Sample records for vaccine powder formulations

  1. Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine

    PubMed Central

    Wang, Sheena H.; Kirwan, Shaun M.; Abraham, Soman N.; Staats, Herman F.; Hickey, Anthony J.

    2013-01-01

    There is a current biodefense interest in protection against Anthrax. Here we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by rPA delivered intranasally with a novel mucosal adjuvant, a mast cell activator Compound 48/80. The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D50=25μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by CD and ATR-FTIR, while functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unitdose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over two years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by IM immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine, or an attractive vaccine platform for other mucosally transmitted diseases. PMID:21905034

  2. Stable dry powder formulation for nasal delivery of anthrax vaccine.

    PubMed

    Wang, Sheena H; Kirwan, Shaun M; Abraham, Soman N; Staats, Herman F; Hickey, Anthony J

    2012-01-01

    There is a current biodefense interest in protection against anthrax. Here, we developed a new generation of stable and effective anthrax vaccine. We studied the immune response elicited by recombinant protective antigen (rPA) delivered intranasally with a novel mucosal adjuvant, a mast cell activator compound 48/80 (C48/80). The vaccine formulation was prepared in a powder form by spray-freeze-drying (SFD) under optimized conditions to produce particles with a target size of D(50) = 25 μm, suitable for delivery to the rabbit nasal cavity. Physicochemical properties of the powder vaccines were characterized to assess their delivery and storage potential. Structural stability of rPA was confirmed by circular dichroism and attenuated total reflectance-Fourier transform infrared spectroscopy, whereas functional stability of rPA and C48/80 was monitored by cell-based assays. Animal study was performed using a unit-dose powder device for direct nasal application. Results showed that C48/80 provided effective mucosal adjuvant activity in rabbits. Freshly prepared SFD powder vaccine formulations or powders stored for over 2 years at room temperature elicited significantly elevated serum PA-specific and lethal toxin neutralization antibody titers that were comparable to that induced by intramuscular immunization with rPA. Nasal delivery of this vaccine formulation may be a viable alternative to the currently licensed vaccine or an attractive vaccine platform for other mucosally transmitted diseases. Copyright © 2011 Wiley-Liss, Inc.

  3. Development of Stable Influenza Vaccine Powder Formulations: Challenges and Possibilities

    PubMed Central

    Amorij, J-P.; Huckriede, A.; Wilschut, J.; Frijlink, H. W.

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought into the dry state using suitable excipients, stabilizers and drying processes. The resulting stable influenza vaccine powder is independent of cold-chain facilities. This can be attractive for the integration of the vaccine logistics with general drug distribution in Western as well as developing countries. In addition, a stockpile of stable vaccine formulations of potential vaccines against pandemic viruses can provide an immediate availability and simple distribution of vaccine in a pandemic outbreak. Finally, in the development of new needle-free dosage forms, dry and stable influenza vaccine powder formulations can facilitate new or improved targeting strategies for the vaccine compound. This review represents the current status of dry stable inactivated influenza vaccine development. Attention is given to the different influenza vaccine types (i.e. whole inactivated virus, split, subunit or virosomal vaccine), the rationale and need for stabilized influenza vaccines, drying methods by which influenza vaccines can be stabilized (i.e. lyophilization, spray drying, spray-freeze drying, vacuum drying or supercritical fluid drying), the current status of dry influenza vaccine development and the challenges for ultimate market introduction of a stable and effective dry-powder influenza vaccine. PMID:18338241

  4. Suitability of differently formulated dry powder Newcastle disease vaccines for mass vaccination of poultry.

    PubMed

    Huyge, Katrien; Van Reeth, Kristien; De Beer, Thomas; Landman, Wil J M; van Eck, Jo H H; Remon, Jean Paul; Vervaet, Chris

    2012-04-01

    Dry powders containing a live-attenuated Newcastle disease vaccine (LZ58 strain) and intended for mass vaccination of poultry were prepared by spray drying using mannitol in combination with trehalose or inositol, polyvinylpyrrolidone (PVP) and/or bovine serum albumin (BSA) as stabilizers. These powders were evaluated for vaccine stabilizing capacity during production and storage (at 6 °C and 25 °C), moisture content, hygroscopicity and dry powder dispersibility. A mixture design, varying the ratio of mannitol, inositol and BSA, was used to select the stabilizer combination which resulted in the desired powder properties (i.e. good vaccine stability during production and storage, low moisture content and hygroscopicity and good dry dispersibility). Inositol-containing powders had the same vaccine stabilizing capacity as trehalose powders, but were less hygroscopic. Incorporation of BSA enhanced the vaccine stability in the powders compared to PVP-containing formulations. However, increasing the BSA concentration increased the hygroscopicity and reduced the dry dispersibility of the powder. No valid mathematical model could be calculated for vaccine stability during production or storage, but the individual experiments indicated that a formulation combining mannitol, inositol and BSA in a ratio of 73.3:13.3:13.3 (wt/wt) resulted in the lowest vaccine titre loss during production (1.6-2.0 log(10) 50% egg infectious dose (EID(50)) and storage at 6 °C (max. 0.8 log(10) EID(50) after 6 months) in combination with a low moisture content (1.1-1.4%), low hygroscopicity (1.9-2.1% water uptake at 60% relative humidity) and good dry dispersibility properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Anthrax vaccine powder formulations for nasal mucosal delivery.

    PubMed

    Jiang, Ge; Joshi, Sangeeta B; Peek, Laura J; Brandau, Duane T; Huang, Juan; Ferriter, Matthew S; Woodley, Wendy D; Ford, Brandi M; Mar, Kevin D; Mikszta, John A; Hwang, C Robin; Ulrich, Robert; Harvey, Noel G; Middaugh, C Russell; Sullivan, Vincent J

    2006-01-01

    Anthrax remains a serious threat worldwide as a bioterror agent. A second-generation anthrax vaccine currently under clinical evaluation consists of a recombinant Protective Antigen (rPA) of Bacillus anthracis. We have previously demonstrated that complete protection against inhalational anthrax can be achieved in a rabbit model, by intranasal delivery of a powder rPA formulation. Here we describe the preformulation and formulation development of such powder formulations. The physical stability of rPA was studied in solution as a function of pH and temperature using circular dichroism (CD), and UV-visible absorption and fluorescence spectroscopies. Extensive aggregation of rPA was observed at physiological temperatures. An empirical phase diagram, constructed using a combination of CD and fluorescence data, suggests that rPA is most thermally stable within the pH range of 6-8. To identify potential stabilizers, a library of GRAS excipients was screened using an aggregation sensitive turbidity assay, CD, and fluorescence. Based on these stability profiles, spray freeze-dried (SFD) formulations were prepared at pH 7-8 using trehalose as stabilizer and a CpG-containing oligonucleotide adjuvant. SFD formulations displayed substantial improvement in storage stability over liquid formulations. In combination with noninvasive intranasal delivery, such powder formulations may offer an attractive approach for mass biodefense immunization.

  6. Protective immunity in mice achieved with dry powder formulation and alternative delivery of plague F1-V vaccine.

    PubMed

    Huang, Joanne; D'Souza, Ajit J; Alarcon, Jason B; Mikszta, John A; Ford, Brandi M; Ferriter, Matthew S; Evans, Michelle; Stewart, Todd; Amemiya, Kei; Ulrich, Robert G; Sullivan, Vincent J

    2009-05-01

    The potential use of Yersinia pestis as a bioterror agent is a great concern. Development of a stable powder vaccine against Y. pestis and administration of the vaccine by minimally invasive methods could provide an alternative to the traditional liquid formulation and intramuscular injection. We evaluated a spray-freeze-dried powder vaccine containing a recombinant F1-V fusion protein of Y. pestis for vaccination against plaque in a mouse model. Mice were immunized with reconstituted spray-freeze-dried F1-V powder via intramuscular injection, microneedle-based intradermal delivery, or noninvasive intranasal administration. By intramuscular injection, the reconstituted powder induced serum antibody responses and provided protection against lethal subcutaneous challenge with 1,000 50% lethal doses of Y. pestis at levels equivalent to those elicited by unprocessed liquid formulations (70 to 90% protection). The feasibility of intradermal and intranasal delivery of reconstituted powder F1-V vaccine was also demonstrated. Overall, microneedle-based intradermal delivery was shown to be similar in efficacy to intramuscular injection, while intranasal administration required an extra dose of vaccine to achieve similar protection. In addition, the results suggest that seroconversion against F1 may be a better predictor of protection against Y. pestis challenge than seroconversion against either F1-V or V. In summary, we demonstrate the preclinical feasibility of using a reconstituted powder F1-V formulation and microneedle-based intradermal delivery to provide protective immunity against plague in a mouse model. Intranasal delivery, while feasible, was less effective than injection in this study. The potential use of these alternative delivery methods and a powder vaccine formulation may result in substantial health and economic benefits.

  7. Formulation of a dry powder influenza vaccine for nasal delivery.

    PubMed

    Garmise, Robert J; Mar, Kevin; Crowder, Timothy M; Hwang, C Robin; Ferriter, Matthew; Huang, Juan; Mikszta, John A; Sullivan, Vincent J; Hickey, Anthony J

    2006-03-10

    The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (WIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery. Chitosan flakes were reduced in size using a cryo-milling technique. Milled powders were sieved between 45 and 125 microm aggregate sizes and characterized for particle size and distribution, morphology, and flow properties. Powders were blended in the micro-ball mill without the ball. Lyophilization followed by milling produced irregularly shaped, polydisperse particles with a median primary particle diameter of approximately 21 microm and a yield of approximately 37% of particles in the 45 to 125 microm particle size range. Flow properties of lactose and trehalose powders after lyophilization followed by milling and sieving were similar. Cryo-milling produced a small yield of particles in the desired size range (<10%). Lyophilization followed by milling and sieving produced particles suitable for nasal delivery with different physicochemical properties as a function of processing conditions and components of the formulation. Further optimization of particle size and morphology is required for these powders to be suitable for clinical evaluation.

  8. Intranasal delivery of Norwalk virus-like particles formulated in an in-situ gelling, dry powder vaccine

    PubMed Central

    Velasquez, Lissette S.; Shira, Samantha; Berta, Alice N.; Kilbourne, Jacquelyn; Medi, Babu M.; Tizard, Ian; Ni, Yawei; Arntzen, Charles J.; Herbst-Kralovetz, Melissa M.

    2011-01-01

    The development of a vaccine to prevent norovirus infections has been focused on immunization at a mucosal surface, but has been limited by the low immunogenicity of self-assembling Norwalk virus-like particles (NV VLPs) delivered enterically or at nasal surfaces. Nasal immunization, which offers the advantage of ease of immunization, faces obstacles imposed by the normal process of mucociliary clearance, which limits residence time of applied antigens. Herein, we describe the use of a dry powder formulation (GelVac) of an inert in-situ gelling polysaccharide (GelSite) extracted from Aloe vera for nasal delivery of NV VLP antigen. Powder formulations, with or without NV VLP antigen, were similar in structure in dry form or when rehydrated in simulated nasal fluids. Immunogenicity of the dry powder VLP formulation was compared to equivalent antigen/adjuvant liquid formulations in animals. For the GelVac powder, we observed superior NV-specific serum and mucosal (aerodigestive and reproductive tracts) antibody responses relative to liquid formulations. Incorporation of TLR7 agonist gardiquimod in dry powder formulations did not enhance antibody responses, although its inclusion in liquid formulations did enhance VLP immunogenicity irrespective of the presence or absence of GelSite. We interpret these data as showing that GelSite-based dry powder formulations 1.) stabilize the immunogenic structural properties of VLPs and 2.) induce systemic and mucosal antibody titers which are equal or greater than those achieved by VLPs plus adjuvant in a liquid formulation. We conclude that in-situ gelation of the GelVac dry powder formulation at nasal mucosal surfaces delays mucociliary clearance and thereby prolongs VLP antigen exposure to immune effector sites. PMID:21640778

  9. Vaccination of broiler chickens with dispersed dry powder vaccines as an alternative for liquid spray and aerosol vaccination.

    PubMed

    Corbanie, E A; Vervaet, C; van Eck, J H H; Remon, J P; Landman, W J M

    2008-08-18

    Vaccination of chickens with dispersable dry powder vaccines was compared with commercial liquid vaccines. A Clone 30 Newcastle disease vaccine virus was spray dried with mannitol or with a mixture of trehalose, polyvinylpyrrolidone and bovine serum albumin. A coarse (+/-30 microm) and fine (+/-7 microm) powder were produced with both formulations. A commercial reconstituted Clone 30 vaccine was applied as coarse liquid spray (+/-222 microm) or fine liquid aerosol (+/-24 microm). Reduction of virus concentration in the air after dispersion/nebulization was monitored by air sampling and was explained by sedimentation of coarse particles/droplets and evaporation of fine droplets. The vaccine formulations induced high haemagglutination inhibition antibody titres in the serum of 4-week-old broilers (2(7) at 4 weeks post-vaccination). The good serum antibody response with the fine liquid aerosol despite extensive inactivation of virus due to evaporation of droplets, suggested that powder formulations (without inactivation due to evaporation) might allow a significant reduction of vaccine dose, thereby offering new options for fine aerosol vaccination with low-titre vaccines.

  10. Stability of collapse lyophilized influenza vaccine formulations.

    PubMed

    Anamur, Cihad; Winter, Gerhard; Engert, Julia

    2015-04-10

    A clear limitation of many liquid vaccines is the obligatory cold-chain distribution system. Therefore, distribution of a dried vaccine formulation may be beneficial in terms of vaccine stability, handling and transport. Collapse freeze-drying is a process which utilizes fairly aggressive but at the same time economic lyophilization cycles where the formulation is dried above its glass transition temperature. In this study, we used collapse freeze-drying for a thermosensitive model influenza vaccine (Pandemrix(®)). The dried lyophilizates were further cryo-milled to engineer powder particles in the size range of approximately 20-80 μm which is applicable for epidermal powder immunization. Vaccine potency and stability were neither affected by high temperature input during collapse lyophilization nor over a storage period of six months. Furthermore, cryo-milled vaccine lyophilizates showed good storage stability of up to three months at high storage temperature (40 °C). This technique can provide a powerful tool for the worldwide distribution of vaccine and for new application technologies such as engineered powder immunization. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Toward intradermal vaccination: preparation of powder formulations by collapse freeze-drying.

    PubMed

    Etzl, Elsa E; Winter, Gerhard; Engert, Julia

    2014-03-01

    Intradermal powder immunization is an emerging technique in vaccine delivery. The purpose of this study was to generate powder particles for intradermal injection by freeze-drying and subsequent cryo-milling. Two different freeze-drying protocols were compared, a moderate freeze-drying cycle and an aggressive freeze-drying cycle, which induced a controlled collapse of the sugar matrix. Ovalbumin served as model antigen. The influence of collapse drying and cryo-milling on particle morphology and protein stability was investigated. Cryo-milling generated irregularly shaped particles of size 20-70 µm. The recovery of soluble monomer of ovalbumin was not changed during freeze-drying and after cryo-milling, or after 12 months of storage at 2-8 °C. A slight increase in higher molecular weight aggregates was found in formulations containing the polymer dextran after 12 months of storage at 50 °C. Light obscuration measurements showed an increase in cumulative particle counts after cryo-milling that did not further increase during storage at 2-8 °C for 12 months. The applicability of the cryo-milling process to other therapeutic proteins was shown using recombinant human granulocyte-colony stimulating factor. Collapse freeze-drying and subsequent cryo-milling allows the generation of particles suitable for intradermal powder injection.

  12. Anthrax Vaccine Powder Formulations for Nasal Mucosal Delivery

    DTIC Science & Technology

    2005-08-04

    inhalational anthrax can be achieved in a rabbit model, by intranasal delivery of a powder rPA formulation. Here we describe the preformulation and...fluorescence. Based on these stability profiles, spray freeze-dried (SFD) formulations were prepared at pH 7–8 using trehalose as stabilizer and a CpG...gas- trointestinal, and pulmonary routes. The inhaled form is of particular concern considering its de- monstrated use as a bioweapon.1–4 Inhalational

  13. Protective Immunity in Mice Achieved with Dry Powder Formulation and Alternative Delivery of Plague F1-V Vaccine▿

    PubMed Central

    Huang, Joanne; D'Souza, Ajit J.; Alarcon, Jason B.; Mikszta, John A.; Ford, Brandi M.; Ferriter, Matthew S.; Evans, Michelle; Stewart, Todd; Amemiya, Kei; Ulrich, Robert G.; Sullivan, Vincent J.

    2009-01-01

    The potential use of Yersinia pestis as a bioterror agent is a great concern. Development of a stable powder vaccine against Y. pestis and administration of the vaccine by minimally invasive methods could provide an alternative to the traditional liquid formulation and intramuscular injection. We evaluated a spray-freeze-dried powder vaccine containing a recombinant F1-V fusion protein of Y. pestis for vaccination against plaque in a mouse model. Mice were immunized with reconstituted spray-freeze-dried F1-V powder via intramuscular injection, microneedle-based intradermal delivery, or noninvasive intranasal administration. By intramuscular injection, the reconstituted powder induced serum antibody responses and provided protection against lethal subcutaneous challenge with 1,000 50% lethal doses of Y. pestis at levels equivalent to those elicited by unprocessed liquid formulations (70 to 90% protection). The feasibility of intradermal and intranasal delivery of reconstituted powder F1-V vaccine was also demonstrated. Overall, microneedle-based intradermal delivery was shown to be similar in efficacy to intramuscular injection, while intranasal administration required an extra dose of vaccine to achieve similar protection. In addition, the results suggest that seroconversion against F1 may be a better predictor of protection against Y. pestis challenge than seroconversion against either F1-V or V. In summary, we demonstrate the preclinical feasibility of using a reconstituted powder F1-V formulation and microneedle-based intradermal delivery to provide protective immunity against plague in a mouse model. Intranasal delivery, while feasible, was less effective than injection in this study. The potential use of these alternative delivery methods and a powder vaccine formulation may result in substantial health and economic benefits. PMID:19261773

  14. Developments in the formulation and delivery of spray dried vaccines.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  15. Developments in the formulation and delivery of spray dried vaccines

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  16. A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge

    PubMed Central

    Klas, S.D.; Petrie, C.R.; Warwood, S.J.; Williams, M.S.; Olds, C.L.; Stenz, J.P.; Cheff, A.M.; Hinchcliffe, M.; Richardson, C.; Wimer, S.

    2009-01-01

    Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150 μg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150 μg rPA, 150 μg rPA + 150 μg of a conjugated 10-mer peptide representing the B. anthracis capsule (conj), or 150 μg of conj alone. All dry powder formulations contained MPL and chitosan (ChiSys®). Significant anti-rPA titers and anthrax lethal toxin neutralizing antibody (TNA) levels were seen with both rPA containing vaccines, although rPA-specific IgG and TNA levels were reduced in rabbits immunized with rPA plus conj. Nine weeks after immunization, rabbits were exposed to a mean aerosol challenge dose of 278 LD50 of Ames spores. Groups immunized with rPA or with rPA + conj had significant increases in survivor proportions compared to the negative control group by Logrank test (p = 0.0001 and 0.003, respectively), and survival was not statistically different for the rPA and rPA + conj immunized groups (p = 0.63). These data demonstrate that a single immunization with our dry powder anthrax vaccine can protect against a lethal aerosol spore challenge 9 weeks later. PMID:18703110

  17. A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge.

    PubMed

    Klas, S D; Petrie, C R; Warwood, S J; Williams, M S; Olds, C L; Stenz, J P; Cheff, A M; Hinchcliffe, M; Richardson, C; Wimer, S

    2008-10-09

    Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150microg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150microg rPA, 150microg rPA+150microg of a conjugated 10-mer peptide representing the Bacillus anthracis capsule (conj), or 150microg of conj alone. All dry powder formulations contained MPL and chitosan (ChiSys). Significant anti-rPA titers and anthrax lethal toxin neutralizing antibody (TNA) levels were seen with both rPA containing vaccines, although rPA-specific IgG and TNA levels were reduced in rabbits immunized with rPA plus conj. Nine weeks after immunization, rabbits were exposed to a mean aerosol challenge dose of 278 LD50 of Ames spores. Groups immunized with rPA or with rPA+conj had significant increases in survivor proportions compared to the negative control group by Logrank test (p=0.0001 and 0.003, respectively), and survival was not statistically different for the rPA and rPA+conj immunized groups (p=0.63). These data demonstrate that a single immunization with our dry powder anthrax vaccine can protect against a lethal aerosol spore challenge 9 weeks later.

  18. Alternative vaccine administration by powder injection: Needle-free dermal delivery of the glycoconjugate meningococcal group Y vaccine

    PubMed Central

    Schiffter, Heiko A.; Carlisle, Robert C.; Rollier, Christine S.; Prud’homme, Robert K.; Pollard, Andrew J.

    2017-01-01

    Powder-injectors use gas propulsion to deposit lyophilised drug or vaccine particles in the epidermal and sub epidermal layers of the skin. We prepared dry-powder (Tg = 45.2 ± 0.5°C) microparticles (58.1 μm) of a MenY-CRM197 glyconjugate vaccine (0.5% wt.) for intradermal needle-free powder injection (NFPI). SFD used ultrasound atomisation of the liquid vaccine-containing excipient feed, followed by lyophilisation above the glass transition temperature (Tg’ = − 29.9 ± 0.3°C). This resulted in robust particles (density~ 0.53 ±0.09 g/cm3) with a narrow volume size distribution (mean diameter 58.1 μm, and span = 1.2), and an impact parameter (ρvr ~ 11.5 kg/m·s) sufficient to breach the Stratum corneum (sc). The trehalose, manitol, dextran (10 kDa), dextran (150 kDa) formulation, or TMDD (3:3:3:1), protected the MenY-CRM197 glyconjugate during SFD with minimal loss, no detectable chemical degradation or physical aggregation. In a capsular group Y Neisseria meningitidis serum bactericidal assay (SBA) with human serum complement, the needle free vaccine, which contained no alum adjuvant, induced functional protective antibody responses in vivo of similar magnitude to the conventional vaccine injected by hypodermic needle and syringe and containing alum adjuvant. These results demonstrate that needle-free vaccination is both technically and immunologically valid, and could be considered for vaccines in development. PMID:28837693

  19. Modern Vaccines/Adjuvants Formulation Session 6: Vaccine &Adjuvant Formulation & Production 15-17 May 2013, Lausanne, Switzerland.

    PubMed

    Fox, Christopher B

    2013-09-01

    The Modern Vaccines/Adjuvants Formulation meeting aims to fill a critical gap in current vaccine development efforts by bringing together formulation scientists and immunologists to emphasize the importance of rational formulation design in order to optimize vaccine and adjuvant bioactivity, safety, and manufacturability. Session 6 on Vaccine and Adjuvant Formulation and Production provided three examples of this theme, with speakers emphasizing the need for extensive physicochemical characterization of adjuvant-antigen interactions, the rational formulation design of a CD8+ T cell-inducing adjuvant based on immunological principles, and the development and production of a rabies vaccine by a developing country manufacturer. Throughout the session, the practical importance of sound formulation and manufacturing design accompanied by analytical characterization was highlighted.

  20. Stability and pre-formulation development of a plant-produced anthrax vaccine candidate.

    PubMed

    Jones, R Mark; Burke, Michael; Dubose, Devon; Chichester, Jessica A; Manceva, Slobodanka; Horsey, April; Streatfield, Stephen J; Breit, Jeff; Yusibov, Vidadi

    2017-10-04

    Second generation anthrax vaccines focus on the use of recombinant protective antigen (rPA) to elicit a strong, toxin neutralizing antibody responses in immunized subjects. The main difference between the rPA vaccines compared to the current licensed vaccine, anthrax vaccine absorbed (AVA), is the rPA vaccines are highly purified preparations of only rPA. These second generation rPA vaccines strive to elicit strong immune responses with substantially fewer doses than AVA while provoking less side effects. Many of the rPA candidates have shown to be effective in pre-clinical studies, but most of the second generation molecules have stability issues which reduce their efficacy over time. These stability issues are evident even under refrigerated conditions and thus emphasis has been directed to stabilizing the rPA molecule and determining an optimized final formulation. Stabilization of vaccines for long-term storage is a major challenge in the product development life cycle. The effort required to identify suitable formulations can be slow and expensive. The ideal storage for stockpiled vaccines would allow the candidate to withstand years of storage at ambient temperatures. The Fraunhofer Center for Molecular Biotechnology is developing a plant-produced rPA vaccine candidate that shows instability when stored under refrigerated conditions in a solution, as is typical for rPA vaccines. Increased stability of our plant-produced rPA vaccine candidate was achieved in a spray dried powder formulation that could eliminate the need for conventional cold chain allowing greater confidence to stockpile vaccine for civilian and military biodefense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus.

    PubMed

    Bhide, Yoshita; Tomar, Jasmine; Dong, Wei; de Vries-Idema, Jacqueline; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J

    2018-11-01

    Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and protective efficacy. In vivo deposition studies in cotton rats revealed that, the powder formulation was mainly deposited in the trachea ( ∼ 65%) whereas the liquid was homogenously distributed throughout the lungs ( ∼ 96%). In addition, only 60% of the antigen in the powder formulation was deposited in the respiratory tract with respect to the liquid formulation. Immunogenicity studies showed that pulmonary delivered liquid and powder influenza formulations induced robust systemic and mucosal immune responses (significantly higher by liquids than by powders). When challenged with a clinical isolate of homologous H1N1pdm virus, all animals pulmonary administered with placebo had detectable virus in their lungs one day post challenge. In contrast, none of the vaccinated animals had detectable lung virus titers, except for two out of eight animals from the powder immunized group. Also, pulmonary vaccinated animals showed no or little signs of infection like increase in breathing frequency or weight loss upon challenge as compared to animals from the negative control group. In conclusion, immune responses induced by liquid formulation were significantly higher than responses induced by powder formulation, but the overall protective efficacy of both formulations was comparable. Thus, pulmonary immunization is capable of inducing protective immunity and the site of antigen deposition seems to be of minor relevance in inducing protection.

  2. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    PubMed

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A Method of Lyophilizing Vaccines Containing Aluminum Salts into a Dry Powder Without Causing Particle Aggregation or Decreasing the Immunogenicity Following Reconstitution

    PubMed Central

    Li, Xinran; Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2015-01-01

    Many currently licensed and commercially available human vaccines contain aluminum salts as vaccine adjuvants. A major limitation with these vaccines is that they must not be exposed to freezing temperatures during transport or storage such that the liquid vaccine freezes, because freezing causes irreversible coagulation that damages the vaccines (e.g., loss of efficacy). Therefore, vaccines that contain aluminum salts as adjuvants are formulated as liquid suspensions and are required to be kept in cold chain (2–8°C) during transport and storage. Formulating vaccines adjuvanted with aluminum salts into dry powder that can be readily reconstituted before injection may address the limitation. Spray freeze-drying of vaccines with low concentrations of aluminum salts and high concentrations of trehalose alone, or a mixture of sugars and amino acids, as excipients can convert vaccines containing aluminum salts into dry powder, but fails to preserve the particle size and/or immunogenicity of the vaccines. In the present study, using ovalbumin as a model antigen adsorbed onto aluminum hydroxide or aluminum phosphate, a commercially available tetanus toxoid vaccine adjuvanted with potassium alum, a human hepatitis B vaccine adjuvanted with aluminum hydroxide, and a human papillomavirus vaccine adjuvanted with aluminum hydroxyphosphate sulfate, it was shown that vaccines containing a relatively high concentration of aluminum salts (i.e., up to ~1%, w/v, of aluminum hydroxide) can be converted into a dry powder by thin-film freezing followed by removal of the frozen solvent by lyophilization while using low levels of trehalose (i.e., as low as 2% w/v) as an excipient. Importantly, the thin-film freeze-drying process did not cause particle aggregation, nor decreased the immunogenicity of the vaccines. Moreover, repeated freezing-and-thawing of the dry vaccine powder did not cause aggregation. Thin-film freeze-drying is a viable platform technology to produce dry powders of

  4. An optimized formulation of a thermostable spray dried virus-like particles vaccine against human papillomavirus

    PubMed Central

    Saboo, Sugandha; Tumban, Ebenezer; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce; Muttil, Pavan

    2016-01-01

    Existing vaccines against human papillomavirus (HPV) require continuous cold-chain storage. Previously, we developed a bacteriophage virus-like particle (VLP) based vaccine for Human Papillomavirus (HPV) infection, which elicits broadly neutralizing antibodies against diverse HPV types. Here, we formulated these VLPs into a thermostable dry powder using a multi-component excipient system and by optimizing the spray drying parameters using a half-factorial design approach. Dry powder VLPs were stable after spray drying and after long-term storage at elevated temperatures. Immunization of mice with a single dose of reconstituted dry powder VLPs that were stored at 37°C for more than a year elicited high anti-L2 IgG antibody titers. Spray dried thermostable, broadly protective L2 bacteriophage VLPs vaccine could be accessible to remote regions of the world (where ~84% of cervical cancer patients reside) by eliminating the cold-chain requirement during transportation and storage. PMID:27019231

  5. The Effect of Formulation on Spray Dried Sabin Inactivated Polio Vaccine.

    PubMed

    Kanojia, Gaurav; Ten Have, Rimko; Brugmans, Debbie; Soema, Peter C; Frijlink, Henderik W; Amorij, Jean-Pierre; Kersten, Gideon

    2018-05-19

    The objective of this study was to develop a stable spray dried formulation, containing the three serotypes of Sabin inactivated polio vaccine (sIPV), aiming for minimal loss of native conformation (D-antigen) during drying and subsequent storage. The influence of atomization and drying stress during spray drying on trivalent sIPV was investigated. This was followed by excipient screening, in which monovalent sIPV was formulated and spray dried. Excipient combinations and concentrations were tailored to maximize both the antigen recovery of respective sIPV serotypes after spray drying and storage (T= 40°C and t= 7 days). Furthermore, a fractional factorial design was developed around the most promising formulations to elucidate the contribution of each excipient in stabilizing D-antigen during drying. Serotype 1 and 2 could be dried with 98 % and 97 % recovery, respectively. When subsequently stored at 40°C for 7 days, the D-antigenicity of serotype 1 was fully retained. For serotype 2 the D-antigenicity dropped to 71 %. Serotype 3 was more challenging to stabilize and a recovery of 56 % was attained after drying, followed by a further loss of 37 % after storage at 40°C for 7 days. Further studies using a design of experiments approach demonstrated that trehalose/monosodium glutamate and maltodextrin/arginine combinations were crucial for stabilizing serotype 1 and 2, respectively. For sIPV serotype 3, the best formulation contained Medium199, glutathione and maltodextrin. For the trivalent vaccine it is therefore probably necessary to spray dry the different serotypes separately and mix the dry powders afterwards to obtain the trivalent vaccine. Copyright © 2018. Published by Elsevier B.V.

