothioate stabilized CpG stimulatory DNA, induced similar or even higher anti-self-antibody titers compared to Freund's adjuvant, currently the most potent, but also toxic, adjuvant available. This finding removes one of the major limiting factors in the field and facilitates the development of a broad range of novel therapeutic vaccines.

  11. Ad35 and Ad26 Vaccine Vectors Induce Potent and Cross-Reactive Antibody and T-Cell Responses to Multiple Filovirus Species

    PubMed Central

    Zahn, Roland; Gillisen, Gert; Roos, Anna; Koning, Marina; van der Helm, Esmeralda; Spek, Dirk; Weijtens, Mo; Grazia Pau, Maria; Radošević, Katarina; Weverling, Gerrit Jan; Custers, Jerome; Vellinga, Jort; Schuitemaker, Hanneke; Goudsmit, Jaap; Rodríguez, Ariane

    2012-01-01

    Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. PMID:23236343

  12. Early Potent Protection against Heterologous SIVsmE660 Challenge Following Live Attenuated SIV Vaccination in Mauritian Cynomolgus Macaques

    PubMed Central

    Berry, Neil; Ham, Claire; Mee, Edward T.; Rose, Nicola J.; Mattiuzzo, Giada; Jenkins, Adrian; Page, Mark; Elsley, William; Robinson, Mark; Smith, Deborah; Ferguson, Deborah; Towers, Greg; Almond, Neil; Stebbings, Richard

    2011-01-01

    Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system. PMID:21853072

  13. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    PubMed Central

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p < 0.005), following intravaginal HSV-2 challenge. Polyfunctional CD8+ T cells, producing IFN-γ, TNF-α and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8+ T cell response was significantly compromised in the absence of the adaptor myeloid differentiation factor 88 (MyD88) (p = 0.0001). Taken together, these findings indicate that targeting the VM with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8+ T cell protective immunity against sexually transmitted herpes infection and disease. PMID:23018456

  14. Low Antigen Dose in Adjuvant-Based Vaccination Selectively Induces CD4 T Cells with Enhanced Functional Avidity and Protective Efficacy

    PubMed Central

    Wang, Yichuan; Solaymani-Mohammadi, Shahram; Frey, Blake; Kulkarni, Shweta; Andersen, Peter; Agger, Else Marie; Sui, Yongjun

    2017-01-01

    T cells with high functional avidity can sense and respond to low levels of cognate Ag, a characteristic that is associated with more potent responses against tumors and many infections, including HIV. Although an important determinant of T cell efficacy, it has proven difficult to selectively induce T cells of high functional avidity through vaccination. Attempts to induce high-avidity T cells by low-dose in vivo vaccination failed because this strategy simply gave no response. Instead, selective induction of high-avidity T cells has required in vitro culturing of specific T cells with low Ag concentrations. In this study, we combined low vaccine Ag doses with a novel potent cationic liposomal adjuvant, cationic adjuvant formulation 09, consisting of dimethyldioctadecylammonium liposomes incorporating two immunomodulators (monomycolyl glycerol analog and polyinosinic-polycytidylic acid) that efficiently induces CD4 Th cells, as well as cross-primes CD8 CTL responses. We show that vaccination with low Ag dose selectively primes CD4 T cells of higher functional avidity, whereas CD8 T cell functional avidity was unrelated to vaccine dose in mice. Importantly, CD4 T cells of higher functional avidity induced by low-dose vaccinations showed higher cytokine release per cell and lower inhibitory receptor expression (PD-1, CTLA-4, and the apoptosis-inducing Fas death receptor) compared with their lower-avidity CD4 counterparts. Notably, increased functional CD4 T cell avidity improved antiviral efficacy of CD8 T cells. These data suggest that potent adjuvants, such as cationic adjuvant formulation 09, render low-dose vaccination a feasible and promising approach for generating high-avidity T cells through vaccination. PMID:28348274

  15. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  16. Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine.

    PubMed

    Aldarouish, Mohanad; Wang, Huzhan; Zhou, Meng; Hu, Hong-Ming; Wang, Li-Xin

    2015-04-16

    Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub

  17. Nasal Vaccination Stimulates CD8+ T Cells for Potent Protection Against Mucosal Brucella melitensis Challenge

    PubMed Central

    Clapp, Beata; Yang, Xinghong; Thornburg, Theresa; Walters, Nancy; Pascual, David W.

    2016-01-01

    Brucellosis remains a significant zoonotic threat worldwide. Humans and animals acquire infection via their oropharynx and upper respiratory tract following oral or aerosol exposure. After mucosal infection, brucellosis develops into a systemic disease. Mucosal vaccination could offer a viable alternative to conventional injection practices to deter disease. Using a nasal vaccination approach, the ΔznuA B. melitensis was found to confer potent protection against pulmonary Brucella challenge, and reduce colonization of spleens and lungs by more than 2500-fold, with more than 50% of vaccinated mice showing no detectable brucellae. Furthermore, tenfold more brucellae-specific, IFN-γ-producing CD8+ T cells than CD4+ T cells were induced in the spleen and respiratory lymph nodes. Evaluation of pulmonary and splenic CD8+ T cells from mice vaccinated with ΔznuA B. melitensis revealed that these expressed an activated effector memory (CD44hiCD62LloCCR7lo) T cells producing elevated levels of IFN-γ, TNF-α, perforin, and granzyme B. To assess the relative importance of these increased numbers of CD8+ T cells, CD8−/− mice were challenged with virulent B. melitensis, and they showed markedly increased bacterial loads in organs in contrast to similarly challenged CD4−/− mice. Only ΔznuA B. melitensis- and Rev-1-vaccinated CD4−/− and wild-type mice, not CD8−/− mice, were completely protected against Brucella challenge. Determination of cytokines responsible for conferring protection showed the relative importance of IFN-γ, but not IL-17. Unlike wild-type mice, IL-17 was greatly induced in IFN-γ−/− mice, but IL-17 could not substitute for IFN-γ’s protection, although an increase in brucellae dissemination was observed upon in vivo IL-17 neutralization. These results show that nasal ΔznuA B. melitensis vaccination represents an attractive means to stimulate systemic and mucosal immune protection via CD8+ T cell engagement. PMID:26752510

  18. Virus-Like-Vaccines against HIV

    PubMed Central

    Andersson, Anne-Marie C.; Schwerdtfeger, Melanie; Holst, Peter J.

    2018-01-01

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8+ and CD4+ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response. PMID:29439476

  19. Virus-Like-Vaccines against HIV.

    PubMed

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  20. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible

    PubMed Central

    Chen, Qiang

    2015-01-01

    The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV. PMID:25676782

  1. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible.

    PubMed

    Chen, Qiang

    2015-05-01

    The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    NASA Astrophysics Data System (ADS)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  3. Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses.

    PubMed

    Ferraro, Bernadette; Cisper, Neil J; Talbott, Kendra T; Philipson-Weiner, Lindsey; Lucke, Colleen E; Khan, Amir S; Sardesai, Niranjan Y; Weiner, David B

    2011-01-01

    Prostate cancer (PCa) remains a significant public health problem. Current treatment modalities for PCa can be useful, but may be accompanied by deleterious side effects and often do not confer long-term control. Accordingly, additional modalities, such as immunotherapy, may represent an important approach for PCa treatment. The identification of tissue-specific antigens engenders PCa an attractive target for immunotherapeutic approaches. Delivery of DNA vaccines with electroporation has shown promising results for prophylactic and therapeutic targets in a variety of species including humans. Application of this technology for PCa immunotherapy strategies has been limited to single antigen and epitope targets. We sought to test the hypothesis that a broader collection of antigens would improve the breadth and effectiveness of a PCa immune therapy approach. We therefore developed highly optimized DNA vaccines encoding prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) as a dual antigen approach to immune therapy of PCa. PSA-and PSMA-specific cellular immunogenicity was evaluated in a mouse model for co-delivery and single antigen vaccination. Mice received 2 immunizations spaced 2 weeks apart and immunogenicity was evaluated 1 week after the second vaccination. Both the PSA and PSMA vaccines induced robust antigen-specific IFNγ responses by ELISpot. Further characterization of cellular immunogenicity by flow cytometry indicated strong antigen-specific TNFα production by CD4+ T cells and IFNγ and IL-2 secretion by both CD4+ and CD8+ T cells. There was also a strong humoral response as determined by PSA-specific seroconversion. These data support further study of this novel approach to immune therapy of PCa.

  4. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections

    PubMed Central

    Panagioti, Eleni; Klenerman, Paul; Lee, Lian N.; van der Burg, Sjoerd H.; Arens, Ramon

    2018-01-01

    For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines. PMID:29503649

  5. HIV-1 vaccine-specific responses induced by Listeria vector vaccines are maintained in mice subsequently infected with a model helminth parasite, Schistosoma mansoni.

    PubMed

    Shollenberger, Lisa M; Bui, Cac T; Paterson, Yvonne; Nyhoff, Lindsay; Harn, Donald A

    2013-11-19

    In areas co-endemic for helminth parasites and HIV/AIDS, infants are often administered vaccines prior to infection with immune modulatory helminth parasites. Systemic Th2 biasing and immune suppression caused by helminth infection reduces cell-mediated responses to vaccines such as tetanus toxoid and BCG. Therefore, we asked if infection with helminthes post-vaccination, alters already established vaccine induced immune responses. In our model, mice are vaccinated against HIV-1 Gag using a Listeria vaccine vector (Lm-Gag) in a prime-boost manner, then infected with the human helminth parasite Schistosoma mansoni. This allows us to determine if established vaccine responses are maintained or altered after helminth infection. Our second objective asked if helminth infection post-vaccination alters the recipient's ability to respond to a second boost. Here we compared responses between uninfected mice, schistosome infected mice, and infected mice that were given an anthelminthic, which occurred coincident with the boost or four weeks prior, as well as comparing to un-boosted mice. We report that HIV-1 vaccine-specific responses generated by Listeria vector HIV-1 vaccines are maintained following subsequent chronic schistosome infection, providing further evidence that Listeria vector vaccines induce potent vaccine-specific responses that can withstand helminth infection. We also were able to demonstrate that administration of a second Listeria boost, which markedly enhanced the immune response, was minimally impacted by schistosome infection, or anthelminthic therapy. Surprisingly, we also observed enhanced antibody responses to HIV Gag in vaccinated mice subsequently infected with schistosomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Breast cancer vaccines delivered by dendritic cell-targeted lentivectors induce potent antitumor immune responses and protect mice from mammary tumor growth.

    PubMed

    Bryson, Paul D; Han, Xiaolu; Truong, Norman; Wang, Pin

    2017-10-13

    Breast cancer immunotherapy is a potent treatment option, with antibody therapies such as trastuzumab increasing 2-year survival rates by 50%. However, active immunotherapy through vaccination has generally been clinically ineffective. One potential means of improving vaccine therapy is by delivering breast cancer antigens to dendritic cells (DCs) for enhanced antigen presentation. To accomplish this in vivo, we pseudotyped lentiviral vector (LV) vaccines with a modified Sindbis Virus glycoprotein so that they could deliver genes encoding the breast cancer antigen alpha-lactalbumin (Lalba) or erb-b2 receptor tyrosine kinase 2 (ERBB2 or HER2) directly to resident DCs. We hypothesized that utilizing these DC-targeting lentiviral vectors asa breast cancer vaccine could lead to an improved immune response against self-antigens found in breast cancer tumors. Indeed, single injections of the vaccine vectors were able to amplify antigen-specific CD8T cells 4-6-fold over naïve mice, similar to the best published vaccine regimens. Immunization of these mice completely inhibited tumor growth in a foreign antigen environment (LV-ERBB2 in wildtype mice), and it reduced the rate of tumor growth in a self-antigen environment (LV-Lalba in wildtype or LV-ERBB2 in MMTV-huHER2 transgenic). These results show that a single injection with targeted lentiviral vectors can be an effective immunotherapy for breast cancer. Furthermore, they could be combined with other immunotherapeutic regimens to improve outcomes for patients with breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    PubMed

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  8. Duck Enteritis Virus Glycoprotein D and B DNA Vaccines Induce Immune Responses and Immunoprotection in Pekin Ducks

    PubMed Central

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks. PMID:24736466

  9. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    PubMed

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  10. A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice.

    PubMed

    Buchmann, Pascale; Dembek, Claudia; Kuklick, Larissa; Jäger, Clemens; Tedjokusumo, Raindy; von Freyend, Miriam John; Drebber, Uta; Janowicz, Zbigniew; Melber, Karl; Protzer, Ulrike

    2013-02-06

    Therapeutic vaccines are currently being developed for chronic hepatitis B and C. As an alternative to long-term antiviral treatment or to support only partially effective therapy, they should activate the patient's immune system effectively to fight and finally control the virus. A paradigm of therapeutic vaccination is the potent induction of T-cell responses against key viral antigens - besides activation of a humoral immune response. We have evaluated the potential of a novel vaccine formulation comprising particulate hepatitis B surface (HBsAg) and core antigen (HBcAg), and the saponin-based ISCOMATRIX™ adjuvant for its ability to stimulate T and B cell responses in C57BL/6 mice and its ability to break tolerance in syngeneic HBV transgenic (HBVtg) mice. In C57BL/6 mice, the vaccine induced multifunctional HBsAg- and HBcAg-specific CD8+ T cells detected by staining for IFNγ, TNFα and IL-2, as well as high antibody titers against both antigens. Vaccination of HBVtg animals induced potent HBsAg- and HBcAg-specific CD8+ T-cell responses in spleens and HBcAg-specific CD8+ T-cell responses in livers as well as anti-HBs seroconversion two weeks post injection. Vaccination further reduced HBcAg expression in livers of HBVtg mice without causing liver damage. In summary, this study demonstrates therapeutic efficacy of a novel vaccine formulation in a mouse model of immunotolerant, chronic HBV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Potent Immunity to Low Doses of Influenza Vaccine by Probabilistic Guided Micro-Targeted Skin Delivery in a Mouse Model

    PubMed Central

    Prow, Tarl W.; Crichton, Michael L.; Fairmaid, Emily J.; Roberts, Michael S.; Frazer, Ian H.; Brown, Lorena E.; Kendall, Mark A. F.

    2010-01-01

    Background Over 14 million people die each year from infectious diseases despite extensive vaccine use [1]. The needle and syringe—first invented in 1853—is still the primary delivery device, injecting liquid vaccine into muscle. Vaccines could be far more effective if they were precisely delivered into the narrow layer just beneath the skin surface that contains a much higher density of potent antigen-presenting cells (APCs) essential to generate a protective immune response. We hypothesized that successful vaccination could be achieved this way with far lower antigen doses than required by the needle and syringe. Methodology/Principal Findings To meet this objective, using a probability-based theoretical analysis for targeting skin APCs, we designed the Nanopatch™, which contains an array of densely packed projections (21025/cm2) invisible to the human eye (110 µm in length, tapering to tips with a sharpness of <1000 nm), that are dry-coated with vaccine and applied to the skin for two minutes. Here we show that the Nanopatches deliver a seasonal influenza vaccine (Fluvax® 2008) to directly contact thousands of APCs, in excellent agreement with theoretical prediction. By physically targeting vaccine directly to these cells we induced protective levels of functional antibody responses in mice and also protection against an influenza virus challenge that are comparable to the vaccine delivered intramuscularly with the needle and syringe—but with less than 1/100th of the delivered antigen. Conclusions/Significance Our results represent a marked improvement—an order of magnitude greater than reported by others—for injected doses administered by other delivery methods, without reliance on an added adjuvant, and with only a single vaccination. This study provides a proven mathematical/engineering delivery device template for extension into human studies—and we speculate that successful translation of these findings into humans could uniquely assist with

  12. Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis

    PubMed Central

    Haley, Shannon L.; Tzvetkov, Evgeni P.; Meuwissen, Samantha; Plummer, Joseph R.

    2017-01-01

    ABSTRACT Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP. IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the

  13. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines.

    PubMed

    Moyle, Peter Michael

    Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their

  14. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells.

    PubMed

    Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu

    2014-05-01

    Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.

  15. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    PubMed

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  16. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    PubMed Central

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  17. Cancer and Stroma-Targeted Immunotherapy with a Genetically Modified DC Vaccine

    DTIC Science & Technology

    2011-05-01

    targeting the tumor stroma in addition to breast cancer cells may produce the desired increase in antitumor activity of DC vaccines for breast cancer...vaccination inhibits 4T1-neu progression. We investigated whether DC-shA20-FAP- HER2 may induce more potent anti- stroma and anti-tumor immunity with the...the immunosuppressive tumor microenviroment resulting in potent antitumor activity. Zhu W, Zhou X, Rollins L , Rooney CM, Gottschalk S, Song XT

  18. Intra-Prostate Cancer Vaccine Inducer

    DTIC Science & Technology

    2006-02-01

    analyzed by flowcytometry for Ii and MHC class II expression. The active constructs were used for the Ii suppression in the experiments planned in...care guidelines under an approved protocol. Cell lines and antibodies Green monkey kidney COS cells (#CRL-1650), cultured in RPMI-1640 medium with...AIDS vaccine protection in rhesus monkeys . J Virol 2004;78(14):7490-7. 12. Letvin NL, Montefiori DC, Yasutomi Y, et al. Potent, protective anti-HIV

  19. In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants

    PubMed Central

    Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Fréchet, Jean MJ.; Albrecht, Mark T.; Mateczun, Alfred J.; Ainslie, Kristy M.; Pesce, John T.; Keane-Myers, Andrea M.

    2010-01-01

    Toll-like receptor (TLR) agonists induce potent innate immune responses and can be used in the development of novel vaccine adjuvants. However, access to TLRs can be challenging as exemplified by TLR 7, which is located intracellularly in endosomal compartments. To increase recognition and subsequent stimulatory effects of TLR 7, imiquimod was encapsulated in acetalated-dextran (Ac-DEX) microparticles. Ac-DEX, a water-insoluble and biocompatible polymer, is relatively stable at pH 7.4, but degrades rapidly under acidic conditions, such as those found in lysosomal vesicles. To determine the immunostimulatory capacity of encapsulated imiquimod, we compared the efficacy of free versus encapsulated imiquimod in activating RAW 264.7 macrophages, MH-S macrophages, and bone marrow derived dendritic cells. Encapsulated imiquimod significantly increased IL-1β, IL-6, and TNF-α cytokine expression in macrophages relative to the free drug. Furthermore, significant increases were observed in classic macrophage activation markers (iNOS, PD1-L1, and NO) after treatment with encapsulated imiquimod over the free drug. Also, bone marrow derived dendritic cells produced significantly higher levels of IL-1β, IL-6, IL-12p70, and MIP-1α as compared to their counterparts receiving free imiquimod. These results suggest that encapsulation of TLR ligands within Ac-DEX microparticles results in increased immunostimulation and potentially better protection from disease when used in conjunction with vaccine formulations. PMID:20230025

  20. Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax.

    PubMed

    Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W

    2009-04-01

    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.

  1. Targeting Vaccine-Induced Extrafollicular Pathway of B Cell Differentiation Improves Rabies Postexposure Prophylaxis.

    PubMed

    Haley, Shannon L; Tzvetkov, Evgeni P; Meuwissen, Samantha; Plummer, Joseph R; McGettigan, James P

    2017-04-15

    Vaccine-induced B cells differentiate along two pathways. The follicular pathway gives rise to germinal centers (GCs) that can take weeks to fully develop. The extrafollicular pathway gives rise to short-lived plasma cells (PCs) that can rapidly secrete protective antibodies within days of vaccination. Rabies virus (RABV) postexposure prophylaxis (PEP) requires rapid vaccine-induced humoral immunity for protection. Therefore, we hypothesized that targeting extrafollicular B cell responses for activation would improve the speed and magnitude of RABV PEP. To test this hypothesis, we constructed, recovered, and characterized a recombinant RABV-based vaccine expressing murine B cell activating factor (BAFF) (rRABV-mBAFF). BAFF is an ideal molecule to improve early pathways of B cell activation, as it links innate and adaptive immunity, promoting potent B cell responses. Indeed, rRABV-mBAFF induced a faster, higher antibody response in mice and enhanced survivorship in PEP settings compared to rRABV. Interestingly, rRABV-mBAFF and rRABV induced equivalent numbers of GC B cells, suggesting that rRABV-mBAFF augmented the extrafollicular B cell pathway. To confirm that rRABV-mBAFF modulated the extrafollicular pathway, we used a signaling lymphocytic activation molecule (SLAM)-associated protein (SAP)-deficient mouse model. In response to antigen, SAP-deficient mice form extrafollicular B cell responses but do not generate GCs. rRABV-mBAFF induced similar anti-RABV antibody responses in SAP-deficient and wild-type mice, demonstrating that BAFF modulated immunity through the extrafollicular and not the GC B cell pathway. Collectively, strategies that manipulate pathways of B cell activation may facilitate the development of a single-dose RABV vaccine that replaces current complicated and costly RABV PEP. IMPORTANCE Effective RABV PEP is currently resource- and cost-prohibitive in regions of the world where RABV is most prevalent. In order to diminish the requirements for

  2. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants

    PubMed Central

    Hanson, Melissa C.; Crespo, Monica P.; Abraham, Wuhbet; Moynihan, Kelly D.; Szeto, Gregory L.; Chen, Stephanie H.; Melo, Mariane B.; Mueller, Stefanie; Irvine, Darrell J.

    2015-01-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy. PMID:25938786

  3. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants.

    PubMed

    Hanson, Melissa C; Crespo, Monica P; Abraham, Wuhbet; Moynihan, Kelly D; Szeto, Gregory L; Chen, Stephanie H; Melo, Mariane B; Mueller, Stefanie; Irvine, Darrell J

    2015-06-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.

  4. The challenge of developing a herpes simplex virus 2 vaccine

    PubMed Central

    Dropulic, Lesia K; Cohen, Jeffrey I

    2013-01-01

    HSV infections are prevalent worldwide. A vaccine to prevent genital herpes would have a significant impact on this disease. Several vaccines have shown promise in animal models; however, so far these have not been successful in human clinical studies. Prophylactic HSV vaccines to prevent HSV infection or disease have focused primarily on eliciting antibody responses. Potent antibody responses are needed to result in sufficiently high levels of virus-specific antibody in the genital tract. Therapeutic vaccines that reduce recurrences need to induce potent T-cell responses at the site of infection. With the increasing incidence of HSV-1 genital herpes, an effective herpes vaccine should protect against both HSV-1 and HSV-2. Novel HSV vaccines, such as replication-defective or attenuated viruses, have elicited humoral and cellular immune responses in preclinical studies. These vaccines and others hold promise in future clinical studies. PMID:23252387

  5. GD3/proteosome vaccines induce consistent IgM antibodies against the ganglioside GD3.

    PubMed

    Livingston, P O; Calves, M J; Helling, F; Zollinger, W D; Blake, M S; Lowell, G H

    1993-09-01

    The gangliosides of melanoma and other tumours of neuroectodermal origin are suitable targets for immune intervention with tumour vaccines. The optimal vaccines in current use contain ganglioside plus bacillus Calmette-Guérin and induce considerable morbidity. We have screened a variety of new adjuvants in the mouse, and describe one antigen-delivery system, proteosomes, which is especially effective. Highly hydrophobic Neisserial outer membrane proteins (OMP) form multimolecular liposome-like vesicular structures termed proteosomes which can readily incorporate amphiphilic molecules such as GD3 ganglioside. The optimal GD3/proteosome vaccine formulation for induction of GD3 antibodies in the mouse is determined. Interestingly, the use of potent immunological adjuvants in addition to proteosomes augments the IgM and IgG antibody titres against OMP in these vaccines but GD3 antibody titres are unaffected. The application of proteosomes to enhance the immune response to GD3 extends the concept of the proteosome immunopotentiating system from lipopeptides to amphipathic carbohydrate epitopes such as cell-surface gangliosides. The demonstrated safety of meningococcal OMP in humans and the data in mice presented here suggest that proteosome vaccines have potential for augmenting the immunogenicity of amphipathic tumour antigens in humans.

  6. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    PubMed

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses.

    PubMed

    Guarino, Cassandra; Asbie, Sanda; Rohde, Jennifer; Glaser, Amy; Wagner, Bettina

    2017-07-24

    Borrelia burgdorferi can induce Lyme disease. Approved Lyme vaccines for horses are currently not available. In an effort to protect horses, veterinarians are using Lyme vaccines licensed for dogs. However, data to assess the response of horses to, or determine the efficacy of this off-label vaccine use are missing. Here, antibodies against outer surface protein A (OspA), OspC, and OspF were quantified in diagnostic serum submissions from horses with a history of vaccination with canine Lyme vaccines. The results suggested that many horses respond with low and often short-lasting antibody responses. Subsequently, four experimental vaccination trials were performed. First, we investigated antibody responses to three canine vaccines in B. burgdorferi-naïve horses. One killed bacterin vaccine induced antibodies against OspC. OspA antibodies were low for all three vaccines and lasted less than 16weeks. The second trial tested the impact of the vaccine dose using the OspA/OspC inducing bacterin vaccine in horses. A 2mL dose produced higher OspA and OspC antibody values than a 1mL dose. However, the antibody response again quickly declined, independent of dose. Third, the horses were vaccinated with 2 doses of a recombinant OspA vaccine. Previous vaccination and/or environmental exposure enhanced the magnitude and longevity of the OspA antibody response to about 20weeks. Last, the influence of intramuscular versus subcutaneous vaccine administration was investigated for the recombinant OspA vaccine. OspA antibody responses were not influenced by injection route. The current work highlights that commercial Lyme vaccines for dogs induce only transient antibody responses in horses which can also be of low magnitude. Protection from infection with B. burgdorferi should not be automatically assumed after vaccinating horses with Lyme vaccines for dogs. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Overexpression of Interleukin-7 Extends the Humoral Immune Response Induced by Rabies Vaccination.

    PubMed

    Li, Yingying; Zhou, Ming; Luo, Zhaochen; Zhang, Yachun; Cui, Min; Chen, Huanchun; Fu, Zhen F; Zhao, Ling

    2017-04-01

    Rabies continues to present a public health threat in most countries of the world. The most efficient way to prevent and control rabies is to implement vaccination programs for domestic animals. However, traditional inactivated vaccines used in animals are costly and have relatively low efficiency, which impedes their extensive use in developing countries. There is, therefore, an urgent need to develop single-dose and long-lasting rabies vaccines. However, little information is available regarding the mechanisms underlying immunological memory, which can broaden humoral responses following rabies vaccination. In this study, a recombinant rabies virus (RABV) that expressed murine interleukin-7 (IL-7), referred to here as rLBNSE-IL-7, was constructed, and its effectiveness was evaluated in a mouse model. rLBNSE-IL-7 induced higher rates of T follicular helper (Tfh) cells and germinal center (GC) B cells from draining lymph nodes (LNs) than the parent virus rLBNSE. Interestingly, rLBNSE-IL-7 improved the percentages of long-lived memory B cells (Bmem) in the draining LNs and plasma cells (PCs) in the bone marrow (BM) for up to 360 days postimmunization (dpi). As a result of the presence of the long-lived PCs, it also generated prolonged virus-neutralizing antibodies (VNAs), resulting in better protection against a lethal challenge than that seen with rLBNSE. Moreover, consistent with the increased numbers of Bmem and PCs after a boost with rLBNSE, rLBNSE-IL-7-immunized mice promptly produced a more potent secondary anti-RABV neutralizing antibody response than rLBNSE-immunized mice. Overall, our data suggest that overexpressing IL-7 improved the induction of long-lasting primary and secondary antibody responses post-RABV immunization. IMPORTANCE Extending humoral immune responses using adjuvants is an important method to develop long-lasting and efficient vaccines against rabies. However, little information is currently available regarding prolonged immunological

  9. Update on progress in HIV vaccine development.

    PubMed

    Watkins, David I

    2012-01-01

    The 19th Conference on Retroviruses and Opportunistic Infections heralded the arrival of a new crop of potent, broadly neutralizing antibodies against HIV. This advance has given the entire vaccine field enormous hope that it will be possible one day to develop an antibody-based vaccine for HIV. However, substantial obstacles still exist in the induction of these antibodies by vaccination, given the enormous number of somatic mutations needed to develop these highly efficient antibodies. It is likely that follicular helper T cells will be involved in the development of these antibodies, and this will be a key area of interest in the future. Cellular immune responses will also be an important part of any vaccine regimen. Evidence showed that protection provided by an attenuated vaccine correlated with the frequency of vaccine-induced helper cells and killer cells, underlining the importance of these key immune cells. An alternative approach to the development of potent neutralizing antibodies was presented as part of an update on the Thai Phase III Vaccine Trial RV144. Data were shown suggesting that binding antibodies may play a role in protection from HIV infection.

  10. Proof of principle for epitope-focused vaccine design

    PubMed Central

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Christopher; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-01-01

    Summary Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Multiple major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus (RSV), that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for research and development of a human RSV vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets including antigenically highly variable pathogens such as HIV and influenza. PMID:24499818

  11. Proof of principle for epitope-focused vaccine design

    NASA Astrophysics Data System (ADS)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  12. Biomimetically Engineered Demi-Bacteria Potentiate Vaccination against Cancer.

    PubMed

    Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo; Wei, Wei; Ma, Guanghui

    2017-10-01

    Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi-bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross-presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB-based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism-sourced materials thus presents new opportunities for potent cancer therapy.

  13. Biomimetically Engineered Demi‐Bacteria Potentiate Vaccination against Cancer

    PubMed Central

    Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo

    2017-01-01

    Abstract Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi‐bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross‐presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB‐based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism‐sourced materials thus presents new opportunities for potent cancer therapy. PMID:29051851

  14. Single vector platform vaccine protects against lethal respiratory challenge with Tier 1 select agents of anthrax, plague, and tularemia.

    PubMed

    Jia, Qingmei; Bowen, Richard; Dillon, Barbara Jane; Masleša-Galić, Saša; Chang, Brennan T; Kaidi, Austin C; Horwitz, Marcus A

    2018-05-03

    Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.

  15. Formulation of vaccines containing CpG oligonucleotides and alum

    PubMed Central

    Aebig, Joan A.; Mullen, Gregory E. D.; Dobrescu, Gelu; Rausch, Kelly; Lambert, Lynn; Ajose-Popoola, Olubunmi; Long, Carole A.; Saul, Allan; Miles, Aaron P.

    2007-01-01

    CpG oligodeoxynucleotides are potent immunostimulants. For parenterally delivered alum based vaccines, the immunostimulatory effect of CpG depends on the association of the CpG and antigen to the alum. We describe effects of buffer components on the binding of CPG 7909 to aluminum hydroxide (Alhydrogel), assays for measuring binding of CPG 7909 to alum and CPG 7909 induced dissociation of antigen from the alum. Free CPG 7909 is a potent inducer of IP-10 in mice. However the lack of IP-10 production from formulations containing bound CPG 7909 suggested that CPG 7909 does not rapidly dissociate from the alum after injection. It also suggests that IP-10 assays are not a good basis for potency assays for alum based vaccines containing CPG 7909. PMID:17512533

  16. Extending antigen release from particulate vaccines results in enhanced antitumor immune response.

    PubMed

    Kapadia, Chintan H; Tian, Shaomin; Perry, Jillian L; Sailer, David; Christopher Luft, J; DeSimone, Joseph M

    2018-01-10

    Tumor-specific CD8 + cytotoxic T lymphocytes (CTLs) play a critical role in an anti-tumor immune response. However, vaccination intended to elicit a potent CD8 + T cell responses employing tumor-associated peptide antigens, are typically ineffective due to poor immunogenicity. Previously, we engineered a polyethylene glycol (PEG) hydrogel-based subunit vaccine for the delivery of an antigenic peptide and CpG (adjuvant) to elicit potent CTLs. In this study, we further examined the effect of antigen release kinetics on their induced immune responses. A CD8 + T cell epitope peptide from OVA (CSIINFEKL) and CpG were co-conjugated to nanoparticles utilizing either a disulfide or a thioether linkage. Subsequent studies comparing peptide release rates as a function of linker, determined that the thioether linkage provided sustained release of peptide over 72h. Ability to control the release of peptide resulted in both higher and prolonged antigen presentation when compared to disulfide-linked peptide. Both NP vaccine formulations resulted in activation and maturation of bone marrow derived dendritic cells (BMDCs) and induced potent CD8 + T cell responses when compared to soluble antigen and soluble CpG. Immunization with either disulfide or thioether linked vaccine constructs effectively inhibited EG7-OVA tumor growth in mice, however only treatment with the thioether linked vaccine construct resulted in enhanced survival. Copyright © 2017. Published by Elsevier B.V.

  17. The live-attenuated yellow fever vaccine 17D induces broad and potent T cell responses against several viral proteins in Indian rhesus macaques--implications for recombinant vaccine design.

    PubMed

    Mudd, Philip A; Piaskowski, Shari M; Neves, Patricia C Costa; Rudersdorf, Richard; Kolar, Holly L; Eernisse, Christopher M; Weisgrau, Kim L; de Santana, Marlon G Veloso; Wilson, Nancy A; Bonaldo, Myrna C; Galler, Ricardo; Rakasz, Eva G; Watkins, David I

    2010-09-01

    The yellow fever vaccine 17D (YF17D) is one of the most effective vaccines. Its wide use and favorable safety profile make it a prime candidate for recombinant vaccines. It is believed that neutralizing antibodies account for a large measure of the protection afforded to YF17D-vaccinated individuals, however cytotoxic T lymphocyte (CTL) responses have been described in the setting of YF17D vaccination. YF17D is an ssRNA flavivirus that is translated as a full-length polyprotein, several domains of which pass into the lumen of the endoplasmic reticulum (ER). The processing and presentation machinery for MHC class I-restricted CTL responses favor cytoplasmic peptides that are transported into the ER by the transporter associated with antigen presentation proteins. In order to inform recombinant vaccine design, we sought to determine if YF17D-induced CTL responses preferentially targeted viral domains that remain within the cytoplasm. We performed whole YF17D proteome mapping of CTL responses in six Indian rhesus macaques vaccinated with YF17D using overlapping YF17D peptides. We found that the ER luminal E protein was the most immunogenic viral protein followed closely by the cytoplasmic NS3 and NS5 proteins. These results suggest that antigen processing and presentation in this model system is not preferentially affected by the subcellular location of the viral proteins that are the source of CTL epitopes. The data also suggest potential immunogenic regions of YF17D that could serve as the focus of recombinant T cell vaccine development.

  18. Intradermal vaccination for infants and children

    PubMed Central

    Saitoh, Akihiko; Aizawa, Yuta

    2016-01-01

    ABSTRACT Intradermal (ID) vaccination induces a more potent immune response and requires lower vaccine doses as compared with standard vaccination routes. To deliver ID vaccines effectively and consistently, an ID delivery device has been developed and is commercially available for adults. The clinical application of ID vaccines for infants and children is much anticipated because children receive several vaccines, on multiple occasions, during infancy and childhood. However, experience with ID vaccines is limited and present evidence is sparse and inconsistent. ID delivery devices are not currently available for infants and children, but recent studies have examined skin thickness in this population and reported that it did not differ in proportion to body size in infants, children, and adults. These results are helpful in developing new ID devices and for preparing new vaccines in infants and children. PMID:27135736

  19. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep.

    PubMed

    Chen, Weiye; Hu, Sen; Qu, Linmao; Hu, Qianqian; Zhang, Qian; Zhi, Haibing; Huang, Kehe; Bu, Zhigao

    2010-07-05

    Recombinant capripoxvirus (CPV) is a promising candidate differentiating infected from vaccinated animals (DIVA) vaccine against peste-des-petits-ruminants (PPR). In order for recombinant CPV to be successfully used in the field, there should exist dependable indicators for quality control of vaccine products, surveillance and vaccination evaluation. Viral neutralization antibody (VNA) is correlated to protection against PPR and is a technically feasible indicator for this purpose. The immunogenicity of this vectored vaccine in goats and sheep, however, has not been fully evaluated. In this study, we generated two recombinant CPV viruses, rCPV-PPRVH and rCPV-PPRVF, that express PPR virus (PPRV) glycoproteins H and F, respectively. Vaccination studies with different dosages of recombinant viruses showed that rCPV-PPRVH was a more potent inducer of PPRV VNA than rCPV-PPRVF. One dose of rCPV-PPRVH was enough to seroconvert 80% of immunized sheep. A second dose induced significantly higher PPRV VNA titers. There was no significant difference in PPRV VNA responses between goats and sheep. Subcutaneous inoculation also induced a significant PPRV VNA response. PPRV VNA could be detected for over 6 months in more than 80% of vaccinated goats and sheep. Boost vaccination at 6-month intervals induced significant re-boost efficacy of PPRV VNA in goats and sheep. More over, two doses of rCPV-PPRVH could completely overcome the interference caused by pre-existing immunity to the CPV vaccine backbone in animals. Vaccination with rCPV-PPRVH also protected goats from virulent CPV challenge. Our results demonstrate that VNA can serve as a dependent indicator for effective vaccination and immune protection of animals in the field. The recombinant CPV vaccine used in our studies could be a practical and useful candidate DIVA vaccine in countries where PPR newly emerges or where stamp-out plans are yet to be implemented. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Potentiation of an anthrax DNA vaccine with electroporation.

    PubMed

    Luxembourg, A; Hannaman, D; Nolan, E; Ellefsen, B; Nakamura, G; Chau, L; Tellez, O; Little, S; Bernard, R

    2008-09-19

    DNA vaccines are a promising method of immunization against biothreats and emerging infections because they are relatively easy to design, manufacture, store and distribute. However, immunization with DNA vaccines using conventional delivery methods often fails to induce consistent, robust immune responses, especially in species larger than the mouse. Intramuscular (i.m.) delivery of a plasmid encoding anthrax toxin protective antigen (PA) using electroporation (EP), a potent DNA delivery method, rapidly induced anti-PA IgG and toxin neutralizing antibodies within 2 weeks following a single immunization in multiple experimental species. The delivery procedure is particularly dose efficient and thus favorable for achieving target levels of response following vaccine administration in humans. These results suggest that EP may be a valuable platform technology for the delivery of DNA vaccines against anthrax and other biothreat agents.

  1. Epitope Specificity Delimits the Functional Capabilities of Vaccine-Induced CD8 T Cell Populations

    PubMed Central

    Hill, Brenna J.; Darrah, Patricia A.; Ende, Zachary; Ambrozak, David R.; Quinn, Kylie M.; Darko, Sam; Gostick, Emma; Wooldridge, Linda; van den Berg, Hugo A.; Venturi, Vanessa; Larsen, Martin; Davenport, Miles P.; Seder, Robert A.

    2014-01-01

    Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2Kd epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2Dd epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2Dd specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner. PMID:25348625

  2. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection.

    PubMed

    Holst, Peter J; Jensen, Benjamin A H; Ragonnaud, Emeline; Thomsen, Allan R; Christensen, Jan P

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.

  3. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model.

    PubMed

    Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein

    2012-06-08

    Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Universal influenza vaccines: Shifting to better vaccines.

    PubMed

    Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J

    2016-06-03

    Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  5. Vaccine-induced canine distemper in European mink, Mustela lutreola.

    PubMed

    Sutherland-Smith, M R; Rideout, B A; Mikolon, A B; Appel, M J; Morris, P J; Shima, A L; Janssen, D J

    1997-09-01

    This report describes vaccine-induced canine distemper virus (CDV) infection in four European mink (Mustela lutreola) induced by the administration of a multivalent, avian-origin vaccine. Clinical signs consisting of seizures, ataxia, facial twitching, oculonasal discharge, hyperkeratosis of footpads, and anorexia developed 16-20 days postvaccination. Conjunctival smears from one animal were positive for CDV antigen by direct fluorescent antibody testing, confirming the clinical diagnosis. The four mink died 16-26 days postvaccination. Gross and microscopic lesions that were diagnostic for CDV infection included interstitial pneumonia, lymphoid depletion, nonsuppurative encephalitis, and dermatitis. Vaccine-strain virus was isolated from tissues of three animals. Cases of vaccine-induced distemper in mustelids using avian-origin vaccine have seldom been reported.

  6. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    PubMed

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.

    PubMed

    O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M

    2014-10-14

    Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    PubMed Central

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-01-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  9. Evaluation of the persistence of vaccine-induced protection with human vaccines.

    PubMed

    Vidor, E

    2010-01-01

    The persistence of protection induced by vaccines is a key aspect of the implementation of human vaccination policies, particularly for ageing populations. At the time of initial licensure, the duration of protection induced by a vaccine is generally only documented by longitudinal follow up of cohorts of subjects enrolled in the pre-licensure trials over a period of 1-5 years. The follow up of these cohorts provides two types of data: antibody kinetics (or another clinically relevant immunological parameter) over time and the disease incidence. Generally, the latter trials, if implemented during the pre-licensure period, are designed to follow-up cohorts in order to demonstrate vaccine efficacy above the minimal level required for the license. For vaccines already licensed, additional tools exist. The use of immunological surrogate markers of protection is a practical way to monitor the duration of protection. Measuring the persistence of circulating antibodies is widely used in human vaccines. For several vaccines, observed data have allowed the creation of mathematical models to predict the antibody persistence over periods of time longer than those effectively documented. Clinical trials assessing the capacity of the immune system to mount a quick anamnestic response upon re-stimulation a long time after initial priming (measurement of immune memory) is also a tool employed to document the duration of protection. The waning of protection can also be demonstrated by an increase of disease incidence in the subsequent 'time-to-last-vaccine administration' age segments. Seroprevalence studies in a given age group of people that were vaccinated under real-life conditions are another way to document the persistence of protection. Finally, case-control studies in outbreak situations or in situations of persisting endemicity can also be used to document the persistence of the vaccine efficacy. All of these tools are used in the development of new vaccines, and also

  10. High-Density Peptide Arrays for Malaria Vaccine Development.

    PubMed

    Loeffler, Felix F; Pfeil, Johannes; Heiss, Kirsten

    2016-01-01

    The development of an efficacious and practicable vaccine conferring sterile immunity towards a Plasmodium infection represents a not yet achieved goal. A crucial factor for the impact of a given anti-plasmodial subunit vaccine is the identification of the most potent parasitic components required to induce protection from both infection and disease. Here, we present a method based on a novel high-density peptide array technology that allows for a flexible readout of malaria antibodies. Peptide arrays applied as a screening method can be used to identify novel immunogenic antibody epitopes under a large number of potential antigens/peptides. Ultimately, discovered antigen candidates and/or epitope sequences can be translated into vaccine prototype design. The technology can be further utilized to unravel antibody-mediated immune responses (e.g., involved in the establishment of semi-immunity) and moreover to confirm vaccine potency during the process of clinical development by verifying the induced antibody responses following vaccination.

  11. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies.

    PubMed

    Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Kepler, Thomas B; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly E; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, M Juliana; Mascola, John R; Koup, Richard A; Corey, Lawrence; Nabel, Gary J; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S; Baden, Lindsey R; Tomaras, Georgia D; Haynes, Barton F

    2015-08-14

    An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. Copyright © 2015, American Association for the Advancement of Science.

  12. Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques.

    PubMed

    Kasturi, Sudhir Pai; Kozlowski, Pamela A; Nakaya, Helder I; Burger, Matheus C; Russo, Pedro; Pham, Mathew; Kovalenkov, Yevgeniy; Silveira, Eduardo L V; Havenar-Daughton, Colin; Burton, Samantha L; Kilgore, Katie M; Johnson, Mathew J; Nabi, Rafiq; Legere, Traci; Sher, Zarpheen Jinnah; Chen, Xuemin; Amara, Rama R; Hunter, Eric; Bosinger, Steven E; Spearman, Paul; Crotty, Shane; Villinger, Francois; Derdeyn, Cynthia A; Wrammert, Jens; Pulendran, Bali

    2017-02-15

    NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed. Copyright © 2017 American Society for Microbiology.

  13. Nanoparticle Vaccines Encompassing the Respiratory Syncytial Virus (RSV) G Protein CX3C Chemokine Motif Induce Robust Immunity Protecting from Challenge and Disease

    PubMed Central

    Jorquera, Patricia A.; Choi, Youngjoo; Oakley, Katie E.; Powell, Thomas J.; Boyd, James G.; Palath, Naveen; Haynes, Lia M.; Anderson, Larry J.; Tripp, Ralph A.

    2013-01-01

    Nanoparticle vaccines were produced using layer-by-layer fabrication and incorporating respiratory syncytial virus (RSV) G protein polypeptides comprising the CX3C chemokine motif. BALB/c mice immunized with G protein nanoparticle vaccines produced a neutralizing antibody response that inhibited RSV replication in the lungs following RSV challenge. ELISPOT analysis showed that G nanoparticle vaccinated mice had increased levels of RSV G protein-specific IL-4 and IFN-γ secreting cells compared to controls following RSV challenge. Remarkably, RSV challenge of G protein nanoparticle vaccinated mice resulted in increased RSV M2-specific IL-4 and IFN-γ secreting T cells, and increased M2-specific H-2Kd-tetramer positive CD8+ T cells in the lungs compared to controls. Cell type analysis showed vaccination was not associated with increased pulmonary eosinophilia following RSV challenge. These results demonstrate that vaccination of mice with the RSV G protein nanoparticle vaccines induces a potent neutralizing antibody response, increased G protein- and M2- specific T cell responses, and a reduction in RSV disease pathogenesis. PMID:24040360

  14. Vaccine-induced HIV seropositivity/reactivity in noninfected HIV vaccine recipients.

    PubMed

    Cooper, Cristine J; Metch, Barbara; Dragavon, Joan; Coombs, Robert W; Baden, Lindsey R

    2010-07-21

    Induction of protective anti-human immunodeficiency virus (HIV) immune responses is the goal of an HIV vaccine. However, this may cause a reactive result in routine HIV testing in the absence of HIV infection. To evaluate the frequency of vaccine-induced seropositivity/reactivity (VISP) in HIV vaccine trial participants. Three common US Food and Drug Administration-approved enzyme immunoassay (EIA) HIV antibody kits were used to determine VISP, and a routine diagnostic HIV algorithm was used to evaluate VISP frequency in healthy, HIV-seronegative adults who completed phase 1 (n = 25) and phase 2a (n = 2) vaccine trials conducted from 2000-2010 in the United States, South America, Thailand, and Africa. Vaccine-induced seropositivity/reactivity, defined as reactive on 1 or more EIA tests and either Western blot-negative or Western blot-indeterminate/atypical positive (profile consistent with vaccine product) and HIV-1-negative by nucleic acid testing. Among 2176 participants free of HIV infection who received a vaccine product, 908 (41.7%; 95% confidence interval [CI], 39.6%-43.8%) had VISP, but the occurrence of VISP varied substantially across different HIV vaccine product types: 399 of 460 (86.7%; 95% CI, 83.3%-89.7%) adenovirus 5 product recipients, 295 of 552 (53.4%; 95% CI, 49.2%-57.7%) recipients of poxvirus alone or as a boost, and 35 of 555 (6.3%; 95% CI, 4.4%-8.7%) of DNA-alone product recipients developed VISP. Overall, the highest proportion of VISP (891/2176 tested [40.9%]) occurred with the HIV 1/2 (rDNA) EIA kit compared with the rLAV EIA (150/700 tested [21.4%]), HIV-1 Plus O Microelisa System (193/1309 tested [14.7%]), and HIV 1/2 Peptide and HIV 1/2 Plus O (189/2150 tested [8.8%]) kits. Only 17 of the 908 participants (1.9%) with VISP tested nonreactive using the HIV 1/2 (rDNA) kit. All recipients of a glycoprotein 140 vaccine (n = 70) had VISP, with 94.3% testing reactive with all 3 EIA kits tested. Among 901 participants with VISP and a Western

  15. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  16. Marker vaccine strategies and candidate CSFV marker vaccines.

    PubMed

    Dong, Xiao-Nan; Chen, Ying-Hua

    2007-01-04

    Classical swine fever (CSF) is an economically important highly contagious disease of swine worldwide. Classical swine fever virus (CSFV) is its etiological agent, and the only natural hosts are domestic pigs and wild boars. Although field CSFV strains vary in the virulence, they all result in serious losses in pig industry. Highly virulent field strains generally cause acute disease and high mortality; moderately virulent field strains raise subacute or chronic infections; postnatal infection by low virulent field strains produces subclinical infection and mortality in the new-born piglets. CSFV can cross the placental barrier, and this transplacental transmission usually results in mortality of fetuses and birth of congenitally infected pigs with a late-onset disease and death. Two main strategies to control CSF epidemic are systematic prophylactic vaccination with live attenuated vaccines (such as C-strain) and non-vaccination stamping-out policy. But neither of them is satisfying enough. Marker vaccine and companion serological diagnostic test is thought to be a promising strategy for future control and eradication of CSF. During the past 15 years, various candidate marker vaccines were constructed and evaluated in the animal experiments, including recombinant chimeric vaccines, recombinant deletion vaccines, DNA vaccines, subunit vaccines and peptide vaccines. Among them, two subunit vaccines entered the large scale marker vaccine trial of EU in 1999. Although they failed to fulfil all the demands of the Scientific Veterinary Committee, they successfully induced solid immunity against CSFV in the vaccinated pigs. It can be expected that new potent marker vaccines might be commercially available and used in systematic prophylactic vaccination campaign or emergency vaccination in the next 15 years. Here, we summarized current strategies and candidate CSFV marker vaccines. These strategies and methods are also helpful for the development of new

  17. Progress and Challenges toward the Development of Vaccines against Avian Infectious Bronchitis

    PubMed Central

    Bande, Faruku; Arshad, Siti Suri; Hair Bejo, Mohd; Moeini, Hassan; Omar, Abdul Rahman

    2015-01-01

    Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes. PMID:25954763

  18. Influenza Virus Vaccine Based on the Conserved Hemagglutinin Stalk Domain

    PubMed Central

    Steel, John; Lowen, Anice C.; Wang, Taia T.; Yondola, Mark; Gao, Qinshan; Haye, Kester; García-Sastre, Adolfo; Palese, Peter

    2010-01-01

    ABSTRACT Although highly effective in the general population when well matched to circulating influenza virus strains, current influenza vaccines are limited in their utility due to the narrow breadth of protection they provide. The strain specificity of vaccines presently in use mirrors the exquisite specificity of the neutralizing antibodies that they induce, that is, antibodies which bind to the highly variable globular head domain of hemagglutinin (HA). Herein, we describe the construction of a novel immunogen comprising the conserved influenza HA stalk domain and lacking the globular head. Vaccination of mice with this headless HA construct elicited immune sera with broader reactivity than those obtained from mice immunized with a full-length HA. Furthermore, the headless HA vaccine provided full protection against death and partial protection against disease following lethal viral challenge. Our results suggest that the response induced by headless HA vaccines is sufficiently potent to warrant their further development toward a universal influenza virus vaccine. PMID:20689752

  19. Persistent Skin Reactions and Aluminium Hypersensitivity Induced by Childhood Vaccines.

    PubMed

    Salik, Elaha; Løvik, Ida; Andersen, Klaus E; Bygum, Anette

    2016-11-02

    There is increasing awareness of reactions to vaccination that include persistent skin reactions. We present here a retrospective investigation of long-lasting skin reactions and aluminium hypersensitivity in children, based on medical records and questionnaires sent to the parents. In the 10-year period 2003 to 2013 we identified 47 children with persistent skin reactions caused by childhood vaccinations. Most patients had a typical presentation of persisting pruritic subcutaneous nodules. Five children had a complex diagnostic process involving paediatricians, orthopaedics and plastic surgeons. Two patients had skin biopsies performed from their skin lesions, and 2 patients had the nodules surgically removed. Forty-two children had a patch-test performed with 2% aluminium chloride hexahydrate in petrolatum and 39 of them (92%) had a positive reaction. The persistent skin reactions were treated with potent topical corticosteroids and disappeared slowly. Although we advised families to continue vaccination of their children, one-third of parents omitted or postponed further vaccinations.

  20. Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines.

    PubMed

    Khan, Tila; Heffron, Connie L; High, Kevin P; Roberts, Paul C

    2014-05-03

    Potent and safe adjuvants are needed to improve the efficacy of parenteral and mucosal vaccines. Cytokines, chemokines and growth factors have all proven to be effective immunomodulatory adjuvants when administered with a variety of antigens. We have previously evaluated the efficacy of membrane-anchored interleukins (IL) such as IL-2 and IL-4 co-presented as Cytokine-bearing Influenza Vaccines (CYT-IVACs) using a mouse model of influenza challenge. Here, we describe studies evaluating the parenteral and mucosal adjuvanticity of membrane-bound IL-12 and IL-23 CYT-IVACs in young adult mice. Mucosal immunization using IL-12 and IL-23 bearing whole influenza virus vaccine (WIV) was more effective at eliciting virus-specific nasal IgA and reducing viral lung burden following challenge compared to control WIV vaccinated animals. Both IL-12 and IL-23 bearing WIV elicited the highest anti-viral IgA levels in serum and nasal washes. This study highlights for the first time the mucosal adjuvant potential of IL-12 and IL-23 CYT-IVAC formulations in eliciting mucosal immune responses and reducing viral lung burden. The co-presentation of immunomodulators in direct context with viral antigen in whole inactivated viral vaccines may provide a means to significantly lower the dose of vaccine required for protection.

  1. Phenolic derivatives from soy flour ethanol extract are potent in vitro quinone reductase (QR) inducing agents.

    PubMed

    Bolling, Bradley W; Parkin, Kirk L

    2008-11-26

    The fractionation of soy flour directed by a cellular bioassay for induction of phase 2 detoxification enzymes was used to identify quinone reductase (QR) inducing agents. A phospholipid-depleted, 80% methanol-partitioned isolate from a crude ethanol extract of soy flour was resolved using normal phase medium-pressure liquid chromatography (MPLC). Early eluting fractions were found to be the most potent QR inducing agents among the separated fractions. Fraction 2 was the most potent, doubling QR at <2 mug/mL. Further fractionation of this isolate led to the identification of several constituents. Fatty acids and sn-1 and sn-2 monoacylglycerols were identified, but were not highly potent QR inducers. Benzofuran-3-carbaldehyde, 4-hydroxybenzaldeyde, 4-ethoxybenzoic acid, 4-ethoxycinnamic acid, benzofuran-2-carboxylic ethyl ester, and ferulic acid ethyl ester (FAEE) were also identified as QR inducing constituents of this fraction. FAEE was the most potent of the identified constituents, doubling QR specific activity at 3.2 muM in the cellular bioassay.

  2. An update on the use of laser technology in skin vaccination

    PubMed Central

    Chen, Xinyuan; Wang, Ji; Shah, Dilip; Wu, Mei X

    2014-01-01

    Vaccination via skin often induces stronger immune responses than via muscle. This, in line with potential needle-free, painless delivery, makes skin a very attractive site for immunization. Yet, despite decades of effort, effective skin delivery is still in its infant stage and safe and potent adjuvants for skin vaccination remain largely undefined. We have shown that laser technologies including both fractional and non-fractional lasers can greatly augment vaccine-induced immune response without incurring any significant local and systemic side effects. Laser illumination at specific settings can accelerate the motility of antigen-presenting cells or trigger release of ‘danger’ signals stimulating the immune system. Moreover, several other groups including the authors explore laser technologies for needle-free transcutaneous vaccine delivery. As these laser-mediated resurfacing technologies are convenient, safe and cost-effective, their new applications in vaccination warrant clinical studies in the very near future. PMID:24127871

  3. DNA vaccines targeting heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E induce potent humoral and cellular immunity and provide protection from lethal toxin challenge.

    PubMed

    Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B

    2015-01-01

    Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4(+) T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins.

  4. Therapeutic vaccines in HBV: lessons from HCV.

    PubMed

    Barnes, Eleanor

    2015-02-01

    Currently, millions of people infected with hepatitis B virus (HBV) are committed to decades of treatment with anti-viral therapy to control viral replication. However, new tools for immunotherapy that include both viral vectors and molecular checkpoint inhibitors are now available. This has led to a resurgence of interest in new strategies to develop immunotherapeutic strategies with the aim of inducing HBeAg seroconversion--an end-point that has been associated with a decrease in the rates of disease progression. Ultimately, a true cure will involve the elimination of covalently closed circular DNA which presents a greater challenge for immunotherapy. In this manuscript, I describe the development of immunotherapeutic strategies for HBV that are approaching or currently in clinical studies, and draw on observations of T cell function in natural infection supported by recent animal studies that may lead to additional rational vaccine strategies using checkpoint inhibitors. I also draw on our recent experience in developing potent vaccines for HCV prophylaxis based on simian adenoviral and MVA vectors used in prime-boost strategies in both healthy volunteers and HCV infected patients. I have shown that the induction of T cell immune responses is markedly attenuated when administered to people with persistent HCV viremia. These studies and recently published animal studies using the woodchuck model suggest that potent vaccines based on DNA or adenoviral vectored vaccination represent a rational way forward. However, combining these with drugs to suppress viral replication, alongside checkpoint inhibitors may be required to induce long-term immune control.

  5. Potent Adjuvant Activity of Cationic Liposome-DNA Complexes for Genital Herpes Vaccines▿

    PubMed Central

    Bernstein, David I.; Cardin, Rhonda D.; Bravo, Fernando J.; Strasser, Jane E.; Farley, Nicholas; Chalk, Claudia; Lay, Marla; Fairman, Jeff

    2009-01-01

    Development of a herpes simplex virus (HSV) vaccine is a priority because these infections are common. It appears that potent adjuvants will be required to augment the immune response to subunit HSV vaccines. Therefore, we evaluated cationic liposome-DNA complexes (CLDC) as an adjuvant in a mouse model of genital herpes. Using a whole-virus vaccine (HVAC), we showed that the addition of CLDC improved antibody responses compared to vaccine alone. Most important, CLDC increased survival, reduced symptoms, and decreased vaginal virus replication compared to vaccine alone or vaccine administered with monophosphoryl lipid A (MPL) plus trehalose dicorynomycolate (TDM) following intravaginal challenge of mice. When CLDC was added to an HSV gD2 vaccine, it increased the amount of gamma interferon that was produced from splenocytes stimulated with gD2 compared to the amount produced with gD2 alone or with MPL-alum. The addition of CLDC to the gD2 vaccine also improved the outcome following vaginal HSV type 2 challenge compared to vaccine alone and was equivalent to vaccination with an MPL-alum adjuvant. CLDC appears to be a potent adjuvant for HSV vaccines and should be evaluated further. PMID:19279167

  6. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Guinea pig complement potently measures vibriocidal activity of human antibodies in response to cholera vaccines.

    PubMed

    Kim, Kyoung Whun; Jeong, Soyoung; Ahn, Ki Bum; Yang, Jae Seung; Yun, Cheol-Heui; Han, Seung Hyun

    2017-12-01

    The vibriocidal assay using guinea pig complement is widely used for the evaluation of immune responses to cholera vaccines in human clinical trials. However, it is unclear why guinea pig complement has been used over human complement in the measurement of vibriocidal activity of human sera and there have not been comparison studies for the use of guinea pig complement over those from other species. Therefore, we comparatively investigated the effects of complements derived from human, guinea pig, rabbit, and sheep on vibriocidal activity. Complements from guinea pig, rabbit, and human showed concentration-dependent vibriocidal activity in the presence of quality control serum antibodies. Of these complements, guinea pig complement was the most sensitive and effective over a wide concentration range. When the vibriocidal activity of complements was measured in the absence of serum antibodies, human, sheep, and guinea pig complements showed vibriocidal activity up to 40-fold, 20-fold, and 1-fold dilution, respectively. For human pre- and post-vaccination sera, the most potent vibriocidal activity was observed when guinea pig complement was used. In addition, the highest fold-increases between pre- and post- vaccinated sera were obtained with guinea pig complement. Furthermore, human complement contained a higher amount of V. cholerae- and its lipopolysaccharide-specific antibodies than guinea pig complement. Collectively, these results suggest that guinea pig complements are suitable for vibriocidal assays due to their high sensitivity and effectiveness to human sera.

  8. Protective Vaccination against Papillomavirus-Induced Skin Tumors under Immunocompetent and Immunosuppressive Conditions: A Preclinical Study Using a Natural Outbred Animal Model

    PubMed Central

    Vinzón, Sabrina E.; Braspenning-Wesch, Ilona; Müller, Martin; Geissler, Edward K.; Nindl, Ingo; Gröne, Hermann-Josef

    2014-01-01

    Certain cutaneous human papillomaviruses (HPVs), which are ubiquitous and acquired early during childhood, can cause a variety of skin tumors and are likely involved in the development of non-melanoma skin cancer, especially in immunosuppressed patients. Hence, the burden of these clinical manifestations demands for a prophylactic approach. To evaluate whether protective efficacy of a vaccine is potentially translatable to patients, we used the rodent Mastomys coucha that is naturally infected with Mastomys natalensis papillomavirus (MnPV). This skin type papillomavirus induces not only benign skin tumours, such as papillomas and keratoacanthomas, but also squamous cell carcinomas, thereby allowing a straightforward read-out for successful vaccination in a small immunocompetent laboratory animal. Here, we examined the efficacy of a virus-like particle (VLP)-based vaccine on either previously or newly established infections. VLPs raise a strong and long-lasting neutralizing antibody response that confers protection even under systemic long-term cyclosporine A treatment. Remarkably, the vaccine completely prevents the appearance of benign as well as malignant skin tumors. Protection involves the maintenance of a low viral load in the skin by an antibody-dependent prevention of virus spread. Our results provide first evidence that VLPs elicit an effective immune response in the skin under immunocompetent and immunosuppressed conditions in an outbred animal model, irrespective of the infection status at the time of vaccination. These findings provide the basis for the clinical development of potent vaccination strategies against cutaneous HPV infections and HPV-induced tumors, especially in patients awaiting organ transplantation. PMID:24586150

  9. Probing active cocaine vaccination performance through catalytic and noncatalytic hapten design.

    PubMed

    Cai, Xiaoqing; Whitfield, Timothy; Hixon, Mark S; Grant, Yanabel; Koob, George F; Janda, Kim D

    2013-05-09

    Presently, there are no FDA-approved medications to treat cocaine addiction. Active vaccination has emerged as one approach to intervene through the rapid sequestering of the circulating drug, thus terminating both psychoactive effects and drug toxicity. Herein, we report our efforts examining two complementary, but mechanistically distinct active vaccines, i.e., noncatalytic and catalytic, for cocaine treatment. A cocaine-like hapten GNE and a cocaine transition-state analogue GNT were used to generate the active vaccines, respectively. GNE-KLH (keyhole limpet hemocyannin) was found to elicit persistent high-titer, cocaine-specific antibodies and blunt cocaine-induced locomotor behaviors. Catalytic antibodies induced by GNT-KLH were also shown to produce potent titers and suppress locomotor response in mice; however, upon repeated cocaine challenges, the vaccine's protecting effects waned. In depth kinetic analysis suggested that loss of catalytic activity was due to antibody modification by cocaine. The work provides new insights for the development of active vaccines for the treatment of cocaine abuse.

  10. Malaria vaccine R&D in the Decade of Vaccines: breakthroughs, challenges and opportunities.

    PubMed

    Birkett, Ashley J; Moorthy, Vasee S; Loucq, Christian; Chitnis, Chetan E; Kaslow, David C

    2013-04-18

    While recent progress has been made in reducing malaria mortality with other interventions, vaccines are still urgently needed to further reduce the incidence of clinical disease, including during pregnancy, and to provide "herd protection" by blocking parasite transmission. The most clinically advanced candidate, RTS,S, is presently undergoing Phase 3 evaluation in young African children across 13 clinical sites in eight African countries. In the 12-month period following vaccination, RTS,S conferred approximately 50% protection from clinical Plasmodium falciparum disease in children aged 5-17 months, and approximately 30% protection in children aged 6-12 weeks when administered in conjunction with Expanded Program for Immunization (EPI) vaccines. The development of more highly efficacious vaccines to prevent clinical disease caused by both P. falciparum and Plasmodium vivax, as well as vaccines to support elimination efforts by inducing immunity that blocks malaria parasite transmission, are priorities. Some key barriers to malaria vaccine development include: a paucity of well-characterized target immunogens and an absence of clear correlates of protection to enable vaccine development targeting all stages of the P. falciparum and P. vivax lifecycles; a limited number of safe and effective delivery systems, including adjuvants, that induce potent, long-lived protective immunity, be it by antibody, CD4+, and/or CD8+ T cell responses; and, for vaccines designed to provide "herd protection" by targeting sexual stage and/or mosquito antigens, the lack of a clear clinical and regulatory pathway to licensure using non-traditional endpoints. Recommendations to overcome these, and other key challenges, are suggested in this document. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Leishmaniasis: vaccine candidates and perspectives.

    PubMed

    Singh, Bhawana; Sundar, Shyam

    2012-06-06

    Leishmania is a protozoan parasite and a causative agent of the various clinical forms of leishmaniasis. High cost, resistance and toxic side effects of traditional drugs entail identification and development of therapeutic alternatives. The sound understanding of parasite biology is key for identifying novel drug targets, that can induce the cell mediated immunity (mainly CD4+ and CD8+ IFN-gamma mediated responses) polarized towards a Th1 response. These aspects are important in designing a new vaccine along with the consideration of the candidates with respect to their ability to raise memory response in order to improve the vaccine performance. This review is an effort to identify molecules according to their homology with the host and their ability to be used as potent vaccine candidates. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  13. G-protein based ELISA as a potency test for rabies vaccines.

    PubMed

    Chabaud-Riou, Martine; Moreno, Nadège; Guinchard, Fabien; Nicolai, Marie Claire; Niogret-Siohan, Elisabeth; Sève, Nicolas; Manin, Catherine; Guinet-Morlot, Françoise; Riou, Patrice

    2017-03-01

    The NIH test is currently used to assess the potency of rabies vaccine, a key criterion for vaccine release. This test is based on mice immunization followed by intracerebral viral challenge. As part of global efforts to reduce animal experimentation and in the framework of the development of Sanofi Pasteur next generation, highly-purified vaccine, produced without any material of human or animal origin, we developed an ELISA as an alternative to the NIH test. This ELISA is based on monoclonal antibodies recognizing specifically the native form of the viral G-protein, the major antigen that induces neutralizing antibody response to rabies virus. We show here that our ELISA is able to distinguish between potent and different types of sub-potent vaccine lots. Satisfactory agreement was observed between the ELISA and the NIH test in the determination of the vaccine titer and their capacity to discern conform from non-conform batches. Our ELISA meets the criteria for a stability-indicating assay and has been successfully used to develop the new generation of rabies vaccine candidates. After an EPAA international pre-collaborative study, this ELISA was selected as the assay of choice for the EDQM collaborative study aimed at replacing the rabies vaccine NIH in vivo potency test. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Conjugate-like immunogens produced as protein capsular matrix vaccines.

    PubMed

    Thanawastien, Ann; Cartee, Robert T; Griffin, Thomas J; Killeen, Kevin P; Mekalanos, John J

    2015-03-10

    Capsular polysaccharides are the primary antigenic components involved in protective immunity against encapsulated bacterial pathogens. Although immunization of adolescents and adults with polysaccharide antigens has reduced pathogen disease burden, pure polysaccharide vaccines have proved ineffective at conferring protective immunity to infants and the elderly, age cohorts that are deficient in their adaptive immune responses to such antigens. However, T-cell-independent polysaccharide antigens can be converted into more potent immunogens by chemically coupling to a "carrier protein" antigen. Such "conjugate vaccines" efficiently induce antibody avidity maturation, isotype switching, and immunological memory in immunized neonates. These immune responses have been attributed to T-cell recognition of peptides derived from the coupled carrier protein. The covalent attachment of polysaccharide antigens to the carrier protein is thought to be imperative to the immunological properties of conjugate vaccines. Here we provide evidence that covalent attachment to carrier proteins is not required for conversion of T-independent antigens into T-dependent immunogens. Simple entrapment of polysaccharides or a d-amino acid polymer antigen in a cross-linked protein matrix was shown to be sufficient to produce potent immunogens that possess the key characteristics of conventional conjugate vaccines. The versatility and ease of manufacture of these antigen preparations, termed protein capsular matrix vaccines (PCMVs), will likely provide improvements in the manufacture of vaccines designed to protect against encapsulated microorganisms. This in turn could improve the availability of such vaccines to the developing world, which has shown only a limited capacity to afford the cost of conventional conjugate vaccines.

  15. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.

    PubMed

    Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G

    2014-01-01

    The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.

  16. Status of vaccine research and development of vaccines for HIV-1.

    PubMed

    Safrit, Jeffrey T; Fast, Patricia E; Gieber, Lisa; Kuipers, Hester; Dean, Hansi J; Koff, Wayne C

    2016-06-03

    Human immunodeficiency virus (HIV) is the cause of one of the most lethal pandemics in human history, although in recent years access to highly effective anti-retroviral therapy has provided new hope worldwide. Transmission of HIV by sexual contact, childbirth and injection drug use has been reduced, but 2 million are newly infected each year, and much of the transmission is from people who do not know their status. In addition to known methods, a preventive vaccine is needed to end the pandemic. The extraordinary mutability and genetic diversity of HIV is an enormous challenge, but vaccines are being designed for broad coverage. Computer-aided design of mosaic immunogens, incorporating many epitopes from the entire genome or from conserved regions aim to induce CD8+ T cells to kill virus-infected cells or inhibit virus replication, while trimeric envelope proteins or synthetic mimics aim to induce broadly reactive neutralizing antibodies similar to those cloned from some infected patients. Induction of more potent and durable responses may require new adjuvants or replicating chimeric vectors chimeras that bear HIV genes. Passive or genetic delivery of broadly neutralizing antibodies may provide broad protection and/or lead to insights for vaccine designers. Proof-of-concept trials in non-human primates and in one human efficacy trial have provided scientific clues for a vaccine that could provide broad and durable protection against HIV. The use of vaccines to destroy HIV reservoirs as part of therapy or cure is now also being explored. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  17. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination.

    PubMed

    Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M

    2016-01-01

    The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.

  18. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".

    PubMed

    Ewer, Katie J; Sierra-Davidson, Kailan; Salman, Ahmed M; Illingworth, Joseph J; Draper, Simon J; Biswas, Sumi; Hill, Adrian V S

    2015-12-22

    Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. MVA vaccine encoding CMV antigens safely induces durable expansion of CMV-specific T cells in healthy adults

    PubMed Central

    La Rosa, Corinna; Longmate, Jeff; Martinez, Joy; Zhou, Qiao; Kaltcheva, Teodora I.; Tsai, Weimin; Drake, Jennifer; Carroll, Mary; Wussow, Felix; Chiuppesi, Flavia; Hardwick, Nicola; Dadwal, Sanjeet; Aldoss, Ibrahim; Nakamura, Ryotaro; Zaia, John A.

    2017-01-01

    Attenuated poxvirus modified vaccinia Ankara (MVA) is a useful viral-based vaccine for clinical investigation, because of its excellent safety profile and property of inducing potent immune responses against recombinant (r) antigens. We developed Triplex by constructing an rMVA encoding 3 immunodominant cytomegalovirus (CMV) antigens, which stimulates a host antiviral response: UL83 (pp65), UL123 (IE1-exon4), and UL122 (IE2-exon5). We completed the first clinical evaluation of the Triplex vaccine in 24 healthy adults, with or without immunity to CMV and vaccinia virus (previous DryVax smallpox vaccination). Three escalating dose levels (DL) were administered IM in 8 subjects/DL, with an identical booster injection 28 days later and 1-year follow-up. Vaccinations at all DL were safe with no dose-limiting toxicities. No vaccine-related serious adverse events were documented. Local and systemic reactogenicity was transient and self-limiting. Robust, functional, and durable Triplex-driven expansions of CMV-specific T cells were detected by measuring T-cell surface levels of 4-1BB (CD137), binding to CMV-specific HLA multimers, and interferon-γ production. Marked and durable CMV-specific T-cell responses were also detected in Triplex-vaccinated CMV-seronegatives, and in DryVax-vaccinated subjects. Long-lived memory effector phenotype, associated with viral control during CMV primary infection, was predominantly found on the membrane of CMV-specific and functional T cells, whereas off-target vaccine responses activating memory T cells from the related herpesvirus Epstein-Barr virus remained undetectable. Combined safety and immunogenicity results of MVA in allogeneic hematopoietic stem cell transplant (HCT) recipients and Triplex in healthy adults motivated the initiation of a placebo-controlled multicenter trial of Triplex in HCT patients. This trial was registered at www.clinicaltrials.gov as #NCT02506933. PMID:27760761

  20. Gold nanorod vaccine for respiratory syncytial virus

    NASA Astrophysics Data System (ADS)

    Stone, John W.; Thornburg, Natalie J.; Blum, David L.; Kuhn, Sam J.; Wright, David W.; Crowe, James E., Jr.

    2013-07-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response.

  1. Germinal Center B Cell and T Follicular Helper Cell Responses to Viral Vector and Protein-in-Adjuvant Vaccines

    PubMed Central

    Wang, Chuan; Hart, Matthew; Chui, Cecilia; Ajuogu, Augustine; Brian, Iona J.; de Cassan, Simone C.; Borrow, Persephone; Draper, Simon J.

    2016-01-01

    There is great interest in the development of Ab-inducing subunit vaccines targeting infections, including HIV, malaria, and Ebola. We previously reported that adenovirus vectored vaccines are potent in priming Ab responses, but uncertainty remains regarding the optimal approach for induction of humoral immune responses. In this study, using OVA as a model Ag, we assessed the magnitude of the primary and anamnestic Ag–specific IgG responses of mice to four clinically relevant vaccine formulations: replication-deficient adenovirus; modified vaccinia Ankara (a poxvirus); protein with alum; and protein in the squalene oil-in-water adjuvant Addavax. We then used flow cytometric assays capable of measuring total and Ag-specific germinal center (GC) B cell and follicular Th cell responses to compare the induction of these responses by the different formulations. We report that adenovirus vectored vaccines induce Ag insert–specific GC B cell and Ab responses of a magnitude comparable to those induced by a potent protein/squalene oil-in-water formulation whereas—despite a robust overall GC response—the insert-specific GC B cell and Ab responses induced by modified vaccinia Ankara were extremely weak. Ag-specific follicular Th cell responses to adenovirus vectored vaccines exceeded those induced by other platforms at day 7 after immunization. We found little evidence that innate immune activation by adenovirus may act as an adjuvant in such a manner that the humoral response to a recombinant protein may be enhanced by coadministering with an adenovirus lacking a transgene of interest. Overall, these studies provide further support for the use of replication-deficient adenoviruses to induce humoral responses. PMID:27412417

  2. Green tea polyphenols as potent enhancers of glucocorticoid-induced mouse mammary tumor virus gene expression.

    PubMed

    Abe, I; Umehara, K; Morita, R; Nemoto, K; Degawa, M; Noguchi, H

    2001-02-16

    The effect of natural and synthetic galloyl esters on glucocorticoid-induced gene expression was evaluated by using rat fibroblast 3Y1 cells stably transfected with a luciferase reporter gene under the transcriptional regulation of the mouse mammary tumor virus promoter. The glucocorticoid-induced gene transcription was strongly suppressed by synthetic alkyl esters; n-dodecyl gallate showed the most potent inhibition (66% inhibition at 10 microM), which was far more potent than that of crude tannic acid. n-Octyl and n-cetyl gallate also showed good inhibition, while gallic acid itself was not so active, suggesting that the presence of hydrophobic side chain is important for the suppressive effect. On the other hand, surprisingly, green tea gallocatechins, (-)-epigallocatechin-3-O-gallate and theasinensin A, potently enhanced the promoter activity (182 and 247% activity at 1 microM, respectively). The regulation of the level of the glucocorticoid-induced gene expression by the antioxidative gallates is of great interest from a therapeutic point of view.

  3. Orally administered recombinant Lactobacillus casei vector vaccine expressing β-toxoid of Clostridium perfringens that induced protective immunity responses.

    PubMed

    Alimolaei, Mojtaba; Golchin, Mehdi; Ezatkhah, Majid

    2017-12-01

    Clostridium perfringens types B and C cause enteritis and enterotoxemia in animals. The conventional vaccine production systems need time-consuming detoxification and difficult quality control steps. In this study, a modified β-toxoid gene was synthesized, cloned into the pT1NX vector, and electroporated into Lactobacillus casei competent cells to yield L. casei-β recombinant strain. Surface expression of the recombinant β-toxoid was evaluated by ELISA and confirmed by immunofluorescence microscopy. Vaccinated BALB/c mice with L. casei-β induced potent humoral and cell-mediated immune responses that were protective against lethal challenges with 100 MLD/mL of the β-toxin. Safety and efficacy of the recombinant clone was evaluated and the presumptive toxicity of L. casei-β was studied by toxicity test and histopathological findings, which were the same as negative controls. Our results support the use of L. casei as a live oral vector vaccine, and that the recombinant L. casei-β is a potential candidate for being used in the control of enterotoxemia diseases caused by C. perfringens types B and C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Receptor-binding domain as a target for developing SARS vaccines.

    PubMed

    Zhu, Xiaojie; Liu, Qi; Du, Lanying; Lu, Lu; Jiang, Shibo

    2013-08-01

    A decade ago, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a global pandemic with a mortality rate of 10%. Reports of recent outbreaks of a SARS-like disease caused by Middle East respiratory syndrome coronavirus (MERS-CoV) have raised serious concerns of a possible reemergence of SARS-CoV, either by laboratory escape or the presence of a natural reservoir. Therefore, the development of effective and safe SARS vaccines is still needed. Based on our previous studies, we believe that the receptor-binding domain (RBD) in the S1 subunit of the SARS-CoV spike (S) protein is the most important target for developing a SARS vaccine. In particular, RBD of S protein contains the critical neutralizing domain (CND), which is able to induce highly potent neutralizing antibody response and cross-protection against divergent SARS-CoV strains. Furthermore, a RBD-based subunit vaccine is expected to be safer than other vaccines that may induce Th2-type immunopathology. This review will discuss key advances in the development of RBD-based SARS vaccines and the possibility of using a similar strategy to develop vaccines against MERS-CoV.

  5. Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection.

    PubMed

    Kusakabe, Takato; Ozasa, Koji; Kobari, Shingo; Momota, Masatoshi; Kishishita, Natsuko; Kobiyama, Kouji; Kuroda, Etsushi; Ishii, Ken J

    2016-06-08

    Intranasal vaccination with inactivated influenza viral antigens is an attractive and valid alternative to currently available influenza (flu) vaccines; many of which seem to need efficient and safe adjuvant, however. In this study, we examined whether hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used pharmaceutical excipient to improve solubility and drug delivery, can act as a mucosal adjuvant for intranasal flu vaccines. We found that intranasal immunization of mice with hemagglutinin split- as well as inactivated whole-virion influenza vaccine with HP-β-CD resulted in secretion of antigen-specific IgA and IgGs in the airway mucosa and the serum as well. As a result, both HP-β-CD adjuvanted-flu intranasal vaccine protected mice against lethal challenge with influenza virus, equivalent to those induced by experimental cholera toxin-adjuvanted ones. Of note, intranasal use of HP-β-CD as an adjuvant induced significantly lower antigen-specific IgE responses than that induced by aluminum salt adjuvant. These results suggest that HP-β-CD may be a potent mucosal adjuvant for seasonal and pandemic influenza vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults

    PubMed Central

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n = 38) or IM 15 μg (n = 42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine. PMID:25483667

  7. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults.

    PubMed

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n=38) or IM 15 μg (n=42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine.

  8. Probing Active Cocaine Vaccination Performance through Catalytic and Noncatalytic Hapten Design

    PubMed Central

    Cai, Xiaoqing; Whitfield, Timothy; Hixon, Mark S.; Grant, Yanabel; Koob, George F.; Janda, Kim D.

    2013-01-01

    Presently, there are no FDA-approved medications to treat cocaine addiction. Active vaccination has emerged as one approach to intervene through the rapid sequestering of the circulating drug, thus terminating both psychoactive effects and drug toxicity. Herein, we report our efforts examining two complimentary, but mechanistically distinct active vaccines, i.e., noncatalytic and catalytic, for cocaine treatment. A cocaine-like hapten GNE and a cocaine transition-state analogue GNT were used to generate the active vaccines, respectively. GNE-KLH was found to elicit persistent high-titer, cocaine-specific antibodies, and blunt cocaine induced locomotor behaviors. Catalytic antibodies induced by GNT-KLH were also shown to produce potent titers and suppress locomotor response in mice; however, upon repeated cocaine challenges the vaccine’s protecting effects waned. In depth kinetic analysis suggested that loss of catalytic activity was due to antibody modification by cocaine. The work provides new insights for the development of active vaccines for the treatment of cocaine abuse. PMID:23627877

  9. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines.

    PubMed

    Wong, Sook-San; DeBeauchamp, Jennifer; Zanin, Mark; Sun, Yilun; Tang, Li; Webby, Richard

    2017-01-01

    Conventional inactivated avian influenza vaccines have performed poorly in past vaccine trials, leading to the hypothesis that they are less immunogenic than seasonal influenza vaccines. We tested this hypothesis by comparing the immunogenicity of the H5N1 and H7N9 vaccines (avian influenza vaccines) to a seasonal trivalent inactivated influenza vaccine in naïve ferrets, administered with or without the adjuvants MF59 or AS03. Vaccine immunogenicity was assessed by measuring neutralizing antibody titers against hemagglutinin and neuraminidase and by hemagglutinin -specific IgG levels. Two doses of unadjuvanted vaccines induced low or no HA-specific IgG responses and hemagglutination-inhibiting titers. Adjuvanted vaccines induced comparable IgG-titers, but poorer neutralizing antibody titers for the H5 vaccine. All adjuvanted vaccines elicited detectable anti- neuraminidase -antibodies with the exception of the H5N1 vaccine, likely due to the low amounts of neuraminidase in the vaccine. Overall, the H5N1 vaccine had poorer capacity to induce neutralizing antibodies, but not HA-specific IgG, compared to H7N9 or trivalent inactivated influenza vaccine.

  10. Recombinant BCG prime and PPE protein boost provides potent protection against acute Mycobacterium tuberculosis infection in mice.

    PubMed

    Yang, Enzhuo; Gu, Jin; Wang, Feifei; Wang, Honghai; Shen, Hongbo; Chen, Zheng W

    2016-04-01

    Since BCG, the only vaccine widely used against tuberculosis (TB) in the world, provides varied protective efficacy and may not be effective for inducing long-term cellular immunity, it is in an urgent need to develop more effective vaccines and more potent immune strategies against TB. Prime-boost is proven to be a good strategy by inducing long-term protection. In this study, we tested the protective effect against Mycobacterium tuberculosis (Mtb) challenge of prime-boost strategy by recombinant BCG (rBCG) expressing PPE protein Rv3425 fused with Ag85B and Rv3425. Results showed that the prime-boost strategy could significantly increase the protective efficiency against Mtb infection, characterized by reduction of bacterial load in lung and spleen, attenuation of tuberculosis lesions in lung tissues. Importantly, we found that Rv3425 boost, superior to Ag85B boost, provided better protection against Mtb infection. Further research proved that rBCG prime-Rv3425 boost could obviously increase the expansion of lymphocytes, significantly induce IL-2 production by lymphocytes upon PPD stimulation, and inhibit IL-6 production at an early stage. It implied that rBCG prime-Rv3425 boost opted to induce Th1 immune response and provided a long-term protection against TB. These results implicated that rBCG prime-Rv3425 boost is a potent and promising strategy to prevent acute Mtb infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-07

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Development of porcine circovirus 2 (PCV2) open reading frame 2 DNA vaccine with different adjuvants and comparison with commercial PCV2 subunit vaccine in an experimental challenge.

    PubMed

    Park, Changhoon; Jeong, Jiwoon; Choi, Kyuhyung; Park, Su-Jin; Kang, Ikjae; Chae, Chanhee

    2017-07-01

    The objective of this study was to compare the protection against challenge with porcine circovirus 2 (PCV2) induced by an experimental vaccine based on open reading frame (ORF) 2 of PCV2 DNA plus an adjuvant (aluminum hydroxide, cobalt oxide, or liposome) and a commercial PCV2 subunit vaccine. A total of 35 colostrum-fed, cross-bred, conventional piglets were randomly divided into 7 groups. The commercial vaccine was more efficacious against PCV2 challenge than the 4 experimental vaccines according to immunologic, virologic, and pathological outcomes. The pigs inoculated with the experimental vaccine containing the liposome adjuvant had significantly higher levels ( P < 0.05) of neutralizing antibodies and interferon-γ-secreting cells, and significantly lower levels ( P < 0.05) of PCV2 viremia than the pigs inoculated with the other experimental vaccines. The pigs inoculated with the experimental vaccines containing either the liposome adjuvant or the cobalt oxide adjuvant had significantly lower lymphoid lesion scores ( P < 0.05) than the pigs in the group inoculated with the PCV2 DNA vaccine dissolved in phosphate-buffered saline. Liposome proved to be a potent adjuvant that efficiently enhanced both humoral and cellular immune responses induced by the PCV2 DNA vaccine.

  13. Development of porcine circovirus 2 (PCV2) open reading frame 2 DNA vaccine with different adjuvants and comparison with commercial PCV2 subunit vaccine in an experimental challenge

    PubMed Central

    Park, Changhoon; Jeong, Jiwoon; Choi, Kyuhyung; Park, Su-Jin; Kang, Ikjae; Chae, Chanhee

    2017-01-01

    The objective of this study was to compare the protection against challenge with porcine circovirus 2 (PCV2) induced by an experimental vaccine based on open reading frame (ORF) 2 of PCV2 DNA plus an adjuvant (aluminum hydroxide, cobalt oxide, or liposome) and a commercial PCV2 subunit vaccine. A total of 35 colostrum-fed, cross-bred, conventional piglets were randomly divided into 7 groups. The commercial vaccine was more efficacious against PCV2 challenge than the 4 experimental vaccines according to immunologic, virologic, and pathological outcomes. The pigs inoculated with the experimental vaccine containing the liposome adjuvant had significantly higher levels (P < 0.05) of neutralizing antibodies and interferon-γ-secreting cells, and significantly lower levels (P < 0.05) of PCV2 viremia than the pigs inoculated with the other experimental vaccines. The pigs inoculated with the experimental vaccines containing either the liposome adjuvant or the cobalt oxide adjuvant had significantly lower lymphoid lesion scores (P < 0.05) than the pigs in the group inoculated with the PCV2 DNA vaccine dissolved in phosphate-buffered saline. Liposome proved to be a potent adjuvant that efficiently enhanced both humoral and cellular immune responses induced by the PCV2 DNA vaccine. PMID:28725106

  14. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, andmore » infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.« less

  15. Diversion of HIV-1 Vaccine-induced Immunity by gp41-Microbiota Cross-reactive Antibodies

    PubMed Central

    Williams, Wilton B; Liao, Hua-Xin; Moody, M. Anthony; Kepler, Thomas B.; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M.; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E.; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C.; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, Julie; Mascola, John R.; Koup, Richard A; Corey, Lawrence; Nabel, Gary J.; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S.; Baden, Lindsey R.; Tomaras, Georgia D.; Haynes, Barton F.

    2015-01-01

    A HIV-1 DNA prime-recombinant Adenovirus Type 5 (rAd5) boost vaccine failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells was to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies (mAbs) were non-neutralizing, and frequently polyreactive with host and environmental antigens including intestinal microbiota (IM). Next generation sequencing of an IGHV repertoire prior to vaccination revealed an Env-IM cross-reactive Ab that was clonally-related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. PMID:26229114

  16. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8+ T Cells that Protect Against Subcutaneous B16-OVA Melanoma

    PubMed Central

    Stark, Felicity C.; McCluskie, Michael J.; Krishnan, Lakshmi

    2016-01-01

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8+ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8+ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8+ T cell response of up to 45% of all circulating CD8+ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8+ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8+ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8+ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection. PMID:27869670

  17. CD8+ T-cell mediated anti-malaria protection induced by malaria vaccines; assessment of hepatic CD8+ T cells by SCBC assay.

    PubMed

    Zhou, Jing; Kaiser, Alaina; Ng, Colin; Karcher, Rachel; McConnell, Tim; Paczkowski, Patrick; Fernandez, Cristina; Zhang, Min; Mackay, Sean; Tsuji, Moriya

    2017-07-03

    Malaria is a severe infectious disease with relatively high mortality, thus having been a scourge of humanity. There are a few candidate malaria vaccines that have shown a protective efficacy in humans against malaria. One of the candidate human malaria vaccines, which is based on human malaria sporozoites and called PfSPZ Vaccine, has been shown to protect a significant proportion of vaccine recipients from getting malaria. PfSPZ Vaccine elicits a potent response of hepatic CD8+ T cells that are specific for malaria antigens in non-human primates. To further characterize hepatic CD8+ T cells induced by the sporozoite-based malaria vaccine in a mouse model, we have used a cutting-edge Single-cell Barcode (SCBC) assay, a recently emerged approach/method for investigating the nature of T-cells responses during infection or cancer. Using the SCBC technology, we have identified a population of hepatic CD8+ T cells that are polyfunctional at a single cell level only in a group of vaccinated mice upon malaria challenge. The cytokines/chemokines secreted by these polyfunctional CD8+ T-cell subsets include MIP-1α, RANTES, IFN-γ, and/or IL-17A, which have shown to be associated with protective T-cell responses against certain pathogens. Therefore, a successful induction of such polyfunctional hepatic CD8+ T cells may be a key to the development of effective human malaria vaccine. In addition, the SCBC technology could provide a new level of diagnostic that will allow for a more accurate determination of vaccine efficacy.

  18. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    PubMed

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Seropositivity to non-vaccine incorporated genotypes induced by the bivalent and quadrivalent HPV vaccines: A systematic review and meta-analysis.

    PubMed

    Bissett, Sara L; Godi, Anna; Jit, Mark; Beddows, Simon

    2017-07-13

    Human papillomavirus vaccines have demonstrated remarkable efficacy against persistent infection and disease associated with vaccine-incorporated genotypes and a degree of efficacy against some genetically related, non-vaccine-incorporated genotypes. The vaccines differ in the extent of cross-protection against these non-vaccine genotypes. Data supporting the role for neutralizing antibodies as a correlate or surrogate of cross-protection are lacking, as is a robust assessment of the seroconversion rates against these non-vaccine genotypes. We performed a systematic review and meta-analysis of available data on vaccine-induced neutralizing antibody seropositivity to non-vaccine incorporated HPV genotypes. Of 304 articles screened, 9 were included in the analysis representing ca. 700 individuals. The pooled estimate for seropositivity against HPV31 for the bivalent vaccine (86%; 95%CI 78-91%) was higher than that for the quadrivalent vaccine (61%; 39-79%; p=0.011). The pooled estimate for seropositivity against HPV45 for the bivalent vaccine (50%; 37-64%) was also higher than that for the quadrivalent vaccine (16%; 6-36%; p=0.007). Seropositivity against HPV33, HPV52 and HPV58 were similar between the vaccines. Mean seropositivity rates across non-vaccine genotypes were positively associated with the corresponding vaccine efficacy data reported from vaccine trials. These data improve our understanding of vaccine-induced functional antibody specificity against non-vaccine incorporated genotypes and may help to parameterize vaccine-impact models and improve patient management in a post-vaccine setting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Design and Synthesis of Potent Quillaja Saponin Vaccine Adjuvants

    PubMed Central

    Adams, Michelle M.; Damani, Payal; Perl, Nicholas R.; Won, Annie; Hong, Feng

    2010-01-01

    The success of antitumor and antiviral vaccines often requires the use of an adjuvant, a substance that significantly enhances the immune response to a co-administered antigen. Only a handful of adjuvants have both sufficient potency and acceptable toxicity for clinical investigation. One promising adjuvant is QS-21, a saponin natural product that is the immunopotentiator of choice in many cancer and infectious disease vaccine clinical trials. However, the therapeutic promise of QS-21 adjuvant is curtailed by several factors, including its scarcity, difficulty in purification to homogeneity, dose-limiting toxicity, and chemical instability. Here we report the design, synthesis, and evaluation of chemically stable synthetic saponins. These novel, amide-modified, non-natural substances exhibit immunopotentiating effects in vivo that rival or exceed that of QS-21 in evaluations with the GD3-KLH melanoma conjugate vaccine. The highly convergent synthetic preparation of these novel saponins establishes new avenues for discovering improved molecular adjuvants for specifically tailored vaccine therapies. PMID:20088518

  1. A Novel Multi-Epitope Vaccine Based on Urate Transporter 1 Alleviates Streptozotocin-Induced Diabetes by Producing Anti-URAT1 Antibody and an Immunomodulatory Effect in C57BL/6J Mice.

    PubMed

    Ma, Yanjie; Cao, Huimin; Li, Zhixin; Fang, Jinzhi; Wei, Xiaomin; Cheng, Peng; Jiao, Rui; Liu, Xiaoran; Li, Ya; Xing, Yun; Tang, Jiali; Jin, Liang; Li, Taiming

    2017-10-16

    Hyperuricemia (HUA) is related to diabetes. Uric acid-induced inflammation and oxidative stress are risk factors for diabetes and its complications. Human urate transporter 1 (URAT1) regulates the renal tubular reabsorption of uric acid. IA-2(5)-P2-1, a potent immunogenic carrier designed by our laboratory, can induce high-titer specific antibodies when it carries a B cell epitope, such as B cell epitopes of DPP4 (Dipeptidyl peptidase-4), xanthine oxidase. In this report, we describe a novel multi-epitope vaccine composing a peptide of URAT1, an anti-diabetic B epitope of insulinoma antigen-2(IA-2) and a Th2 epitope (P2:IPALDSLTPANED) of P277 peptide in human heat shock protein 60 (HSP60). Immunization with the multi-epitope vaccine in streptozotocin-induced diabetes C57BL/6J mice successfully induced specific anti-URAT1 antibody, which inhibited URAT1 action and uric acid reabsorption, and increased pancreatic insulin level with a lower insulitis incidence. Vaccination with U-IA-2(5)-P2-1 (UIP-1) significantly reduced blood glucose and uric acid level, increased Th2 cytokines interleukin (IL)-10 and IL-4, and regulated immune reactions through a balanced Th1/Th2 ratio. These results demonstrate that the URAT1-based multi-epitope peptide vaccine may be a suitable therapeutic approach for diabetes and its complications.

  2. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein

    DOE PAGES

    Chen, Edwin; Salinas, Nichole D.; Huang, Yining; ...

    2016-05-18

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less

  3. Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Edwin; Salinas, Nichole D.; Huang, Yining

    Plasmodium vivax Duffy Binding Protein (PvDBP) is the most promising vaccine candidate for P. vivax malaria. The polymorphic nature of PvDBP induces strain-specific immune responses, however, and the epitopes of broadly neutralizing antibodies are unknown. These features hamper the rational design of potent DBP-based vaccines and necessitate the identification of globally conserved epitopes. Using X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry, and mutational mapping, we have defined epitopes for three inhibitory mAbs (mAbs 2D10, 2H2, and 2C6) and one noninhibitory mAb (3D10) that engage DBP. These studies expand the currently known inhibitory epitope repertoire by establishing protective motifsmore » in subdomain three outside the receptor-binding and dimerization residues of DBP, and introduce globally conserved protective targets. All of the epitopes are highly conserved among DBP alleles. In conclusion, the identification of broadly conserved epitopes of inhibitory antibodies provides critical motifs that should be retained in the next generation of potent vaccines for P. vivax malaria.« less

  4. Biopolymer encapsulated live influenza virus as a universal CD8+ T cell vaccine against influenza virus.

    PubMed

    Boesteanu, Alina C; Babu, Nadarajan S; Wheatley, Margaret; Papazoglou, Elisabeth S; Katsikis, Peter D

    2010-12-16

    Current influenza virus vaccines primarily elicit antibodies and can be rendered ineffective by antigenic drift and shift. Vaccines that elicit CD8+ T cell responses targeting less variable proteins may function as universal vaccines that have broad reactivity against different influenza virus strains. To generate such a universal vaccine, we encapsulated live influenza virus in a biopolymer and delivered it to mice subcutaneously. This vaccine was safe, induced potent CD8+ T cell immunity and protected mice against heterosubtypic lethal challenge. Safety of subcutaneous (SQ) vaccination was tested in Rag-/-γc-/- double knockout mice which we show cannot control intranasal infection. Biopolymer encapsulation of live influenza virus could be used to develop universal CD8+ T cell vaccines against heterosubtypic and pandemic strains. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1.

    PubMed

    Hertz, Tomer; Ahmed, Hasan; Friedrich, David P; Casimiro, Danilo R; Self, Steven G; Corey, Lawrence; McElrath, M Juliana; Buchbinder, Susan; Horton, Helen; Frahm, Nicole; Robertson, Michael N; Graham, Barney S; Gilbert, Peter

    2013-01-01

    Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different

  6. Successful Vaccination Induces Multifunctional Memory T-Cell Precursors Associated with Early Control of Hepatitis C Virus

    PubMed Central

    Park, Su-Hyung; Shin, Eui-Cheol; Capone, Stefania; Caggiari, Laura; De Re, Valli; Nicosia, Alfredo; Folgori, Antonella; Rehermann, Barbara

    2012-01-01

    Background & Aims T cells are an important component for development of a vaccine against hepatitis C virus (HCV), but little is known about the features of successful vaccine-induced T cells. Methods We compared the phenotype, function, and kinetics of vaccine-induced and infection-induced T cells in chimpanzees with HCV infection using multicolor flow cytometry and real-time PCR. Results In chimpanzees successfully vaccinated with recombinant adenovirus and DNA against HCV NS3-NS5, HCV-specific T cells appeared earlier, maintained better functionality, and persisted at higher frequencies, for a longer time after HCV-challenge, than those of mock-vaccinated chimpanzees. Vaccine-induced T cells displayed higher levels of CD127, a marker of memory precursors, and lower levels of programmed death (PD)-1 than infection-induced T cells. Vaccine-induced, but not infection-induced T cells, were multifunctional; their ability to secrete interferon-γ and tumor necrosis factor-α correlated with early expression of CD127 but not PD-1. Based on a comparison of vaccine-induced and infection-induced T cells from the same chimpanzee, the CD127+ memory precursor phenotype was induced by the vaccine itself, rather than by low viremia. In contrast, PD-1 induction correlated with viremia, and levels of intrahepatic PD-1, PD-L1, and 2,5-OAS-1 mRNAs correlated with peak titers of HCV. Conclusions Compared with infection, vaccination induced HCV-specific CD127+ T cells with high functionality that persisted at higher levels for a longer time. Control of viremia prevented upregulation of PD-1 on T cells, and induction of PD-1, PD-L1, and 2,5-OAS-1 in the liver. Early development of a memory T-cell phenotype and, via control of viremia, attenuation of the inhibitory PD1–PD-L1 pathway might be necessary components of successful vaccine-induced protection against HCV. PMID:22705008

  7. Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.

    PubMed

    Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming

    2010-07-26

    Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.

  8. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development.

    PubMed

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5-60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development.

  9. Complexity of Human Antibody Response to Dengue Virus: Implication for Vaccine Development

    PubMed Central

    Tsai, Wen-Yang; Lin, Hong-En; Wang, Wei-Kung

    2017-01-01

    The four serotypes of dengue virus (DENV) are the leading cause of arboviral diseases in humans. Decades of efforts have made remarkable progress in dengue vaccine development. Despite the first dengue vaccine (dengvaxia from Sanofi Pasteur), a live-attenuated tetravalent chimeric yellow fever-dengue vaccine, has been licensed by several countries since 2016, its overall moderate efficacy (56.5–60.8%) in the presence of neutralizing antibodies during the Phase 2b and 3 trials, lower efficacy among dengue naïve compared with dengue experienced individuals, and increased risk of hospitalization among young children during the follow-up highlight the need for a better understanding of humoral responses after natural DENV infection. Recent studies of more than 300 human monoclonal antibodies (mAbs) against DENV have led to the discovery of several novel epitopes on the envelope protein recognized by potent neutralizing mAbs. This information together with in-depth studies on polyclonal sera and B-cells following natural DENV infection has tremendous implications for better immunogen design for a safe and effective dengue vaccine. This review outlines the progress in our understanding of mouse mAbs, human mAbs, and polyclonal sera against DENV envelope and precursor membrane proteins, two surface proteins involved in vaccine development, following natural infection; analyses of these discoveries have provided valuable insight into new strategies involving molecular technology to induce more potent neutralizing antibodies and less enhancing antibodies for next-generation dengue vaccine development. PMID:28775720

  10. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Tournier, Jean-Nicolas; Garin, Daniel; Crance, Jean-Marc

    2008-03-25

    This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.

  11. The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes.

    PubMed

    Ge, Wei; Hu, Pei-Zhen; Huang, Yang; Wang, Xiao-Ming; Zhang, Xiu-Min; Sun, Yu-Jing; Li, Zeng-Shan; Si, Shao-Yan; Sui, Yan-Fang

    2009-10-01

    Our previous study showed that nanoemulsion-encapsulated MAGE1-HSP70/SEA (MHS) complex protein vaccine elicited MAGE-1 specific immune response and antitumor effects against MAGE-1-expressing tumor and nanoemulsion is a useful vehicle with possible important implications for cancer biotherapy. The purpose of this study was to compare the immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70 and SEA as NE(MHS) vaccine following different administration routes and to find out the new and effective immune routes. Nanoemulsion vaccine was prepared using magnetic ultrasound methods. C57BL/6 mice were immunized with NE(MHS) via po., i.v., s.c. or i.p., besides mice s.c. injected with PBS or NE(-) as control. The cellular immunocompetence was detected by ELISpot assay and LDH release assay. The therapeutic and tumor challenge assay were also examined. The results showed that the immune responses against MAGE-1 expressing murine tumors elicited by NE(MHS) via 4 different routes were approximately similar and were all stronger than that elicited by PBS or NE(-), suggesting that this novel nanoemulsion carrier can exert potent antitumor immunity against antigens encapsulated in it. Especially, the present results indicated that nanoemulsion vaccine adapted to administration via different routes including peroral, and may have broader applications in the future.

  12. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response.

    PubMed

    Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Viveros, Monica; Gevorkian, Goar; Manoutcharian, Karen

    2011-07-18

    The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Imperfect vaccine-induced immunity and whooping cough transmission to infants.

    PubMed

    Lavine, Jennie; Broutin, Hélène; Harvill, Eric T; Bjørnstad, Ottar N

    2010-12-10

    Whooping cough, caused by B. pertussis and B. parapertussis, has increased in incidence throughout much of the developed world since the 1980s despite high vaccine coverage, causing an increased risk of infection in infants who have substantial disease-induced mortality. Duration of immunity and epidemically significant routes of transmission across age groups remain unclear and deserve further investigation to inform vaccination strategies to better control pertussis burden. The authors analyze age- and species-specific whooping cough tests and vaccine histories in Massachusetts from 1990 to 2008. On average, the disease-free duration is 10.5 years. However, it has been decreasing over time, possibly due to a rising force of infection through increased circulation. Despite the importance of teenage cases during epidemics, wavelet analyses suggest that they are not the most important source of transmission to infants. In addition, the data indicate that the B. pertussis vaccine is not protective against disease induced by B. parapertussis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine.

    PubMed

    Blaney, Joseph E; Marzi, Andrea; Willet, Mallory; Papaneri, Amy B; Wirblich, Christoph; Feldmann, Friederike; Holbrook, Michael; Jahrling, Peter; Feldmann, Heinz; Schnell, Matthias J

    2013-01-01

    We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.

  15. Cocaine Analog Coupled to Disrupted Adenovirus: A Vaccine Strategy to Evoke High-titer Immunity Against Addictive Drugs

    PubMed Central

    Hicks, Martin J; De, Bishnu P; Rosenberg, Jonathan B; Davidson, Jesse T; Moreno, Amira Y; Janda, Kim D; Wee, Sunmee; Koob, George F; Hackett, Neil R; Kaminsky, Stephen M; Worgall, Stefan; Toth, Miklos; Mezey, Jason G; Crystal, Ronald G

    2011-01-01

    Based on the concept that anticocaine antibodies could prevent inhaled cocaine from reaching its target receptors in the brain, an effective anticocaine vaccine could help reverse cocaine addiction. Leveraging the knowledge that E1−E3− adenovirus (Ad) gene transfer vectors are potent immunogens, we have developed a novel vaccine platform for addictive drugs by covalently linking a cocaine analog to the capsid proteins of noninfectious, disrupted Ad vector. The Ad-based anticocaine vaccine evokes high-titer anticocaine antibodies in mice sufficient to completely reverse, on a persistent basis, the hyperlocomotor activity induced by intravenous administration of cocaine. PMID:21206484

  16. A study of vaccine-induced immune pressure on breakthrough infections in the Phambili phase 2b HIV-1 vaccine efficacy trial

    PubMed Central

    Rolland, M.; Magaret, C.A.; Rademeyer, C.; Fiore-Gartland, A.; Edlefsen, P.T.; DeCamp, A.; Ahmed, H.; Ngandu, N.; Larsen, B.B.; Frahm, N.; Marais, J.; Thebus, R.; Geraghty, D.; Hural, J.; Corey, L.; Kublin, J.; Gray, G.; McElrath, M.J.; Mullins, J.I.; Gilbert, P.B.; Williamson, C.

    2016-01-01

    Introduction The Merck Adenovirus-5 Gag/Pol/Nef HIV-1 subtype-B vaccine evaluated in predominately subtype B epidemic regions (Step Study), while not preventing infection, exerted vaccine-induced immune pressure on HIV-1 breakthrough infections. Here we investigated if the same vaccine exerted immune pressure when tested in the Phambili Phase 2b study in a subtype C epidemic. Materials and methods A sieve analysis, which compares breakthrough viruses from placebo and vaccine arms, was performed on 277 near full-length genomes generated from 23 vaccine and 20 placebo recipients. Vaccine coverage was estimated by computing the percentage of 9-mers that were exact matches to the vaccine insert. Results There was significantly greater protein distances from the vaccine immunogen sequence in Gag (p = 0.045) and Nef (p = 0.021) in viruses infecting vaccine recipients compared to placebo recipients. Twenty-seven putative sites of vaccine-induced pressure were identified (p < 0.05) in Gag (n = 10), Pol (n = 7) and Nef (n = 10), although they did not remain significant after adjustment for multiple comparisons. We found the epitope sieve effect in Step was driven by HLA A*02:01; an allele which was found in low frequency in Phambili participants compared to Step participants. Furthermore, the coverage of the vaccine against subtype C Phambili viruses was 31%, 46% and 14% for Gag, Pol and Nef, respectively, compared to subtype B Step virus coverage of 56%, 61% and 26%, respectively. Discussion This study presents evidence of sieve effects in Gag and Nef; however could not confirm effects on specific amino acid sites. We propose that this weaker signal of vaccine immune pressure detected in the Phambili study compared to the Step study may have been influenced by differences in host genetics (HLA allele frequency) and reduced impact of vaccine-induced immune responses due to mismatch between the viral subtype in the vaccine and infecting subtypes. PMID:27756485

  17. Balancing Trained Immunity with Persistent Immune Activation and the Risk of Simian Immunodeficiency Virus Infection in Infant Macaques Vaccinated with Attenuated Mycobacterium tuberculosis or Mycobacterium bovis BCG Vaccine

    PubMed Central

    Jensen, Kara; dela Pena-Ponce, Myra Grace; Piatak, Michael; Shoemaker, Rebecca; Oswald, Kelli; Jacobs, William R.; Fennelly, Glenn; Lucero, Carissa; Mollan, Katie R.; Hudgens, Michael G.; Amedee, Angela; Kozlowski, Pamela A.; Estes, Jacob D.; Lifson, Jeffrey D.; Van Rompay, Koen K. A.; Larsen, Michelle

    2016-01-01

    ABSTRACT Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants. PMID:27655885

  18. Prior Population Immunity Reduces the Expected Impact of CTL-Inducing Vaccines for Pandemic Influenza Control

    PubMed Central

    Bolton, Kirsty J.; McCaw, James M.; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie

    2015-01-01

    Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the

  19. Prior population immunity reduces the expected impact of CTL-inducing vaccines for pandemic influenza control.

    PubMed

    Bolton, Kirsty J; McCaw, James M; Brown, Lorena; Jackson, David; Kedzierska, Katherine; McVernon, Jodie

    2015-01-01

    Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the

  20. From The Cover: Poly- amino ester-containing microparticles enhance the activity of nonviral genetic vaccines

    NASA Astrophysics Data System (ADS)

    Little, Steven R.; Lynn, David M.; Ge, Qing; Anderson, Daniel G.; Puram, Sidharth V.; Chen, Jianzhu; Eisen, Herman N.; Langer, Robert

    2004-06-01

    Current nonviral genetic vaccine systems are less effective than viral vaccines, particularly in cancer systems where epitopes can be weakly immunogenic and antigen-presenting cell processing and presentation to T cells is down-regulated. A promising nonviral delivery method for genetic vaccines involves microencapsulation of antigen-encoding DNA, because such particles protect plasmid payloads and target them to phagocytic antigen-presenting cells. However, conventional microparticle formulations composed of poly lactic-co-glycolic acid take too long to release encapsulated payload and fail to induce high levels of target gene expression. Here, we describe a microparticle-based DNA delivery system composed of a degradable, pH-sensitive poly- amino ester and poly lactic-co-glycolic acid. These formulations generate an increase of 3-5 orders of magnitude in transfection efficiency and are potent activators of dendritic cells in vitro. When used as vaccines in vivo, these microparticle formulations, unlike conventional formulations, induce antigen-specific rejection of transplanted syngenic tumor cells.

  1. Antibody Immunity Induced by H7N9 Avian Influenza Vaccines: Evaluation Criteria, Affecting Factors, and Implications for Rational Vaccine Design

    PubMed Central

    Hu, Zenglei; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    Severe H7N9 avian influenza virus (AIV) infections in humans have public health authorities around the world on high alert for the potential development of a human influenza pandemic. Currently, the newly-emerged highly pathogenic avian influenza A (H7N9) virus poses a dual challenge for public health and poultry industry. Numerous H7N9 vaccine candidates have been generated using various platforms. Immunization trials in animals and humans showed that H7N9 vaccines are apparently poorly immunogenic because they induced low hemagglutination inhibition and virus neutralizing antibody titers. However, H7N9 vaccines elicit comparable levels of total hemagglutinin (HA)-reactive IgG antibody as the seasonal influenza vaccines, suggesting H7N9 vaccines are as immunogenic as their seasonal counterparts. A large fraction of overall IgG antibody is non-neutralizing antibody and they target unrecognized epitopes outside of the traditional antigenic sites in HA. Further, the Treg epitope identified in H7 HA may at least partially contribute to regulation of antibody immunity. Here, we review the latest advances for the development of H7N9 vaccines and discuss the influence of serological criteria on evaluation of immunogenicity of H7N9 vaccines. Next, we discuss factors affecting antibody immunity induced by H7N9 vaccines, including the change in antigenic epitopes in HA and the presence of the Treg epitope. Last, we present our perspectives for the unique features of antibody immunity of H7N9 vaccines and propose some future directions to improve or modify antibody response induced by H7N9 vaccines. This perspective would provide critical implications for rational design of H7N9 vaccines for human and veterinary use. PMID:29018438

  2. The impact of size on particulate vaccine adjuvants.

    PubMed

    Shah, Ruchi R; O'Hagan, Derek T; Amiji, Mansoor M; Brito, Luis A

    2014-12-01

    Particulate adjuvants have been successful at inducing increased immune responses against many poorly immunogenic antigens. However, the mechanism of action of these adjuvants often remains unclear. As more potential vaccine targets are emerging, it is becoming necessary to broaden our knowledge on the factors involved in generating potent immune responses to recombinant antigens with adjuvants. While composition of adjuvants is integral in defining the overall performance of an adjuvant, some physical parameters such as particle size, surface charge and surface modification may also contribute to the potency. In this review, we will try to highlight the role of particle size in controlling the immune responses to adjuvanted vaccines, with a focus on insoluble aluminum salts, oil-in-water emulsions, polymeric particles and liposomes.

  3. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8⁺ T Cells that Protect Against Subcutaneous B16-OVA Melanoma.

    PubMed

    Stark, Felicity C; McCluskie, Michael J; Krishnan, Lakshmi

    2016-11-17

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8⁺ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8⁺ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8⁺ T cell response of up to 45% of all circulating CD8⁺ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8⁺ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8⁺ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62 low ) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8⁺ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection.

  4. Comparative effects of carrier proteins on vaccine-induced immune response.

    PubMed

    Knuf, Markus; Kowalzik, Frank; Kieninger, Dorothee

    2011-07-12

    The efficacy of vaccines against major encapsulated bacterial pathogens -Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae type b (Hib) - has been significantly enhanced by conjugating the respective polysaccharides with different carrier proteins: diphtheria toxoid; non-toxic cross-reactive material of diphtheria toxin(197), tetanus toxoid, N. meningitidis outer membrane protein, and non-typeable H. influenzae-derived protein D. Hib, meningococcal, and pneumococcal conjugate vaccines have shown good safety and immunogenicity profiles regardless of the carrier protein used, although data are conflicting as to which carrier protein is the most immunogenic. Coadministration of conjugate vaccines bearing the same carrier protein has the potential for inducing either positive or negative effects on vaccine immunogenicity (immune interference). Clinical studies on the coadministration of conjugate vaccines reveal conflicting data with respect to immune interference and vaccine efficacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Measles vaccination before the measles-mumps-rubella vaccine.

    PubMed

    Hendriks, Jan; Blume, Stuart

    2013-08-01

    At the beginning of the 1960s, it was clear that a vaccine against measles would soon be available. Although measles was (and remains) a killer disease in the developing world, in the United States and Western Europe this was no longer so. Many parents and many medical practitioners considered measles an inevitable stage of a child's development. Debating the desirability of measles immunization, public health experts reasoned differently. In the United States, introduction of the vaccine fit well with Kennedy's and Johnson's administrations' political commitments. European policymakers proceeded cautiously, concerned about the acceptability of existing vaccination programs. In Sweden and the Netherlands, recent experience in controlling polio led researchers to prefer an inactivated virus vaccine. Although in the early 1970s attempts to develop a sufficiently potent inactivated vaccine were abandoned, we have argued that the debates and initiatives of the time during the vaccine's early history merit reflection in today's era of standardization and global markets.

  6. Replicating Single-Cycle Adenovirus Vectors Generate Amplified Influenza Vaccine Responses.

    PubMed

    Crosby, Catherine M; Matchett, William E; Anguiano-Zarate, Stephanie S; Parks, Christopher A; Weaver, Eric A; Pease, Larry R; Webby, Richard J; Barry, Michael A

    2017-01-15

    Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent

  7. Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice.

    PubMed

    Cao, Weiping; Kim, Jin Hyang; Reber, Adrian J; Hoelscher, Mary; Belser, Jessica A; Lu, Xiuhua; Katz, Jacqueline M; Gangappa, Shivaprakash; Plante, Martin; Burt, David S; Sambhara, Suryaprakash

    2017-06-05

    Sporadic, yet frequent human infections with avian H5N1 influenza A viruses continue to pose a potential pandemic threat. Poor immunogenicity of unadjuvanted H5N1 vaccines warrants developing novel adjuvants and formulations as well as alternate delivery systems to improve their immunogenicity and efficacy. Here, we show that Protollin, a nasal adjuvant composed of Neisseria meningitides outer membrane proteins non-covalently linked to Shigella flexneri 2a lipopolysaccharide, is a potent nasal adjuvant for an inactivated split virion H5N1 clade 1 A/Viet Nam1203/2004 (A/VN/1203/04) vaccine in a mouse model. Protollin-adjuvanted vaccines elicited enhanced serum protective hemagglutination inhibition titers, mucosal IgA responses, and H5N1-specific cell-mediated immunity that resulted in complete protection against a lethal challenge with a homologous virus as well as a heterologous clade 2 virus A/Indonesia/05/2005 (A/IN/05/05). Detailed analysis of adaptive immunity revealed that Protollin increased the frequency of lymphoid- as well as local tissue-resident antibody-secreting cells, local germinal center reaction of B cells, broad-spectrum of CD4 T cell response. Our findings suggest that nasal delivery of H5N1 vaccine with Protollin adjuvant can overcome the poor immunogenicity of H5N1 vaccines, induce both cellular and humoral immune responses, enhance protection against challenge with clade 1 and clade 2 H5N1 viruses and achieve significant antigen dose-sparing. Copyright © 2017. Published by Elsevier Ltd.

  8. Development of a bivalent conjugate vaccine candidate against malaria transmission and typhoid fever.

    PubMed

    An, So Jung; Scaria, Puthupparampil V; Chen, Beth; Barnafo, Emma; Muratova, Olga; Anderson, Charles; Lambert, Lynn; Chae, Myung Hwa; Yang, Jae Seung; Duffy, Patrick E

    2018-05-17

    Immune responses to poorly immunogenic antigens, such as polysaccharides, can be enhanced by conjugation to carriers. Our previous studies indicate that conjugation to Vi polysaccharide of Salmonella Typhi may also enhance immunogenicity of some protein carriers. We therefore explored the possibility of generating a bivalent vaccine against Plasmodium falciparum malaria and typhoid fever, which are co-endemic in many parts of the world, by conjugating Vi polysaccharide, an approved antigen in typhoid vaccine, to Pfs25, a malaria transmission blocking vaccine antigen in clinical trials. Vi-Pfs25 conjugates induced strong immune responses against both Vi and Pfs25 in mice, whereas the unconjugated antigens are poorly immunogenic. Functional assays of immune sera revealed potent transmission blocking activity mediated by anti-Pfs25 antibody and serum bactericidal activity due to anti-Vi antibody. Pfs25 conjugation to Vi modified the IgG isotype distribution of antisera, inducing a Th2 polarized immune response against Vi antigen. This conjugate may be further developed as a bivalent vaccine to concurrently target malaria and typhoid fever. Copyright © 2018. Published by Elsevier Ltd.

  9. HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques

    PubMed Central

    Williams, Wilton B.; Saunders, Kevin O.; Seaton, Kelly E.; Wiehe, Kevin J.; Vandergrift, Nathan; Von Holle, Tarra A.; Trama, Ashley M.; Parks, Robert J.; Luo, Kan; Gurley, Thaddeus C.; Kepler, Thomas B.; Marshall, Dawn J.; Montefiori, David C.; Sutherland, Laura L.; Alam, Munir S.; Whitesides, John F.; Bowman, Cindy M.; Permar, Sallie R.; Graham, Barney S.; Mascola, John R.; Seed, Patrick C.; Van Rompay, Koen K. A.; Tomaras, Georgia D.; Moody, M. Anthony

    2017-01-01

    ABSTRACT Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response. IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41

  10. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier.more » Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.« less

  11. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity.

    PubMed

    Allen, Aideen C; Mills, Kingston H G

    2014-10-01

    Bordetella pertussis is a Gram-negative bacterium that causes the severe and sometimes lethal respiratory disease whooping cough in infants and children. There has been a recent resurgence in the number of cases of pertussis in several countries with high vaccine coverage. This has been linked with waning or ineffective immunity induced by current acellular pertussis vaccines. These acellular pertussis vaccines are formulated with alum as the adjuvant, which promotes strong antibody responses but is less effective at inducing Th1-type responses crucial for effective bacterial clearance. Studies in animal models have demonstrated that replacing alum with alternative adjuvants, such as toll-like receptor agonists, can promote more robust cell-mediated immunity and confer a high level of protection against infection following respiratory challenge.