  6. Screening Vaccine Formulations in Fresh Human Whole Blood.

    PubMed

    Hakimi, Jalil; Aboutorabian, Sepideh; To, Frederick; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2017-01-01

    Monitoring the immunological functionality of vaccine formulations is critical for vaccine development. While the traditional approach using established animal models has been relatively effective, the use of animals is costly and cumbersome, and animal models are not always reflective of a human response. The development of a human-based approach would be a major step forward in understanding how vaccine formulations might behave in humans. Here, we describe a platform methodology using fresh human whole blood (hWB) to monitor adjuvant-modulated, antigen-specific responses to vaccine formulations, which is amenable to analysis by standard immunoassays as well as a variety of other analytical techniques.

  7. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    PubMed

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder.

    PubMed

    Thakur, Aneesh; Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Rose, Fabrice; Andersen, Peter; Christensen, Dennis; Foged, Camilla

    2018-05-31

    Liquid vaccine dosage forms have limited stability and require refrigeration during their manufacture, distribution and storage. In contrast, solid vaccine dosage forms, produced by for example spray drying, offer improved storage stability and reduced dependence on cold-chain facilities. This is advantageous for mass immunization campaigns for global public health threats, e.g., tuberculosis (TB), and offers cheaper vaccine distribution. The multistage subunit vaccine antigen H56, which is a fusion protein of the Mycobacterium tuberculosis (Mtb) antigens Ag85B, ESAT-6, and Rv2660, has been shown to confer protective efficacy against active TB before and after Mtb exposure in preclinical models, and it is currently undergoing clinical phase 2a testing. In several studies, including a recent study comparing multiple clinically relevant vaccine adjuvants, the T helper type 1 (Th1)/Th17-inducing adjuvant CAF01 was the most efficacious adjuvant for H56 to stimulate protective immunity against Mtb. With the long-term goal of designing a thermostable and self-administrable dry powder vaccine based on H56 and CAF01 for inhalation, we compared H56 spray-dried with CAF01 with the non-spray-dried H56/CAF01 vaccine with respect to their ability to induce systemic Th1, Th17 and humoral responses after subcutaneous immunization. Here we show that spray drying of the H56/CAF01 vaccine results in preserved antigenic epitope recognition and adjuvant activity of CAF01, and the spray-dried, reconstituted vaccine induces antigen-specific Th1, Th17 and humoral immune responses, which are comparable to those stimulated by the non-spray-dried H56/CAF01 vaccine. In addition, the spray-dried and reconstituted H56/CAF01 vaccine promotes similar polyfunctional CD4 + T-cell responses as the non-spray-dried vaccine. Thus, our study provides proof-of-concept that spray drying of the subunit vaccine H56/CAF01 preserves vaccine-induced humoral and cell-mediated immune responses. These results

  9. Temozolomide-based dry powder formulations for lung tumor-related inhalation treatment.

    PubMed

    Wauthoz, Nathalie; Deleuze, Philippe; Saumet, Amandine; Duret, Christophe; Kiss, Robert; Amighi, Karim

    2011-04-01

    Temozolomide dry powder formulations for inhalation, performed with no excipient or with a lipid or lactose coating, have been evaluated. The particle size of raw temozolomide in suspension was reduced by a high-pressure homogenizing technique, and the solvent was evaporated by spray-drying to obtain a dry powder. The physicochemical properties of this powder were evaluated and included its crystalline state, thermal properties, morphology, particle size and moisture and drug content, and these properties were determined by X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, laser light scattering, thermogravimetric analysis and high-performance liquid chromatography, respectively. The aerodynamic properties and release profiles were also evaluated using a multistage liquid impinger and a modified USP type 2 dissolution apparatus adapted for inhaler products, respectively. The dry powder inhalation formulations had a high temozolomide content that ranged from 70% to 100% in the crystalline state and low moisture content. Aerodynamic evaluations showed high fine-particle fractions of up to 51% related to the metered dose. The dissolution profile revealed a similarly fast temozolomide release from the formulations. Dry temozolomide powder formulations, based on the use of acceptable excipients for inhalation and showing good dispersion properties, represent an attractive alternative for use in local lung cancer therapy.

  10. Novel formulations enhance the thermal stability of live-attenuated flavivirus vaccines

    PubMed Central

    Wiggan, O’Neil; Silengo, Shawn J.; Kinney, Richard M.; Osorio, Jorge E.; Huang, Claire Y.-H.; Stinchcomb, Dan T.

    2011-01-01

    Thermal stability is important for the manufacture, distribution and administration of vaccines, especially in tropical developing countries, where particularly adverse field conditions exist. Current live-attenuated flavivirus vaccines exhibit relatively poor liquid stability in clinical settings, and clinicians are instructed to discard the yellow fever vaccine 1h after reconstitution. We have identified novel combinations of excipients that greatly enhance the thermal stability of live-attenuated DEN-2 PDK-53-based flavivirus vaccine candidates. Liquid formulations comprising a sugar, albumin and a pluronic polymer minimized the loss of flavivirus infectious titer to less than 0.5log(10)pfu after storage for at least 8h at 37°C, 7 days at room temperature or at least 11 weeks at 4°C. Additionally, these formulations prevented reduction of viral infectivity after two freeze-thaw cycles of virus. Formulated candidate vaccines were readily lyophilized and reconstituted with minimal loss of viral titers. In mice, the formulations were safe and did not hinder the ability of the vaccine virus to generate a potent, protective immune response. These formulations provided significantly greater liquid-phase stability than has been reported previously for other flavivirus vaccine formulations. The enhanced thermal stability provided by the formulations described here will facilitate the effective distribution of flavivirus vaccines worldwide. PMID:21803103

  11. Lipid-formulated bcg as an oral-bait vaccine for tuberculosis: vaccine stability, efficacy, and palatability to brushtail possums (Trichosurus vulpecula) in New Zealand.

    PubMed

    Cross, Martin L; Henderson, Ray J; Lambeth, Matthew R; Buddle, Bryce M; Aldwell, Frank E

    2009-07-01

    Bovine tuberculosis (Tb), due to infection with virulent Mycobacterium bovis, represents a threat to New Zealand agriculture due to vectorial transmission from wildlife reservoir species, principally the introduced Australian brushtail possum (Trichosurus vulpecula). An oral-delivery wildlife vaccine has been developed to immunize possums against Tb, based on formulation of the human Tb vaccine (M. bovis BCG) in edible lipid matrices. Here BCG bacilli were shown to be stable in lipid matrix formulation for over 8 mo in freezer storage, for 7 wk under room temperature conditions, and for 3-5 wk under field conditions in a forest/pasture margin habitat (when maintained in weatherproof bait-delivery sachets). Samples of the lipid matrix were flavored and offered to captive possums in a bait-preference study: a combination of 10% chocolate powder with anise oil was identified as the most effective attractant/palatability combination. In a replicated field study, 85-100% of wild possums were shown to access chocolate-flavored lipid pellets, when baits were applied to areas holding approximately 600-800 possums/km(2). Finally, in a controlled vaccination/challenge study, chocolate-flavored lipid vaccine samples containing 10(8) BCG bacilli were fed to captive possums, which were subsequently challenged via aerosol exposure to virulent M. bovis: vaccine immunogenicity was confirmed, and protection was identified by significantly reduced postchallenge weight loss in vaccinated animals compared to nonvaccinated controls. These studies indicate that, appropriately flavored, lipid delivery matrices may form effective bait vaccines for the control of Tb in wildlife.

  12. The Vaccine Formulation Laboratory: a platform for access to adjuvants.

    PubMed

    Collin, Nicolas; Dubois, Patrice M

    2011-07-01

    Adjuvants are increasingly used by the vaccine research and development community, particularly for their ability to enhance immune responses and for their dose-sparing properties. However, they are not readily available to the majority of public sector vaccine research groups, and even those with access to suitable adjuvants may still fail in the development of their vaccines because of lack of knowledge on how to correctly formulate the adjuvants. This shortcoming led the World Health Organization to advocate for the establishment of the Vaccine Formulation Laboratory at the University of Lausanne, Switzerland. The primary mission of the laboratory is to transfer adjuvants and formulation technology free of intellectual property rights to academic institutions, small biotechnology companies and developing countries vaccine manufacturers. In this context, the transfer of an oil-in-water emulsion to Bio Farma, an Indonesian vaccine manufacturer, was initiated to increase domestic pandemic influenza vaccine production capacity as part of the national pandemic influenza preparedness plan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Development of an Inhaled Dry-Powder Formulation of Tobramycin Using PulmoSphere™ Technology

    PubMed Central

    Weers, Jeffry; Heuerding, Silvia

    2011-01-01

    Abstract At present, the only approved inhaled antipseudomonal antibiotics for chronic pulmonary infections in patients with cystic fibrosis (CF) are nebulized solutions. However, prolonged administration and cleaning times, high administration frequency, and cumbersome delivery technologies with nebulizers add to the high treatment burden in this patient population. PulmoSphere™ technology is an emulsion-based spray-drying process that enables the production of light porous particle, dry-powder formulations, which exhibit improved flow and dispersion from passive dry powder inhalers. This review explores the fundamental characteristics of PulmoSphere technology, focusing on the development of a dry powder formulation of tobramycin for the treatment of chronic pulmonary Pseudomonas aeruginosa (Pa) infection in CF patients. This dry powder formulation provides substantially improved intrapulmonary deposition efficiency, faster delivery, and more convenient administration over nebulized formulations. The availability of more efficient and convenient treatment options may improve treatment compliance, and thereby therapeutic outcomes in CF. PMID:21395432

  14. Particle based vaccine formulations for transcutaneous immunization.

    PubMed

    Mittal, Ankit; Raber, Anne S; Lehr, Claus-Michael; Hansen, Steffi

    2013-09-01

    Vaccine formulations on the basis of nano- (NP) or microparticles (MP) can solve issues with stabilization, controlled release, and poor immunogenicity of antigens. Likewise transcutaneous immunization (TCI) promises superior immunogenicity as well as the advantages of needle-free application compared with conventional intramuscular injections. Thus the combination of both strategies seems to be a very valuable approach. However, until now TCI using particle based vaccine formulations has made no impact on medical practice. One of the main difficulties is that NPs and MPs cannot penetrate the skin to an extent that would allow the application of the required dose of antigen. This is due to the formidable stratum corneum (SC) barrier, the limited amount of antigen in the formulation and often an insufficient immunogenicity. A multitude of strategies are currently under investigation to overcome these issues. We highlight selected methods presenting a spectrum of solutions ranging from transfollicular delivery, to devices disrupting the SC barrier and the combination of particle based vaccines with adjuvants discussing their advantages and shortcomings. Some of these are currently at an experimental state while others are already in clinical testing. All methods have been shown to be capable of transcutaneous antigen delivery.

  15. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities.

    PubMed

    Roohvand, Farzin; Kossari, Niloufar

    2012-04-01

    Developing a vaccine against HCV is an important medical and global priority. Unavailability and potential dangers associated with using attenuated HCV viral particles for vaccine preparation have resulted in the use of HCV genes and proteins formulated in novel vaccine modalities. In part one of this review, advances in basic knowledge for HCV vaccine design were provided. Herein, a detailed and correlated patents (searched by Espacenet) and literatures (searched by Pubmed) review on HCV vaccine formulations and modalities is provided, including: subunit, DNA, epitopic-peptide/polytopic, live vector- and whole yeast-based vaccines. Less-touched areas in vaccine studies such as mucosal, plant-based, and chimeric HBV/HCV vaccines are also discussed. Furthermore, results of preclinical/clinical studies on selected HCV vaccines as well as pros and cons of different strategies are reviewed. Finally, potential strategies for creation and/or improvement of HCV vaccine formulations are discussed. Promising outcomes of a few HCV vaccine modalities in phase I/II clinical trials predict the accessibility of at least partially effective vaccines to inhibit or treat the chronic state of HCV infection (specially in combination with standard antiviral therapy). ChronVac-C (plasmid DNA), TG4040 (MVA-based), and GI-5005 (whole yeast-based) might be the most obvious HCV vaccine candidates to be approved in the near future.

  16. Development of a Freeze-Dried, Heat-Stable Influenza Subunit Vaccine Formulation

    PubMed Central

    Flood, Alexander; Chen, Dexiang

    2016-01-01

    An influenza pandemic remains a major public health concern. A key strategy to prevent a pandemic is to stockpile and pre-position stable influenza vaccine to allow rapid deployment in response to an outbreak. However, most influenza vaccines today are formulated as liquids that are stable only within a temperature range of 2°C to 8°C and require use of a cold chain, making vaccine transportation, distribution, and storage complicated and expensive, particularly for developing countries. To support the National Strategy for Pandemic Influenza preparedness in the United States and internationally, we developed two lead dry formulations of stable H1N1 influenza subunit vaccines using freeze-drying technology. The stable formulations contain an excipient combination of a disaccharide, such as sucrose or trehalose, and glycine, in addition to a surfactant and phosphate buffer. The freeze-dried vaccines were shown to be safe and remained immunogenic in an in vivo study in mice. Moreover, the lead formulations demonstrated no significant loss of activity after 40 months at storage temperatures of 25°C and 37°C. This stability can be particularly attractive as it could eliminate the need to use a cold chain for vaccine deployment and facilitate integration of vaccine distribution with general drug distribution where appropriate. These freeze-dried thermostable influenza subunit vaccines could also reduce the frequency of vaccine stockpile turnover, offering a cost-effective option for pandemic preparedness. PMID:27851765

  17. Development of a Freeze-Dried, Heat-Stable Influenza Subunit Vaccine Formulation.

    PubMed

    Flood, Alexander; Estrada, Marcus; McAdams, David; Ji, Yuhua; Chen, Dexiang

    2016-01-01

    An influenza pandemic remains a major public health concern. A key strategy to prevent a pandemic is to stockpile and pre-position stable influenza vaccine to allow rapid deployment in response to an outbreak. However, most influenza vaccines today are formulated as liquids that are stable only within a temperature range of 2°C to 8°C and require use of a cold chain, making vaccine transportation, distribution, and storage complicated and expensive, particularly for developing countries. To support the National Strategy for Pandemic Influenza preparedness in the United States and internationally, we developed two lead dry formulations of stable H1N1 influenza subunit vaccines using freeze-drying technology. The stable formulations contain an excipient combination of a disaccharide, such as sucrose or trehalose, and glycine, in addition to a surfactant and phosphate buffer. The freeze-dried vaccines were shown to be safe and remained immunogenic in an in vivo study in mice. Moreover, the lead formulations demonstrated no significant loss of activity after 40 months at storage temperatures of 25°C and 37°C. This stability can be particularly attractive as it could eliminate the need to use a cold chain for vaccine deployment and facilitate integration of vaccine distribution with general drug distribution where appropriate. These freeze-dried thermostable influenza subunit vaccines could also reduce the frequency of vaccine stockpile turnover, offering a cost-effective option for pandemic preparedness.

  18. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies.

    PubMed

    Kumru, Ozan S; Joshi, Sangeeta B; Smith, Dawn E; Middaugh, C Russell; Prusik, Ted; Volkin, David B

    2014-09-01

    Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Compressibility of binary powder formulations: investigation and evaluation with compaction equations.

    PubMed

    Gentis, Nicolaos D; Betz, Gabriele

    2012-02-01

    The purpose of this work was to investigate and evaluate the powder compressibility of binary mixtures containing a well-compressible compound (microcrystalline cellulose) and a brittle active drug (paracetamol and mefenamic acid) and its progression after a drug load increase. Drug concentration range was 0%-100% (m/m) with 10% intervals. The powder formulations were compacted to several relative densities with the Zwick material tester. The compaction force and tensile strength were fitted to several mathematical models that give representative factors for the powder compressibility. The factors k and C (Heckel and modified Heckel equation) showed mostly a nonlinear correlation with increasing drug load. The biggest drop in both factors occurred at far regions and drug load ranges. This outcome is crucial because in binary mixtures the drug load regions with higher changeover of plotted factors could be a hint for an existing percolation threshold. The susceptibility value (Leuenberger equation) showed varying values for each formulation without the expected trend of decrease for higher drug loads. The outcomes of this study showed the main challenges for good formulation design. Thus, we conclude that such mathematical plots are mandatory for a scientific evaluation and prediction of the powder compaction process. Copyright © 2011 Wiley Periodicals, Inc.

  20. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation.

    PubMed

    Schneid, Stefan C; Stärtzel, Peter M; Lettner, Patrick; Gieseler, Henning

    2011-01-01

    The recent US Food and Drug Administration (FDA) legislation has introduced the evaluation of the Design Space of critical process parameters in manufacturing processes. In freeze-drying, a "formulation" is expected to be robust when minor deviations of the product temperature do not negatively affect the final product quality attributes. To evaluate "formulation" robustness by investigating the effect of elevated product temperature on product quality using a bacterial vaccine solution. The vaccine solution was characterized by freeze-dry microscopy to determine the critical formulation temperature. A conservative cycle was developed using the SMART™ mode of a Lyostar II freeze dryer. Product temperature was elevated to imitate intermediate and aggressive cycle conditions. The final product was analyzed using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Karl Fischer, and modulated differential scanning calorimetry (MDSC), and the life cell count (LCC) during accelerated stability testing. The cakes processed at intermediate and aggressive conditions displayed larger pores with microcollapse of walls and stronger loss in LCC than the conservatively processed product, especially during stability testing. For all process conditions, a loss of the majority of cells was observed during storage. For freeze-drying of life bacterial vaccine solutions, the product temperature profile during primary drying appeared to be inter-related to product quality attributes.

  1. Formulation and delivery of vaccines: Ongoing challenges for animal management

    PubMed Central

    Sharma, Sameer; Hinds, Lyn A.

    2012-01-01

    Development of a commercially successful animal vaccine is not only influenced by various immunological factors, such as type of antigen but also by formulation and delivery aspects. The latter includes the need for a vector or specific delivery system, the choice of route of administration and the nature of the target animal population and their habitat. This review describes the formulation and delivery aspects of various types of antigens such as killed microorganisms, proteins and nucleic acids for the development of efficacious and safe animal vaccines. It also focuses on the challenges associated with the different approaches that might be required for formulating and delivering species specific vaccines, particularly if their intended use is for improved animal management with respect to disease and/or reproductive control. PMID:23248557

  2. A freeze-stable formulation for DTwP and DTaP vaccines.

    PubMed

    Xue, Honggang; Yang, Bangling; Kristensen, Debra D; Chen, Dexiang

    2014-01-01

    Inadvertent vaccine freezing often occurs in the cold chain and may cause damage to freeze‑sensitive vaccines. Liquid vaccines that contain aluminum salt adjuvants are particularly vulnerable. Polyol cryoprotective excipients have been shown to prevent freeze damage to hepatitis B vaccine. In this study, we examined the freeze-protective effect of propylene glycol on diphtheria-tetanus-pertussis-whole-cell (DTwP) and acellular (DTaP) vaccines. Pilot lots of DTwP and DTaP formulated with 7.5% propylene glycol underwent 3 freeze-thaw treatments. The addition of propylene glycol had no impact on pH, particle size distribution, or potency of the vaccines prior to freeze-thaw treatment; the only change noted was an increase in osmolality. The potencies and the physical properties of the vaccines containing cryoprotectant were maintained after freeze-thawing and for 3 months in accelerated stability studies. The results from this study indicate that formulating vaccines with propylene glycol can protect diphtheria-tetanus-pertussis vaccines against freeze damages.

  3. Nifedipine Nanoparticle Agglomeration as a Dry Powder Aerosol Formulation Strategy

    PubMed Central

    Plumley, Carl; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory

    2009-01-01

    Efficient administration of drugs represents a leading challenge in pulmonary medicine. Dry powder aerosols are of great interest compared to traditional aerosolized liquid formulations in that they may offer improved stability, ease of administration, and simple device design. Particles 1–5 µm in size typically facilitate lung deposition. Nanoparticles may be exhaled as a result of their small size; however, they are desired to enhance the dissolution rate of poorly soluble drugs. Nanoparticles of the hypertension drug nifedipine were co-precipitated with stearic acid to form a colloid exhibiting negative surface charge. Nifedipine nanoparticle colloids were destabilized by using sodium chloride to disrupt the electrostatic repulsion between particles as a means to achieve the agglomerated nanoparticles of a controlled size. The aerodynamic performance of agglomerated nanoparticles was determined by cascade impaction. The powders were found to be well suited for pulmonary delivery. In addition, nanoparticle agglomerates revealed enhanced dissolution of the drug species suggesting the value of this formulation approach for poorly water soluble pulmonary medicines. Ultimately, nifedipine powders are envisioned as an approach to treat pulmonary hypertension. PMID:19015016

  4. A Novel M2e Based Flu Vaccine Formulation for Dogs

    PubMed Central

    Leclerc, Denis; Rivest, Marie; Babin, Cindy; López-Macias, Constantino; Savard, Pierre

    2013-01-01

    Background The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. Methodology and Principal Findings The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV) nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC) purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. Conclusions and Significance The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs. PMID:24098576

  5. Formulation and Stabilization of Francisella tularensis Live Vaccine Strain

    PubMed Central

    OHTAKE, SATOSHI; MARTIN, RUSSELL A.; SAXENA, ATUL; LECHUGA-BALLESTEROS, DAVID; SANTIAGO, ARACELI E; BARRY, EILEEN M.; TRUONG-LE, VU

    2012-01-01

    Francisella tularensis live vaccine strain (F. tularensis LVS), a promising vaccine candidate for protection against F. tularensis exposure, is a particularly thermolabile vaccine and difficult to stabilize sufficiently for storage under refrigerated conditions. Our preliminary data show that F. tularensis LVS can be stabilized in the dried state using foam drying, a modified freeze drying method, with sugar-based formulations. The process was conducted under mild drying conditions, which resulted in a good titer retention following processing. The inclusion of osmolytes in the growth media resulted in an acceleration of growth kinetics, although no change in osmotolerance was observed. The optimized F. tularensis formulation, which contained trehalose, gelatin, and Pluronic F68 demonstrated stability for approximately 1.5 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1 log10 colony forming unit) and for 12 weeks at 25°C. At refrigerator storage condition (4°C), stabilized F. tularensis LVS vaccine exhibited no activity loss for at least 12 weeks. This stabilization method utilizes conventional freeze dryers and pharmaceutically approved stabilizers, and thus can be readily implemented at many manufacturing sites for large-scale production of stabilized vaccines. The improved heat stability of the F. tularensis LVS could mitigate risks of vaccine potency loss during long-term storage, shipping, and distribution. PMID:21491457

  6. Chitosan-coated liposome dry-powder formulations loaded with ghrelin for nose-to-brain delivery.

    PubMed

    Salade, Laurent; Wauthoz, Nathalie; Vermeersch, Marjorie; Amighi, Karim; Goole, Jonathan

    2018-06-11

    The nose-to-brain delivery of ghrelin loaded in liposomes is a promising approach for the management of cachexia. It could limit the plasmatic degradation of ghrelin and provide direct access to the brain, where ghrelin's specific receptors are located. Anionic liposomes coated with chitosan in either a liquid or a dry-powder formulation were compared. The powder formulation showed stronger adhesion to mucins (89 ± 4% vs 61 ± 4%), higher ghrelin entrapment efficiency (64 ± 2% vs 55 ± 4%), higher enzymatic protection against trypsin (26 ± 2% vs 20 ± 3%) and lower ghrelin storage degradation at 25°C (2.67 ± 1.1% vs 95.64 ± 0.85% after 4 weeks). The powder formulation was also placed in unit-dose system devices that were able to generate an appropriate aerosol characterized by a Dv50 of 38 ± 6 µm, a limited percentage of particles smaller than 10 µm of 4 ± 1% and a reproducible mass delivery (CV: 1.49%). In addition, the device was able to deposit a large amount of powder (52.04% w/w) in the olfactory zone of a 3D-printed nasal cast. The evaluated combination of the powder formulation and the device could provide a promising treatment for cachexia. Copyright © 2018. Published by Elsevier B.V.

  7. A stable live bacterial vaccine.

    PubMed

    Kunda, Nitesh K; Wafula, Denis; Tram, Meilinn; Wu, Terry H; Muttil, Pavan

    2016-06-01

    Formulating vaccines into a dry form enhances its thermal stability. This is critical to prevent administering damaged and ineffective vaccines, and to reduce its final cost. A number of vaccines in the market as well as those being evaluated in the clinical setting are in a dry solid state; yet none of these vaccines have achieved long-term stability at high temperatures. We used spray-drying to formulate a recombinant live attenuated Listeria monocytogenes (Lm; expressing Francisella tularensis immune protective antigen pathogenicity island protein IglC) bacterial vaccine into a thermostable dry powder using various sugars and an amino acid. Lm powder vaccine showed minimal loss in viability when stored for more than a year at ambient room temperature (∼23°C) or for 180days at 40°C. High temperature viability was achieved by maintaining an inert atmosphere in the storage container and removing oxygen free radicals that damage bacterial membranes. Further, in vitro antigenicity was confirmed by infecting a dendritic cell line with cultures derived from spray dried Lm and detection of an intracellularly expressed protective antigen. A combination of stabilizing excipients, a cost effective one-step drying process, and appropriate storage conditions could provide a viable option for producing, storing and transporting heat-sensitive vaccines, especially in regions of the world that require them the most. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity

    PubMed Central

    Kim, Yeu-Chun; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2009-01-01

    Microneedle patches coated with solid-state influenza vaccine have been developed to improve vaccine efficacy and patient coverage. However, dip coating microneedles with influenza vaccine can reduce antigen activity. In this study, we sought to determine the experimental factors and mechanistic pathways by which inactivated influenza vaccine can lose activity, as well as develop and assess improved microneedle coating formulations that protect the antigen from activity loss. After coating microneedles using a standard vaccine formulation, antigenicity was reduced to just 2%, as measured by hemagglutination activity. The presence of carboxymethylcellulose, which was added to increase viscosity of the coating formulation, was shown to contribute to vaccine activity loss. After screening a panel of candidate stabilizers, the addition of trehalose to the coating formulation was shown to protect the antigen and retain 48–82% antigen activity for all three major strains of seasonal influenza: H1N1, H3N2 and B. Influenza vaccine coated in this way also exhibited thermal stability, such that activity loss was independent of temperature over the range of 4 – 37°C for 24 h. Dynamic light scattering measurements showed that antigen activity loss was associated with virus particle aggregation, and that stabilization using trehalose largely blocked this aggregation. Finally, microneedles using an optimized vaccine coating formulation were applied to the skin to vaccinate mice. Microneedle vaccination induced robust systemic and functional antibodies and provided complete protection against lethal challenge infection similar to conventional intramuscular injection. Overall, these results show that antigen activity loss during microneedle coating can be largely prevented through optimized formulation and that stabilized microneedle patches can be used for effective vaccination. PMID:19840825

  9. Successful respiratory immunization with dry powder live-attenuated measles virus vaccine in rhesus macaques.

    PubMed

    Lin, Wen-Hsuan; Griffin, Diane E; Rota, Paul A; Papania, Mark; Cape, Stephen P; Bennett, David; Quinn, Brian; Sievers, Robert E; Shermer, Charles; Powell, Kenneth; Adams, Robert J; Godin, Steven; Winston, Scott

    2011-02-15

    Measles remains an important cause of childhood mortality worldwide. Sustained high vaccination coverage is the key to preventing measles deaths. Because measles vaccine is delivered by injection, hurdles to high coverage include the need for trained medical personnel and a cold chain, waste of vaccine in multidose vials and risks associated with needle use and disposal. Respiratory vaccine delivery could lower these barriers and facilitate sustained high coverage. We developed a novel single unit dose, dry powder live-attenuated measles vaccine (MVDP) for respiratory delivery without reconstitution. We tested the immunogenicity and protective efficacy in rhesus macaques of one dose of MVDP delivered either with a mask or directly intranasal with two dry powder inhalers, PuffHaler and BD Solovent. MVDP induced robust measles virus (MeV)-specific humoral and T-cell responses, without adverse effects, which completely protected the macaques from infection with wild-type MeV more than one year later. Respiratory delivery of MVDP was safe and effective and could aid in measles control.

  10. Screening vaccine formulations for biological activity using fresh human whole blood

    PubMed Central

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression. PMID:24401565

  11. Screening vaccine formulations for biological activity using fresh human whole blood.

    PubMed

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression.

  12. Needle-Free Inhalable Vaccine and Antibiotic Powder Aerosols

    DTIC Science & Technology

    2004-11-15

    NEEDLE-FREE INHALABLE VACCINE AND ANTIBIOTIC POWDER AEROSOLS R. E. Sievers, J.L. Burger,, S. P. Cape, E.T.S. Huang, J.A. Best, J.A. Madsen and...currently valid OMB control number. 1. REPORT DATE 15 NOV 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Needle-Free Inhalable ...soluble drugs: naproxen, budesonide, betamethsone, amphotericin B, cyclosporin, DPPC Sugars: lactose, sucrose, trehalose , mannitol Polymers: PLA, PLGA

  13. Successful respiratory immunization with dry powder live-attenuated measles virus vaccine in rhesus macaques

    PubMed Central

    Lin, Wen-Hsuan; Griffin, Diane E.; Rota, Paul A.; Papania, Mark; Cape, Stephen P.; Bennett, David; Quinn, Brian; Sievers, Robert E.; Shermer, Charles; Powell, Kenneth; Adams, Robert J.; Godin, Steven; Winston, Scott

    2011-01-01

    Measles remains an important cause of childhood mortality worldwide. Sustained high vaccination coverage is the key to preventing measles deaths. Because measles vaccine is delivered by injection, hurdles to high coverage include the need for trained medical personnel and a cold chain, waste of vaccine in multidose vials and risks associated with needle use and disposal. Respiratory vaccine delivery could lower these barriers and facilitate sustained high coverage. We developed a novel single unit dose, dry powder live-attenuated measles vaccine (MVDP) for respiratory delivery without reconstitution. We tested the immunogenicity and protective efficacy in rhesus macaques of one dose of MVDP delivered either with a mask or directly intranasal with two dry powder inhalers, PuffHaler and BD Solovent. MVDP induced robust measles virus (MeV)-specific humoral and T-cell responses, without adverse effects, which completely protected the macaques from infection with wild-type MeV more than one year later. Respiratory delivery of MVDP was safe and effective and could aid in measles control. PMID:21282608

  14. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate.