  12. Vaccine-Induced Env V1–V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination

    PubMed Central

    Yates, Nicole L.; Liao, Hua-Xin; Fong, Youyi; deCamp, Allan; Vandergrift, Nathan A.; Williams, William T.; Alam, S. Munir; Ferrari, Guido; Yang, Zhi-yong; Seaton, Kelly E.; Berman, Phillip W.; Alpert, Michael D.; Evans, David T.; O’Connell, Robert J.; Francis, Donald; Sinangil, Faruk; Lee, Carter; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Tartaglia, James; Pinter, Abraham; Zolla-Pazner, Susan; Gilbert, Peter B.; Nabel, Gary J.; Michael, Nelson L.; Kim, Jerome H.; Montefiori, David C.; Haynes, Barton F.; Tomaras, Georgia D.

    2014-01-01

    HIV-1–specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1–specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1–specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials. PMID:24648342

  13. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    PubMed Central

    Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro

    2015-01-01

    The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ 40, and Aβ 42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ 40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies. PMID:26539559

  14. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs.

    PubMed

    Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro

    2015-01-01

    The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ 40, and Aβ 42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ 40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  15. Oral Vaccination with Lipid-Formulated BCG Induces a Long-lived, Multifunctional CD4+ T Cell Memory Immune Response

    PubMed Central

    Ancelet, Lindsay R.; Aldwell, Frank E.; Rich, Fenella J.; Kirman, Joanna R.

    2012-01-01

    Oral delivery of BCG in a lipid formulation (Liporale™-BCG) targets delivery of viable bacilli to the mesenteric lymph nodes and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the effector and memory immune response induced by Liporale™-BCG vaccination is unknown. Therefore, we compared the effector and memory CD4+ T cell response in the spleen and lungs of mice vaccinated with Liporale™-BCG to the response induced by subcutaneous BCG vaccination. Liporale™-BCG vaccination induced a long-lived CD4+ T cell response, evident by the detection of effector CD4+ T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific CD4+ T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, Liporale™-BCG vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4+ T cells in the lungs capable of producing IFNγ and the number of multifunctional CD4+ T cells in the lungs at 30 weeks post vaccination. These results demonstrate that orally delivered Liporale™-BCG vaccine induces a long-lived multifunctional immune response, and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines. PMID:23049885

  16. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    PubMed

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Tetanus toxoid and CCL3 improve DC vaccines in mice and glioblastoma patients

    PubMed Central

    Mitchell, Duane A.; Batich, Kristen A.; Gunn, Michael D.; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K.; Congdon, Kendra L.; Reap, Elizabeth A.; Archer, Gary E.; Desjardins, Annick; Friedman, Allan H.; Friedman, Henry S.; Herndon, James E.; Coan, April; McLendon, Roger E.; Reardon, David A.; Vredenburgh, James J.; Bigner, Darell D.; Sampson, John H.

    2015-01-01

    Upon stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses1. As such, autologous DCs generated ex vivo have been pulsed with tumor antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers2–4 including glioblastoma (GBM),5–7 the factors dictating DC vaccine efficacy remain poorly understood. Here we demonstrate that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumor antigen-specific DCs. To assess the impact of vaccine site pre-conditioning in humans, we randomized patients with GBM to pre-conditioning with mature DCs8 or Td unilaterally before bilateral vaccination with Cytomegalovirus pp65 RNA-pulsed DCs. We and other laboratories have shown that pp65 is expressed in > 90% of GBM specimens but not surrounding normal brain9–12, providing an unparalleled opportunity to subvert this viral protein as a tumor-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumor growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve antitumor immunotherapy. PMID:25762141

  18. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  19. [Experimental study on TCRbeta idiotypic antigenic determinants DNA vaccine to induce anti-lymphoma antibodies].

    PubMed

    Zhang, Yeping; Zhu, Ping; Shi, Yongjin; Liu, Jihua; Pu, Dingfang; Cao, Xianghong; Zhu, Qiang; Wang, Yijia; Ma, Mingxin; Yu, Jiren

    2002-02-01

    To investigate the anti-human CEM lymphoma cell activities induced by TCR idiotypic DNA vaccine containing different antigen determinants in BALB/c mice. The specific rearranged gene fragment encoding TCRVbeta region of CEM cell line was obtained by RT-PCR technique. The PCR product was cloned into eukaryocytic expression vector pcDNA3, which was used as DNA vaccine and template for PCR amplifying different antigen determinant. Gene fragments encoding different antigen determinant were amplified and cloned into pcDNA3, separately. The experimental mice were immunized by intramuscular injection of the DNA vaccines. The specific anti-idiotype antibodies were detected by indirect immunofluorescence assay. TCRbetaV of CEM cell line contains five antigen determinants. Specific anti-idiotype antibody was detected in all of the six mice immunized with DNA vaccine containing all the five determinants (the highest titer was 1:480). Although the antibody could also be detected in four of the six mice immunized with DNA vaccine containing four of the five antigen determinants, the antibody titer was lower (the highest titer was 1:80). DNA vaccine containing two of the five determinants could not induce the specific antibody. The idiotypic DNA vaccine containing the whole TCRbetaV five antigen determinants could induce the specific anti-lymphoma idiotypic antibody in BALB/c mice.

  20. Serological responses in humans to the smallpox vaccine LC16m8

    PubMed Central

    Johnson, Benjamin F.; Kanatani, Yasuhiro; Fujii, Tatsuya; Saito, Tomoya; Yokote, Hiroyuki

    2011-01-01

    In response to potential bioterrorism with smallpox, members of the Japanese Self-Defense Forces were vaccinated with vaccinia virus (VACV) strain LC16m8, an attenuated smallpox vaccine derived from VACV strain Lister. The serological response induced by LC16m8 to four virion-surface proteins and the intracellular mature virus (IMV) and extracellular enveloped virus (EEV) was investigated. LC16m8 induced antibody response against the IMV protein A27 and the EEV protein A56. LC16m8 also induced IMV-neutralizing antibodies, but unlike the VACV strain Lister, did not induce either EEV-neutralizing antibody or antibody to EEV protein B5, except after revaccination. Given that B5 is the only target for EEV-neutralizing antibody and that neutralization of both IMV and EEV give optimal protection against orthopoxvirus challenge, these data suggest that immunity induced by LC16m8 might be less potent than that deriving from strain Lister. This potential disadvantage should be balanced against the advantage of the greater safety of LC16m8. PMID:21715598

  1. Orally administered adenoviral-based vaccine induces respiratory mucosal memory and protection against RSV infection in cotton rats.

    PubMed

    Joyce, Christina; Scallan, Ciaran D; Mateo, Roberto; Belshe, Robert B; Tucker, Sean N; Moore, Anne C

    2018-06-09

    A vaccine against Respiratory Syncytial Virus (RSV) is a major unmet need to prevent the significant morbidity and mortality that it causes in society. In addition to efficacy, such a vaccine must not induce adverse events, as previously occurred with a formalin-inactivated vaccine (FI-RSV). In this study, the safety, immunogenicity and efficacy of a molecularly adjuvanted adenovirus serotype 5 based RSV vaccine encoding the fusion (F) protein (Ad-RSVF) is demonstrated in cotton rats. Protective immunity to RSV was induced by Ad-RSVF when administered by an oral route as well as by intranasal and intramuscular routes. Compared to FI-RSV, the Ad-RSVF vaccine induced significantly greater neutralizing antibody responses and protection against RSV infection. Significantly, oral or intranasal immunization each induced protective multi-functional effector and memory B cell responses in the respiratory tract. This study uniquely demonstrates the capacity of an orally administered adenovirus vaccine to induce protective immunity in the respiratory tract against RSV in a pre-clinical model and supports further clinical development of this oral Ad-RSVF vaccine strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

    PubMed

    Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn

    2009-08-01

    Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.

  3. Comparison of homologous and heterologous prime-boost vaccine approaches using Modified Vaccinia Ankara and soluble protein to induce neutralizing antibodies by the human cytomegalovirus pentamer complex in mice.

    PubMed

    Chiuppesi, Flavia; Wussow, Felix; Scharf, Louise; Contreras, Heidi; Gao, Han; Meng, Zhuo; Nguyen, Jenny; Barry, Peter A; Bjorkman, Pamela J; Diamond, Don J

    2017-01-01

    Since neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) pentamer complex (PC) potently block HCMV host cell entry, anti-PC NAb induction is thought to be important for a vaccine formulation to prevent HCMV infection. By developing a vaccine strategy based on soluble PC protein and using a previously generated Modified Vaccinia Ankara vector co-expressing all five PC subunits (MVA-PC), we compared HCMV NAb induction by homologous immunization using prime-boost vaccine regimen employing only PC protein or MVA-PC and heterologous immunization using prime-boost combinations of PC protein and MVA-PC. Utilizing a recently isolated anti-PC NAb, we produced highly pure soluble PC protein that displayed conformational and linear neutralizing epitopes, interfered with HCMV entry, and was recognized by antibodies induced by HCMV during natural infection. Mice vaccinated by different immunization routes with the purified PC protein in combination with a clinically approved adjuvant formulation elicited high-titer and durable HCMV NAb. While MVA-PC and soluble PC protein either alone or in combination elicited robust HCMV NAb, significantly different potencies of these vaccine approaches were observed in dependence on immunization schedule. Using only two immunizations, vaccination with MVA-PC alone or prime-boost combinations of MVA-PC and PC protein was significantly more effective in stimulating HCMV NAb than immunization with PC protein alone. In contrast, with three immunizations, NAb induced by soluble PC protein either alone or combined with two boosts of MVA-PC increased to levels that exceeded NAb titer stimulated by MVA-PC alone. These results provide insights into the potency of soluble protein and MVA to elicit NAb by the HCMV PC via homologous and heterologous prime-boost immunization, which may contribute to develop clinically deployable vaccine strategies to prevent HCMV infection.

  4. The early cellular signatures of protective immunity induced by live viral vaccination.

    PubMed

    Kohler, Siegfried; Bethke, Nicole; Böthe, Matthias; Sommerick, Sophie; Frentsch, Marco; Romagnani, Chiara; Niedrig, Matthias; Thiel, Andreas

    2012-09-01

    Here, we have used primary vaccination of healthy donors with attenuated live yellow fever virus 17D (YFV-17D) as a model to study the generation of protective immunity. In short intervals after vaccination, we analyzed the induction of YFV-17D specific T- and B-cell immunity, bystander activation, dendritic cell subsets, changes in serum cytokine levels, and YFV-17D-specific antibodies. We show activation of innate immunity and a concomitant decline of numbers of peripheral blood T and B cells. An early peak of antigen-specific T cells at day 2, followed by mobilization of innate immune cells, preceded the development of maximal adaptive immunity against YFV-17D at day 14 after vaccination. Interestingly, potent adaptive immunity as measured by high titers of neutralizing YFV-17D-specific antibodies, correlated with early activation and recruitment of YFV-17D-specific CD4(+) T cells and higher levels of sIL-6R. Thus our data might provide new insights into the interplay of innate and adaptive immunity for the induction of protective immunity. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators.

    PubMed

    Chauhan, Nidhi; Tiwari, Sukirti; Iype, Tessy; Jain, Utkarsh

    2017-05-01

    Development of efficient and cost effective vaccines have been recognized as the primary concern to improve the overall healthcare in a country. In order to achieve this goal, more improved and powerful adjuvants need to be developed. Lacking in the self-adjuvanting immuno-modulatory constituents, vaccines exhibit lower immunogenicity. Combining potent adjuvants with vaccines is the most appropriate method to enhance the efficacy of the vaccines. Hence, this review is focussed on the most potent adjuvants for the formulation of vaccines. Areas covered: This review focuses on Oil-based emulsions, Mineral compounds, Liposomes, Bacterial products, ISCOMs and most recently used nanomaterials as adjuvants for enhancing the antigenicity of vaccines. Furthermore, this review explains the immunological response elicited by various particles. Moreover, case studies are incorporated providing an in depth analyses of various adjuvant-containing vaccines which are currently used. Expert commentary: Enhanced fundamental knowledge about the adjuvants and their immuno-stimulatory capabilities and delivery mechanisms will facilitate the rational designing of prophylactic vaccines with better efficacy.

  6. Potent Neutralization of Vaccinia Virus by Divergent Murine Antibodies Targeting a Common Site of Vulnerability in L1 Protein

    PubMed Central

    Kaever, Thomas; Meng, Xiangzhi; Matho, Michael H.; Schlossman, Andrew; Li, Sheng; Sela-Culang, Inbal; Ofran, Yanay; Buller, Mark; Crump, Ryan W.; Parker, Scott; Frazier, April; Crotty, Shane; Zajonc, Dirk M.; Peters, Bjoern

    2014-01-01

    ABSTRACT Vaccinia virus (VACV) L1 is an important target for viral neutralization and has been included in multicomponent DNA or protein vaccines against orthopoxviruses. To further understand the protective mechanism of the anti-L1 antibodies, we generated five murine anti-L1 monoclonal antibodies (MAbs), which clustered into 3 distinct epitope groups. While two groups of anti-L1 failed to neutralize, one group of 3 MAbs potently neutralized VACV in an isotype- and complement-independent manner. This is in contrast to neutralizing antibodies against major VACV envelope proteins, such as H3, D8, or A27, which failed to completely neutralize VACV unless the antibodies are of complement-fixing isotypes and complement is present. Compared to nonneutralizing anti-L1 MAbs, the neutralization antibodies bound to the recombinant L1 protein with a significantly higher affinity and also could bind to virions. By using a variety of techniques, including the isolation of neutralization escape mutants, hydrogen/deuterium exchange mass spectrometry, and X-ray crystallography, the epitope of the neutralizing antibodies was mapped to a conformational epitope with Asp35 as the key residue. This epitope is similar to the epitope of 7D11, a previously described potent VACV neutralizing antibody. The epitope was recognized mainly by CDR1 and CDR2 of the heavy chain, which are highly conserved among antibodies recognizing the epitope. These antibodies, however, had divergent light-chain and heavy-chain CDR3 sequences. Our study demonstrates that the conformational L1 epitope with Asp35 is a common site of vulnerability for potent neutralization by a divergent group of antibodies. IMPORTANCE Vaccinia virus, the live vaccine for smallpox, is one of the most successful vaccines in human history, but it presents a level of risk that has become unacceptable for the current population. Studying the immune protection mechanism of smallpox vaccine is important for understanding the basic

  7. HIV-specific Th2 and Th17 responses predict HIV vaccine protection efficacy

    PubMed Central

    Sauce, Delphine; Gorochov, Guy; Larsen, Martin

    2016-01-01

    Understanding the factors that delineate the efficacy of T-cell responses towards pathogens is crucial for our ability to develop potent therapies and vaccines against infectious diseases, such as HIV. Here we show that a recently developed analytical tool, the polyfunctionality index (PI), not only enables prediction of protection after vaccination against HIV, but also allows identification of the immunological pathways involved. Our data suggest that induction of a synergistic network of CD4+ T-cell subsets is implicated in HIV-protection. Accordingly, we provide evidence that vaccine-induced protection is associated with CD40L expressing Th2 cells and IL-2 secreting Th17 cells. In conclusion, we describe a novel approach that is widely applicable and readily interpretable in a biological and clinical context. This approach could greatly impact our fundamental understanding of T-cell immunity as well as the search for effective vaccines. PMID:27324186

  8. Can mumps vaccine induce remission in recurrent respiratory papilloma?

    PubMed

    Pashley, Nigel R T

    2002-07-01

    To describe our experience using laser excision and locally injected mumps vaccine to induce remission in patients with recurrent respiratory papilloma (RRP). Tertiary care regional medical center. Initially, 11 children with RRP treated in a pilot study with laser excision at regular intervals for at least a year without adjuvant therapy; later, a series of 18 children and 20 adults with RRP, some of whom had used various adjuvant therapy with interval laser excision. Both patient groups continued their same interval laser excision with the same or similar laser, same clinical setting, and same surgeon. Locally injected mumps vaccine was then administered into the excision site after each laser removal of papilloma. Larynx and trachea were microphotographed with each treatment. Two consecutive disease-free intervals and a follow-up of at least 1 year were required criteria for remission. In the pilot study, remission was induced in 9 (82%) of 11 patients by 1 to 10 injections, with follow-up of 5 to 19 years. In the subsequent series, remission was induced in 29 (76%) of 38 patients by 4 to 26 injections, and follow-up was 2 to 5 years. Combined with serial laser excision, mumps vaccine positively influences induction of remission in children with RRP. The mechanisms of this effect are unclear, but the treatment is readily available, inexpensive, and has a low risk of adverse effects.

  9. Dendritic cell-based vaccines for pancreatic cancer and melanoma.

    PubMed

    Mulé, James J

    2009-09-01

    Based on leads from our recent animal studies, we are embarking on a series of new clinical trials to evaluate potential improvements in dendritic cell (DC)-based vaccines for melanoma and pancreatic cancer. The first new strategy involves the use of a powerful chemokine (denoted secondary lymphoid tissue chemokine; SLC/CCL-21), which can both create functioning lymph node-like structures at sites of vaccination with tumor-loaded DCs and dramatically enhance vaccine efficacy in animal tumor models. Using this strategy, we are embarking on a clinical trial in melanoma patients with the intent to create functioning, ectopic, lymph node-like structures to enhance host antitumor immunity. The second strategy, in the setting of pancreatic cancer, involves a gene therapy and immunotherapy combination of a locally administered tumor necrosis factor-alpha gene vector followed by radiation (to induce tumor apoptosis/necrosis) and intratumorally administered monocyte-derived DCs (to uptake and present antigens from dying tumor cells to elicit potent, systemic, antitumor immunity).

  10. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.

    PubMed

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H

    2015-03-19

    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

  11. Adjuvants for Vaccines to Drugs of Abuse and Addiction

    PubMed Central

    Alving, Carl R.; Matyas, Gary R.; Torres, Oscar; Jalah, Rashmi; Beck, Zoltan

    2015-01-01

    Immunotherapeutic vaccines to drugs of abuse, including nicotine, cocaine, heroin, oxycodone, methamphetamine, and others are being developed. The theoretical basis of such vaccines is to induce antibodies that sequester the drug in the blood in the form of antibody-bound drug that cannot cross the blood brain barrier, thereby preventing psychoactive effects. Because the drugs are haptens a successful vaccine relies on development of appropriate hapten-protein carrier conjugates. However, because induction of high and prolonged levels of antibodies is required for an effective vaccine, and because injection of T-independent haptenic drugs of abuse does not induce memory recall responses, the role of adjuvants during immunization plays a critical role. As reviewed herein, preclinical studies often use strong adjuvants such as complete and incomplete Freund's adjuvant and others that cannot be, or in the case of many newer adjuvants, have never been, employed in humans. Balanced against this, the only adjuvant that has been included in candidate vaccines in human clinical trials to nicotine and cocaine has been aluminum hydroxide gel. While aluminum salts have been widely utilized worldwide in numerous licensed vaccines, the experience with human responses to aluminum salt-adjuvanted vaccines to haptenic drugs of abuse has suggested that the immune responses are too weak to allow development of a successful vaccine. What is needed is an adjuvant or combination of adjuvants that are safe, potent, widely available, easily manufactured, and cost-effective. Based on our review of the field we recommend the following adjuvant combinations either for research or for product development for human use: aluminum salt with adsorbed monophosphoryl lipid A (MPLA); liposomes containing MPLA [L(MPLA)]; L(MPLA) adsorbed to aluminum salt; oil-in-water emulsion; or oil-in-water emulsion containing MPLA. PMID:25111169

  12. Dissecting polyclonal vaccine-induced humoral immunity against HIV using Systems Serology

    PubMed Central

    Chung, Amy W.; Kumar, Manu P.; Arnold, Kelly B.; Yu, Wen Han; Schoen, Matthew K.; Dunphy, Laura J.; Suscovich, Todd J.; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E.; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E.; McElrath, M. Juliana; Schuitemaker, Hanneke; Pau, Maria G.; Baden, Lindsey R.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.; Lauffenburger, Douglas A.; Alter, Galit

    2017-01-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc-functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine-trials. Each vaccine regimen induced a unique humoral “Fc-fingerprint”. Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  13. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Li, Yuhuan; Jiao, Jun; Hu, Hong-Ming

    2011-10-01

    Therapeutic cancer vaccination is an attractive strategy because it induces T cells of the immune system to recognize and kill tumour cells in cancer patients. However, it remains difficult to generate large numbers of T cells that can recognize the antigens on cancer cells using conventional vaccine carrier systems. Here we show that α-Al2O3 nanoparticles can act as an antigen carrier to reduce the amount of antigen required to activate T cells in vitro and in vivo. We found that α-Al2O3 nanoparticles delivered antigens to autophagosomes in dendritic cells, which then presented the antigens to T cells through autophagy. Immunization of mice with α-Al2O3 nanoparticles that are conjugated to either a model tumour antigen or autophagosomes derived from tumour cells resulted in tumour regression. These results suggest that α-Al2O3 nanoparticles may be a promising adjuvant in the development of therapeutic cancer vaccines.

  14. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection

    PubMed Central

    Niu, Qingli; Hou, Wei; Churchyard, Gavin; Nitayaphan, Sorachai; Pitisuthithum, Punnee; Rerks-Ngarm, Supachai; Franchini, Genoveffa

    2018-01-01

    The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination. PMID:29474461

  15. Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine

    PubMed Central

    Calzas, Cynthia; Shiao, Tze Chieh; Neubauer, Axel; Kempker, Jennifer; Roy, René; Gottschalk, Marcelo

    2016-01-01

    Streptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo. In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 μg of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections. PMID:27113360

  16. The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine.

    PubMed

    Zhou, Xianfeng; Zhang, Xizhen; Yu, Xianghui; Zha, Xiao; Fu, Qiuan; Liu, Bin; Wang, Xueyun; Chen, Yan; Chen, Yue; Shan, Yaming; Jin, Yinghua; Wu, Yongge; Liu, Junqiu; Kong, Wei; Shen, Jiacong

    2008-01-01

    Nonviral gene delivery systems based on conventional high molecular weight chitosans are efficient as DNA vaccine delivery system, but have poor physical properties such as aggregated shapes, low solubility at neutral pH, high viscosity at concentrations used for in vivo delivery and a slow onset of action. Furthermore, Chitosan oligomers shorter than 14 monomers units were recently found to form only weak complexes with DNA, resulting in physically unstable polyplexes in vitro and in vivo. Here, low molecular weight chitosans with an average molecular mass of 6kDa (Chito6) have been covalently attached to gold nanoparticles (GNPs), and the potency of the resulting Chito6-GNPs conjugates as vectors for the delivery of plasmid DNA has been investigated in vitro and in vivo. After delivery by intramuscular immunization in BALB/c mice, the Chito6-GNPs conjugates induced an enhanced serum antibody response 10 times more potent than naked DNA vaccine. Additionally, in contrast to naked DNA, the Chito6-GNPs conjugates induced potent cytotoxic T lymphocyte responses at a low dose.

  17. Infectious bovine rhinotracheitis: study on the experimentally induced disease and its prevention using an inactivated, adjuvanted vaccine.

    PubMed

    Soulebot, J P; Guillemin, F; Brun, A; Dubourget, P; Espinasse, J; Terre, J

    1982-01-01

    Experimentally induced IBR was studied in calves. Intranasal challenge enabled reproducible results to be obtained, both from qualitative (clinical aspect) and quantitative points of view (virus excretion, temperature); local and general immunity were also evaluated. This challenge method is useful when studying IBR vaccines. The disease was also experimentally induced by putting healthy animals into contact with diffusor calves. A single injection of inactivated vaccine in oily adjuvant already conferred good protection; it was 100% successful against the experimentally induced disease when administered two times at a 7 or 14 day interval. Immunity obtained was long-lasting and even persisted up to one year. Therefore, this vaccine is advised for vaccination in both contaminated and high risk areas. Results obtained for both safety and potency suggest that this killed vaccine should be used rather than live vaccines.

  18. HIV-1 vaccine strategies utilizing viral vectors including antigen- displayed inoviral vectors.

    PubMed

    Hassapis, Kyriakos A; Kostrikis, Leondios G

    2013-12-01

    Antigen-presenting viral vectors have been extensively used as vehicles for the presentation of antigens to the immune system in numerous vaccine strategies. Particularly in HIV vaccine development efforts, two main viral vectors have been used as antigen carriers: (a) live attenuated vectors and (b) virus-like particles (VLPs); the former, although highly effective in animal studies, cannot be clinically tested in humans due to safety concerns and the latter have failed to induce broadly neutralizing anti-HIV antibodies. For more than two decades, Inoviruses (non-lytic bacterial phages) have also been utilized as antigen carriers in several vaccine studies. Inoviral vectors are important antigen-carriers in vaccine development due to their ability to present an antigen on their outer architecture in many copies and to their natural high immunogenicity. Numerous fundamental studies have been conducted, which have established the unique properties of antigen-displayed inoviral vectors in HIV vaccine efforts. The recent isolation of new, potent anti-HIV broadly neutralizing monoclonal antibodies provides a new momentum in this emerging technology.

  19. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    PubMed

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  20. 42 CFR 71.3 - Designation of yellow fever vaccination centers; Validation stamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... safe, potent, and pure yellow fever vaccine. Medical facilities of Federal agencies are authorized to obtain yellow fever vaccine without being designated as a yellow fever vaccination center by the Director..., storage, and administration of yellow fever vaccine. If a designated center fails to comply with such...

  1. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine

    PubMed Central

    Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.

    2012-01-01

    Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic anti-tumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589

  2. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP

    PubMed Central

    Rampling, Tommy; Ewer, Katie J.; Bowyer, Georgina; Bliss, Carly M.; Edwards, Nick J.; Wright, Danny; Payne, Ruth O.; Venkatraman, Navin; de Barra, Eoghan; Snudden, Claudia M.; Poulton, Ian D.; de Graaf, Hans; Sukhtankar, Priya; Roberts, Rachel; Ivinson, Karen; Weltzin, Rich; Rajkumar, Bebi-Yassin; Wille-Reece, Ulrike; Lee, Cynthia K.; Ockenhouse, Christian F.; Sinden, Robert E.; Gerry, Stephen; Lawrie, Alison M.; Vekemans, Johan; Morelle, Danielle; Lievens, Marc; Ballou, Ripley W.; Cooke, Graham S.; Faust, Saul N.; Gilbert, Sarah; Hill, Adrian V. S.

    2016-01-01

    Background. The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Method. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara–vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. Results. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. Conclusions. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. Clinical Trials Registration. NCT01883609. PMID:27307573

  3. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP.

    PubMed

    Rampling, Tommy; Ewer, Katie J; Bowyer, Georgina; Bliss, Carly M; Edwards, Nick J; Wright, Danny; Payne, Ruth O; Venkatraman, Navin; de Barra, Eoghan; Snudden, Claudia M; Poulton, Ian D; de Graaf, Hans; Sukhtankar, Priya; Roberts, Rachel; Ivinson, Karen; Weltzin, Rich; Rajkumar, Bebi-Yassin; Wille-Reece, Ulrike; Lee, Cynthia K; Ockenhouse, Christian F; Sinden, Robert E; Gerry, Stephen; Lawrie, Alison M; Vekemans, Johan; Morelle, Danielle; Lievens, Marc; Ballou, Ripley W; Cooke, Graham S; Faust, Saul N; Gilbert, Sarah; Hill, Adrian V S

    2016-09-01

    The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. NCT01883609. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants

    PubMed Central

    Smith, Alyson J.; Li, Yufeng; Bazin, Hélène G.; St-Jean, Julien R.; Larocque, Daniel; Evans, Jay T.; Baldridge, Jory R.

    2016-01-01

    Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3+/CD8+ T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. PMID:27402566

  5. The impact of assumptions regarding vaccine-induced immunity on the public health and cost-effectiveness of hepatitis A vaccination: Is one dose sufficient?

    PubMed

    Curran, Desmond; de Ridder, Marc; Van Effelterre, Thierry

    2016-11-01

    Hepatitis A vaccination stimulates memory cells to produce an anamnestic response. In this study, we used a mathematical model to examine how long-term immune memory might convey additional protection against clinical/icteric infections. Dynamic and decision models were used to estimate the expected number of cases, and the costs and quality-adjusted life-years (QALYs), respectively. Several scenarios were explored by assuming: (1) varying duration of vaccine-induced immune memory, (2) and/or varying levels of vaccine-induced immune memory protection (IMP), (3) and/or varying levels of infectiousness in vaccinated individuals with IMP. The base case analysis assumed a time horizon of 25 y (2012 - 2036), with additional analyses over 50 and 75 y. The analyses were conducted in the Mexican public health system perspective. In the base case that assumed no vaccine-induced IMP, the 2-dose hepatitis A vaccination strategy was cost-effective compared with the 1-dose strategy over the 3 time horizons. However, it was not cost-effective if we assumed additional IMP durations of at least 10 y in the 25-y horizon. In the 50- and 75-y horizons, the 2-dose strategy was always cost-effective, except when 100% reduction in the probability of icteric Infections, 75% reduction in infectiousness, and mean durations of IMP of at least 50 y were assumed. This analysis indicates that routine vaccination of toddlers against hepatitis A virus would be cost-effective in Mexico using a single-dose vaccination strategy. However, the cost-effectiveness of a second dose depends on the assumptions of additional protection by IMP and the time horizon over which the analysis is performed.

  6. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer

    PubMed Central

    Ragupathi, Govind; Gardner, Jeffrey R; Livingston, Philip O; Gin, David Y

    2013-01-01

    One of the most widely used and potent immunological adjuvants is a mixture of soluble triterpene glycosides purified from the soap bark tree (Quillaja saponaria). Despite challenges in production, quality control, stability and toxicity, the QS-21 fraction from this extract has exhibited exceptional adjuvant properties for a range of antigens. It possesses an ability to augment clinically significant antibody and T-cell responses to vaccine antigens against a variety of infectious diseases, degenerative disorders and cancers. The recent synthesis of active molecules of QS-21 has provided a robust method to produce this leading vaccine adjuvant in high purity as well as to produce novel synthetic QS-21 congeners designed to induce increased immune responsiveness and decreased toxicity. PMID:21506644

  7. [Immune response induced by HIV DNA vaccine combined with recombinant adeno-associated virus].

    PubMed

    Liu, Yan-zheng; Zhou, Ling; Wang, Qi; Ye, Shu-qing; Li, Hong-xia; Zeng, Yi

    2004-09-01

    HIV-1 DNA vaccine and recombinant adeno-associated virus (rAAV) expressing gagV3 gene of HIV-1 subtype B were constructed and BALB/c mice were immunized by vaccination regimen consisting of consecutive priming with DNA vaccine and boosting with rAAV vaccine; the CTL and antibody response were detected and compared with those induced by DNA vaccine or rAAV vaccine separately. HIV-1 subtype B gagV3 gene was inserted into the polyclonal site of plasmid pCI-neo, DNA vaccine pCI-gagV3 was thereby constructed; pCI-gagV3 was transfected into p815 cells, G-418-resistant cells were obtained through screening transfected cells with G418, the expression of HIV-1 antigen in G-418-resistant cells was detected by EIA; BALB/c mice were immunized with pCI-gagV3 and the immune response was tested; BALB/c mouse immunized with pCI-gagV3 and combined with rAAV expressing the same gagV3 genes were tested for antibody level in sera by EIA method and cytotoxicity response by LDH method. pCI-gagV3 could express HIV-1 gene in p815 cells; pCI-gagV3 could induce HIV-1 specific humoral and cell-mediated immune response in BALB/c mice. The HIV-1 specific antibody level was 1/20; when the ratio of effector cells: target cells was 50:1, the average specific cytotoxicity was 41.7%; there was no evident increase in the antibody level induced by pCI-gagV3 combined with rAAV, but there was increase in CTL response, the average specific cytotoxicity was 61.3% when effector cells: target cells ratio was 50:1. HIV-1 specific cytotoxicity in BALB/c mice can be increased by immunization of BALB/c mice with DNA vaccine combined with rAAV vaccine.

  8. Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity.

    PubMed

    Ovsyannikova, Inna G; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2017-10-04

    Identifying genetic polymorphisms that explain variations in humoral immunity to live measles virus vaccine is of great interest. Immunoglobulin GM (heavy chain) and KM (light chain) allotypes are genetic markers known to be associated with susceptibility to several infectious diseases. We assessed associations between GM and KM genotypes and measles vaccine humoral immunity (neutralizing antibody titers) in a combined cohort (n=1796) of racially diverse healthy individuals (age 18-41years). We did not discover any significant associations between GM and/or KM genotypes and measles vaccine-induced neutralizing antibody titers. African-American subjects had higher neutralizing antibody titers than Caucasians (1260mIU/mL vs. 740mIU/mL, p=7.10×10 -13 ), and those titers remained statistically significant (p=1.68×10 -09 ) after adjusting for age at enrollment and time since last vaccination. There were no statistically significant sex-specific differences in measles-induced neutralizing antibody titers in our study (p=0.375). Our data indicate a surprising lack of evidence for an association between GM and KM genotypes and measles-specific neutralizing antibody titers, despite the importance of these immune response genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Identification of immune factors regulating anti-tumor immunity using polymeric vaccines with multiple adjuvants

    PubMed Central

    Ali, Omar A.; Verbeke, Catia; Johnson, Chris; Sands, Warren; Lewin, Sarah A.; White, Des; Doherty, Edward; Dranoff, Glenn; Mooney, David J.

    2014-01-01

    The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study we utilized polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, in order to identify dendritic cell subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of GM-CSF and various TLR agonists effected 70–90% prophylactic tumor protection in B16-F10 melanoma models. In aggressive, therapeutic B16 models, the vaccine systems incorporating GM-CSF in combination with P(I:C) or CpG-ODN induced the complete regression of solid tumors (≤40mm2) resulting in 33% long-term survival. Regression analysis revealed that the numbers of vaccine-resident CD8(+) DCs and plasmacytoid DCs, along with local IL-12, and G-CSF concentrations correlated strongly to vaccine efficacy regardless of adjuvant type. Further, vaccine studies in Batf3−/− mice revealed that CD8(+) DCs are required to effect tumor protection, as vaccines in these mice were deficient in cytotoxic T cell priming, and IL-12 induction in comparison to wild-type. These studies broadly demonstrate that three-dimensional polymeric vaccines provide a potent platform for prophylactic and therapeutic protection, and can be used as a tool to identify critical components of a desired immune response. Specifically, these results suggest that CD8(+) DCs, plasmacytoid DCs, IL-12, and G-CSF play important roles in priming effective anti-tumor responses with these vaccines. PMID:24480625

  10. Hepatitis B virus infection and vaccine-induced immunity in Madrid (Spain).

    PubMed

    Pedraza-Flechas, Ana María; García-Comas, Luis; Ordobás-Gavín, María; Sanz-Moreno, Juan Carlos; Ramos-Blázquez, Belén; Astray-Mochales, Jenaro; Moreno-Guillén, Santiago

    2014-01-01

    To estimate the prevalence of hepatitis B virus (HBV) infection and vaccine-induced immunity in the region of Madrid, and to analyze their evolution over time. An observational, analytical, cross-sectional study was carried out in the population aged 16-80 years between 2008 and 2009. This was the last of four seroprevalence surveys in the region of Madrid. The prevalence of HBV infection and vaccine-induced immunity was estimated using multivariate logistic models and were compared with the prevalences in the 1989, 1993 and 1999 surveys. In the population aged 16-80 years, the prevalence of HBV infection was 11.0% (95% CI: 9.8-12.3) and that of chronic infection was 0.7% (95% CI: 0.5-1.1). The prevalence of vaccine-induced immunity in the population aged 16-20 years was 73.0% (95% CI: 70.0-76.0). Compared with previous surveys, there was a decrease in the prevalence of HBV infection. Based on the prevalence of chronic infection (<1%), Madrid is a region with low HBV endemicity. Preventive strategies against HBV should especially target the immigrant population. Copyright © 2013. Published by Elsevier Espana.

  11. Vaccines and vaccination strategies against human cutaneous leishmaniasis.

    PubMed

    Okwor, Ifeoma; Uzonna, Jude

    2009-05-01

    One might think that the development of a vaccine against cutaneous leishmaniasis would be relatively straightforward because the type of immune response required for protection is known and natural immunity occurs following recovery from primary infection. However, there is as yet no effective vaccine against the disease in humans. Although vaccination in murine studies has yielded promising results, these vaccines have failed miserably when tested in primates or humans. The reasons behind these failures are unknown and remain a major hurdle for vaccine design and development against cutaneous leishmaniasis. In contrast, recovery from natural, deliberate or experimental infections results in development of long-lasting immunity to re-infection. This so called infection-induced resistance is the strongest anti-Leishmania immunity known. Here, we briefly review the different approaches to vaccination against cutaneous leishmaniasis and argue that vaccines composed of genetically modified (attenuated) parasites, which induce immunity akin to infection-induced resistance, may provide best protection against cutaneous leishmaniasis in humans.

  12. A viral-vectored RSV vaccine induces long-lived humoral immunity in cotton rats.

    PubMed

    Grieves, Jessica L; Yin, Zhiwei; Garcia-Sastre, Adolfo; Mena, Ignacio; Peeples, Mark E; Risman, Heidi P; Federman, Hannah; Sandoval, Marvin J; Durbin, Russell K; Durbin, Joan E

    2018-05-17

    Human respiratory syncytial virus (RSV) is the leading cause of lower airway disease in infants worldwide and repeatedly infects immunocompetent individuals throughout life. Severe lower airway RSV infection during infancy can be life-threatening, but is also associated with important sequelae including development of asthma and recurrent wheezing in later childhood. The basis for the inadequate, short-lived adaptive immune response to RSV infection is poorly understood, but it is widely recognized that RSV actively antagonizes Type I interferon (IFN) production. In addition to the induction of the anti-viral state, IFN production during viral infection is critical for downstream development of robust, long-lived immunity. Based on the hypothesis that a vaccine that induced robust IFN production would be protective, we previously constructed a Newcastle disease virus-vectored vaccine that expresses the F glycoprotein of RSV (NDV-F) and demonstrated that vaccinated mice had reduced lung viral loads and an enhanced IFN-γ response after RSV challenge. Here we show that vaccination also protected cotton rats from RSV challenge and induced long-lived neutralizing antibody production, even in RSV immune animals. Finally, pulmonary eosinophilia induced by RSV infection of unvaccinated cotton rats was prevented by vaccination. Overall, these data demonstrate enhanced protective immunity to RSV F when this protein is presented in the context of an abortive NDV infection. Copyright © 2018. Published by Elsevier Ltd.

  13. A synthetic chalcone as a potent inducer of glutathione biosynthesis.

    PubMed

    Kachadourian, Remy; Day, Brian J; Pugazhenti, Subbiah; Franklin, Christopher C; Genoux-Bastide, Estelle; Mahaffey, Gregory; Gauthier, Charlotte; Di Pietro, Attilio; Boumendjel, Ahcène

    2012-02-09

    Chalcones continue to attract considerable interest due to their anti-inflammatory and antiangiogenic properties. We recently reported the ability of 2',5'-dihydroxychalcone (2',5'-DHC) to induce both breast cancer resistance protein-mediated export of glutathione (GSH) and c-Jun N-terminal kinase-mediated increased intracellular GSH levels. Herein, we report a structure-activity relationship study of a series of 30 synthetic chalcone derivatives with hydroxyl, methoxyl, and halogen (F and Cl) substituents and their ability to increase intracellular GSH levels. This effect was drastically improved with one or two electrowithdrawing groups on phenyl ring B and up to three methoxyl and/or hydroxyl groups on phenyl ring A. The optimal structure, 2-chloro-4',6'-dimethoxy-2'-hydroxychalcone, induced both a potent NF-E2-related factor 2-mediated transcriptional response and an increased formation of glutamate cysteine ligase holoenzyme, as shown using a human breast cancer cell line stably expressing a luciferase reporter gene driven by antioxidant response elements.

  14. Vaccine-induced T cells Provide Partial Protection Against High-dose Rectal SIVmac239 Challenge of Rhesus Macaques

    PubMed Central

    Lasaro, Marcio O; Haut, Larissa H; Zhou, Xiangyang; Xiang, Zhiquan; Zhou, Dongming; Li, Yan; Giles-Davis, Wynetta; Li, Hua; Engram, Jessica C; DiMenna, Lauren J; Bian, Ang; Sazanovich, Marina; Parzych, Elizabeth M; Kurupati, Raj; Small, Juliana C; Wu, Te-Lang; Leskowitz, Rachel M; Klatt, Nicole R; Brenchley, Jason M; Garber, David A; Lewis, Mark; Ratcliffe, Sarah J; Betts, Michael R; Silvestri, Guido; Ertl, Hildegund C

    2011-01-01

    Despite enormous efforts by the scientific community, an effective HIV vaccine remains elusive. To further address to what degree T cells in absence of antibodies may protect against simian immunodeficiency virus (SIV) disease progression, rhesus macaques were vaccinated intramuscularly with a chimpanzee-derived Ad vector (AdC) serotype 6 and then boosted intramuscularly with a serologically distinct AdC vector of serotype 7 both expressing Gag of SIVmac239. Animals were subsequently boosted intramuscularly with a modified vaccinia Ankara (MVA) virus expressing Gag and Tat of the homologous SIV before mucosal challenge with a high dose of SIVmac239 given rectally. Whereas vaccinated animals showed only a modest reduction of viral loads, their overall survival was improved, in association with a substantial protection from the loss of CD4+ T cells. In addition, the two vaccinated Mamu-A*01+ macaques controlled viral loads to levels below detection within weeks after challenge. These data strongly suggest that T cells, while unable to affect SIV acquisition upon high-dose rectal infection, can reduce disease progression. Induction of potent T-cell responses should thus remain a component of our efforts to develop an efficacious vaccine to HIV-1. PMID:21081905

  15. Vaccine-induced T cells provide partial protection against high-dose rectal SIVmac239 challenge of rhesus macaques.

    PubMed

    Lasaro, Marcio O; Haut, Larissa H; Zhou, Xiangyang; Xiang, Zhiquan; Zhou, Dongming; Li, Yan; Giles-Davis, Wynetta; Li, Hua; Engram, Jessica C; Dimenna, Lauren J; Bian, Ang; Sazanovich, Marina; Parzych, Elizabeth M; Kurupati, Raj; Small, Juliana C; Wu, Te-Lang; Leskowitz, Rachel M; Klatt, Nicole R; Brenchley, Jason M; Garber, David A; Lewis, Mark; Ratcliffe, Sarah J; Betts, Michael R; Silvestri, Guido; Ertl, Hildegund C

    2011-02-01

    Despite enormous efforts by the scientific community, an effective HIV vaccine remains elusive. To further address to what degree T cells in absence of antibodies may protect against simian immunodeficiency virus (SIV) disease progression, rhesus macaques were vaccinated intramuscularly with a chimpanzee-derived Ad vector (AdC) serotype 6 and then boosted intramuscularly with a serologically distinct AdC vector of serotype 7 both expressing Gag of SIVmac239. Animals were subsequently boosted intramuscularly with a modified vaccinia Ankara (MVA) virus expressing Gag and Tat of the homologous SIV before mucosal challenge with a high dose of SIVmac239 given rectally. Whereas vaccinated animals showed only a modest reduction of viral loads, their overall survival was improved, in association with a substantial protection from the loss of CD4(+) T cells. In addition, the two vaccinated Mamu-A*01(+) macaques controlled viral loads to levels below detection within weeks after challenge. These data strongly suggest that T cells, while unable to affect SIV acquisition upon high-dose rectal infection, can reduce disease progression. Induction of potent T-cell responses should thus remain a component of our efforts to develop an efficacious vaccine to HIV-1.

  16. In Situ Vaccination with Cowpea vs Tobacco Mosaic Virus against Melanoma.

    PubMed

    Murray, Abner A; Wang, Chao; Fiering, Steven; Steinmetz, Nicole F

    2018-05-25

    Cancer immunotherapy approaches have emerged as novel treatment regimens against cancer. A particularly interesting avenue is the concept of in situ vaccination, where immunostimulatory agents are introduced into an identified tumor to overcome local immunosuppression and, if successful, mount systemic antitumor immunity. We had previously shown that nanoparticles from cowpea mosaic virus (CPMV) are highly potent in inducing long-lasting antitumor immunity when used as an in situ vaccine in various tumor mouse models. Here we asked whether the nanoparticles from tobacco mosaic virus (TMV) could also be applied as an in situ vaccine and, if so, whether efficacy or mechanism of immune-activation would be affected by the nanoparticle size (300 × 18 nm native TMV vs 50 × 18 nm short TMV nanorods), shape (nanorods vs spherical TMV, termed SNP), or state of assembly (assembled TMV rod vs free coat protein, CP). Our studies indicate that CPMV, but less so TMV, elicits potent antitumor immunity after intratumoral treatment of dermal melanoma (B16F10 using C57BL/6 mice). TMV and TMVshort slowed tumor growth and increased survival time, however, at significantly lower potency compared to that of CPMV. There were no apparent differences between TMV, TMVshort, or the SNP indicating that the aspect ratio does not necessarily play a role in plant viral in situ vaccines. The free CPs did not elicit an antitumor response or immunostimulation, which may indicate that a multivalent assembly is required to trigger an innate immune recognition and activation. Differential potency of CPMV vs TMV can be explained with differences in immune-activation: data indicate that CPMV stimulates an antitumor response through recruitment of monocytes into the tumor microenvironment (TME), establishing signaling through the IFN-γ pathway, which also leads to recruitment of tumor-infiltrated neutrophils (TINs) and natural killer (NK) cells. Furthermore, the priming of the innate immune system

  17. The impact of assumptions regarding vaccine-induced immunity on the public health and cost-effectiveness of hepatitis A vaccination: Is one dose sufficient?

    PubMed Central

    Curran, Desmond; de Ridder, Marc; Van Effelterre, Thierry

    2016-01-01

    ABSTRACT Hepatitis A vaccination stimulates memory cells to produce an anamnestic response. In this study, we used a mathematical model to examine how long-term immune memory might convey additional protection against clinical/icteric infections. Dynamic and decision models were used to estimate the expected number of cases, and the costs and quality-adjusted life-years (QALYs), respectively. Several scenarios were explored by assuming: (1) varying duration of vaccine-induced immune memory, (2) and/or varying levels of vaccine-induced immune memory protection (IMP), (3) and/or varying levels of infectiousness in vaccinated individuals with IMP. The base case analysis assumed a time horizon of 25 y (2012 – 2036), with additional analyses over 50 and 75 y. The analyses were conducted in the Mexican public health system perspective. In the base case that assumed no vaccine-induced IMP, the 2-dose hepatitis A vaccination strategy was cost-effective compared with the 1-dose strategy over the 3 time horizons. However, it was not cost-effective if we assumed additional IMP durations of at least 10 y in the 25-y horizon. In the 50- and 75-y horizons, the 2-dose strategy was always cost-effective, except when 100% reduction in the probability of icteric Infections, 75% reduction in infectiousness, and mean durations of IMP of at least 50 y were assumed. This analysis indicates that routine vaccination of toddlers against hepatitis A virus would be cost-effective in Mexico using a single-dose vaccination strategy. However, the cost-effectiveness of a second dose depends on the assumptions of additional protection by IMP and the time horizon over which the analysis is performed. PMID:27428611

  18. Architectural Insight into Inovirus-Associated Vectors (IAVs) and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    PubMed Central

    Hassapis, Kyriakos A.; Stylianou, Dora C.; Kostrikis, Leondios G.

    2014-01-01

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1. PMID:25525909

  19. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines.

    PubMed

    Hassapis, Kyriakos A; Stylianou, Dora C; Kostrikis, Leondios G

    2014-12-17

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  20. A Chimeric Plasmodium falciparum Merozoite Surface Protein Vaccine Induces High Titers of Parasite Growth Inhibitory Antibodies

    PubMed Central

    Alaro, James R.; Partridge, Andrea; Miura, Kazutoyo; Diouf, Ababacar; Lopez, Ana M.; Angov, Evelina; Long, Carole A.

    2013-01-01

    The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmodium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119 (FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a combined formulation of rPfMSP142 and rPfMSP8 (ΔAsn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. falciparum malaria. PMID:23897613

  1. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants.

    PubMed

    Ali, Omar A; Verbeke, Catia; Johnson, Chris; Sands, R Warren; Lewin, Sarah A; White, Des; Doherty, Edward; Dranoff, Glenn; Mooney, David J

    2014-03-15

    The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study, we used polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, to identify dendritic cell (DC) subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of granulocyte macrophage colony-stimulating factor (GM-CSF) and various Toll-like receptor (TLR) agonists affected 70% to 90% prophylactic tumor protection in B16-F10 melanoma models. In aggressive, therapeutic B16 models, the vaccine systems incorporating GM-CSF in combination with P(I:C) or CpG-ODN induced the complete regression of solid tumors (≤40 mm(2)), resulting in 33% long-term survival. Regression analysis revealed that the numbers of vaccine-resident CD8(+) DCs, plasmacytoid DCs (pDC), along with local interleukin (IL)-12, and granulocyte colony-stimulating factor (G-CSF) concentrations correlated strongly to vaccine efficacy regardless of adjuvant type. Furthermore, vaccine studies in Batf3(-/-) mice revealed that CD8(+) DCs are required to affect tumor protection, as vaccines in these mice were deficient in cytotoxic T lymphocytes priming and IL-12 induction in comparison with wild-type. These studies broadly demonstrate that three-dimensional polymeric vaccines provide a potent platform for prophylactic and therapeutic protection, and can be used as a tool to identify critical components of a desired immune response. Specifically, these results suggest that CD8(+) DCs, pDCs, IL-12, and G-CSF play important roles in priming effective antitumor responses with these vaccines. ©2014 AACR.

  2. Immune Mechanisms Responsible for Vaccination against and Clearance of Mucosal and Lymphatic Norovirus Infection

    PubMed Central

    Chachu, Karen A.; LoBue, Anna D.; Strong, David W.; Baric, Ralph S.; Virgin, Herbert W.

    2008-01-01

    Two cardinal manifestations of viral immunity are efficient clearance of acute infection and the capacity to vaccinate against secondary viral exposure. For noroviruses, the contributions of T cells to viral clearance and vaccination have not been elucidated. We report here that both CD4 and CD8 T cells are required for efficient clearance of primary murine norovirus (MNV) infection from the intestine and intestinal lymph nodes. Further, long-lasting protective immunity was generated by oral live virus vaccination. Systemic vaccination with the MNV capsid protein also effectively protected against mucosal challenge, while vaccination with the capsid protein of the distantly related human Lordsdale virus provided partial protection. Fully effective vaccination required a broad immune response including CD4 T cells, CD8 T cells, and B cells, but the importance of specific immune cell types varied between the intestine and intestinal lymph nodes. Perforin, but not interferon gamma, was required for clearance of MNV infection by adoptively transferred T lymphocytes from vaccinated hosts. These studies prove the feasibility of both mucosal and systemic vaccination against mucosal norovirus infection, demonstrate tissue specificity of norovirus immune cells, and indicate that efficient vaccination strategies should induce potent CD4 and CD8 T cell responses. PMID:19079577

  3. Persistence of yellow fever vaccine-induced antibodies after solid organ transplantation.

    PubMed

    Wyplosz, B; Burdet, C; François, H; Durrbach, A; Duclos-Vallée, J C; Mamzer-Bruneel, M-F; Poujol, P; Launay, O; Samuel, D; Vittecoq, D; Consigny, P H

    2013-09-01

    Immunization using live attenuated vaccines represents a contra-indication after solid organ transplantation (SOT): consequently, transplant candidates planning to travel in countries where yellow fever is endemic should be vaccinated prior to transplantation. The persistence of yellow fever vaccine-induced antibodies after transplantation has not been studied yet. We measured yellow-fever neutralizing antibodies in 53 SOT recipients vaccinated prior to transplantation (including 29 kidney recipients and 18 liver recipients). All but one (98%) had protective titers of antibodies after a median duration of 3 years (min.: 0.8, max.: 21) after transplantation. The median antibody level was 40 U/L (interquartile range: 40-80). For the 46 patients with a known or estimated date of vaccination, yellow-fever antibodies were still detectable after a median time of 13 years (range: 2-32 years) post-immunization. Our data suggest there is long-term persistence of antibodies to yellow fever in SOT recipients who have been vaccinated prior to transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Waning of vaccine-induced immunity to measles in kidney transplanted children.

    PubMed

    Rocca, Salvatore; Santilli, Veronica; Cotugno, Nicola; Concato, Carlo; Manno, Emma Concetta; Nocentini, Giulia; Macchiarulo, Giulia; Cancrini, Caterina; Finocchi, Andrea; Guzzo, Isabella; Dello Strologo, Luca; Palma, Paolo

    2016-09-01

    Vaccine-preventable diseases are a significant cause of morbidity and mortality in solid organ transplant recipients who undergo immunosuppression after transplantation. Data on immune responses and long-term maintenance after vaccinations in such population are still limited.We cross-sectionally evaluated the maintenance of immune response to measles vaccine in kidney transplanted children on immunosuppressive therapy. Measles-specific enzyme-linked immunosorbent assay and B-cell enzyme-linked immunosorbent spot were performed in 74 kidney transplant patients (Tps) and in 23 healthy controls (HCs) previously vaccinated and tested for humoral protection against measles. The quality of measles antibody response was measured by avidity test. B-cell phenotype, investigated via flow cytometry, was further correlated to the ability of Tps to maintain protective humoral responses to measles over time.We observed the loss of vaccine-induced immunity against measles in 19% of Tps. Nonseroprotected children showed signs of impaired B-cell distribution as well as immune senescence and lower antibody avidity. We further reported as time elapsed between vaccination and transplantation, as well as the vaccine administration during dialysis are clinical factors affecting the maintenance of the immune memory response against measles.Tps present both quantitative and qualitative alterations in the maintenance of protective immunity to measles vaccine. Prospective studies are needed to optimize the vaccination schedules in kidney transplant recipients in order to increase the immunization coverage over time in this population.

  5. A single vaccination with non-replicating MVA at birth induces both immediate and long-term protective immune responses.

    PubMed

    Cheminay, Cédric; Körner, Jana; Bernig, Constanze; Brückel, Michael; Feigl, Markus; Schletz, Martin; Suter, Mark; Chaplin, Paul; Volkmann, Ariane

    2018-04-25

    Newborns are considered difficult to protect against infections shortly after birth, due to their ineffective immune system that shows quantitative and qualitative differences compared to adults. However, here we show that a single vaccination of mice at birth with a replication-deficient live vaccine Modified Vaccinia Ankara [MVA] efficiently induces antigen-specific B- and T-cells that fully protect against a lethal Ectromelia virus challenge. Protection was induced within 2 weeks and using genetically modified mice we show that this protection was mainly T-cell dependent. Persisting immunological T-cell memory and neutralizing antibodies were obtained with the single vaccination. Thus, MVA administered as early as at birth induced immediate and long-term protection against an otherwise fatal disease and appears attractive as a new generation smallpox vaccine that is effective also in children. Moreover, it may have the potential to serve as platform for childhood vaccines as indicated by measles specific T- and B-cell responses induced in newborn mice vaccinated with recombinant MVA expressing measles antigens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The role of Toll-like receptor-4 in pertussis vaccine-induced immunity

    PubMed Central

    Banus, Sander; Stenger, Rachel M; Gremmer, Eric R; Dormans, Jan AMA; Mooi, Frits R; Kimman, Tjeerd G; Vandebriel, Rob J

    2008-01-01

    Background The gram-negative bacterium Bordetella pertussis is an important causative agent of pertussis, an infectious disease of the respiratory tract. After introduction of whole-cell vaccines (wP) in the 1950's, pertussis incidence has decreased significantly. Because wP were found to be reactogenic, in most developed countries they have been replaced by acellular vaccines (aP). We have previously shown a role for Toll-like receptor 4 (Tlr4) in pertussis-infected mice and the pertussis toxin (Ptx)-IgG response in wP-vaccinated children, raising the issue of the relative importance of Tlr4 in wP vaccination of mice. Here we analyze the effects of wP and aP vaccination and B. pertussis challenge, in Tlr4-deficient C3H/HeJ and wild-type C3H/HeOuJ mice. aP consists of Ptx, filamentous hemagglutinin (FHA), and pertactin (Prn). Results We show an important role of Tlr4 in wP and (to a lesser extent) aP vaccination, induction of Th1 and Th17 cells by wP but not aP vaccination, and induction of Th17 cells by infection, confirming data by Higgins et al. (J Immunol 2006, 177:7980–9). Furthermore, in Tlr4-deficient mice, compared to wild-type controls (i) after vaccination only, Ptx-IgG (that was induced by aP but not wP vaccination), FHA-IgG, and Prn-IgG levels were similar, (ii) after infection (only), lung IL-1α and IL-1β expression were lower, (iii) after wP vaccination and challenge, Prn-IgG level and lung IL-5 expression were higher, while lung IL-1β, TNF-α, IFN-γ, IL-17, and IL-23 expression were lower, and lung pathology was absent, and (iv) after aP vaccination and challenge, Prn-IgG level and lung IL-5 expression were higher, while Ptx-IgG level was lower. Conclusion Tlr4 does not influence the humoral response to vaccination (without challenge), plays an important role in natural immunity, wP and aP efficacy, and induction of Th1 and Th17 responses, is critical for lung pathology and enhances pro-inflammatory cytokine production after wP vaccination and

  7. The Safety of Adjuvanted Vaccines Revisited: Vaccine-Induced Narcolepsy.

    PubMed

    Ahmed, S Sohail; Montomoli, Emanuele; Pasini, Franco Laghi; Steinman, Lawrence

    2016-01-01

    Despite the very high benefit-to-risk ratio of vaccines, the fear of negative side effects has discouraged many people from getting vaccinated, resulting in the reemergence of previously controlled diseases such as measles, pertussis and diphtheria. This fear has been amplified more recently by multiple epidemiologic studies that confirmed the link of an AS03-adjuvanted pandemic influenza vaccine (Pandemrix, GlaxoSmithKline Biologicals, Germany) used in Europe during the 2009 H1N1 influenza pandemic [A(H1N1) pdm09] with the development of narcolepsy, a chronic sleep disorder, in children and adolescents. However, public misperceptions of what adjuvants are and why they are used in vaccines has created in some individuals a closed "black box" attitude towards all vaccines. The focus of this review article is to revisit this "black box" using the example of narcolepsy associated with the European AS03-adjuvanted pandemic influenza vaccine.

  8. Immunologic and Virologic Mechanisms for Partial Protection from Intravenous Challenge by an Integration-Defective SIV Vaccine

    PubMed Central

    Wang, Chu; Jiang, Chunlai; Gao, Nan; Zhang, Kaikai; Liu, Donglai; Wang, Wei; Cong, Zhe; Qin, Chuan; Ganusov, Vitaly V.; Ferrari, Guido; LaBranche, Celia; Montefiori, David C.; Kong, Wei; Yu, Xianghui; Gao, Feng

    2017-01-01

    The suppression of viral loads and identification of selection signatures in non-human primates after challenge are indicators for effective human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) vaccines. To mimic the protective immunity elicited by attenuated SIV vaccines, we developed an integration-defective SIV (idSIV) vaccine by inactivating integrase, mutating sequence motifs critical for integration, and inserting the cytomegalovirus (CMV) promoter for more efficient expression in the SIVmac239 genome. Chinese rhesus macaques were immunized with idSIV DNA and idSIV particles, and the cellular and humoral immune responses were measured. After the intravenous SIVmac239 challenge, viral loads were monitored and selection signatures in viral genomes from vaccinated monkeys were identified by single genome sequencing. T cell responses, heterologous neutralization against tier-1 viruses, and antibody-dependent cellular cytotoxicity (ADCC) were detected in idSIV-vaccinated macaques post immunization. After challenge, the median peak viral load in the vaccine group was significantly lower than that in the control group. However, this initial viral control did not last as viral set-points were similar between vaccinated and control animals. Selection signatures were identified in Nef, Gag, and Env proteins in vaccinated and control macaques, but these signatures were different, suggesting selection pressure on viruses from vaccine-induced immunity in the vaccinated animals. Our results showed that the idSIV vaccine exerted some pressure on the virus population early during the infection but future modifications are needed in order to induce more potent immune responses. PMID:28574482

  9. Comparisons of the humoral and cellular immunity induced by live A16R attenuated spore and AVA-like anthrax vaccine in mice.

    PubMed

    Lv, Jin; Zhang, Ying-Ying; Lu, Xun; Zhang, Hao; Wei, Lin; Gao, Jun; Hu, Bin; Hu, Wen-Wei; Hu, Dun-Zhong; Jia, Na; Feng, Xin

    2017-03-01

    The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect

    PubMed Central

    DiLillo, David J.; Ravetch, Jeffrey V.

    2015-01-01

    Summary Passively-administered anti-tumor mAbs rapidly kill tumor targets via FcγR-mediated cytotoxicity (ADCC), a short-term process. However, anti-tumor mAb treatment can also induce a vaccinal effect, in which mAb-mediated tumor death induces a long-term anti-tumor cellular immune response. To determine how such responses are generated, we utilized a murine model of an anti-tumor vaccinal effect against a model neoantigen. We demonstrate that FcγR expression by CD11c+ antigen-presenting cells is required to generate anti-tumor T cell responses upon ADCC-mediated tumor clearance. Using FcγR-humanized mice, we demonstrate that anti-tumor huIgG1 must engage hFcγRIIIA on macrophages to mediate ADCC, but also engage hFcγRIIA, the sole hFcγR expressed by human DCs, to generate a potent vaccinal effect. Thus, while next-generation anti-tumor antibodies with enhanced binding to only hFcγRIIIA are now in clinical use, ideal anti-tumor antibodies must be optimized for both cytotoxic effects as well as hFcγRIIA engagement on DCs to stimulate long-term anti-tumor cellular immunity. PMID:25976835

  11. A novel DNA vaccine for reduction of PRRSV-induced negative immunomodulatory effects: A proof of concept.

    PubMed

    Suradhat, Sanipa; Wongyanin, Piya; Kesdangsakonwut, Sawang; Teankum, Komkrich; Lumyai, Mongkol; Triyarach, Sittikorn; Thanawongnuwech, Roongroje

    2015-07-31

    Viral-induced interleukin (IL)-10 and regulatory T lymphocytes (Tregs) are believed to play a major role in shaping the immunological and clinical outcomes following Porcine Reproductive and Respiratory Syndrome virus (PRRSV) infection. Recently, it has been shown that PRRSV nucleocapsid (N) protein can induce IL-10 production which is essential for induction of PRRSV-specific Tregs. We hypothesized that immunity to N protein should reduce PRRSV-induced negative immunomodulatory effects which will be essential for establishing proper anti-PRRSV immunity in infected pigs. To investigate the immunomodulatory effects of DNA vaccine encoding a linearized, truncated form of PRRSV-N protein (pORF7t) which was designed to preferentially induce cell-mediated immunity against PRRSV N protein. Immunomodulatory effects of the novel DNA vaccine were investigated in an experimental vaccinated-challenged model. In addition, long-term immunomodulatory effects of the DNA vaccine were investigated in vaccinated pigs kept at the PRRSV-positive environment until the end of the fattening period. Pigs were vaccinated either prior to or following natural PRRSV infection. The results indicated that pORF7t could modulate the anti-PRRSV immune responses and promote the control of viral replication in the vaccinated-challenged pigs. Immunized pigs exhibited increased numbers of PRRSV-specific activated CD4(+)CD25(+) lymphocytes, reduced numbers of PRRSV-specific Tregs, and rapid viral clearance following infection. In a long-term study, regardless of the time of vaccination, DNA vaccine could modulate the host immune responses, resulted in enhanced PRRSV-specific IFN-γ producing cells, and reduced numbers of PRRSV-specific Tregs, without evidence of enhanced antibody responses. No vaccine adverse reaction was observed throughout the study. This study revealed the novel concept that PRRSV-specific immunity can be modulated by induction of cell-mediated immunity against the nucleocapsid

  12. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants.

    PubMed

    Zhu, Qing; McLellan, Jason S; Kallewaard, Nicole L; Ulbrandt, Nancy D; Palaszynski, Susan; Zhang, Jing; Moldt, Brian; Khan, Anis; Svabek, Catherine; McAuliffe, Josephine M; Wrapp, Daniel; Patel, Nita K; Cook, Kimberly E; Richter, Bettina W M; Ryan, Patricia C; Yuan, Andy Q; Suzich, JoAnn A

    2017-05-03

    Prevention of respiratory syncytial virus (RSV) illness in all infants is a major public health priority. However, no vaccine is currently available to protect this vulnerable population. Palivizumab, the only approved agent for RSV prophylaxis, is limited to high-risk infants, and the cost associated with the requirement for dosing throughout the RSV season makes its use impractical for all infants. We describe the development of a monoclonal antibody as potential RSV prophylaxis for all infants with a single intramuscular dose. MEDI8897*, a highly potent human antibody, was optimized from antibody D25, which targets the prefusion conformation of the RSV fusion (F) protein. Crystallographic analysis of Fab in complex with RSV F from subtypes A and B reveals that MEDI8897* binds a highly conserved epitope. MEDI8897* neutralizes a diverse panel of RSV A and B strains with >50-fold higher activity than palivizumab. At similar serum concentrations, prophylactic administration of MEDI8897* was ninefold more potent than palivizumab at reducing pulmonary viral loads by >3 logs in cotton rats infected with either RSV A or B subtypes. MEDI8897 was generated by the introduction of triple amino acid substitutions (YTE) into the Fc domain of MEDI8897*, which led to more than threefold increased half-life in cynomolgus monkeys compared to non-YTE antibody. Considering the pharmacokinetics of palivizumab in infants, which necessitates five monthly doses for protection during an RSV season, the high potency and extended half-life of MEDI8897 support its development as a cost-effective option to protect all infants from RSV disease with once-per-RSV-season dosing in the clinic. Copyright © 2017, American Association for the Advancement of Science.

  13. Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants.

    PubMed

    Smith, Alyson J; Li, Yufeng; Bazin, Hélène G; St-Jean, Julien R; Larocque, Daniel; Evans, Jay T; Baldridge, Jory R

    2016-08-05

    Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3(+)/CD8(+) T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: Effect of IL-12, dose, and route

    PubMed Central

    Mealey, R.H.; Stone, D.M.; Hines, M.T.; Alperin, D.C.; Littke, M.H.; Leib, S.R.; Leach, S.E.; Hines, S.A.

    2012-01-01

    Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates. PMID:17889970

  15. TLR7 imidazoquinoline ligand 3M-019 is a potent adjuvant for pure protein prototype vaccines.

    PubMed

    Johnston, Dean; Zaidi, Bushra; Bystryn, Jean-Claude

    2007-08-01

    Cancer vaccines, while theoretically attractive, present difficult challenges that must be overcome to be effective. Cancer vaccines are often poorly immunogenic and may require augmentation of immunogenicity through the use of adjuvants and/or immune response modifiers. Toll-like receptor (TLR) ligands are a relatively new class of immune response modifiers that may have great potential in inducing and augmenting both cellular and humoral immunity to vaccines. TLR7 ligands produce strong cellular responses and specific IgG2a and IgG2b antibody responses to protein immunogens. This study shows that a new TLR7 ligand, 3M-019, in combination with liposomes produces very strong immune responses to a pure protein prototype vaccine in mice. Female C57BL/6 mice were immunized subcutaneously with ovalbumin (OVA, 0.1 mg/dose) weekly 4x. Some groups were immunized to OVA plus 3M-019 or to OVA plus 3M-019 encapsulated in liposomes. Both antibody and cellular immune responses against OVA were measured after either two or four immunizations. Anti-OVA IgG antibody responses were significantly increased after two immunizations and were substantially higher after four immunizations in mice immunized with OVA combined with 3M-019. Encapsulation in liposomes further augmented antibody responses. IgM responses, on the other hand, were lowered by 3M-019. OVA-specific IgG2a levels were increased 625-fold by 3M-019 in liposomes compared to OVA alone, while anti-OVA IgG2b levels were over 3,000 times higher. In both cases encapsulation of 3M-019 in liposomes was stronger than either liposomes alone or 3M-019 without liposomes. Cellular immune responses were likewise increased by 3M-019 but further enhanced when it was encapsulated in liposomes. The lack of toxicity also indicates that this combination may by safe, effective method to boost immune response to cancer vaccines.

  16. Parvovirus-like particles as vaccine vectors.

    PubMed

    Casal, J I; Rueda, P; Hurtado, A

    1999-09-01

    A wide array of systems have been developed to improve "classic" vaccines. The use of small polypeptides able to elicit potent antibody and cytotoxic responses seems to have enormous potential in the design of safer vaccines. While peptide coupling to large soluble proteins such as keyhole limpet hemocyanin is the current method of choice for eliciting antibody responses and insertion in live viruses for cytotoxic T-lymphocyte responses, alternative cheaper and/or safer methods will clearly be required in the future. Virus-like particles constitute very immunogenic molecules that allow for covalent coupling of the epitopes of interest in a simple way. In this article, we detail the methodology employed for the preparation of efficient virus vectors as delivery systems. We used parvovirus as the model for the design of new vaccine vectors. Recently parvovirus-like particles have been engineered to express foreign polypeptides in certain positions, resulting in the production of large quantities of highly immunogenic peptides, and to induce strong antibody, helper-T-cell, and cytotoxic T-lymphocyte responses. We discuss the different alternatives and the necessary steps to carry out this process, placing special emphasis on the flow of decisions that need to be made during the project. Copyright 1999 Academic Press.

  17. Tumor cell-derived microparticles: a new form of cancer vaccine.

    PubMed

    Zhang, Huafeng; Huang, Bo

    2015-08-01

    For cancer vaccines, tumor antigen availability is currently not an issue due to technical advances. However, the generation of optimal immune stimulation during vaccination is challenging. We have recently demonstrated that tumor cell-derived microparticles (MP) can function as a new form of potent cancer vaccine by efficiently activating type I interferon pathway in a cGAS/STING dependent manner.

  18. Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence.

    PubMed

    Yang, Junyuan; Martcheva, Maia; Wang, Lin

    2015-10-01

    Vaccination is the most effective method of preventing the spread of infectious diseases. For many diseases, vaccine-induced immunity is not life long and the duration of immunity is not always fixed. In this paper, we propose an SIVS model taking the waning of vaccine-induced immunity and general nonlinear incidence into consideration. Our analysis shows that the model exhibits global threshold dynamics in the sense that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable implying the disease dies out; while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable indicating that the disease persists. This global threshold result indicates that if the vaccination coverage rate is below a critical value, then the disease always persists and only if the vaccination coverage rate is above the critical value, the disease can be eradicated. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity

    PubMed Central

    Ma, Yunzhe; Tao, Wenqian; Krebs, Shelly J.; Sutton, William F.; Haigwood, Nancy L.; Gill, Harvinder S.

    2014-01-01

    Purpose The objective of this study is to evaluate the feasibility of using coated microneedles to deliver vaccines into the oral cavity to induce systemic and mucosal immune responses. Method Microneedles were coated with sulforhodamine, ovalbumin and two HIV antigens. Coated microneedles were inserted into the inner lower lip and dorsal surface of the tongue of rabbits. Histology was used to confirm microneedle insertion, and systemic and mucosal immune responses were characterized by measuring antigen-specific immunoglobulin G (IgG) in serum and immunoglobulin A (IgA) in saliva, respectively. Results Histological evaluation of tissues shows that coated microneedles can penetrate the lip and tongue to deliver coatings. Using ovalbumin as a model antigen it was found that the lip and the tongue are equally immunogenic sites for vaccination. Importantly, both sites also induced a significant (p < 0.05) secretory IgA in saliva compared to pre-immune saliva. Microneedle-based oral cavity vaccination was also compared to the intramuscular route using two HIV antigens, a virus-like particle and a DNA vaccine. Microneedle-based delivery to the oral cavity and the intramuscular route exhibited similar (p > 0.05) yet significant (p < 0.05) levels of antigen-specific IgG in serum. However, only the microneedle-based oral cavity vaccination group stimulated a significantly higher (p < 0.05) antigen-specific IgA response in saliva, but not intramuscular injection. Conclusion In conclusion, this study provides a novel method using microneedles to induce systemic IgG and secretory IgA in saliva, and could offer a versatile technique for oral mucosal vaccination. PMID:24623480

  20. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection.

    PubMed

    Kim, Yeu-Chun; Lee, Su-Hwa; Choi, Won-Hyung; Choi, Hyo-Jick; Goo, Tae-Won; Lee, Ju-Hie; Quan, Fu-Shi

    2016-12-01

    A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p < 0.05) reduced. All mice survived after viral challenges. These results indicate that skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.

  1. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions.

    PubMed

    Liu, Bing; Wang, Qin; Yuan, Dong-dong; Hong, Xiao-ting; Tao, Liang

    2011-04-01

    Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC). The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine. In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions. These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  2. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    PubMed

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  3. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies

    PubMed Central

    Blanchfield, Kristy; Belser, Jessica A.; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R.; Levine, Min Z.; York, Ian A.

    2017-01-01

    ABSTRACT Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with

  4. A Synthetic Chalcone as a Potent Inducer of Glutathione Biosynthesis

    PubMed Central

    Kachadourian, Remy; Day, Brian J.; Pugazhenti, Subbiah; Franklin, Christopher C.; Genoux-Bastide, Estelle; Mahaffey, Gregory; Gauthier, Charlotte; Di Pietro, Attilio; Boumendjel, Ahcène

    2014-01-01

    Chalcones continue to attract considerable interest due to their anti-inflammatory and antiangiogenic properties. We recently reported the ability of 2′,5′-dihydroxychalcone (2′,5′-DHC) to induce both breast cancer resistance protein-mediated export of glutathione (GSH) and c-Jun N-terminal kinase-mediated increased intracellular GSH levels. Herein, we report a structure–activity relationship study of a series of 30 synthetic chalcone derivatives with hydroxyl, methoxyl, and halogen (F and Cl) substituents and their ability to increase intracellular GSH levels. This effect was drastically improved with one or two electrowithdrawing groups on phenyl ring B and up to three methoxyl and/or hydroxyl groups on phenyl ring A. The optimal structure, 2-chloro-4′,6′-dimethoxy-2′-hydroxychalcone, induced both a potent NF-E2-related factor 2-mediated transcriptional response and an increased formation of glutamate cysteine ligase holoenzyme, as shown using a human breast cancer cell line stably expressing a luciferase reporter gene driven by antioxidant response elements. PMID:22239485

  5. Optimized dosing of a CCR2 antagonist for amplification of vaccine immunity.

    PubMed

    Mitchell, Leah A; Hansen, Ryan J; Beaupre, Adam J; Gustafson, Daniel L; Dow, Steven W

    2013-02-01

    We have recently discovered that inflammatory monocytes recruited to lymph nodes in response to vaccine-induced inflammation can function as potent negative regulators of both humoral and cell-mediated immune responses to vaccination. Monocyte depletion or migration blockade can significantly amplify both antibody titers and cellular immune responses to vaccination with several different antigens in mouse models. Thus, we hypothesized that the use of small molecule CCR2 inhibitors to block monocyte migration into lymph nodes may represent a broadly effective means of amplifying vaccine immunity. To address this question, the role of CCR2 in monocyte recruitment to vaccine draining lymph nodes was initially explored in CCR2-/- mice. Next, a small molecule antagonist of CCR2 (RS102895) was evaluated in mouse vaccination models. Initial studies revealed that a single intraperitoneal dose of RS102895 failed to effectively block monocyte recruitment following vaccination. Pharmacokinetic analysis of RS102895 revealed a short half-life (approximately 1h), and suggested that a multi-dose treatment regimen would be more effective. We found that administration of RS102895 every 6 h resulted in consistent plasma levels of 20 ng/ml or greater, which effectively blocked monocyte migration to lymph nodes following vaccination. Moreover, administration of RS102895 with concurrent vaccination markedly enhanced vaccine responses following immunization against the influenza antigen HA1. We concluded that administration of small molecule CCR2 antagonists such as RS102895 in the immediate post-vaccine period could be used as a novel means of significantly enhancing vaccine immunity. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques.

    PubMed

    Iyer, Smita S; Gangadhara, Sailaja; Victor, Blandine; Shen, Xiaoying; Chen, Xuemin; Nabi, Rafiq; Kasturi, Sudhir P; Sabula, Michael J; Labranche, Celia C; Reddy, Pradeep B J; Tomaras, Georgia D; Montefiori, David C; Moss, Bernard; Spearman, Paul; Pulendran, Bali; Kozlowski, Pamela A; Amara, Rama Rao

    2016-10-01

    the burden of AIDS. While this goal represents a formidable challenge, the modest efficacy of the RV144 trial indicates that multicomponent vaccination regimens that elicit both cellular and humoral immune responses can prevent HIV infection in humans. However, whether protein immunizations synergize with DNA prime-viral vector boosts to enhance cellular and humoral immune responses remains poorly understood. We addressed this question in a nonhuman primate model, and our findings show benefit for sequential protein immunization combined with a potent adjuvant in boosting antibody titers induced by a preceding DNA/MVA immunization. This promising strategy can be further developed to enhance neutralizing antibody responses and boost CD8 T cells to provide robust protection and viral control. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. A Promising Listeria-Vectored Vaccine Induces Th1-Type Immune Responses and Confers Protection Against Tuberculosis.

    PubMed

    Yin, Yuelan; Lian, Kai; Zhao, Dan; Tao, Chengwu; Chen, Xiang; Tan, Weijun; Wang, Xiaobo; Xu, Zhengzhong; Hu, Maozhi; Rao, Yan; Zhou, Xiaohui; Pan, Zhiming; Zhang, Xiaoming; Jiao, Xin'an

    2017-01-01

    Deaths associated with tuberculosis (TB) is rising and accounted for 1.4 million deaths in 2015 many of which were due to drug-resistant bacteria. Vaccines represent an important medical intervention, but the current Bacilli Calmette-Guerin (BCG) vaccine is not ideal for the protection of teenagers and adults. Therefore, a safe and effective vaccine is urgently needed. In this study, we designed a novel vaccine using an attenuated Listeria monocytogenes strain carrying fusion antigen FbpB-ESAT-6 (rLM) and characterized its safety and protective efficacy against Mycobacterium tuberculosis ( M.tb ) infection in mice. Compared to the wild type strain yzuLM4 and parental strain LMΔ actA/plcB (LM1-2), the virulence of rLM was significantly reduced as judged by its infectious kinetics and LD 50 dose. Further characterization of intravenous immunization showed that prime-boost vaccination significantly increased the levels of Th1 cytokines (IFN-γ, IL-17, and IL-6), and enhanced cytotoxic T lymphocyte (CTL) CTLs activity, suggesting that rLM could elicit potent Th1/Th17 responses. More importantly, rLM significantly conferred the protection against M.tb H37Rv challenge. Collectively, our findings indicated that rLM is a novel and useful tool to prevent M.tb infection, and can be potentially be used to boost BCG-primed immunity.

  8. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice.

    PubMed

    Pasquevich, Karina A; Ibañez, Andrés E; Coria, Lorena M; García Samartino, Clara; Estein, Silvia M; Zwerdling, Astrid; Barrionuevo, Paula; Oliveira, Fernanda S; Seither, Christine; Warzecha, Heribert; Oliveira, Sergio C; Giambartolomei, Guillermo H; Cassataro, Juliana

    2011-01-14

    As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays

  9. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C) Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity

    PubMed Central

    Kim, Eun-Do; Han, Soo Jung; Byun, Young-Ho; Yoon, Sang Chul; Choi, Kyoung Sub; Seong, Baik Lin; Seo, Kyoung Yul

    2015-01-01

    The eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice. Among the adjuvants, poly (I:C) showed as much enhancement in antigen-specific serum IgG and mucosal IgA antibody production as cholera toxin (CT) after vaccinations with trivalent hemagglutinin-subunits or split H1N1 vaccine antigen in mice. Vaccination with split H1N1 eyedrop vaccine antigen plus poly(I:C) showed a similar or slightly lower efficacy in inducing antibody production than intranasal vaccination; the eyedrop vaccine-induced immunity was enough to protect mice from lethal homologous influenza A/California/04/09 (H1N1) virus challenge. Additionally, ocular inoculation with poly(I:C) plus vaccine antigen generated no signs of inflammation within 24 hours: no increases in the mRNA expression levels of inflammatory cytokines nor in the infiltration of mononuclear cells to administration sites. In contrast, CT administration induced increased expression of IL-6 cytokine mRNA and mononuclear cell infiltration in the conjunctiva within 24 hours of vaccination. Moreover, inoculated visualizing materials by eyedrop did not contaminate the surface of the olfactory bulb in mice; meanwhile, intranasally administered materials defiled the surface of the brain. On the basis of these findings, we propose that the use of eyedrop inactivated influenza vaccine plus poly(I:C) is a safe and effective mucosal vaccine strategy for inducing protective anti-influenza immunity. PMID:26355295

  10. Safety and Serological Response to a Matrix Gene-deleted Rabies Virus-based Vaccine Vector in Dogs

    PubMed Central

    McGettigan, James P.; David, Frederic; Figueiredo, Monica Dias; Minke, Jules; Mebatsion, Teshome; Schnell, Matthias J.

    2014-01-01

    Dogs account for the majority of human exposures and deaths due to rabies virus (RABV) worldwide. In this report, we show that a replication-deficient RABV-based vaccine in which the matrix gene is deleted (RABV- M) is safe and induces rapid and potent VNA titers after a single inoculation in dogs. Average VNA titers peaked at 3.02 or 5.11 International Units (IU/ml) by 14 days post-immunization with a single dose of 106 or 107 focus forming units (ffu), respectively, of RABV- M. By day 70 post immunization, all dogs immunized with either dose of vaccine showed VNA titers >0.5 IU/ml, the level indicative of a satisfactory immunization. Importantly, no systemic or local reactions were noted in any dog immunized with RABV- M. The elimination of dog rabies through mass vaccination is hindered by limited resources, requirement for repeat vaccinations often for the life of a dog, and in some parts of the world, inferior vaccine quality. Our preliminary safety and immunogenicity data in dogs suggest that RABV- M might complement currently used inactivated RABV-based vaccines in vaccination campaigns by helping to obtain 100% response in vaccinated dogs, thereby increasing overall vaccination coverage. PMID:24508037

  11. HIV-1 vaccines

    PubMed Central

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  12. Four-segmented Rift Valley fever virus induces sterile immunity in sheep after a single vaccination.

    PubMed

    Wichgers Schreur, Paul J; Kant, Jet; van Keulen, Lucien; Moormann, Rob J M; Kortekaas, Jeroen

    2015-03-17

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family, causes recurrent outbreaks with severe disease in ruminants and occasionally humans. The virus comprises a segmented genome consisting of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M-segment encodes a glycoprotein precursor (GPC) protein that is co-translationally cleaved into Gn and Gc, which are required for virus entry and fusion. Recently we developed a four-segmented RVFV (RVFV-4s) by splitting the M-genome segment, and used this virus to study RVFV genome packaging. Here we evaluated the potential of a RVFV-4s variant lacking the NSs gene (4s-ΔNSs) to induce protective immunity in sheep. Groups of seven lambs were either mock-vaccinated or vaccinated with 10(5) or 10(6) tissue culture infective dose (TCID50) of 4s-ΔNSs via the intramuscular (IM) or subcutaneous (SC) route. Three weeks post-vaccination all lambs were challenged with wild-type RVFV. Mock-vaccinated lambs developed high fever and high viremia within 2 days post-challenge and three animals eventually succumbed to the infection. In contrast, none of the 4s-ΔNSs vaccinated animals developed clinical signs during the course of the experiment. Vaccination with 10(5) TCID50 via the IM route provided sterile immunity, whereas a 10(6) dose was required to induce sterile immunity via SC vaccination. Protection was strongly correlated with the presence of RVFV neutralizing antibodies. This study shows that 4s-ΔNSs is able to induce sterile immunity in the natural target species after a single vaccination, preferably administrated via the IM route. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Development of a vaccine to mitigate greenhouse gas emissions in agriculture: vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro.

    PubMed

    Wedlock, D N; Pedersen, G; Denis, M; Dey, D; Janssen, P H; Buddle, B M

    2010-02-01

    To develop an understanding of the immune responses of ruminants to methanogens, and to provide proof of a concept that harnessing the immune system of ruminants is a potentially viable approach to mitigate greenhouse gas emissions from agriculture. Four subcellular fractions, namely cytoplasmic, two cell-wall preparations, and cell wall-derived proteins were prepared from Methanobrevibacter ruminantium M1. Twenty sheep (10 months of age) were vaccinated with these fractions or with whole cells (n=4 per group). Sheep were re-vaccinated once after 3 weeks, and antibody responses to M. ruminantium M1 antigens in sera and saliva measured using ELISA at 2 weeks after the second vaccination. Antigens recognised by the antisera were visualised using Western blotting. The antisera were tested in vitro for their impact on M. ruminantium M1, measuring the effect on cell growth, methane production, and ability to induce agglutination. Basal levels (pre-vaccination) of antibodies against M. ruminantium M1 antigens were low. Vaccination with the antigenic fractions induced strong antibody responses in serum. Both IgG and IgA responses to methanogen antigens were detected in saliva following vaccination. Western blot analysis of the antisera indicated reactivity of antibodies, and a wide range of proteins was present in the different methanogen fractions. Antisera against the various fractions agglutinated methanogens in an in-vitro assay. In addition, these antisera decreased the growth of a pure culture of a methanogen and production of methane in vitro. Antigens from methanogens are immunogenic in ruminants, and antisera from sheep vaccinated with fractions of methanogens have a significant impact on these organisms, inducing cell agglutination, and decreasing growth of methanogens and production of methane. Only antisera to selected methanogen fractions were able to achieve these effects. The results demonstrate the feasibility of a vaccination strategy to mitigate emission

  14. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Malaria Infections Do Not Compromise Vaccine-Induced Immunity against Tuberculosis in Mice

    PubMed Central

    Parra, Marcela; Derrick, Steven C.; Yang, Amy; Tian, JinHua; Kolibab, Kristopher; Oakley, Miranda; Perera, Liyanage P.; Jacobs, William R.; Kumar, Sanjai; Morris, Sheldon L.

    2011-01-01

    Background Given the considerable geographic overlap in the endemic regions for malaria and tuberculosis, it is probable that co-infections with Mycobacterium tuberculosis and Plasmodium species are prevalent. Thus, it is quite likely that both malaria and TB vaccines may be used in the same populations in endemic areas. While novel vaccines are currently being developed and tested individually against each of these pathogens, the efficacy of these vaccines has not been evaluated in co-infection models. To further assess the effectiveness of these new immunization strategies, we investigated whether co-infection with malaria would impact the anti-tuberculosis protection induced by four different types of TB vaccines in a mouse model of pulmonary tuberculosis. Principal Findings Here we show that the anti-tuberculosis protective immunity induced by four different tuberculosis vaccines was not impacted by a concurrent infection with Plasmodium yoelii NL, a nonlethal form of murine malaria. After an aerogenic challenge with virulent M. tuberculosis, the lung bacterial burdens of vaccinated animals were not statistically different in malaria infected and malaria naïve mice. Multi-parameter flow cytometric analysis showed that the frequency and the median fluorescence intensities (MFI) for specific multifunctional T (MFT) cells expressing IFN-γ, TNF-α, and/or IL-2 were suppressed by the presence of malaria parasites at 2 weeks following the malaria infection but was not affected after parasite clearance at 7 and 10 weeks post-challenge with P. yoelii NL. Conclusions Our data indicate that the effectiveness of novel TB vaccines in protecting against tuberculosis was unaffected by a primary malaria co-infection in a mouse model of pulmonary tuberculosis. While the activities of specific MFT cell subsets were reduced at elevated levels of malaria parasitemia, the T cell suppression was short-lived. Our findings have important relevance in developing strategies for the

  16. Combined administration of synthetic RNA and a conventional vaccine improves immune responses and protection against foot-and-mouth disease virus in swine.

    PubMed

    Borrego, Belén; Blanco, Esther; Rodríguez Pulido, Miguel; Mateos, Francisco; Lorenzo, Gema; Cardillo, Sabrina; Smitsaart, Eliana; Sobrino, Francisco; Sáiz, Margarita

    2017-06-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease and a major concern in animal health worldwide. We have previously reported the use of RNA transcripts mimicking structural domains in the non-coding regions of the FMDV RNA as potent type-I interferon (IFN) inducers showing antiviral effect in vivo, as well as their immunomodulatory properties in combination with an FMD vaccine in mice. Here, we describe the enhancing effect of RNA delivery on the immunogenicity and protection induced by a suboptimal dose of a conventional FMD vaccine in pigs. Animals receiving the RNA developed earlier and higher levels of neutralizing antibodies against homologous and heterologous isolates, compared to those immunized with the vaccine alone, and had higher anti-FMDV titers at late times post-vaccination. RNA delivery also induced higher specific T-cell response and protection levels against FMDV challenge. Peripheral blood mononuclear cells from pigs inoculated with RNA and the vaccine had a higher IFN-γ specific response than those from pigs receiving the vaccine alone. When challenged with FMDV, all three animals immunized with the conventional vaccine developed antibodies to the non-structural viral proteins 3ABC and two of them developed severe signs of disease. In the group receiving the vaccine together with the RNA, two pigs were fully protected while one showed delayed and mild signs of disease. Our results support the immunomodulatory effect of these RNA molecules in natural hosts and suggest their potential use for improvement of FMD vaccines strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Propionibacterium acnes Enhances the Immunogenicity of HIVBr18 Human Immunodeficiency Virus-1 Vaccine

    PubMed Central

    Teixeira, Daniela; Ishimura, Mayari Eika; Apostólico, Juliana de Souza; Viel, Jacqueline Miyuki; Passarelli, Victor Cabelho; Cunha-Neto, Edecio; Rosa, Daniela Santoro; Longo-Maugéri, Ieda Maria

    2018-01-01

    Immunization of BALB/c mice with HIVBr18, a DNA vaccine containing 18 CD4+ T cell epitopes from human immunodeficiency virus (HIV), induced specific CD4+ and CD8+ T cell responses in a broad, polyfunctional and persistent manner. With the aim of increasing the immunogenicity of this vaccine, the effect of Propionibacterium acnes as an adjuvant was evaluated. The adjuvant effects of this bacterium have been extensively demonstrated in both experimental and clinical settings. Herein, administration of two doses of HIVBr18, in the presence of P. acnes, increased the proliferation of HIV-1-specific CD4+ and CD8+ T lymphocytes, the polyfunctional profile of CD4+ T cells, the production of IFN-γ, and the number of recognized vaccine-encoded peptides. One of the bacterial components responsible for most of the adjuvant effects observed was a soluble polysaccharide extracted from the P. acnes cell wall. Furthermore, within 10 weeks after immunization, the proliferation of specific T cells and production of IFN-γ were maintained when the whole bacterium was administered, demonstrating a greater effect on the longevity of the immune response by P. acnes. Even with fewer immunization doses, P. acnes was found to be a potent adjuvant capable of potentiating the effects of the HIVBr18 vaccine. Therefore, P. acnes may be a potential adjuvant to aid this vaccine in inducing immunity or for therapeutic use. PMID:29467764

  18. Modulatory effects of mycobacterial heat-shock protein 70 in DNA vaccination against lymphoma.

    PubMed

    Liso, Arcangelo; Benedetti, Roberta; Fagioli, Marta; Mariano, Angela; Falini, Brunangelo

    2005-01-01

    Pathogen-derived molecules are danger signals and are able to activate innate immunity that in turn controls and regulates generation of adaptive immune responses. Mycobacterium tuberculosis heat shock protein 70 (myc HSP70) has been shown to exert a potent adjuvant effect in vaccination against both infectious agents and solid tumors. Here we explore the use of myc HSP70, as an adjuvant, in DNA vaccination against lymphoma. We describe the effects of vaccination using myc HSP70 encoding plasmid (pHSP70) co-injected with idiotype encoding plasmid (pId), in the 38C13 murine lymphoma model. We dissect mechanisms of anti-tumor immune response and compared efficacy with that of other DNA vaccination strategies. We show that myc HSP70 plasmid prolongs survival of immunized mice challenged with a high number (2000) of tumor cells. The magnitude of the anti-tumor effect is comparable to that obtained using granulocyte-macrophage colony-stimulating factor (GM-CSF) in the same setting. Moreover, HSP-induced protection is independent from the generation of IgG1 and IgG2a antibodies. Instead, anti-idiotype antibodies of IgG2b subclass develop after vaccination with pHSP as well as with pId and Id-GM-CSF fusion plasmid (pId-GM). Co-injection of HSP70 and Id plasmids induces a specific pattern of anti-idiotype immune response able to improve survival of immunized mice.

  19. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development. Published by Elsevier Ltd.

  20. [Pneumococcal vaccine: protection of adults and reduction of antibiotic resistence by vaccination of children with a conjugated vaccine].

    PubMed

    Pletz, Mathias W

    2011-06-01

    Pneumococcal infections (pneumonia, otitis media, sinusitis, meningitis) are common and usually involve toddlers, immunocompromised and the elderly. Main reservoir of pneumococci is the nasopharyngeal zone of healthy carriers, especially of toddlers. Currently, two types of pneumococcal vaccines are in clinical use, which induce production of antibodies against capsular polysaccharides. The older vaccine consists of pure capsular polysaccharides. It induces a limited immunity, because polysaccharides are poor antigens that stimulate mainly B-cells. In children under two years of age this vaccine is not used, because it does not induce a sufficient immunologic response, presumably because of the immaturity of their immune system. In 2000, a vaccination program with a novel pneumococcal vaccine was launched in the USA. This vaccine contains capsular polysaccharides, that are conjugated with a highly immunogenic protein. It induces both a T cell and B cell response that results in specific humoral and mucosal immunity. U.S. data demonstrate, that serotypes covered by the conjugated vaccine can be reduced in the whole population by vaccination of children being the main reservoir of pneumococci. This so called ,,herd protection" results in a decrease in invasive pneumococcal diseases in vaccinees and non-vaccinees as well as in a reduction of antibiotic resistance rates by reducing resistant pneumococcal cones.

  1. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery

    NASA Astrophysics Data System (ADS)

    Mody, Karishma T.; Popat, Amirali; Mahony, Donna; Cavallaro, Antonino S.; Yu, Chengzhong; Mitter, Neena

    2013-05-01

    Vaccines have been at the forefront of improving human health for over two centuries. The challenges faced in developing effective vaccines flow from complexities associated with the immune system and requirement of an efficient and safe adjuvant to induce a strong adaptive immune response. Development of an efficient vaccine formulation requires careful selection of a potent antigen, efficient adjuvant and route of delivery. Adjuvants are immunological agents that activate the antigen presenting cells (APCs) and elicit a strong immune response. In the past decade, the use of mesoporous silica nanoparticles (MSNs) has gained significant attention as potential delivery vehicles for various biomolecules. In this review, we aim to highlight the potential of MSNs as vaccine delivery vehicles and their ability to act as adjuvants. We have provided an overview on the latest progress on synthesis, adsorption and release kinetics and biocompatibility of MSNs as next generation antigen carriers and adjuvants. A comprehensive summary on the ability of MSNs to deliver antigens and elicit both humoral and cellular immune responses is provided. Finally, we give insight on fundamental challenges and some future prospects of these nanoparticles as adjuvants.

  2. Vaccine production, distribution, access, and uptake.

    PubMed

    Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W

    2011-07-30

    For human vaccines to be available on a global scale, complex production methods, meticulous quality control, and reliable distribution channels are needed to ensure that the products are potent and effective at the point of use. The technologies used to manufacture different types of vaccines can strongly affect vaccine cost, ease of industrial scale-up, stability, and, ultimately, worldwide availability. The complexity of manufacturing is compounded by the need for different formulations in different countries and age-groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, to ensure optimum access and uptake, strong partnerships are needed between private manufacturers, regulatory authorities, and national and international public health services. For vaccines whose supply is insufficient to meet demand, prioritisation of target groups can increase the effect of these vaccines. In this report, we draw from our experience of vaccine development and focus on influenza vaccines as an example to consider production, distribution, access, and other factors that affect vaccine uptake and population-level effectiveness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations

    PubMed Central

    Yang, Yi; Sun, Weilai; Guo, Jingjing; Zhao, Guangyu; Sun, Shihui; Yu, Hong; Guo, Yan; Li, Jungfeng; Jin, Xia; Du, Lanying; Jiang, Shibo; Kou, Zhihua; Zhou, Yusen

    2015-01-01

    The development of an HIV-1 vaccine that is capable of inducing effective and broadly cross-reactive humoral and cellular immune responses remains a challenging task because of the extensive diversity of HIV-1, the difference of virus subtypes (clades) in different geographical regions, and the polymorphism of human leukocyte antigens (HLA). We performed an in silico design of 3 DNA vaccines, designated pJW4303-MEG1, pJW4303-MEG2 and pJW4303-MEG3, encoding multi-epitopes that are highly conserved within the HIV-1 subtypes most prevalent in China and can be recognized through HLA alleles dominant in China. The pJW4303-MEG1-encoded protein consisted of one Th epitope in Env, and one, 2, and 6 epitopes in Pol, Env, and Gag proteins, respectively, with a GGGS linker sequence between epitopes. The pJW4303-MEG2-encoded protein contained similar epitopes in a different order, but with the same linker as pJW4303-MEG1. The pJW4303-MEG3-encoded protein contained the same epitopes in the same order as that of pJW4303-MEG2, but with a different linker sequence (AAY). To evaluate immunogenicity, mice were immunized intramuscularly with these DNA vaccines. Both pJW4303-MEG1 and pJW4303-MEG2 vaccines induced equally potent humoral and cellular immune responses in the vaccinated mice, while pJW4303-MEG3 did not induce immune responses. These results indicate that both epitope and linker sequences are important in designing effective epitope-based vaccines against HIV-1 and other viruses. PMID:25839222

  4. Listeria-vectored vaccine expressing the Mycobacterium tuberculosis 30 kDa major secretory protein via the constitutively active prfA* regulon boosts BCG efficacy against tuberculosis.

    PubMed

    Jia, Qingmei; Dillon, Barbara Jane; Masleša-Galić, Saša; Horwitz, Marcus A

    2017-06-19

    A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis (Mtb) 30 kDa major secretory protein (r30/Ag85B) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated Lm vectors, rLm Δ actA (LmI), rLm Δ actA Δ inlB (LmII), and rLm Δ actA Δ inlB prfA * (LmIII), we constructed five rLm30 vaccine candidates expressing the r30 linked in-frame to the Lm Listeriolycin O signal sequence and driven by the hly promoter (h30) or linked in-frame to the ActA N-terminus and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm expressing r30 via a constitutively active prfA * regulon (rLmIII/a30) expressed the greatest amount of r30 in broth culture, all five rLm vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T-cells expressing the three cytokines of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-2 (IL-2) ( P < 0.001) and splenic and lung CD8+ T-cells expressing IFN-γ ( P < 0.0001). In mice and guinea pigs, rLmIII/a30 and rLmI/h30 vaccines were generally more potent booster vaccines than r30 in adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized Mtb ( P <0.01). Copyright © 2017 American Society for Microbiology.

  5. Strong protection induced by an experimental DIVA subunit vaccine against bluetongue virus serotype 8 in cattle.

    PubMed

    Anderson, Jenna; Hägglund, Sara; Bréard, Emmanuel; Riou, Mickaël; Zohari, Siamak; Comtet, Loic; Olofson, Ann-Sophie; Gélineau, Robert; Martin, Guillaume; Elvander, Marianne; Blomqvist, Gunilla; Zientara, Stéphan; Valarcher, Jean Francois

    2014-11-20

    Bluetongue virus (BTV) infections in ruminants pose a permanent agricultural threat since new serotypes are constantly emerging in new locations. Clinical disease is mainly observed in sheep, but cattle were unusually affected during an outbreak of BTV seroype 8 (BTV-8) in Europe. We previously developed an experimental vaccine based on recombinant viral protein 2 (VP2) of BTV-8 and non-structural proteins 1 (NS1) and NS2 of BTV-2, mixed with an immunostimulating complex (ISCOM)-matrix adjuvant. We demonstrated that bovine immune responses induced by this vaccine were as good or superior to those induced by a classic commercial inactivated vaccine. In this study, we evaluated the protective efficacy of the experimental vaccine in cattle and, based on the detection of VP7 antibodies, assessed its DIVA compliancy following virus challenge. Two groups of BTV-seronegative calves were subcutaneously immunized twice at a 3-week interval with the subunit vaccine (n=6) or with adjuvant alone (n=6). Following BTV-8 challenge 3 weeks after second immunization, controls developed viremia and fever associated with other mild clinical signs of bluetongue disease, whereas vaccinated animals were clinically and virologically protected. The vaccine-induced protection was likely mediated by high virus-neutralizing antibody titers directed against VP2 and perhaps by cellular responses to NS1 and NS2. T lymphocyte responses were cross-reactive between BTV-2 and BTV-8, suggesting that NS1 and NS2 may provide the basis of an adaptable vaccine that can be varied by using VP2 of different serotypes. The detection of different levels of VP7 antibodies in vaccinated animals and controls after challenge suggested a compliancy between the vaccine and the DIVA companion test. This BTV subunit vaccine is a promising candidate that should be further evaluated and developed to protect against different serotypes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines.

    PubMed

    Wedlock, D Neil; Aldwell, Frank E; Vordermeier, H Martin; Hewinson, R Glyn; Buddle, Bryce M

    2011-12-15

    Mycobacterium bovis bacille Calmette-Guérin (BCG) delivered to calves by the oral route in a formulated lipid matrix has been previously shown to induce protection against bovine tuberculosis. A study was conducted in cattle to determine if a combination of a low dose of oral BCG and a protein vaccine could induce protective immunity to tuberculosis while not sensitising animals to tuberculin. Groups of calves (10 per group) were vaccinated by administering 2 × 10(7)colony forming units (CFU) of BCG orally or a combination of 2 × 10(7)CFU oral BCG and a protein vaccine comprised of M. bovis culture filtrate proteins (CFP) formulated with the adjuvants Chitin and Gel 01 and delivered by the intranasal route, or CFP formulated with Emulsigen and the TLR2 agonist Pam(3)CSK(4) and administered by the subcutaneous (s.c.) route. Two further groups were vaccinated with the CFP/Chitin/Gel 01 or CFP/Emulsigen/Pam(3)CSK(4) vaccines alone. Positive control groups were given 10(8)CFU oral BCG or 10(6)CFU s.c. BCG while a negative control group was non-vaccinated. All animals were challenged with M. bovis 15 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Groups of cattle vaccinated with s.c. BCG, 10(8)CFU or 2 × 10(7)CFU oral BCG showed significant reductions in seven, three and four pathological or microbiological disease parameters, respectively, compared to the results for the non-vaccinated group. There was no evidence of protection in calves vaccinated with the combination of oral BCG and CFP/Emulsigen/Pam(3)CSK(4) or oral BCG and CFP/Chitin/Gel 01 or vaccinated with the protein vaccines alone. Positive responses in the comparative cervical skin test at 12 weeks after vaccination were only observed in animals vaccinated with s.c. BCG, 10(8)CFU oral BCG or a combination of 2 × 10(7)CFU oral BCG and CFP/Chitin/Gel 01. In conclusion, co-administration of a protein vaccine, administered by either systemic or mucosal routes with oral

  7. In silico and in vivo studies of truncated forms of flagellin (FliC) of enteroaggregative Escherichia coli fused to FimH from uropathogenic Escherichia coli as a vaccine candidate against urinary tract infections.

    PubMed

    Savar, Nastaran Sadat; Jahanian-Najafabadi, Ali; Mahdavi, Mehdi; Shokrgozar, Mohammad Ali; Jafari, Anis; Bouzari, Saeid

    2014-04-10

    The new generation of vaccines against infectious diseases is based on recombinant fusion proteins. Flagellin (FliC) of enteroaggregative Escherichia coli (EAEC) could be considered as a potent adjuvant in designing new vaccines. However, because of its large size, incorporation of this protein with a vaccine antigen might negatively influence recognition of the vaccine epitopes by the immune system. Designing the truncated forms of FliC, capable of inducing innate immune response, enhances the immune responses to the target antigen. We have previously shown that two truncated forms of FliC are able to induce Interleukine-8 production in HT-29 epithelial cell line. In this study we designed recombinant vaccine against urinary tract infections (UTIs) using truncated forms of FliC and type 1 fimbrial FimH adhesin from uropathogenic Escherichia coli (UPEC) and studied their in silico interactions with Toll-like receptor 5 (TLR-5) via docking protocols. The best fusion protein was subjected to cloning and expression. The ability of the recombinant vaccine and the truncated forms in inducing immune responses was investigated. Our results showed that truncated forms are capable of inducing Th1 (forms A and B) and Th2 (form A) responses and fusion vaccine induced strong cellular and humoral immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein.

    PubMed

    Tan, Joshua; Sack, Brandon K; Oyen, David; Zenklusen, Isabelle; Piccoli, Luca; Barbieri, Sonia; Foglierini, Mathilde; Fregni, Chiara Silacci; Marcandalli, Jessica; Jongo, Said; Abdulla, Salim; Perez, Laurent; Corradin, Giampietro; Varani, Luca; Sallusto, Federica; Sim, Betty Kim Lee; Hoffman, Stephen L; Kappe, Stefan H I; Daubenberger, Claudia; Wilson, Ian A; Lanzavecchia, Antonio

    2018-05-01

    Immunization with attenuated Plasmodium falciparum sporozoites (PfSPZs) has been shown to be protective against malaria, but the features of the antibody response induced by this treatment remain unclear. To investigate this response in detail, we isolated IgM and IgG monoclonal antibodies from Tanzanian volunteers who were immunized with repeated injection of Sanaria PfSPZ Vaccine and who were found to be protected from controlled human malaria infection with infectious homologous PfSPZs. All isolated IgG monoclonal antibodies bound to P. falciparum circumsporozoite protein (PfCSP) and recognized distinct epitopes in its N terminus, NANP-repeat region, and C terminus. Strikingly, the most effective antibodies, as determined in a humanized mouse model, bound not only to the repeat region, but also to a minimal peptide at the PfCSP N-terminal junction that is not in the RTS,S vaccine. These dual-specific antibodies were isolated from different donors and were encoded by VH3-30 or VH3-33 alleles that encode tryptophan or arginine at position 52. Using structural and mutational data, we describe the elements required for germline recognition and affinity maturation. Our study provides potent neutralizing antibodies and relevant information for lineage-targeted vaccine design and immunization strategies.

  9. Vaccine production, distribution, access and uptake

    PubMed Central

    Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W.

    2011-01-01

    Making human vaccines available on a global scale requires the use of complex production methods, meticulous quality control and reliable distribution channels that ensure the products are potent and effective at their point of use. The technologies involved in manufacturing different types of vaccines may strongly influence vaccine cost, ease of industrial scale-up, stability and ultimately world-wide availability. Manufacturing complexity is compounded by the need for different formulations for different countries and age groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, ensuring optimal access and uptake also requires strong partnerships between private manufacturers, regulatory authorities and national and international public health services. For vaccines whose supplies are limited, either due to rapidly emerging diseases or longer-term mismatch of supply and demand, prioritizing target groups can increase vaccine impact. Focusing on influenza vaccines as an example that well illustrates many of the relevant points, this article considers current production, distribution, access and other factors that ultimately impact on vaccine uptake and population-level effectiveness. PMID:21664680

  10. Japan's experience in pertussis epidemiology and vaccination in the past thirty years.

    PubMed

    Kanai, K

    1980-06-01

    The experience in Japan that pertussis was controlled by the nation-wide regular vaccination and that the reincrease of case notification occurred recently after the decrease of vaccine acceptance rate upholds the view that pertussis vaccine produced under the national control system is fully protective. Though the recent decrease of the vaccine acceptance rate was due to the public reaction to rather imbalaanced arguments concerning the vaccine risk, it is also true that a more potent and less toxic component vaccine is urgently needed at this moment.

  11. Comparison of selected canine vaccines for their ability to induce protective immunity against canine parvovirus infection.

    PubMed

    Larson, L J; Schultz, R D

    1997-04-01

    To compare the ability of 6 commercially available multicomponent canine vaccines to stimulate antibody production in pups with variable amounts of maternally derived canine parvovirus (CPV) antibody and to induce protective immunity against challenge exposure. Sixty-three 5- to 6-week-old Beagle pups with passively acquired CPV antibody titer between 1: 20 and 1:320. 9 pups were assigned to each of 6 vaccine groups and 1 control group. Eight pups in each group were inoculated with vaccine or saline solution twice, with 3 weeks between administrations. The ninth pup served as an uninoculated contact control. Serum samples were obtained weekly and tested for CPV antibody by hemagglutination-inhibition assay. All pups were challenge exposed with virulent CPV-2a and CPV-2b at 14 to 15 weeks of age. 3 of the vaccines failed to provide protective immunity against challenge exposure because all pups in these groups became infected and most died. A fourth vaccine protected against death, but not infection and disease. Two of the 6 vaccines induced an immune response that was protective against infection and disease. Substantial differences existed among commercial vaccines available in 1994 in their ability to immunize pups with maternally derived CPV antibody. These differences caused many vaccinated pups to be susceptible to CPV disease for variable periods because some vaccines failed to immunize. Importantly, all 4 of the vaccines that performed poorly have recently been replaced by more effective products so that the 6 vaccines now perform similarly.

  12. A dendritic cell targeted vaccine induces long-term HIV-specific immunity within the gastrointestinal tract.

    PubMed

    Ruane, D; Do, Y; Brane, L; Garg, A; Bozzacco, L; Kraus, T; Caskey, M; Salazar, A; Trumpheller, C; Mehandru, S

    2016-09-01

    Despite significant therapeutic advances for HIV-1 infected individuals, a preventative HIV-1 vaccine remains elusive. Studies focusing on early transmission events, including the observation that there is a profound loss of gastrointestinal (GI) CD4(+) T cells during acute HIV-1 infection, highlight the importance of inducing HIV-specific immunity within the gut. Here we report on the generation of cellular and humoral immune responses in the intestines by a mucosally administered, dendritic cell (DC) targeted vaccine. Our results show that nasally delivered α-CD205-p24 vaccine in combination with polyICLC, induced polyfunctional immune responses within naso-pulmonary lymphoid sites that disseminated widely to systemic and mucosal (GI tract and the vaginal epithelium) sites. Qualitatively, while α-CD205-p24 prime-boost immunization generated CD4(+) T-cell responses, heterologous prime-boost immunization with α-CD205-p24 and NYVAC gag-p24 generated high levels of HIV-specific CD4(+) and CD8(+) T cells within the GI tract. Finally, DC-targeting enhanced the amplitude and longevity of vaccine-induced immune responses in the GI tract. This is the first report of a nasally delivered, DC-targeted vaccine to generate HIV-specific immune responses in the GI tract and will potentially inform the design of preventative approaches against HIV-1 and other mucosal infections.

  13. DNA-MVA-protein vaccination of rhesus macaques induces HIV-specific immunity in mucosal-associated lymph nodes and functional antibodies.

    PubMed

    Chege, Gerald K; Burgers, Wendy A; Müller, Tracey L; Gray, Clive M; Shephard, Enid G; Barnett, Susan W; Ferrari, Guido; Montefiori, David; Williamson, Carolyn; Williamson, Anna-Lise

    2017-02-07

    Successful future HIV vaccines are expected to generate an effective cellular and humoral response against the virus in both the peripheral blood and mucosal compartments. We previously reported the development of DNA-C and MVA-C vaccines based on HIV-1 subtype C and demonstrated their immunogenicity when given in a DNA prime-MVA boost combination in a nonhuman primate model. In the current study, rhesus macaques previously vaccinated with a DNA-C and MVA-C vaccine regimen were re-vaccinated 3.5years later with MVA-C followed by a protein vaccine based on HIV-1 subtype C envelope formulated with MF59 adjuvant (gp140Env/MF59), and finally a concurrent boost with both vaccines. A single MVA-C re-vaccination elicited T cell responses in all animals similar to previous peak responses, with 4/7 demonstrating responses >1000 SFU/10 6 PBMC. In contrast to an Env/MF59-only vaccine, concurrent boosting with MVA-C and Env/MF59 induced HIV-specific cellular responses in multiple mucosal associated lymph nodes in 6/7 animals, with high magnitude responses in some animals. Both vaccine regimens induced high titer Env-specific antibodies with ADCC activity, as well as neutralization of Tier 1 viruses and modest Tier 2 neutralization. These data demonstrate the feasibility of inducing HIV-specific immunity in the blood and mucosal sites of viral entry by means of DNA and poxvirus-vectored vaccines, in combination with a HIV envelope-based protein vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Comparison of Biological Activity of Human Anti-Apical Membrane Antigen-1 Antibodies Induced by Natural Infection and Vaccination

    PubMed Central

    Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.

    2009-01-01

    Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299

  15. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    avian influenza viruses. IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses. PMID:28077631

  16. Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations

    PubMed Central

    Kurtz, Sherry L.

    2015-01-01

    A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses. PMID:26269537

  17. Intranasal Inactivated Influenza Vaccines: a Reasonable Approach to Improve the Efficacy of Influenza Vaccine?

    PubMed

    Tamura, Shin-Ichi; Ainai, Akira; Suzuki, Tadaki; Kurata, Takeshi; Hasegawa, Hideki

    2016-01-01

    Influenza is a contagious, acute respiratory disease caused by the influenza virus. The mucosal lining in the host respiratory tract is not only the site of virus infection, but also the site of defense; it is at this site that the host immune response targets the virus and protects against reinfection. One of the most effective methods to prevent influenza is to induce specific antibody (Ab) responses in the respiratory tract by vaccination. Two types of influenza vaccines, intranasal live attenuated influenza virus (LAIV) vaccines and parenteral (injectable) inactivated vaccines, are currently used worldwide. These vaccines are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration. Live attenuated vaccines induce both secretory IgA (S-IgA) and serum IgG antibodies (Abs), whereas parenteral vaccines induce only serum IgG Abs. However, intranasal administration of inactivated vaccines together with an appropriate adjuvant induces both S-IgA and IgG Abs. Several preclinical studies on adjuvant-combined, nasal-inactivated vaccines revealed that nasal S-IgA Abs, a major immune component in the upper respiratory tract, reacted with homologous virus hemagglutinin (HA) and were highly cross-reactive with viral HA variants, resulting in protection and cross-protection against infection by both homologous and variant viruses, respectively. Serum-derived IgG Abs, which are present mainly in the lower respiratory tract, are less cross-reactive and cross-protective. In addition, our own clinical trials have shown that nasal-inactivated whole virus vaccines, including a built-in adjuvant (single-stranded RNA), induced serum hemagglutination inhibition (HI) Ab titers that fulfilled the EMA criteria for vaccine efficacy. The nasal-inactivated whole virus vaccines also induced high levels of nasal HI and neutralizing Ab titers, although we have not yet evaluated the nasal HI titers due to the lack of official criteria to establish efficacy based

  18. Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective.

    PubMed

    Renukaradhya, Gourapura J; Dwivedi, Varun; Manickam, Cordelia; Binjawadagi, Basavaraj; Benfield, David

    2012-06-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically important infectious disease of swine. Constant emergence of variant strains of PRRS virus (PPRSV) and virus-mediated immune evasion followed by viral persistence result in increased incidence and recurrence of PRRS in swine herds. Current live and killed PRRSV vaccines administered by a parenteral route are ineffective in inducing complete protection. Thus, new approaches in design and delivery of PRRSV vaccines are needed to reduce the disease burden of the swine industry. Induction of an effective mucosal immunity to several respiratory pathogens by direct delivery of a vaccine to mucosal sites has proven to be effective in a mouse model. However, there are challenges in eliciting mucosal immunity to PRRS due to our limited understanding of safe and potent mucosal adjuvants, which could potentiate the mucosal immune response to PRRSV. The purpose of this review is to discuss methods for induction of protective mucosal immune responses in the respiratory tract of pigs. The manuscript also discusses how PRRSV modulates innate, adaptive and immunoregulatory responses at both mucosal and systemic sites of infected and/or vaccinated pigs. This information may help in the design of innovative mucosal vaccines to elicit superior cross-protective immunity against divergent field strains of PRRSV.

  19. DNA vaccine encoding Haemonchus contortus actin induces partial protection in goats.

    PubMed

    Yan, Ruofeng; Wang, Jingjing; Xu, Lixin; Song, Xiaokai; Li, Xiangrui

    2014-10-01

    Actin is a globular multi-functional protein that forms microfilaments, and participates in many important cellular processes. Previous study found that Haemonchus contortus actin could be recognized by the serum of goats infected with the homology parasite. This indicated that H. contortus actin could be a potential candidate for vaccine. In this study, DNA vaccine encoding H. contortus actin was tested for protection against experimental H. contortus infections in goats. Fifteen goats were allocated into three trial groups. The animals of Actin group were vaccinated with the DNA vaccine on day 0 and 14, and challenged with 5000 infective H. contortus third stage larval (L3) on day 28. An unvaccinated positive control group was challenged with L3 at the same time. An unvaccinated negative control group was not challenged with L3. The results showed that DNA vaccine were transcribed at local injection sites and expressed in vivo post immunizations respectively. For goats in Actin vaccinated group, higher levels of serum IgG, serum IgA and mucosal IgA were produced, the percentages of CD4(+) T lymphocytes, CD8(+) T lymphocytes and B lymphocytes and the concentrations of TGF-β were increased significantly (P<0.05). Following L3 challenge, the mean eggs per gram feces (EPG) and worm burdens of Actin group were reduced by 34.4% and 33.1%, respectively. This study suggest that recombinant H. contortus Actin DNA vaccine induced partial immune response and has protective potential against goat haemonchosis.

  20. Efficacy for lung metastasis induced by the allogeneic bEnd3 vaccine in mice.

    PubMed

    Zhao, Jun; Lu, Jing; Zhou, Lurong; Zhao, Jimin; Dong, Ziming

    2018-05-04

    The mouse brain microvascular endothelial cell line bEnd.3 was used to develop a vaccine and its anti-tumor effect on lung metastases was observed in immunized mice. Mouse bEnd.3 cells cultured in-vitro and then fixed with glutaraldehyde was used to immunize mice; mice were challenged with the metastatic cancer cell line U14, and changes in metastatic cancer tissues were observed through hematoxylin and eosin staining. Carboxyfluorescein succinimidyl amino ester (CSFE) and propidium iodide (PI) were used to detect cytotoxic activity of spleen T lymphocytes; the ratio of CD3 + and CD8 + T-cell sub-sets was determined by flow cytometry. Enzyme-linked immunosorbent assay (ELISA), immunocytochemistry and immunoblot were used to examine the specific response of the antisera of immunized mice. The number of metastatic nodules in bEnd.3 and human umbilical vein endothelial cell (HUVEC) vaccine groups was less than NIH3T3 vaccine group and phosphate buffered saline (PBS) control group. The bEnd.3-induced and HUVEC-induced cytotoxic T-lymphocytes (CTLs) showed significant lytic activity against bEnd.3 and HUVEC target cells, while the antisera of mice in bEnd.3 and HUVEC vaccine groups showed specific immune responses to membrane proteins and inhibited target cell proliferation in-vitro. Immunoblot results showed specific bands at 180KD and 220KD in bEnd.3 and at 130 kD and 220 kD in HUVEC lysates. Allogeneic bEnd.3 vaccine induced an active and specific immune response to tumor vascular endothelial cells that resulted in production of antibodies against the proliferation antigens VEGF-R II, integrin, Endog etc. Immunization with this vaccine inhibited lung metastasis of cervical cancer U14 cells and prolonged the survival of these mice.