    PubMed

    Simon, Alice; Amaro, Maria Inês; Cabral, Lucio Mendes; Healy, Anne Marie; de Sousa, Valeria Pereira

    2016-03-30

    The purpose of this study was to prepare engineered particles of rivastigmine hydrogen tartrate (RHT) and to characterize the physicochemical and aerodynamic properties, in comparison to a lactose carrier formulation (LCF). Microparticles were prepared from ethanol/water solutions containing RHT with and without the incorporation of L-leucine (Leu), using a spray dryer. Dry powder inhaler formulations prepared were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, ATR-FTIR, differential scanning calorimetry, bulk and tapped density, dynamic vapour sorption and in vitro aerosol deposition behaviour using a next generation impactor. The smooth-surfaced spherical morphology of the spray dried microparticles was altered by adding Leu, resulting in particles becoming increasingly wrinkled with increasing Leu. Powders presented low densities. The glass transition temperature was sufficiently high (>90 °C) to suggest good stability at room temperature. As Leu content increased, spray dried powders presented lower residual solvent content, lower particle size, higher fine particle fraction (FPF<5 μm), and lower mass median aerodynamic diameter (MMAD). The LCF showed a lower FPF and higher MMAD, relative to the spray dried formulations containing more than 10% Leu. Spray dried RHT powders presented better aerodynamic properties, constituting a potential drug delivery system for oral inhalation. Copyright © 2016. Published by Elsevier B.V.

  15. [Development of Inhalable Dry Powder Formulations Loaded with Nanoparticles Maintaining Their Original Physical Properties and Functions].

    PubMed

    Okuda, Tomoyuki

    2017-01-01

     Functional nanoparticles, such as liposomes and polymeric micelles, are attractive drug delivery systems for solubilization, stabilization, sustained release, prolonged tissue retention, and tissue targeting of various encapsulated drugs. For their clinical application in therapy for pulmonary diseases, the development of dry powder inhalation (DPI) formulations is considered practical due to such advantages as: (1) it is noninvasive and can be directly delivered into the lungs; (2) there are few biocomponents in the lungs that interact with nanoparticles; and (3) it shows high storage stability in the solid state against aggregation or precipitation of nanoparticles in water. However, in order to produce effective nanoparticle-loaded dry powders for inhalation, it is essential to pursue an innovative and comprehensive formulation strategy in relation to composition and powderization which can achieve (1) the particle design of dry powders with physical properties suitable for pulmonary delivery through inhalation, and (2) the effective reconstitution of nanoparticles that will maintain their original physical properties and functions after dissolution of the powders. Spray-freeze drying (SFD) is a relatively new powderization technique combining atomization and lyophilization, which can easily produce highly porous dry powders from an aqueous sample solution. Previously, we advanced the optimization of components and process conditions for the production of SFD powders suitable to DPI application. This review describes our recent results in the development of novel DPI formulations effectively loaded with various nanoparticles (electrostatic nanocomplexes for gene therapy, liposomes, and self-assembled lipid nanoparticles), based on SFD.

  16. Efficient extraction of vaccines formulated in aluminum hydroxide gel by including surfactants in the extraction buffer

    PubMed Central

    Zhu, Daming; Huang, Shuhui; McClellan, Holly; Dai, Weili; Syed, Najam R; Gebregeorgis, Elizabeth; Mullen, Gregory E. D.; Long, Carole; Martin, Laura B.; Narum, David; Duffy, Patrick; Miller, Louis H.; Saul, Allan

    2011-01-01

    Efficient antigen extraction from vaccines formulated on aluminum hydroxide gels is a critical step for the evaluation of the quality of vaccines following formulation. It has been shown in our laboratory that the efficiency of antigen extraction from vaccines formulated on Alhydrogel decreased significantly with increased storage time. To increase antigen extraction efficiency, the present study determined the effect of surfactants on antigen recovery from vaccine formulations. The Plasmodium falciparum apical membrane antigen 1 (AMA1) formulated on Alhydrogel and stored at 2-8 °C for three years was used as a model in this study. The AMA1 on Alhydrogel was extracted in the presence or absence of 30 mM sodium dodecyl sulfate (SDS) or 20 mM cetylpyridinium chloride in the extraction buffer (0.60 M citrate, 0.55 M phosphate, pH 8.5) using our standard antigen extraction protocols. Extracted AMA1 antigen was analyzed by 4-20% Tris-glycine SDS-PAGE followed by silver staining or western blotting. The results showed that inclusion of SDS or cetylpyridinium chloride in extraction buffer increased the antigen recovery dramatically and can be used for efficient characterization of Alhydrogel vaccines. PMID:22107848

  17. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations.

    PubMed

    Karashima, Masatoshi; Sano, Noriyasu; Yamamoto, Syunsuke; Arai, Yuta; Yamamoto, Katsuhiko; Amano, Nobuyuki; Ikeda, Yukihiro

    2017-06-01

    Micronized cocrystal powders and amorphous spray-dried formulations were prepared and evaluated in vivo and in vitro as pulmonary absorption enhancement formulations of poorly soluble itraconazole (ITZ). ITZ cocrystals with succinic acid (SA) or l-tartaric acid (TA) with a particle size diameter of <2μm were successfully micronized using the jet-milling system. The cocrystal crystalline morphologies observed using scanning electron microscopy (SEM) suggested particle shapes that differed from those of the crystalline or spray-dried amorphous ITZ. The micronized ITZ cocrystal powders showed better intrinsic dissolution rate (IDR) and pulmonary absorption profile in rats than that of the amorphous spray-dried formulation and crystalline ITZ with comparable particle sizes. Specifically, in rat pharmacokinetic studies following pulmonary administration, micronized ITZ-SA and ITZ-TA cocrystals showed area under the curve from 0 to 8h (AUC 0-8h ) values approximately 24- and 19-fold higher than those of the crystalline ITZ and 2.0- and 1.6-fold higher than the spray-dried ITZ amorphous values, respectively. The amorphous formulation appeared physically instable during the studies due to rapid crystallization of ITZ, which was its disadvantage compared to the crystalline formulations. Therefore, this study demonstrated that micronized cocrystals are promising formulations for enhancing the pulmonary absorption of poorly soluble compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Drying a tuberculosis vaccine without freezing.

    PubMed

    Wong, Yun-Ling; Sampson, Samantha; Germishuizen, Willem Andreas; Goonesekera, Sunali; Caponetti, Giovanni; Sadoff, Jerry; Bloom, Barry R; Edwards, David

    2007-02-20

    With the increasing incidence of tuberculosis and drug resistant disease in developing countries due to HIV/AIDS, there is a need for vaccines that are more effective than the present bacillus Calmette-Guérin (BCG) vaccine. We demonstrate that BCG vaccine can be dried without traditional freezing and maintained with remarkable refrigerated and room-temperature stability for months through spray drying. Studies with a model Mycobacterium (Mycobacterium smegmatis) revealed that by removing salts and cryoprotectant (e.g., glycerol) from bacterial suspensions, the significant osmotic pressures that are normally produced on bacterial membranes through droplet drying can be reduced sufficiently to minimize loss of viability on drying by up to 2 orders of magnitude. By placing the bacteria in a matrix of leucine, high-yield, free-flowing, "vial-fillable" powders of bacteria (including M. smegmatis and M. bovis BCG) can be produced. These powders show relatively minor losses of activity after maintenance at 4 degrees C and 25 degrees C up to and beyond 4 months. Comparisons with lyophilized material prepared both with the same formulation and with a commercial formulation reveal that the spray-dried BCG has better overall viability on drying.

  19. Immunogenicity and Protection of Oral Influenza Vaccines Formulated into Microparticles

    PubMed Central

    SHASTRI, PRATHAP NAGARAJA; KIM, MIN-CHUL; QUAN, FU-SHI; D’SOUZA, MARTIN J.; KANG, SANG-MOO

    2017-01-01

    Influenza is a deadly disease affecting humans and animals. It is recommended that every individual should be vaccinated annually against influenza. Considering the frequency of administration of this vaccine, we have explored the oral route of vaccination with a microparticulate formulation. Microparticles containing inactivated influenza A/PR/34/8 H1N1 virus with Eudragit S and trehalose as a matrix were prepared using the Buchi spray dryer. Particle size distribution of microparticles was measured and the bioactivity of vaccine in a microparticle form was analyzed using a hemagglutination activity test. Furthermore, the efficacy of microparticle vaccines was evaluated in vivo in Balb/c mice. Analysis of serum samples showed that microparticles resulted in enhanced antigen-specific immunoglobulin G (IgG), IgG1, and IgG2a antibodies. Upon challenge with homologous and heterologous influenza viruses, microparticle vaccines showed significantly increased levels of protection. Use of microparticles to deliver vaccines could be a promising tool for the development of an oral influenza vaccine. PMID:22711602

  20. Safety and immunogenicity of three tetravalent dengue vaccine formulations in healthy adults in the USA.

    PubMed

    Dayan, Gustavo H; Thakur, Manoj; Boaz, Mark; Johnson, Carol

    2013-10-17

    A candidate recombinant, live-attenuated, CYD tetravalent dengue vaccine (CYD-TDV) has recently demonstrated immunogenicity, efficacy and good tolerability. This study was performed to evaluate three CYD-TDV formulations in adults. This was a randomized, double-blind, multicenter, phase II trial. The vaccine formulations were: CYD-TDV 5555 (≈5log10 tissue culture infectious dose 50% [TCID50] of serotypes 1-4); CYD-TDV 5553 (≈5log10 TCID50 of serotypes 1-3 and ≈3log10 TCID50 of serotype 4); and CYD-TDV 4444 (≈4log10 TCID50 of serotypes 1-4). Vaccinations were administered at 0, 6 and 12 months. Immunogenicity was assessed using the plaque reduction neutralization test. In total, 260 individuals were enrolled. The 5555 formulation elicited a superior serotype 4 response versus the 5553 formulation, with seropositivity rates of 89.7% and 58.3%, respectively, after the second dose (between-group difference 31.4%; 95% confidence interval 18.2-43.2). After each of the three doses, seropositivity rates for serotypes 1-3 were numerically highest with CYD-TDV 5553 and lowest with the 4444 formulation; seropositivity rates for serotype 4 were similar with the 5555 and 4444 formulations, and much lower among recipients of CYD-TDV 5553. Geometric mean titers followed the same pattern as that seen with seropositivity rates. Safety/reactogenicity results were similar for all three vaccine formulations, although the percentage of participants reporting solicited injection site reactions was lower with CYD-TDV 4444 than with the other two formulations. All serious adverse events were unrelated to vaccination. Reducing the dose of serotype 4 antigen (5553 formulation) creates an imbalance in the immune response to CYD-TDV. Immune responses to CYD-TDV 5555 were slightly higher than to the 4444 formulation. Development of CYD-TDV 5555 has subsequently been pursued. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance.

    PubMed

    Bosquillon, C; Lombry, C; Préat, V; Vanbever, R

    2001-02-23

    The objective of this study was to determine the effects of formulation excipients and physical characteristics of inhalation particles on their in vitro aerosolization performance, and thereby to maximize their respirable fraction. Dry powders were produced by spray-drying using excipients that are FDA-approved for inhalation as lactose, materials that are endogenous to the lungs as albumin and dipalmitoylphosphatidylcholine (DPPC); and/or protein stabilizers as trehalose or mannitol. Dry powders suitable for deep lung deposition, i.e. with an aerodynamic diameter of individual particles <3 microm, were prepared. They presented 0.04--0.25 g/cm(3) bulk tap densities, 3--5 microm geometric particle sizes, up to 90% emitted doses and 50% respirable fractions in the Andersen cascade impactor using a Spinhaler inhaler device. The incorporation of lactose, albumin and DPPC in the formulation all improved the aerosolization properties, in contrast to trehalose and the mannitol which decreased powder flowability. The relative proportion of the excipients affected aerosol performance as well. The lower the bulk powder tap density, the higher the respirable fraction. Optimization of in vitro aerosolization properties of inhalation dry powders can be achieved by appropriately selecting composition and physical characteristics of the particles.

  2. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators.

    PubMed

    Chauhan, Nidhi; Tiwari, Sukirti; Iype, Tessy; Jain, Utkarsh

    2017-05-01

    Development of efficient and cost effective vaccines have been recognized as the primary concern to improve the overall healthcare in a country. In order to achieve this goal, more improved and powerful adjuvants need to be developed. Lacking in the self-adjuvanting immuno-modulatory constituents, vaccines exhibit lower immunogenicity. Combining potent adjuvants with vaccines is the most appropriate method to enhance the efficacy of the vaccines. Hence, this review is focussed on the most potent adjuvants for the formulation of vaccines. Areas covered: This review focuses on Oil-based emulsions, Mineral compounds, Liposomes, Bacterial products, ISCOMs and most recently used nanomaterials as adjuvants for enhancing the antigenicity of vaccines. Furthermore, this review explains the immunological response elicited by various particles. Moreover, case studies are incorporated providing an in depth analyses of various adjuvant-containing vaccines which are currently used. Expert commentary: Enhanced fundamental knowledge about the adjuvants and their immuno-stimulatory capabilities and delivery mechanisms will facilitate the rational designing of prophylactic vaccines with better efficacy.

  3. A pilot study using a novel pyrotechnically driven prototype applicator for epidermal powder immunization in piglets.

    PubMed

    Engert, Julia; Anamur, Cihad; Engelke, Laura; Fellner, Christian; Lell, Peter; Henke, Stefan; Stadler, Julia; Zöls, Susanne; Ritzmann, Mathias; Winter, Gerhard

    2018-04-20

    Epidermal powder immunization (EPI) is an alternative technique to the classical immunization route using needle and syringe. In this work, we present the results of an in vivo pilot study in piglets using a dried influenza model vaccine which was applied by EPI using a novel pyrotechnically driven applicator. A liquid influenza vaccine (Pandemrix ® ) was first concentrated by tangential flow filtration and hemagglutinin content was determined by RP-HPLC. The liquid formulation was then transformed into a dry powder by collapse freeze-drying and subsequent cryo-milling. The vaccine powder was attached to a membrane of a novel pyrotechnical applicator using oily adjuvant components. Upon actuation of the applicator, particles were accelerated to high speed as determined by a high-speed camera setup. Piglets were immunized twice using either the novel pyrotechnical applicator or classical intramuscular injection. Blood samples of the animals were collected at various time points and analyzed by enzyme-linked immunosorbent assay. Our pilot study shows that acceleration of a dried vaccine powder to supersonic speed using the pyrotechnical applicator is possible and that the speed and impact of the particles is sufficient to breach the stratum corneum of piglet skin. Importantly, the administration of the dry vaccine powder resulted in measurable anti-H1N1 antibody titres in vivo. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes.

    PubMed

    Carneiro, Andreia A J; Ferreira, Isabel C F R; Dueñas, Montserrat; Barros, Lillian; da Silva, Roberto; Gomes, Eleni; Santos-Buelga, Celestino

    2013-06-15

    Several mushroom species have been pointed out as sources of antioxidant compounds, in addition to their important nutritional value. Agaricus blazei and Lentinus edodes are among the most studied species all over the world, but those studies focused on their fruiting bodies instead of other presentations, such as powdered preparations, used as supplements. In the present work the chemical composition (nutrients and bioactive compounds) and antioxidant activity (free radical scavenging activity, reducing power and lipid peroxidation inhibition) of dried powder formulations of the mentioned mushroom species (APF and LPF, respectively) were evaluated. Powder formulations of both species revealed the presence of essential nutrients, such as proteins, carbohydrates and unsaturated fatty acids. Furthermore, they present a low fat content (<2g/100g) and can be used in low-calorie diets, just like the mushrooms fruiting bodies. APF showed higher antioxidant activity and higher content of tocopherols and phenolic compounds (124 and 770 μg/100g, respectively) than LPF (32 and 690 μg/100g). Both formulations could be used as antioxidant sources to prevent diseases related to oxidative stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Translation of an experimental oral vaccine formulation into a commercial product.

    PubMed

    Carter, K C; Ferro, V A; Alexander, J; Mullen, A B

    2006-02-01

    An effective experimental vaccine may fail to become a therapeutic reality for a number of scientific, regulatory or commercial reasons. In this review, we share some of our personal experiences as University-based researchers and provide an account of some of the problems that we have encountered during preliminary scale-up and assessment of an oral influenza vaccine formulation. Many of the problems we have faced have been non-scientific and related to identifying project-funding sources, finding suitable contract manufacturing companies that are GMP compliant, and protecting intellectual property generated from the scientific studies. The review is intended as a practical guide that will allow other researchers to adopt effective strategies to permit the translation of an effective experimental formulation to a viable commercial product.

  6. Enhanced liposomal vaccine formulation and performance: simple physicochemical and immunological approaches.

    PubMed

    de Almeida Silva, Vanessa; Sayoko Takata, Célia; Sant'Anna, Osvaldo A; Carlos Lopes, Antônio; Soares de Araujo, Pedro; Helena Bueno da Costa, Maria

    2006-01-01

    The Dtxd (Diphtheria toxoid) was the first antigen encapsulated within liposomes, their adjuvant properties were discovered (their capacity to enhance the vaccine immunogenicity). The point here is not to propose a new method to prepare this lipossomal vaccine. The central idea is to give new dresses for old vaccines by using classical and well-established liposome preparation method changing only the encapsulation pH and the immunization protocol. The most appropriate method of Dtxd encapsulation within liposome was based on lipid film hydration in 100 mM citrate buffer, pH 4.0. This was accompanied by changes on protein hydrophobicity, observed by CD and fluorescence spectroscopies. Whenever the Dtxd exposed its hydrophobic residues at pH 4.0, it interacted better with the lipossomal (observed by electrophoretic mobility) film than when its hydrophobic residues were buried (pH 9.0). The Dtxd partition coefficient in Triton-X114 and the acrylamide fluorescence quenching were also pH dependent. Both were bigger at pH 4.0 than at pH 9.0. The relationship protein structure and lipid interaction was pH dependent and now it can be easily maximized to enhance encapsulation of antigens in vaccine development. Mice were primed with formulations containing 5 mug of Dtxd within liposomes prepared in pH 4.0 or 7.0 or 9.0. The boosters were done 38 or 138 days after the first immunization. The IgM produced by immediate response of all lipossomal formulations were higher than the control (free protein). The response patterns and the immune maturity were measured by IgG1 and IgG2a titrations. The IgG1 titers produced by both formulations at pH 4.0 and 7.0 were at least 22 higher than those produced by mice injected lipossomal formulation at pH 9.0. When the boosters were done, 138 days after priming the mice produced a IgG2a titer of 29 and the group that received the booster 30 days after priming produced a titer of 25. The strongest antibody production was the neutralizing

  7. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery.

    PubMed

    Nieto-Orellana, Alejandro; Coghlan, David; Rothery, Malcolm; Falcone, Franco H; Bosquillon, Cynthia; Childerhouse, Nick; Mantovani, Giuseppe; Stolnik, Snow

    2018-04-05

    Pulmonary delivery of protein therapeutics has considerable clinical potential for treating both local and systemic diseases. However, poor protein conformational stability, immunogenicity and protein degradation by proteolytic enzymes in the lung are major challenges to overcome for the development of effective therapeutics. To address these, a family of structurally related copolymers comprising polyethylene glycol, mPEG 2k , and poly(glutamic acid) with linear A-B (mPEG 2k -lin-GA) and miktoarm A-B 3 (mPEG 2k -mik-(GA) 3 ) macromolecular architectures was investigated as potential protein stabilisers. These copolymers form non-covalent nanocomplexes with a model protein (lysozyme) which can be formulated into dry powders by spray-drying using common aerosol excipients (mannitol, trehalose and leucine). Powder formulations with excellent aerodynamic properties (fine particle fraction of up to 68%) were obtained with particle size (D 50 ) in the 2.5 µm range, low moisture content (<5%), and high glass transitions temperatures, i.e. formulation attributes all suitable for inhalation application. In aqueous medium, dry powders rapidly disintegrated into the original polymer-protein nanocomplexes which provided protection towards proteolytic degradation. Taken together, the present study shows that dry powders based on (mPEG 2k -polyGA)-protein nanocomplexes possess potentials as an inhalation delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Formulation and physicochemical and sensorial evaluation of biscuit-type cookies supplemented with fruit powders.

    PubMed

    Uchoa, Ana Maria Athayde; Correia da Costa, José Maria; Maia, Geraldo Arraes; Meira, Tatyane Ribeiro; Sousa, Paulo Henrrique Machado; Montenegro Brasil, Isabella

    2009-06-01

    Cashew apple and guava residues from fruit juice industry were prepared as dehydrated fruit powders and used at different levels of wheat flour substitution for cookies formulations. The effects of guava and cashew apple fruit powders supplementation on physicochemical and sensorial characteristics of the cookies were evaluated. The pH, fibre and protein content were significantly affected. Biscuits with 15 g and 20 g/100g cashew apple and guava fruit powders showed the highest scores for sensorial attributes, respectively. The supplementation seems to be suited for wheat flour substitution and it is possible to obtain cookies with value-added food ingredient within the standards.

  10. Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores.

    PubMed

    Peachman, Kristina K; Li, Qin; Matyas, Gary R; Shivachandra, Sathish B; Lovchik, Julie; Lyons, Rick C; Alving, Carl R; Rao, Venigalla B; Rao, Mangala

    2012-01-01

    In an effort to develop an improved anthrax vaccine that shows high potency, five different anthrax protective antigen (PA)-adjuvant vaccine formulations that were previously found to be efficacious in a nonhuman primate model were evaluated for their efficacy in a rabbit pulmonary challenge model using Bacillus anthracis Ames strain spores. The vaccine formulations include PA adsorbed to Alhydrogel, PA encapsulated in liposomes containing monophosphoryl lipid A, stable liposomal PA oil-in-water emulsion, PA displayed on bacteriophage T4 by the intramuscular route, and PA mixed with Escherichia coli heat-labile enterotoxin administered by the needle-free transcutaneous route. Three of the vaccine formulations administered by the intramuscular or the transcutaneous route as a three-dose regimen induced 100% protection in the rabbit model. One of the formulations, liposomal PA, also induced significantly higher lethal toxin neutralizing antibodies than PA-Alhydrogel. Even 5 months after the second immunization of a two-dose regimen, rabbits vaccinated with liposomal PA were 100% protected from lethal challenge with Ames strain spores. In summary, the needle-free skin delivery and liposomal formulation that were found to be effective in two different animal model systems appear to be promising candidates for next-generation anthrax vaccine development.

  11. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  12. Mechanical Properties Studies of Components Formulation for Mixing Process Contain of Polypropylene, Polyethylene, and Aluminium Powder

    NASA Astrophysics Data System (ADS)

    Hamsi, A.; Dinzi, R.

    2017-03-01

    Certain powder and others components can induce toxic reactions if not properly handled in the mixing stage. During handling, the small particles can become airborne and be trapped in the lungs, another concern is inhomogeneities in the mixing process. Uniform quantities of the particles of the components are needed in all portions of the mixture. This paper reports the results of mechanical properties studies of mixing three components formulation for mixing process. Contain of Polyethylene (PE), Polyprophylene (PP) and Aluminium Powder. Powder mixer, Autodesk mold flow and computer based on excell method was carried out to study the influence of each formulation component on the flow %, PE 20% and Aluminium powder 2%. Macroscopic optic and macro photo was carried out to identify the homogenity of mixing, tensile test for identify the strength of component after mixing. Finally the optimal tensile test with composition PP 785,PE 20% and Aluminium powder 2% at speed 52 rpm, temperature 1500C, the tensile strength 20,92 N/mm2. At temperature 1600C, speed 100 rpm the optimum tensile strength 17,91 N/mm2. The result of simulation autodesk mold flow adviser the filling time 6 seconds. Otherwise on manual hot hidraulic press the time of filling 10 seconds.

  13. [Use of nopal dietary fiber in a powder dessert formulation].

    PubMed

    Sáenz, Carmen; Sepúlveda, Elena; Pak, Nelly; Vallejos, Ximena

    2002-12-01

    The development of diverse types of foods of low caloric value and with high content in dietary fiber have occupied a preponderant place in the food industry in the last years, due to the growing interest of the consumers for a healthy and nutritious diet. Pre-cooked or quick to prepare foods are attractive for the time they save; if to this you add their nutritious value, the attractiveness is even greater. For this reason, this study analyzes different formulations of a powder to prepare a dessert (flan), with different percentages of incorporation of nopal flour, as a source of dietary fiber (16%, 18%, 20%). Two flavors (melon and banana) were tried. It was observed that the flan flavored with banana and with 16% of nopal flour, reached better sensorial characteristics. Greater percentages of nopal flour negatively affected the sensorial characteristics, mainly flavor, color and texture. The analysis showed that the powder presented 5.7% of moisture, low water activity (0.48) and therefore a low total recount of microorganisms. The content of protein was high (27.2%), the ether extract low (2.0%) similar to the caloric contribution (40 Kcal/portion). The flan showed a 9.8% of total dietary fiber, being greater the contribution of soluble fiber (6.1%) than that of insoluble fiber (3.7%). Due to these characteristics this formulation could be considered as a food that provides benefits for the human health.

  14. Nasal Drug Absorption from Powder Formulations: Effect of Fluid Volume Changes on the Mucosal Surface.

    PubMed

    Tanaka, Akiko; Furubayashi, Tomoyuki; Enomura, Yuki; Hori, Tomoki; Shimomura, Rina; Maeda, Chiaki; Kimura, Shunsuke; Inoue, Daisuke; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2017-01-01

    The effect of changes in the mucosal fluid volume on the nasal drug absorption of powder formulations was evaluated using warfarin (WF), piroxicam (PXC), and norfloxacin (NFX) as model drugs. Lactose and sodium chloride (NaCl), which are water soluble and small-sized chemicals that increase osmotic pressure after dissolution, were used as excipients to change the mucosal fluid volume. The in vitro study using a Madin-Darby canine kidney (MDCK) cell monolayer indicated that lactose and NaCl, sprayed over the surface of air interface monolayers, increased the fluid volume on the monolayer surface and enhanced the transepithelial transport of the model drugs. The in vivo animal study indicated that the nasal absorption of PXC is enhanced by lactose and NaCl after nasal administration of the powder formulations. This is likely due to the enhanced dissolution of PXC on fluid-rich nasal mucosa and an increase in the effective surface area for drug permeation, which lead to better nasal absorption. However, both excipients failed to increase the nasal absorption of WF and NFX. To clarify the mechanism of the drug-dependent effect of lactose and NaCl, the nasal residence of the formulation was examined using FD70 as a non-absorbable marker. The nasal clearance of FD70 was enhanced by lactose and NaCl, leading to a decrease in the nasal drug absorption. Lactose and NaCl caused no damage to the nasal tissue. These results indicate that the addition of water-soluble excipients such as lactose to powder formulations can enhance the nasal absorption of highly permeable but poorly soluble drugs.

  15. Towards ambient temperature-stable vaccines: the identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay.

    PubMed

    Schlehuber, Lisa D; McFadyen, Iain J; Shu, Yu; Carignan, James; Duprex, W Paul; Forsyth, William R; Ho, Jason H; Kitsos, Christine M; Lee, George Y; Levinson, Douglas A; Lucier, Sarah C; Moore, Christopher B; Nguyen, Niem T; Ramos, Josephine; Weinstock, B André; Zhang, Junhong; Monagle, Julie A; Gardner, Colin R; Alvarez, Juan C

    2011-07-12

    As a result of thermal instability, some live attenuated viral (LAV) vaccines lose substantial potency from the time of manufacture to the point of administration. Developing regions lacking extensive, reliable refrigeration ("cold-chain") infrastructure are particularly vulnerable to vaccine failure, which in turn increases the burden of disease. Development of a robust, infectivity-based high throughput screening process for identifying thermostable vaccine formulations offers significant promise for vaccine development across a wide variety of LAV products. Here we describe a system that incorporates thermal stability screening into formulation design using heat labile measles virus as a prototype. The screening of >11,000 unique formulations resulted in the identification of liquid formulations with marked improvement over those used in commercial monovalent measles vaccines, with <1.0 log loss of activity after incubation for 8h at 40°C. The approach was shown to be transferable to a second unrelated virus, and therefore offers significant promise towards the optimization of formulation for LAV vaccine products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Which influenza vaccine formulation should be used in Kenya? A comparison of influenza isolates from Kenya to vaccine strains, 2007-2013.

    PubMed

    Waiboci, Lilian W; Mott, Joshua A; Kikwai, Gilbert; Arunga, Geoffrey; Xu, Xiyan; Mayieka, Lilian; Emukule, Gideon O; Muthoka, Phillip; Njenga, M Kariuki; Fields, Barry S; Katz, Mark A

    2016-05-17

    Every year the World Health Organization (WHO) recommends which influenza virus strains should be included in a northern hemisphere (NH) and a southern hemisphere (SH) influenza vaccine. To determine the best vaccine formulation for Kenya, we compared influenza viruses collected in Kenya from April 2007 to May 2013 to WHO vaccine strains. We collected nasopharyngeal and oropharyngeal (NP/OP) specimens from patients with respiratory illness, tested them for influenza, isolated influenza viruses from a proportion of positive specimens, tested the isolates for antigenic relatedness to vaccine strains, and determined the percentage match between circulating viruses and SH or NH influenza vaccine composition and schedule. During the six years, 7.336 of the 60,072 (12.2%) NP/OP specimens we collected were positive for influenza: 30,167 specimens were collected during the SH seasons and 3717 (12.3%) were positive for influenza; 2903 (78.1%) influenza A, 902 (24.2%) influenza B, and 88 (2.4%) influenza A and B positive specimens. We collected 30,131 specimens during the NH seasons and 3978 (13.2%) were positive for influenza; 3181 (80.0%) influenza A, 851 (21.4%) influenza B, and 54 (1.4%) influenza A and B positive specimens. Overall, 362/460 (78.7%) isolates from the SH seasons and 316/338 (93.5%) isolates from the NH seasons were matched to the SH and the NH vaccine strains, respectively (p<0.001). Overall, 53.6% and 46.4% SH and NH vaccines, respectively, matched circulating strains in terms of vaccine strains and timing. In six years of surveillance in Kenya, influenza circulated at nearly equal levels during the SH and the NH influenza seasons. Circulating viruses were matched to vaccine strains. The vaccine match decreased when both vaccine strains and timing were taken into consideration. Either vaccine formulation could be suitable for use in Kenya but the optimal timing for influenza vaccination needs to be determined. Copyright © 2016 Elsevier Ltd. All rights

  17. Tuberculosis vaccine candidate: Characterization of H4-IC31 formulation and H4 antigen conformation.

    PubMed

    Deshmukh, Sasmit S; Magcalas, Federico Webster; Kalbfleisch, Kristen N; Carpick, Bruce W; Kirkitadze, Marina D

    2018-08-05

    Tuberculosis (TB) is one of the leading causes of death worldwide, making the development of effective TB vaccines a global priority. A TB vaccine consisting of a recombinant fusion protein, H4, combined with a novel synthetic cationic adjuvant, IC31 ® , is currently being developed. The H4 fusion protein consists of two immunogenic mycobacterial antigens, Ag85 B and TB10.4, and the IC31 ® adjuvant is a mixture of KLK, a leucine-rich peptide (KLKL5KLK), and the oligodeoxynucleotide ODN1a, a TLR9 ligand. However, efficient and robust methods for assessing these formulated components are lacking. Here, we developed and optimized phase analysis light scattering (PALS), electrical sensing zone (ESZ), and Raman, FTIR, and CD spectroscopy methods to characterize the H4-IC31 vaccine formulation. PALS-measured conductivity and zeta potential values could differentiate between the similarly sized particles of IC31 ® adjuvant and the H4-IC31 vaccine candidate and could thereby serve as a control during vaccine formulation. In addition, zeta potential is indicative of the adjuvant to antigen ratio which is the key in the immunomodulatory response of the vaccine. ESZ was used as an orthogonal method to measure IC31 ® and H4-IC31 particle sizes. Raman, FTIR, and CD spectroscopy revealed structural changes in H4 protein and IC31 ® adjuvant, inducing an increase in both the β-sheet and random coil content as a result of adsorption. Furthermore, nanoDSF showed changes in the tertiary structure of H4 protein as a result of adjuvantation to IC31 ® . Our findings demonstrate the applicability of biophysical methods to characterize vaccine components in the final H4-IC31 drug product without the requirement for desorption. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Formulation of vaccines containing CpG oligonucleotides and alum

    PubMed Central

    Aebig, Joan A.; Mullen, Gregory E. D.; Dobrescu, Gelu; Rausch, Kelly; Lambert, Lynn; Ajose-Popoola, Olubunmi; Long, Carole A.; Saul, Allan; Miles, Aaron P.

    2007-01-01

    CpG oligodeoxynucleotides are potent immunostimulants. For parenterally delivered alum based vaccines, the immunostimulatory effect of CpG depends on the association of the CpG and antigen to the alum. We describe effects of buffer components on the binding of CPG 7909 to aluminum hydroxide (Alhydrogel), assays for measuring binding of CPG 7909 to alum and CPG 7909 induced dissociation of antigen from the alum. Free CPG 7909 is a potent inducer of IP-10 in mice. However the lack of IP-10 production from formulations containing bound CPG 7909 suggested that CPG 7909 does not rapidly dissociate from the alum after injection. It also suggests that IP-10 assays are not a good basis for potency assays for alum based vaccines containing CPG 7909. PMID:17512533

  19. Serum and mucosal immune responses to an inactivated influenza virus vaccine induced by epidermal powder immunization.

    PubMed

    Chen, D; Periwal, S B; Larrivee, K; Zuleger, C; Erickson, C A; Endres, R L; Payne, L G

    2001-09-01

    Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.

  20. Characterization of Propylene Glycol-Mitigated Freeze/Thaw Agglomeration of a Frozen Liquid nOMV Vaccine Formulation by Static Light Scattering and Micro-Flow Imaging.

    PubMed

    Mensch, Christopher D; Davis, Harrison B; Blue, Jeffrey T

    2015-01-01

    The purpose of this work was to investigate the susceptibility of an aluminum adjuvant and an aluminum-adjuvanted native outer membrane vesicle (nOMV) vaccine formulation to freeze/thaw-induced agglomeration using static light scattering and micro-flow Imaging analysis; and to evaluate the use of propylene glycol as a vaccine formulation excipient by which freeze/thaw-induced agglomeration of a nOMV vaccine formulation could be mitigated. Our results indicate that including 7% v/v propylene glycol in an nOMV containing aluminum adjuvanted vaccine formulation, mitigates freeze/thaw-induced agglomeration. We evaluated the effect of freeze-thawing on an aluminum adjuvant and an aluminum adjuvanted native outer membrane vesicle (nOMV) vaccine formulation. Specifically, we characterized the freeze/thaw-induced agglomeration through the use of static light scattering, micro-flow imaging, and cryo-electron microscopy analysis. Further, we evaluated the use of 0-9% v/v propylene glycol as an excipient which could be included in the formulation for the purpose of mitigating the agglomeration induced by freeze/thaw. The results indicate that using 7% v/v propylene glycol as a formulation excipient is effective at mitigating agglomeration of the nOMV vaccine formulation, otherwise induced by freeze-thawing. © PDA, Inc. 2015.

  1. Effects of Processing and Storage on Pediococcus pentosaceus SB83 in Vaginal Formulations: Lyophilized Powder and Tablets

    PubMed Central

    Borges, Sandra; Costa, Paulo; Silva, Joana; Teixeira, Paula

    2013-01-01

    Vaginal probiotics have an important role in preventing the colonization of the vagina by pathogens. This study aimed to investigate different formulations with Pediococcus pentosaceus SB83 (lyophilized powder and tablets with and without retarding polymer) in order to verify its stability and antilisterial activity after manufacture and during storage. The bacteriocinogenic activity of P. pentosaceus SB83 against Listeria monocytogenes was evaluated in simulated vaginal fluid. Suspension of Pediococcus pentosaceus SB83 reduced the pathogen only after 2 h and the lyophilized bacteria after 24 h of contact, and, in the tablets, P. pentosaceus SB83 lost the antimicrobial activity. The pH of simulated vaginal fluid decreased for all the tested conditions. As lyophilized powder demonstrated better results concerning antimicrobial activity, this formulation was selected to evaluate the antilisterial activity during the 12 months of storage. During storage at room temperature, lyophilized bacteria totally inhibited the pathogen only until one month of storage. At 4°C, P. pentosaceus SB83 showed antimicrobial activity during all the time of storage investigated. Therefore, the better formulation of P. pentosaceus SB83 is the lyophilized powder stored at 4°C, which may be administered intravaginally as a washing solution. PMID:23844367

  2. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis.

    PubMed

    Nian, Xiao-Ge; He, Yu-Rong; Lu, Li-Hua; Zhao, Rui

    2015-12-01

    Entomopathogenic fungi are potential candidates for controlling the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae). The control efficacy of two Isaria fumosorosea conidial formulations - wettable powder and oil-based formulation - combined with Bacillus thuringiensis against P. xylostella was tested. In the laboratory, the combined application of two pathogens increased larval mortality either in an additive or a synergistic way. P. xylostella larvae treated with oil-based formulation died sooner than larvae infected with wettable powder. For pot and field experiments, each formulation was applied alone or combined with B. thuringiensis 668 µg mL(-1) , and then larval mortality, pupation rate, adult emergence rate, female longevity and fecundity were recorded. In pot experiments there was no evidence of any antagonistic effects between the two pathogens. Combined application of B. thuringiensis and a high concentration of the two I. fumosorosea formulations resulted in higher mortality (84.4 and 86.2%) with minimum pupation (15.6 and 11.9%) and adult emergence rates (8.7 and 7.0%). Female longevity and fecundity were significantly reduced by the two formulations at high concentration compared with the control. Similar results were also observed in field experiments. The combined application of I. fumosorosea and B. thuringiensis is a promising alternative strategy for P. xylostella control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance.

    PubMed

    Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H

    2013-06-01

    Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.

  4. Characterisation of dry powder inhaler formulations using atomic force microscopy.

    PubMed

    Weiss, Cordula; McLoughlin, Peter; Cathcart, Helen

    2015-10-15

    Inhalation formulations are a popular way of treating the symptoms of respiratory diseases. The active pharmaceutical ingredient (API) is delivered directly to the site of action within the deep lung using an inhalation device such as the dry powder inhaler (DPI). The performance of the formulation and the efficiency of the treatment depend on a number of factors including the forces acting between the components. In DPI formulations these forces are dominated by interparticulate interactions. Research has shown that adhesive and cohesive forces depend on a number of particulate properties such as size, surface roughness, crystallinity, surface energetics and combinations of these. With traditional methods the impact of particulate properties on interparticulate forces could be evaluated by examining the bulk properties. Atomic force microscopy (AFM), however, enables the determination of local surface characteristics and the direct measurement of interparticulate forces using the colloidal probe technique. AFM is considered extremely useful for evaluating the surface topography of a substrate (an API or carrier particle) and even allows the identification of crystal faces, defects and polymorphs from high-resolution images. Additionally, information is given about local mechanical properties of the particles and changes in surface composition and energetics. The assessment of attractive forces between two bodies is possible by using colloidal probe AFM. This review article summarises the application of AFM in DPI formulations while specifically focussing on the colloidal probe technique and the evaluation of interparticulate forces. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P; Figiel, Adam

    2017-01-17

    Among popular crops, plum ( Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar "Valor") juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders.

  6. Pharmacokinetics of tilmicosin (Provitil powder and Pulmotil liquid AC) oral formulations in chickens.

    PubMed

    Abu-Basha, E A; Idkaidek, N M; Al-Shunnaq, A F

    2007-05-01

    A bioavailability and pharmacokinetics study of powder and liquid tilmicosin formulations was carried out in 18 healthy chickens according to a single-dose, two-period, two-sequence, crossover randomized design. The two formulations were Provitil and Pulmotil AC. Both drugs were administered to each chicken after an overnight fast on two treatment days separated by a 2-week washout period. A modified rapid and sensitive HPLC method was used for determination of tilmicosin concentrations in chicken plasma. Various pharmacokinetic parameters including area under plasma concentration-time curve (AUC(0-72)), maximum plasma concentration (C(max)), time to peak concentration (t(max)), elimination half-life (t(1/2beta)), elimination rate (k(el)), clearance (Cl(B)), mean residence time (MRT) and volume of distribution (V(d,area)) were determined for both formulations. The average means of AUC(0-72) for Provitil and Pulmotil AC were very close (24.24 +/- 3.86, 21.82 +/- 3.14 (microg x h)/ml, respectively), with no significant differences based on ANOVA. The relative bioavailability of Provitil as compared to Pulmotil AC was 111%. In addition, there were no significant differences in the C(max) (2.09 +/- 0.37, 2.12 +/- 0.40 microg/ml), tmax (3.99 +/- 0.84, 5.82 +/- 1.04 h), t(1/2beta) (47.4 +/- 9.32, 45.0 +/- 5.73 h), k(el) (0.021 +/- 0.0037, 0.022 +/- 0.0038 h(-1)), Cl(B) (19.73 +/- 3.73, 21.37 +/- 4.54ml/(min/kg)), MRT (71.20 +/- 12.87, 67.15 +/- 9.01 h) and V(d,area) (1024.8 +/- 87.5, 1009.8 +/- 79.5 ml/kg) between Pulmotil AC and Provitil, respectively. In conclusion, tilmicosin was rapidly absorbed and slowly eliminated after oral administration of single dose of tilmicosin aqueous and powder formulations. Provitil and Pulmotil AC can be used as interchangeable therapeutic agents.

  7. Acetalated Dextran Microparticulate Vaccine Formulated via Coaxial Electrospray Preserves Toxin Neutralization and Enhances Murine Survival Following Inhalational Bacillus Anthracis Exposure.

    PubMed

    Gallovic, Matthew D; Schully, Kevin L; Bell, Matthew G; Elberson, Margaret A; Palmer, John R; Darko, Christian A; Bachelder, Eric M; Wyslouzil, Barbara E; Keane-Myers, Andrea M; Ainslie, Kristy M

    2016-10-01

    Subunit formulations are regarded as the safest type of vaccine, but they often contain a protein-based antigen that can result in significant challenges, such as preserving antigenicity during formulation and administration. Many studies have demonstrated that encapsulation of protein antigens in polymeric microparticles (MPs) via emulsion techniques results in total IgG antibody titers comparable to alum formulations, however, the antibodies themselves are non-neutralizing. To address this issue, a coaxial electrohydrodynamic spraying (electrospray) technique is used to formulate a microparticulate-based subunit anthrax vaccine under conditions that minimize recombinant protective antigen (rPA) exposure to harsh solvents and high shear stress. rPA and the adjuvant resiquimod are encapsulated either in separate or the same acetalated dextran MPs. Using a murine model, the electrospray formulations lead to higher IgG2a subtype titers as well as comparable total IgG antibody titers and toxin neutralization relative to the FDA-approved vaccine (BioThrax). BioThrax provides no protection against a lethal inhalational challenge of the highly virulent Ames Bacillus anthracis anthrax strain, whereas 50% of the mice vaccinated with separately encapsulated electrospray MPs survive. Overall, this study demonstrates the potential use of electrospray for encapsulating protein antigens in polymeric MPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dose-dependent immunogenicity of a soluble Neospora caninum tachyzoite-extract vaccine formulated with a soy lecithin/β-glucan adjuvant in cattle.

    PubMed

    Mansilla, F C; Czepluch, W; Malacari, D A; Hecker, Y P; Bucafusco, D; Franco-Mahecha, O L; Moore, D P; Capozzo, A V

    2013-10-18

    Mice immunized with a soluble extract of Neospora caninum tachyzoites (sNcAg) formulated with Providean-AVEC, an aqueous soy-based adjuvant, are fully protected from N. caninum multiplication. Here we evaluated the dose-dependent immunogenicity of this vaccine formulation in cattle. Cattle (N=3 per group) were immunized with two applications (30 days apart) of formulations containing Providean-AVEC and different payloads of sNcAg (100, 50 and 10 μg), that were five to fifty times lower than the only reported study using this same antigen in cattle. Kinetics and magnitude of the vaccine-induced immune responses were dose-dependent. Cattle immunized with 100 μg-sNcAg elicited high-avidity specific antibodies 3 weeks after the primary vaccination while those that received 50 μg of antigen had maximum levels of specific high-avidity antibodies 5 days after the day 30 boost. Vaccination with 10 μg of sNcAg induced comparable antibody responses after 2 weeks post re-vaccination. IgG1 was the predominant isotype in all vaccinated animals. Maximum systemic IFN-γ levels were measured in cattle immunized with 50 and 100 μg-sNcAg (14 ± 2.8 ng/ml). CD4(+)-T cells from vaccinated animals proliferated after sNcAg stimulation in vitro, producing IFN-γ. Recall IFN-γ responses mediated by CD4(+)-T cells were detected up to 140 days post vaccination. Formulations containing Providean-AVEC and 50 μg of sNcAg stimulated broad cellular and humoral immune responses against N. caninum in cattle. The profile and magnitude of the immune response elicited by this vaccine can be modified by the antigen-dose and vaccination schedule. This is the first dose-response study performed in cattle using sNcAg as antigen. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations

    PubMed Central

    Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P.; Figiel, Adam

    2017-01-01

    Among popular crops, plum (Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar “Valor”) juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders. PMID:28106740

  10. Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection while Ameliorating Lung Eosinophilic Immunopathology

    PubMed Central

    Honda-Okubo, Yoshikazu; Barnard, Dale; Ong, Chun Hao; Peng, Bi-Hung; Tseng, Chien-Te Kent

    2014-01-01

    ABSTRACT Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses. IMPORTANCE Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified

  11. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice

    PubMed Central

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  12. A simple fluorescence-based assay for quantification of the Toll-Like Receptor agonist E6020 in vaccine formulations.

    PubMed

    Pollet, Jeroen; Versteeg, Leroy; Rezende, Wanderson; Strych, Ulrich; Gusovsky, Fabian; Hotez, Peter J; Bottazzi, Maria Elena

    2017-03-07

    Despite the generally accepted immunostimulatory effect of Toll-Like Receptor 4 (TLR4) agonists and their value as vaccine adjuvants, there remains a demand for fast and easy quantification assays for these TLR4 agonists in order to accelerate and improve vaccine formulation studies. A new medium-throughput method was developed for the quantification of the TLR4 agonist, E6020, independent of the formulation composition. The assay uses a fluorescent hydrazide (DCCH) to label the synthetic lipopolysaccharide (LPS) analog E6020 through its diketone groups. This novel, low-cost, and fluorescence based assay may obviate the need for traditional approaches that primarily rely on Fourier transform infrared spectroscopy (FTIR) or mass spectrometry. The experiments were performed in a wide diversity of vaccine formulations containing E6020 to assess method robustness and accuracy. The assay was also expanded to evaluate the loading efficiency of E6020 in poly(lactic-co-glycolic acid) (PLGA) micro-particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of pidotimod soluble powder and immune enhancement of Newcastle disease vaccine in chickens.

    PubMed

    Qu, Shaoqi; Dai, Cunchun; Qiu, Mei; Zhang, Ruili; Wang, Chunyuan; Cui, Liangliang; Hao, Zhihui

    2017-07-01

    The aims of this study were to prepare pidotimod (PDM) soluble powder and to investigate the immune enhancement properties of PDM in chickens vaccinated with Newcastle disease virus vaccine. In vivo experiment, 360 6-day-old chickens were averagely divided into 6 groups. The chickens, except blank control (BC) group, were vaccinated with Newcastle disease vaccine (NDV). At the same time of the vaccination, the chickens in three PDM groups were given water with PDM for 5days, respectively, with the PDM at low, medium and high concentrations (0.25g/L, 0.5g/L, 1g/L), in control drug group was treated with 0.2ml/PDM dose via drinking water, in vaccination control (VC) and BC group, with equal volume physiological saline, once a day for five successive days. On days 14, 21 and 28 after the vaccination, the growth performance, the lymphocyte proliferation, serum antibody titer, the CD4/CD8 cell ratios and interleukin-2 (IL-2) and interferon-gamma (IFN-γ) were measured. The results showed that PDM at suitable dose could significantly promote growth performance, lymphocyte proliferation, enhance serum antibody titer, CD4/CD8 cell ratios and improve serum IL-2 and IFN-γ concentrations. It indicated that PDM could significantly improve the immune efficacy of Newcastle disease vaccine using doses of 0.5g/L, these results are consistent with the drug acting as an immunopotentiator. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.

    PubMed

    Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla

    2012-01-10

    Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local

  15. Physicochemical properties and sensory characteristics of sausage formulated with surimi powder.

    PubMed

    Santana, Palestina; Huda, Nurul; Yang, Tajul Aris

    2015-03-01

    The objectives of this study were to determine the physicochemical properties and sensory characteristics of fish sausage made with 100 % threadfin bream (Nemipterus japonicus) surimi powder (SP100), a mix of 50 % surimi powder and 50 % frozen surimi (SP50), and a control (100 % frozen surimi). No significant differences in protein content and folding test results (P > 0.05) were detected among the SP100 and SP50 samples and the control. Gel strength of SP100 was lower (P > 0.05) than that of the control. The texture profile analysis (TPA) values (hardness, cohesiveness, springiness, and chewiness) of SP100 were significantly lower (P < 0.05) than those of the control. However, the TPA values of SP100 and SP50 were still within the textural range of Malaysian commercial fish sausages. The water holding capacity, and emulsion stability of SP100 were significantly lower (P < 0.05) than those of SP50 and the control. Of the cooking properties measured, SP100 had lower (P < 0.05) cooking yield, moisture retention, and fat retention than the control. Quantitative descriptive analysis (QDA) performed by 12 trained panelists showed that sensory characteristic (hardness, cohesiveness, springiness, and chewiness) scores of SP100 were lower than those of SP50 and the control. The use of surimi powder in fish sausage did not differ with that of control in the term of color, odor, or oiliness scored by panelists. The drying process impacted the texture properties of surimi when it was used in fish sausage. However, the use of surimi powder in fish sausage formulation is still accepted since the TPA values of SP100 and SP50 were still within the textural range of Malaysian commercial fish sausages.

  16. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes.

    PubMed

    Cabral-Marques, Helena; Almeida, Rita

    2009-09-01

    This study aims to develop and characterise a beclomethasone diproprionate:gamma-cyclodextrin (BDP:gamma-CYD) complex and to optimise the variables on the spray-drying process, in order to obtain a powder with the most suitable characteristics for lung delivery. The spray-dried powder--in a mass ratio of 2:5 (BDP:gamma-CYD)--was physically mixed with three carriers of different particle sizes and in different ratios. Particle-size distribution, shape and morphology, moisture content, and uniformity in BDP content of formulations were studied. In vitro aerolisation behaviour of the formulations was evaluated using the Rotahaler, and the performance was characterised based on the uniformity of emitted dose and aerodynamic particle-size distribution (respirable fraction (RF), as a percentage of nominal dose (RFN) and emitted dose (RFE)). The most suitable conditions for the preparation of BDP:gamma-CYD complexes were obtained with the solution flow of 5 ml/min, T(in) of 70 degrees C and T(out) of 50 degrees C. Statistically significant differences in the aerodynamic performances were obtained for formulations containing BDP:gamma-CYD complexes prepared using different solution flows and different T(in) (p<0.05). RFN and RFE vary in direct proportion with T(in), while an inverse relationship was observed for the solution flow. A direct correlation between the RFE and the T(out) was identified. Performance of the formulations was compared with an established commercial product (Beclotaide Rotacaps 100 microg) with improved performance of RF: formulations with respitose carrier attained RFN and RFE twofold greater, and formulations based on 63-90 microm fraction lactose and trehalose achieved a threefold improvement; also, all formulations showed that the percentage of dose of BDP deposited in the "oropharynx" compartment was reduced to half.

  17. Fourth International Conference: Modern Vaccines/Adjuvants Formulation--Impact on Future Development: May 15-17 2013, CHUV, Lausanne, Switzerland.

    PubMed

    Tupin, Emmanuel

    2013-09-01

    On the 15-17th of May 2013, about 120 scientists, postdoctoral fellows and professors representing renowned academic institutes and senior scientists and executives from small biotechs, contract research organizations (CROs) and Big Pharma companies, gathered at the Centre Hospitalier Universitaire Vaudois (CHUV) in Lausanne, Switzerland for the 4th international conference on Modern Vaccines and Adjuvants Formulation. Despite this relative small number, the speakers and attendees covered together a very broad field of expertise. Indeed, experts in microbiology, immunology, biochemistry, formulation, virus and nanoparticle characterization, vaccine production, quality control as well as regulatory professionals attended the conference and were able to present their works and discuss new developments within the field of vaccine and adjuvant development, characterization and approval process. This broad diversity was a highpoint of the conference and allowed for a stimulating environment and underlined the complexity of the challenges that the field currently faces in order to develop better or completely new vaccines and adjuvants.

  18. Preclinical safety study of a recombinant Streptococcus pyogenes vaccine formulated with aluminum adjuvant.

    PubMed

    HogenEsch, Harm; Dunham, Anisa; Burlet, Elodie; Lu, Fangjia; Mosley, Yung-Yi C; Morefield, Garry

    2017-02-01

    A recombinant vaccine composed of a fusion protein formulated with aluminum hydroxide adjuvant is under development for protection against diseases caused by Streptococcus pyogenes. The safety and local reactogenicity of the vaccine was assessed by a comprehensive series of clinical, pathologic and immunologic tests in preclinical experiments. Outbred mice received three intramuscular injections of 1/5th of the human dose (0.1 ml) and rabbits received two injections of the full human dose. Control groups received adjuvant or protein antigen. The vaccine did not cause clinical evidence of systemic toxicity in mice or rabbits. There was a transient increase of peripheral blood neutrophils after the third vaccination of mice. In addition, the concentration of acute phase proteins serum amyloid A and haptoglobin was significantly increased 1 day after injection of the vaccine in mice. There was mild transient swelling and erythema of the injection site in both mice and rabbits. Treatment-related pathology was limited to inflammation at the injection site and accumulation of adjuvant-containing macrophages in the draining lymph nodes. In conclusion, the absence of clinical toxicity in two animal species suggest that the vaccine is safe for use in a phase I human clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Immunogenicity and safety of primary and booster vaccination with 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens in a hexavalent DTPa-HBV-IPV/Hib combination vaccine in comparison with the licensed Infanrix hexa.

    PubMed

    Vesikari, Timo; Rivera, Luis; Korhonen, Tiina; Ahonen, Anitta; Cheuvart, Brigitte; Hezareh, Marjan; Janssens, Winnie; Mesaros, Narcisa

    2017-07-03

    Safety and immunogenicity of 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens of the combined diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliomyelitis-Hib vaccine (DTPa-HBV-IPV/Hib) were evaluated in a Primary (NCT01248884) and a Booster vaccination (NCT01453998) study. In the Primary study, 721 healthy infants (randomized 1:1:1) received 3 doses of DTPa-HBV-IPV/Hib formulation A (D A T A Pa-HBV-IPV/Hib), or B (D B T B Pa-HBV-IPV/Hib) or the licensed DTPa-HBV-IPV/Hib vaccine (Infanrix hexa, GSK; control group) at 2, 3, 4 months of age. Infants were planned to receive a booster dose at 12-15 months of age with the same formulation received in the Primary study; however, following high incidence of fever associated with the investigational formulations in the Primary study, the Booster study protocol was amended and all infants yet to receive a booster dose (N = 385) received the licensed vaccine. In the Primary study, non-inferiority of 3-dose vaccination with investigational formulations compared with the licensed vaccine was not demonstrated due to anti-pertactin failing to meet the non-inferiority criterion. Post-primary vaccination, most infants had seroprotective levels of anti-diphtheria (100% of infants), anti-tetanus antigens (100%), against hepatitis B (≥ 97.5% across groups), polyribosyl-ribitol-phosphate (≥ 88.0%) and poliovirus types 1-3 (≥ 90.5%). Seropositivity rates for each pertussis antigen were 100% in all groups. Higher incidence of fever (> 38°C) was reported in infants receiving the investigational formulations (Primary study: 75.0% [A] and 72.1% [B] vs 58.8% [control]; Booster study, before amendment: 49.4% and 46.6% vs 37.4%, respectively). The development of the investigational formulations was not further pursued.

  20. Immunogenicity and safety of primary and booster vaccination with 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens in a hexavalent DTPa-HBV-IPV/Hib combination vaccine in comparison with the licensed Infanrix hexa

    PubMed Central

    Vesikari, Timo; Rivera, Luis; Korhonen, Tiina; Ahonen, Anitta; Cheuvart, Brigitte; Hezareh, Marjan; Janssens, Winnie; Mesaros, Narcisa

    2017-01-01

    ABSTRACT Safety and immunogenicity of 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens of the combined diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliomyelitis-Hib vaccine (DTPa-HBV-IPV/Hib) were evaluated in a Primary (NCT01248884) and a Booster vaccination (NCT01453998) study. In the Primary study, 721 healthy infants (randomized 1:1:1) received 3 doses of DTPa-HBV-IPV/Hib formulation A (DATAPa-HBV-IPV/Hib), or B (DBTBPa-HBV-IPV/Hib) or the licensed DTPa-HBV-IPV/Hib vaccine (Infanrix hexa, GSK; control group) at 2, 3, 4 months of age. Infants were planned to receive a booster dose at 12–15 months of age with the same formulation received in the Primary study; however, following high incidence of fever associated with the investigational formulations in the Primary study, the Booster study protocol was amended and all infants yet to receive a booster dose (N = 385) received the licensed vaccine. In the Primary study, non-inferiority of 3-dose vaccination with investigational formulations compared with the licensed vaccine was not demonstrated due to anti-pertactin failing to meet the non-inferiority criterion. Post-primary vaccination, most infants had seroprotective levels of anti-diphtheria (100% of infants), anti-tetanus antigens (100%), against hepatitis B (≥ 97.5% across groups), polyribosyl-ribitol-phosphate (≥ 88.0%) and poliovirus types 1–3 (≥ 90.5%). Seropositivity rates for each pertussis antigen were 100% in all groups. Higher incidence of fever (> 38°C) was reported in infants receiving the investigational formulations (Primary study: 75.0% [A] and 72.1% [B] vs 58.8% [control]; Booster study, before amendment: 49.4% and 46.6% vs 37.4%, respectively). The development of the investigational formulations was not further pursued. PMID:28340322

  1. P5 HER2/neu-derived peptide conjugated to liposomes containing MPL adjuvant as an effective prophylactic vaccine formulation for breast cancer.