  1. The impact of new technologies on vaccines.

    PubMed

    Talwar, G P; Diwan, M; Razvi, F; Malhotra, R

    1999-01-01

    Vast changes are taking place in vaccinology consequent to the introduction of new technologies. Amongst the vaccines included in the Expanded Programme of Immunization (EPI), the pertussis vaccine has been replaced by acellular purified fractions devoid of side-effects. Non-pathogenic but immunogenic mutants of tetanus and diptheria toxins are likely to replace the toxoids. An effective vaccine against hepatitis B prepared by recombinant technology is in large-scale use. Conjugated vaccines against Haemophilus influenzae b, S. pneumococcus and meningococcus are now available, as also vaccines against mumps, rubella and measles. Combination vaccines have been devised to limit the number of injections. Vaccine delivery systems have been developed to deliver multiple doses of the vaccine at a single contact point. A genetically-engineered oral vaccine for typhoid imparts better and longer duration of immunity. Oral vaccines for cholera and other enteric infections are under clinical trials. The nose as a route for immunization is showing promise for mucosal immunity and for anti-inflammatory experimental vaccines against multiple sclerosis and insulin-dependent diabetes mellitus. The range of vaccines has expanded to include pathogens resident in the body such as Helicobacter pylori (duodenal ulcer), S. mutans (dental caries), and human papilloma virus (carcinoma of the cervix). An important progress is the recognition that DNA alone can constitute the vaccines, inducing both humoral and cell-mediated immune responses. A large number of DNA vaccines have been made and shown interesting results in experimental animals. Live recombinant vaccines against rabies and rinderpest have proven to be highly effective for controlling these infections in the field, and those for AIDS are under clinical trial. Potent adjuvants have added to the efficacy of the vaccines. New technologies have emerged to 'humanize' mouse monoclonals by genetic engineering and express these

  2. The reactogenicity and immunogenicity of the Urabe Am 9 live mumps vaccine and persistence of vaccine induced antibodies in healthy young children.

    PubMed

    Ehrengut, W; Georges, A M; André, F E

    1983-04-01

    The immunogenicity and reactogenicity of the Urabe Am 9 mumps virus vaccine strain were studied after the administration of different doses of the vaccine to 197 children ranging in age from seven and a half months to nine years and without a history of mumps. There was no effect of dose on the response in serum neutralizing antibodies in the range of 10(2.9) to 10(4.7) TCID50/dose. In the 90 subjects without detectable serum neutralization antibodies before vaccination seroconversion was obtained in 94.4% after 42 days. Half of a group of 34 seropositive children who were tested also showed a fourfold or greater rise in antibodies. Persistence of vaccine-enhanced haemagluttinin-inhibition (EHI) antibodies was satisfactory as only two of 46 vaccinees followed-up for between 27 and 32 months had undetectable levels of EHI antibodies and the geometric mean titre of vaccine-induced EHI antibodies had only fallen to about one-third by 32 months after vaccination. Although there was serological evidence of a subclinical re-infection in three subjects, to date none of the vaccinees has had clinical mumps indicating that the vaccine confers protection against disease. The vaccine was well tolerated. Furthermore, the majority of the few 'reactions' reported were probably not vaccine-related. It is concluded that the Urabe Am 9 is an acceptable strain for use in live mumps vaccines.

  3. Enhanced Delivery and Potency of Self-Amplifying mRNA Vaccines by Electroporation in Situ

    PubMed Central

    Cu, Yen; Broderick, Kate E.; Banerjee, Kaustuv; Hickman, Julie; Otten, Gillis; Barnett, Susan; Kichaev, Gleb; Sardesai, Niranjan Y.; Ulmer, Jeffrey B.; Geall, Andrew

    2013-01-01

    Nucleic acid-based vaccines such as viral vectors, plasmid DNA (pDNA), and mRNA are being developed as a means to address limitations of both live-attenuated and subunit vaccines. DNA vaccines have been shown to be potent in a wide variety of animal species and several products are now licensed for commercial veterinary but not human use. Electroporation delivery technologies have been shown to improve the generation of T and B cell responses from synthetic DNA vaccines in many animal species and now in humans. However, parallel RNA approaches have lagged due to potential issues of potency and production. Many of the obstacles to mRNA vaccine development have recently been addressed, resulting in a revival in the use of non-amplifying and self-amplifying mRNA for vaccine and gene therapy applications. In this paper, we explore the utility of EP for the in vivo delivery of large, self-amplifying mRNA, as measured by reporter gene expression and immunogenicity of genes encoding HIV envelope protein. These studies demonstrated that EP delivery of self-amplifying mRNA elicited strong and broad immune responses in mice, which were comparable to those induced by EP delivery of pDNA. PMID:26344119

  4. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    PubMed

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and

  5. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens

    PubMed Central

    Mahairas, Gregory G.; Shaw, Carolyn E.; Huang, Meei-Li; Koelle, David M.; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M.

    2015-01-01

    ABSTRACT We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4+ and CD8+ T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of

  6. Poxvirus-vectored vaccines for rabies--a review.

    PubMed

    Weyer, Jacqueline; Rupprecht, Charles E; Nel, Louis H

    2009-11-27

    Oral rabies vaccination of target reservoir species has proved to be one of the pillars of successful rabies elimination programs. The use of live attenuated rabies virus vaccines has been extensive but several limitations hamper its future use. A recombinant vaccinia-rabies vaccine has also been successfully used for the oral vaccination of several species. Nevertheless, its lack of efficacy in certain important rabies reservoirs and concerns on the use of this potent live virus as vaccine carrier (vector) impair the expansion of its use for new target species and new areas. Several attenuated and host-restricted poxvirus alternatives, which supposedly offer enhanced safety, have been investigated. Once again, efficacy in certain target species and innocuity through the oral route remain major limitations of these vaccines. Alternative recombinant vaccines using adenovirus as an antigen delivery vector have been extensively investigated and may provide an important addition to the currently available oral rabies vaccine repertoire, but are not the primary subject of this review.

  7. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    PubMed Central

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  8. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice.

    PubMed

    García, Mayra; Misplon, Julia A; Price, Graeme E; Lo, Chia-Yun; Epstein, Suzanne L

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life.

  9. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination

    PubMed Central

    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian

    2002-01-01

    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853

  10. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    PubMed

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  11. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  12. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays.

    PubMed

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D; Chorro, Laurent; Carlin, Leo M; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S

    2013-02-19

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.

  13. Peptide Vaccines for Leishmaniasis.

    PubMed

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  14. Virus-like particles vaccine containing Clonorchis sinensis tegumental protein induces partial protection against Clonorchis sinensis infection.

    PubMed

    Lee, Dong-Hun; Kim, Ah-Ra; Lee, Su-Hwa; Quan, Fu-Shi

    2017-12-29

    Human clonorchiasis, caused by the infection of Clonorchis sinensis, is one of the major health problems in Southeast Asia. However, vaccine efficacy against C. sinensis infection remains largely unknown. In this study, for the first time, we generated virus-like particles (VLPs) vaccine containing the C. sinensis tegumental protein 22.3 kDa (CsTP 22.3) and the influenza matrix protein (M1) as a core protein, and investigated the vaccine efficacy in Sprague-Dawley rats. Intranasal immunization of VLPs vaccine induced C. sinensis-specific IgG, IgG2a and IgG2c in the sera and IgA responses in the feces and intestines. Notably, upon challenge infection with C. sinensis metacercariae, significantly lower adult worm loads (70.2%) were measured in the liver of rats immunized with VLPs, compared to those of naïve rats. Furthermore, VLPs immunization induced antibody secreting cells (ASC) responses and CD4+/CD8+ T cell responses in the spleen. Our results indicated that VLPs vaccine containing C. sinensis CsTP 22.3 kDa provided partial protection against C. sisnensis infection. Thus, VLPs could be a potential vaccine candidate against C. sinensis.

  15. Selective Effects of a Morphine Conjugate Vaccine on Heroin and Metabolite Distribution and Heroin-Induced Behaviors in Rats

    PubMed Central

    Pravetoni, M.; Harris, A.C.; Birnbaum, A.K.; Pentel, P.R.

    2013-01-01

    Morphine conjugate vaccines have effectively reduced behavioral effects of heroin in rodents and primates. To better understand how these effects are mediated, heroin and metabolite distribution studies were performed in rats in the presence and absence of vaccination. In non-vaccinated rats 6-monoacetylmorphine (6-MAM) was the predominant opioid in plasma and brain as early as 1 minute after i.v. administration of heroin and for up to 14 minutes. Vaccination with morphine conjugated to keyhole limpet hemocyanin (M-KLH) elicited high titers and concentrations of antibodies with high affinity for heroin, 6-MAM, and morphine. Four minutes after heroin administration vaccinated rats showed substantial retention of all three opioids in plasma compared to controls and reduced 6-MAM and morphine, but not heroin, distribution to brain. Administration of 6-MAM rather than heroin in M-KLH vaccinated rats showed a similar drug distribution pattern. Vaccination reduced heroin-induced analgesia and blocked heroin-induced locomotor activity throughout 2 weeks of repeated testing. Higher serum opioid-specific antibody concentrations were associated with higher plasma opioid concentrations, lower brain 6-MAM and morphine concentrations, and lower heroin-induced locomotor activity. Serum antibody concentrations over 0.2 mg/ml were associated with substantial effects on these measures. These data support a critical role for 6-MAM in mediating the early effects of i.v. heroin and suggest that reducing 6-MAM concentration in brain is essential to the efficacy of morphine conjugate vaccines. PMID:23220743

  16. In elderly persons live attenuated influenza A virus vaccines do not offer an advantage over inactivated virus vaccine in inducing serum or secretory antibodies or local immunologic memory.

    PubMed Central

    Powers, D C; Fries, L F; Murphy, B R; Thumar, B; Clements, M L

    1991-01-01

    In a double-blind, randomized trial, 102 healthy elderly subjects were inoculated with one of four preparations: (i) intranasal bivalent live attenuated influenza vaccine containing cold-adapted A/Kawasaki/86 (H1N1) and cold-adapted A/Bethesda/85 (H3N2) viruses; (ii) parenteral trivalent inactivated subvirion vaccine containing A/Taiwan/86 (H1N1), A/Leningrad/86 (H3N2), and B/Ann Arbor/86 antigens; (iii) both vaccines; or (iv) placebo. To determine whether local or systemic immunization augmented mucosal immunologic memory, all volunteers were challenged intranasally 12 weeks later with the inactivated virus vaccine. We used a hemagglutination inhibition assay to measure antibodies in sera and a kinetic enzyme-linked immunosorbent assay to measure immunoglobulin G (IgG) and IgA antibodies in sera and nasal washes, respectively. In comparison with the live virus vaccine, the inactivated virus vaccine elicited higher and more frequent rises of serum antibodies, while nasal wash antibody responses were similar. The vaccine combination induced serum and local antibodies slightly more often than the inactivated vaccine alone did. Coadministration of live influenza A virus vaccine did not alter the serum antibody response to the influenza B virus component of the inactivated vaccine. The anamnestic nasal antibody response elicited by intranasal inactivated virus challenge did not differ in the live, inactivated, or combined vaccine groups from that observed in the placebo group not previously immunized. These results suggest that in elderly persons cold-adapted influenza A virus vaccines offer little advantage over inactivated virus vaccines in terms of inducing serum or secretory antibody or local immunological memory. Studies are needed to determine whether both vaccines in combination are more efficacious than inactivated vaccine alone in people in this age group. PMID:2037667

  17. Tetanus vaccination with a dissolving microneedle patch confers protective immune responses in pregnancy.

    PubMed

    Esser, E Stein; Romanyuk, AndreyA; Vassilieva, Elena V; Jacob, Joshy; Prausnitz, Mark R; Compans, Richard W; Skountzou, Ioanna

    2016-08-28

    Maternal and neonatal tetanus claim tens of thousands lives every year in developing countries, but could be prevented by hygienic practices and improved immunization of pregnant women. This study tested the hypothesis that skin vaccination can overcome the immunologically transformed state of pregnancy and enhance protective immunity to tetanus in mothers and their newborns. To achieve this goal, we developed microneedle patches (MNPs) that efficiently delivered unadjuvanted tetanus toxoid to skin of pregnant mice and demonstrated that this route induced superior immune responses in female mice conferring 100% survival to tetanus toxin challenge when compared to intramuscular vaccination. Mice born to MNP-vaccinated mothers showed detectable tetanus-specific IgG antibodies up to 12weeks of age and complete protection to tetanus toxin challenge up at 6weeks of age. In contrast, none of the 6-week old mice born to intramuscularly vaccinated mothers survived challenge. Although pregnant mice vaccinated with unadjuvanted tetanus toxoid had 30% lower IgG and IgG1 titers than mice vaccinated intramuscularly with Alum®-adjuvanted tetanus toxoid vaccine, IgG2a titers and antibody affinity maturation were similar between these groups. We conclude that skin immunization with MNPs containing unadjuvanted tetanus toxoid can confer potent protective efficacy to mothers and their offspring using a delivery method well suited for expanding vaccination coverage in developing countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed Central

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  19. Augmenting Influenza-Specific T Cell Memory Generation with a Natural Killer T Cell-Dependent Glycolipid-Peptide Vaccine.

    PubMed

    Anderson, Regan J; Li, Jasmine; Kedzierski, Lukasz; Compton, Benjamin J; Hayman, Colin M; Osmond, Taryn L; Tang, Ching-Wen; Farrand, Kathryn J; Koay, Hui-Fern; Almeida, Catarina Filipa Dos Santos Sa E; Holz, Lauren R; Williams, Geoffrey M; Brimble, Margaret A; Wang, Zhongfang; Koutsakos, Marios; Kedzierska, Katherine; Godfrey, Dale I; Hermans, Ian F; Turner, Stephen J; Painter, Gavin F

    2017-11-17

    The development of a universal vaccine for influenza A virus (IAV) that does not require seasonal modification is a long-standing health goal, particularly in the context of the increasing threat of new global pandemics. Vaccines that specifically induce T cell responses are of considerable interest because they can target viral proteins that are more likely to be shared between different virus strains and subtypes and hence provide effective cross-reactive IAV immunity. From a practical perspective, such vaccines should induce T cell responses with long-lasting memory, while also being simple to manufacture and cost-effective. Here we describe the synthesis and evaluation of a vaccine platform based on solid phase peptide synthesis and bio-orthogonal conjugation methodologies. The chemical approach involves covalently attaching synthetic long peptides from a virus-associated protein to a powerful adjuvant molecule, α-galactosylceramide (α-GalCer). Strain-promoted azide-alkyne cycloaddition is used as a simple and efficient method for conjugation, and pseudoproline methodology is used to increase the efficiency of the peptide synthesis. α-GalCer is a glycolipid that stimulates NKT cells, a population of lymphoid-resident immune cells that can provide potent stimulatory signals to antigen-presenting cells engaged in driving proliferation and differentiation of peptide-specific T cells. When used in mice, the vaccine induced T cell responses that provided effective prophylactic protection against IAV infection, with the speed of viral clearance greater than that seen from previous viral exposure. These findings are significant because the vaccines are highly defined, quick to synthesize, and easily characterized and are therefore appropriate for large scale affordable manufacture.

  20. Immune responses in macaques to a prototype recombinant adenovirus live oral human papillomavirus 16 vaccine.

    PubMed

    Berg, Michael G; Adams, Robert J; Gambhira, Ratish; Siracusa, Mark C; Scott, Alan L; Roden, Richard B S; Ketner, Gary

    2014-09-01

    Immunization with human papillomavirus (HPV) L1 virus-like particles (VLPs) prevents infection with HPV. However, the expense and logistical demands of current VLP vaccines will limit their widespread use in resource-limited settings, where most HPV-induced cervical cancer occurs. Live oral adenovirus vaccines have properties that are well-suited for use in such settings. We have described a live recombinant adenovirus vaccine prototype that produces abundant HPV16 L1 protein from the adenovirus major late transcriptional unit and directs the assembly of HPV16 VLPs in tissue culture. Recombinant-derived VLPs potently elicit neutralizing antibodies in mice. Here, we characterize the immune response to the recombinant after dual oral and intranasal immunization of pigtail macaques, in which the virus replicates as it would in immunized humans. The immunization of macaques induced vigorous humoral responses to adenovirus capsid and nonstructural proteins, although, surprisingly, not against HPV L1. In contrast, immunization elicited strong T-cell responses to HPV VLPs as well as adenovirus virions. T-cell responses arose immediately after the primary immunization and were boosted by a second immunization with recombinant virus. T-cell immunity contributes to protection against a wide variety of pathogens, including many viruses. The induction of a strong cellular response by the recombinant indicates that live adenovirus recombinants have potential as vaccines for those agents. These studies encourage and will inform the continued development of viable recombinant adenovirus vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Contribution of Vaccine-Induced Immunity toward either the HA or the NA Component of Influenza Viruses Limits Secondary Bacterial Complications▿

    PubMed Central

    Huber, Victor C.; Peltola, Ville; Iverson, Amy R.; McCullers, Jonathan A.

    2010-01-01

    Secondary bacterial infections contribute to morbidity and mortality from influenza. Vaccine effectiveness is typically assessed using prevention of influenza, not secondary infections, as an endpoint. We vaccinated mice with formalin-inactivated influenza virus vaccine preparations containing disparate HA and NA proteins and demonstrated an ability to induce the appropriate anti-HA and anti-NA immune profiles. Protection from both primary viral and secondary bacterial infection was demonstrated with vaccine-induced immunity directed toward either the HA or the NA. This finding suggests that immunity toward the NA component of the virion is desirable and should be considered in generation of influenza vaccines. PMID:20130054

  2. Activation of B Cells by a Dendritic Cell-Targeted Oral Vaccine

    PubMed Central

    Sahay, Bikash; Owen, Jennifer L.; Yang, Tao; Zadeh, Mojgan; Lightfoot, Yaíma L.; Ge, Jun-Wei; Mohamadzadeh, Mansour

    2015-01-01

    Production of long-lived, high affinity humoral immunity is an essential characteristic of successful vaccination and requires cognate interactions between T and B cells in germinal centers. Within germinal centers, specialized T follicular helper cells assist B cells and regulate the antibody response by mediating the differentiation of B cells into memory or plasma cells after exposure to T cell-dependent antigens. It is now appreciated that local immune responses are also essential for protection against infectious diseases that gain entry to the host by the mucosal route; therefore, targeting the mucosal compartments is the optimum strategy to induce protective immunity. However, because the gastrointestinal mucosae are exposed to large amounts of environmental and dietary antigens on a daily basis, immune regulatory mechanisms exist to favor tolerance and discourage autoimmunity at these sites. Thus, mucosal vaccination strategies must ensure that the immunogen is efficiently taken up by the antigen presenting cells, and that the vaccine is capable of activating humoral and cellular immunity, while avoiding the induction of tolerance. Despite significant progress in mucosal vaccination, this potent platform for immunotherapy and disease prevention must be further explored and refined. Here we discuss recent progress in the understanding of the role of different phenotypes of B cells in the development of an efficacious mucosal vaccine against infectious disease. PMID:24372255

  3. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  4. RTS,S/AS01E Malaria Vaccine Induces Memory and Polyfunctional T Cell Responses in a Pediatric African Phase III Trial.

    PubMed

    Moncunill, Gemma; De Rosa, Stephen C; Ayestaran, Aintzane; Nhabomba, Augusto J; Mpina, Maximillian; Cohen, Kristen W; Jairoce, Chenjerai; Rutishauser, Tobias; Campo, Joseph J; Harezlak, Jaroslaw; Sanz, Héctor; Díez-Padrisa, Núria; Williams, Nana Aba; Morris, Daryl; Aponte, John J; Valim, Clarissa; Daubenberger, Claudia; Dobaño, Carlota; McElrath, M Juliana

    2017-01-01

    Comprehensive assessment of cellular responses to the RTS,S/AS01E vaccine is needed to understand potential correlates and ultimately mechanisms of protection against malaria disease. Cellular responses recognizing the RTS,S/AS01E-containing circumsporozoite protein (CSP) and Hepatitis B surface antigen (HBsAg) were assessed before and 1 month after primary vaccination by intracellular cytokine staining and 16-color flow cytometry in 105 RTS,S/AS01-vaccinated and 74 rabies-vaccinated participants (controls) in a pediatric phase III trial in Africa. RTS,S/AS01E-vaccinated children had significantly higher frequencies of CSP- and HBsAg-specific CD4 + T cells producing IL-2, TNF-α, and CD40L and HBsAg-specific CD4 + T producing IFN-γ and IL-17 than baseline and the control group. Vaccine-induced responses were identified in both central and effector memory (EM) compartments. EM CD4 + T cells expressing IL-4 and IL-21 were detected recognizing both vaccine antigens. Consistently higher response rates to both antigens in RTS,S/AS01E-vaccinated than comparator-vaccinated children were observed. RTS,S/AS01E induced polyfunctional CSP- and HBsAg-specific CD4 + T cells, with a greater degree of polyfunctionality in HBsAg responses. In conclusion, RTS,S/AS01E vaccine induces T cells of higher functional heterogeneity and polyfunctionality than previously characterized. Responses detected in memory CD4 + T cell compartments may provide correlates of RTS,S/AS01-induced immunity and duration of protection in future correlates of immunity studies.

  5. Evaluation of mucoadhesive carrier adjuvant: toward an oral anthrax vaccine.

    PubMed

    Mangal, Sharad; Pawar, Dilip; Agrawal, Udita; Jain, Arvind K; Vyas, Suresh P

    2014-02-01

    The aim of present study was to evaluate the potential of mucoadhesive alginate-coated chitosan microparticles (A-CHMp) for oral vaccine against anthrax. The zeta potential of A-CHMp was -29.7 mV, and alginate coating could prevent the burst release of antigen in simulated gastric fluid. The results indicated that A-CHMp was mucoadhesive in nature and transported it to the peyer's patch upon oral delivery. The immunization studies indicated that A-CHMp resulted in the induction of potent systemic and mucosal immune responses, whereas alum-adjuvanted rPA could induce only systemic immune response. Thus, A-CHMp represents a promising acid carrier adjuvant for oral immunization against anthrax.

  6. TLR-adjuvanted nanoparticle vaccines differentially influence the quality and longevity of responses to malaria antigen Pfs25.

    PubMed

    Thompson, Elizabeth A; Ols, Sebastian; Miura, Kazutoyo; Rausch, Kelly; Narum, David L; Spångberg, Mats; Juraska, Michal; Wille-Reece, Ulrike; Weiner, Amy; Howard, Randall F; Long, Carole A; Duffy, Patrick E; Johnston, Lloyd; O'Neil, Conlin P; Loré, Karin

    2018-05-17

    Transmission-blocking vaccines (TBVs) are considered an integral element of malaria eradication efforts. Despite promising evaluations of Plasmodium falciparum Pfs25-based TBVs in mice, clinical trials have failed to induce robust and long-lived Ab titers, in part due to the poorly immunogenic nature of Pfs25. Using nonhuman primates, we demonstrate that multiple aspects of Pfs25 immunity were enhanced by antigen encapsulation in poly(lactic-co-glycolic acid)-based [(PLGA)-based] synthetic vaccine particles (SVP[Pfs25]) and potent TLR-based adjuvants. SVP[Pfs25] increased Ab titers, Pfs25-specific plasmablasts, circulating memory B cells, and plasma cells in the bone marrow when benchmarked against the clinically tested multimeric form Pfs25-EPA given with GLA-LSQ. SVP[Pfs25] also induced the first reported Pfs25-specific circulating Th1 and Tfh cells to our knowledge. Multivariate correlative analysis indicated several mechanisms for the improved Ab responses. While Pfs25-specific B cells were responsible for increasing Ab titers, T cell responses stimulated increased Ab avidity. The innate immune activation differentially stimulated by the adjuvants revealed a strong correlation between type I IFN polarization, induced by R848 and CpG, and increased Ab half-life and longevity. Collectively, the data identify ways to improve vaccine-induced immunity to poorly immunogenic proteins, both by the choice of antigen and adjuvant formulation, and highlight underlying immunological mechanisms.

  7. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  8. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults.

    PubMed

    van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie

    2017-10-09

    Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the immunological fitness of the middle-aged population is ill-defined. It is currently unknown whether effective T-cell help towards B-cells is initiated by conjugate-carrier vaccines at middle-age. We characterized systemic Tetanus Toxoid (TT) specific T-helper cell responses in the circulation of middle-aged adults (50-65years of age, n=31) having received the MenACWY-TT vaccination. Blood samples were taken pre- as well as 7days, 28days, and 1year post-vaccination. TT-specific T-cell responses were determined by IFNγ Elispot and by the secretion of IFNγ, IL13, IL10, IL17, and IL21 in cell culture supernatants. Circulating CD4+CXCR5+ICOS+IL21+ cells were analyzed by flow cytometry, and meningococcal and TT-specific IgG responses by bead-based immunoassays. The correlation between the T-cell help and humoral responses was evaluated. Vaccination with a TT-carrier protein induced a mixed TT-specific Th1 (IFNγ), Th2 (IL13, IL10), and Th17 (IL17) response in most participants. Additionally, circulating CD4+CXCR5+ICOS+IL21+ cells were significantly increased 7days post-vaccination. Pre-vaccination TT-specific cytokine production and post-vaccination Th2 responses correlated positively with the increase of CD4+CXCR5+ICOS+IL21+ cells. No correlation between T-cell help and antibody responses was found. The characteristics of the T-cell response upon a TT-carrier vaccination suggests effective T-cell help towards B-cells in response to meningococcal polysaccharides, although the absence of a correlation with the antibody responses warrants further clarification. However, the robust T-helper cell response in middle-aged adults, decades after previous TT vaccinations, strengthens the classification of

  9. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease

    PubMed Central

    Kim, Jin Hyang; Reber, Adrian J.; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A.; Jacob, Joshy; Sambhara, Suryaprakash

    2016-01-01

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses. PMID:27849030

  10. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease.

    PubMed

    Kim, Jin Hyang; Reber, Adrian J; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A; Jacob, Joshy; Sambhara, Suryaprakash

    2016-11-16

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses.

  11. DNA vaccination protects mice against Zika virus-induced damage to the testes

    PubMed Central

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  12. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    PubMed

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.

  13. Induction of humoural and cellular immunity by immunisation with HCV particle vaccine in a non-human primate model.

    PubMed

    Yokokawa, Hiroshi; Higashino, Atsunori; Suzuki, Saori; Moriyama, Masaki; Nakamura, Noriko; Suzuki, Tomohiko; Suzuki, Ryosuke; Ishii, Koji; Kobiyama, Kouji; Ishii, Ken J; Wakita, Takaji; Akari, Hirofumi; Kato, Takanobu

    2018-02-01

    Although HCV is a major cause of chronic liver disease worldwide, there is currently no prophylactic vaccine for this virus. Thus, the development of an HCV vaccine that can induce both humoural and cellular immunity is urgently needed. To create an effective HCV vaccine, we evaluated neutralising antibody induction and cellular immune responses following the immunisation of a non-human primate model with cell culture-generated HCV (HCVcc). To accomplish this, 10 common marmosets were immunised with purified, inactivated HCVcc in combination with two different adjuvants: the classically used aluminum hydroxide (Alum) and the recently established adjuvant: CpG oligodeoxynucleotide (ODN) wrapped by schizophyllan (K3-SPG). The coadministration of HCVcc with K3-SPG efficiently induced immune responses against HCV, as demonstrated by the production of antibodies with specific neutralising activity against chimaeric HCVcc with structural proteins from multiple HCV genotypes (1a, 1b, 2a and 3a). The induction of cellular immunity was also demonstrated by the production of interferon-γ mRNA in spleen cells following stimulation with the HCV core protein. These changes were not observed following immunisation with HCVcc/Alum preparation. No vaccination-related abnormalities were detected in any of the immunised animals. The current preclinical study demonstrated that a vaccine included both HCVcc and K3-SPG induced humoural and cellular immunity in marmosets. Vaccination with this combination resulted in the production of antibodies exhibiting cross-neutralising activity against multiple HCV genotypes. Based on these findings, the vaccine created in this study represents a promising, potent and safe prophylactic option against HCV. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis

    PubMed Central

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas

    2016-01-01

    ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332

  15. Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus

    PubMed Central

    Li, Xiangdong; Galliher-Beckley, Amy; Huang, Hongzhou; Sun, Xiuzhi; Shi, Jishu

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV+H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV+H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV+H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-γ secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses. PMID:23933333

  16. Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1.

    PubMed

    Sirvent, Sofía; Soria, Irene; Cirauqui, Cristina; Cases, Bárbara; Manzano, Ana I; Diez-Rivero, Carmen M; Reche, Pedro A; López-Relaño, Juan; Martínez-Naves, Eduardo; Cañada, F Javier; Jiménez-Barbero, Jesús; Subiza, Javier; Casanovas, Miguel; Fernández-Caldas, Enrique; Subiza, José Luis; Palomares, Oscar

    2016-08-01

    Allergen immunotherapy (AIT) is the only curative treatment for allergy. AIT faces pitfalls related to efficacy, security, duration, and patient compliance. Novel vaccines overcoming such inconveniences are in demand. We sought to study the immunologic mechanisms of action for novel vaccines targeting dendritic cells (DCs) generated by coupling glutaraldehyde-polymerized grass pollen allergoids to nonoxidized mannan (PM) compared with glutaraldehyde-polymerized allergoids (P) or native grass pollen extracts (N). Skin prick tests and basophil activation tests with N, P, or PM were performed in patients with grass pollen allergy. IgE-blocking experiments, flow cytometry, confocal microscopy, cocultures, suppression assays, real-time quantitative PCR, ELISAs, and ELISpot assays were performed to assess allergen capture by human DCs and T-cell responses. BALB/c mice were immunized with PM, N, or P. Antibody levels, cytokine production by splenocytes, and splenic forkhead box P3 (FOXP3)(+) regulatory T (Treg) cells were quantified. Experiments with oxidized PM were also performed. PM displays in vivo hypoallergenicity, induces potent blocking antibodies, and is captured by human DCs much more efficiently than N or P by mechanisms depending on mannose receptor- and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-mediated internalization. PM endorses human DCs to generate functional FOXP3(+) Treg cells through programmed death ligand 1. Immunization of mice with PM induces a shift to nonallergic responses and increases the frequency of splenic FOXP3(+) Treg cells. Mild oxidation impairs these effects in human subjects and mice, demonstrating the essential role of preserving the carbohydrate structure of mannan. Allergoids conjugated to nonoxidized mannan represent suitable vaccines for AIT. Our findings might also be of the utmost relevance to development of therapeutic interventions in other immune tolerance-related diseases. Copyright

  17. Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes.

    PubMed

    Tőke, E R; Lőrincz, O; Csiszovszki, Z; Somogyi, E; Felföldi, G; Molnár, L; Szipőcs, R; Kolonics, A; Malissen, B; Lori, F; Trocio, J; Bakare, N; Horkay, F; Romani, N; Tripp, C H; Stoitzner, P; Lisziewicz, J

    2014-06-01

    There is no clinically available cancer immunotherapy that exploits Langerhans cells (LCs), the epidermal precursors of dendritic cells (DCs) that are the natural agent of antigen delivery. We developed a DNA formulation with a polymer and obtained synthetic 'pathogen-like' nanoparticles that preferentially targeted LCs in epidermal cultures. These nanoparticles applied topically under a patch-elicited robust immune responses in human subjects. To demonstrate the mechanism of action of this novel vaccination strategy in live animals, we assembled a high-resolution two-photon laser scanning-microscope. Nanoparticles applied on the native skin poorly penetrated and poorly induced LC motility. The combination of nanoparticle administration and skin treatment was essential both for efficient loading the vaccine into the epidermis and for potent activation of the LCs to migrate into the lymph nodes. LCs in the epidermis picked up nanoparticles and accumulated them in the nuclear region demonstrating an effective nuclear DNA delivery in vivo. Tissue distribution studies revealed that the majority of the DNA was targeted to the lymph nodes. Preclinical toxicity of the LC-targeting DNA vaccine was limited to mild and transient local erythema caused by the skin treatment. This novel, clinically proven LC-targeting DNA vaccine platform technology broadens the options on DC-targeting vaccines to generate therapeutic immunity against cancer.

  18. DNA and virus particle vaccination protects against acquisition and confers control of viremia upon heterologous simian immunodeficiency virus challenge.

    PubMed

    Patel, Vainav; Jalah, Rashmi; Kulkarni, Viraj; Valentin, Antonio; Rosati, Margherita; Alicea, Candido; von Gegerfelt, Agneta; Huang, Wensheng; Guan, Yongjun; Keele, Brandon F; Bess, Julian W; Piatak, Michael; Lifson, Jeffrey D; Williams, William T; Shen, Xiaoying; Tomaras, Georgia D; Amara, Rama R; Robinson, Harriet L; Johnson, Welkin; Broderick, Kate E; Sardesai, Niranjan Y; Venzon, David J; Hirsch, Vanessa M; Felber, Barbara K; Pavlakis, George N

    2013-02-19

    We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4(+) effector memory, and postchallenge CD8(+) transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.

  19. Protective Efficacy of an Inactive Vaccine Based on the LY02 Isolate against Acute Haemophilus parasuis Infection in Piglets.

    PubMed

    Li, Xiao-Hua; Zhao, Guo-Zhen; Qiu, Long-Xin; Dai, Ai-Ling; Wu, Wang-Wei; Yang, Xiao-Yan

    2015-01-01

    Haemophilus parasuis can cause Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis. The current prevention of Glässer's disease is mainly based on the inactive vaccines; however, the protective efficacy usually fails in heterogeneous or homologous challenges. Here, the predominant lineage of H. parasuis (LY02 strain) in Fujian province, China, characterized as serovar 5, was used to evaluate the protective immunity against acute H. parasuis infection in piglets after inactivation. Following challenging with H. parasuis, only mild lesions in the pigs immunized with the killed vaccine were observed, whereas the typical symptoms of Glässer's disease presented in the nonimmunized piglets. A strong IgG immune response was induced by the inactive vaccine. CD4(+) and CD8(+) T lymphocyte levels were increased, indicating the potent cellular immune responses were elicited. The significantly high levels of IL-2, IL-4, TGF-β, and IFN-γ in sera from pigs immunized with this killed vaccine suggested that the mixed Th1 and Th2 immune responses were induced, associated with the high protection against H. parasuis infection compared to the nonimmunized animals. This study indicated that the inactivated LY02 strain of H. parasuis could serve as a potential vaccine candidate to prevent the prevalence of H. parasuis in Fujian province, China.

  20. Leukemia cell-rhabdovirus vaccine: personalized immunotherapy for acute lymphoblastic leukemia.

    PubMed

    Conrad, David P; Tsang, Jovian; Maclean, Meaghan; Diallo, Jean-Simon; Le Boeuf, Fabrice; Lemay, Chantal G; Falls, Theresa J; Parato, Kelley A; Bell, John C; Atkins, Harold L

    2013-07-15

    Acute lymphoblastic leukemia (ALL) remains incurable in most adults. It has been difficult to provide effective immunotherapy to improve outcomes for the majority of patients. Rhabdoviruses induce strong antiviral immune responses. We hypothesized that mice administered ex vivo rhabdovirus-infected ALL cells [immunotherapy by leukemia-oncotropic virus (iLOV)] would develop robust antileukemic immune responses capable of controlling ALL. Viral protein production, replication, and cytopathy were measured in human and murine ALL cells exposed to attenuated rhabdovirus. Survival following injection of graded amounts of ALL cells was compared between cohorts of mice administered γ-irradiated rhabdovirus-infected ALL cells (iLOV) or multiple control vaccines to determine key immunotherapeutic components and characteristics. Host immune requirements were assessed in immunodeficient and bone marrow-transplanted mice or by adoptive splenocyte transfer from immunized donors. Antileukemic immune memory was ascertained by second leukemic challenge in long-term survivors. Human and murine ALL cells were infected and killed by rhabdovirus; this produced a potent antileukemia vaccine. iLOV protected mice from otherwise lethal ALL by developing durable leukemia-specific immune-mediated responses (P < 0.0001), which required an intact CTL compartment. Preexisting antiviral immunity augmented iLOV potency. Splenocytes from iLOV-vaccinated donors protected 60% of naïve recipients from ALL challenge (P = 0.0001). Injecting leukemia cells activated by, or concurrent with, multiple Toll-like receptor agonists could not reproduce the protective effect of iLOV. Similarly, injecting uninfected irradiated viable, apoptotic, or necrotic leukemia cells with/without concurrent rhabdovirus administration was ineffective. Rhabdovirus-infected leukemia cells can be used to produce a vaccine that induces robust specific immunity against aggressive leukemia.

  1. Gestational exposure to yellow fever vaccine at different developmental stages induces behavioral alterations in the progeny.

    PubMed

    Marianno, P; Salles, M J S; Sonego, A B; Costa, G A; Galvão, T C; Lima, G Z; Moreira, E G

    2013-01-01

    The most effective method to prevent yellow fever and control the disease is a vaccine made with attenuated live virus. Due to the neurological tropism of the virus, preventive vaccination is not recommended for infants under 6 months and for pregnant women. However there is a paucity of data regarding the safety for pregnant women and there are no experimental studies investigating adverse effects to the offspring after maternal exposure to the vaccine. This study aimed to investigate, in mice, the effects of maternal exposure to the yellow fever vaccine at three different gestational ages on the physical and behavioral development of the offspring. Pregnant Swiss mice received a single subcutaneous injection of water for injection (control groups) or 2 log Plaque Forming Units (vaccine-treated groups) of the yellow fever vaccine on gestational days (GD) 5, 10 or 15. Neither maternal signs of toxicity nor alterations in physical development and reflex ontogeny of the offspring were observed in any of the groups. Data from behavioral evaluation indicated that yellow fever vaccine exposure induced motor hypoactivity in 22-day-old females independent of the day of exposure; and in 60-day-old male and female pups exposed at GD 10. Moreover, 22-day-old females also presented with a deficit in habituation memory. Altogether, these results indicate that in utero exposure to the yellow fever vaccine may induce behavioral alterations in the pups that may persist to adulthood in the absence of observed maternal toxicity or disruption of physical development milestones or reflex ontogeny. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The Breadth of Synthetic Long Peptide Vaccine-Induced CD8+ T Cell Responses Determines the Efficacy against Mouse Cytomegalovirus Infection

    PubMed Central

    Panagioti, Eleni; Redeker, Anke; van Duikeren, Suzanne; Franken, Kees LMC; Drijfhout, Jan Wouter; van der Burg, Sjoerd H.

    2016-01-01

    There is an ultimate need for efficacious vaccines against human cytomegalovirus (HCMV), which causes severe morbidity and mortality among neonates and immunocompromised individuals. In this study we explored synthetic long peptide (SLP) vaccination as a platform modality to protect against mouse CMV (MCMV) infection in preclinical mouse models. In both C57BL/6 and BALB/c mouse strains, prime-booster vaccination with SLPs containing MHC class I restricted epitopes of MCMV resulted in the induction of strong and polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD8+ T cell responses, equivalent in magnitude to those induced by the virus itself. SLP vaccination initially led to the formation of effector CD8+ T cells (KLRG1hi, CD44hi, CD127lo, CD62Llo), which eventually converted to a mixed central and effector-memory T cell phenotype. Markedly, the magnitude of the SLP vaccine-induced CD8+ T cell response was unrelated to the T cell functional avidity but correlated to the naive CD8+ T cell precursor frequency of each epitope. Vaccination with single SLPs displayed various levels of long-term protection against acute MCMV infection, but superior protection occurred after vaccination with a combination of SLPs. This finding underlines the importance of the breadth of the vaccine-induced CD8+ T cell response. Thus, SLP-based vaccines could be a potential strategy to prevent CMV-associated disease. PMID:27637068

  3. Dissection of Antibody Specificities Induced by Yellow Fever Vaccination

    PubMed Central

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X.

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors

  4. Dissection of antibody specificities induced by yellow fever vaccination.

    PubMed

    Vratskikh, Oksana; Stiasny, Karin; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Jarmer, Johanna; Karrer, Urs; Roggendorf, Michael; Roggendorf, Hedwig; Allwinn, Regina; Heinz, Franz X

    2013-01-01

    The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors

  5. BCG vaccination-induced suppurative lymphadenitis: four signs to pay attention to.

    PubMed

    Baek, Sang Oon; Ko, Hyo Sun; Han, Hyun Ho

    2017-12-01

    Suppurative lymphadenitis is one of the severe complication after BCG vaccination, but its diagnostic criteria and treatment guidelines have not yet been established. In this article, we describe a case of suppurative lymphadenitis caused by BCG vaccination and propose diagnostic criteria and treatment guidelines of the disease. The lymphadenitis was presented as skin involving mass and was completely extirpated. Pathological evaluation revealed a necrotising lymphadenitis, consistent with the diagnosis of BCG lymphadenitis. The patient was administered adjuvant medical treatment with anti-TB medications (Isoniazid and Rifampicin) for 3 months. At 6 months follow-up, the disease was in complete remission without complications. We recommend focus on the following four signs when diagnosing BCG lymphadenitis: (i) previous history of vaccination on the ipsilateral side of the lesion, (ii) absence of any other infection signs, (iii) absence of fever and (iv) isolated axillary or supraclavicular/cervical lymph node enlargement proven by ultrasonography or computed tomography scan. BCG vaccination-induced suppurative lymphadenitis can easily be overlooked, but prompt, accurate diagnosis followed by appropriate surgical resection should result in complete healing as in this case. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes.

    PubMed

    Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y

    2007-02-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.

  7. Vaccine-specific antibody secreting cells are a robust early marker of LAIV-induced B-cell response in ferrets.

    PubMed

    Cherukuri, Anu; Servat, Esteban; Woo, Jennifer

    2012-01-05

    Currently, a robust set of immune correlates for live attenuated influenza vaccine (LAIV) efficacy in humans has not been fully elucidated. The serum hemagglutination inhibition (HAI) assay has been historically used to measure humoral immune responses to injectable inactivated influenza vaccination. However, serum antibody titers do not reliably reflect the complete mechanism of action of LAIV, which is an intranasally delivered vaccine and is expected to induce local mucosal and cellular immune responses in addition to humoral immune responses. Therefore, we designed a study to evaluate potential immune correlates of LAIV vaccination in the ferret animal model of influenza infection. Ferrets were vaccinated with increasing doses of LAIV and four weeks later challenged with a homologous wild-type (wt) H1N1 strain. Humoral immune responses measured following LAIV vaccination included HAI, serum antibodies and antibody secreting cells (ASC); and the responses were found to correlate with the dose level of LAIV administered in this model. Protection from wt virus challenge was determined by measuring inhibition of wt viral replication in nasal washes and in lung tissue. Results demonstrated that LAIV doses ≥ 5.0 log(10) Plaque Forming Units (PFU) elicited vaccine-specific IgG and IgA ASC frequencies and induced complete protection in the lungs. Further, we developed a novel model utilizing seropositive older ferrets to demonstrate that in the background of previous wt influenza infection LAIV induces a robust vaccine-specific B-cell response even in the absence of serum antibody response, a result that suggests that effector B-cell responses generated by LAIV are not inhibited by prior viral exposure. Finally, we demonstrated that LAIV elicits strain-specific memory B-cell responses that are measurable in a background of wt influenza infections. Taken together, results from these studies identified the antigen-specific ASC frequency as a useful early biomarker of

  8. Acellular Pertussis Vaccines and Pertussis Resurgence: Revise or Replace?

    PubMed Central

    Ausiello, Clara Maria

    2014-01-01

    ABSTRACT The resurgence of pertussis (whooping cough) in countries with high vaccination coverage is alarming and invites reconsideration of the use of current acellular pertussis (aP) vaccines, which have largely replaced the old, reactogenic, whole-cell pertussis (wP) vaccine. Some drawbacks of these vaccines in terms of limited antigenic composition and early waning of antibody levels could be anticipated by the results of in-trial or postlicensure human investigations of B- and T-cell responses in aP versus wP vaccine recipients or unvaccinated, infected children. Recent data in experimental models, including primates, suggest that generation of vaccines capable of a potent, though regulated, stimulation of innate immunity driving effective, persistent adaptive immune responses against Bordetella pertussis infection should be privileged. Adjuvants that skew Th1/Th17 responses or new wP (detoxified or attenuated) vaccines should be explored. Nonetheless, the high merits of the current aP vaccines in persuading people to resume vaccination against pertussis should not be forgotten. PMID:24917600

  9. Vesicular Stomatitis Virus-Vectored Multi-Antigen Tuberculosis Vaccine Limits Bacterial Proliferation in Mice following a Single Intranasal Dose

    PubMed Central

    Zhang, Ming; Dong, Chunsheng; Xiong, Sidong

    2017-01-01

    Tuberculosis (TB) remains a serious health problem worldwide, and an urgent need exists to improve or replace the available vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG). Most vaccination protocols adapt two or three doses to induce long-term lasting immunity. Our previous study showed that the naked DNA encoding the triple-antigen fusion TFP846 (Rv3615c-Mtb10.4-Rv2660c) induced robust T cellular immune responses accompanying four inoculations against mycobacteria infection. However, a number of compliance issues exist in some areas lacking the appropriate medical infrastructure with multiple administrations. In this study, a novel vesicular stomatitis virus expressing TFP846 (VSV-846) was developed and the immune responses elicited by VSV-846 were evaluated. We observed that intranasal delivery of VSV-846 induced a potent antigen-specific T cell response following a single dose and VSV-846 efficiently controlled bacterial growth to levels ~10-fold lower than that observed in the mock group 6 weeks post-infection in BCG-infected mice. Importantly, mice immunized with VSV-846 provided long-term protection against mycobacteria infection compared with those receiving p846 or BCG immunization. Increased memory T cells were also observed in the spleens of VSV-846-vaccinated mice, which could be a potential mechanism associated with long-term protective immune response. These findings supported the use of VSV as an antigen delivery vector with the potential for TB vaccine development. PMID:28224119

  10. [From new vaccine to new target: revisiting influenza vaccination].

    PubMed

    Gérard, M

    2011-09-01

    Annual vaccination is since many years the corner stone of Influenza control strategy. Because conventional vaccine are needle-based, are less immunogenic in old people and induce only systemic IgG production, intranasal and intradermal vaccines that are recently or will be soon available in Belgium will offer distinct advantages. Intradermal vaccination is on the Belgian market since 2010. A stronger immune response that allows an antigen sparing strategy is elicited because antigens are delivered near the dermal dendritic cells. Local side effects are more pronounced than after intramuscular injection. The needle-free intranasal vaccine that has been approved for use in people less than 18 years old by the EMEA in October 2010 induces also a mucosal IgA response. Improved clinical results than with intramuscular vaccine has been documented in several studies in children. Several conditions are contraindication to nasal vaccination because of patterns of side effects and because the vaccine is an live-attenuated vaccine. Pregnant women has become a top priority for Influenza vaccination in the recommendations of the High Council of Health in Belgium since the 2009 H1N1 pandemic. Several studies has since then documented the increased risk for Influenza-related morbidity in pregnant women especially during the third trimester and independently of the presence of other comorbidities. Reduced incidence of documented Influenza and of Influenza-related hospitalizations are observed in the new born of vaccinated women until 6 months of age. Availability of new vaccines for Influenza and better knowledge of the benefit of vaccination in target populations are important tools to optimize vaccine coverage of the population.

  11. Cluster Intradermal DNA Vaccination Rapidly Induces E7-specific CD8+ T Cell Immune Responses Leading to Therapeutic Antitumor Effects

    PubMed Central

    Peng, Shiwen; Trimble, Cornelia; Alvarez, Ronald D.; Huh, Warner K.; Lin, Zhenhua; Monie, Archana; Hung, Chien-Fu; Wu, T.-C.

    2010-01-01

    Intradermal administration of DNA vaccines via a gene gun represents a feasible strategy to deliver DNA directly into the professional antigen-presenting cells (APCs) in the skin. This helps to facilitate the enhancement of DNA vaccine potency via strategies that modify the properties of APCs. We have previously demonstrated that DNA vaccines encoding human papillomavirus type 16 (HPV-16) E7 antigen linked to calreticulin (CRT) are capable of enhancing the E7-specific CD8+ T cell immune responses and antitumor effects against E7-expressing tumors. It has also been shown that cluster (short-interval) DNA vaccination regimen generates potent immune responses in a minimal timeframe. Thus, in the current study we hypothesize that the cluster intradermal CRT/E7 DNA vaccination will generate significant antigen-specific CD8+ T cell infiltrates in E7-expressing tumors in tumor-bearing mice, leading to an increase in apoptotic tumor cell death. We found that cluster intradermal CRT/E7 DNA vaccination is capable of rapidly generating a significant number of E7-specific CD8+ T cells, resulting in significant therapeutic antitumor effects in vaccinated mice. We also observed that cluster intradermal CRT/E7 DNA vaccination in the presence of tumor generates significantly higher E7-specific CD8+ T cell immune responses in the systemic circulation as well as in the tumors. In addition, this vaccination regimen also led to significantly lower levels of CD4+Foxp3+ T regulatory cells and myeloid suppressor cells compared to vaccination with CRT DNA in peripheral blood and in tumor infiltrating lymphocytes, resulting in an increase in apoptotic tumor cell death. Thus, our study has significant potential for future clinical translation. PMID:18401437

  12. Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers.

    PubMed

    Kemnitzer, William; Sirisoma, Nilantha; May, Chris; Tseng, Ben; Drewe, John; Cai, Sui Xiong

    2009-07-01

    We report the discovery of N-((benzo[d][1,3]dioxol-5-yl)methyl)-6-phenylthieno[3,2-d]pyrimidin-4-amine (2a) as an apoptosis inducer using our proprietary cell- and caspase-based ASAP HTS assay, and SAR study of HTS hit 2a which led to the discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers. Compounds 5d and 5e were the most potent with EC(50) values of 0.008 and 0.004microM in T47D human breast cancer cells, respectively. Compound 5d was found to be highly active in the MX-1 breast cancer model. Functionally, compounds 5d and 5e both induced apoptosis through inhibition of tubulin polymerization.

  13. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model.

    PubMed

    Guo, Shanguang; Yan, Weiwei; McDonough, Sean P; Lin, Nengfeng; Wu, Katherine J; He, Hongxuan; Xiang, Hua; Yang, Maosheng; Moreira, Maira Aparecida S; Chang, Yung-Fu

    2015-03-24

    Clostridium difficile infection (CDI) causes nosocomial antibiotic-associated diarrhea and colitis in the developed world. Two potent cytotoxins, toxin A (TcdA) and toxin B (TcdB) are the virulence factors of this disease and can be a good vaccine candidate against CDI. In the present study, we genetically engineered Lactococcus lactis to express the nontoxic, recombinant fragments derived from TcdA and TcdB C-terminal receptor binding domains (Tcd-AC and Tcd-BC) as an oral vaccine candidate. The immunogenicity of the genetically engineered L. lactis oral vaccine delivery system (animal groups LAC and LBC or the combination of both, LACBC) was compared with the recombinant TcdA and TcdB C-terminal receptor binding domain proteins (animal groups PAC and PBC or the combination of both, PACBC), which were expressed and purified from E. coli. After the C. difficile challenge, the control groups received PBS or engineered L. lactis with empty vector, showed severe diarrhea symptoms and died within 2-3 days. However, both the oral vaccine and recombinant protein vaccine groups had significantly lower mortalities, body weight decreases and histopathologic lesions than the control sham-vaccine groups (p<0.05) except group LBC which only had a 31% survival rate after the challenge. The data of post infection survival showed that an average of 86% of animals survived in groups PAC and PACBC, 75% of animals survived in group LACBC, and 65% of animals survived in group LAC. All of the vaccinated animals produced higher titers of both IgG and IgA than the control groups (p<0.05), and the antibodies were able to neutralize the cytopathic effect of toxins in vitro. The results of this study indicate that there is a potential to use L. lactis as a delivery system to develop a cost effective oral vaccine against CDI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    PubMed

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  15. Cellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination

    PubMed Central

    Sable, Suraj B.; Cheruvu, Mani; Nandakumar, Subhadra; Sharma, Sunita; Bandyopadhyay, Kakali; Kellar, Kathryn L.; Posey, James E.; Plikaytis, Bonnie B.; Amara, Rama Rao; Shinnick, Thomas M.

    2011-01-01

    Background The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. Methods and Principal Findings In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study. Conclusion and Significance Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis. PMID:21799939

  16. Revaccination with Marek's Disease Vaccines Induces Productive Infection and Superior Immunity▿

    PubMed Central

    Wu, Changxin; Gan, Junji; Jin, Qiao; Chen, Chuangfu; Liang, Ping; Wu, Yantao; Liu, Xuefen; Ma, Li; Davison, Fred

    2009-01-01

    The most common lymphoproliferative disease in chickens is Marek's disease (MD), which is caused by the oncogenic herpesvirus Marek's disease virus (MDV). The emergence of hypervirulent pathotypes of MDV has led to vaccine failures, which have become common and which have resulted in serious economic losses in some countries, and a revaccination strategy has been introduced in practice. The mechanism by which revaccination invokes superior immunity against MD is unknown. After field trials which showed that revaccination provided protection superior to that provided by a single vaccination were performed, experiments were conducted to explore the interaction between revaccinated chickens and MDV. The results showed that the chickens in the revaccination groups experienced two consecutive productive infections but that the chickens in the single-vaccination groups experienced one productive infection, demonstrating that revaccination of viruses caused the chickens to have productive and then latent infections. Revaccination of the virus induced in the chickens a higher and a longer temporary expansion of the CD8+, CD4+, and CD3+ T-lymphocyte subpopulations, stronger peripheral blood lymphocyte proliferative activity; and higher levels of neutralizing antibody than single vaccination. These findings disagree with the postulate that MDV antigens persist, stimulate the immune system, and maintain a high level immunity after vaccination. The suppression of productive infection by maternal antibodies in chickens receiving the primary vaccination and a lower level of productive infection in the revaccination groups challenged with MDV were observed. The information obtained in this study suggests that the productive infection with revaccinated MDV in chickens plays a crucial role in the induction of superior immunity. This finding may be exploited for the development of a novel MD vaccine that results in the persistence of the antigen supply and that maintains a high

  17. Immunologic Memory Induced by a Glycoconjugate Vaccine in a Murine Adoptive Lymphocyte Transfer Model

    PubMed Central

    Guttormsen, Hilde-Kari; Wetzler, Lee M.; Finberg, Robert W.; Kasper, Dennis L.

    1998-01-01

    We have developed an adoptive cell transfer model in mice to study the ability of a glycoprotein conjugate vaccine to induce immunologic memory for the polysaccharide moiety. We used type III capsular polysaccharide from the clinically relevant pathogen group B streptococci conjugated to tetanus toxoid (GBSIII-TT) as our model vaccine. GBS are a major cause of neonatal infections in humans, and type-specific antibodies to the capsular polysaccharide protect against invasive disease. Adoptive transfer of splenocytes from mice immunized with the GBSIII-TT conjugate vaccine conferred anti-polysaccharide immunologic memory to naive recipient mice. The transfer of memory occurred in a dose-dependent manner. The observed anamnestic immune response was characterized by (i) more rapid kinetics, (ii) isotype switching from immunoglobulin M (IgM) to IgG, and (iii) 10-fold-higher levels of type III-specific IgG antibody than for the primary response in animals with cells transferred from placebo-immunized mice. The adoptive cell transfer model described in this paper can be used for at least two purposes: (i) to evaluate conjugate vaccines with different physicochemical properties for their ability to induce immunologic memory and (ii) to study the cellular interactions required for an immune response to these molecules. PMID:9573085

  18. Intramuscular Therapeutic Vaccination Targeting HPV16 Induces T Cell Responses That Localize in Mucosal Lesions

    PubMed Central

    Jotova, Iveta; Wu, T. C.; Wang, Chenguang; Desmarais, Cindy; Boyer, Jean D.; Tycko, Benjamin; Robins, Harlan S.; Clark, Rachael A.; Trimble, Cornelia L.

    2014-01-01

    About 25% of high-grade cervical intraepithelial neoplasias (CIN2/3) caused by human papillomavirus serotype 16 (HPV16) undergo complete spontaneous regression. However, to date, therapeutic vaccination strategies for HPV disease have yielded limited success when measured by their ability to induce robust peripheral blood T cell responses to vaccine antigen. We report marked immunologic changes in the target lesion microenvironment after intramuscular therapeutic vaccination targeting HPV16 E6/E7 antigens, in subjects with CIN2/3 who had modest detectable responses in circulating T lymphocytes. Histologic and molecular changes, including markedly (average threefold) increased intensity of CD8+ T cell infiltrates in both the stromal and epithelial compartments, suggest an effector response to vaccination. Postvaccination cervical tissue immune infiltrates included organized tertiary lymphoid-like structures in the stroma subjacent to residual intraepithelial lesions and, unlike infiltrates in unvaccinated lesions, showed evidence of proliferation induced by recognition of cognate antigen. At a molecular level, these histologic changes in the stroma were characterized by increased expression of genes associated with immune activation (CXCR3) and effector function (Tbet and IFNβ), and were also associated with an immunologic signature in the overlying dysplastic epithelium. High-throughput T cell receptor sequencing of unmanipulated specimens identified clonal expansions in the tissue that were not readily detectable in peripheral blood. Together, these findings indicate that peripheral therapeutic vaccination to HPV antigens can induce a robust tissue-localized effector immune response, and that analyses of immune responses at sites of antigen are likely to be much more informative than analyses of cells that remain in the circulation. PMID:24477000

  19. Effect of simultaneous vaccination with H1N1 and GAD-alum on GAD65-induced immune response.

    PubMed

    Tavira, Beatriz; Cheramy, Mikael; Axelsson, Stina; Åkerman, Linda; Ludvigsson, Johnny; Casas, Rosaura

    2017-07-01

    A European Phase III trial of GAD formulated with aluminium hydroxide (GAD-alum) failed to reach its primary endpoint (preservation of stimulated C-peptide secretion from baseline to 15 months in type 1 diabetes patients), but subgroup analysis showed a clinical effect when participants from Nordic countries were excluded, raising concern as to whether the mass vaccination of the Swedish and Finnish populations with the Pandemrix influenza vaccine could have influenced the study outcomes. In the current study, we aimed to assess whether Pandemrix vaccination affects the specific immune responses induced by GAD-alum and the C-peptide response. In this secondary analysis, we analysed data acquired from the Swedish participants in the Phase III GAD-alum trial who received subcutaneous GAD-alum vaccination (two doses, n = 43; four doses, n = 46) or placebo (n = 48). GAD autoantibodies (GADA) and H1N1 autoantibodies, GAD 65 -induced cytokine secretion and change in fasting and stimulated C-peptide levels from baseline to 15 months were analysed with respect to the relative time between H1N1 vaccination and the first injection of GAD-alum. GADA levels at 15 months were associated with the relative time between GAD-alum and Pandemrix administration in participants who received two doses of the GAD-alum vaccine (p = 0.015, r = 0.4). Both in participants treated with two doses and four doses of GAD-alum, GADA levels were higher when the relative time between vaccines was ≥210 days (p < 0.05). In the group that received two doses of GAD-alum, levels of several GAD 65 -induced cytokines were higher in participants who received the H1N1 vaccination and the first GAD-alum injection at least 150 days apart, and the change in fasting and stimulated C-peptide at 15 months was associated with the relative time between vaccines. Neither of these effects were observed in individuals who received four doses of GAD-alum. In individuals who received two doses of GAD

  20. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    PubMed

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  1. Reducing the dose of smallpox vaccine reduces vaccine-associated morbidity without reducing vaccination success rates or immune responses.