    PubMed

    Shariat, Sheida; Badiee, Ali; Jalali, Seyed Amir; Mansourian, Mercedeh; Yazdani, Mona; Mortazavi, Seyed Alireza; Jaafari, Mahmoud Reza

    2014-12-01

    Vaccines containing synthetic peptides derived from tumor-associated antigens (TAA) can elicit potent cytotoxic T lymphocyte (CTL) response if they are formulated in an optimal vaccine delivery system. The aim of this study was to develop a simple and effective lipid-based vaccine delivery system using P5 HER2/neu-derived peptide conjugated to Maleimide-PEG2000-DSPE. The conjugated lipid was then incorporated into liposomes composed of DMPC:DMPG:Chol:DOPE containing Monophosphoryl lipid A (MPL) (Lip-DOPE-P5-MPL). Different liposome formulations were prepared and characterized for their physicochemical properties. To evaluate anti-tumoral efficacy, BALB/c mice were immunized subcutaneously 3 times in two-week intervals and the generated immune response was studied. The results demonstrated that Lip-DOPE-P5-MPL induced a significantly higher IFN-γ production by CD8+ T cells intracellularly which represents higher CTL response in comparison with other control formulations. CTL response induced by this formulation caused the lowest tumor size and the longest survival time in a mice model of TUBO tumor. The encouraging results achieved by Lip-DOPE-P5-MPL formulation could make it a promising candidate in developing effective vaccines against Her2 positive breast cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. The influence of high shear mixing on ternary dry powder inhaler formulations.

    PubMed

    Hertel, Mats; Schwarz, Eugen; Kobler, Mirjam; Hauptstein, Sabine; Steckel, Hartwig; Scherließ, Regina

    2017-12-20

    The blending process is a key step in the production of dry powder inhaler formulations, but only little is known about the influence of process parameters. This is especially true for high shear blending of ternary formulations. For this reason, this study aims to investigate the influence of high shear mixing process parameters (mixing time and rotation speed) on the fine particle fraction (FPF) of ternary mixtures when using budesonide as model drug, two different carrier materials and two different mixing orders. Prolonged mixing time and higher rotation speeds led to lower FPFs, possibly due to higher press-on forces acting on the active pharmaceutical ingredients (API). In addition, a clear correlation between the energy consumption of the blender (the energy input into the blend) and the reduction of the FPF could be shown. Furthermore blending the carrier and the fines before adding the API was also found to be favorable. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A B-cell lymphoma vaccine using a depot formulation of interleukin-2 induces potent antitumor immunity despite increased numbers of intratumoral regulatory T cells.

    PubMed

    Grille, Sofía; Brugnini, Andreína; Nese, Martha; Corley, Esteban; Falkenberg, Frank W; Lens, Daniela; Chabalgoity, José A

    2010-04-01

    Therapeutic vaccination holds great potential as complementary treatment for non-Hodgkin's lymphoma. Here, we report that a therapeutic whole cell vaccine formulated with IL-2 adsorbed onto aluminum hydroxide as cytokine-depot formulation elicits potent antitumor immunity and induces delayed tumor growth, control of tumor dissemination and longer survival in mice challenged with A20-lymphoma. Therapeutic vaccination induced higher numbers of tumor's infiltrating lymphocytes (CD4(+) and CD8(+) T cells and NK cells), and the production of IFN-gamma and IL-4 by intratumoral CD4(+) T cells. Further, strong tumor antigen-specific cellular responses were detected at systemic level. Both the A20-derived antigenic material and the IL-2 depot formulation were required for induction of an effective immune response that impacted on cancer progression. All mice receiving any form of IL-2, either as part of the vaccine or alone as control, showed higher numbers of CD4(+)CD25(+/high)Foxp3(+) regulatory T cells (Treg) in the tumor, which might have a role in tumor progression in these animals. Nevertheless, for those animals that received the cytokine as part of the vaccine formulation, the overall effect was improved immune response and less disseminated disease, suggesting that therapeutic vaccination overcomes the potential detrimental effect of intratumoral Treg cells. Overall, the results presented here show that a simple vaccine formulation, that can be easily prepared under GMP conditions, is a promising strategy to be used in B-cell lymphoma and may have enough merit to be tested in clinical trials.

  4. Improved respirable fraction of budesonide powder for dry powder inhaler formulations produced by advanced supercritical CO2 processing and use of a novel additive.

    PubMed

    Miyazaki, Yuta; Aruga, Naoki; Kadota, Kazunori; Tozuka, Yuichi; Takeuchi, Hirofumi

    2017-08-07

    A budesonide (BDS) suspension was obtained via advanced supercritical carbon dioxide (scCO 2 ) processing. Thereafter, the suspension was freeze-dried (FD) to produce BDS particles for dry powder inhaler formulations (scCO 2 /FD processing). The scCO 2 /FD processed BDS powder showed low crystallinity by powder X-ray diffraction and a rough surface by scanning electron microscopy. The respirable fraction of BDS was assessed using a twin impinger and revealed that the amount of the scCO 2 /FD processed sample that reached stage 2 was 4-fold higher than that of the supplied powder. To extend the utility of scCO 2 processing, BDS particles for dry powder inhalers were fabricated by combining the scCO 2 system with various additives. When BDS was processed via scCO 2 /FD in the presence of the novel additive, namely, monoglyceride stearate (MGS), the residual BDS/MGS particles remaining in the capsule and devices decreased, followed by an increase in the respirable fraction of BDS 6-fold higher than with the supplied powder. The scCO 2 /FD processed BDS/MGS particles had a smooth surface, in contrast to the scCO 2 /FD processed BDS particles. A combination of BDS and an appropriate additive in scCO 2 treatment may induce changes in particle surface morphology, leading to an improvement in the inhalation properties of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Immunogenicity and safety of investigational vaccine formulations against meningococcal serogroups A, B, C, W, and Y in healthy adolescents

    PubMed Central

    Saez-Llorens, Xavier; Aguilera Vaca, Diana Catalina; Abarca, Katia; Maho, Emmanuelle; Graña, Maria Gabriela; Heijnen, Esther; Smolenov, Igor; Dull, Peter M

    2015-01-01

    This phase 2 study assessed the immunogenicity, safety, and reactogenicity of investigational formulations of meningococcal ABCWY vaccines, consisting of recombinant proteins (rMenB) and outer membrane vesicle (OMV) components of a licensed serogroup B vaccine, combined with components of a licensed quadrivalent meningococcal glycoconjugate vaccine (MenACWY-CRM). A total of 495 healthy adolescents were randomized to 6 groups to receive 2 doses (Months 0, 2) of one of 4 formulations of rMenB antigens, with or without OMV, combined with MenACWY-CRM, or 2 doses of rMenB alone or one dose of MenACWY-CRM then a placebo. Immunogenicity was assessed by serum bactericidal assay with human complement (hSBA) against serogroups ACWY and serogroup B test strains; solicited reactions and any adverse events (AEs) were assessed. Two MenABCWY vaccinations elicited robust ACWY immune responses, with higher seroresponse rates than one dose of MenACWY-CRM. Bactericidal antibody responses against the rMenB antigens and OMV components were highest in subjects who received 2 doses of OMV-containing MenABCWY formulations, with ≥68% of subjects achieving hSBA titers ≥5 against each of the serogroup B test strains. After the first dose, solicited local reaction rates were higher in the MenABCWY or rMenB groups than the MenACWY-CRM group, but similar across groups after the second dose, consisting mainly of transient injection site pain. Fever (≥38.0°C) was rare and there were no vaccine-related serious AEs. In conclusion, investigational MenABCWY formulations containing OMV components elicited highly immunogenic responses against meningococcal serogroups ACWY, as well as serogroup B test strains, with an acceptable safety profile. [NCT01210885] PMID:25969894

  6. Multidimensional Methods for the Formulation of Biopharmaceuticals and Vaccines

    PubMed Central

    Maddux, Nathaniel R.; Joshi, Sangeeta B.; Volkin, David B.; Ralston, John P.; Middaugh, C. Russell

    2013-01-01

    Determining and preserving the higher order structural integrity and conformational stability of proteins, plasmid DNA and macromolecular complexes such as viruses, virus-like particles and adjuvanted antigens is often a significant barrier to the successful stabilization and formulation of biopharmaceutical drugs and vaccines. These properties typically must be investigated with multiple lower resolution experimental methods, since each technique monitors only a narrow aspect of the overall conformational state of a macromolecular system. This review describes the use of empirical phase diagrams (EPDs) to combine large amounts of data from multiple high-throughput instruments and construct a map of a target macromolecule's physical state as a function of temperature, solvent conditions, and other stress variables. We present a tutorial on the mathematical methodology, an overview of some of the experimental methods typically used, and examples of some of the previous major formulation applications. We also explore novel applications of EPDs including potential new mathematical approaches as well as possible new biopharmaceutical applications such as analytical comparability, chemical stability, and protein dynamics. PMID:21647886

  7. Formulation and immunological evaluation of a trivalent vaccine comprising emulsified submicron particles and inactivated virions of H5N1/EV71/JEV

    PubMed Central

    Lin, Chih-Wei; Chang, Ching-Yun; Chen, Wei-Lin; Lin, Shih-Chang; Liao, Chien-Chun; Chang, Jui-Yuan; Liu, Chia-Chyi; Hu, Alan Yung-Chih; Lu, Tsung-Chun; Chou, Ai-Hsiang; Wu, Suh-Chin; Chong, Pele; Huang, Ming-Hsi

    2013-01-01

    Combination vaccines can reduce the number of injections and simplify the immunization schedule required to prevent different diseases. Here we assessed the immunogenicity in a mouse model of a vaccine composition comprising inactivated influenza viruses (H5N1/H1N1), enterovirus 71 (EV71), and/or Japanese encephalitis virus (JEV) and investigated whether the vaccine formulations can overcome the immunologic interference between the individual vaccine components. We demonstrated that the antigenic competition happens between H5N1/H1N1 or H5N1/EV71 inactivated virions when the vaccine combinations either formulated with Alum suspensions or without adjuvant. In the presence of PELC emulsified particles, EV71-specific immune responses before and after incorporating H5N1 virus into EV71 vaccine were detected of no significant difference; in addition, H5N1- and EV71-specific immune responses were found at the same level when H5N1/EV71/JEV consolidating into combination vaccine. Emulsified vaccine formulation was represented as a potential tool that is found to reduce the number of injections required to prevent multiple infectious strains causing the same disease (H5N1/H1N1) and/or that protect against different diseases (H5N1/EV71). Combination vaccines can also include a third component to protect against H5N1/EV71/JEV at the same time. PMID:23838466

  8. Tolerability and pharmacokinetic profile of a sunitinib powder formulation in pediatric patients with refractory solid tumors: a Children's Oncology Group study.

    PubMed

    DuBois, Steven G; Shusterman, Suzanne; Reid, Joel M; Ingle, Ashish M; Ahern, Charlotte H; Baruchel, Sylvain; Glade-Bender, Julia; Ivy, Percy; Adamson, Peter C; Blaney, Susan M

    2012-04-01

    Sunitinib is an oral tyrosine kinase inhibitor of VEGF, PDGF, c-KIT, and flt-3 receptors. A pediatric phase I study of sunitinib capsules identified the maximum tolerated dose as 15 mg/m(2)/day. This study was conducted to evaluate sunitinib given as a powder formulation. Sunitinib 15 mg/m(2) was administered orally daily for 4 weeks on/2 weeks off to patients <21 years old with refractory solid tumors. Sunitinib capsules were opened, and the powder sprinkled onto applesauce or yogurt. Plasma levels of sunitinib and an active metabolite, SU12662, were measured, and pharmacokinetic parameters were estimated. 12 patients, median age 13 (range 4-21) years, were treated. The most common first-cycle toxicities were leucopenia (n = 6), fatigue (n = 5), neutropenia (n = 4), and hypertension (n = 4). Three patients had dose-limiting toxicities (DLTs) in cycle 1 (dizziness/back pain, hand-foot syndrome, and intratumoral hemorrhage/hypoxia). A median peak plasma sunitinib concentration of 21 (range 6-36) ng/ml was reached at a median of 4 (range 4-8) h after the first dose. The median exposure (AUC(0-48)) was 585 (range 196-1,059) h ng/l. The median half-life was 23 (range 13-36) h. The median trough concentration measured before day 14 dosing was 32 (range 12-58) ng/ml. The pharmacokinetic profile of sunitinib appears similar between a powder formulation and published data using capsules. The powder formulation allows patients unable to swallow capsules to receive sunitinib.

  9. Preclinical Vaccine Study of Plasmodium vivax Circumsporozoite Protein Derived-Synthetic Polypeptides Formulated in Montanide ISA 720 and Montanide ISA 51 Adjuvants

    PubMed Central

    Arévalo-Herrera, Myriam; Vera, Omaira; Castellanos, Angélica; Céspedes, Nora; Soto, Liliana; Corradin, Giampietro; Herrera, Sócrates

    2011-01-01

    Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate previously assessed in animals and humans. Here, combinations of three synthetic polypeptides corresponding to amino (N), central repeat (R), and carboxyl (C) regions of the CS protein formulated in Montanide ISA 720 or Montanide ISA 51 adjuvants were assessed for immunogenicity in rodents and primates. BALB/c mice and Aotus monkeys were divided into test and control groups and were immunized three times with doses of 50 and 100 μg of vaccine or placebo. Antigen-specific antimalarial antibodies were determined by enzyme-linked immunosorbent assay, immunofluorescent antibody test, and IFN-γ responses by enzyme-linked immunosorbent spot (ELIspot). Both vaccine formulations were highly immunogenic in both species. Mice developed better antibody responses against C and R polypeptides, whereas the N polypeptide was more immunogenic in monkeys. Anti-peptide antibodies remained detectable for several months and recognized native proteins on sporozoites. Differences between Montanide ISA 720 and Montanide ISA 51 formulations were not significant. PMID:21292874

  10. Tulane/Xavier Vaccine Peptide Program

    DTIC Science & Technology

    2013-07-01

    include a dry powder formulation, microemulsions , nonspherical liposomes, ceramic shell vesicles, and nanometer-sized silk particles. Nasal...pulmonary delivery: dry powder formulation, microemulsions , nonspherical liposomes, ceramic shell vesicles, and nanometer-sized silk particles. (3) Confirm...include a dry powder formulation, microemulsions , nonspherical liposomes, ceramic shell vesicles, and nanometer-sized silk particles. Nasal

  11. Tolerability and pharmacokinetic profile of a sunitinib powder formulation in pediatric patients with refractory solid tumors: a Children’s Oncology Group study

    PubMed Central

    Shusterman, Suzanne; Reid, Joel M.; Ingle, Ashish M.; Ahern, Charlotte H.; Baruchel, Sylvain; Glade-Bender, Julia; Ivy, Percy; Adamson, Peter C.; Blaney, Susan M.

    2012-01-01

    Purpose Sunitinib is an oral tyrosine kinase inhibitor of VEGF, PDGF, c-KIT, and flt-3 receptors. A pediatric phase I study of sunitinib capsules identified the maximum tolerated dose as 15 mg/m2/day. This study was conducted to evaluate sunitinib given as a powder formulation. Methods Sunitinib 15 mg/m2 was administered orally daily for 4 weeks on/2 weeks off to patients <21 years old with refractory solid tumors. Sunitinib capsules were opened, and the powder sprinkled onto applesauce or yogurt. Plasma levels of sunitinib and an active metabolite, SU12662, were measured, and pharmacokinetic parameters were estimated. Results 12 patients, median age 13 (range 4–21) years, were treated. The most common first-cycle toxicities were leucopenia (n = 6), fatigue (n = 5), neutropenia (n = 4), and hypertension (n = 4). Three patients had dose-limiting toxicities (DLTs) in cycle 1 (dizziness/back pain, hand–foot syndrome, and intratumoral hemorrhage/hypoxia). A median peak plasma sunitinib concentration of 21 (range 6–36) ng/ml was reached at a median of 4 (range 4–8) h after the first dose. The median exposure (AUC0–48) was 585 (range 196–1,059) h ng/l. The median half-life was 23 (range 13–36) h. The median trough concentration measured before day 14 dosing was 32 (range 12–58) ng/ml. Conclusions The pharmacokinetic profile of sunitinib appears similar between a powder formulation and published data using capsules. The powder formulation allows patients unable to swallow capsules to receive sunitinib. PMID:22179104

  12. Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs.

    PubMed

    Woolley, Lauren K; Fell, Shayne A; Gonsalves, Jocelyn R; Raymond, Benjamin B A; Collins, Damian; Kuit, Tracey A; Walker, Mark J; Djordjevic, Steven P; Eamens, Graeme J; Jenkins, Cheryl

    2014-07-23

    Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel(®) or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn(®) M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn(®) M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel(®) and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn(®) M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn(®) M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn(®) M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights

  13. Effects of mild processing pressures on the performance of dry powder inhaler formulations for inhalation therapy. 1: Budesonide and lactose.

    PubMed

    Marek, Steve R; Donovan, Martin J; Smyth, Hugh D C

    2011-05-01

    Batch-to-batch variability, whereby distinct batches of dry powder inhaler formulations, though manufactured with identical components and specifications, may exhibit significant variations in aerosol performance, is a major obstacle to consistent and reproducible drug delivery for inhalation therapy. This variability may arise from processing or manufacturing effects that have yet to be investigated. This study focused on the potential effects of mild compression forces experienced during powder manufacture and transport (such as during the filling of, or storage in, a hopper) on the flowability and aerosol performance of a lactose-based dry powder inhaler formulation. Different grades of inhalation lactose were subjected to typical compression forces by either placing a weight of known mass on the sample or by using a Texture Analyzer to apply a constant force while measuring the distance of compaction. Powder flowability was evaluated with a rotating drum apparatus by imaging the avalanching of the powder over time. The average avalanche angle and avalanche time were used to determine the flowability of each sample, both before and after compression treatment. Aerosol performance of treated and untreated lactose/budesonide blends (2% (w/w)) was assessed in dispersion studies using a next generation impactor. At compression forces in excess of 5 kPa, the flowability of milled lactose was decreased relative to the untreated sample. Compression of lactose prior to blending caused a decrease in in vitro aerosol dispersion performance. However, dispersion performance was unchanged when compression occurred subsequent to drug blending. In contrast, inhalation grade sieved lactose, differing from the milled grade with a lower concentration of lactose fines (<10 μm) and larger overall particle sizes, exhibited no statistical differences in either flowability or dispersion performance across all experimental treatments. Thus, the compression of the lactose fines onto

  14. Field Trials of Attenuated Salmonella Typhi Live Oral Vaccine TY21A in Liquid and Enteric-Coated Capsule Formulations in Santiago, Chile

    DTIC Science & Technology

    1990-06-01

    inactive piacebo, children in the control group received viable Lactobacillus acidophilus because some experimental data suggest that L. acidophilus may...was the enteric-coating used to make the capsules acid-resistant. Such capsules, each containing 1-3 x 109 viable vaccine (or Lactobacillus ) organisms...formulation of vaccine (or of the Lactobacillus control preparation) consisted of two aluminum foil packets, one containing lyophilized vaccine (or

  15. Glassy-State Stabilization of a Dominant Negative Inhibitor Anthrax Vaccine Containing Aluminum Hydroxide and Glycopyranoside Lipid A Adjuvants

    PubMed Central

    Hassett, Kimberly J.; Vance, David J.; Jain, Nishant K.; Sahni, Neha; Rabia, Lilia A.; Cousins, Megan C.; Joshi, Sangeeta; Volkin, David B.; Middaugh, Russell; Mantis, Nicholas J.; Carpenter, John F.; Randolph, Theodore W.

    2014-01-01

    During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, Dominant Negative Inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40 °C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40 °C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40 °C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40 °C was observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose. PMID:25581103

  16. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant.

    PubMed

    Tamreihao, K; Ningthoujam, Debananda S; Nimaichand, Salam; Singh, Elangbam Shanta; Reena, Pascal; Singh, Salam Herojeet; Nongthomba, Upendra

    2016-11-01

    Streptomyces corchorusii strain UCR3-16, obtained from rice rhizospheric soils showed antifungal activities against 6 major rice fungal pathogens by diffusible and volatile compounds production. The strain was found positive for production of fungal cell wall degrading enzymes such as chitinase, β-1,3-glucanase, β-1,4-glucanase, lipase and protease. The strain was also positive for plant growth promoting traits. It produced up to 30.5μg/ml of IAA and solubilized a significant amount of inorganic phosphate (up to 102μg/ml). It also produced 69% siderophore units. The strain also produced ammonia and gave positive result for ACC deaminase activity. Highest vigor index of inoculated seedlings was observed when rice seeds were treated with cell suspension of UCR3-16 corresponding to 4.5×10(8)cfu/ml. Bioinoculant-treated seeds also showed similar results under pathogen challenged conditions. In pot trial experiments, UCR3-16-treated rice plants showed significantly increased growth and grain yield production. Powder formulation of the strain was developed using talcum and corn starch as carriers and the shelf-lives were monitored. Talcum formulation showed higher cell-count than corn starch even after 6 months of storage, and optimum condition for storage of the powder formulation were found to be at 4°C. Pot trial experiments using talcum powder formulation also showed significant positive effects on growth of rice plants. Field trial using talcum powder formulation also exhibited significant enhancement in shoot length and weight of shoot and root, and total grain yield and weight of grains in rice plants. Talcum formulation also significantly reduced the sheath blight disease in rice leaves. Copyright © 2016. Published by Elsevier GmbH.

  17. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    PubMed

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Oral Vaccination with Lipid-Formulated BCG Induces a Long-lived, Multifunctional CD4+ T Cell Memory Immune Response

    PubMed Central

    Ancelet, Lindsay R.; Aldwell, Frank E.; Rich, Fenella J.; Kirman, Joanna R.

    2012-01-01

    Oral delivery of BCG in a lipid formulation (Liporale™-BCG) targets delivery of viable bacilli to the mesenteric lymph nodes and confers protection against an aerosol Mycobacterium tuberculosis challenge. The magnitude, quality and duration of the effector and memory immune response induced by Liporale™-BCG vaccination is unknown. Therefore, we compared the effector and memory CD4+ T cell response in the spleen and lungs of mice vaccinated with Liporale™-BCG to the response induced by subcutaneous BCG vaccination. Liporale™-BCG vaccination induced a long-lived CD4+ T cell response, evident by the detection of effector CD4+ T cells in the lungs and a significant increase in the number of Ag85B tetramer-specific CD4+ T cells in the spleen up to 30 weeks post vaccination. Moreover, following polyclonal stimulation, Liporale™-BCG vaccination, but not s.c. BCG vaccination, induced a significant increase in both the percentage of CD4+ T cells in the lungs capable of producing IFNγ and the number of multifunctional CD4+ T cells in the lungs at 30 weeks post vaccination. These results demonstrate that orally delivered Liporale™-BCG vaccine induces a long-lived multifunctional immune response, and could therefore represent a practical and effective means of delivering novel BCG-based TB vaccines. PMID:23049885

  19. A vaccine formulation combining rhoptry proteins NcROP40 and NcROP2 improves pup survival in a pregnant mouse model of neosporosis.

    PubMed

    Pastor-Fernández, Iván; Arranz-Solís, David; Regidor-Cerrillo, Javier; Álvarez-García, Gema; Hemphill, Andrew; García-Culebras, Alicia; Cuevas-Martín, Carmen; Ortega-Mora, Luis M

    2015-01-30

    Currently there are no effective vaccines for the control of bovine neosporosis. During the last years several subunit vaccines based on immunodominant antigens and other proteins involved in adhesion, invasion and intracellular proliferation of Neospora caninum have been evaluated as targets for vaccine development in experimental mouse infection models. Among them, the rhoptry antigen NcROP2 and the immunodominant NcGRA7 protein have been assessed with varying results. Recent studies have shown that another rhoptry component, NcROP40, and NcNTPase, a putative dense granule antigen, exhibit higher expression levels in tachyzoites of virulent N. caninum isolates, suggesting that these could be potential vaccine candidates to limit the effects of infection. In the present work, the safety and efficacy of these recombinant antigens formulated in Quil-A adjuvant as monovalent vaccines or pair-wise combinations (rNcROP40+rNcROP2 and rNcGRA7+rNcNTPase) were evaluated in a pregnant mouse model of neosporosis. All the vaccine formulations elicited a specific immune response against their respective native proteins after immunization. Mice vaccinated with rNcROP40 and rNcROP2 alone or in combination produced the highest levels of IFN-γ and exhibited low parasite burdens and low IgG antibody levels after the challenge. In addition, most of the vaccine formulations were able to increase the median survival time in the offspring. However, pup survival only ensued in the groups vaccinated with rNcROP40+rNcROP2 (16.2%) and rNcROP2 (6.3%). Interestingly, vertical transmission was not observed in those survivor pups immunized with rNcROP40+rNcROP2, as shown by PCR analyses. These results show a partial protection against N. caninum infection after vaccination with rNcROP40+rNcROP2, suggesting a synergistic effect of the two recombinant rhoptry antigens. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Predicting the behavior of novel sugar carriers for dry powder inhaler formulations via the use of a cohesive-adhesive force balance approach.

    PubMed

    Hooton, Jennifer C; Jones, Matthew D; Price, Robert

    2006-06-01

    The aim of this work was to utilize the recently developed cohesive-adhesive balance (CAB) technique for analyzing quantitative AFM measurements to compare the relative forces of interaction of micronized salbutamol sulfate particles and a selection of specifically grown sugar substrates (beta cyclodextrin, lactose, raffinose, trehalose and xylitol). The interfacial behavior was subsequently related to the in-vitro delivery performance of these sugars as carrier particles in dry powder inhalation (DPI) formulations. The CAB analysis indicated that the rank order of adhesion between salbutamol sulfate and the sugars was beta cyclodextrin < lactose < trehalose < raffinose < xylitol. The beta cyclodextrin was the only substrate with which salbutamol sulfate demonstrated a greater cohesive behavior. All other sugars exhibited an adhesive dominance. In-vitro deposition performance of the salbutamol sulfate based carrier DPI formulations showed that the rank order of the fine particle fraction (FPF) was beta cyclodextrin > lactose > raffinose > trehalose > xylitol. A linear correlation (R(2) = 0.9572) was observed between the FPF and cohesive-adhesive ratios of the AFM force measurements. The observed link between CAB analysis of the interactive forces and in-vitro performance of carrier based formulations suggested a fundamental understanding of the relative balance of the various forces of interaction within a dry powder formulation may provide a critical insight into the behavior of these formulations. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Preparation and Evaluation of Herbal Shampoo Powder

    PubMed Central

    Dubey, Sachin; Nema, Neelesh; Nayak, S.

    2004-01-01

    Two preparations of herbal shampoo powder were formulated using some common traditional drugs used by folk and traditional people of Bundelkhand region (M.P) India, for hair care. The preparations were formulated using bahera, amla, neem tulsi, shikakai henna & brahmi evaluated for organoleptic, powder charecterestics, foam test and physical evaluation. As the selected drugs being used since long time as single drug or in combination, present investigations will further help to establish a standard formulation and evaluation parameters, which will certainly help in the standardization for quality and purity of such type of herbal powder shampoos. PMID:22557149

  2. Optimization of the formulation and technology of pearl millet based 'ready-to-reconstitute' kheer mix powder.

    PubMed

    Bunkar, Durga Shankar; Jha, Alok; Mahajan, Ankur

    2014-10-01

    The objective of this study was to optimize the process of manufacturing instant kheer mix based on pearl millet instead of rice. Dairy whitener, pearl millet and powdered sugar were the responses studied by employing the 3-factor Central Composite Rotatable Design. The formulation with 15 g sugar, 30 g dairy whitener and 20 g pearl millet was found suitable for obtaining dry kheer mix. The analyses were based on scores of consistency, cohesiveness, viscosity and overall acceptability. The reconstituted product from the formulated kheer mix had an overall acceptability score of 7.66 and desirability index of 0.7663. The moisture, fat, protein, carbohydrate and ash contents of the dry mix product were 2.8, 4.38, 5.84, 85.88 and 1.1 %, respectively.

  3. Interaction of Environmental Moisture with Powdered Green Tea Formulations: Relationship between Catechin Stability and Moisture-Induced Phase Transformations

    PubMed Central

    Ortiz, Julieta; Kestur, Umesh S.; Taylor, Lynne S.; Mauer, Lisa J.

    2009-01-01

    This study investigated the effect of phase transformations of amorphous and deliquescent ingredients on catechin stability in green tea powder formulations. Blends of amorphous green tea and crystalline sucrose, citric acid, and/or ascorbic acid were analyzed by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), dynamic water vapor sorption, water activity measurements, and high-performance liquid chromatography (HPLC) after storage for up to 12 weeks at 0–75% relative humidity (RH) and 22 °C. The glass transition temperature (Tg) of green tea was reduced to below room temperature (<22 °C) at 68% RH. Dissolution of deliquescent ingredients commenced at RH values below deliquescence points in blends with amorphous green tea, and these blends had greater water uptake than predicted by an additive model of individual ingredient moisture sorption. Catechin degradation was affected by Tg of green tea powder and both dissolution and deliquescence of citric and ascorbic acids. PMID:19489621

  4. The safety of ethambutol dihydrochloride dry powder formulations containing chitosan for the possibility of treating lung tuberculosis.

    PubMed

    Ahmad, Md Iftekhar; Nakpheng, Titpawan; Srichana, Teerapol

    2014-12-01

    The aim of this study was to conduct in vitro studies of a dry powder formulation of ethambutol dihydrochloride (EDH) to determine if it was an acceptable candidate for further in vivo studies to target alveolar macrophages for the treatment of lung tuberculosis. Nanosized drug particles were prepared by optimizing the spray drying conditions. The cell toxicities were determined by interacting the formulations with respiratory cell lines (A549, calu-3 and NR8383 cell lines), and phagocytosis of the formulations was tested on a macrophage cell line. Permeations of the EDH formulations across a lipid bilayer were studied using the Ussing chamber and HPLC. Bioactivity tests of the formulations were carried out by using the resazurin method on M. bovis cells. Spray rate and inlet temperature were the two most important factors that affected the size and % yield of the product. The % cell viability of A549 cells with all EDH formulations, pure EDH and chitosan carrier was higher than 80%, the calu-3 cell line had % viabilities of between 85 and 99%, and the % viability of NR8383 cells was between 81 and 100%. The pure EDH had a minimum inhibitory concentration (MIC) of 2 µg/mL while the EDH formulations had MIC values of less than 1 µg/mL when tested against M. bovis. The formulation was completely phagocytized by the macrophage cells after 30 min. The permeability of pure EDH across lipid bilayer was 48.7% after 2 h while in the EDH formulations it was enhanced to 71%. The EDH formulations showed a lower toxicity, higher potency and better permeation than the pure EDH. Thus, EDH DPI formulations could help to minimize the duration of treatment and the risk of developing multidrug resistance tuberculosis compared to the non-formulated EDH.

  5. Increasing the potency of an alhydrogel-formulated anthrax vaccine by minimizing antigen-adjuvant interactions.

    PubMed

    Watkinson, Allan; Soliakov, Andrei; Ganesan, Ashok; Hirst, Karie; Lebutt, Chris; Fleetwood, Kelly; Fusco, Peter C; Fuerst, Thomas R; Lakey, Jeremy H

    2013-11-01

    Aluminum salts are the most widely used vaccine adjuvants, and phosphate is known to modulate antigen-adjuvant interactions. Here we report an unexpected role for phosphate buffer in an anthrax vaccine (SparVax) containing recombinant protective antigen (rPA) and aluminum oxyhydroxide (AlOH) adjuvant (Alhydrogel). Phosphate ions bind to AlOH to produce an aluminum phosphate surface with a reduced rPA adsorption coefficient and binding capacity. However, these effects continued to increase as the free phosphate concentration increased, and the binding of rPA changed from endothermic to exothermic. Crucially, phosphate restored the thermostability of bound rPA so that it resembled the soluble form, even though it remained tightly bound to the surface. Batches of vaccine with either 0.25 mM (subsaturated) or 4 mM (saturated) phosphate were tested in a disease model at batch release, which showed that the latter was significantly more potent. Both formulations retained their potency for 3 years. The strongest aluminum adjuvant effects are thus likely to be via weakly attached or easily released native-state antigen proteins.

  6. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    PubMed

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Field Trial of Attenuated Salmonella Typhi Live Oral Vaccine TY21A in Liquid and Enteric-Coated Formulations and Epidemiological Survey for Incidence of Diarrhea due to Shigella Species

    DTIC Science & Technology

    1989-03-01

    and absolute efficacy of three doses of Ty2la vaccine given in enteric-coated capsule or liquid formulation. Intensive clinical and bacteriologic...TABLES Table 1. Evaluation of the efficacy of three doses of the enteric-coated capsule formulation of Ty2la live oral vaccine given within one week in...November, 1986 thzough February, 1989 of a field trial in Area Sur Oriente and Area Norte assessing the efficacy of Ty21a vaccine in liquid or enteric

  8. Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants.

    PubMed

    Hassett, Kimberly J; Vance, David J; Jain, Nishant K; Sahni, Neha; Rabia, Lilia A; Cousins, Megan C; Joshi, Sangeeta; Volkin, David B; Middaugh, C Russell; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2015-02-01

    During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Economic impact of thermostable vaccines.

    PubMed

    Lee, Bruce Y; Wedlock, Patrick T; Haidari, Leila A; Elder, Kate; Potet, Julien; Manring, Rachel; Connor, Diana L; Spiker, Marie L; Bonner, Kimberly; Rangarajan, Arjun; Hunyh, Delphine; Brown, Shawn T

    2017-05-25

    While our previous work has shown that replacing existing vaccines with thermostable vaccines can relieve bottlenecks in vaccine supply chains and thus increase vaccine availability, the question remains whether this benefit would outweigh the additional cost of thermostable formulations. Using HERMES simulation models of the vaccine supply chains for the Republic of Benin, the state of Bihar (India), and Niger, we simulated replacing different existing vaccines with thermostable formulations and determined the resulting clinical and economic impact. Costs measured included the costs of vaccines, logistics, and disease outcomes averted. Replacing a particular vaccine with a thermostable version yielded cost savings in many cases even when charging a price premium (two or three times the current vaccine price). For example, replacing the current pentavalent vaccine with a thermostable version without increasing the vaccine price saved from $366 to $10,945 per 100 members of the vaccine's target population. Doubling the vaccine price still resulted in cost savings that ranged from $300 to $10,706, and tripling the vaccine price resulted in cost savings from $234 to $10,468. As another example, a thermostable rotavirus vaccine (RV) at its current (year) price saved between $131 and $1065. Doubling and tripling the thermostable rotavirus price resulted in cost savings ranging from $102 to $936 and $73 to $808, respectively. Switching to thermostable formulations was highly cost-effective or cost-effective in most scenarios explored. Medical cost and productivity savings could outweigh even significant price premiums charged for thermostable formulations of vaccines, providing support for their use. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Bolstering Components of the Immune Response Compromised by Prior Exposure to Adenovirus: Guided Formulation Development for a Nasal Ebola Vaccine

    PubMed Central

    2014-01-01

    The severity and longevity of the current Ebola outbreak highlight the need for a fast-acting yet long-lasting vaccine for at-risk populations (medical personnel and rural villagers) where repeated prime-boost regimens are not feasible. While recombinant adenovirus (rAd)-based vaccines have conferred full protection against multiple strains of Ebola after a single immunization, their efficacy is impaired by pre-existing immunity (PEI) to adenovirus. To address this important issue, a panel of formulations was evaluated by an in vitro assay for their ability to protect rAd from neutralization. An amphiphilic polymer (F16, FW ∼39,000) significantly improved transgene expression in the presence of anti-Ad neutralizing antibodies (NAB) at concentrations of 5 times the 50% neutralizing dose (ND50). In vivo performance of rAd in F16 was compared with unformulated virus, virus modified with poly(ethylene) glycol (PEG), and virus incorporated into poly(lactic-co-glycolic) acid (PLGA) polymeric beads. Histochemical analysis of lung tissue revealed that F16 promoted strong levels of transgene expression in naive mice and those that were exposed to adenovirus in the nasal cavity 28 days prior to immunization. Multiparameter flow cytometry revealed that F16 induced significantly more polyfunctional antigen-specific CD8+ T cells simultaneously producing IFN-γ, IL-2, and TNF-α than other test formulations. These effects were not compromised by PEI. Data from formulations that provided partial protection from challenge consistently identified specific immunological requirements necessary for protection. This approach may be useful for development of formulations for other vaccine platforms that also employ ubiquitous pathogens as carriers like the influenza virus. PMID:25549696

  11. Combined semi-empirical screening and design of experiments (DOE) approach to identify candidate formulations of a lyophilized live attenuated tetravalent viral vaccine candidate.

    PubMed

    Patel, Ashaben; Erb, Steven M; Strange, Linda; Shukla, Ravi S; Kumru, Ozan S; Smith, Lee; Nelson, Paul; Joshi, Sangeeta B; Livengood, Jill A; Volkin, David B

    2018-05-24

    A combination experimental approach, utilizing semi-empirical excipient screening followed by statistical modeling using design of experiments (DOE), was undertaken to identify stabilizing candidate formulations for a lyophilized live attenuated Flavivirus vaccine candidate. Various potential pharmaceutical compounds used in either marketed or investigative live attenuated viral vaccine formulations were first identified. The ability of additives from different categories of excipients, either alone or in combination, were then evaluated for their ability to stabilize virus against freeze-thaw, freeze-drying, and accelerated storage (25°C) stresses by measuring infectious virus titer. An exploratory data analysis and predictive DOE modeling approach was subsequently undertaken to gain a better understanding of the interplay between the key excipients and stability of virus as well as to determine which combinations were interacting to improve virus stability. The lead excipient combinations were identified and tested for stabilizing effects using a tetravalent mixture of viruses in accelerated and real time (2-8°C) stability studies. This work demonstrates the utility of combining semi-empirical excipient screening and DOE experimental design strategies in the formulation development of lyophilized live attenuated viral vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen

    PubMed Central

    Thim, Hanna L.; Villoing, Stéphane; McLoughlin, Marian; Christie, Karen Elina; Grove, Søren; Frost, Petter; Jørgensen, Jorunn B.

    2014-01-01

    Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing receptor (PRR

  13. Influence of deposition and spray pattern of nasal powders on insulin bioavailability.

    PubMed

    Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P

    2006-03-09

    The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.

  14. Optimization of Premix Powders for Tableting Use.

    PubMed

    Todo, Hiroaki; Sato, Kazuki; Takayama, Kozo; Sugibayashi, Kenji

    2018-05-08

    Direct compression is a popular choice as it provides the simplest way to prepare the tablet. It can be easily adopted when the active pharmaceutical ingredient (API) is unstable in water or to thermal drying. An optimal formulation of preliminary mixed powders (premix powders) is beneficial if prepared in advance for tableting use. The aim of this study was to find the optimal formulation of the premix powders composed of lactose (LAC), cornstarch (CS), and microcrystalline cellulose (MCC) by using statistical techniques. Based on the "Quality by Design" concept, a (3,3)-simplex lattice design consisting of three components, LAC, CS, and MCC was employed to prepare the model premix powders. Response surface method incorporating a thin-plate spline interpolation (RSM-S) was applied for estimation of the optimum premix powders for tableting use. The effect of tablet shape identified by the surface curvature on the optimization was investigated. The optimum premix powder was effective when the premix was applied to a small quantity of API, although the function of premix was limited in the case of the formulation of large amount of API. Statistical techniques are valuable to exploit new functions of well-known materials such as LAC, CS, and MCC.

  15. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells.

    PubMed

    Aquino, R P; Prota, L; Auriemma, G; Santoro, A; Mencherini, T; Colombo, G; Russo, P

    2012-04-15

    The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Toward the development of a stable, freeze-dried formulation of Helicobacter pylori killed whole cell vaccine adjuvanted with a novel mutant of E. coli heat-labile toxin

    PubMed Central

    Summerton, Nancy A.; Welch, Richard W.; Bondoc, Laureano; Yang, Huei-Hsiung; Pleune, Brett; Ramachandran, Naryaswamy; Harris, Andrea M.; Bland, Desiree; Jackson, W. James; Park, Sukjoon; Clements, John D.; Nabors, Gary S.

    2009-01-01

    No vaccine exists for the prevention of infection with the ubiquitous gastric pathogen Helicobacter pylori, and drug therapy for the infection is complicated by poor patient compliance, the high cost of treatment, and ineffectiveness against drug resistant strains. A new medical advancement is required to reduce the incidence of peptic ulcer disease and stomach cancer, two conditions caused by infection with H. pylori. Clinical trials have been performed with a formalin-inactivated Helicobacter pylori Whole Cell (HWC) vaccine, given orally in combination with the mucosal adjuvant mLT(R192G), a mutant of E. coli heat-labile toxin. Following the initial dose of this vaccine, some subjects experienced gastrointestinal side effects. To reduce side effects and potentially further increase the amount of adjuvant that can safely be administered with the HWC vaccine, experiments were performed with a form of LT that carried two mutations in the A subunit, a substitution of G for R at position 192, and A for L at position 211. The double-mutant LT (dmLT) adjuvant stimulated immune responses as effectively as the single mutant LT in mice. Additionally, following a challenge infection, the dmLT-adjuvanted vaccine was as effective as single mutant LT in reducing gastric urease levels (diagnostic for H. pylori infection), and H. pylori colonization in the stomach as assessed by quantitative analysis of stomach homogenates. A lyophilized formulation of HWC was developed to improve stability and to potentially reduce reliance on cold chain maintenance. It was observed that a dmLT-adjuvanted lyophilized vaccine was equally as protective in the mouse model as the liquid formulation as assessed by gastric urease analysis and analysis of stomach homogenates for viable H. pylori. No readily detectable effect of tonicity or moisture content was observed for the lyophilized vaccine within the formulation limits evaluated. In an accelerated stability study performed at 37°C the

  17. New proteoliposome vaccine formulation from N. meningitidis serogroup B, without aluminum hydroxide, retains its antimeningococcal protectogenic potential as well as Th-1 adjuvant capacity

    PubMed Central

    2013-01-01

    Proteoliposomes purified from the Outer Membrane of Neisseria meningitidis B, have been successfully used as core for adjuvants and vaccine formulations. We have tried to increase their structural definition and to conserve their efficacy and stability avoiding the addition of the aluminum hydroxide to the final formulation. Liposomal particle systems were prepared from components of defined molecular structure, such as a Neisseria meningitidis B protein complex, extracted and purified without forming vesicle structures. Liposomes were prepared from a mixture of dioleoyl phosphatidyl serine and cholesterol, using the classical dehydration-rehydration method. Transmission Electron Microscopy (TEM) was used to characterize the liposomes. BALB/c mice were used for animal testing procedures. Analysis of specific IgG response, serum bactericidal activity as well as DTH reaction was carried out. Isolation and purification of mRNA and real-time PCR, was performed to determine the dominating Th lymphokine pattern. The new antimeningococcal formulation without aluminum hydroxide prepared with components of defined molecular structure assembled itself into Neoproteoliposomes (NPL) ranging from 50 to 70 nm in diameter. The extraction and purification of selected membrane proteins to provide the antigen for this new formulation (PD-Tp), as well as the NPL-formulation favors a Th1 response pattern, suggested by the higher percentages of DTH, increased expression of proinflamatory lymphokine mRNAs when administered by intramuscular and intranasal routes. It stimulates a systemic bactericidal antibody response against Neisseria meningitidis B and immunologic memory similar to the Cuban VA-MENGOC-BC® vaccine, even at lower dosages and is less reactogenic at the injection site in comparison with the formulation with aluminum hydroxide. This new adjuvant formulation could be applicable to the development of new and improved vaccines against meningococcal disease, and eventually as

  18. Development of an Improved Inhalable Powder Formulation of Pirfenidone by Spray-Drying: In Vitro Characterization and Pharmacokinetic Profiling.

    PubMed

    Seto, Yoshiki; Suzuki, Gen; Leung, Sharon Shui Yee; Chan, Hak-Kim; Onoue, Satomi

    2016-06-01

    Previously, a respirable powder (RP) formulation of pirfenidone (PFD) was developed for reducing phototoxic risk; however, PFD-RP demonstrated unacceptable in vitro inhalation performance. The present study aimed to develop a new RP system of PFD with favorable inhalation properties by spray-drying method. Spray-dried PFD (SD/PFD) was prepared by spray-drying with L-leucine, and the physicochemical properties and efficacy in an antigen-sensitized airway inflammation model were assessed. A pharmacokinetic study was also conducted after intratracheal and oral administration of PFD formulations. Regarding powder characterization, SD/PFD had dimpled surface with the mean diameter of 1.793 μm. In next generation impactor analysis, SD/PFD demonstrated high in vitro inhalation performance without the need of carrier particles, and the fine particle fraction of SD/PFD was calculated to be 62.4%. Insufflated SD/PFD (0.3 mg-PFD/rat) attenuated antigen-evoked inflammatory events in the lung, including infiltration of inflammatory cells and myeloperoxidase activity. Systemic exposure level of PFD after insufflation of SD/PFD at the pharmacologically effective dose was 600-fold lower than that after oral administration of PFD at the phototoxic dose. SD/PFD would be suitable for inhalation, and the utilization of an RP system with SD/PFD would provide a safer medication compared with oral administration of PFD.

  19. Good manufacturing practices production of a purification-free oral cholera vaccine expressed in transgenic rice plants.

    PubMed

    Kashima, Koji; Yuki, Yoshikazu; Mejima, Mio; Kurokawa, Shiho; Suzuki, Yuji; Minakawa, Satomi; Takeyama, Natsumi; Fukuyama, Yoshiko; Azegami, Tatsuhiko; Tanimoto, Takeshi; Kuroda, Masaharu; Tamura, Minoru; Gomi, Yasuyuki; Kiyono, Hiroshi

    2016-03-01

    The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized countries. A leading, practical obstacle to their widespread use is producing plant-based vaccines that meet governmental regulatory requirements. Here, we report the first production according to current Good Manufacturing Practices of a rice-based vaccine, the cholera vaccine MucoRice-CTB, at an academic institution. To this end, we established specifications and methods for the master seed bank (MSB) of MucoRice-CTB, which was previously generated as a selection-marker-free line, evaluated its propagation, and given that the stored seeds must be renewed periodically. The production of MucoRice-CTB incorporated a closed hydroponic system for cultivating the transgenic plants, to minimize variations in expression and quality during vaccine manufacture. This type of molecular farming factory can be operated year-round, generating three harvests annually, and is cost- and production-effective. Rice was polished to a ratio of 95 % and then powdered to produce the MucoRice-CTB drug substance, and the identity, potency, and safety of the MucoRice-CTB product met pre-established release requirements. The formulation of MucoRice-CTB made by fine-powdering of drug substance and packaged in an aluminum pouch is being evaluated in a physician-initiated phase I study.

  20. Randomized, double-blind, placebo-controlled, safety and immunogenicity study of 4 formulations of Anthrax Vaccine Adsorbed plus CPG 7909 (AV7909) in healthy adult volunteers.

    PubMed

    Hopkins, Robert J; Daczkowski, Nancy F; Kaptur, Paulina E; Muse, Derek; Sheldon, Eric; LaForce, Craig; Sari, Suha; Rudge, Thomas L; Bernton, Edward

    2013-06-26

    A new anthrax vaccine that could accelerate the immune response and possibly reduce the number of injections needed for protection would be desirable in a post-exposure setting. This Phase 1 study compared the safety and immunogenicity of 2 IM doses (Days 0 and 14) of 4 formulations of AV7909 (AVA plus CPG 7909) with 2 IM doses of BioThrax(®) (Anthrax Vaccine Adsorbed) and 2 IM doses of saline placebo administered on Days 0 and 14. A total of 105 healthy adults 18-50 years of age were randomized to 1 of 6 study groups: BioThrax (0.5 mL), AV7909 Formulation 1 (0.5 mL AVA+0.5mg CPG 7909), AV7909 Formulation 2 (0.5 mL AVA+0.25mg CPG 7909), AV7909 Formulation 3 (0.25 mL AVA+0.5mg CPG 7909), AV7909 Formulation 4 (0.25 mL AVA+0.25mg CPG 7909), or saline placebo (0.5 mL). All randomized subjects received at least 1 vaccination, and 100 subjects completed the trial. After 2 doses, mean peak normalized toxin neutralizing antibody responses (TNA NF50) in the AV7909 groups were higher than in the BioThrax group. Differences among the 4 AV7909 groups were not statistically significant. Subjects who received AV7909 reached peak titers on Day 28 vs. Day 35 in the BioThrax group. The most common adverse events (AEs) in the BioThrax and AV7909 groups assessed as related to vaccination were injection site reactions. Transient lymphopenia was observed after the first dose in each AV7909 group. Frequencies of injection site and systemic reactions recorded by subjects in diaries for 7 days after each injection were highest with AV7909 Formulation 1. No AEs of special interest (autoimmune events) were observed in the study. Further studies of doses and dosing regimens are planned to assess the immunogenicity and reactogenicity of AV7909. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Thermostability of the coating, antigen and immunostimulator in an adjuvanted oral capsule vaccine formulation.

    PubMed

    Longet, Stephanie; Aversa, Vincenzo; O'Donnell, Daire; Tobias, Joshua; Rosa, Monica; Holmgren, Jan; Coulter, Ivan S; Lavelle, Ed C

    2017-12-20

    Oral vaccines present an attractive alternative to injectable vaccines for enteric diseases due to ease of delivery and the induction of intestinal immunity at the site of infection. However, susceptibility to gastrointestinal proteolysis, limited transepithelial uptake and a lack of clinically acceptable adjuvants present significant challenges. A further challenge to mass vaccination in developing countries is the very expensive requirement to maintain the cold chain. We recently described the effectiveness of a Single Multiple Pill ® (SmPill ® ) adjuvanted capsule approach to enhance the effectiveness of a candidate enterotoxigenic Escherichia coli (ETEC) oral vaccine. Here it was demonstrated that this delivery system maintains the antigenicity of ETEC colonisation factor antigen I (CFA/I) and the immunostimulatory activity of the orally active α-Galactosylceramide (α-GalCer) adjuvant after storage of SmPill ® minispheres under room temperature and extreme storage conditions for several months. In addition, the internal structure of the cores of SmPill ® minispheres and antigen release features at intestinal pH were found to be preserved under all these conditions. However, changes in the surface morphology of SmPill ® minispheres leading to the antigen release at gastric pH were observed after a few weeks of storage under extreme conditions. Those modifications were prevented by the introduction of an Opadry ® White film coating layer between the core of SmPill ® minispheres and the enteric coating. Under these conditions, protection against antigen release at gastric pH was maintained even under high temperature and humidity conditions. These results support the potential of the SmPill ® minisphere approach to maintain the stability of an adjuvanted whole cell killed oral vaccine formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.

    PubMed

    Fabio, Karine; Curley, Kieran; Guarneri, Joseph; Adamo, Benoit; Laurenzi, Brendan; Grant, Marshall; Offord, Robin; Kraft, Kelly; Leone-Bay, Andrea

    2015-12-01

    In this work, heat stable dry powders of oxytocin (OT) suitable for delivery by oral inhalation were prepared. The OT dry powders were prepared by spray drying using excipients chosen to promote OT stability including trehalose, isoleucine, polyvinylpyrrolidone, citrate (sodium citrate and citric acid), and zinc salts (zinc chloride and zinc citrate). Characterization by laser diffraction indicated that the OT dry powders had a median particle size of 2 μm, making them suitable for delivery by inhalation. Aerodynamic performance upon discharge from proprietary dry powder inhalers was evaluated by Andersen cascade impaction (ACI) and in an anatomically correct airway (ACA) model, and confirmed that the powders had excellent aerodynamic performance, with respirable fractions up to 77% (ACI, 30 L/min). Physicochemical characterization demonstrated that the powders were amorphous (X-ray diffraction) with high glass transition temperature (modulated differential scanning calorimetry, MDSC), suggesting the potential for stabilization of the OT in a glassy amorphous matrix. OT assay and impurity profile were conducted by reverse phase HPLC and liquid chromatography-mass spectrometry (LC-MS) after storage up to 32 weeks at 40°C/75%RH. Analysis demonstrated that OT dry powders containing a mixture of citrate and zinc salts retained more than 90% of initial assay after 32 weeks storage and showed significant reduction in dimers and trisulfide formation (up to threefold reduction compared to control).

  3. [Influenza vaccination. Effectiveness of current vaccines and future challenges].

    PubMed

    Ortiz de Lejarazu, Raúl; Tamames, Sonia

    2015-01-01

    Seasonal influenza is an annual challenge for health-care systems, due to factors such as co-circulation of 2 influenza A subtypes jointly with 2 influenza B lineages; the antigenic drift of these virus, which eludes natural immunity, as well as immunity conferred by vaccination; together with influenza impact in terms of morbidity and mortality. Influenza vaccines have been available for more than 70 years and they have progressed in formulation, production and delivery route. Recommendations on vaccination are focused on those with a higher probability of severe disease, and have a progressively wider coverage, and classically based on inactivated vaccines, but with an increasing importance of attenuated live vaccines. More inactivated vaccines are becoming available, from adyuvanted and virosomal vaccines to intradermal delivery, cell-culture or quadrivalent. Overall vaccine effectiveness is about 65%, but varies depending on characteristics of vaccines, virus, population and the outcomes to be prevented, and ranges from less than 10% to almost 90%. Future challenges are formulations that confer more extensive and lasting protection, as well as increased vaccination coverage, especially in groups such as pregnant women and health-care professionals, as well as being extended to paediatrics. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  4. Assessment of different formulations of oral Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis.

    PubMed

    Clark, Simon; Cross, Martin L; Smith, Alan; Court, Pinar; Vipond, Julia; Nadian, Allan; Hewinson, R Glyn; Batchelor, Hannah K; Perrie, Yvonne; Williams, Ann; Aldwell, Frank E; Chambers, Mark A

    2008-10-29

    Bovine tuberculosis (bTB) caused by infection with Mycobacterium bovis is causing considerable economic loss to farmers and Government in the United Kingdom as its incidence is increasing. Efforts to control bTB in the UK are hampered by the infection in Eurasian badgers (Meles meles) that represent a wildlife reservoir and source of recurrent M. bovis exposure to cattle. Vaccination of badgers with the human TB vaccine, M. bovis Bacille Calmette-Guérin (BCG), in oral bait represents a possible disease control tool and holds the best prospect for reaching badger populations over a wide geographical area. Using mouse and guinea pig models, we evaluated the immunogenicity and protective efficacy, respectively, of candidate badger oral vaccines based on formulation of BCG in lipid matrix, alginate beads, or a novel microcapsular hybrid of both lipid and alginate. Two different oral doses of BCG were evaluated in each formulation for their protective efficacy in guinea pigs, while a single dose was evaluated in mice. In mice, significant immune responses (based on lymphocyte proliferation and expression of IFN-gamma) were only seen with the lipid matrix and the lipid in alginate microcapsular formulation, corresponding to the isolation of viable BCG from alimentary tract lymph nodes. In guinea pigs, only BCG formulated in lipid matrix conferred protection to the spleen and lungs following aerosol route challenge with M. bovis. Protection was seen with delivery doses in the range 10(6)-10(7) CFU, although this was more consistent in the spleen at the higher dose. No protection in terms of organ CFU was seen with BCG administered in alginate beads or in lipid in alginate microcapsules, although 10(7) in the latter formulation conferred protection in terms of increasing body weight after challenge and a smaller lung to body weight ratio at necropsy. These results highlight the potential for lipid, rather than alginate, -based vaccine formulations as suitable delivery

  5. Dry powder inhaler formulation of lipid-polymer hybrid nanoparticles via electrostatically-driven nanoparticle assembly onto microscale carrier particles.

    PubMed

    Yang, Yue; Cheow, Wean Sin; Hadinoto, Kunn

    2012-09-15

    Lipid-polymer hybrid nanoparticles have emerged as promising nanoscale carriers of therapeutics as they combine the attractive characteristics of liposomes and polymers. Herein we develop dry powder inhaler (DPI) formulation of hybrid nanoparticles composed of poly(lactic-co-glycolic acid) and soybean lecithin as the polymer and lipid constituents, respectively. The hybrid nanoparticles are transformed into inhalable microscale nanocomposite structures by a novel technique based on electrostatically-driven adsorption of nanoparticles onto polysaccharide carrier particles, which eliminates the drawbacks of conventional techniques based on controlled drying (e.g. nanoparticle-specific formulation, low yield). First, we engineer polysaccharide carrier particles made up of chitosan cross-linked with tripolyphosphate and dextran sulphate to exhibit the desired aerosolization characteristics and physical robustness. Second, we investigate the effects of nanoparticle to carrier mass ratio and salt inclusion on the adsorption efficiency, in terms of the nanoparticle loading and yield, from which the optimal formulation is determined. Desorption of the nanoparticles from the carrier particles in phosphate buffer saline is also examined. Lastly, we characterize aerosolization efficiency of the nanocomposite product in vitro, where the emitted dose and respirable fraction are found to be comparable to the values of conventional DPI formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Engineered sodium hyaluronate respirable dry powders for pulmonary drug delivery.

    PubMed

    Martinelli, Francesco; Balducci, Anna Giulia; Kumar, Abhinav; Sonvico, Fabio; Forbes, Ben; Bettini, Ruggero; Buttini, Francesca

    2017-01-30

    Sodium hyaluronate (HYA) warrants attention as a material for inhalation due to its (i) therapeutic potential, (ii) utility as a formulation excipient or drug carrier, and (iii) ability to target lung inflammation and cancer. This study aimed to overcome formulation and manufacturing impediments to engineer biocompatible spray-dried HYA powders for inhalation. Novel methodology was developed to produce HYA microparticles by spray drying. Different types of surfactant were included in the formulation to improve powder respirability, which was evaluated in vitro using cascade impactors. The individual formulation components and formulated products were evaluated for their biocompatibility with A549 respiratory epithelial cells. The inclusion of stearyl surfactants, 5% w/v, produced the most respirable HYA-powders; FPF 59.0-66.3%. A trend to marginally higher respirability was observed for powders containing stearylamine>stearyl alcohol>cetostearyl alcohol. Pure HYA was biocompatible with A549 cells at all concentrations measured, but the biocompatibility of the stearyl surfactants (based on lethal concentration 50%; LC 50 ) in the MTT assay ranked stearyl alcohol>cetostearyl alcohol>stearylamine with LC 50 of 24.7, 13.2 and 1.8μg/mL, respectively. We report the first respirable HYA powders produced by spray-drying. A lead formulation containing 5% stearyl alcohol was identified for further studies aimed at translating the proposed benefits of inhaled HYA into safe and clinically effective HYA products. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  7. An Inhalable Powder Formulation Based on Micro- and Nanoparticles Containing 5-Fluorouracil for the Treatment of Metastatic Melanoma

    PubMed Central

    Reolon, Luciano Antonio; Amaral-Machado, Lucas; Gremião, Maria Palmira Daflon; Guterres, Silvia S.

    2018-01-01

    Melanoma is the most aggressive and lethal type of skin cancer, with a poor prognosis because of the potential for metastatic spread. The aim was to develop innovative powder formulations for the treatment of metastatic melanoma based on micro- and nanocarriers containing 5-fluorouracil (5FU) for pulmonary administration, aiming at local and systemic action. Therefore, two innovative inhalable powder formulations were produced by spray-drying using chondroitin sulfate as a structuring polymer: (a) 5FU nanoparticles obtained by piezoelectric atomization (5FU-NS) and (b) 5FU microparticles of the mucoadhesive agent Methocel™ F4M for sustained release produced by conventional spray drying (5FU-MS). The physicochemical and aerodynamic were evaluated in vitro for both systems, proving to be attractive for pulmonary delivery. The theoretical aerodynamic diameters obtained were 0.322 ± 0.07 µm (5FU-NS) and 1.138 ± 0.54 µm (5FU-MS). The fraction of respirable particles (FR%) were 76.84 ± 0.07% (5FU-NS) and 55.01 ± 2.91% (5FU-MS). The in vitro mucoadhesive properties exhibited significant adhesion efficiency in the presence of Methocel™ F4M. 5FU-MS and 5FU-NS were tested for their cytotoxic action on melanoma cancer cells (A2058 and A375) and both showed a cytotoxic effect similar to 5FU pure at concentrations of 4.3 and 1.7-fold lower, respectively. PMID:29385692

  8. First results of the application of a new Neemazal powder formulation in hydroponics against different pest insects.

    PubMed

    Hummel, Edmund; Kleeberg, Hubertus

    2002-01-01

    NeemAzal PC (0.5% Azadirachtin) is a new standardised powder formulation from the seed kernels of the tropical Neem tree (Azadirachta indica A. Juss) with an inert carrier. First experiments with beans--as a model-system for hydroponics--show that active ingredient is taken up by the plants through the roots and is transported efficiently with the plant sap to the leaves. After application of NeemAzal PC solution (0.01-1%) to the roots sucking (Aphis fabae Hom., Aphididae) and free feeding (Heliothis armigera Lep., Noctuidae) pest insects can be controlled efficiently. The effects are concentration and time dependent.