    PubMed

    Couch, Robert B; Winokur, Patricia; Edwards, Kathryn M; Black, Steven; Atmar, Robert L; Stapleton, Jack T; Kissner, Jennifer M; Shinefield, Henry; Denny, Thomas N; Bybel, Michael J; Newman, Frances K; Yan, Lihan

    2007-03-15

    When the decision was made to prepare for a deliberate release of smallpox, the United States had approximately 15 million doses of Wyeth Dryvax vaccine, which was known to induce significant morbidity when used undiluted; Sanofi Pasteur, Inc., later identified approximately 85 million additional doses in storage. Eleven vaccine-dose groups, each with 30 vaccinia-naive subjects, were given diluted Dryvax vaccine or 1 of 2 lots of Sanofi Pasteur smallpox vaccine and were evaluated for vaccination success rates, morbidity, and immune responses. Estimated doses of 10(6.6)-10(8.2) pfu of virus/mL induced major reactions (or "takes") in 93%-100% of subjects in each dose group. No differences in vaccination take rates, lesion size, erythema, and induration or in serum neutralizing-antibody response were detected between the groups. However, systemic reactogenicity and missed activities were significantly lower for the vaccine groups given doses of 10(6.6)-10(7.2) pfu/mL than for those given doses of 10(7.6)-10(8.2) pfu/mL. These findings support the use of a higher dilution of Wyeth Dryvax vaccine and Sanofi Pasteur smallpox vaccine, given that the resulting morbidity should be significantly lower without loss of vaccine effectiveness. A plan for use of higher dilutions would create an enormous stockpile of vaccine.

  2. Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    PubMed Central

    Carey, John B.; Pearson, Frances E.; Vrdoljak, Anto; McGrath, Marie G.; Crean, Abina M.; Walsh, Patrick T.; Doody, Timothy; O'Mahony, Conor; Hill, Adrian V. S.; Moore, Anne C.

    2011-01-01

    Background Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8+ T cell responses to a malaria antigen induced by a live vaccine. Methodology and Findings Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. Conclusions/Significance This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8+ T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction

  3. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    PubMed

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  4. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    PubMed

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  5. Typhoid fever & vaccine development: a partially answered question.

    PubMed

    Marathe, Sandhya A; Lahiri, Amit; Negi, Vidya Devi; Chakravortty, Dipshikha

    2012-01-01

    Typhoid fever is a systemic disease caused by the human specific Gram-negative pathogen Salmonella enterica serovar Typhi (S. Typhi). The extra-intestinal infections caused by Salmonella are very fatal. The incidence of typhoid fever remains very high in impoverished areas and the emergence of multidrug resistance has made the situation worse. To combat and to reduce the morbidity and mortality caused by typhoid fever, many preventive measures and strategies have been employed, the most important being vaccination. In recent years, many Salmonella vaccines have been developed including live attenuated as well as DNA vaccines and their clinical trials have shown encouraging results. But with the increasing antibiotic resistance, the development of potent vaccine candidate for typhoid fever is a need of the hour. This review discusses the latest trends in the typhoid vaccine development and the clinical trials which are underway.

  6. A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs

    PubMed Central

    García-Nicolás, Obdulio; Ricklin, Meret E.; Liniger, Matthias; Vielle, Nathalie J.; Python, Sylvie; Souque, Philippe; Charneau, Pierre; Summerfield, Artur

    2017-01-01

    The Japanese encephalitis virus (JEV) is responsible for zoonotic severe viral encephalitis transmitted by Culex mosquitoes. Although birds are reservoirs, pigs play a role as amplifying hosts, and are affected in particular through reproductive failure. Here, we show that a lentiviral JEV vector, expressing JEV prM and E proteins (TRIP/JEV.prME), but not JEV infection induces strong antibody-dependent enhancement (ADE) activities for infection of macrophages. Such antibodies strongly promoted infection via Fc receptors. ADE was found at both neutralizing and non-neutralizing serum dilutions. Nevertheless, in vivo JEV challenge of pigs demonstrated comparable protection induced by the TRIP/JEV.prME vaccine or heterologous JEV infection. Thus, either ADE antibodies cause no harm in the presence of neutralizing antibodies or may even have protective effects in vivo in pigs. Additionally, we found that both pre-infected and vaccinated pigs were not fully protected as low levels of viral RNA were found in lymphoid and nervous system tissue in some animals. Strikingly, the virus from the pre-infection persisted in the tonsils throughout the experiment. Finally, despite the vaccination challenge, viral RNA was detected in the oronasal swabs in all vaccinated pigs. These latter data are relevant when JEV vaccination is employed in pigs. PMID:28531165

  7. Novel cancer vaccines prepared by anchoring cytokines to tumor cells avoiding gene transfection

    NASA Astrophysics Data System (ADS)

    Nizard, Philippe; Gross, David-Alexandre; Chenal, Alexandre; Beaumelle, Bruno; Kosmatopoulos, Konstadinos; Gillet, Daniel

    2002-06-01

    Cytokines have a strong potential for triggering anticancer immunity if released in the tumor microenvironment. Successful vaccines have been engineered using tumor cells genetically modified to secrete the cytokines. Unfortunately, this approach remains difficult and hazardous to perform in the clinic. We describe a new way of combining cytokines with tumor cells to prepare anticancer vaccines. This consists in anchoring recombinant cytokines to the membrane of killed tumor cells. Attachment is mediated by a fragment of diphtheria toxin (T) genetically connected to the cytokine. It is triggered by an acid pH pulse. The method was applied to IL-2, a potent anti-tumor cytokine. IL-2 anchored to the surface of tumor cells by the T anchor retained its IL-2 activity and remained exposed several days. Interestingly, vaccination of mice with these modified tumor cells induced a protective anti-tumor immunity mediated by tumor-specific cytotoxic T lymphocytes. This procedure presents several advantages as compared to the conventional approaches based on the transfection of tumor cells with cytokine genes. It does not require the culture of tumor cells from the patients and eliminates the safety problems connected with viral vectors while allowing the control of the amount of cytokines delivered with the vaccine.

  8. A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice.

    PubMed

    Tierney, Rob; Nakai, Toru; Parkins, Christopher J; Caposio, Patrizia; Fairweather, Neil F; Sesardic, Dorothea; Jarvis, Michael A

    2012-04-26

    The current commercially available vaccine used to prevent tetanus disease following infection with the anaerobic bacterium Clostridium tetani is safe and effective. However, tetanus remains a major source of mortality in developing countries. In 2008, neonatal tetanus was estimated to have caused >59,000 deaths, accounting for 1% of worldwide infant mortality, primarily in poorer nations. The cost of multiple vaccine doses administered by injection necessary to achieve protective levels of anti-tetanus toxoid antibodies is the primary reason for low vaccine coverage. Herein, we show that a novel vaccine strategy using a cytomegalovirus (CMV)-based vaccine platform induces protective levels of anti-tetanus antibodies that are durable (lasting >13 months) in mice following only a single dose. This study demonstrates the ability of a 'single-dose' CMV-based vaccine strategy to induce durable protection, and supports the potential for a tetanus vaccine based on CMV to impact the incidence of tetanus in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Immunization of cows with novel core glycolipid vaccine induces anti-endotoxin antibodies in bovine colostrum.

    PubMed

    Cross, Alan S; Karreman, Hubert J; Zhang, Lei; Rosenberg, Zeil; Opal, Steven M; Lees, Andrew

    2014-10-21

    Translocation of gut-derived Gram-negative bacterial (GNB) lipopolysaccharide (LPS, or endotoxin) is a source of systemic inflammation that exacerbates HIV, cardiovascular and gastrointestinal diseases and malnutrition. The oral administration of bovine colostrum (BC) reduces endotoxemia in patients with impaired gut barrier function. Consequently, BC enriched in antibodies to LPS may ameliorate endotoxemia-related morbidities. We developed a detoxified J5 LPS/group B meningococcal outer membrane protein (J5dLPS/OMP) vaccine that induces antibodies against a highly conserved core region of LPS and protects against heterologous GNB infection. We now examine the ability of this vaccine to elicit anti-core endotoxin antibodies in BC. Two cohorts of pregnant cows were immunized with this vaccine in combination with FICA (Cohort 1) or Emulsigen-D (Cohort 2) adjuvants. Antibody responses to the J5 core LPS antigen were measured in both serum and colostrum and compared to antibody levels elicited by a commercially available veterinary vaccine (J5 Bacterin) comprised of heat-killed Escherichia coli O111, J5 mutant bacteria, from which the J5 LPS was purified. The J5dLPS/OMP vaccine induced high titers of serum IgG antibody to J5 LPS in all seven cows. Both IgG and to a lesser extent IgA anti-J5 LPS antibodies were generated in the colostrum. The J5dLPS/OMP vaccine was significantly more immunogenic in mice than was the J5 Bacterin. BC enriched in anti-J5 LPS antibody reduced circulating endotoxin levels in neutropenic rats, a model of "leaky gut". The J5dLPS/OMP vaccine elicits high titers of serum anti-endotoxin antibodies in cows that is passed to the colostrum. This BC enriched in anti-core LPS antibodies has the potential to reduce endotoxemia and ameliorate endotoxin-related systemic inflammation in patients with impaired gut barrier function. Since this vaccine is significantly more immunogenic than the J5 Bacterin vaccine, this J5dLPS/OMP vaccine might prove to be

  10. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer.

    PubMed

    Zhao, Danhua; Chen, Ping; Yang, Huiqiang; Wu, Yonglin; Zeng, Xianwu; Zhao, Yu; Wen, Yanjun; Zhao, Xia; Liu, Xiaolin; Wei, Yuquan; Li, Yuhua

    2013-01-01

    Although the treatment of lung carcinoma has improved, at least 65% of patients with this tumor succumb to progressive disease. Measles virus oncolytic therapy has been reported to be effective in reducing tumor burden in immunocompetent or nude mice; however, its potential to reduce tumor burden in lung carcinoma remains to be determined. Herein, we report the potent antitumor effects of a live attenuated measles vaccine virus Hu-191 strain (MV) against lung carcinoma. Immunocompetent C57BL/6 mice bearing Lewis lung carcinoma (LLC) cells were treated with MV (1x104 to 1x106 CCID50/ml) once every other day for 10 days. Our results showed that treatment with MV effectively suppressed tumor growth and significantly prolonged the survival time of tumor-bearing animals. Histological examination revealed that the antitumor effects of MV therapy may result from increased induction of apoptosis, tumor necrosis and elevated lymphocyte infiltration. Our data suggest that MV, one of the widely used vaccines in China, has the ability to inhibit the growth of mouse lung carcinoma and may prove useful in the further exploration of the application of this approach in the treatment of human advanced lung cancer.

  11. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial.

    PubMed

    van Poelgeest, Mariette I E; Welters, Marij J P; van Esch, Edith M G; Stynenbosch, Linda F M; Kerpershoek, Gijs; van Persijn van Meerten, Els L; van den Hende, Muriel; Löwik, Margriet J G; Berends-van der Meer, Dorien M A; Fathers, Lorraine M; Valentijn, A Rob P M; Oostendorp, Jaap; Fleuren, Gert Jan; Melief, Cornelis J M; Kenter, Gemma G; van der Burg, Sjoerd H

    2013-04-04

    Human papilloma virus type 16 (HPV16)-induced gynecological cancers, in particular cervical cancers, are found in many women worldwide. The HPV16 encoded oncoproteins E6 and E7 are tumor-specific targets for the adaptive immune system permitting the development of an HPV16-synthetic long peptide (SLP) vaccine with an excellent treatment profile in animal models. Here, we determined the toxicity, safety, immunogenicity and efficacy of the HPV16 SLP vaccine in patients with advanced or recurrent HPV16-induced gynecological carcinoma. Patients with HPV16-positive advanced or recurrent gynecological carcinoma (n = 20) were subcutaneously vaccinated with an HPV16-SLP vaccine consisting of a mix of 13 HPV16 E6 and HPV16 E7 overlapping long peptides in Montanide ISA-51 adjuvant. The primary endpoints were safety, toxicity and tumor regression as determined by RECIST. In addition, the vaccine-induced T-cell response was assessed by proliferation and associated cytokine production as well as IFNγ-ELISPOT. No systemic toxicity beyond CTCAE grade II was observed. In a few patients transient flu-like symptoms were observed. In 9 out of 16 tested patients vaccine-induced HPV16-specific proliferative responses were detected which were associated with the production of IFNγ, TNFα, IL-5 and/or IL-10. ELISPOT analysis revealed a vaccine-induced immune response in 11 of the 13 tested patients. The capacity to respond to the vaccine was positively correlated to the patient's immune status as reflected by their response to common recall antigens at the start of the trial. Median survival was 12.6 ± 9.1 months. No regression of tumors was observed among the 12 evaluable patients. Nineteen patients died of progressive disease. The HPV16-SLP vaccine was well tolerated and induced a broad IFNγ-associated T-cell response in patients with advanced or recurrent HPV16-induced gynecological carcinoma but neither induced tumor regression nor prevented progressive disease. We, therefore

  12. Therapeutic Vaccination for HPV Induced Cervical Cancers

    PubMed Central

    Brinkman, Joeli A.; Hughes, Sarah H.; Stone, Pamela; Caffrey, Angela S.; Muderspach, Laila I.; Roman, Lynda D.; Weber, Jeffrey S.; Kast, W. Martin

    2007-01-01

    Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV) infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence. PMID:17627067

  13. New challenges in assuring vaccine quality.

    PubMed Central

    Dellepiane, N.; Griffiths, E.; Milstien, J. B.

    2000-01-01

    In the past, quality control of vaccines depended on use of a variety of testing methods to ensure that the products were safe and potent. These methods were developed for vaccines whose safety and efficacy were based on several years worth of data. However, as vaccine production technologies have developed, so have the testing technologies. Tests are now able to detect potential hazards with a sensitivity not possible a few years ago, and an increasing array of physicochemical methods allows a much better characterization of the product. In addition to sophisticated tests, vaccine regulation entails a number of other procedures to ensure safety. These include characterization of starting materials by supplier audits, cell banking, seed lot systems, compliance with the principles of good manufacturing practices, independent release of vaccines on a lot-by-lot basis by national regulatory authorities, and enhanced pre- and post-marketing surveillance for possible adverse events following immunization. These procedures help assure vaccine efficacy and safety, and some examples are given in this article. However, some contaminants of vaccines that can be detected by newer assays raise theoretical safety concerns but their presence may be less hazardous than not giving the vaccines. Thus risk-benefit decisions must be well informed and based on scientific evidence. PMID:10743279

  14. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis.

    PubMed

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A; Lozza, Laura; Saikali, Philippe; Sander, Leif E; Vogelzang, Alexis; Kaufmann, Stefan H E; Kupz, Andreas

    2016-11-22

    Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (T RM ) cells have been implicated in protective immune responses against viral infections, but the role of T RM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and T RM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4 + T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8 + T cells displayed prototypical T RM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pulmonary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infection route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the

  15. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses

    PubMed Central

    Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy

    2015-01-01

    DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action. PMID:26042527

  16. Vaccination with the polymorphic membrane protein A reduces Chlamydia muridarum induced genital tract pathology.

    PubMed

    Müller, Tina; Becker, Elisabeth; Stallmann, Sonja; Waldhuber, Anna; Römmler-Dreher, Franziska; Albrecht, Simone; Mohr, Fabian; Hegemann, Johannes H; Miethke, Thomas

    2017-05-15

    Chlamydia trachomatis serovars D-K are one of the most frequent causes of sexually transmitted infections of the female genital tract, with possible complications such as hydrosalpinx, pelvic inflammatory disease, extra-uterine gravidity or infertility. We used the murine genital tract infection model with C. muridarum for vaccination studies and found that more than 70% of the infected mice suffered from uterus dilatations and/or hydrosalpinx. Systemic consequences of the vaginal infection were apparent by splenomegaly ten to fifteen days post infection. While cultivable microorganisms were detectable for the first 23days post infection, the first lesions of the genital tract developed at day 15, however, many lesions occurred later in the absence of cultivable bacteria. Lesions were not accompanied by pro-inflammatory cytokines such as IFNɣ, TNF and IL-6, since these cytokines were almost undetectable in the genital tract 43days post infection. To prevent genital tract lesions, we vaccinated mice with the polymorphic membrane protein (Pmp) A in combination with CpG-ODN 1826 as adjuvant. The vaccine lowered the chlamydial burden and the differences were significant at day 10 post infection but not later. More importantly the vaccine decreased the rate and severity of genital tract lesions. Interestingly, control vaccination with the protein ovalbumin plus CpG-ODN 1826 enhanced significantly the severity but not the rate of pathologic lesions, which was presumably caused by the activation of innate immune responses by the adjuvant in the absence of a C. muridarum-specific adaptive immune response. In summary, vaccination with recombinant PmpA plus CpG-ODN 1826 significantly reduced C. muridarum-induced tissue damage, however, CpG-ODN 1826 may aggravate C. muridarum-induced tissue injuries in the absence of a protective antigen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Infants Infected with Respiratory Syncytial Virus Generate Potent Neutralizing Antibodies that Lack Somatic Hypermutation

    PubMed Central

    Goodwin, Eileen; Gilman, Morgan S. A.; Wrapp, Daniel; Chen, Man; Ngwuta, Joan O.; Moin, Syed M.; Bai, Patricia; Sivasubramanian, Arvind; Connor, Ruth I.; Wright, Peter F.; Graham, Barney S.; McLellan, Jason S.; Walker, Laura M.

    2018-01-01

    SUMMARY Respiratory syncytial virus (RSV) is a leading cause of infant mortality, and there are currently no licensed vaccines to protect this vulnerable population. A comprehensive understanding of infant antibody responses to natural RSV infection would facilitate vaccine development. Here, we isolated over 450 RSV fusion glycoprotein (F)-specific antibodies from seven RSV-infected infants and found that half of the antibodies recognized only two antigenic sites. Antibodies targeting both sites showed convergent sequence features, and structural studies revealed the molecular basis for their recognition of RSV F. A subset of antibodies targeting one of these sites displayed potent neutralizing activity despite lacking somatic mutations, and similar antibodies were detected in RSV-naïve B cell repertoires, suggesting that expansion of these B cells in infants may be possible with suitably designed vaccine antigens. Collectively, our results provide fundamental insights into infant antibody responses and a framework for the rational design of age-specific RSV vaccines. PMID:29396163

  18. Chimeric epitope vaccine against Leptospira interrogans infection and induced specific immunity in guinea pigs.

    PubMed

    Lin, Xu'ai; Xiao, Guohui; Luo, Dongjiao; Kong, Liangliang; Chen, Xu; Sun, Dexter; Yan, Jie

    2016-10-14

    Leptospirosis is an important reemerging zoonosis, with more than half a million cases reported annually, and is caused by pathogenic Leptospira species. Development of a universal vaccine is one of the major strategic goals to overcome the disease burden of leptospirosis. In this study, a chimeric multi-epitope protein-based vaccine was designed and tested for its potency to induce a specific immune response and provide protection against L. interrogans infection. The protein, containing four repeats of six T- and B-cell combined epitopes from the leptospiral outer membrane proteins, OmpL1, LipL32 and LipL21, was expressed and purified. Western blot analysis showed that the recombinant protein (named r4R) mainly expressed in a soluble pattern, and reacted with antibodies raised in rabbit against heat-killed Leptospira and in guinea pigs against the r4R vaccine. Microscopic agglutination tests showed that r4R antisera was immunological cross-reactive with a range of Chinese standard reference strains of Leptospira belonging to different serogroups. In guinea pigs, the r4R vaccine induced a Th1-biased immune response, as reflected by the IgG2a/IgG1 ratio and cytokine production of stimulated splenocytes derived from immunized animals. Finally, r4R-immunized guinea pigs showed increased survival of lethal Leptospira challenges compared with PBS-immunized animals and tissue damage and leptospiral colonization of the kidney were reduced. The multi-epitope chimeric r4R protein is a promising antigen for the development of a universal cross-reactive vaccine against leptospirosis.

  19. Dendritic cells combined with tumor cells and α-galactosylceramide induce a potent, therapeutic and NK-cell dependent antitumor immunity in B cell lymphoma.

    PubMed

    Escribà-Garcia, Laura; Alvarez-Fernández, Carmen; Tellez-Gabriel, Marta; Sierra, Jorge; Briones, Javier

    2017-05-26

    Invariant natural killer T (iNKT) cells are a small population of lymphocytes with unique specificity for glycolipid antigens presented by non-polymorphic CD1d receptor on dendritic cells (DCs). iNKT cells play a central role in tumor immunology since they are implicated in the coordination of innate and adaptive immune responses. These cells can be activated with the prototypic lipid α-galactosylceramide (α-GalCer), stimulating interferon gamma (IFN-γ) production and cytokine secretion, which contribute to the enhancement of T cell activation. We evaluated the antitumor effect of a combination of dendritic cells (DCs) and tumor cells with the iNKT cell agonist α-GalCer in a therapeutic model of B cell lymphoma. iNKT, NK and T cell phenotype was determined by flow cytometry. Serum cytokines were analyzed by Luminex technology. Significant differences between survival curves were assessed by the log-rank test. For all other data, Mann-Whitney test was used to analyze the differences between groups. This vaccine induced a potent (100% survival), long-lasting and tumor-specific antitumor immune response, that was associated with an increase of both Th1 cytokines and IFN-γ secreting iNKT cells (4.59 ± 0.41% vs. 0.92 ± 0.12% in control group; p = 0.01) and T cells (CD4 IFN-γ + : 3.75 ± 0.59% vs. 0.66 ± 0.18% p = 0.02; CD8 IFN-γ + : 10.61 ± 0.84% vs. 0.47 ± 0.03% p = 0.002). Importantly, natural killer (NK) cells played a critical role in the antitumor effect observed after vaccination. This study provides clinically relevant data for the development of iNKT-cell based immunotherapy treatments for patients with B cell malignancies.

  20. Effectiveness of Meningococcal B Vaccine against Endemic Hypervirulent Neisseria meningitidis W Strain, England

    PubMed Central

    Giuliani, Marzia Monica; Biolchi, Alessia; Pizza, Mariagrazia; Beebeejaun, Kazim; Lucidarme, Jay; Findlow, Jamie; Ramsay, Mary E.; Borrow, Ray

    2016-01-01

    Serum samples from children immunized with a meningococcal serogroup B vaccine demonstrated potent serum bactericidal antibody activity against the hypervirulent Neisseria meningitidis serogroup W strain circulating in England. The recent introduction of this vaccine into the United Kingdom national immunization program should also help protect infants against this endemic strain. PMID:26811872

  1. Type-1 polarised dendritic cells are a potent immunogen against Mycobacterium tuberculosis.

    PubMed

    Satake, Y; Nakamura, Y; Kono, M; Hozumi, H; Nagata, T; Tsujimura, K; Enomoto, N; Fujisawa, T; Inui, N; Fujiyama, T; Tokura, Y; Matsui, T; Yokomura, K; Shirai, M; Hayakawa, H; Suda, T

    2017-05-01

    Application of immunotherapy using dendritic cells (DCs) is considered an effective treatment strategy against persistent Mycobacterium tuberculosis infection. With the goal of developing improved therapeutic vaccination strategies for patients with tuberculosis (TB), we tested the ability of ex vivo-generated DCs to induce an effective TB antigen-specific type-1 immune response. Monocyte-derived DCs from TB patients were induced to mature using a 'standard' cytokine cocktail (interleukin [IL] 1β, tumour necrosis factor alpha [TNF-α], IL-6 and prostaglandin E2) or a type 1-polarised DC (DC1) cocktail (IL-1β, TNF-α, interferon [IFN] α, IFN-γ and polyinosinic:polycytidylic acid), and were loaded with the established TB antigen 6-kDa early secretory antigenic target protein (ESAT-6). Although DC1s from TB patients expressed the same levels of multiple co-stimulatory molecules (CD83, CD86, CD80 and CD40) as the standard DCs (sDCs), DC1s secreted substantially higher levels of IL-12p70. Furthermore, when DCs pulsed with or without ESAT-6 were cultured with lymphocytes from the same patients, DC1s induced much higher numbers of ESAT-6-specific IFN-γ-producing T-cells than sDCs, as manifested by their superior induction of natural killer cell activation and antigen-independent suppression of regulatory T-cells. TB antigen-loaded DC1s are potent inducers of antigen-specific T-cells, which could be used to develop improved immunotherapies of TB.

  2. Disrupted adenovirus-based vaccines against small addictive molecules circumvent anti-adenovirus immunity.

    PubMed

    De, Bishnu P; Pagovich, Odelya E; Hicks, Martin J; Rosenberg, Jonathan B; Moreno, Amira Y; Janda, Kim D; Koob, George F; Worgall, Stefan; Kaminsky, Stephen M; Sondhi, Dolan; Crystal, Ronald G

    2013-01-01

    Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1(-)E3(-) Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines.

  3. Disrupted Adenovirus-Based Vaccines Against Small Addictive Molecules Circumvent Anti-Adenovirus Immunity

    PubMed Central

    De, Bishnu P.; Pagovich, Odelya E.; Hicks, Martin J.; Rosenberg, Jonathan B.; Moreno, Amira Y.; Janda, Kim D.; Koob, George F.; Worgall, Stefan; Kaminsky, Stephen M.; Sondhi, Dolan

    2013-01-01

    Abstract Adenovirus (Ad) vaccine vectors have been used for many applications due to the capacity of the Ad capsid proteins to evoke potent immune responses, but these vectors are often ineffective in the context of pre-existing anti-Ad immunity. Leveraging the knowledge that E1−E3− Ad gene transfer vectors are potent immunogens, we have developed a vaccine platform against small molecules by covalently coupling analogs of small molecules to the capsid proteins of disrupted Ad (dAd5). We hypothesized that the dAd5 platform would maintain immunopotency even in the context of anti-Ad neutralizing antibodies. To test this hypothesis, we coupled cocaine and nicotine analogs, GNE and AM1, to dAd5 capsid proteins to generate dAd5GNE and dAd5AM1, respectively. Mice were pre-immunized with Ad5Null, resulting in high titer anti-Ad5 neutralizing antibodies comparable to those observed in the human population. The dAd5GNE and dAd5AM1 vaccines elicited high anti-cocaine and anti-nicotine antibody titers, respectively, in both naive and Ad5-immune mice, and both functioned to prevent cocaine or nicotine from reaching the brain of anti-Ad immune mice. Thus, disrupted Ad5 evokes potent humoral immunity that is effective in the context of pre-existing neutralizing anti-Ad immunity, overcoming a major limitation for current Ad-based vaccines. PMID:23140508

  4. Hydroxypropyl-β-Cyclodextrin Spikes Local Inflammation That Induces Th2 Cell and T Follicular Helper Cell Responses to the Coadministered Antigen

    PubMed Central

    Onishi, Motoyasu; Ozasa, Koji; Kobiyama, Kouji; Ohata, Keiichi; Kitano, Mitsutaka; Taniguchi, Keiichi; Homma, Tomoyuki; Kobayashi, Masanori; Sato, Akihiko; Katakai, Yuko; Yasutomi, Yasuhiro; Wijaya, Edward; Igarashi, Yoshinobu; Nakatsu, Noriyuki; Ise, Wataru; Inoue, Takeshi; Yamada, Hiroshi; Vandenbon, Alexis; Standley, Daron M.; Kurosaki, Tomohiro; Coban, Cevayir; Aoshi, Taiki; Kuroda, Etsushi

    2015-01-01

    Cyclodextrins are commonly used as a safe excipient to enhance the solubility and bioavailability of hydrophobic pharmaceutical agents. Their efficacies and mechanisms as drug-delivery systems have been investigated for decades, but their immunological properties have not been examined. In this study, we reprofiled hydroxypropyl-β-cyclodextrin (HP-β-CD) as a vaccine adjuvant and found that it acts as a potent and unique adjuvant. HP-β-CD triggered the innate immune response at the injection site, was trapped by MARCO+ macrophages, increased Ag uptake by dendritic cells, and facilitated the generation of T follicular helper cells in the draining lymph nodes. It significantly enhanced Ag-specific Th2 and IgG Ab responses as potently as did the conventional adjuvant, aluminum salt (alum), whereas its ability to induce Ag-specific IgE was less than that of alum. At the injection site, HP-β-CD induced the temporary release of host dsDNA, a damage-associated molecular pattern. DNase-treated mice, MyD88-deficient mice, and TBK1-deficient mice showed significantly reduced Ab responses after immunization with this adjuvant. Finally, we demonstrated that HP-β-CD–adjuvanted influenza hemagglutinin split vaccine protected against a lethal challenge with a clinically isolated pandemic H1N1 influenza virus, and the adjuvant effect of HP-β-CD was demonstrated in cynomolgus macaques. Our results suggest that HP-β-CD acts as a potent MyD88- and TBK1-dependent T follicular helper cell adjuvant and is readily applicable to various vaccines. PMID:25681338

  5. Heterovariant Cross-Reactive B-Cell Responses Induced by the 2009 Pandemic Influenza Virus A Subtype H1N1 Vaccine

    PubMed Central

    He, Xiao-Song; Sasaki, Sanae; Baer, Jane; Khurana, Surender; Golding, Hana; Treanor, John J.; Topham, David J.; Sangster, Mark Y.; Jin, Hong; Dekker, Cornelia L.; Subbarao, Kanta; Greenberg, Harry B.

    2013-01-01

    Background. The generation of heterovariant immunity is a highly desirable feature of influenza vaccines. The goal of this study was to compare the heterovariant B-cell response induced by the monovalent inactivated 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) vaccine with that induced by the 2009 seasonal trivalent influenza vaccine (sTIV) containing a seasonal influenza A virus subtype H1N1 (A[H1N1]) component in young and elderly adults. Methods. Plasmablast-derived polyclonal antibodies (PPAb) from young and elderly recipients of A(H1N1)pdm09 vaccine or sTIV were tested for binding activity to various influenza antigens. Results. In A(H1N1)pdm09 recipients, the PPAb titers against homotypic A(H1N1)pdm09 vaccine were similar to those against the heterovariant seasonal A(H1N1) vaccine and were similar between young and elderly subjects. The PPAb avidity was higher among elderly individuals, compared with young individuals. In contrast, the young sTIV recipients had 10-fold lower heterovariant PPAb titers against the A(H1N1)pdm09 vaccine than against the homotypic seasonal A(H1N1) vaccine. In binding assays with recombinant head and stalk domains of hemagglutinin, PPAb from the A(H1N1)pdm09 recipients but not PPAb from the sTIV recipients bound to the conserved stalk domain. Conclusion. The A(H1N1)pdm09 vaccine induced production of PPAb with heterovariant reactivity, including antibodies targeting the conserved hemagglutinin stalk domain. PMID:23107783

  6. Single-cycle adenovirus vectors in the current vaccine landscape.

    PubMed

    Barry, Michael

    2018-02-01

    Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.

  7. Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES

    PubMed Central

    2012-01-01

    Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs), a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100) DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100) tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can effectively enhance anti

  8. Liposomal short-chain C6 ceramide induces potent anti-osteosarcoma activity in vitro and in vivo.

    PubMed

    Zhai, Lei; Sun, Nan; Han, Zhe; Jin, Hai-chao; Zhang, Bo

    Osteosarcoma (OS) remains one deadly disease for many affected patients. The search for novel and more efficient anti-OS agents is urgent. In the current study, we demonstrated that liposome-packed C6 ceramide exerted potent cytotoxic effect against established (U2OS and MG-63 lines) and primary human OS cells. Meanwhile, the liposomal C6 (ceramide) induced caspase-mediated apoptotic death in OS cells. Liposomal C6 was significantly more potent than conventional free C6 in inhibiting OS cells, yet it was safe to non-cancerous bone cells (primary murine osteoblasts or human MLO-Y4 osteocytic cells). At the signaling level, we showed that liposomal C6 potently inhibited Akt activation in OS cells. Further studies revealed that a low dose of liposomal C6 dramatically sensitized the in vitro anti-OS activity of two conventional chemodrugs: methotrexate (MTX) and doxorubicin. In vivo, intravenous injection of liposomal C6 inhibited Akt activation and suppressed U2OS xenograft growth in nude mice without causing apparent toxicities. Meanwhile, when given at a low-dose (5 mg/kg body weight), liposomal C6 dramatically sensitized MTX's anti-U2OS activity in vivo. Collectively, our data demonstrate that liposomal C6 exerts potent anti-tumor activity in preclinical OS models. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis.

    PubMed

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-08-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to induce potent protection from pulmonary Mycobacterium tuberculosis challenge in a mouse model, we compared the protective effects of parenteral and mucosal booster immunizations following subcutaneous BCG priming. Protection by BCG prime immunization was not effectively boosted by subcutaneous BCG or intramuscular AdAg85A. In contrast, protection by BCG priming was remarkably boosted by intranasal AdAg85A. Such enhanced protection by intranasal AdAg85A was correlated to the numbers of gamma interferon-positive CD4 and CD8 T cells residing in the airway lumen of the lung. Our study demonstrates that intranasal administration of AdAg85A represents an effective way to boost immune protection by parenteral BCG vaccination.

  10. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory.

    PubMed

    Wang, Ce; Liu, Peng; Zhuang, Yan; Li, Ping; Jiang, Boling; Pan, Hong; Liu, Lanlan; Cai, Lintao; Ma, Yifan

    2014-09-22

    Although retaining antigens at the injection site (the so-called "depot effect") is an important strategy for vaccine development, increasing evidence showed that lymphatic-targeted vaccine delivery with liposomes could be a promising approach for improving vaccine efficacy. However, it remains unclear whether antigen depot or lymphatic targeting would benefit long-term immunological memory, a major determinant of vaccine efficacy. In the present study, OVA antigen was encapsulated with DOTAP cationic liposomes (LP) or DOTAP-PEG-mannose liposomes (LP-Man) to generate depot or lymphatic-targeted liposome vaccines, respectively. The result of in vivo imaging showed that LP mostly accumulated near the injection site, whereas LP-Man not only effectively accumulated in draining lymph nodes (LNs) and the spleen, but also enhanced the uptake by resident antigen-presenting cells. Although LP vaccines with depot effect induced anti-OVA IgG more potently than LP-Man vaccines did on day 40 after priming, they failed to mount an effective B-cell memory response upon OVA re-challenge after three months. In contrast, lymphatic-targeted LP-Man vaccines elicited sustained antibody production and robust recall responses three months after priming, suggesting lymphatic targeting rather than antigen depot promoted the establishment of long-term memory responses. The enhanced long-term immunological memory by LP-Man was attributed to vigorous germinal center responses as well as increased Tfh cells and central memory CD4(+) T cells in the secondary lymphoid organs. Hence, lymphatic-targeted vaccine delivery with LP-Man could be an effective strategy to promote long-lasting immunological memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The genetic basis for interindividual immune response variation to measles vaccine: new understanding and new vaccine approaches

    PubMed Central

    Haralambieva, Iana H; Ovsyannikova, Inna G; Pankratz, V Shane; Kennedy, Richard B; Jacobson, Robert M; Poland, Gregory A

    2013-01-01

    The live-attenuated measles vaccine is effective, but measles outbreaks still occur in vaccinated populations. This warrants elucidation of the determinants of measles vaccine-induced protective immunity. Interindividual variability in markers of measles vaccine-induced immunity, including neutralizing antibody levels, is regulated in part by host genetic factor variations. This review summarizes recent advances in our understanding of measles vaccine immunogenetics relative to the perspective of developing better measles vaccines. Important genetic regulators of measles vaccine-induced immunity, such as HLA class I and HLA class II genotypes, single nucleotide polymorphisms in cytokine/cytokine receptor genes (IL12B, IL12RB1, IL2, IL10) and the cell surface measles virus receptor CD46 gene, have been identified and independently replicated. New technologies present many opportunities for identification of novel genetic signatures and genetic architectures. These findings help explain a variety of immune response-related phenotypes and promote a new paradigm of ‘vaccinomics’ for novel vaccine development. PMID:23256739

  12. Dengue vaccine-induced CD8+ T cell immunity confers protection in the context of enhancing, interfering maternal antibodies.

    PubMed

    Lam, Jian Hang; Chua, Yen Leong; Lee, Pei Xuan; Martínez Gómez, Julia María; Ooi, Eng Eong; Alonso, Sylvie

    2017-12-21

    Declining levels of maternal antibodies were shown to sensitize infants born to dengue-immune mothers to severe disease during primary infection, through the process of antibody-dependent enhancement of infection (ADE). With the recent approval for human use of Sanofi-Pasteur's chimeric dengue vaccine CYD-TDV and several vaccine candidates in clinical development, the scenario of infants born to vaccinated mothers has become a reality. This raises 2 questions: will declining levels of maternal vaccine-induced antibodies cause ADE; and, will maternal antibodies interfere with vaccination efficacy in the infant? To address these questions, the above scenario was modeled in mice. Type I IFN-deficient female mice were immunized with live attenuated DENV2 PDK53, the core component of the tetravalent DENVax candidate currently under clinical development. Pups born to PDK53-immunized dams acquired maternal antibodies that strongly neutralized parental strain 16681, but not the heterologous DENV2 strain D2Y98P-PP1, and instead caused ADE during primary infection with this strain. Furthermore, pups failed to seroconvert after PDK53 vaccination, owing to maternal antibody interference. However, a cross-protective multifunctional CD8+ T cell response did develop. Thus, our work advocates for the development of dengue vaccine candidates that induce protective CD8+ T cells despite the presence of enhancing, interfering maternal antibodies.

  13. Attenuation of CCl4-Induced Hepatic Fibrosis in Mice by Vaccinating against TGF-β1

    PubMed Central

    Li, Shuang; Lv, Yifei; Su, Houqiang; Jiang, Huiping; Hao, Zhiming

    2013-01-01

    Transforming growth factor β1 (TGF-β1) is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β125–[41-65] and TGF-β130–[83-112]) to keyhole limpet hemocyanin (KLH). Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu) and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2), plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression in the rat hepatic stellate cell (HSC) line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases. PMID:24349218

  14. A single dose of inactivated hepatitis A vaccine promotes HAV-specific memory cellular response similar to that induced by a natural infection.

    PubMed

    Melgaço, Juliana Gil; Morgado, Lucas Nóbrega; Santiago, Marta Almeida; Oliveira, Jaqueline Mendes de; Lewis-Ximenez, Lia Laura; Hasselmann, Bárbara; Cruz, Oswaldo Gonçalves; Pinto, Marcelo Alves; Vitral, Claudia Lamarca

    2015-07-31

    Based on current studies on the effects of single dose vaccines on antibody production, Latin American countries have adopted a single dose vaccine program. However, no data are available on the activation of cellular response to a single dose of hepatitis A. Our study investigated the functional reactivity of the memory cell phenotype after hepatitis A virus (HAV) stimulation through administration of the first or second dose of HAV vaccine and compared the response to that of a baseline group to an initial natural infection. Proliferation assays showed that the first vaccine dose induced HAV-specific cellular response; this response was similar to that induced by a second dose or an initial natural infection. Thus, from the first dose to the second dose, increase in the frequencies of classical memory B cells, TCD8 cells, and central memory TCD4 and TCD8 cells were observed. Regarding cytokine production, increased IL-6, IL-10, TNF, and IFNγ levels were observed after vaccination. Our findings suggest that a single dose of HAV vaccine promotes HAV-specific memory cell response similar to that induced by a natural infection. The HAV-specific T cell immunity induced by primary vaccination persisted independently of the protective plasma antibody level. In addition, our results suggest that a single dose immunization system could serve as an alternative strategy for the prevention of hepatitis A in developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    PubMed Central

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  16. Efficacy of vaccination with La Sota strain vaccine to control Newcastle disease in village chickens in Nepal.

    PubMed

    Shrestha, Sulochana; Dhawan, Mamta; Donadeu, Meritxell; Dungu, Baptiste

    2017-02-01

    The efficacy of vaccination with Newcastle disease (ND) La Sota and R 2 B (Mukteswar) modified live strain vaccines was determined by experimental challenge and with ND La Sota vaccine under field conditions in Nepal. Booster vaccination with ND La Sota vaccine after a primary vaccination with ND La Sota vaccine, induced a geometric mean titre (GMT) of 5.0 log 2 haemagglutination inhibition (HI) units, compared to a GMT of 6.0 log 2 HI units following booster vaccination with R 2 B vaccine 1 month after primary vaccination with ND La Sota vaccine. Both vaccines provided 100% protection against challenge with a local field ND strain. Furthermore, booster vaccination with ND La Sota vaccine induced protective levels of antibody after field use in villages in Jhapa, and no outbreaks of ND occurred during the study period. The ND La Sota modified live vaccine is immunogenic and efficacious and is a suitable vaccine for use in vaccination programmes in village chickens in the rural areas of Nepal.

  17. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines

    PubMed Central

    Gasper, David J.; Neldner, Brandon; Plisch, Erin H.; Rustom, Hani; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M.

    2016-01-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the

  18. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines.

    PubMed

    Gasper, David J; Neldner, Brandon; Plisch, Erin H; Rustom, Hani; Carrow, Emily; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M

    2016-12-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the

  19. Potent apoptosis-inducing activity of erypoegin K, an isoflavone isolated from Erythrina poeppigiana, against human leukemia HL-60 cells.

    PubMed

    Hikita, Kiyomi; Hattori, Natsuki; Takeda, Aya; Yamakage, Yuko; Shibata, Rina; Yamada, Saori; Kato, Kuniki; Murata, Tomiyasu; Tanaka, Hitoshi; Kaneda, Norio

    2018-01-01

    Erypoegin K is an isoflavone isolated from the stem bark of Erythrina poeppigiana. It contains a furan group at the A-ring of the core isoflavone structure and can inhibit the activity of glyoxalase I, an enzyme that catalyzes the detoxification of methylglyoxal (MG), a by-product of glycolysis. In the present study, we found that erypoegin K has a potent cytotoxic effect on human leukemia HL-60 cells. Its cytotoxic effect was much stronger than that of a known glyoxalase I inhibitor S-p-bromobenzylglutathione cyclopentyl diester. Conversely, erypoegin K demonstrated weak cytotoxicity toward normal human peripheral lymphocytes. The treatment of HL-60 cells with erypoegin K significantly induced caspase-3 activity, whereas the pretreatment of the cells with caspase-3 inhibitor suppressed erypoegin K-induced cell death. Furthermore, nuclear condensation and apoptotic genome DNA fragmentation were observed in erypoegin K-treated HL-60 cells. These results indicated that the observed cell death was mediated by apoptosis. In addition, the toxic compound MG was highly accumulated in the culture medium of erypoegin K-treated HL-60 cells, suggesting that cell apoptosis was triggered by extracellular MG. The present study showed that erypoegin K has a potent apoptosis-inducing effect on cancerous cell lines, such as HL-60.

  20. P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer.

    PubMed

    Shariat, Sheida; Badiee, Ali; Jalali, Seyed Amir; Mansourian, Mercedeh; Yazdani, Mona; Mortazavi, Seyed Alireza; Jaafari, Mahmoud Reza

    2014-12-01

    Vaccines containing synthetic peptides derived from tumor-associated antigens (TAA) can elicit potent cytotoxic T lymphocyte (CTL) response if they are formulated in an optimal vaccine delivery system. The aim of this study was to develop a simple and effective lipid-based vaccine delivery system using P5 HER2/neu-derived peptide conjugated to Maleimide-PEG2000-DSPE. The conjugated lipid was then incorporated into liposomes composed of DMPC:DMPG:Chol:DOPE containing Monophosphoryl lipid A (MPL) (Lip-DOPE-P5-MPL). Different liposome formulations were prepared and characterized for their physicochemical properties. To evaluate anti-tumoral efficacy, BALB/c mice were immunized subcutaneously 3 times in two-week intervals and the generated immune response was studied. The results demonstrated that Lip-DOPE-P5-MPL induced a significantly higher IFN-γ production by CD8+ T cells intracellularly which represents higher CTL response in comparison with other control formulations. CTL response induced by this formulation caused the lowest tumor size and the longest survival time in a mice model of TUBO tumor. The encouraging results achieved by Lip-DOPE-P5-MPL formulation could make it a promising candidate in developing effective vaccines against Her2 positive breast cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events.

    PubMed

    Läubli, Heinz; Balmelli, Catharina; Kaufmann, Lukas; Stanczak, Michal; Syedbasha, Mohammedyaseen; Vogt, Dominik; Hertig, Astrid; Müller, Beat; Gautschi, Oliver; Stenner, Frank; Zippelius, Alfred; Egli, Adrian; Rothschild, Sacha I

    2018-05-22

    Immune checkpoint inhibiting antibodies were introduced into routine clinical practice for cancer patients. Checkpoint blockade has led to durable remissions in some patients, but may also induce immune-related adverse events (irAEs). Lung cancer patients show an increased risk for complications, when infected with influenza viruses. Therefore, vaccination is recommended. However, the efficacy and safety of influenza vaccination during checkpoint blockade and its influence on irAEs is unclear. Similarly, the influence of vaccinations on T cell-mediated immune reactions in patients during PD-1 blockade remains poorly defined. We vaccinated 23 lung cancer patients and 11 age-matched healthy controls using a trivalent inactivated influenza vaccine to investigate vaccine-induced immunity and safety during checkpoint blockade. We did not observe significant differences between patients and healthy controls in vaccine-induced antibody titers against all three viral antigens. Influenza vaccination resulted in protective titers in more than 60% of patients/participants. In cancer patients, the post-vaccine frequency of irAEs was 52.2% with a median time to occurrence of 3.2 months after vaccination. Six of 23 patients (26.1%) showed severe grade 3/4 irAEs. This frequency of irAEs might be higher than the rate previously published in the literature and the rate observed in a non-study population at our institution (all grades 25.5%, grade 3/4 9.8%). Although this is a non-randomized trial with a limited number of patients, the increased rate of immunological toxicity is concerning. This finding should be studied in a larger patient population.

  2. Immunogenicity of Live Attenuated B. pertussis BPZE1 Producing the Universal Influenza Vaccine Candidate M2e

    PubMed Central

    Kammoun, Hana; Roux, Xavier; Raze, Dominique; Debrie, Anne-Sophie; De Filette, Marina; Ysenbaert, Tine; Mielcarek, Nathalie; Saelens, Xavier; Fiers, Walter; Locht, Camille

    2013-01-01

    Background Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. Methodology/Principal Findings We have developed a live attenuated Bordetella pertussis vaccine, called BPZE1, and show here that it can be used to present the universal influenza virus epitope M2e to the mouse respiratory tract to prime for protective immunity against viral challenge. Three copies of M2e were genetically fused to the N-terminal domain of filamentous hemagglutinin (FHA) and produced in recombinant BPZE1 derivatives in the presence or absence of endogenous full-length FHA. Only in the absence of FHA intranasal administration of the recombinant BPZE1 derivative induced antibody responses to M2e and effectively primed BALB/c mice for protection against influenza virus-induced mortality and reduced the viral load after challenge. Strong M2e-specific antibody responses and protection were observed after a single nasal administration with the recombinant BPZE1 derivative, followed by a single administration of M2e linked to a virus-like particle without adjuvant, whereas priming alone with the vaccine strain did not protect. Conclusions/Significance Using recombinant FHA-3M2e-producing BPZE1 derivatives for priming and the universal influenza M2e peptide linked to virus-like particles for boosting may constitute a promising approach for needle-free and adjuvant-free nasal vaccination against influenza. PMID:23555631

  3. Co-localization of a CD1d-binding glycolipid with an adenovirus-based malaria vaccine for a potent adjuvant effect.

    PubMed

    Li, Xiangming; Huang, Jing; Kawamura, Akira; Funakoshi, Ryota; Porcelli, Steven A; Tsuji, Moriya

    2017-05-31

    A CD1d-binding, invariant (i) natural killer T (NKT)-cell stimulatory glycolipid, α-Galactosylceramide (αGalCer), has been shown to act as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying a higher binding affinity for CD1d molecule and more potent adjuvant activity than αGalCer. In the present study, 7DW8-5 co-administered intramuscularly (i.m.) with a recombinant adenovirus expressing a Plasmodium yoelii circumsporozoite protein (PyCSP), AdPyCS, has led to a co-localization of 7DW8-5 and a PyCSP in draining lymph nodes (dLNs), particularly in dendritic cells (DCs). This occurrence initiates a cascade of events, such as the recruitment of DCs to dLNs and their activation and maturation, and the enhancement of the ability of DCs to prime CD8+ T cells induced by AdPyCS and ultimately leading to a potent adjuvant effect and protection against malaria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Propelling novel vaccines directed against tuberculosis through the regulatory process.

    PubMed

    Brennan, M J; Collins, F M; Morris, S L

    1999-01-01

    The development of novel vaccines for use in the prevention and immunotherapy of tuberculosis is an area of intense interest for scientific researchers, public health agencies and pharmaceutical manufacturers. Development of effective anti-tuberculosis vaccines for use in specific target populations will require close cooperation among several different international organizations including agencies responsible for evaluating the safety and effectiveness of new biologics for human use. In this review, the major issues that are addressed by regulatory agencies to ensure that vaccines are pure, potent, safe, and effective are discussed. It is hoped that the comments provided here will help accelerate the development of new effective vaccines for the prevention and treatment of tuberculosis.

  6. A novel vaccine containing EphA2 epitope and LIGHT plasmid induces robust cellular immunity against glioma U251 cells.

    PubMed

    Chen, Hongjie; Yuan, Bangqing; Zheng, Zhaocong; Liu, Zheng; Wang, Shousen; Liu, Yong

    2011-01-01

    EphA2 is a receptor tyrosine kinase and can be acted as an attractive antigen for glioma vaccines. In addition, LIGHT plays an important role on enhancing T cell proliferation and cytokine production. To improve the CTL mediated immune response against glioma cells, we prepared the novel vaccine containing EphA2(883-891) peptide (TLADFDPRV) and LIGHT plasmid and utilized it to immunize the HLA-A2 transgenic HHD mice. In addition, trimera mice were immunized with the novel vaccine to elicit the antitumor immune response. The results demonstrated that the novel vaccine could induce robust cellular immunity against glioma U251 cells without lysing autologous lymphocytes. Moreover, the novel vaccine could significantly inhibit the tumor growth and prolong the life span of tumor bearing mice. These findings suggested that the novel vaccine containing EphA2 epitope and LIGHT plasmid could induce anti-tumor immunity against U251 cells expressing EphA2, and provided a promising strategy for glioma immunotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Modes of Action for Mucosal Vaccine Adjuvants.

    PubMed

    Aoshi, Taiki

    Vaccine adjuvants induce innate immune responses and the addition of adjuvants to the vaccine helps to induce protective immunity in the host. Vaccines utilizing live attenuated or killed whole pathogens usually contain endogenous adjuvants, such as bacterial cell wall products and their genomic nucleic acids, which act as pathogen-associated molecular patterns and are sufficient to induce adaptive immune responses. However, purified protein- or antigen-based vaccines, including component or recombinant vaccines, usually lose these endogenous innate immune stimulators, so the addition of an exogenous adjuvant is essential for the success of these vaccine types. Although this adjuvant requirement is mostly the same for parental and mucosal vaccines, the development of mucosal vaccine adjuvants requires the specialized consideration of adapting the adjuvants to characteristic mucosal conditions. This review provides a brief overview of mucosa-associated immune response induction processes, such as antigen uptake and dendritic cell subset-dependent antigen presentation. It also highlights several mucosal vaccine adjuvants from recent reports, particularly focusing on their modes of action.

  8. The marine cytotoxin portimine is a potent and selective inducer of apoptosis.

    PubMed

    Cuddihy, Sarah L; Drake, Sarah; Harwood, D Tim; Selwood, Andrew I; McNabb, Paul S; Hampton, Mark B

    2016-12-01

    Portimine is a recently discovered member of a class of marine micro-algal toxins called cyclic imines. In dramatic contrast to related compounds in this toxin class, portimine has very low acute toxicity to mice but is highly cytotoxic to cultured cells. In this study we show that portimine kills human Jurkat T-lymphoma cells and mouse embryonic fibroblasts (MEFs), with LC 50 values of 6 and 2.5 nM respectively. Treated cells displayed rapid caspase activation and phosphatidylserine exposure, indicative of apoptotic cell death. Jurkat cells overexpressing the anti-apoptotic protein Bcl-2 or Bax/Bak knockout MEFs were completely protected from portimine. This protection was apparent even at high concentrations of portimine, with no evidence of necrotic cell death, indicating that portimine is a selective chemical inducer of apoptosis. Treatment of the Bcl-2-overexpressing cells with both portimine and the Bcl-2 inhibitor ABT-737 proved a powerful combination, causing >90 % death. We conclude that portimine is one of the most potent naturally derived inducers of apoptosis to be discovered, and it displays strong selectivity for the induction of apoptotic pathways.

  9. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    PubMed

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  10. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model

    PubMed Central

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V.S.; Fletcher, Helen A.

    2015-01-01

    Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination. PMID:26256523

  11. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis

    PubMed Central

    Hwang, Hye Suk; Kwon, Young-Man; Lee, Jong Seok; Yoo, Si-Eun; Lee, Yu-Na; Ko, Eun-Ju; Kim, Min-Chul; Cho, Min-Kyoung; Lee, Young-Tae; Jung, Yu-Jin; Lee, Ji-Yun; Li, Jian Dong; Kang, Sang-Moo

    2014-01-01

    This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21 weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer long-term protection against RSV without causing lung pathology. PMID:25110201

  12. Potent CD4+ T-cell epitope P30 enhances HER2/neu-engineered dendritic cell-induced immunity against Tg1-1 breast cancer in transgenic FVBneuN mice by enhanced CD4+ T-cell-stimulated CTL responses.

    PubMed

    Xie, Y; Chen, Y; Ahmed, K A; Li, W; Ahmed, S; Sami, A; Chibbar, R; Tang, X; Tao, M; Xu, J; Xiang, J

    2013-10-01

    One of the major obstacles in human epidermal growth factor receptor (HER)-2/neu-specific trastuzumab immunotherapy of HER2/neu-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Although dendritic cell (DC) vaccines have been extensively applied in clinical trials for cancer treatment, the vaccination efficacy is still limited, mostly because DC vaccines are not sufficient to break tumor-associated antigen-specific self-immune tolerance in cancer patients. P30 (FNNFTVSFWLRVPKVSASHLE) derived from tetanus toxin is a universally potent CD4(+) T helper epitope capable of enhancing CD8(+) cytotoxic T-lymphocyte (CTL) responses. In this study, we constructed two recombinant adenoviral vectors (AdVs), AdVOVA-P30 and AdVHER2/neu-P30, expressing ovalbumin (OVA)-P30 and HER2/neu-P30. In order to enhance DC vaccine efficacy, we transfected mouse bone marrow (BM)-derived DCs with AdVOVA-P30 and AdVHER2/neu-P30 to generate engineered DCOVA-P30 and DCHER2/neu-P30 vaccines, respectively. We, then, compared CD4(+) and CD8(+) T-cell responses and antitumor immunity derived from DCOVA-P30 and DCHER2/neu-P30 vaccination in wild-type C57BL/6 and transgenic FVBneuN mice, respectively. We demonstrate that engineered DCOVA-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses than DCOVA in C57BL/6 mice. Interestingly, the increased DCOVA-P30-induced CTL responses are mainly contributed by enhanced CD4(+) T-cell-stimulated CTL proliferation. We show that DCOVA-P30 vaccine also stimulates more efficient therapeutic immunity against OVA-expressing BL6-10OVA melanoma than DCOVA in C57BL/6 mice. In addition, we demonstrate that DCHER2/neu-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses and protective immunity against HER2/neu-expressing Tg1-1 breast cancer than DCHER2/neu in transgenic FVBneuN mice with HER2/neu-specific self-immune tolerance. Therefore, the engineered DCHER

  13. Stimulation of alveolar macrophages by BCG vaccine enhances the process of lung fibrosis induced by bleomycin.

    PubMed

    Chyczewska, E; Chyczewski, L; Bańkowski, E; Sułkowski, S; Nikliński, J

    1993-01-01

    It was found that the BCG vaccine injected subcutaneously to the rats enhances the process of lung fibrosis induced by bleomycin. Pretreatment of rats with this vaccine results in accumulation of activated macrophages in lung interstitium and in the bronchoalveolar spaces. It may be suggested that the activated macrophages release various cytokines which may stimulate the proliferation of fibroblasts and biosynthesis of extracellular matrix components.

  14. Schistosoma egg-induced liver pathology resolution by Sm-p80-based schistosomiasis vaccine in baboons.

    PubMed

    Le, Loc; Molehin, Adebayo J; Nash, Stewart; Sennoune, Souad R; Ahmad, Gul; Torben, Workineh; Zhang, Weidong; Siddiqui, Afzal A

    2018-05-05

    Schistosomiasis remains a serious chronic debilitating hepato-intestinal disease. Current control measures based on mass drug administration are inadequate due to sustained re-infection rates, low treatment coverage and emergence of drug resistance. Hence, there is an urgent need for a schistosomiasis vaccine for disease control. In this study, we assessed the anti-pathology efficacy of Schistosoma mansoni large subunit of calpain (Sm-p80)-based vaccine against schistosomiasis caused by infections with Schistosoma mansoni in baboons. We also evaluated the disease transmission-blocking potential of Sm-p80 vaccine. Immunisations with Sm-p80-based vaccine resulted in significant reduction of hepatic egg load in vaccinated baboons (67.7% reduction, p = 0.0032) when compared to the control animals, indicative of reduction in pathology. There was also a significant reduction in sizes of egg-induced granulomas in baboons immunised with Sm-p80 vaccine compared to their control counterparts. Egg hatching rate analysis revealed an overall 85.6% reduction (p = 0.0018) in vaccinated animals compared to the controls, highlighting the potential role of Sm-p80 vaccine in disease transmission. The findings on anti-pathology efficacy and transmission-blocking potential presented in this study have formed the basis for a large-scale double-blinded baboon experiment that is currently underway. Copyright © 2018 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  15. Self-Assembly DNA Polyplex Vaccine inside Dissolving Microneedles for High-Potency Intradermal Vaccination.

    PubMed

    Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei

    2017-01-01

    The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries.

  16. Non-ablative fractional laser in conjunction with microneedle arrays for improved cutaneous vaccination

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Li, Bo; Wu, Mei X.

    2015-03-01

    Skin is more potent than the muscle for vaccination, but it is not a common site for immunization to date owing, in part, to a relatively high rate of pains and skin irritation and difficulty of administration. Here, we show effective and lesion free cutaneous vaccination by a combination of a biodegradable microneedle array (MNs) and an FDA-approved nonablative fractional laser (NAFL). Delivering a vaccine into many micropores, instead of a single "big" pore in the skin, effectively segregated vaccine-induced inflammation into many microzones and resulted in quick resolution of the inflammation, provided that distances between any two micropores were far enough. When the inoculation site was treated by NAFL prior to insertion of the MNs comprised of PR8 model influenza vaccine, the mice displayed vigorous antigen-uptake, giving rise to strong, Th1-biased immunity. The mice were protected from a challenge of homologous influenza virus at a high dose as well as heterologous H1N1 and H3N2 viruses. The adjuvant effect of NAFL was ascribed primarily to activation of the dsDNA sensing pathway by dsDNA released from laser-damaged skin cells. Thus, mice deficient in the dsDNA sensing pathway, but not toll like receptor (TLR) or inflammasome pathways, showed poor response to NAFL. Importantly, both mice and swine exhibited strong, protective immunity, but no overt skin reactions with this approach, in sharp contrast to intradermal injections that caused severe, overt skin reactions. The effective lesion-free transcutaneous vaccination merits further clinical studies.