  9. Safety and Immunogenicity of 3 Formulations of an Investigational Respiratory Syncytial Virus Vaccine in Nonpregnant Women: Results From 2 Phase 2 Trials

    PubMed Central

    Beran, Jiři; Lickliter, Jason D; Schwarz, Tino F; Johnson, Casey; Chu, Laurence; Domachowske, Joseph B; Van Damme, Pierre; Withanage, Kanchanamala; Fissette, Laurence A; David, Marie-Pierre; Maleux, Koen; Schmidt, Alexander C; Picciolato, Marta; Dieussaert, Ilse

    2018-01-01

    Abstract Background Respiratory syncytial virus (RSV) causes bronchiolitis and pneumonia in neonates and infants. RSV vaccination during pregnancy could boost preexisting neutralizing antibody titers, providing passive protection to newborns. Methods Two observer-blinded, controlled studies (RSV F-020 [clinical trials registration NCT02360475] and RSV F-024 [NCT02753413]) evaluated immunogenicity and safety of an investigational RSV vaccine in healthy, nonpregnant 18–45-year-old women. Both studies used a licensed adult formulation of combined tetanus toxoid-diphtheria toxoid-acellular pertussis (Tdap) vaccine as a control. RSV F-020 evaluated immunogenicity and safety: participants were randomized (1:1:1:1) to receive 1 dose of RSV–prefusion F protein (PreF) vaccine containing 30 µg or 60 µg of nonadjuvanted RSV-PreF, 60 µg of aluminum-adjuvanted RSV-PreF, or Tdap. RSV F-024 evaluated safety: participants were randomized 1:1 to receive 1 dose of 60 µg of nonadjuvanted RSV-PreF or Tdap. Results Both studies showed similar reactogenicity profiles for RSV-PreF and Tdap. No serious adverse events were considered vaccine related. In RSV F-020, geometric mean ratios of RSV-A neutralizing antibody levels at day 30 versus prevaccination were 3.1–3.9 in RSV-PreF recipients and 0.9 in controls. Palivizumab-competing antibody concentrations increased >14-fold in RSV-PreF recipients on day 30. RSV antibody titers waned after day 30 but remained well above baseline through day 90. Conclusions All formulations of RSV-PreF boosted preexisting immune responses in 18–45-year old women with comparable immunogenicity. The RSV-PreF safety profile was similar to that of Tdap vaccine. PMID:29401325

  10. Evaluation of Granulated Lactose as a Carrier for Dry Powder Inhaler Formulations 2: Effect of Drugs and Drug Loading.

    PubMed

    Du, Ping; Du, Ju; Smyth, Hugh D C

    2017-01-01

    Previously, granulated lactose carriers were shown to improve uniformity and aerosolization of a low-dose model drug. In the present study, the blending uniformity and aerosol dispersion performance were assessed for 2 model drugs salbutamol sulfate (SS) and rifampicin (RIF), blended at high loadings (10% or 30% drug) with granulated lactose carriers. The model drug powders differed in particle size distribution, morphology, density, and surface energies. Content uniformity of RIF blends was better than that of SS. Aerosolization studies showed that all blend formulations had acceptable emitted fractions (>70%). The SS blends showed low induction-port deposition (6%-10%) compared to RIF (5%-30%). This difference was greater at high flow rates. At 90 L/min, the low induction port deposition of SS blends allowed high fine particle fraction (FPF) of 73%-81%, whereas the FPF of the RIF blends was around 43%-45% with higher induction port deposition. However, SS blends exhibited strong flow rate-dependent performance. Increasing the flow rate from 30 L/min to 90 L/min increased SS FPF from approximately 20% to 80%. Conversely, RIF blends were flow rate and drug loading independent. It was concluded that the aerosolization of high drug-loaded dry powder inhaler formulations using granulated lactose, particularly flow rate dependency, varies with active pharmaceutical ingredient properties. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Validated modified Lycopodium spore method development for standardisation of ingredients of an ayurvedic powdered formulation Shatavaryadi churna.

    PubMed

    Kumar, Puspendra; Jha, Shivesh; Naved, Tanveer

    2013-01-01

    Validated modified lycopodium spore method has been developed for simple and rapid quantification of herbal powdered drugs. Lycopodium spore method was performed on ingredients of Shatavaryadi churna, an ayurvedic formulation used as immunomodulator, galactagogue, aphrodisiac and rejuvenator. Estimation of diagnostic characters of each ingredient of Shatavaryadi churna individually was carried out. Microscopic determination, counting of identifying number, measurement of area, length and breadth of identifying characters were performed using Leica DMLS-2 microscope. The method was validated for intraday precision, linearity, specificity, repeatability, accuracy and system suitability, respectively. The method is simple, precise, sensitive, and accurate, and can be used for routine standardisation of raw materials of herbal drugs. This method gives the ratio of individual ingredients in the powdered drug so that any adulteration of genuine drug with its adulterant can be found out. The method shows very good linearity value between 0.988-0.999 for number of identifying character and area of identifying character. Percentage purity of the sample drug can be determined by using the linear equation of standard genuine drug.

  12. Predicting the quality of powders for inhalation from surface energy and area.

    PubMed

    Cline, David; Dalby, Richard

    2002-09-01

    To correlate the surface energy of active and carrier components in an aerosol powder to in vitro performance of a passive dry powder inhaler. Inverse gas chromatography (IGC) was used to assess the surface energy of active (albuterol and ipratropium bromide) and carrier (lactose monohydrate, trehalose dihydrate and mannitol) components of a dry powder inhaler formulation. Blends (1%w/w) of drug and carrier were prepared and evaluated for dry powder inhaler performance by cascade impaction. The formulations were tested with either of two passive dry powder inhalers, Rotahaler (GlaxoSmithKline) or Handihaler (Boehringer Ingelheim). In vitro performance of the powder blends was strongly correlated to surface energy interaction between active and carrier components. Plotting fine particle fraction vs. surface energy interaction yielded an R2 value of 0.9283. Increasing surface energy interaction between drug and carrier resulted in greater fine particle fraction of drug. A convincing relationship, potentially useful for rapid formulation design and screening, was found between the surface energy and area parameters derived from IGC and dry powder inhaler performance.

  13. A Phase 1 Trial of MSP2-C1, a Blood-Stage Malaria Vaccine Containing 2 Isoforms of MSP2 Formulated with Montanide® ISA 720

    PubMed Central

    McCarthy, James S.; Marjason, Joanne; Elliott, Suzanne; Fahey, Paul; Bang, Gilles; Malkin, Elissa; Tierney, Eveline; Aked-Hurditch, Hayley; Adda, Christopher; Cross, Nadia; Richards, Jack S.; Fowkes, Freya J. I.; Boyle, Michelle J.; Long, Carole; Druilhe, Pierre; Beeson, James G.; Anders, Robin F.

    2011-01-01

    Background In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion. Methodology/Principal Findings The trial was designed to include three dose cohorts (10, 40, and 80 µg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 µg dose; no subjects received the 80 µg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 µg and 40 µg dose cohorts, with antibody levels by ELISA higher in the 40 µg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth. Conclusions/Significance As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further

  14. Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59C.1.

    PubMed

    Ballou, W Ripley; Reed, Jennifer L; Noble, William; Young, Neal S; Koenig, Scott

    2003-02-15

    A recombinant human parvovirus B19 vaccine (MEDI-491; MedImmune) composed of the VP1 and VP2 capsid proteins and formulated with MF59C.1 adjuvant was evaluated in a randomized, double-blind, phase 1 trial. Parvovirus B19-seronegative adults (n=24) received either 2.5 or 25 microg MEDI-491 at 0, 1, and 6 months. MEDI-491 was safe and immunogenic. All volunteers developed neutralizing antibody titers that peaked after the third immunization and were sustained through study day 364.

  15. Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles

    PubMed Central

    Choi, Hyo-Jick; Bondy, Brian J.; Yoo, Dae-Goon; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating. Vaccine coating in a trehalose-only formulation retained about 40 – 50% of vaccine activity, which is a significant improvement. The partial viral activity loss observed in the trehalose-only formulation was hypothesized to come from osmotic pressure-induced vaccine destabilization. We found that inclusion of a viscosity enhancer, carboxymethyl cellulose, overcame this effect and retained full vaccine activity on both washed and plasma-cleaned titanium surfaces. The addition of polymeric surfactant, Lutrol® micro 68, to the trehalose formulation generated phase transformations of the vaccine coating, such as crystallization and phase separation, which was correlated to additional vaccine activity loss, especially when coating on hydrophilic, plasma-cleaned titanium. Again, the addition of a viscosity enhancer suppressed the surfactant-induced phase transformations during drying, which was confirmed by in vivo assessment of antibody response and survival rate after immunization in mice. We conclude that trehalose and a viscosity enhancer are beneficial coating excipients, but the inclusion of surfactant is detrimental to vaccine stability. PMID:23246470

  16. Expansion of seasonal influenza vaccination in the Americas

    PubMed Central

    Ropero-Álvarez, Alba María; Kurtis, Hannah J; Danovaro-Holliday, M Carolina; Ruiz-Matus, Cuauhtémoc; Andrus, Jon K

    2009-01-01

    Background Seasonal influenza is a viral disease whose annual epidemics are estimated to cause three to five million cases of severe illness and 250,000 to 500,000 deaths worldwide. Vaccination is the main strategy for primary prevention. Methods To assess the status of influenza vaccination in the Americas, influenza vaccination data reported to the Pan American Health Organization (PAHO) through 2008 were analyzed. Results Thirty-five countries and territories administered influenza vaccine in their public health sector, compared to 13 countries in 2004. Targeted risk groups varied. Sixteen countries reported coverage among older adults, ranging from 21% to 100%; coverage data were not available for most countries and targeted populations. Some tropical countries used the Northern Hemisphere vaccine formulation and others used the Southern Hemisphere vaccine formulation. In 2008, approximately 166.3 million doses of seasonal influenza vaccine were purchased in the Americas; 30 of 35 countries procured their vaccine through PAHO's Revolving Fund. Conclusion Since 2004 there has been rapid uptake of seasonal influenza vaccine in the Americas. Challenges to fully implement influenza vaccination remain, including difficulties measuring coverage rates, variable vaccine uptake, and limited surveillance and effectiveness data to guide decisions regarding vaccine formulation and timing, especially in tropical countries. PMID:19778430

  17. Sensory analysis of cosmetic powders: personal care ingredients and emulsions.

    PubMed

    Moussour, M; Lavarde, M; Pensé-Lhéritier, A-M; Bouton, F

    2017-02-01

    The powders are ingredients increasingly used in the formulation of cosmetic products for the sensory qualities they give. The objective of this study was the development of a lexicon and a referential for sensory characterization of these pure raw materials as well as formulations which contain them. Eleven expert panellists from Ecole de biologie industrielle de Cergy (France) developed a lexicon and a referential based on 12 powders of different chemical natures. The selected attributes were then used for performing a quantitative descriptive profile of two powders and an emulsion containing or not one of these two powders. A lexicon has been established through a consensus approach of the panel. It contains seven attributes that allow the evaluation of the powders in four phases: the appearance, the pickup, the application and the after-feel. This lexicon contains definitions and assessment protocols and provides references products. The quantitative descriptive profile of two powders of the same chemical nature, but different in physical quality showed significant differences in sensory level between products. These same attributes used to evaluate an emulsion containing the powder or not allowed to prove the contribution of these raw materials on the sensory specificities of the emulsion. The lexicon developed in this study can be used for assessment of other powders but also to define the quantities necessary to put in the formulation to meet the sensory characteristics of these raw materials powder. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Protective Effect of Contemporary Pertussis Vaccines: A Systematic Review and Meta-analysis.

    PubMed

    Fulton, T Roice; Phadke, Varun K; Orenstein, Walter A; Hinman, Alan R; Johnson, Wayne D; Omer, Saad B

    2016-05-01

    Acellular pertussis (aP) and whole-cell (wP) pertussis vaccines are presumed to have similar short-term (<3 years after completion of the primary series) efficacy. However, vaccine effect varies between individual pertussis vaccine formulations, and many originally studied formulations are now unavailable. An updated analysis of the short-term protective effect of pertussis vaccines limited to formulations currently on the market in developed countries is needed. We conducted a systematic review and meta-analysis of published studies that evaluated pertussis vaccine efficacy or effectiveness within 3 years after completion (>3 doses) of a primary series of a currently available aP or wP vaccine formulation. The primary outcome was based on the World Health Organization (WHO) clinical case definitions for pertussis. Study quality was assessed using the approach developed by the Child Health Epidemiology Research Group. We determined overall effect sizes using random-effects meta-analyses, stratified by vaccine (aP or wP) and study (efficacy or effectiveness) type. Meta-analysis of 2 aP vaccine efficacy studies (assessing the 3-component GlaxoSmithKline and 5-component Sanofi-Pasteur formulations) yielded an overall aP vaccine efficacy of 84% (95% confidence interval [CI], 81%-87%). Meta-analysis of 3 wP vaccine effectiveness studies (assessing the Behringwerke, Pasteur/Mérieux, and SmithKline Beecham formulations) yielded an overall wP vaccine effectiveness of 94% (95% CI, 88%-97%) (bothI(2)= 0%). Although all contemporary aP and wP formulations protect against pertussis disease, in this meta-analysis the point estimate for short-term protective effect against WHO-defined pertussis in young children was lower for currently available aP vaccines than wP vaccines. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  19. Influenza vaccine strategies for solid organ transplant recipients.

    PubMed

    Hirzel, Cédric; Kumar, Deepali

    2018-05-15

    The aim of this study was to highlight recent evidence on important aspects of influenza vaccination in solid organ transplant recipients. Influenza vaccine is the most evaluated vaccine in transplant recipients. The immunogenicity of the vaccine is suboptimal after transplantation. Newer formulations such as inactivated unadjuvanted high-dose influenza vaccine and the administration of a booster dose within the same season have shown to increase response rates. Intradermal vaccination and adjuvanted vaccines did not show clear benefit over standard influenza vaccines. Recent studies in transplant recipients do not suggest a higher risk for allograft rejection, neither after vaccination with a standard influenza vaccine nor after the administration of nonstandard formulation (high-dose, adjuvanted vaccines), routes (intradermally) or a booster dose. Nevertheless, influenza vaccine coverage in transplant recipients is still unsatisfactory low, potentially due to misinterpretation of risks and benefits. Annual influenza vaccination is well tolerated and is an important part of long-term care of solid organ transplant recipients.

  20. Stabilization of a Recombinant Ricin Toxin A Subunit Vaccine through Lyophilization

    PubMed Central

    Hassett, Kimberly J.; Cousins, Megan C.; Rabia, Lilia A.; Chadwick, Chrystal M.; O’Hara, Joanne M.; Nandi, Pradyot; Brey, Robert N.; Mantis, Nicholas J.; Carpenter, John F.; Randolph, Theodore W.

    2013-01-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40°C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNA) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40°C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40°C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. PMID:23583494

  1. Optimization of Bread Enriched with Garcinia mangostana Pericarp Powder

    NASA Astrophysics Data System (ADS)

    Ibrahim, U. K.; Salleh, R. Mohd; Maqsood-ul-Hague, S. N. S.; Hashib, S. Abd; Karim, S. F. Abd

    2018-05-01

    The aim of present work is to optimize the formulation of bread enhanced with Garcinia mangostana pericarp powder with the combination of baking process conditions. The independent variables used were baking time (15 - 30 minutes), baking temperature (180 - 220°C) and pericarp powder concentration (0.5 - 2.0%). The physical and chemical properties of bread sample such as antioxidant activity, phenolic content, moisture analysis and colour parameters were studied. Bread dough without fortification of pericarp powder was used as control. Data obtained were analyzed by multiple regressions and the significant model such as linear and quadratic with variables interactions were used. As a conclusion, the optimum baking conditions were found at 213°C baking temperature with 23 minutes baking time and addition of 0.87% for Garcinia mangostana pericarp powder to the bread formulation.

  2. Effect of Vaccine Administration Modality on Immunogenicity and Efficacy

    PubMed Central

    Zhang, Lu; Wang, Wei; Wang, Shixia

    2016-01-01

    Summary The many factors impacting the efficacy of a vaccine can be broadly divided into three categories: (1) features of the vaccine itself, including immunogen design, vaccine type, formulation, adjuvant, and dosing; (2) individual variations among vaccine recipients; and (3) vaccine administration-related parameters. While much literature exists related to vaccines, and recently systems biology has started to dissect the impact of individual subject variation on vaccine efficacy, few studies have focused on the role of vaccine administration-related parameters on vaccine efficacy. Parenteral and mucosal vaccinations are traditional approaches for licensed vaccines; novel vaccine delivery approaches, including needless injection and adjuvant formulations, are being developed to further improve vaccine safety and efficacy. This review provides a brief summary of vaccine administration-related factors, including vaccination approach, delivery route, and method of administration, to gain a better understanding of their potential impact on the safety and immunogenicity of candidate vaccines. PMID:26313239

  3. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations.

    PubMed

    Maruyama, Sandra R; Garcia, Gustavo R; Teixeira, Felipe R; Brandão, Lucinda G; Anderson, Jennifer M; Ribeiro, José M C; Valenzuela, Jesus G; Horackova, Jana; Veríssimo, Cecília J; Katiki, Luciana M; Banin, Tamy M; Zangirolamo, Amanda F; Gardinassi, Luiz G; Ferreira, Beatriz R; de Miranda-Santos, Isabel K F

    2017-04-26

    Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.

  4. Phase II and III Clinical Studies of Diphtheria-Tetanus-Acellular Pertussis Vaccine Containing Inactivated Polio Vaccine Derived from Sabin Strains (DTaP-sIPV).

    PubMed

    Okada, Kenji; Miyazaki, Chiaki; Kino, Yoichiro; Ozaki, Takao; Hirose, Mizuo; Ueda, Kohji

    2013-07-15

    Phase II and III clinical studies were conducted to evaluate immunogenicity and safety of a novel DTaP-IPV vaccine consisting of Sabin inactivated poliovirus vaccine (sIPV) and diphtheria-tetanus-acellular pertussis vaccine (DTaP). A Phase II study was conducted in 104 healthy infants using Formulation H of the DTaP-sIPV vaccine containing high-dose sIPV (3, 100, and 100 D-antigen units for types 1, 2, and 3, respectively), and Formulations M and L, containing half and one-fourth of the sIPV in Formulation H, respectively. Each formulation was administered 3 times for primary immunization and once for booster immunization. A Phase III study was conducted in 342 healthy infants who received either Formulation M + oral polio vaccine (OPV) placebo or DTaP + OPV. The OPV or OPV placebo was orally administered twice between primary and booster immunizations. Formulation M was selected as the optimum dose. In the Phase III study, the seropositive rate was 100% for all Sabin strains after primary immunization, and the neutralizing antibody titer after booster immunization was higher than in the control group (DTaP + OPV). All adverse reactions were clinically acceptable. DTaP-sIPV was shown to be a safe and immunogenic vaccine. JapicCTI-121902 for Phase II study, JapicCTI-101075 for Phase III study (http://www.clinicaltrials.jp/user/cte_main.jsp).

  5. Technical Transformation of Biodefense Vaccines

    PubMed Central

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  6. Evaluation of hydrophobic chitosan-based particulate formulations of porcine reproductive and respiratory syndrome virus vaccine candidate T cell antigens.

    PubMed

    Mokhtar, Helen; Biffar, Lucia; Somavarapu, Satyanarayana; Frossard, Jean-Pierre; McGowan, Sarah; Pedrera, Miriam; Strong, Rebecca; Edwards, Jane C; Garcia-Durán, Margarita; Rodriguez, Maria Jose; Stewart, Graham R; Steinbach, Falko; Graham, Simon P

    2017-09-01

    PRRS control is hampered by the inadequacies of existing vaccines to combat the extreme diversity of circulating viruses. Since immune clearance of PRRSV infection may not be dependent on the development of neutralising antibodies and the identification of broadly-neutralising antibody epitopes have proven elusive, we hypothesised that conserved T cell antigens represent potential candidates for development of a novel PRRS vaccine. Previously we had identified the M and NSP5 proteins as well-conserved targets of polyfunctional CD8 and CD4 T cells. To assess their vaccine potential, peptides representing M and NSP5 were encapsulated in hydrophobically-modified chitosan particles adjuvanted by incorporation of a synthetic multi-TLR2/TLR7 agonist and coated with a model B cell PRRSV antigen. For comparison, empty particles and adjuvanted particles encapsulating inactivated PRRSV-1 were prepared. Vaccination with the particulate formulations induced antigen-specific antibody responses, which were most pronounced following booster immunisation. M and NSP5-specific CD4, but not CD8, T cell IFN-γ reactivity was measurable following the booster immunisation in a proportion of animals vaccinated with peptide-loaded particles. Upon challenge, CD4 and CD8 T cell reactivity was detected in all groups, with the greatest responses being detected in the peptide vaccinated group but with limited evidence of an enhanced control of viraemia. Analysis of the lungs during the resolution of infection showed significant M/NSP5 specific IFN-γ responses from CD8 rather than CD4 T cells. Vaccine primed CD8 T cell responses may therefore be required for protection and future work should focus on enhancing the cross-presentation of M/NSP5 to CD8 T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Formulation and Immunogenicity studies of Type III Secretion System needle antigens as Vaccine Candidates

    PubMed Central

    Barrett, Brooke S.; Markham, Aaron P.; Esfandiary, Reza; Picking, Wendy L.; Picking, William D.; Joshi, Sangeeta B.; Middaugh, C. Russell

    2013-01-01

    Bacterial infections caused by Shigella flexneri, Salmonella typhimurium and Burkholderia pseudomallei are currently difficult to prevent due to the lack of a licensed vaccine. Here we present formulation and immunogenicity studies for the three type III secretion system (TTSS) needle proteins MxiHΔ5, PrgIΔ5 and BsaLΔ5 (each truncated by five residues at its C terminus) as potential candidates for vaccine development. These antigens are found to be thermally stabilized by the presence of carbohydrates and polyols. Additionally, all adsorb readily to aluminum hydroxide apparently through a combination of hydrogen bonds and/or Van der Waals forces. The interaction of these proteins with the aluminum-based adjuvant changes with time to resulting in varying degrees of irreversible binding. Peptide maps of desorbed protein, however, suggest that chemical changes are not responsible for this irreversible association. The ability of MxiHΔ5 and PrgIΔ5 to elicit strong humoral immune responses was tested in a murine model. When administered intramuscularly as monomers, the needle components exhibited dose dependent immunogenic behavior. The polymerized version of MxiH was exceptionally immunogenic even at low doses. The responses of both monomeric and polymerized forms were boosted by adsorption to an aluminum salt adjuvant. PMID:20845448

  8. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump.

    PubMed

    Djupesland, Per Gisle; Skretting, Arne

    2012-10-01

    Delivery of powder formulations to the nose is an attractive alternative for many drugs and vaccines. This study compared the regional nasal deposition and clearance patterns of lactose powder delivered by the OptiNose powder device (Opt-Powder; OptiNose US Inc., Yardley, PA, USA) to that of liquid aerosol administered via a traditional hand-actuated liquid spray pump (Rexam SP270, Rexam Pharma, France). The study was an open-label, crossover design in seven healthy subjects (five females, two males). The regional nasal deposition and clearance patterns of the Opt-Powder device were compared to a traditional liquid spray pump by dynamic gamma camera imaging after administration of either (99m)Tc-labeled lactose powder or liquid (99m)Tc- diethelyne triamine pentaacetic acid-aerosol. The gamma camera images were scaled and aligned with sagittal magnetic resonance images to identify nasal regions. Possible deposition of radiolabeled material in the lungs following both methods of delivery was also evaluated. Both powder and spray were distributed to all of the nasal regions. The Opt-Powder device, however, achieved significantly larger initial deposition in the upper and middle posterior regions of the nose than spray (upper posterior region; Opt-Powder 18.3% ± 11.5 vs. Spray 2.4% ± 1.8, p<0.02; sum of upper and middle posterior regions; Opt-Powder 53.5% ± 18.5 vs. Spray 15.7% ± 13.8, p<0.02). The summed initial deposition to the lower anterior and posterior regions for spray was three times higher compared to Opt-Powder (Opt-Powder 17.4% ± 24.5 vs. Spray 59.4% ± 18.2, p<0.04). OptiNose powder delivery resulted in more rapid overall nasal clearance. No lung deposition was observed. The initial deposition following powder delivery was significantly larger in the ciliated mucosa of the upper and posterior nasal regions, whereas less was deposited in the lower regions. Overall nasal clearance of powder was slower initially, but due to retention in anterior

  9. Screening of primary gp120 immunogens to formulate the next generation polyvalent DNA prime-protein boost HIV-1 vaccines

    PubMed Central

    Wang, Shixia; Chou, Te-hui; Hackett, Anthony; Efros, Veronica; Wang, Yan; Han, Dong; Wallace, Aaron; Chen, Yuxin; Hu, Guangnan; Liu, Shuying; Clapham, Paul; Arthos, James; Montefiori, David; Lu, Shan

    2017-01-01

    ABSTRACT Our previous preclinical studies and a Phase I clinical trial DP6-001 have indicated that a polyvalent Env formulation was able to elicit broadly reactive antibody responses including low titer neutralizing antibody responses against viral isolates of subtypes A, B, C and AE. In the current report, a panel of 62 gp120 immunogens were screened in a rabbit model to identify gp120 immunogens that can elicit improved binding and neutralizing antibody responses and some of them can be included in the next polyvalent formulation. Only about 19% of gp120 immunogens in this panel were able to elicit neutralizing antibodies against greater than 50% of the viruses included in a high throughput PhenoSense neutralization assay when these immuongens were tested as a DNA prime followed by a fixed 5-valent gp120 protein vaccine boost. The new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation. More significantly, this new polyvalent formulation elicited higher antibody responses against a panel of gp70V1/V2 antigens expressing V1/V2 sequences from diverse subtypes. Bioinformatics analysis supports the design of a 4-valent or 5-valent formulation using gp120 immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes. PMID:28933684

  10. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.

    PubMed

    Hassett, Kimberly J; Cousins, Megan C; Rabia, Lilia A; Chadwick, Chrystal M; O'Hara, Joanne M; Nandi, Pradyot; Brey, Robert N; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2013-10-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Egg-Independent Influenza Vaccines and Vaccine Candidates

    PubMed Central

    Manini, Ilaria; Pozzi, Teresa; Rossi, Stefania; Montomoli, Emanuele

    2017-01-01

    Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines. PMID:28718786

  12. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation.

    PubMed

    Shetty, Nivedita; Park, Heejun; Zemlyanov, Dmitry; Mangal, Sharad; Bhujbal, Sonal; Zhou, Qi Tony

    2018-06-10

    The aim of this study is to investigate the influence of excipients on physical and aerosolization stability of spray dried Ciprofloxacin dry powder inhaler formulations. The model drug, Ciprofloxacin hydrochloride, was co-spray dried with excipients such as disaccharides (sucrose, lactose, trehalose), mannitol and l-leucine. The spray dried samples were stored at two different relative humidity (RH) conditions of: (1) 20% and (2) 55% RH at 20 °C. Ciprofloxacin co-spray dried with disaccharides and l-leucine in the mass ratio of 1:1 demonstrated an increase in fine particle fraction (FPF) as compared with the spray dried Ciprofloxacin alone when stored at 20% RH. However, deterioration in FPF of Ciprofloxacin co-spray dried with disaccharide and mannitol was observed upon storage at 55% RH as compared to the corresponding formulations stored at 20% RH due to particle agglomeration. Whereas, 10% and 50% w/w l-leucine in the formulation showed no change in aerosol performance (FPF of 71.1 ± 3.5% and 79.5 ± 3.1%, respectively) when stored at 55% RH for 10 days as compared to 20% RH (FPF of 68.1 ± 0.3% and 73.6 ± 7.1%, respectively). l-Leucine demonstrated aerosolization stability by alleviating crystallization of Ciprofloxacin to some extent and preventing significant change in particle morphology. l-Leucine is well-recognized as aerosolization enhancer; our study has shown l-leucine is also a physical and aerosolization stabilizer for spray dried Ciprofloxacin DPI formulations. Such stability enhancing activities were attributed to the enrichment of l-leucine on the particle surface as confirmed by XPS data, and intermolecular interactions between l-leucine and Ciprofloxacin as measured by FT-IR. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Formulation in DDA-MPLA-TDB Liposome Enhances the Immunogenicity and Protective Efficacy of a DNA Vaccine against Mycobacterium tuberculosis Infection

    PubMed Central

    Tian, Maopeng; Zhou, Zijie; Tan, Songwei; Fan, Xionglin; Li, Longmeng; Ullah, Nadeem

    2018-01-01

    Despite the vaccine Mycobacterium bovis Bacillus Calmette–Guérin is used worldwide, tuberculosis (TB) remains the first killer among infectious diseases. An effective vaccine is urgently required. DNA vaccine has shown prophylactic as well as therapeutic effects against TB, while its weak immunogenicity hinders the application. As a strong inducer of Th1-biased immune response, DMT, consisting of dimethyldioctadecylammonium (DDA) and two pattern recognition receptor agonists monophosphoryl lipid A and trehalose 6,6′-dibehenate (TDB), was a newly developed liposomal adjuvant. To elucidate the action mechanism of DMT and improve immunological effects induced by DNA vaccine, a new recombinant eukaryotic expression plasmid pCMFO that secretes the fusion of four multistage antigens (Rv2875, Rv3044, Rv2073c, and Rv0577) of Mycobacterium tuberculosis was constructed. pCMFO/DDA and pCMFO/DMT complexes were then prepared and their physicochemical properties were analyzed. The immunogenicity and protection against M. tuberculosis infection in vaccinated C57BL/6 mice were compared. Formulation of DNA and two agonists into the DDA liposome decreased zeta potential but increased the stability of storage, which resulted in a slower and longer-lasting release of DNA from the DNA–DMT complex than the DNA–DDA liposome. Besides Th1-biased responses, pCMFO/DMT vaccinated mice elicited more significantly CFMO-specific IL2+ TCM cell responses in the spleen and provided an enhanced and persistent protection against M. tuberculosis aerosol infection, compared to pCMFO/DDA and pCMFO groups. Therefore, the adjuvant DMT can release DNA and agonists slowly, which might attribute to the improved protection of DMT adjuvanted vaccines. pCMFO/DMT, a very promising TB vaccine, warrants for further preclinical and clinical trials. PMID:29535714

  14. Kit systems for granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2010-07-06

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field. The formulation can be pre-mixed and pre-packaged as a multi-part kit system, where one or more of the parts are packaged in a powdered, granulated form for ease of handling and mixing in the field.