  17. Characterization of Epitope-Specific Anti-Respiratory Syncytial Virus (Anti-RSV) Antibody Responses after Natural Infection and after Vaccination with Formalin-Inactivated RSV

    PubMed Central

    Luytjes, Willem; Leenhouts, Kees; Rottier, Peter J. M.; van Kuppeveld, Frank J. M.; Haijema, Bert Jan

    2016-01-01

    ABSTRACT Antibodies against the fusion (F) protein of respiratory syncytial virus (RSV) play an important role in the protective immune response to this important respiratory virus. Little is known, however, about antibody levels against multiple F-specific epitopes induced by infection or after vaccination against RSV, while this is important to guide the evaluation of (novel) vaccines. In this study, we analyzed antibody levels against RSV proteins and F-specific epitopes in human sera and in sera of vaccinated and experimentally infected cotton rats and the correlation thereof with virus neutralization. Analysis of human sera revealed substantial diversity in antibody levels against F-, G (attachment)-, and F-specific epitopes between individuals. The highest correlation with virus neutralization was observed for antibodies recognizing prefusion-specific antigenic site Ø. Nevertheless, our results indicate that high levels of antibodies targeting other parts of the F protein can also mediate a potent antiviral antibody response. In agreement, sera of experimentally infected cotton rats contained high neutralizing activity despite lacking antigenic site Ø-specific antibodies. Strikingly, vaccination with formalin-inactivated RSV (FI-RSV) exclusively resulted in the induction of poorly neutralizing antibodies against postfusion-specific antigenic site I, although antigenic sites I, II, and IV were efficiently displayed in FI-RSV. The apparent immunodominance of antigenic site I in FI-RSV likely explains the low levels of neutralizing antibodies upon vaccination and challenge and may play a role in the vaccination-induced enhancement of disease observed with such preparations. IMPORTANCE RSV is an importance cause of hospitalization of infants. The development of a vaccine against RSV has been hampered by the disastrous results obtained with FI-RSV vaccine preparations in the 1960s that resulted in vaccination-induced enhancement of disease. To get a better

  18. Bioactivity of Autologous Irradiated Renal Cell Carcinoma Vaccines Generated by ex Vivo Granulocyte-Macrophage Colony-stimulating Factor Gene Transfer1

    PubMed Central

    Simons, Jonathan W.; Jaffee, Elizabeth M.; Weber, Christine E.; Levitsky, Hyam I.; Nelson, William G.; Carducci, Michael A.; Lazenby, Audrey J.; Cohen, Lawrence K.; Finn, Christy C.; Clift, Shirley M.; Hauda, Karen M.; Beck, Lisa A.; Leiferman, Kristen M.; Owens, Albert H.; Piantadosi, Steven; Dranoff, Glenn; Mulligan, Richard C.; Pardoll, Drew M.; Marshall, Fray F.

    2014-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced, irradiated tumor vaccines induce potent, T-cell-mediated antitumor immune responses in preclinical models. We report the initial results of a Phase I trial evaluating this strategy for safety and the induction of immune responses in patients with metastatic renal cell carcinoma (RCC). Patients were treated in a randomized, double-blind dose-escalation study with equivalent doses of autologous, irradiated RCC vaccine cells with or without ex vivo human GM-CSF gene transfer. The replication-defective retroviral vector MFG was used for GM-CSF gene transfer. No dose-limiting toxicities were encountered in 16 fully evaluable patients. GM-CSF gene-transduced vaccines were equivalent in toxicity to nontransduced vaccines up to the feasible limits of autologous tumor vaccine yield. No evidence of autoimmune disease was observed. Biopsies of intradermal sites of injection with GM-CSF gene-transduced vaccines contained distinctive macrophage, dendritic cell, eosinophil, neutrophil, and T-cell infiltrates similar to those observed in preclinical models of efficacy. Histological analysis of delayed-type hypersensitivity responses in patients vaccinated with GM-CSF-transduced vaccines demonstrated an intense eosinophil infiltrate that was not observed in patients who received nontransduced vaccines. An objective partial response was observed in a patient treated with GM-CSF gene-transduced vaccine who displayed the largest delayed-type hypersensitivity conversion. No replication-competent retrovirus was detected in vaccinated patients. This Phase I study demonstrated the feasibility, safety, and bioactivity of an autologous GM-CSF gene-transduced tumor vaccine for RCC patients. PMID:9108457

  19. Exosomes from M1-Polarized Macrophages Potentiate the Cancer Vaccine by Creating a Pro-inflammatory Microenvironment in the Lymph Node.

    PubMed

    Cheng, Lifang; Wang, Yuhua; Huang, Leaf

    2017-07-05

    Exosomes are small membrane-bound vesicular particles generated by most cells for intercellular communication and regulation. During biogenesis, specific lipids, RNAs, proteins, and carbohydrates are enriched and packaged into the vesicles so that the exosomal contents reflect not only the source but also the physiological conditions of the parental cells. These exosomes transport materials or signals to the target cells for diverse physiological purposes. Our study focused on the exosomes derived from M1-polarized, proinflammatory macrophages for the possibility of using M1 exosomes as an immunopotentiator for a cancer vaccine. The M1 exosomes displayed a tropism toward lymph nodes after subcutaneous injection, primarily taken up by the local macrophages and dendritic cells, and they induced the release of a pool of Th1 cytokines. We found that M1, but not M2, exosomes enhanced activity of lipid calcium phosphate (LCP) nanoparticle-encapsulated Trp2 vaccine, and they induced a stronger antigen-specific cytotoxic T cell response. The M1 exosomes proved to be a more potent immunopotentiator than CpG oligonucleotide when used with LCP nanoparticle vaccine in a melanoma growth inhibition study. Thus, our study indicated that exosomes derived from M1-polarized macrophages could be used as a vaccine adjuvant. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  20. Modeling maternal fetal RSV F vaccine induced antibody transfer in guinea pigs.

    PubMed

    Glenn, Gregory M; Fries, Louis F; Smith, Gale; Kpamegan, Eloi; Lu, Hanxin; Guebre-Xabier, Mimi; Hickman, Somia P; Flyer, David

    2015-11-25

    Protection of newborns and young infants against RSV disease via maternal immunization mediated by transplacental transfer of antibodies is under evaluation in third-trimester pregnant women with the RSV recombinant F nanoparticle vaccine (RSV F vaccine). Since the hemichorial placental architecture in guinea pigs and humans is similar, the guinea pig model was employed to assess RSV F vaccine immunogenicity in pregnant sows and to compare RSV-specific maternal antibody levels in their pups. Thirty (30) presumptive pregnant guinea pigs were immunized on gestational day 25 and 46 with placebo (PBS), 30μg RSV F, or 30μg RSV F+400μg aluminum phosphate. Sera at delivery/birth (sows/pups) and 15 and 30 days post-partum (pups) were analyzed for the presence of anti-F IgG, palivizumab-competitive antibody (PCA) and RSV/A microneutralization (MN). The rates of pregnancy and stillbirth were similar between controls and vaccinees. The vaccine induced high levels of anti-F IgG, PCA and MN in sows, with the highest levels observed in adjuvanted vaccinees. Placental transfer to pups was proportional to the maternal antibody levels, with concentration effects observed for all immune measures. The RSV F vaccine was safe and immunogenic in pregnant guinea pigs and supported robust transplacental antibody transfer to their pups. Relative concentration of antibodies in the pups was observed even in the presence of high levels of maternal antibody. Guinea pigs may be an important safety and immunogenicity model for preclinical assessment of candidate vaccines for maternal immunization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network

    PubMed Central

    Swatkoski, Stephen; Matsumoto, Kazue; Campbell, Catherine B.; Petrie, Ryan J.; Dimitriadis, Emilios K.; Li, Xin; Mueller, Susette C.; Bugge, Thomas H.; Gucek, Marjan

    2015-01-01

    Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM. PMID:25646088

  2. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    NASA Astrophysics Data System (ADS)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  3. The steroidal Na+/K+ ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative (3-R-POD) induces potent pro-apoptotic responses in colonic tumor cells.

    PubMed

    Alkahtani, Saad Hussin

    2014-06-01

    Recently, potent anticancer actions of the steroidal Na(+)/K(+) ATPase inhibitor 3-[(R)-3-pyrrolidinyl]oxime derivative 3 (3-R-POD) have been reported for multiple cell lines, including prostate and lung cancer cells. In the present study, the anticancer action of 3-R-POD was addressed in colonic tumor cells. Treatment of Caco2 colonic tumor cells with increasing concentrations of 3-R-POD induced potent, dose-dependent inhibition of cell growth as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the APOpercentage apoptosis assay revealed significant pro-apoptotic responses, suggesting that the anticancer activity of this steroidal Na(+)/K(+) ATPase inhibitor in colonic tumors takes places mainly through the induction of strong pro-apoptotic effects. Focussing on the molecular mechanism that may regulate these interactions, 3-R-POD was shown to induce significant early actin re-organization and late Protein Kinase B (AKT) de-phosphorylation. Finally, the 3-R-POD-induced inhibition of cell growth and early actin reorganization in colonic cancer cells remained unchanged when cells were pre-treated with pertussis toxin, thus excluding possible interactions of this inhibitor with G-coupled receptors. These results indicate that 3-R-POD induces potent pro-apoptotic responses in colonic tumor cells governed by actin re-organization and inhibition of AKT pro-survival signaling. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. [Anti-influenza vaccination in animals].

    PubMed

    Bublot, M

    2009-01-01

    Until recently, Influenza was considered as a veterinary problem in avian, swine and horse only. New influenza strains able to infect and cause a disease in dogs and cats emerged these last six years. The most widely used influenza veterinary vaccines are the inactivated adjuvanted vaccines which are based on whole or split virus. New technologies have allowed the development of new generation vaccines including modified-live and vector vaccines. Modified-live influenza vaccines are available for horses only but they are in development in other species. Vector vaccines are already in use in chickens (replicative fowlpox vector) and in horses (non-replicative canarypox vector). These vaccines induce a rapid cellular and humoral immunity. Experimental studies have also shown that these vector vaccines are protective in other domestic species. These vector vaccines are compatible with the "DIVA" strategy which consists in differentiating infected from vaccinated animals and which allows disease eradication. The successive use of vector and inactivated vaccines (heterologous "prime-boost") induces a superior protective immunity in domestic poultry and constitutes a promising strategy for the control of H5N1 infection.

  5. Chimeric GII.4 norovirus virus-like-particle-based vaccines induce broadly blocking immune responses.

    PubMed

    Debbink, Kari; Lindesmith, Lisa C; Donaldson, Eric F; Swanstrom, Jesica; Baric, Ralph S

    2014-07-01

    There is currently no licensed vaccine for noroviruses, and development is hindered, in part, by an incomplete understanding of the host adaptive immune response to these highly heterogeneous viruses and rapid GII.4 norovirus molecular evolution. Emergence of a new predominant GII.4 norovirus strain occurs every 2 to 4 years. To address the problem of GII.4 antigenic variation, we tested the hypothesis that chimeric virus-like particle (VLP)-based vaccine platforms, which incorporate antigenic determinants from multiple strains into a single genetic background, will elicit a broader immune response against contemporary and emergent strains. Here, we compare the immune response generated by chimeric VLPs to that of parental strains and a multivalent VLP cocktail. Results demonstrate that chimeric VLPs induce a more broadly cross-blocking immune response than single parental VLPs and a similar response to a multivalent GII.4 VLP cocktail. Furthermore, we show that incorporating epitope site A alone from one strain into the background of another is sufficient to induce a blockade response against the strain donating epitope site A. This suggests a mechanism by which population-wide surveillance of mutations in a single epitope could be used to evaluate antigenic changes in order to identify potential emergent strains and quickly reformulate vaccines against future epidemic strains as they emerge in human populations. Noroviruses are gastrointestinal pathogens that infect an estimated 21 million people per year in the United States alone. GII.4 noroviruses account for >70% of all outbreaks, making them the most clinically important genotype. GII.4 noroviruses undergo a pattern of epochal evolution, resulting in the emergence of new strains with altered antigenicity over time, complicating vaccine design. This work is relevant to norovirus vaccine design as it demonstrates the potential for development of a chimeric VLP-based vaccine platform that may broaden the

  6. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines

    USDA-ARS?s Scientific Manuscript database

    Vaccines consisting of subunit or inactivated bacteria/virus and potent adjuvants are widely used to control and prevent infectious diseases. Because inactivated and subunit antigens are often less antigenic than live microbes, a growing need exists for the development of new and improved vaccine ad...

  7. Engineered outer membrane vesicle is potent to elicit HPV16E7-specific cellular immunity in a mouse model of TC-1 graft tumor.

    PubMed

    Wang, Shijie; Huang, Weiwei; Li, Kui; Yao, Yufeng; Yang, Xu; Bai, Hongmei; Sun, Wenjia; Liu, Cunbao; Ma, Yanbing

    2017-01-01

    Currently, therapeutic tumor vaccines under development generally lack significant effects in human clinical trials. Exploring a powerful antigen delivery system is a potential approach to improve vaccine efficacy. We sought to explore engineered bacterial outer membrane vesicles (OMVs) as a new vaccine carrier for efficiently delivering tumor antigens and provoking robust antitumor immune responses. First, the tumoral antigen human papillomavirus type 16 early protein E7 (HPV16E7) was presented on Escherichia coli -derived OMVs by genetic engineering methods, acquiring the recombinant OMV vaccine. Second, the ability of recombinant OMVs delivering their components and the model antigen green fluorescent protein to antigen-presenting cells was investigated in the macrophage Raw264.7 cells and in bone marrow-derived dendritic cells in vitro. Third, it was evaluated in TC-1 graft tumor model in mice that the recombinant OMVs displaying HPV16E7 stimulated specific cellular immune response and intervened the growth of established tumor. E. coli DH5α-derived OMVs could be taken up rapidly by dendritic cells, for which vesicle structure has been proven to be important. OMVs significantly stimulated the expression of dendritic cellmaturation markers CD80, CD86, CD83 and CD40. The HPV16E7 was successfully embedded in engineered OMVs through gene recombinant techniques. Subcutaneous immunization with the engineered OMVs induced E7 antigen-specific cellular immune responses, as shown by the increased numbers of interferon-gamma-expressing splenocytes by enzyme-linked immunospot assay and interferon-gamma-expressing CD4 + and CD8 + cells by flow cytometry analyses. Furthermore, the growth of grafted TC-1 tumors in mice was significantly suppressed by therapeutic vaccination. The recombinant E7 proteins presented by OMVs were more potent than those mixed with wild-type OMVs or administered alone for inducing specific cellular immunity and suppressing tumor growth. The results

  8. In vivo marking of spontaneous or vaccine-induced fibrosarcomas in the domestic house cat, using an adenoviral vector containing a bifunctional fusion protein, GAL-TEK.

    PubMed

    Marini, F C; Cannon, J P; Belmont, J W; Shillitoe, E J; Lapeyre, J N

    1995-09-01

    We evaluated the ability of a replication-deficient, recombinant adenoviral vector to transfer the bifunctional gene GAL-TEK, which expresses a marking/therapeutic gene product, to naturally occurring cat fibrosarcomas in situ. GAL-TEK contains an in-frame fusion of the bacterial LacZ gene for histochemical marking of tumors with beta-galactosidase (beta-Gal) and the HSV tk gene for enzyme-prodrug activation of the prodrug ganciclovir (GCV) to induce selective tumor cell killing. GAL-TEK bifunctional marking and cell killing activities were tested in vitro after adenoviral vector infection of HT1080 human fibrosarcoma cells. The tk activity of GAL-TEK is shown to be almost as potent as HSV tk to catalyze conversion of GCV to GCV nucleotides and promote selective cell killing. Using 8 cats with recurring 2.5-cm2 fibrosarcomas that either arose spontaneously or were induced by vaccine, we determined experimentally the administration routes and times required for optimum GAL-TEK gene transfer by beta-Gal histological staining and reverse transcriptase polymerase chain reaction to the multiple compartments of the growing fibrosarcomas consonant with minimizing collateral infection of neighboring tissues and other unwanted side effects.

  9. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation

    PubMed Central

    Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J.

    2017-01-01

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse

  10. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation.

    PubMed

    Kim, So Young; Kang, Dongxu; Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J

    2017-02-28

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse

  11. Structure-based design, synthesis, and biological evaluation of withaferin A-analogues as potent apoptotic inducers.

    PubMed

    Llanos, Gabriel G; Araujo, Liliana M; Jiménez, Ignacio A; Moujir, Laila M; Rodríguez, Jaime; Jiménez, Carlos; Bazzocchi, Isabel L

    2017-11-10

    Apoptosis inducers represent an attractive approach for the discovery and development of anticancer agents. Herein, we report on the development by molecular fine tuning of a withaferin A-based library of 63 compounds (2-64), 53 of them reported for the first time. Their antiproliferative evaluation on HeLa, A-549 and MCF-7 human tumor cell lines identified fifteen analogues displaying higher activity (IC 50 values ranging 0.3-4.8 μM) than the lead (IC 50 values ranging 1.3-10.1 μM) either in lag or log growth phases. SAR analysis revealed that acylation enhances cytotoxicity, suggesting the hydrophobic moiety contributes to the activity, presumably by increasing affinity and/or cell membrane permeability. Further investigation clearly indicated that compounds 3, 11, 12, and 18 induce apoptosis evidenced by chromatin condensation, phosphatidylserine externalization, and caspase-3 activation effects on HeLa cells. The potent capacity to induce apoptosis with concomitant cell loss in G2/M highlights the potential of 27-benzyl analogue (18) as an apoptotic inducer drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Inactivated infectious bronchitis virus vaccine encapsulated in chitosan nanoparticles induces mucosal immune responses and effective protection against challenge.

    PubMed

    Lopes, Priscila Diniz; Okino, Cintia Hiromi; Fernando, Filipe Santos; Pavani, Caren; Casagrande, Viviane Mariguela; Lopez, Renata F V; Montassier, Maria de Fátima Silva; Montassier, Helio José

    2018-05-03

    Avian infectious bronchitis virus (IBV) is one of the most important viral diseases of poultry. The mucosa of upper respiratory tract, specially the trachea, is the primary replication site for this virus. However, conventional inactivate IBV vaccines usually elicit reduced mucosal immune responses and local protection. Thus, an inactivated IBV vaccine containing BR-I genotype strain encapsulated in chitosan nanoparticles (IBV-CS) was produced by ionic gelation method to be administered by oculo-nasal route to chickens. IBV-CS vaccine administered alone resulted in markedly mucosal immune responses, characterized by high levels of anti-IBV IgA isotype antibodies and IFNγ gene expression at 1dpi. The association of live attenuated Massachusetts IBV and IBV-CS vaccine also induced strong mucosal immune responses, though a switch from IgA isotype to IgG was observed, and IFNγ gene expression peak was late (at 5 dpi). Efficacy of IBV-CS was evaluated by tracheal ciliostasis analysis, histopathology examination, and viral load determination in the trachea and kidney. The results indicated that IBV-CS vaccine administered alone or associated with a live attenuated heterologous vaccine induced both humoral and cell-mediated immune responses at the primary site of viral replication, and provided an effective protection against IBV infection at local (trachea) and systemic (kidney) sites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Vaccination-induced distemper in kinkajous.

    PubMed

    Kazacos, K R; Thacker, H L; Shivaprasad, H L; Burger, P P

    1981-12-01

    Following vaccination for distemper, using a modified live-virus vaccine developed for dogs, 2 young kinkajous (Potos flavus) developed diarrhea, then central nervous system disease. Clinical signs included myoclonus, head trembling, loss of muscular coordination, and convulsions. One kinkajou gradually recovered; the other seemed to recover, then relapsed and was euthanatized. Microscopic lesions included those of interstitial pneumonia and enteritis and multifocal lymphocytic inflammation, gliosis, spongiosis, and swollen and degenerating axons in the cerebral, cerebellar, and brain stem white matter. Similar lesions were found at all caudally, as exemplified by complete destruction of the dorsal funiculi and dorsal horns of the gray matter of the upper sacral cord segments. Eosinophilic intranuclear inclusions were seen histologically in the glia in the spinal cord, midbrain, and cerebellum, and were confirmed as canine distemper viral inclusions by the fluorescent antibody method. It was concluded that modified live canine distemper virus vaccines should be used with caution or not at all in kinkajous.

  14. Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial.

    PubMed

    Lindesmith, Lisa C; Ferris, Martin T; Mullan, Clancy W; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R; Baehner, Frank; Mendelman, Paul M; Bargatze, Robert F; Baric, Ralph S

    2015-03-01

    Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an

  15. Broad Blockade Antibody Responses in Human Volunteers after Immunization with a Multivalent Norovirus VLP Candidate Vaccine: Immunological Analyses from a Phase I Clinical Trial

    PubMed Central

    Lindesmith, Lisa C.; Ferris, Martin T.; Mullan, Clancy W.; Ferreira, Jennifer; Debbink, Kari; Swanstrom, Jesica; Richardson, Charles; Goodwin, Robert R.; Baehner, Frank; Mendelman, Paul M.; Bargatze, Robert F.; Baric, Ralph S.

    2015-01-01

    Background Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers. Methods and Findings Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated. Conclusions Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and

  16. PCV2 vaccination induces IFN-γ/TNF-α co-producing T cells with a potential role in protection.

    PubMed

    Koinig, Hanna C; Talker, Stephanie C; Stadler, Maria; Ladinig, Andrea; Graage, Robert; Ritzmann, Mathias; Hennig-Pauka, Isabel; Gerner, Wilhelm; Saalmüller, Armin

    2015-03-03

    Porcine circovirus type 2 (PCV2) is one of the economically most important pathogens for swine production worldwide. Vaccination is a powerful tool to control porcine circovirus diseases (PCVD). However, it is not fully understood how PCV2 vaccination interacts with the porcine immune system. Especially knowledge on the cellular immune response against PCV2 is sparse. In this study we analysed antigen-specific T cell responses against PCV2 in a controlled vaccination and infection experiment. We focused on the ability of CD4(+) T cells to produce cytokines using multicolour flow cytometry (FCM). Vaccination with a PCV2 subunit vaccine (Ingelvac CircoFLEX®) induced PCV2-specific antibodies only in five out of 12 animals. Conversely, vaccine-antigen specific CD4(+) T cells which simultaneously produced IFN-γ and TNF-α and had a phenotype of central and effector memory T cells were detected in all vaccinated piglets. After challenge, seroconversion occurred earlier in vaccinated and infected pigs compared to the non-vaccinated, infected group. Vaccinated pigs were fully protected against viremia after subsequent challenge. Therefore, our data suggests that the induction of IFN-γ/TNF-α co-producing T cells by PCV2 vaccination may serve as a potential correlate of protection for this type of vaccine.

  17. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model.

    PubMed

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Broadly protective anti-hemagglutinin stalk antibodies induced by live attenuated influenza vaccine expressing chimeric hemagglutinin.

    PubMed

    Isakova-Sivak, Irina; Korenkov, Daniil; Smolonogina, Tatiana; Kotomina, Tatiana; Donina, Svetlana; Matyushenko, Victoria; Mezhenskaya, Daria; Krammer, Florian; Rudenko, Larisa

    2018-05-01

    The development of influenza vaccines that can provide broad protection against all drifted seasonal virus variants, zoonotic infections and emerging pandemic strains, has been a priority for two decades. Here we propose a strategy of inducing broadly-reactive anti-stalk antibody by sequential immunizations with live attenuated influenza vaccines (LAIVs) expressing chimeric HAs (cHAs). These vaccines are designed to contain identical hemagglutinin stalk domains from H1N1 virus but antigenically unrelated globular head domains from avian influenza virus subtypes H5, H8 and H9. Mouse experiments demonstrated enhanced cross-protection of cHA-containing LAIVs compared to the relevant vaccine viruses expressing natural HAs, and this enhanced protection was driven by stalk-HA-reactive IgG antibodies. The establishment of fully functional cross-protective immunity after two doses of cHA LAIV vaccination in naïve animals suggests that a similar effect might be expected after a single cHA LAIV dose in primed individuals, or after two to three doses in naïve children. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines

    PubMed Central

    Kim, Shin-Hee; Samal, Siba K.

    2016-01-01

    Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578

  20. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.

    PubMed

    Kim, Shin-Hee; Samal, Siba K

    2016-07-04

    Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.

  1. Modes of Action for Mucosal Vaccine Adjuvants

    PubMed Central

    2017-01-01

    Abstract Vaccine adjuvants induce innate immune responses and the addition of adjuvants to the vaccine helps to induce protective immunity in the host. Vaccines utilizing live attenuated or killed whole pathogens usually contain endogenous adjuvants, such as bacterial cell wall products and their genomic nucleic acids, which act as pathogen-associated molecular patterns and are sufficient to induce adaptive immune responses. However, purified protein- or antigen-based vaccines, including component or recombinant vaccines, usually lose these endogenous innate immune stimulators, so the addition of an exogenous adjuvant is essential for the success of these vaccine types. Although this adjuvant requirement is mostly the same for parental and mucosal vaccines, the development of mucosal vaccine adjuvants requires the specialized consideration of adapting the adjuvants to characteristic mucosal conditions. This review provides a brief overview of mucosa-associated immune response induction processes, such as antigen uptake and dendritic cell subset-dependent antigen presentation. It also highlights several mucosal vaccine adjuvants from recent reports, particularly focusing on their modes of action. PMID:28436755

  2. Immunogenicity of sanofi pasteur tetravalent dengue vaccine.

    PubMed

    Guy, Bruno

    2009-10-01

    A candidate tetravalent (TV) dengue vaccine based on the yellow fever (YF) 17D vaccine has been developed by sanofi pasteur. This dengue TV vaccine induced a controlled dendritic cell stimulation in vitro. In clinical trials, Th1 and CD8 responses were induced with an IFN-gamma/TNF-alpha ratio favouring IFN-gamma in both cases, regardless of whether the vaccine recipients were flavivirus naive or not. There was an absence of Th2 response in all cases. The Th1 response was dominated by the D4 serotype in flavivirus naive individuals after initial vaccination but broadened to include all serotypes after second vaccination. This broadened response was also observed after primary dengue TV vaccination in subjects previously administered monovalent live-attenuated dengue 1 and dengue 2 vaccines. Notably, virtually no cross-reactivity between YF 17D and dengue NS3 antigens at the CD8 level was observed. Clinical and pre-clinical results support the favourable immunogenicity and short-term safety of the dengue TV. Future studies will establish the longevity of the vaccine-induced immunity and requirements for boosters.

  3. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    PubMed

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Formalin-Inactivated Coxiella burnetii Phase I Vaccine-Induced Protection Depends on B Cells To Produce Protective IgM and IgG

    PubMed Central

    Peng, Ying; Schoenlaub, Laura; Elliott, Alexandra; Mitchell, William; Zhang, Yan

    2013-01-01

    To further understand the mechanisms of formalin-inactivated Coxiella burnetii phase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+ T cell, or CD8+ T cell deficiency in mice significantly affects the ability of PIV to confer protection against a C. burnetii infection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+ T cell- or CD8+ T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+ T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+ T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibit C. burnetii infection in vivo, but only IgM from PIV-vaccinated CD4+ T cell-deficient mouse sera inhibited C. burnetii infection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection against C. burnetii infection. PMID:23545296

  5. A New Recombinant BCG Vaccine Induces Specific Th17 and Th1 Effector Cells with Higher Protective Efficacy against Tuberculosis

    PubMed Central

    da Costa, Adeliane Castro; Costa-Júnior, Abadio de Oliveira; de Oliveira, Fábio Muniz; Nogueira, Sarah Veloso; Rosa, Joseane Damaceno; Resende, Danilo Pires; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2014-01-01

    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that is a major public health problem. The vaccine used for TB prevention is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which provides variable efficacy in protecting against pulmonary TB among adults. Consequently, several groups have pursued the development of a new vaccine with a superior protective capacity to that of BCG. Here we constructed a new recombinant BCG (rBCG) vaccine expressing a fusion protein (CMX) composed of immune dominant epitopes from Ag85C, MPT51, and HspX and evaluated its immunogenicity and protection in a murine model of infection. The stability of the vaccine in vivo was maintained for up to 20 days post-vaccination. rBCG-CMX was efficiently phagocytized by peritoneal macrophages and induced nitric oxide (NO) production. Following mouse immunization, this vaccine induced a specific immune response in cells from lungs and spleen to the fusion protein and to each of the component recombinant proteins by themselves. Vaccinated mice presented higher amounts of Th1, Th17, and polyfunctional specific T cells. rBCG-CMX vaccination reduced the extension of lung lesions caused by challenge with Mtb as well as the lung bacterial load. In addition, when this vaccine was used in a prime-boost strategy together with rCMX, the lung bacterial load was lower than the result observed by BCG vaccination. This study describes the creation of a new promising vaccine for TB that we hope will be used in further studies to address its safety before proceeding to clinical trials. PMID:25398087

  6. An Alternative Approach to Combination Vaccines: Intradermal Administration of Isolated Components for Control of Anthrax, Botulism, Plague and Staphylococcal Toxic Shock

    DTIC Science & Technology

    2008-09-03

    shock were biocompatible in vivo, retained potent antibody responses, and were well tolerated by rhesus macaques. Vaccinated primates were completely...results indicate that the vaccines were biocompatible by i.d. administration and physical separation. Seroconversion also occurred after the primary...the vaccinated animals, suggesting that the potency of this vaccine was maintained. Cellular immu- nity , not addressed in our study, may also be

  7. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ+ CMI responses protects against a genital infection in minipigs

    PubMed Central

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter; Follmann, Frank

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia. PMID:26268662

  8. New vaccines against influenza virus

    PubMed Central

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  9. Vaccination in children with allergy to non active vaccine components.

    PubMed

    Franceschini, Fabrizio; Bottau, Paolo; Caimmi, Silvia; Crisafulli, Giuseppe; Lucia, Liotti; Peroni, Diego; Saretta, Francesca; Vernich, Mario; Povesi Dascola, Carlotta; Caffarelli, Carlo

    2015-01-01

    Childhood immunisation is one of the greatest public health successes of the last century. Vaccines contain an active component (the antigen) which induces the immune response. They may also contain additional components such as preservatives, additives, adjuvants and traces of other substances. This review provides information about risks of hypersensitivity reactions to components of vaccines. Furthermore, recommendations to avoid or reduce reactions to vaccine components have been detailed.

  10. Safety and Immunogenicity of Influenza A H5 Subunit Vaccines: Effect of Vaccine Schedule and Antigenic Variant

    PubMed Central

    Frey, Sharon E.; Graham, Irene; Mulligan, Mark J.; Edupuganti, Srilatha; Jackson, Lisa A.; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L.; Spearman, Paul; Hill, Heather; Wolff, Mark

    2011-01-01

    Background. The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). Methods. The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18–49 years of age. Results. Two doses of vaccine were required to induce antibody titers ≥1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. Conclusions. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053 PMID:21282194

  11. Using a prime and pull approach, lentivector vaccines expressing Ag85A induce immunogenicity but fail to induce protection against Mycobacterium bovis bacillus Calmette–Guérin challenge in mice

    PubMed Central

    Britton, Gary; MacDonald, Douglas C; Brown, Jeremy S; Collins, Mary K; Goodman, Anna L

    2015-01-01

    Although bacillus Calmette–Guérin (BCG) is an established vaccine with excellent efficacy against disseminated Mycobacterium tuberculosis infection in young children, efficacy in adults suffering from respiratory tuberculosis (TB) is suboptimal. Prime-boost viral vectored vaccines have been shown to induce effective immune responses and lentivectors (LV) have been shown to improve mucosal immunity in the lung. A mucosal boost to induce local immunogenicity is also referred to as a ‘pull’ in a prime and pull approach, which has been found to be a promising vaccine strategy. The majority of infants worldwide receive BCG immunization through current vaccine protocols. We therefore aimed to investigate the role of a boost (or pull) immunization with an LV vaccine expressing the promising TB antigen (Ag85A). We immunized BALB/c mice subcutaneously with BCG or an LV vaccine expressing a nuclear factor-κB activator vFLIP together with Ag85A (LV vF/85A), then boosted with intranasal LV vF/85A. Prime and pull immunization with LV85A induced significantly enhanced CD8+ and CD4+ T-cell responses in the lung, but did not protect against intranasal BCG challenge. In contrast, little T-cell response in the lung was seen when the prime vaccine was BCG, and intranasal vF/85A provided no additional protection against mucosal BCG infection. Our study demonstrates that not all LV prime and pull approaches may be successful against TB in man and careful antigen and immune activator selection is therefore required. PMID:26095282

  12. Classical swine fever vaccines-State-of-the-art.

    PubMed

    Blome, Sandra; Moß, Claudia; Reimann, Ilona; König, Patricia; Beer, Martin

    2017-07-01

    Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines.

    PubMed

    Ahonen, Cory L; Wasiuk, Anna; Fuse, Shinichiro; Turk, Mary Jo; Ernstoff, Marc S; Suriawinata, Arief A; Gorham, James D; Kedl, Ross M; Usherwood, Edward J; Noelle, Randolph J

    2008-03-15

    Identification of Toll-like receptors (TLRs) and their ligands, and tumor necrosis factor-tumor necrosis factor receptor (TNF-TNFR) pairs have provided the first logical, hypothesis-based strategies to molecularly concoct adjuvants to elicit potent cell-mediated immunity via activation of innate and adaptive immunity. However, isolated activation of one immune pathway in the absence of others can be toxic, ineffective, and detrimental to long-term, protective immunity. Effective engineered vaccines must include agents that trigger multiple immunologic pathways. Here, we report that combinatorial use of CD40 and TLR agonists as a cancer vaccine, compared with monotherapy, elicits high frequencies of self-reactive CD8(+) T cells, potent tumor-specific CD8(+) memory, CD8(+) T cells that efficiently infiltrate the tumor-burdened target organ; therapeutic efficacy; heightened ratios of CD8(+) T cells to FoxP3(+) cells at the tumor site; and reduced hepatotoxicity. These findings provide intelligent strategies for the formulation of multifactorial vaccines to achieve maximal efficacy in cancer vaccine trials in humans.

  14. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design

    PubMed Central

    Kong, Leopold; Sattentau, Quentin J

    2012-01-01

    Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445

  15. Gelatin-induced T-cell activation in children with nonanaphylactic-type reactions to vaccines containing gelatin.

    PubMed

    Taniguchi, K; Fujisawa, T; Ihara, T; Kamiya, H

    1998-12-01

    Many cases of anaphylactic or nonanaphylactic reactions have been reported to measles-mumps-rubella vaccine or its component vaccines that contain gelatin as a stabilizer. Increased levels of specific IgE antibodies to gelatin have been reported in children with anaphylactic reactions. However, IgE is not increased in cases of nonanaphylactic reaction, and the mechanisms of the reaction are still controversial. The study was aimed to elucidate the relationship between nonanaphylactic reaction and gelatin. We investigated in vitro induction of activated memory helper T cells (CD4(+ )CD25(+ )CD45RO+ cells) in response to gelatin in children with nonanaphylactic reactions to vaccines containing gelatin. In patients with delayed-type sensitivity to gelatin confirmed with a positive skin test response, CD4(+ )CD25(+ )CD45RO+ cells were significantly more strongly induced in culture containing gelatin than in control cultures. However, there was no significant difference between cultures with gelatin and those with control solvent in patients without reactions after vaccination. Of 76 patients with nonanaphylactic reactions after immunization with vaccine containing gelatin, 61 had an increased lymphocyte stimulation index to gelatin versus control children. These results suggest the possibility that nonanaphylactic reactions to gelatin-containing vaccine in Japan might be mediated by delayed hypersensitivity reactions against gelatin.

  16. In-depth genome analyses of viruses from vaccine-derived rabies cases and corresponding live-attenuated oral rabies vaccines.

    PubMed

    Pfaff, Florian; Müller, Thomas; Freuling, Conrad M; Fehlner-Gardiner, Christine; Nadin-Davis, Susan; Robardet, Emmanuelle; Cliquet, Florence; Vuta, Vlad; Hostnik, Peter; Mettenleiter, Thomas C; Beer, Martin; Höper, Dirk

    2018-02-10

    Live-attenuated rabies virus strains such as those derived from the field isolate Street Alabama Dufferin (SAD) have been used extensively and very effectively as oral rabies vaccines for the control of fox rabies in both Europe and Canada. Although these vaccines are safe, some cases of vaccine-derived rabies have been detected during rabies surveillance accompanying these campaigns. In recent analysis it was shown that some commercial SAD vaccines consist of diverse viral populations, rather than clonal genotypes. For cases of vaccine-derived rabies, only consensus sequence data have been available to date and information concerning their population diversity was thus lacking. In our study, we used high-throughput sequencing to analyze 11 cases of vaccine-derived rabies, and compared their viral population diversity to the related oral rabies vaccines using pairwise Manhattan distances. This extensive deep sequencing analysis of vaccine-derived rabies cases observed during oral vaccination programs provided deeper insights into the effect of accidental in vivo replication of genetically diverse vaccine strains in the central nervous system of target and non-target species under field conditions. The viral population in vaccine-derived cases appeared to be clonal in contrast to their parental vaccines. The change from a state of high population diversity present in the vaccine batches to a clonal genotype in the affected animal may indicate the presence of a strong bottleneck during infection. In conclusion, it is very likely that these few cases are the consequence of host factors and not the result of the selection of a more virulent genotype. Furthermore, this type of vaccine-derived rabies leads to the selection of clonal genotypes and the selected variants were genetically very similar to potent SAD vaccines that have undergone a history of in vitro selection. Copyright © 2018. Published by Elsevier Ltd.

  17. Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines

    PubMed Central

    2017-01-01

    Recent advances in reverse genetics techniques make it possible to manipulate the genome of RNA viruses such as Newcastle disease virus (NDV). Several NDV vaccine strains have been used as vaccine vectors in poultry, mammals, and humans to express antigens of different pathogens. The safety, immunogenicity, and protective efficacy of these NDV-vectored vaccines have been evaluated in pre-clinical and clinical studies. The vaccines are safe in mammals, humans, and poultry. Bivalent NDV-vectored vaccines against pathogens of economic importance to the poultry industry have been developed. These bivalent vaccines confer solid protective immunity against NDV and other foreign antigens. In most cases, NDV-vectored vaccines induce strong local and systemic immune responses against the target foreign antigen. This review summarizes the development of NDV-vectored vaccines and their potential use as a base for designing other effective vaccines for veterinary and human use. PMID:28775971

  18. Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with rapid protection against classical swine fever virus.

    PubMed

    Graham, Simon P; Haines, Felicity J; Johns, Helen L; Sosan, Olubukola; La Rocca, S Anna; Lamp, Benjamin; Rümenapf, Till; Everett, Helen E; Crooke, Helen R

    2012-04-05

    Live attenuated C-strain classical swine fever viruses (CSFV) provide a rapid onset of protection, but the lack of a serological test that can differentiate vaccinated from infected animals limits their application in CSF outbreaks. Since immunity may precede antibody responses, we examined the kinetics and specificity of peripheral blood T cell responses from pigs vaccinated with a C-strain vaccine and challenged after five days with a genotypically divergent CSFV isolate. Vaccinated animals displayed virus-specific IFN-γ responses from day 3 post-challenge, whereas, unvaccinated challenge control animals failed to mount a detectable response. Both CD4(+) and cytotoxic CD8(+) T cells were identified as the cellular source of IFN-γ. IFN-γ responses showed extensive cross-reactivity when T cells were stimulated with CSFV isolates spanning the major genotypes. To determine the specificity of these responses, T cells were stimulated with recombinant CSFV proteins and a proteome-wide peptide library from a related virus, BVDV. Major cross-reactive peptides were mapped on the E2 and NS3 proteins. Finally, IFN-γ was shown to exert potent antiviral effects on CSFV in vitro. These data support the involvement of broadly cross-reactive T cell IFN-γ responses in the rapid protection conferred by the C-strain vaccine and this information should aid the development of the next generation of CSFV vaccines. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  19. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    PubMed

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  20. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types.

    PubMed

    Zhang, Ting; Xu, Yufei; Qiao, Liang; Wang, Youchun; Wu, Xueling; Fan, Dongsheng; Peng, Qinglin; Xu, Xuemei

    2010-04-26

    Both Human Papillomavirus (HPV) type 16/18 bivalent vaccine and type 16/18/6/11 quadrivalent vaccine have been proved to be safe and effective, and licensed for public use. However, these two vaccines do not quite match the distribution of HPV types in China, Southeast Asia and Latin America, where HPV 58 is highly prevalent. Here we produced three types of virus-like particles (VLPs) in baculovirus expression system, formulated a trivalent vaccine containing HPV 16, 18, and 58 L1 VLPs and examined its in vitro neutralizing titers. This vaccine could induce high level and long-term humoral immunity against the component types. But immune interference was observed when comparing type specific neutralizing antibody levels induced by trivalent vaccine to those by corresponding monovalent vaccines. This kind of interference would become more obvious when formulating more types of VLPs into multivalent vaccines, but could be greatly overcome by decreasing the antigen dosage and adding a proper adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies.

    PubMed

    Stanfield, Brent A; Pahar, Bapi; Chouljenko, Vladimir N; Veazey, Ronald; Kousoulas, Konstantin G

    2017-01-23

    We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG 1 after two booster vaccinations, while IgG subtypes IgG 2 and IgG 3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27 high CD38 high ) and mature memory (CD21 - IgM - ) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67 + ) follicular T helper cells and regulatory CXCR5 + CD8 + cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67 + ) CD4 + and CD8 + T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG 1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help

  2. Efficient induction of anti-tumor immunity by a TAT-CEA fusion protein vaccine with poly(I:C) in a murine colorectal tumor model.

    PubMed

    Park, Jung-Sun; Kim, Hye-Sung; Park, Hye-Mi; Kim, Chang-Hyun; Kim, Tai-Gyu

    2011-11-03

    Protein vaccines may be a useful strategy for cancer immunotherapy because recombinant tumor antigen proteins can be produced on a large scale at relatively low cost and have been shown to be safe for clinical application. However, protein vaccines have historically exhibited poor immunogenicity; thus, an improved strategy is needed for successful induction of immune responses. TAT peptide is a protein transduction domain composed of an 11-amino acid peptide (TAT(47-57): YGRKKRRQRRR). The positive charge of this peptide allows protein antigen fused with it to improve cell penetration. Poly(I:C) is a synthetic double-stranded RNA that is negatively charged and favors interaction with the cationic TAT peptide. Poly(I:C) has been reported on adjuvant role in tumor vaccine through promotion of immune responses. Therefore, we demonstrated that vaccine with a mixture of TAT-CEA fusion protein and poly(I:C) can induce anti-tumor immunity in a murine colorectal tumor model. Splenocytes from mice vaccinated with a mixture of TAT-CEA fusion protein and poly(I:C) effectively induced CEA-specific IFN-γ-producing T cells and showed cytotoxic activity specific for MC-38-cea2 tumor cells expressing CEA. Vaccine with a mixture of TAT-CEA fusion protein and poly(I:C) delayed tumor growth in MC-38-cea-2 tumor-bearing mice. Depletion of CD8(+) T cells and NK cells reversed the inhibition of tumor growth in an MC-38-cea2-bearing mice, indicating that CD8(+) T cells and NK cells are responsible for anti-tumor immunity by vaccine with a mixture of TAT-CEA fusion protein and poly(I:C). Taken together, these results suggest that poly(I:C) could be used as a potent adjuvant to induce the anti-tumor immunity of a TAT-CEA fusion protein vaccine in a murine colorectal tumor model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Activation of chicken bone marrow-derived dendritic cells induced by a Salmonella Enteritidis ghost vaccine candidate.

    PubMed

    Kamble, N M; Jawale, C V; Lee, J H

    2016-10-01

    Bacterial Ghost-based vaccine development has been applied to a variety of gram-negative bacteria. Developed Salmonella Enteritidis (S. Enteritidis) ghost are promising vaccine candidates because of their immunogenic and enhanced biosafety potential. In this study, we aimed to evaluate the immunostimulatory effect of a S. Enteritidis ghost vaccine on the maturation of chicken bone marrow-derived dendritic cells (chBM-DCs) in vitro The immature chBM-DCs were stimulated with S. Enteritidis ghost vaccine candidate. The vaccine efficiently stimulated maturation events in chBM-DCs, indicated by up-regulated expression of CD40, CD80, and MHC-II molecules. Immature BM-DCs responded to stimulation with S. Enteritidis ghost by increased expression of IL-6 and IL-12p40 cytokines. Also, S. Enteritidis ghost stimulated chBM-DCs induced the significant expression of IFN-γ and IL-2 in co-cultured autologous CD4+ T cells. In conclusion, our data suggest that S. Enteritidis ghost vaccine candidate is capable of activating and interacting with chBM-DCs. The results from current study may help for rational designing of Salmonella ghost based heterologous antigen delivery platforms to dendritic cells. © 2016 Poultry Science Association Inc.

  4. A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge.

    PubMed

    Yendo, Anna Carolina A; de Costa, Fernanda; Cibulski, Samuel P; Teixeira, Thais F; Colling, Luana C; Mastrogiovanni, Mauricio; Soulé, Silvia; Roehe, Paulo M; Gosmann, Grace; Ferreira, Fernando A; Fett-Neto, Arthur G

    2016-04-29

    Quillaja brasiliensis (Quillajaceae) is a saponin producing species native from southern Brazil and Uruguay. Its saponins are remarkably similar to those of Q. saponaria, which provides most of the saponins used as immunoadjuvants in vaccines. The immunostimulating capacities of aqueous extract (AE) and purified saponin fraction (QB-90) obtained from leaves of Q. brasiliensis were favorably comparable to those of a commercial saponin-based adjuvant preparation (Quil-A) in experimental vaccines against bovine herpesvirus type 1 and 5, poliovirus and bovine viral diarrhea virus in mice model. Herein, the immunogenicity and protection efficacy of rabies vaccines adjuvanted with Q. brasiliensis AE and its saponin fractions were compared with vaccines adjuvanted with either commercial Quil-A or Alum. Mice were vaccinated with one or two doses (on days 0 and 14) of one of the different vaccines and serum levels of total IgG, IgG1 and IgG2a were quantified over time. A challenge experiment with a lethal dose of rabies virus was carried out with the formulations. Viral RNA detection in the brain of mice was performed by qPCR, and RNA copy-numbers were quantified using a standard curve of in vitro transcribed RNA. All Q. brasiliensis saponin-adjuvanted vaccines significantly enhanced levels of specific IgG isotypes when compared with the no adjuvant group (P ≤ 0.05). Overall, one or two doses of saponin-based vaccine were efficient to protect against the lethal rabies exposure. Both AE and saponin fractions from Q. brasiliensis leaves proved potent immunological adjuvants in vaccines against a lethal challenge with a major livestock pathogen, hence confirming their value as competitive or complementary sustainable alternatives to saponins of Q. saponaria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. New Kids on the Block: RNA-Based Influenza Virus Vaccines.

    PubMed

    Scorza, Francesco Berlanda; Pardi, Norbert

    2018-04-01

    RNA-based immunization strategies have emerged as promising alternatives to conventional vaccine approaches. A substantial body of published work demonstrates that RNA vaccines can elicit potent, protective immune responses against various pathogens. Consonant with its huge impact on public health, influenza virus is one of the best studied targets of RNA vaccine research. Currently licensed influenza vaccines show variable levels of protection against seasonal influenza virus strains but are inadequate against drifted and pandemic viruses. In recent years, several types of RNA vaccines demonstrated efficacy against influenza virus infections in preclinical models. Additionally, comparative studies demonstrated the superiority of some RNA vaccines over the currently used inactivated influenza virus vaccines in animal models. Based on these promising preclinical results, clinical trials have been initiated and should provide valuable information about the translatability of the impressive preclinical data to humans. This review briefly describes RNA-based vaccination strategies, summarizes published preclinical and clinical data, highlights the roadblocks that need to be overcome for clinical applications, discusses the landscape of industrial development, and shares the authors' personal perspectives about the future of RNA-based influenza virus vaccines.

  6. Functional anti-polysaccharide IgG titres induced by unadjuvanted pneumococcal-conjugate vaccine when delivered by microprojection-based skin patch.

    PubMed

    Pearson, Frances E; Muller, David A; Roalfe, Lucy; Zancolli, Marta; Goldblatt, David; Kendall, Mark A F

    2015-11-27

    Adequate access to effective and affordable vaccines is essential for the prevention of mortality due to infectious disease. Pneumonia--a consequence of Streptococcus pneumoniae infection--is the world's leading cause of death in children aged under 5 years. The development of a needle-free, thermostable pneumococcal-conjugate vaccine (PCV) could revolutionise the field by reducing cold-chain and delivery constraints. Skin patches have been used to deliver a range of vaccines, with some inducing significantly higher vaccine-specific immunogenicity than needle-injected controls in pre-clinical models, though they have yet to be used to deliver a PCV. We dry-coated a licensed PCV onto a microprojection-based patch (the Nanopatch) and delivered it to mouse skin. We analysed resulting anti-polysaccharide IgG responses. With and without adjuvant, anti-polysaccharide IgG titres induced by Nanopatch immunisation were significantly higher than dose-matched intramuscular controls. These improved responses were primarily obtained against pneumococcal serotypes 4 and 14. Importantly, capsule-specific IgG correlated with functionality in an opsonophagocytic killing assay. We demonstrate enhanced anti-PCV immunogenicity when delivered by Nanopatch over intramuscular injection. As the first study of a PCV delivered by a skin vaccination technology, this report indicates the potential for reduced costs and greater global distribution of such a vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Novel HIV IL-4R antagonist vaccine strategy can induce both high avidity CD8 T and B cell immunity with greater protective efficacy.

    PubMed

    Jackson, Ronald J; Worley, Matthew; Trivedi, Shubhanshi; Ranasinghe, Charani

    2014-09-29

    We have established that the efficacy of a heterologous poxvirus vectored HIV vaccine, fowlpox virus (FPV)-HIV gag/pol prime followed by attenuated vaccinia virus (VV)-HIV gag/pol booster immunisation, is strongly influenced by the cytokine milieu at the priming vaccination site, with endogenous IL-13 detrimental to the quality of the HIV specific CD8+ T cell response induced. We have now developed a novel HIV vaccine that co-expresses a C-terminal deletion mutant of the mouse IL-4, deleted for the essential tyrosine (Y119) required for signalling. In our vaccine system, the mutant IL-4C118 can bind to IL-4 type I and II receptors with high affinity, and transiently prevent the signalling of both IL-4 and IL-13 at the vaccination site. When this IL-4C118 adjuvanted vaccine was used in an intranasal rFPV/intramuscular rVV prime-boost immunisation strategy, greatly enhanced mucosal/systemic HIV specific CD8+ T cells with higher functional avidity, expressing IFN-γ, TNF-α and IL-2 and greater protective efficacy were detected. Surprisingly, the IL-4C118 adjuvanted vaccines also induced robust long-lived HIV gag-specific serum antibody responses, specifically IgG1 and IgG2a. The p55-gag IgG2a responses induced were of a higher magnitude relative to the IL-13Rα2 adjuvant vaccine. More interestingly, our recently tested IL-13Rα2 adjuvanted vaccine which only inhibited IL-13 activity, even though induced excellent high avidity HIV-specific CD8+ T cells, had a detrimental impact on the induction of gag-specific IgG2a antibody immunity. Our observations suggest that (i) IL-4 cell-signalling in the absence of IL-13 retarded gag-specific antibody isotype class switching, or (ii) IL-13Rα2 signalling was involved in inducing good gag-specific B cell immunity. Thus, we believe our novel IL-4R antagonist adjuvant strategy offers great promise not only for HIV-1 vaccines, but also against a range of chronic infections where sustained high quality mucosal and systemic T and B

  8. Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity.

    PubMed

    Scherer, Erin M; Smith, Robin A; Simonich, Cassandra A; Niyonzima, Nixon; Carter, Joseph J; Galloway, Denise A

    2014-10-01

    Licensed human papillomavirus (HPV) vaccines provide near complete protection against the types of HPV that most commonly cause anogenital and oropharyngeal cancers (HPV 16 and 18) when administered to individuals naive to these types. These vaccines, like most other prophylactic vaccines, appear to protect by generating antibodies. However, almost nothing is known about the immunological memory that forms following HPV vaccination, which is required for long-term immunity. Here, we have identified and isolated HPV 16-specific memory B cells from female adolescents and young women who received the quadrivalent HPV vaccine in the absence of pre-existing immunity, using fluorescently conjugated HPV 16 pseudoviruses to label antigen receptors on the surface of memory B cells. Antibodies cloned and expressed from these singly sorted HPV 16-pseudovirus labeled memory B cells were predominantly IgG (>IgA>IgM), utilized diverse variable genes, and potently neutralized HPV 16 pseudoviruses in vitro despite possessing only average levels of somatic mutation. These findings suggest that the quadrivalent HPV vaccine provides an excellent model for studying the development of B cell memory; and, in the context of what is known about memory B cells elicited by influenza vaccination/infection, HIV-1 infection, or tetanus toxoid vaccination, indicates that extensive somatic hypermutation is not required to achieve potent vaccine-specific neutralizing antibody responses.

  9. Vaccine-Induced Immunogenicity and Protection Against Pneumocystis Pneumonia in a Nonhuman Primate Model of HIV and Pneumocystis Coinfection

    PubMed Central

    Kling, Heather M.; Norris, Karen A.

    2016-01-01

    Background. The ubiquitous opportunistic pathogen Pneumocystis jirovecii causes pneumonia in immunocompromised individuals, including human immunodeficiency virus (HIV)–infected individuals, and pulmonary colonization with P. jirovecii is believed to be a cofactor in the development of chronic obstructive pulmonary disease. There is no vaccine for P. jirovecii; however, most adults are seropositive, indicating natural immune priming to this pathogen. We have shown that humoral response to a recombinant subunit of the P. jirovecii protease kexin (KEX1) correlates with protection from P. jirovecii colonization and pneumonia. Methods. Here we evaluated the immunogenicity and protective capacity of the recombinant KEX1 peptide vaccine in a preclinical, nonhuman primate model of HIV-induced immunosuppression and Pneumocystis coinfection. Results. Immunization with KEX1 induced a robust humoral response remained at protective levels despite chronic simian immunodeficiency virus/HIV–induced immunosuppression. KEX1-immunized macaques were protected from Pneumocystis pneumonia, compared with mock-immunized animals (P = .047), following immunosuppression and subsequent natural, airborne exposure to Pneumocystis. Conclusions. These data support the concept that stimulation of preexisting immunological memory to Pneumocystis with a recombinant KEX1 vaccine prior to immunosuppression induces durable memory responses and protection in the context of chronic, complex immunosuppression. PMID:26823337

  10. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  11. Antigen-specific Immunotherapeutic Vaccine for Experimental Autoimmune Myasthenia Gravis

    PubMed Central

    Luo, Jie; Lindstrom, Jon

    2014-01-01

    Myasthenia gravis (MG) and experimental autoimmune myasthenia gravis (EAMG) are caused by antibody-mediated autoimmune responses to muscle nicotinic acetylcholine receptors (AChRs) that impair neuromuscular transmission thereby causing muscle weakness. Previously, we discovered that i. p. injection of a therapeutic vaccine consisting of bacterially-expressed cytoplasmic domains of human AChR subunits reduced development of chronic EAMG in rats. Here we show that immunization with the therapeutic vaccine in adjuvant does not induce EAMG, thus is safe. Potency and efficacy of the therapeutic vaccine were greatly increased by administering repeated low doses subcutaneously in incomplete Freund’s adjuvant. Onset of chronic EAMG could be prevented. Established chronic EAMG could be rapidly reversed, modeling therapy of chronic MG. Therapy reduced pathological antibodies assayed by immune precipitation of a main immunogenic region chimera. Successfully treated rats exhibited long-term resistance to re-induction of EAMG, modeling a lasting cure of MG. A long-term effect of therapy was to change isotype of the pathogenic antibody response from IgG2b that fixes complement to IgG1 that does not. Prevention and reversal of chronic EAMG was not caused by the isotype switch, but the isotype switch may contribute to resistance to reinduction of EAMG. Immunization with AChR cytoplasmic domains in adjuvant is promising as a safe, antigen-specific, potent, effective, rapidly acting, and long lasting approach to therapy of MG. PMID:25288571

  12. Fusion Protein Vaccines Targeting Two Tumor Antigens Generate Synergistic Anti-Tumor Effects

    PubMed Central

    Cheng, Wen-Fang; Chang, Ming-Cheng; Sun, Wei-Zen; Jen, Yu-Wei; Liao, Chao-Wei; Chen, Yun-Yuan; Chen, Chi-An

    2013-01-01

    Introduction Human papillomavirus (HPV) has been consistently implicated in causing several kinds of malignancies, and two HPV oncogenes, E6 and E7, represent two potential target antigens for cancer vaccines. We developed two fusion protein vaccines, PE(ΔIII)/E6 and PE(ΔIII)/E7 by targeting these two tumor antigens to test whether a combination of two fusion proteins can generate more potent anti-tumor effects than a single fusion protein. Materials and Methods In vivo antitumor effects including preventive, therapeutic, and antibody depletion experiments were performed. In vitro assays including intracellular cytokine staining and ELISA for Ab responses were also performed. Results PE(ΔIII)/E6+PE(ΔIII)/E7 generated both stronger E6 and E7-specific immunity. Only 60% of the tumor protective effect was observed in the PE(ΔIII)/E6 group compared to 100% in the PE(ΔIII)/E7 and PE(ΔIII)/E6+PE(ΔIII)/E7 groups. Mice vaccinated with the PE(ΔIII)/E6+PE(ΔIII)/E7 fusion proteins had a smaller subcutaneous tumor size than those vaccinated with PE(ΔIII)/E6 or PE(ΔIII)/E7 fusion proteins alone. Conclusion Fusion protein vaccines targeting both E6 and E7 tumor antigens generated more potent immunotherapeutic effects than E6 or E7 tumor antigens alone. This novel strategy of targeting two tumor antigens together can promote the development of cancer vaccines and immunotherapy in HPV-related malignancies. PMID:24058440

  13. Vaccination of broiler chickens with dispersed dry powder vaccines as an alternative for liquid spray and aerosol vaccination.

    PubMed

    Corbanie, E A; Vervaet, C; van Eck, J H H; Remon, J P; Landman, W J M

    2008-08-18

    Vaccination of chickens with dispersable dry powder vaccines was compared with commercial liquid vaccines. A Clone 30 Newcastle disease vaccine virus was spray dried with mannitol or with a mixture of trehalose, polyvinylpyrrolidone and bovine serum albumin. A coarse (+/-30 microm) and fine (+/-7 microm) powder were produced with both formulations. A commercial reconstituted Clone 30 vaccine was applied as coarse liquid spray (+/-222 microm) or fine liquid aerosol (+/-24 microm). Reduction of virus concentration in the air after dispersion/nebulization was monitored by air sampling and was explained by sedimentation of coarse particles/droplets and evaporation of fine droplets. The vaccine formulations induced high haemagglutination inhibition antibody titres in the serum of 4-week-old broilers (2(7) at 4 weeks post-vaccination). The good serum antibody response with the fine liquid aerosol despite extensive inactivation of virus due to evaporation of droplets, suggested that powder formulations (without inactivation due to evaporation) might allow a significant reduction of vaccine dose, thereby offering new options for fine aerosol vaccination with low-titre vaccines.

  14. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    PubMed

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M

  15. Simian virus 40, poliovirus vaccines, and human cancer: research progress versus media and public interests

    NASA Technical Reports Server (NTRS)

    Butel, J. S.

    2000-01-01

    From 1955 through early 1963, millions of people were inadvertently exposed to simian virus 40 (SV40) as a contaminant of poliovirus vaccines; the virus had been present in the monkey kidney cultures used to prepare the vaccines and had escaped detection. SV40 was discovered in 1960 and subsequently eliminated from poliovirus vaccines. This article reviews current knowledge about SV40 and considers public responses to reports in the media. SV40 is a potent tumour virus with broad tissue tropism that induces tumours in rodents and transforms cultured cells from many species. It is also an important laboratory model for basic studies of molecular processes in eukaryotic cells and mechanisms of neoplastic transformation. SV40 neutralizing antibodies have been detected in individuals not exposed to contaminated poliovirus vaccines. There have been many reports of detection of SV40 DNA in human tumours, especially mesotheliomas, brain tumours and osteosarcomas; and DNA sequence analyses have ruled out the possibility that the viral DNA in tumours was due to laboratory contamination or that the virus had been misidentified. However, additional studies are necessary to prove that SV40 is the cause of certain human cancers. A recently published review article evaluated the status of the field and received much media attention. The public response emphasized that there is great interest in the possibility of health risks today from vaccinations received in the past.

  16. Immunological mechanisms of vaccination

    PubMed Central

    Pulendran, Bali; Ahmed, Rafi

    2011-01-01

    Vaccines represent one of the greatest triumphs of modern medicine. Despite the common origins of vaccinology and immunology more than 200 years ago, the two disciplines have evolved along such different trajectories that most of the highly successful vaccines have been made empirically, with little or no immunological insight. Recent advances in innate immunity have offered new insights about the mechanisms of vaccine-induced immunity and have facilitated a more rational approach to vaccine design. Here we will discuss these advances and emerging themes on the immunology of vaccination. PMID:21739679

  17. Comparative analysis of the immune responses induced by native versus recombinant versions of the ASP-based vaccine against the bovine intestinal parasite Cooperia oncophora.

    PubMed

    González-Hernández, Ana; Borloo, Jimmy; Peelaers, Iris; Casaert, Stijn; Leclercq, Georges; Claerebout, Edwin; Geldhof, Peter

    2018-01-01

    The protective capacities of a native double-domain activation-associated secreted protein (ndd-ASP)-based vaccine against the cattle intestinal nematode Cooperia oncophora has previously been demonstrated. However, protection analysis upon vaccination with a recombinantly produced antigen has never been performed. Therefore, the aim of the current study was to test the protective potential of a Pichia-produced double-domain ASP (pdd-ASP)-based vaccine against C. oncophora. Additionally, we aimed to compare the cellular and humoral mechanisms underlying the vaccine-induced responses by the native (ndd-ASP) and recombinant vaccines. Immunisation of cattle with the native C. oncophora vaccine conferred significant levels of protection after an experimental challenge infection, whereas the recombinant vaccine did not. Moreover, vaccination with ndd-ASP resulted in a higher proliferation of CD4-T cells both systemically and in the small intestinal mucosa when compared with animals vaccinated with the recombinant antigen. In terms of humoral response, although both native and recombinant vaccines induced similar levels of antibodies, animals vaccinated with the native vaccine were able to raise antibodies with greater specificity towards ndd-ASP in comparison with antibodies raised by vaccination with the recombinant vaccine, suggesting a differential immune recognition towards the ndd-ASP and pdd-ASP. Finally, the observation that animals displaying antibodies with higher percentages of recognition towards ndd-ASP also exhibited the lowest egg counts suggests a potential relationship between antibody specificity and protection. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants

    PubMed Central

    Shen, Chen; Li, Jun; Zhang, Yi; Li, Yuce; Shen, Guanxin; Zhu, Jintao; Tao, Juan

    2017-01-01

    Vaccines have shown great success in treating and preventing tumors and infections, while adjuvants are always demanded to ensure potent immune responses. Polyethylenimine (PEI), as one of the well-studied cationic polymers, has been used as a transfection reagent for decades. However, increasing evidence has shown that PEI-based particles are also capable of acting as adjuvants. In this paper, we briefly review the physicochemical properties and the broad applications of PEI in different fields, and elaborate on the intracellular processes of PEI-based vaccines. In addition, we sum up the proof of their in vivo and clinical applications. We also highlight some mechanisms proposed for the intrinsic immunoactivation function of PEI, followed by the challenges and future perspectives of the applications of PEI in the vaccines, as well as some strategies to elicit the desirable immune responses. PMID:28814862

  19. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8+ T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Robinson, H.; Wang, R.

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  20. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques.

    PubMed

    Florek, Nicholas W; Weinfurter, Jason T; Jegaskanda, Sinthujan; Brewoo, Joseph N; Powell, Tim D; Young, Ginger R; Das, Subash C; Hatta, Masato; Broman, Karl W; Hungnes, Olav; Dudman, Susanne G; Kawaoka, Yoshihiro; Kent, Stephen J; Stinchcomb, Dan T; Osorio, Jorge E; Friedrich, Thomas C

    2014-11-01

    Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses

  1. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  2. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease

    PubMed Central

    Enjuanes, Luis; DeDiego, Marta L.; Álvarez, Enrique; Deming, Damon; Sheahan, Tim; Baric, Ralph

    2009-01-01

    An important effort has been performed after the emergence of severe acute respiratory syndrome (SARS) epidemic in 2003 to diagnose and prevent virus spreading. Several types of vaccines have been developed including inactivated viruses, subunit vaccines, virus-like particles (VLPs), DNA vaccines, heterologous expression systems, and vaccines derived from SARS-CoV genome by reverse genetics. This review describes several aspects essential to develop SARS-CoV vaccines, such as the correlates of protection, virus serotypes, vaccination side effects, and bio-safeguards that can be engineered into recombinant vaccine approaches based on the SARS-CoV genome. The production of effective and safe vaccines to prevent SARS has led to the development of promising vaccine candidates, in contrast to the design of vaccines for other coronaviruses, that in general has been less successful. After preclinical trials in animal models, efficacy and safety evaluation of the most promising vaccine candidates described has to be performed in humans. PMID:17416434

  3. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines.

    PubMed

    Goyvaerts, Cleo; Breckpot, Karine

    2015-01-01

    In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  4. Evaluation of the adjuvant effect of agonists of toll-like receptor 4 and 7/8 in a vaccine against leishmaniasis in BALB/c mice.

    PubMed

    Rostamian, Mosayeb; Niknam, Hamid M

    2017-11-01

    There is no effective vaccine against human leishmaniasis. Achieving successful vaccines seems to need powerful adjuvants. Separate or combined use of toll like receptor (TLR) agonists as adjuvant is a promising approach in Leishmania vaccine research. In present study, we evaluated adjuvant effect of separate or combined use of a TLR7/8 agonist, R848 and a TLR4 agonist, monophosphoryl lipid A (MPL) beside soluble Leishmania antigen (SLA) in BALB/c mice. Mice were vaccinated three times by SLA with separate or combined TLR7/8 and TLR4 agonists and were then challenged by Leishmania major. Delay type hypersensitivity, lesion development, parasite load, and cytokines (interferon gamma, and interleukin-10) response were assessed. Results showed: 1) MPL can slightly assist SLA in parasite load reduction, but it is not able to increase SLA ability in evoking DTH and cytokine responses or decreasing lesion diameter. 2) R848 does not affect the DTH response and parasite load of mice vaccinated with SLA, but it decreases/inhibits cytokine responses induced by SLA, leading to increase lesion diameter. 3) MPL neutralized inhibitory effect of R848. In overall, these data emphasize that MPL slightly assists SLA to make a more potent vaccine, but R848 is not a good adjuvant to induce T cell-dependent immune response in BALB/c mice, and therefore combination of these TLR agonists in the current formulation, is not recommended for making a more powerful adjuvant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Alternative Inactivated Poliovirus Vaccines Adjuvanted with Quillaja brasiliensis or Quil-A Saponins Are Equally Effective in Inducing Specific Immune Responses

    PubMed Central

    de Costa, Fernanda; Yendo, Anna Carolina A.; Cibulski, Samuel P.; Fleck, Juliane D.; Roehe, Paulo M.; Spilki, Fernando R.; Gosmann, Grace; Fett-Neto, Arthur G.

    2014-01-01

    Inactivated polio vaccines (IPV) have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV). An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE) and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control), Quil-A (50 µg), AE (400 µg) or QB-90 (50 µg). Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A. PMID:25148077

  6. Vaccination with Trypanosoma rangeli induces resistance of guinea pigs to virulent Trypanosoma cruzi.

    PubMed

    Basso, B; Moretti, E; Fretes, R

    2014-01-15

    Chagas' disease, endemic in Latin America, is spread in natural environments through animal reservoirs, including marsupials, mice and guinea pigs. Farms breeding guinea pigs for food are located in some Latin-American countries with consequent risk of digestive infection. The aim of this work was to study the effect of vaccination with Trypanosoma rangeli in guinea pigs challenged with Trypanosoma cruzi. Animals were vaccinated with fixated epimastigotes of T. rangeli, emulsified with saponin. Controls received only PBS. Before being challenged with T. cruzi, parasitemia, survival rates and histological studies were performed. The vaccinated guinea pigs revealed significantly lower parasitemia than controls (p<0.0001-0.01) and a discrete lymphomonocytic infiltrate in cardiac and skeletal muscles was present. In the chronic phase, the histological view was normal. In contrast, control group revealed amastigote nests and typical histopathological alterations compatible with chagasic myocarditis, endocarditis and pericarditis. These results, together with previous works in our laboratory, show that T. rangeli induces immunoprotection in three species of animals: mice, guinea pigs and dogs. The development of vaccines for use in animals, like domestic dogs and guinea pigs in captivity, opens up new opportunities for preventive tools, and could reduce the risk of infection with T. cruzi in the community. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. HIV Neutralizing Antibodies Induced by Native-like Envelope Trimers

    PubMed Central

    Sanders, Rogier W.; van Gils, Marit J.; Derking, Ronald; Sok, Devin; Ketas, Thomas J.; Burger, Judith A.; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J.; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J.; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne; Julien, Jean-Philippe; Rakasz, Eva G.; Seaman, Michael S.; Guttman, Miklos; Lee, Kelly K.; Klasse, Per Johan; LaBranche, Celia; Schief, William R.; Wilson, Ian A.; Overbaugh, Julie; Burton, Dennis R.; Ward, Andrew B.; Montefiori, David C.; Dean, Hansi; Moore, John P.

    2015-01-01

    A challenge for HIV-1 immunogen design is inducing neutralizing antibodies (NAbs) against neutralization-resistant (Tier-2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation (BG505 SOSIP.664) induced NAbs potently against the sequence-matched Tier-2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (Tier-1) viruses. Tier-2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas Tier-1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous Tier-2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for developing HIV-1 vaccines aimed at inducing bNAbs. PMID:26089353

  8. Synthetic MUC1 Antitumor Vaccine with Incorporated 2,3-Sialyl-T Carbohydrate Antigen Inducing Strong Immune Responses with Isotype Specificity.

    PubMed

    Straßburger, David; Glaffig, Markus; Stergiou, Natascha; Bialas, Sabrina; Besenius, Pol; Schmitt, Edgar; Kunz, Horst

    2018-04-06

    The endothelial glycoprotein MUC1 is known to underlie alterations in cancer by means of aberrant glycosylation accompanied by changes in morphology. The heavily shortened glycans induce a collapse of the peptide backbone and enable accessibility of the latter to immune cells, rendering it a tumor-associated antigen. Synthetic vaccines based on MUC1 tandem repeat motifs, comprising tumor-associated 2,3-sialyl-T antigen, conjugated to the immunostimulating tetanus toxoid, are reported herein. Immunization with these vaccines in a simple water/oil emulsion produced a strong immune response in mice to which stimulation with complete Freund's adjuvant (CFA) was not superior. In both cases, high levels of IgG1 and IgG2a/b were induced in C57BL/6 mice. Additional glycosylation in the immunodominant PDTRP domain led to improved binding of the induced antisera to MCF-7 breast tumor cells, compared with that of the monoglycosylated peptide vaccine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Wildlife population management: are contraceptive vaccines a feasible proposition?

    PubMed

    Gupta, Satish Kumar; Minhas, Vidisha

    2017-06-01

    To minimize human-animal conflicts for habitation and burden of zoonotic diseases, it is imperative to develop new strategies for wildlife population management. In this direction, contraceptive vaccines eliciting immune response against hormones/proteins critical for reproduction have emerged as one of the promising options. Contraceptive vaccines based on neutralization of gonadotropin releasing hormone (GnRH) have been used for inhibition of fertility in various species such as wild horses, white-tailed deer, pigs, cats, dogs etc. It has been used for immunocastration of male pigs to improve meat quality. However, additional safety studies of GnRH vaccine will be needed in light of presence of its receptor at extra-pituitary sites. Native porcine zona pellucida (PZP)-based contraceptive vaccines have shown their utility in the management of the population of both captive and free-ranging wild horses and white-tailed deer. Long-term use of the PZP-based contraceptive vaccines has also demonstrated their safety. Ideally single injection of the contraceptive vaccine should elicit long lasting immune response and desired contraceptive efficacy, which will require development of novel vaccine delivery platforms and more potent adjuvants.

  10. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    PubMed

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Administration of time-expired yellow fever vaccine: public health response and results of a serological investigation.

    PubMed

    Allen, K W; Nguyen-Van-Tam, J S; Howells, J

    1999-06-01

    The discovery that a local travel clinic had administered 101 doses of time-expired yellow fever vaccine over a six month period prompted an immediate investigation in order to advise vaccinees about to travel to areas where yellow fever is endemic. No data were available to provide adequate reassurance about the potential efficacy of time-expired vaccine, so a rapid serological investigation was conducted, which provided evidence that the yellow fever vaccine had remained potent beyond its expiry date.

  12. Nanoengineering of vaccines using natural polysaccharides.

    PubMed

    Cordeiro, Ana Sara; Alonso, María José; de la Fuente, María

    2015-11-01

    Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The Meningitis Vaccine Project.

    PubMed

    LaForce, F Marc; Konde, Kader; Viviani, Simonetta; Préziosi, Marie-Pierre

    2007-09-03

    Epidemic meningococcal meningitis is an important public health problem in sub-Saharan Africa. Current control measures rely on reactive immunizations with polysaccharide (PS) vaccines that do not induce herd immunity and are of limited effectiveness in those under 2 years of age. Conversely, polysaccharide conjugate vaccines are effective in infants and have consistently shown an important effect on decreasing carriage, two characteristics that facilitate disease control. In 2001 the Meningitis Vaccine Project (MVP) was created as a partnership between PATH and the World Health Organization (WHO) with the goal of eliminating meningococcal epidemics in Africa through the development, licensure, introduction, and widespread use of conjugate meningococcal vaccines. Since group A Neisseria meningitidis (N. meningitidis) is the dominant pathogen causing epidemic meningitis in Africa MVP is developing an affordable (US$ 0.40 per dose) meningococcal A (Men A) conjugate vaccine through an innovative international partnership that saw transfer of a conjugation and fermentation technology to a developing country vaccine manufacturer. A Phase 1 study of the vaccine in India has shown that the product is safe and immunogenic. Phase 2 studies have begun in Africa, and a large demonstration study of the conjugate vaccine is envisioned for 2008-2009. After extensive consultations with African public health officials a vaccine introduction plan has been developed that includes introduction of the Men A conjugate vaccine into standard Expanded Programme on Immunization (EPI) schedules but also emphasizes mass vaccination of 1-29 years old to induce herd immunity, a strategy that has been shown to be highly effective when the meningococcal C (Men C) conjugate vaccine was introduced in several European countries. The MVP model is a clear example of the usefulness of a "push mechanism" to finance the development of a needed vaccine for the developing world.

  14. Assessment of Antibodies Induced by Multivalent Transmission-Blocking Malaria Vaccines.

    PubMed

    Menon, Vinay; Kapulu, Melissa C; Taylor, Iona; Jewell, Kerry; Li, Yuanyuan; Hill, Fergal; Long, Carole A; Miura, Kazutoyo; Biswas, Sumi

    2017-01-01

    A malaria transmission-blocking vaccine would be a critical tool in achieving malaria elimination and eradication. By using chimpanzee adenovirus serotype 63 and modified vaccinia virus Ankara viral vectored vaccines, we investigated whether incorporating two antigens into one vaccine would result in higher transmission-reducing activity than one antigen. We demonstrated that when Pfs25 was administered with other antigens Pfs28 or Pfs230C, either concurrently as a mixed vaccine or co-expressed as a dual-antigen vaccine, the antibody response in mice to each antigen was comparable to a monoantigen vaccine, without immunological interference. However, we found that the transmission-reducing activity (functional activity) of dual-antigen vaccines was not additive. Dual-antigen vaccines generally only elicited similar transmission-reducing activity to monoantigen vaccines and in one instance had lower transmission-reducing activity. We found that despite the lack of immunological interference of dual-antigen vaccines, they are still not as effective at blocking malaria transmission as Pfs25-IMX313, the current leading candidate for viral vectored vaccines. Pfs25-IMX313 elicited similar quality antibodies to dual-antigen vaccines, but higher antibody titers.

  15. Mucosal delivery of a vectored RSV vaccine is safe and elicits protective immunity in rodents and nonhuman primates

    PubMed Central

    Pierantoni, Angiolo; Esposito, Maria Luisa; Ammendola, Virginia; Napolitano, Federico; Grazioli, Fabiana; Abbate, Adele; del Sorbo, Mariarosaria; Siani, Loredana; D’Alise, Anna Morena; Taglioni, Alessandra; Perretta, Gemma; Siccardi, Antonio; Soprana, Elisa; Panigada, Maddalena; Thom, Michelle; Scarselli, Elisa; Folgori, Antonella; Colloca, Stefano; Taylor, Geraldine; Cortese, Riccardo; Nicosia, Alfredo; Capone, Stefania; Vitelli, Alessandra

    2015-01-01

    Respiratory Syncytial Virus (RSV) is a leading cause of severe respiratory disease in infants and the elderly. No vaccine is presently available to address this major unmet medical need. We generated a new genetic vaccine based on chimpanzee Adenovirus (PanAd3-RSV) and Modified Vaccinia Ankara RSV (MVA-RSV) encoding the F, N, and M2-1 proteins of RSV, for the induction of neutralizing antibodies and broad cellular immunity. Because RSV infection is restricted to the respiratory tract, we compared intranasal (IN) and intramuscular (M) administration for safety, immunogenicity, and efficacy in different species. A single IN or IM vaccination completely protected BALB/c mice and cotton rats against RSV replication in the lungs. However, only IN administration could prevent infection in the upper respiratory tract. IM vaccination with MVA-RSV also protected cotton rats from lower respiratory tract infection in the absence of detectable neutralizing antibodies. Heterologous prime boost with PanAd3-RSV and MVA-RSV elicited high neutralizing antibody titers and broad T-cell responses in nonhuman primates. In addition, animals primed in the nose developed mucosal IgA against the F protein. In conclusion, we have shown that our vectored RSV vaccine induces potent cellular and humoral responses in a primate model, providing strong support for clinical testing. PMID:26015988

  16. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    PubMed

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  17. A novel Smac mimetic APG-1387 demonstrates potent antitumor activity in nasopharyngeal carcinoma cells by inducing apoptosis.

    PubMed

    Li, Ning; Feng, Lin; Han, Hui-Qiong; Yuan, Jing; Qi, Xue-Kang; Lian, Yi-Fan; Kuang, Bo-Hua; Zhang, Yu-Chen; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Yao, You-Yuan; Xu, Miao; He, Gui-Ping; Zhao, Bing-Chun; Gao, Ling; Feng, Qi-Sheng; Chen, Li-Zhen; Yang, Lu; Yang, Dajun; Zeng, Yi-Xin

    2016-10-10

    Despite advances in the development of radiation against nasopharyngeal carcinoma (NPC), the management of advanced NPC remains a challenge. Smac mimetics are designed to neutralize inhibitor of apoptosis (IAP) proteins, thus reactivating the apoptotic program in cancer cells. In this study, we investigated the effect of a novel bivalent Smac mimetic APG-1387 in NPC. In vitro, APG-1387 in combination with TNF-α potently decreased NPC cell viability by inducing apoptosis in majority of NPC cell lines. The in vitro antitumor effect was RIPK1-dependent, whereas it was independent on IAPs, USP11, or EBV. Of note, the inhibition of NF-κB or AKT pathway rendered resistant NPC cells responsive to the treatment of APG-1387/TNF-α. In vivo, APG-1387 displayed antitumor activity as a single agent at well-tolerated doses, even in an in vitro resistant cell line. In summary, our results demonstrate that APG-1387 exerts a potent antitumor effect on NPC. These findings support clinical evaluation of APG-1387 as a potential treatment for advanced NPC. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Carbohydrate-based vaccine adjuvants - discovery and development.

    PubMed

    Hu, Jing; Qiu, Liying; Wang, Xiaoli; Zou, Xiaopeng; Lu, Mengji; Yin, Jian

    2015-10-01

    The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.

  19. Possible vaccine-induced canine distemper in a South American bush dog (Speothos venaticus).

    PubMed

    McInnes, E F; Burroughs, R E; Duncan, N M

    1992-10-01

    Suspected vaccine-induced canine distemper was diagnosed in a captive female bush dog (Speothos venaticus). Macroscopic lesions included mild congestion of the gastric mucosa and focal consolidation of the lung. Histopathological lesions included status spongiosis, gliosis, widespread eosinophilic, intranuclear and intracytoplasmic inclusion bodies in neurons, astrocytes and gitter cells of the cerebral, cerebellar and spinal white matter.

  20. Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost

    PubMed Central

    Hulot, Sandrine L.; Korber, Bette; Giorgi, Elena E.; Vandergrift, Nathan; Saunders, Kevin O.; Balachandran, Harikrishnan; Mach, Linh V.; Lifton, Michelle A.; Pantaleo, Giuseppe; Tartaglia, Jim; Phogat, Sanjay; Jacobs, Bertram; Kibler, Karen; Perdiguero, Beatriz; Gomez, Carmen E.; Esteban, Mariano; Rosati, Margherita; Felber, Barbara K.; Pavlakis, George N.; Parks, Robert; Lloyd, Krissey; Sutherland, Laura; Scearce, Richard; Letvin, Norman L.; Seaman, Michael S.; Alam, S. Munir; Montefiori, David; Liao, Hua-Xin; Haynes, Barton F.

    2015-01-01

    ABSTRACT An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4+ and CD8+ T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1

  1. Relative Contribution of Th1 and Th17 Cells in Adaptive Immunity to Bordetella pertussis: Towards the Rational Design of an Improved Acellular Pertussis Vaccine

    PubMed Central

    Ross, Pádraig J.; Allen, Aideen C.; Walsh, Kevin; Misiak, Alicja; Lavelle, Ed C.; McLoughlin, Rachel M.; Mills, Kingston H. G.

    2013-01-01

    Whooping cough caused by Bordetella pertussis is a re-emerging infectious disease despite the introduction of safer acellular pertussis vaccines (Pa). One explanation for this is that Pa are less protective than the more reactogenic whole cell pertussis vaccines (Pw) that they replaced. Although Pa induce potent antibody responses, and protection has been found to be associated with high concentrations of circulating IgG against vaccine antigens, it has not been firmly established that host protection induced with this vaccine is mediated solely by humoral immunity. The aim of this study was to examine the relative contribution of Th1 and Th17 cells in host immunity to infection with B. pertussis and in immunity induced by immunization with Pw and Pa and to use this information to help rationally design a more effective Pa. Our findings demonstrate that Th1 and Th17 both function in protective immunity induced by infection with B. pertussis or immunization with Pw. In contrast, a current licensed Pa, administered with alum as the adjuvant, induced Th2 and Th17 cells, but weak Th1 responses. We found that IL-1 signalling played a central role in protective immunity induced with alum-adsorbed Pa and this was associated with the induction of Th17 cells. Pa generated strong antibody and Th2 responses, but was fully protective in IL-4-defective mice, suggesting that Th2 cells were dispensable. In contrast, Pa failed to confer protective immunity in IL-17A-defective mice. Bacterial clearance mediated by Pa-induced Th17 cells was associated with cell recruitment to the lungs after challenge. Finally, protective immunity induced by an experimental Pa could be enhanced by substituting alum with a TLR agonist that induces Th1 cells. Our findings demonstrate that alum promotes protective immunity through IL-1β-induced IL-17A production, but also reveal that optimum protection against B. pertussis requires induction of Th1, but not Th2 cells. PMID:23592988

  2. Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model

    PubMed Central

    Hess, Jessica A.; Zhan, Bin; Bonne-Année, Sandra; Deckman, Jessica M.; Bottazzi, Maria Elena; Hotez, Peter J.; Klei, Thomas R.; Lustigman, Sara; Abraham, David

    2014-01-01

    Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunization protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans. PMID:24907553

  3. In Vitro Analysis of Acetalated Dextran Microparticles as a Potent Delivery Platform for Vaccine Adjuvants

    DTIC Science & Technology

    2010-01-01

    dendritic cells produced significantly higher levels of IL-1{3. IL-6; ll-12p70, and M! P -1u as compared to their counterparts receiving free imiquimod...Minor, P . Vaccine-derived poliovirus (VDPV): Impact on polio- myelitis eradication. Vaccine 2009, 27 (20), 2649-52. 10.1021/mp90031lx !!!/ 2010...bone marrow derived dendritic cells produced significantly higher levels of IL-1{3. IL-6; ll-12p70, and M! P -1u as compared to their counterparts

  4. Different Vaccine Vectors Delivering the Same Antigen Elicit CD8plus T Cell Responses with Distinct Clonotype and Epitope Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Honda; R Wang; W Kong

    Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8{sup +} cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8{sup +} T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D{sup d} better than the native sequences, and clones with distinct specificities were elicited by alternativemore » vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8{sup +} T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination.« less

  5. Efficacy of two canine parvovirus vaccines for inducing seroconversion in Rottweiler and Doberman pinscher pups with various levels of maternally derived antibodies.

    PubMed

    Coyne, M J

    2000-01-01

    The study reported here investigated the efficacy of two commonly used modified-live virus vaccines to induce seroconversion against canine parvovirus (CPV) in 213 Rottweiler and Doberman pinscher pups with various titers of maternally derived CPV antibody. Beginning at 6 to 8 weeks of age, pups were given a subcutaneous vaccination every 21 days (range, 18-24 days) in the dorsal region of the neck or shoulder area. Pups vaccinated with vaccine A(a) received three vaccinations and completed the vaccination series by 12 to 14 weeks of age. Pups vaccinated with vaccine Bb received four vaccinations and completed the vaccination series by 15 to 17 weeks of age. Antibody titers against CPV in both vaccine groups were similar before vaccination. Pups in the vaccine-A group seroconverted significantly earlier than those in the vaccine-B group. After the first vaccination, more pups with a CPV-2b hemagglutination inhibition (HI) titer of < or = 1:80 responded to vaccine A than to vaccine B. In addition, CPV-2b HI titers after vaccination were also significantly (P < or = 0.05) higher for the pups in the vaccine-A group after first, second, and third vaccinations, compared with those of pups in the vaccine-B group.

  6. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells

    PubMed Central

    Schindler, Tobias; Kagina, Benjamin M.; Zhang, Jitao David; Lukindo, Tedson; Mpina, Maxmillian; Bang, Peter; Kromann, Ingrid; Hoff, Søren T.; Andersen, Peter; Reither, Klaus; Churchyard, Gavin J.; Certa, Ulrich

    2015-01-01

    Tuberculosis (TB) remains a global health problem, with vaccination being a necessary strategy for disease containment and elimination. A TB vaccine should be safe and immunogenic as well as efficacious in all affected populations, including HIV-infected individuals. We investigated the induction and maintenance of vaccine-induced memory CD4+ T cells following vaccination with the subunit vaccine H1/IC31. H1/IC31 was inoculated twice on study days 0 and 56 among HIV-infected adults with CD4+ lymphocyte counts of >350 cells/mm3. Whole venous blood stimulation was conducted with the H1 protein, and memory CD4+ T cells were analyzed using intracellular cytokine staining and polychromatic flow cytometry. We identified high responders, intermediate responders, and nonresponders based on detection of interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) expressing central (TCM) and effector memory CD4+ T cells (TEM) 182 days after the first immunization. Amplicon-based transcript quantification using next-generation sequencing was performed to identify differentially expressed genes that correlated with vaccine-induced immune responses. Genes implicated in resolution of inflammation discriminated the responders from the nonresponders 3 days after the first inoculation. The volunteers with higher expression levels of genes involved in antiviral innate immunity at baseline showed impaired H1-specific TCM and TEM maintenance 6 months after vaccination. Our study showed that in HIV-infected volunteers, expression levels of genes involved in the antiviral innate immune response affected long-term maintenance of H1/IC31 vaccine-induced cellular immunity. (The clinical trial was registered in the Pan African Clinical Trials Registry [PACTR] with the identifier PACTR201105000289276.) PMID:25924764

  7. Immunogenicity and efficacy of a bivalent DNA vaccine containing LeIF and TSA genes against murine cutaneous leishmaniasis.

    PubMed

    Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid

    2017-03-01

    There is no effective vaccine for the prevention and elimination of leishmaniasis. For this reason, we assessed the protective effects of DNA vaccines containing LeIF, TSA genes alone, or LeIF-TSA fusion against cutaneous leishmaniasis pEGFP-N1 plasmid (empty vector) and phosphate buffer saline (PBS) were used as control groups. Therefore, cellular and humoral immune responses were evaluated before and after the challenge with Leishmania major. Lesion diameter was also measured 3-12 weeks after challenge. All immunized mice with plasmid DNA encoding Leishmania antigens induced the partial immunity characterized by increased IFN-γ and IgG2a levels compared with control groups (p < 0.001). Furthermore, the immunized mice showed significant reduction in mean lesion sizes compared with mice in empty vector and PBS groups (p < 0.05). The reduction in lesion diameter was 29.3%, 34.1%, and 46.2% less in groups vaccinated with LeIF, TSA, and LeIF-TSA, respectively, than in PBS group at 12th week post infection. IFN/IL-4 and IgG2a/IgG1 ratios indicated that group receiving LeIF-TSA fusion had the highest IFN-γ and IgG2a levels. In this study, DNA immunization promoted Th1 immune response characterized by higher IFN-γ and IgG2a levels and also reduction in lesion size. These results showed that a bivalent vaccine containing two distinct antigens may induce more potent immune responses against leishmaniasis. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  8. Roads to the development of improved pertussis vaccines paved by immunology

    PubMed Central

    Brummelman, Jolanda; Wilk, Mieszko M.; Han, Wanda G.H.; van Els, Cécile A.C.M.; Mills, Kingston H.G.

    2015-01-01

    Current acellular pertussis vaccines have various shortcomings, which may contribute to their suboptimal efficacy and waning immunity in vaccinated populations. This calls for the development of new pertussis vaccines capable of inducing long-lived protective immunity. Immunization with whole cell pertussis vaccines and natural infection with Bordetella pertussis induce distinct and more protective immune responses when compared with immunization with acellular pertussis vaccines. Therefore, the immune responses induced with whole cell vaccine or after infection can be used as a benchmark for the development of third-generation vaccines against pertussis. Here, we review the literature on the immunology of B. pertussis infection and vaccination and discuss the lessons learned that will help in the design of improved pertussis vaccines. PMID:26347400

  9. Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine.

    PubMed

    Even-Or, Orli; Samira, Sarit; Rochlin, Eli; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Spira, Jack; Goldwaser, Itzhak; Ellis, Ronald; Barenholz, Yechezkel

    2010-09-07

    We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4(+) and CD8(+) T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure-function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼ 50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the

  10. The type of adjuvant strongly influences the T-cell response during nanoparticle-based immunization

    PubMed Central

    Knuschke, Torben; Epple, Matthias; Westendorf, Astrid M

    2014-01-01

    Potent vaccines require the ability to effectively induce immune responses. Especially for the control of infectious diseases with intracellular pathogens, like viruses or bacteria, potent T-cell responses are indispensable. Several delivery systems such as nanoparticles have been considered to boost the immunogenicity of pathogen derived peptides or subunits for the induction of potent T-cell responses. Since they can be further functionalized with immunostimulants, like Toll-like receptor (TLR) agonists, they improve the response by enhanced activation of the innate immune system. Currently, TLR agonists like unmethylated CpG oligonucleotides and the synthetic dsRNA derivate polyriboinosinic acid-polyribocytidylic acid (poly[I:C]) are widely used as vaccine adjuvants. CpG and poly(I:C) trigger different TLRs and therefore show differential signal transduction. Recently, we established biodegradable calcium phosphate (CaP) nanoparticles as potent T cell inducing vaccination vehicles. In this commentary we discuss the role of CpG and poly(I:C) for the effective induction of virus-specific T cells during immunization with CaP nanoparticles. The presented results underline the importance of the right formulation of vaccines for specific immunization purpose. PMID:23982325

  11. DNA Vaccines - A Modern Gimmick or a Boon to Vaccinology?

    PubMed

    Manickan, Elanchezhiyan; Karem, Kevin L; Rouse, Barry T

    2017-01-01

    The reports in 1993 that naked DNA encoding viral genes conferred protective immunity came as a surprise to most vaccinologists. This review analyses the expanding number of examples where plasmid DNA induces immune responses. Issues such as the type of immunity induced, mechanisms of immune protection, and how DNA vaccines compare with other approaches are emphasized. Additional issues discussed include the likely means by which DNA vaccines induce CTL, how the potency and type of immunity induced can be modified, and whether DNA vaccines represent a practical means of manipulating unwanted immune response occurring during immunoinflammatory diseases. It seems doubtful if DNA vaccines will replace currently effective vaccines, but they may prove useful for prophylactic use against some agents that at present lack an effective vaccine. DNA vaccines promise to be valuable to manipulate the immune response in situations where responses to agents are inappropriate or ineffective.

  12. Antibody responses induced by Leish-Tec®, an A2-based vaccine for visceral leishmaniasis, in a heterogeneous canine population.

    PubMed

    Testasicca, Miriam C de Souza; dos Santos, Mariana Silva; Machado, Leopoldo Marques; Serufo, Angela Vieira; Doro, Daniel; Avelar, Daniel; Tibúrcio, Ana Maria Leonardi; Abrantes, Christiane de Freitas; Machado-Coelho, George Luiz Lins; Grimaldi, Gabriel; Gazzinelli, Ricardo Tostes; Fernandes, Ana Paula

    2014-08-29

    Zoonotic visceral leishmaniasis (VL) is a widespread disease, and dogs are the main reservoirs for human parasite transmission. Hence, development of an effective vaccine that prevents disease and reduces the transmission of VL is required. As euthanasia of seropositive dogs is recommended in Brazil for VL epidemiological control, to include anti-VL canine vaccines as a mass control measure it is necessary to characterize the humoral responses induced by vaccination and if they interfere with the reactivity of vaccinated dogs in serological diagnostic tests. Leish-Tec(®) is an amastigote-specific A2 recombinant protein vaccine against canine visceral leishmaniasis (CVL) that is commercially available in Brazil. Here, we tested the immunogenicity of Leish-Tec(®) in a heterogeneous dog population by measuring A2-specific antibody responses. Healthy dogs (n=140) of various breeds were allocated to two groups: one group received Leish-Tec(®) (n=70), and the other group received a placebo (n=70). Anti-A2 or anti-Leishmania promastigote antigen (LPA) antibody levels were measured by ELISA in serum samples collected before and after vaccination. An immunochromatographic test (DPP) based on the recombinant K28 antigen was also used for serodiagnosis of CVL. Vaccinated animals, except one, remained seronegative for anti-LPA total IgG and anti-K28 antibodies. Conversely, seropositivity for anti-A2 total IgG antibodies was found in 98% of animals after vaccination. This value decreased to 81.13% at 6 months before rising again (98%), after the vaccination boost. Anti-A2 IgG2 and IgG1 titers were also increased in vaccinated animals relative to control animals. These data indicate that Leish-Tec(®) is immunogenic for dogs of different genetic backgrounds and that humoral responses induced by vaccination can be detected by A2-ELISA, but do not interfere with the LPA-ELISA and DPP diagnostic tests for CVL. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Vaccine-Induced Immunogenicity and Protection Against Pneumocystis Pneumonia in a Nonhuman Primate Model of HIV and Pneumocystis Coinfection.

    PubMed

    Kling, Heather M; Norris, Karen A

    2016-05-15

    The ubiquitous opportunistic pathogen Pneumocystis jirovecii causes pneumonia in immunocompromised individuals, including human immunodeficiency virus (HIV)-infected individuals, and pulmonary colonization with P. jirovecii is believed to be a cofactor in the development of chronic obstructive pulmonary disease. There is no vaccine for P. jirovecii; however, most adults are seropositive, indicating natural immune priming to this pathogen. We have shown that humoral response to a recombinant subunit of the P. jirovecii protease kexin (KEX1) correlates with protection from P. jirovecii colonization and pneumonia. Here we evaluated the immunogenicity and protective capacity of the recombinant KEX1 peptide vaccine in a preclinical, nonhuman primate model of HIV-induced immunosuppression and Pneumocystis coinfection. Immunization with KEX1 induced a robust humoral response remained at protective levels despite chronic simian immunodeficiency virus/HIV-induced immunosuppression. KEX1-immunized macaques were protected from Pneumocystis pneumonia, compared with mock-immunized animals (P= .047), following immunosuppression and subsequent natural, airborne exposure to Pneumocystis These data support the concept that stimulation of preexisting immunological memory to Pneumocystis with a recombinant KEX1 vaccine prior to immunosuppression induces durable memory responses and protection in the context of chronic, complex immunosuppression. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  14. Cancer vaccines inducing antibody production: more pros than cons.

    PubMed

    Jensen-Jarolim, Erika; Singer, Josef

    2011-09-01

    To date, passive immunotherapy with monoclonal antibodies is a well-established option in clinical oncology. By contrast, anticancer vaccines are less advanced, with the exception of successfully applied prophylactic vaccines against oncogenic virus infections. The creation of therapeutic vaccines is still a great challenge mostly due to the self-nature of tumor antigens. Therapeutic vaccines may be based on patient-specific material including pulsed effector cells, or tumor-associated antigens and derivatives thereof, such as peptides, mimotopes and nucleic acids. The latter represents a more universal approach, which would set an ideal economic framework resulting in broad patient access. In this article we focus on cancer vaccines for antibody production, in particular mimotope vaccines. The collected evidence suggests that they will open up new treatment options in minimal residual disease and early stage disease.

  15. Canine Distemper Virus DNA Vaccination Induces Humoral and Cellular Immunity and Protects against a Lethal Intracerebral Challenge

    PubMed Central

    Sixt, Nathalie; Cardoso, Alicia; Vallier, Agnès; Fayolle, Joël; Buckland, Robin; Wild, T. Fabian

    1998-01-01

    We have studied the immune responses to the two glycoproteins of the Morbillivirus canine distemper virus (CDV) after DNA vaccination of BALB/c mice. The plasmids coding for both CDV hemagglutinin (H) and fusion protein (F) induce high levels of antibodies which persist for more than 6 months. Intramuscular inoculation of the CDV DNA induces a predominantly immunoglobulin G2a (IgG2a) response (Th1 response), whereas gene gun immunization with CDV H evokes exclusively an IgG1 response (Th2 response). In contrast, the CDV F gene elicited a mixed, IgG1 and IgG2a response. Mice vaccinated (by gene gun) with either the CDV H or F DNA showed a class I-restricted cytotoxic lymphocyte response. Immunized mice challenged intracerebrally with a lethal dose of a neurovirulent strain of CDV were protected. However, approximately 30% of the mice vaccinated with the CDV F DNA became obese in the first 2 months following the challenge. This was not correlated with the serum antibody levels. PMID:9765383

  16. Avirulent Marek’s Disease Virus Type 1 Strain 814 Vectored Vaccine Expressing Avian Influenza (AI) Virus H5 Haemagglutinin Induced Better Protection Than Turkey Herpesvirus Vectored AI Vaccine

    PubMed Central

    Cui, Xianlan; Zhao, Yan; Shi, Xingming; Li, Qiaoling; Yan, Shuai; Gao, Ming; Wang, Mei; Liu, Changjun; Wang, Yunfeng

    2013-01-01

    Background Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1. Methodology/Principal Findings A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose. Conclusions/Significance The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry. PMID:23301062

  17. Vaccines, adjuvants and autoimmunity.

    PubMed

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ⁺ CMI responses protects against a genital infection in minipigs.

    PubMed

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter; Follmann, Frank

    2016-02-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1 is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity in vitro. Both Hirep1+CTH93/CAF01 and UV-SvD/CAF01 vaccination protected pigs against a vaginal C. trachomatis SvD infection. In conclusion, the Hirep1+CTH93/CAF01 vaccine proved highly immunogenic and equally protective as UV-SvD/CAF01 showing promise for the development of a subunit vaccine against Chlamydia.

  19. A Two-Component DNA-Prime/Protein-Boost Vaccination Strategy for Eliciting Long-Term, Protective T Cell Immunity against Trypanosoma cruzi

    PubMed Central

    Gupta, Shivali; Garg, Nisha J.

    2015-01-01

    In this study, we evaluated the long-term efficacy of a two-component subunit vaccine against Trypanosoma cruzi infection. C57BL/6 mice were immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach and challenged with T. cruzi at 120 or 180 days post-vaccination (dpv). We examined whether vaccine-primed T cell immunity was capable of rapid expansion and intercepting the infecting T. cruzi. Our data showed that D/P vaccine elicited CD4+ (30-38%) and CD8+ (22-42%) T cells maintained an effector phenotype up to 180 dpv, and were capable of responding to antigenic stimulus or challenge infection by a rapid expansion (CD8>CD4) with type 1 cytokine (IFNγ+ and TFNα+) production and cytolytic T lymphocyte (CTL) activity. Subsequently, challenge infection at 120 or 180 dpv, resulted in 2-3-fold lower parasite burden in vaccinated mice than was noted in unvaccinated/infected mice. Co-delivery of IL-12- and GMCSF-encoding expression plasmids provided no significant benefits in enhancing the anti-parasite efficacy of the vaccine-induced T cell immunity. Booster immunization (bi) with recombinant TcG2/TcG4 proteins 3-months after primary vaccine enhanced the protective efficacy, evidenced by an enhanced expansion (1.2-2.8-fold increase) of parasite-specific, type 1 CD4+ and CD8+ T cells and a potent CTL response capable of providing significantly improved (3-4.5-fold) control of infecting T. cruzi. Further, CD8+T cells in vaccinated/bi mice were predominantly of central memory phenotype, and capable of responding to challenge infection 4-6-months post bi by a rapid expansion to a poly-functional effector phenotype, and providing a 1.5-2.3-fold reduction in tissue parasite replication. We conclude that the TcG2/TcG4 D/P vaccine provided long-term anti-T. cruzi T cell immunity, and bi would be an effective strategy to maintain or enhance the vaccine-induced protective immunity against T. cruzi infection and Chagas disease. PMID:25951312

  20. Vaccines: an ongoing promise?

    PubMed

    Alsahli, M; Farrell, R J; Michetti, P

    2001-01-01

    Over the past decade, intensive research has focused on developing a vaccine therapy for Helicobacter pylori. Substantial unresolved questions cloud the current approach, and the development of a vaccine against this unique organism has proved very challenging. Many candidate vaccines have been tested in animal models. The immunogenicity and the safety of some vaccine formulations have been recently evaluated through clinical trials, and the efficacy of these vaccine therapies in humans will be determined in the near future. This article will provide an overview of the current knowledge of natural and vaccine-induced immune responses to H. pylori infection. It will also review past vaccine successes and failures in animal models and the limited experience to date in using vaccine therapy in humans. Several obstacles to H. pylori vaccine development efforts along with the future direction of these efforts will be discussed. Copyright 2001 S. Karger AG, Basel

  1. Dendritic cell-tumor coculturing vaccine can induce antitumor immunity through both NK and CTL interaction.

    PubMed

    Kim, K D; Choi, S C; Kim, A; Choe, Y K; Choe, I S; Lim, J S

    2001-11-01

    Immunization of dendritic cells (DC) pulsed with tumor antigen can activate tumor-specific cytotoxic T lymphocytes (CTL) that are responsible for protection and regression. We show here that immunization with bone marrow-derived DC cocultured with tumor cells can induce a protective immunity against challenges to viable tumor cells. In this study, we further investigated the mechanism by which the antitumor activity was induced. Immunization of mice with DC cocultured with murine colon carcinoma. CT-26 cells, augmented CTL activity against the tumor cells. Concomitantly, an increase in natural killer (NK) cell activity was also detected in the same mice. When DC were fixed with paraformaldehyde prior to coculturing with tumor cells, most of the CTL and NK cell activity diminished, indicating that DC are involved in the process of presenting the tumor antigen(s) to CTL. NK cell depletion in vivo produced markedly low tumor-specific CTL activity responsible for tumor prevention. In addition, RT-PCR analysis confirmed the high expression of INF-gamma mRNA in splenocytes after vaccination with DC cocultured with tumors, but low expression in splenocytes from NK-depleted mice. Most importantly, the tumor protective effect rendered to DC by the coculturing with CT-26 cells was not observed in NK-depleted mice, which suggests that DC can induce an antitumor immune response by enhancing NK cell-dependent CTL activation. Collectively, our results indicate that NK cells are required during the priming of cytotoxic T-cell response by DC-based tumor vaccine and seem to delineate a mechanism by which DC vaccine can provide the desired immunity.

  2. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions

    PubMed Central

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Diouf, Ababacar; Galaway, Francis; de Graaf, Hans; Brendish, Nathan J.; Poulton, Ian D.; Griffiths, Oliver J.; Edwards, Nick J.; Jin, Jing; Labbé, Geneviève M.; Alanine, Daniel G.W.; Siani, Loredana; Di Marco, Stefania; Roberts, Rachel; Green, Nicky; Berrie, Eleanor; Ishizuka, Andrew S.; Nielsen, Carolyn M.; Bardelli, Martino; Partey, Frederica D.; Ofori, Michael F.; Barfod, Lea; Wambua, Juliana; Murungi, Linda M.; Osier, Faith H.; Biswas, Sumi; McCarthy, James S.; Minassian, Angela M.; Ashfield, Rebecca; Viebig, Nicola K.; Nugent, Fay L.; Douglas, Alexander D.; Wright, Gavin J.; Faust, Saul N.; Hill, Adrian V.S.; Long, Carole A.; Lawrie, Alison M.; Draper, Simon J.

    2017-01-01

    The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen — a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing. PMID:29093263

  3. Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines.

    PubMed

    Crosby, Catherine M; Nehete, Pramod; Sastry, K Jagannadha; Barry, Michael A

    2015-01-01

    Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered "single-cycle" adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase than SC-Ad6, it does not

  4. Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory.

    PubMed

    Becker, Pablo D; Hervouet, Catherine; Mason, Gavin M; Kwon, Sung-Yun; Klavinskis, Linda S

    2015-09-08

    A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species

    PubMed Central

    Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  6. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2014-07-01

    and J.W. Young, Human dendritic cells : potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 2005. 175(3): p...by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine

  7. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation.

    PubMed

    Barrett, Alan D T

    2018-01-01

    Zika virus (ZIKV), a mosquito-borne flavivirus, was first identified in the 1940s in Uganda in Africa and emerged in the Americas in Brazil in May 2015. In the 30 months since ZIKV emerged as a major public health problem, spectacular progress has been made with vaccine development cumulating with the publication of three reports of phase 1 clinical trials in the 4th quarter of 2017. Clinical trials involving candidate DNA and purified inactivated virus vaccines showed all were safe and well-tolerated in the small number of volunteers and all induced neutralizing antibodies, although these varied by vaccine candidate and dosing regimen. These results suggest that a Zika vaccine can be developed and that phase 2 clinical trials are warranted. However, it is difficult to compare the results from the different phase 1 studies or with neutralizing antibodies induced by licensed flavivirus vaccines (Japanese encephalitis, tick-borne encephalitis, and yellow fever) as neutralizing antibody assays vary and, unfortunately, there are no standards for Zika virus neutralizing antibodies. In addition to clinical studies, substantial progress continues to be made in nonclinical development, particularly in terms of the ability of candidate vaccines to protect reproductive tissues, and the potential use of monoclonal antibodies for passive prophylaxis.

  8. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Morita, Akinori; Ninomiya, Yasuharu; Maruyama, Kouichi; Fujita, Kazuko; Hosoi, Yoshio; Nenoi, Mitsuru

    2013-01-01

    Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice. PMID:23349341

  9. Quantitative Analysis of Repertoire-Scale Immunoglobulin Properties in Vaccine-Induced B-Cell Responses

    DTIC Science & Technology

    2017-05-10

    repertoire-wide properties. Finally, through 75 the use of appropriate statistical analyses, the repertoire profiles can be quantitatively compared and 76...cell response to eVLP and 503 quantitatively compare GC B-cell repertoires from immunization conditions. We partitioned the 504 resulting clonotype... Quantitative analysis of repertoire-scale immunoglobulin properties in vaccine-induced B-cell responses Ilja V. Khavrutskii1, Sidhartha Chaudhury*1

  10. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Ravendra

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not inducedmore » by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.« less

  11. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.

    PubMed

    Khurana, Surender; Loving, Crystal L; Manischewitz, Jody; King, Lisa R; Gauger, Phillip C; Henningson, Jamie; Vincent, Amy L; Golding, Hana

    2013-08-28

    Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

  12. Hepatitis A vaccines.

    PubMed

    Nothdurft, Hans Dieter

    2008-07-01

    The global disease burden associated with hepatitis A virus (HAV) is expected to increase in the coming years due to a shift in the epidemiological pattern of the disease. A decrease in the prevalence of natural immunity is leading to an increased number of adolescents and adults susceptible to a disease that is associated with greater morbidity, mortality and treatment costs in older-age groups. Current HAV vaccines have been shown to be safe, highly immunogenic and confer long-lasting protection against HAV disease. Vaccine-induced antibodies persist for more than 12 years in vaccinated adults and mathematical modeling predicts antibody persistence for more than 25 years in over 95% of vaccine recipients. However, the cost of HAV vaccines has been prohibitive for some countries. Recent studies in countries with transitioning HAV endemicity indicate that the cost-benefit ratio of mass vaccination against HAV would be similar to other routine childhood vaccinations.

  13. Immunodominance and Functional Activities of Antibody Responses to Inactivated West Nile Virus and Recombinant Subunit Vaccines in Mice▿

    PubMed Central

    Zlatkovic, Juergen; Stiasny, Karin; Heinz, Franz X.

    2011-01-01

    Factors controlling the dominance of antibody responses to specific sites in viruses and/or protein antigens are ill defined but can be of great importance for the induction of potent immune responses to vaccines. West Nile virus and other related important human-pathogenic flaviviruses display the major target of neutralizing antibodies, the E protein, in an icosahedral shell at the virion surface. Potent neutralizing antibodies were shown to react with the upper surface of domain III (DIII) of this protein. Using the West Nile virus system, we conducted a study on the immunodominance and functional quality of E-specific antibody responses after immunization of mice with soluble protein E (sE) and isolated DIII in comparison to those after immunization with inactivated whole virions. With both virion and sE, the neutralizing response was dominated by DIII-specific antibodies, but the functionality of these antibodies was almost four times higher after virion immunization. Antibodies induced by the isolated DIII had an at least 15-fold lower specific neutralizing activity than those induced by the virion, and only 50% of these antibodies were able to bind to virus particles. Our results suggest that immunization with the tightly packed E in virions focuses the DIII antibody response to the externally exposed sites of this domain which are the primary targets for virus neutralization, different from sE and isolated DIII, which also display protein surfaces that are cryptic in the virion. Despite its low potency for priming, DIII was an excellent boosting antigen, suggesting novel vaccination strategies that strengthen and focus the antibody response to critical neutralizing sites in DIII. PMID:21147919

  14. Treatment with proteasome inhibitor bortezomib enhances antigen-specific CD8+ T cell-mediated antitumor immunity induced by DNA vaccination

    PubMed Central

    Tseng, Chih Wen; Monie, Archana; Wu, Chao-Yi; Huang, Bruce; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T.-C.

    2008-01-01

    There is an urgent need to develop new innovative therapies for the control of cancer. Antigen-specific immunotherapy and the employment of proteasome inhibitors have emerged as two potentially plausible approaches for the control of cancer. In the current study, we explored the combination of the DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7) with the proteasome inhibitor; bortezomib for their ability to generate E7-specific immune responses and antitumor effects in vaccinated mice. We found that the combination of treatment with bortezomib and CRT/E7(detox) DNA generated more potent E7-specific CD8+ T cell immune responses and better therapeutic effects against TC-1 tumors in tumor bearing mice compared to monotherapy. Furthermore, we found that treatment with bortezomib led to increased apoptosis of TC-1 tumor cells and could render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. Our data has significant implications for future clinical translation. PMID:18542898

  15. Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model.

    PubMed

    Hess, Jessica A; Zhan, Bin; Bonne-Année, Sandra; Deckman, Jessica M; Bottazzi, Maria Elena; Hotez, Peter J; Klei, Thomas R; Lustigman, Sara; Abraham, David

    2014-08-01

    Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunisation protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  16. Calcitonin-gene related peptide is a potent inducer of oedema in rat orofacial tissue.

    PubMed

    Queiroz, Bárbara F G de; Almeida, Marcella P A de; Bakhle, Y S; Francischi, Janetti N

    2018-04-01

    This study aimed to assess the potential of calcitonin-gene related peptide (CGRP), a neuropeptide released from sensory nerves, to induce oedema in orofacial tissue. Wistar rats (150-200 g) anesthetized with isoflurane were injected intraorally with CGRP (100 μl; 8-33 pmol) in the right side of the mouth. The contralateral side was injected with the same volume of physiological saline. Increased cheek thickness (in mm), as a measure of oedema formation, was assayed bilaterally with a digital caliper before (T = 0) and up to 24 h following injection of CGRP. Pretreatment with antagonists (CGRP 8-37, 10 nmol; pizotifen, 2 mg/kg) was given by intra-oral or subcutaneous injection, 10 or 30 min, respectively, before the inflammatory stimulus. CGRP and CGRP 8-37 were also injected into the rat hind paw to induce oedema. Data are presented as the mean (±SEM) difference in thickness between the right and the left sides at each time. Following intra-oral injection, CGRP induced a rapidly developing (5-15 min) and long-lasting (6 h), dose-dependent oedema in the rat cheek, blocked by pre-treatment with CGRP 8-37 or pizotifen. CGRP induced a smaller oedematogenic effect in the rat hind paw also blocked by the CGRP antagonist. CGRP (16 pmol) potentiated the oedema induced by co-injected substance P (3.7 nmol) and contributed to the oedema following intraoral injection of carrageenan (100 μg). Injection of CGRP 8-37 alone induced an early but short-lasting oedema. Local injection of CGRP potently induced oedema in the orofacial tissue of rats which was blocked by a CGRP receptor antagonist. The overall inhibition of carrageenan-induced oedema by CGRP 8-37 suggests that endogenous CGRP contributes to an oedematogenic response in orofacial tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever

    PubMed Central

    Golden, Joseph W.; Maes, Piet; Kwilas, Steven A.; Ballantyne, John

    2016-01-01

    ABSTRACT Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT50), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can

  18. Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques.

    PubMed

    Sui, Yongjun; Zhu, Qing; Gagnon, Susan; Dzutsev, Amiran; Terabe, Masaki; Vaccari, Monica; Venzon, David; Klinman, Dennis; Strober, Warren; Kelsall, Brian; Franchini, Genoveffa; Belyakov, Igor M; Berzofsky, Jay A

    2010-05-25

    Adjuvant effects on innate as well as adaptive immunity may be critical for inducing protection against mucosal HIV and simian immunodeficiency virus (SIV) exposure. We therefore studied effects of Toll-like receptor agonists and IL-15 as mucosal adjuvants on both innate and adaptive immunity in a peptide/poxvirus HIV/SIV mucosal vaccine in macaques, and made three critical observations regarding both innate and adaptive correlates of protection: (i) adjuvant-alone without vaccine antigen impacted the intrarectal SIVmac251 challenge outcome, correlating with surprisingly long-lived APOBEC3G (A3G)-mediated innate immunity; in addition, even among animals receiving vaccine with adjuvants, viral load correlated inversely with A3G levels; (ii) a surprising threshold-like effect existed for vaccine-induced adaptive immunity control of viral load, and only antigen-specific polyfunctional CD8(+) T cells correlated with protection, not tetramer(+) T cells, demonstrating the importance of T-cell quality; (iii) synergy was observed between Toll-like receptor agonists and IL-15 for driving adaptive responses through the up-regulation of IL-15Ralpha, which can present IL-15 in trans, as well as for driving the innate A3G response. Thus, strategic use of molecular adjuvants can provide better mucosal protection through induction of both innate and adaptive immunity.

  19. The Dual Role of Lipids of the Lipoproteins in Trumenba, a Self-Adjuvanting Vaccine Against Meningococcal Meningitis B Disease.

    PubMed

    Luo, Yin; Friese, Olga V; Runnels, Herbert A; Khandke, Lakshmi; Zlotnick, Gary; Aulabaugh, Ann; Gore, Thomas; Vidunas, Eugene; Raso, Stephen W; Novikova, Elena; Byrne, Emilia; Schlittler, Michael; Stano, Donald; Dufield, Robert L; Kumar, Sandeep; Anderson, Annaliesa S; Jansen, Kathrin U; Rouse, Jason C

    2016-11-01

    Trumenba (bivalent rLP2086) is a vaccine licensed for the prevention of meningococcal meningitis disease caused by Neisseria meningitidis serogroup B (NmB) in individuals 10-25 years of age in the USA. The vaccine is composed of two factor H binding protein (fHbp) variants that were recombinantly expressed in Escherichia coli as native lipoproteins: rLP2086-A05 and rLP2086-B01. The vaccine was shown to induce potent bactericidal antibodies against a broad range of NmB isolates expressing fHbp that were different in sequence from the fHbp vaccine antigens. Here, we describe the characterization of the vaccine antigens including the elucidation of their structure which is characterized by two distinct motifs, the polypeptide domain and the N-terminal lipid moiety. In the vaccine formulation, the lipoproteins self-associate to form micelles driven by the hydrophobicity of the lipids and limited by the size of the folded polypeptides. The micelles help to increase the structural stability of the lipoproteins in the absence of bacterial cell walls. Analysis of the lipoproteins in Toll-like receptor (TLR) activation assays revealed their TLR2 agonist activity. This activity was lost with removal of the O-linked fatty acids, similar to removal of all lipids, demonstrating that this moiety plays an adjuvant role in immune activation. The thorough understanding of the structure and function of each moiety of the lipoproteins, as well as their relationship, lays the foundation for identifying critical parameters to guide vaccine development and manufacture.

  20. Measles, mumps, rubella vaccine induced subacute sclerosing panencephalitis.

    PubMed

    Belgamwar, R B; Prasad, S; Appaya, P

    1997-11-01

    The incidence of subacute sclerosing panencephalitis (SSPE), a progressive and fatal neurodegenerative disease caused by the measles virus, has declined with widespread use of measles vaccine. The risk of SSPE after measles vaccination has been estimated at 0.7/million doses. This paper reports the case of a 15-year-old girl from India who developed SSPE presumably as a result of a delayed effect of measles, mumps, and rubella (MMR) vaccine. She presented with a 2-month history of behavioral disturbances, a deterioration in school performance, forgetfulness, silly smiling, handwriting changes, social withdrawal, and ataxia. The girl had received MMR vaccine at 9 months of age and had no past history of measles. Her measles antibody titre was 1:625 in both serum and cerebrospinal fluid.