  15. Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization.

    PubMed

    Allam, Ahmed N; Komeil, Ibrahim A; Abdallah, Ossama Y

    2015-09-01

    Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles.

  16. Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders.

    PubMed

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carter, Elizabeth A; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2017-04-15

    This study aimed to develop inhalable powders containing phages active against antibiotic-resistant Pseudomonas aeruginosa for pulmonary delivery. A Pseudomonas phage, PEV2, was spray dried into powder matrices comprising of trehalose (0-80%), mannitol (0-80%) and l-leucine (20%). The resulting powders were stored at various relative humidity (RH) conditions (0, 22 and 60% RH) at 4°C. The phage stability and in vitro aerosol performance of the phage powders were examined at the time of production and after 1, 3 and 12 months storage. After spray drying, a total of 1.3 log titer reduction in phage was observed in the formulations containing 40%, 60% and 80% trehalose, whereas 2.4 and 5.1 log reductions were noted in the formulations containing 20% and no trehalose, respectively. No further reduction in titer occurred for powders stored at 0 and 22% RH even after 12 months, except the formulation containing no trehalose. The 60% RH storage condition had a destructive effect such that no viable phages were detected after 3 and 12 months. When aerosolised, the total lung doses for formulations containing 40%, 60% and 80% trehalose were similar (in the order of 10 5 pfu). The results demonstrated that spray drying is a suitable method to produce stable phage powders for pulmonary delivery. A powder matrix containing ≥40% trehalose provided good phage preservation and aerosol performances after storage at 0 and 22% RH at 4°C for 12 months. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Formulation and Characterization of a Plasma Sterilized, Pharmaceutical Grade Chitosan Powder

    PubMed Central

    Crofton, Andrew R; Hudson, Samuel M; Howard, Kristy; Pender, Tyler; Abdelgawad, Abdelrahman; Wolski, Daniel; Kirsch, Wolff M

    2016-01-01

    Chitosan has great potential as a pharmaceutical excipient. In this study, chitosan flake was micronized using cryo-ball and cryo-jet milling and subsequently sterilized with nitrogen plasma. Micronized chitosan was characterized by laser diffraction, scanning electron microscopy (SEM), conductometric titration, viscometry, loss on drying, FTIR, and limulus amebocyte lysate (LAL) assays. Cryo-jet milling produced mean particle size of 16.05 μm, 44% smaller than cryo-ball milling. Cryomilled chitosan demonstrated increased hygroscopicity, but reduced molecular weight and degree of deacetylation (DD). SEM imaging showed highly irregular shapes. FTIR showed changes consistent with reduced DD and an unexplained shift at 1100 cm−1. Plasma treated chitosan was sterile with <2.5 EU/g after low-pressure plasma and <1.3 EU/g after atmospheric pressure plasma treatment. Plasma treatment decreased the reduced viscosity of chitosan flake and powder, with a greater effect on powder. In conclusion, pharmaceutical grade, sterile chitosan powder was produced with cryo-jet milling and plasma sterilization. PMID:27112892

  18. Physical characteristics and aerosolization performance of insulin dry powders for inhalation prepared by a spray drying method.

    PubMed

    You, Yu; Zhao, Min; Liu, Guangli; Tang, Xing

    2007-07-01

    The objective of this study was to investigate the influence of formulation excipients on the physical characteristics and aerosolization performance of insulin dry powders for inhalation. Insulin dry powders were prepared by a spray drying technique using excipients such as sugars (trehalose, lactose and dextran), mannitol and amino acids (L-leucine, glycine and threonine). High performance liquid chromatography and the mouse blood glucose method were used for determination of the insulin content. The powder properties were determined and compared by scanning electron microscopy, thermo-gravimetric analysis and size distribution analysis by a time-of-flight technique. The in-vitro aerosolization behaviour of the powders was assessed with an Aerolizer inhaler using a twin-stage impinger. Powder yield and moisture absorption were also determined. Results showed that there was no noticeable change in insulin content in any of the formulations by both assay methods. All powders were highly wrinkled, with median aerodynamic diameters of 2-4 microm, and consequently suitable for pulmonary administration. The tapped density was reduced dramatically when glycine was added. The powders containing mannitol, with or without L-leucine, were less sensitive to moisture. The highest respirable fraction of 67.3 +/- 1.3% was obtained with the formulation containing L-leucine, in contrast to formulations containing glycine and threonine, which had a respirable fraction of 11.2 +/- 3.9% and 23.5 +/- 2.5%, respectively. In addition, powders with good physical properties were achieved by the combination of insulin and trehalose. This study suggests that L-leucine could be used to enhance the aerosolization behaviour of the insulin dry powders for inhalation, and trehalose could potentially be used as an excipient in the formulations.

  19. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    PubMed

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  20. Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya

    PubMed Central

    Burton, Deron C.; Bigogo, Godfrey M.; Audi, Allan O.; Williamson, John; Munge, Kenneth; Wafula, Jackline; Ouma, Dominic; Khagayi, Sammy; Mugoya, Isaac; Mburu, James; Muema, Shadrack; Bauni, Evasius; Bwanaali, Tahreni; Feikin, Daniel R.; Ochieng, Peter M.; Mogeni, Ondari D.; Otieno, George A.; Olack, Beatrice; Kamau, Tatu; Van Dyke, Melissa K.; Chen, Robert; Farrington, Paddy; Montgomery, Joel M.; Breiman, Robert F.; Scott, J. Anthony G.; Laserson, Kayla F.

    2015-01-01

    There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37–4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12–8.56) and 0.27 (95% CI 0.14–0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study. PMID:26509274

  1. Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya.

    PubMed

    Burton, Deron C; Bigogo, Godfrey M; Audi, Allan O; Williamson, John; Munge, Kenneth; Wafula, Jackline; Ouma, Dominic; Khagayi, Sammy; Mugoya, Isaac; Mburu, James; Muema, Shadrack; Bauni, Evasius; Bwanaali, Tahreni; Feikin, Daniel R; Ochieng, Peter M; Mogeni, Ondari D; Otieno, George A; Olack, Beatrice; Kamau, Tatu; Van Dyke, Melissa K; Chen, Robert; Farrington, Paddy; Montgomery, Joel M; Breiman, Robert F; Scott, J Anthony G; Laserson, Kayla F

    2015-01-01

    There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37-4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12-8.56) and 0.27 (95% CI 0.14-0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study.

  2. Novel formulations for antimicrobial peptides.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2014-10-09

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  3. Novel Formulations for Antimicrobial Peptides

    PubMed Central

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  4. Anti-botulism single-shot vaccine using chitosan for protein encapsulation by simple coacervation.

    PubMed

    Sari, Roger S; de Almeida, Anna Christina; Cangussu, Alex S R; Jorge, Edson V; Mozzer, Otto D; Santos, Hércules Otacílio; Quintilio, Wagner; Brandi, Igor Viana; Andrade, Viviane Aguiar; Miguel, Angelo Samir M; Sobrinho Santos, Eliane M

    2016-12-01

    The aim of the present study was to compare the potency and safety of vaccines against Clostridium botulinum (C. botulinum) type C and D formulated with chitosan as controlled release matrix and vaccines formulated in conventional manner using aluminum hydroxide. Parameters were established for the development of chitosan microspheres, using simple coacervation to standardize the use of this polymer in protein encapsulation for vaccine formulation. To formulate a single shot vaccine inactivated antigens of C. botulinum type C and D were used with original toxin titles equal to 5.2 and 6.2 log LD50/ml, respectively. For each antigen a chitosan based solution of 50 mL was prepared. Control vaccines were formulated by mixing toxoid type C and D with aluminum hydroxide [25% Al(OH) 3 , pH 6.3]. The toxoid sterility, innocuity and potency of vaccines were evaluated as stipulated by MAPA-BRASIL according to ministerial directive no. 23. Encapsulation efficiency of BSA in chitosan was 32.5-40.37%, while that the encapsulation efficiency to toxoid type C was 41,03% (1.94 mg/mL) and of the toxoid type D was 32.30% (1.82 mg/mL). The single shot vaccine formulated using chitosan for protein encapsulation through simple coacervation showed potency and safety similar to conventional vaccine currently used in Brazilian livestock (10 and 2 IU/mL against C. botulinum type C and D, respectively). The present work suggests that our single shot vaccine would be a good option as a cattle vaccine against these C. botulinum type C and D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Preventing airborne infection with an intranasal cellulose powder formulation (Nasaleze travel).

    PubMed

    Hiltunen, Raimo; Josling, Peter D; James, Mike H

    2007-01-01

    A total of 52 volunteers were recruited to take part in a dual-centered, randomized, blinded study so investigators could determine whether the level of airborne infection could be significantly reduced in patients randomly assigned to treatment with either Nasaleze cellulose extract alone or a combination of Nasaleze cellulose and powdered garlic extract (PGE). One puff into each nostril was recommended, and volunteers who developed an infection while traveling were told to use at least 3 puffs per nostril until symptoms were reduced. This study took place over an 8-wk period across Finland and the United Kingdom between November 2006 and March 2007. Volunteers were instructed to use a 5-point scale to assess their health and to record infectious episodes and symptoms in a daily diary. The activetreatment group (Nasaleze cellulose with PGE) experienced significantly fewer infections than the control group (20 vs 57; P<.001) and far fewer days on which an infection was obviously present (126 d in the active group vs 240 d in the control group; P<.05). Consequently, volunteers in the active group were less likely to pick up an airborne infection when PGE was added to this novel cellulose extract. Volunteers in the control group were much more likely to report more than 1 infectious episode over the treatment period or to endure longer periods of infection. The investigators concluded that the combination Nasaleze Travel formulation significantly reduced the number of airborne infections to which volunteers were exposed while traveling.

  6. The Role of Particle-Mediated DNA Vaccines in Biodefense Preparedness

    DTIC Science & Technology

    2005-06-17

    vaccines in biodefense preparedness Hansi J. Deana,T, Joel Haynesa, Connie Schmaljohnb aPowderJect Vaccines , Inc. 8551 Research Way, Middleton, WI 53562...accepted 25 January 2005 Available online 12 April 2005Abstract Particle-mediated epidermal delivery (PMED) of DNA vaccines is based on the acceleration...recent years, data have accumulated on the utility of PMED for delivery of DNA vaccines against a number of viral pathogens, including filoviruses

  7. Recent advances in microparticle and nanoparticle delivery vehicles for mucosal vaccination.

    PubMed

    McNeela, E A; Lavelle, E C

    2012-01-01

    The great potential of mucosal vaccination is widely accepted but progress in the clinical development of subunit mucosal vaccines has been disappointing. Of the available approaches, the use of polymer-based microparticles is attractive because these delivery vehicles can be specifically tailored for vaccines and they offer the potential for integration of adjuvant. Here we address recent developments in the use of particulates as mucosal vaccines and the potential of novel targeting strategies, formulation approaches and adjuvant combinations to enhance the efficacy of particle-based mucosal vaccines. This review discusses the current status of mucosal vaccines based on particles and highlights several of the strategies that are currently under investigation for improving their immunogenicity. These include enhancing the stability of formulations in the luminal environment, increasing uptake by specifically targeting particles to mucosal inductive sites, and augmenting immunogenicity through co-formulation with immunostimulatory agents.

  8. Production of EV71 vaccine candidates

    PubMed Central

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-01-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211–225 of VP1 formulated with Freund’s adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the

  9. Production of EV71 vaccine candidates.

    PubMed

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-12-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211-225 of VP1 formulated with Freund's adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most

  10. Study of colouring effect of herbal hair formulations on graying hair

    PubMed Central

    Singh, Vijender; Ali, Mohammed; Upadhyay, Sukirti

    2015-01-01

    Objective: To screen the hair colouring properties of hair colorants/ herbal hair colouring formulations. Materials and Methods: The dried aqueous herbal extracts of Gudhal leaves (Hibiscus rosa-sinensis), Jatamansi rhizome (Nardostachys jatamansi), Kuth roots (Saussurea lappa), Kattha (Acacia catechu), Amla dried fruit (Embelica officinalis), were prepared. Coffee powder (Coffea arabica) and Henna powder (Lowsonia inermis) were taken in the form of powder (# 40). Fourteen herbal hair colorants were prepared from these dried aqueous herbal extracts and powders. Activities of hair colorants were observed on sheep wool fibers. On the basis of the above observation six hair colorants were selected. These six formulations were taken for trials on human beings. Observation: The formulation coded HD-3 gave maximum colouring effect on sheep wool fibers as well as on human beings and percentage of acceptance among the volunteers were in the following order: HD- 3 > HD- 4 > HD-1 > HD-13 > HD-14 > HD-11. Results and Discussion: The remarkable results were obtained from five herbal hair colorants, viz., HD-1, HD- 3, HD- 4, HD-13 and HD-14 on sheep wool fibers and human beings. Formulation HD-3, having gudhal, jatamansi, kuth, kattha, amla, coffee and henna, was the maximum accepted formulation and suggested that these herbs in combination acts synergistically in hair colouring action. It also concluded that jatamansi, present in different hair colorants, was responsible to provide maximum blackening on hair PMID:26130937

  11. Development of a freeze-stable formulation for vaccines containing aluminum salt adjuvants.

    PubMed

    Braun, LaToya Jones; Tyagi, Anil; Perkins, Shalimar; Carpenter, John; Sylvester, David; Guy, Mark; Kristensen, Debra; Chen, Dexiang

    2009-01-01

    Vaccines containing aluminum salt adjuvants are prone to inactivation following exposure to freeze-thaw stress. Many are also prone to inactivation by heat. Thus, for maximum potency, these vaccines must be maintained at temperatures between 2 degrees C and 8 degrees C which requires the use of the cold chain. Nevertheless, the cold chain is not infallible. Vaccines are subject to freezing during both transport and storage, and frozen vaccines are discarded (under the best circumstances) or inadvertently administered despite potentially reduced potency. Here we describe an approach to minimize our reliance on the proper implementation of the cold chain to protect vaccines from freeze-thaw inactivation. By including PEG 300, propylene glycol, or glycerol in a hepatitis B vaccine, particle agglomeration, changes in the fluorescence emission spectrum--indicative of antigen tertiary structural changes--and losses of in vitro and in vivo indicators of potency were prevented following multiple exposures to -20 degrees C. The effect of propylene glycol was examined in more detail and revealed that even at concentrations too low to prevent freezing at -10 degrees C, -20 degrees C, and -80 degrees C, damage to the vaccine could be prevented. A pilot study using two commercially available diphtheria, tetanus toxoid, and acellular pertussis (DTaP) vaccines suggested that the same stabilizers might protect these vaccines from freeze-thaw agglomeration as well. It remains to be determined if preventing agglomeration of DTaP vaccines preserves their antigenic activity following freeze-thaw events.

  12. Epidemiological trends for hospital admissions for acute rotavirus gastroenteritis in Belgium following the introduction of routine rotavirus vaccination and the subsequent switch from lyophilized to liquid formulation of Rotarix™.

    PubMed

    Raes, M; Strens, D; Kleintjens, J; Biundo, E; Morel, T; Vyse, A

    2016-10-01

    This study describes epidemiological trends for acute rotavirus gastroenteritis (RVGE) in Belgium in children aged ⩽5 years during the period June 2007 to May 2014 after the introduction of routine rotavirus (RV) vaccination. This period encompassed the switch from lyophilized to the liquid formulation of Rotarix™ (GlaxoSmithKline, Belgium) in August 2011. Uptake of RV vaccine remained consistently high throughout the study period with Rotarix the brand most often used. RV was present in 9% (1139/12 511) of hospitalized cases with acute gastroenteritis included in the study. Epidemiological trends for hospital admissions for RVGE remained consistent throughout the study period, with no evidence of any change associated with the switch from lyophilized to liquid formulation of Rotarix. This suggests both formulations perform similarly, with the liquid formulation not inferior regarding ability to reduce hospital admissions for acute RVGE in children aged ⩽5 years. A strong seasonal effect was observed with most RVGE occurring in the winter months but with some variability in intensity, with highest incidence found in those aged 6-24 months. The main observation was the decreased number of hospital admissions for RVGE in Belgium that occurred during winter 2013/2014.

  13. The differential impact of oral poliovirus vaccine formulation choices on serotype-specific population immunity to poliovirus transmission.

    PubMed

    Thompson, Kimberly M; Duintjer Tebbens, Radboud J

    2015-09-17

    Prior analyses demonstrated the need for some countries and the Global Polio Eradication Initiative (GPEI) to conduct additional supplemental immunization activities (SIAs) with trivalent oral poliovirus vaccine (tOPV) prior to globally-coordinated cessation of all serotype 2-containing OPV (OPV2 cessation) to prevent the creation of serotype 2 circulating vaccine-derived poliovirus (cVDPV2) outbreaks after OPV2 cessation. The GPEI continues to focus on achieving and ensuring interruption of wild poliovirus serotype 1 (WPV1) and making vaccine choices that prioritize bivalent OPV (bOPV) for SIAs, nominally to increase population immunity to serotype 1, despite an aggressive timeline for OPV2 cessation. We use an existing dynamic poliovirus transmission model of northwest Nigeria and an integrated global model for long-term poliovirus risk management to explore the impact of tOPV vs. bOPV vaccine choices on population immunity and cVDPV2 risks. Using tOPV instead of bOPV for SIAs leads to a minimal decrease in population immunity to transmission of serotypes 1 and 3 polioviruses, but a significantly higher population immunity to transmission of serotype 2 polioviruses. Failure to use tOPV in enough SIAs results in cVDPV2 emergence after OPV2 cessation in both the northwest Nigeria model and the global model. Despite perceptions to the contrary, prioritizing the use of bOPV over tOPV prior to OPV2 cessation does not significantly improve serotype 1 population immunity to transmission. Immunization leaders need to focus on all three poliovirus serotypes to appropriately manage the risks of OPV cessation in the polio endgame. Focusing on population immunity to transmission to interrupt WPV1 transmission and manage pre-OPV cessation risks of cVDPVs, all countries performing poliovirus SIAs should use tOPV up until the time of OPV2 cessation, after which time they should continue to use the OPV vaccine formulation with all remaining serotypes until coordinated global

  14. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    PubMed Central

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-01-01

    In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system. PMID:28793560

  15. Granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  16. Characterization of a whole, inactivated influenza (H5N1) vaccine.

    PubMed

    Tada, Yoshikazu

    2008-11-01

    Effective vaccines against the highly pathogenic influenza A/H5N1 virus are being developed worldwide. In Japan, two adjuvanted, inactivated, whole-virion influenza vaccines were recently developed and licensed as mock-up, pre-pandemic vaccine formulations by the Ministry of Health and Labor Welfare of Japan. During the vaccine design and development process, various obstacles were overcome and, in this report, we introduce the non clinical production, immunogenicity data in human and development process that was associated with egg-derived adjuvanted, inactivated, whole-virion influenza A (H5N1) vaccine. Pilot lots of H5N1 vaccine were produced using the avirulent H5N1 reference strain A/Vietnam/1194/2004 (H5N1) NIBRG-14 and administered following adsorption with aluminum hydroxide as an adjuvant. Quality control and formulation stability tests were performed before clinical trials were initiated (phase I-III). The research foundation for microbial diseases of Osaka University (BIKEN) carried out vaccine production, quality control, stability testing and the phase I clinical trial in addition to overseeing the licensing of this vaccine. Mitsubishi Chemical Safety Institute Ltd. carried out the non clinical pharmacological toxicity and safety studies and the Japanese medical association carried out the phase II/III trials. Phase I-III trials took place in 2006. The production processes were well controlled by established tests and validations. Vaccine quality was confirmed by quality control, stability and pre-clinical tests, and the vaccine was approved as a mock-up, pre-pandemic vaccine by the Ministry of Health and Labor Welfare of Japan. Numerous safety and efficacy procedures were carried out prior to the approval of the described vaccine formulation. Some of these procedures were of particular importance e.g., vaccine development, validation, and quality control tests that included strict monitoring of the hemagglutinin (HA) content of the vaccine

  17. 76 FR 43847 - Poison Prevention Packaging Requirements; Exemption of Powder Formulations of Colesevelam...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... FDA-regulated drug, biologic, medical device, dietary supplement, or cosmetic. (See http://www.fda.gov... powders generally present a low risk because they are more difficult to ingest, particularly in large quantities. Generally, with the exception of caustics, the primary exposure risk associated with powders is...

  18. Vaccines: an ongoing promise?

    PubMed

    Alsahli, M; Farrell, R J; Michetti, P

    2001-01-01

    Over the past decade, intensive research has focused on developing a vaccine therapy for Helicobacter pylori. Substantial unresolved questions cloud the current approach, and the development of a vaccine against this unique organism has proved very challenging. Many candidate vaccines have been tested in animal models. The immunogenicity and the safety of some vaccine formulations have been recently evaluated through clinical trials, and the efficacy of these vaccine therapies in humans will be determined in the near future. This article will provide an overview of the current knowledge of natural and vaccine-induced immune responses to H. pylori infection. It will also review past vaccine successes and failures in animal models and the limited experience to date in using vaccine therapy in humans. Several obstacles to H. pylori vaccine development efforts along with the future direction of these efforts will be discussed. Copyright 2001 S. Karger AG, Basel

  19. Design, formulation and evaluation of Aloe vera chewing gum

    PubMed Central

    Aslani, Abolfazl; Ghannadi, Alireza; Raddanipour, Razieh

    2015-01-01

    Background: Aloe vera has antioxidant, antiinflammatory, healing, antiseptic, anticancer and antidiabetic effects. The aim of the present study was to design and evaluate the formulation of Aloe vera chewing gum with an appropriate taste and quality with the indications for healing oral wounds, such as lichen planus, mouth sores caused by cancer chemotherapy and mouth abscesses as well as reducing mouth dryness caused by chemotherapy. Materials and Methods: In Aloe vera powder, the carbohydrate content was determined according to mannose and phenolic compounds in terms of gallic acid. Aloe vera powder, sugar, liquid glucose, glycerin, sweeteners and different flavors were added to the soft gum bases. In Aloe vera chewing gum formulation, 10% of dried Aloe vera extract entered the gum base. Then the chewing gum was cut into pieces of suitable sizes. Weight uniformity, content uniformity, the organoleptic properties evaluation, releasing the active ingredient in the phosphate buffer (pH, 6.8) and taste evaluation were examined by Latin square method. Results: One gram of Aloe vera powder contained 5.16 ± 0.25 mg/g of phenolic compounds and 104.63 ± 4.72 mg/g of carbohydrates. After making 16 Aloe vera chewing gum formulations, the F16 formulation was selected as the best formulation according to its physicochemical and organoleptic properties. In fact F16 formulation has suitable hardness, lack of adhesion to the tooth and appropriate size and taste; and after 30 min, it released more than 90% of its drug content. Conclusion: After assessments made, the F16 formulation with maltitol, aspartame and sugar sweeteners was selected as the best formulation. Among various flavors used, peppermint flavor which had the most acceptance between consumers was selected. PMID:26605214

  20. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations.

    PubMed

    Igietseme, Joseph U; Eko, Francis O; Black, Carolyn M

    2011-11-01

    Bacteria of the genus Chlamydia cause a plethora of ocular, genital and respiratory diseases that continue to pose a considerable public health challenge worldwide. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility and interstitial pneumonia. The rampart asymptomatic infections prevent timely and effective antibiotic treatments, and quite often clinical presentation of sequelae is the first evidence of an infection. Besides, significant broad coverage in population screening and treatment is economically and logistically impractical, and mass education for public awareness has been ineffective. The current medical opinion is that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, a human vaccine has yet to be realized despite successful veterinary vaccines. Fortunately, recent advances in chlamydial immunobiology, cell biology, molecular pathogenesis, genomics, antigen discovery and animal models of infections are hastening progress toward an efficacious vaccine. Thus, it is established that Chlamydia immunity is mediated by T cells and a complementary antibody response, and several potential vaccine candidates have been identified. However, further advances are needed in effective vaccine delivery systems and safe potent adjuvants to boost and sustain immune responses for long-lasting protective immunity. This article focuses on the current status of human chlamydial vaccine research, specifically how application of new delivery systems and human compatible adjuvants could lead to a timely achievement of efficacious Chlamydia vaccines. The ranking of the candidate vaccine antigens for human vaccine development will await the availability of results from studies in which the antigens are tested by comparable experimental standards, such as antigen-adjuvant combination, route of

  1. The effect of operating and formulation variables on the morphology of spray-dried protein particles.

    PubMed

    Maa, Y F; Costantino, H R; Nguyen, P A; Hsu, C C

    1997-08-01

    The purpose of this research was to investigate the shape and morphology of various spray-dried protein powders as a function of spray-drying conditions and protein formulations. A benchtop spray dryer was used to spray dry three model proteins in formulation with a sugar or a surfactant. Physical characterizations of the powder included morphology (scanning electron microscopy), particle size, residual moisture, and X-ray powder diffraction analyses. A significant change in particle shape from irregular (e.g., "donut") to spherical was observed as the outlet temperature of the dryer was decreased. The drying air outlet temperature was shown to depend on various operating parameters and was found to correlate with the drying rate of atomized droplets in the drying chamber. The morphology of spray-dried protein particles was also affected by formulation. In protein:sugar formulations, spray-dried particles exhibited a smooth surface regardless of the protein-to-lactose ratio, whereas roughness was observed when mannitol was present at > 30% of total solids, due to recrystallization. Protein particles containing trehalose at concentrations > 50% were highly agglomerated. The presence of surfactant resulted in noticeably smoother, more spherical particles. The shape and the morphology of spray-dried powders are affected by spray drying conditions and protein formulation. This study provides information useful for development of dry proteins for fine powder (e.g., aerosol) applications.

  2. Immunogenicity, reactogenicity and safety of the human rotavirus vaccine RIX4414 (Rotarix™) oral suspension (liquid formulation) when co-administered with expanded program on immunization (EPI) vaccines in Vietnam and the Philippines in 2006-2007.

    PubMed

    Anh, D D; Carlos, C C; Thiem, D V; Hutagalung, Y; Gatchalian, S; Bock, H L; Smolenov, I; Suryakiran, P V; Han, H H

    2011-03-03

    Evaluation of immunogenicity and safety of a 2-dose liquid formulation of human rotavirus vaccine, RIX4414 following WHO's Expanded Program on Immunization (EPI) schedule (0, 1, and 2 months; Month 0 indicates day of enrollment) in Vietnam and the Philippines. Infants aged 6-10 (mean=8.7 ± 1.07 weeks Vietnam) and 5-10 weeks (mean=6.6 ± 1.03 weeks Philippines) received two doses of RIX4414 vaccine (V) and one dose of placebo (PL) or three placebo doses concomitantly with commercially available diphtheria-tetanus-whole-cell pertussis, hepatitis B and oral poliovirus vaccines. The vaccination schedules were: V-V-PL, V-PL-V and PL-PL-PL (Vietnam); PL-V-V, V-PL-V and PL-PL-PL (Philippines). Anti-rotavirus seroconversion rate was assessed pre-vaccination and post-vaccination (ELISA cut-off=20 U/ml). 375 infants were enrolled in each country. Seroconversion rates at one month post-Dose 2 of RIX4414 were Vietnam 63.3% (95% CI: 54.3-71.6) in V-V-PL group and 81.5% (95% CI: 73.4-88) in V-PL-V group; Philippines 70% (95% CI: 61-78) in PL-V-V group and 59.2% (95% CI: 49.8-68) in V-PL-V group. Frequencies of solicited (8-day post-each dose) and unsolicited symptoms (31-day post-each dose) were similar. Two-doses of rotavirus vaccine administered within the WHO EPI offer flexibility in existing schedule, though both schedules provides good immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders.

    PubMed

    Liebenberg, W; de Villiers, M M; Wurster, D E; Swanepoel, E; Dekker, T G; Lötter, A P

    1999-09-01

    In South Africa, oxytetracycline is identified as an essential drug; many generic products are on the market, and many more are being developed. In this study, six oxytetracycline hydrochloride powders were obtained randomly from manufacturers, and suppliers were compared. It was found that compliance to a pharmacopoeial monograph was insufficient to ensure the optimum dissolution performance of a simple tablet formulation. Comparative physicochemical raw material analysis showed no major differences with regard to differential scanning calorimetry (DSC), infrared (IR) spectroscopy, powder dissolution, and particle size. However, the samples could be divided into two distinct types with respect to X-ray powder diffraction (XRD) and thus polymorphism. The two polymorphic forms had different dissolution properties in water or 0.1 N hydrochloride acid. This difference became substantial when the dissolution from tablets was compared. The powders containing form A were less soluble than that containing form B.

  4. The safety and immunogenicity of two hepatitis B vaccine formulations (thiomersal-free and thiomersal-containing) in healthy vietnamese infants: a phase III, prospective, single-blinded, randomized, controlled trial.

    PubMed

    Hieu, Nguyen Trong; Sarnecki, Michal; Tolboom, Jeroen

    2015-01-01

    To evaluate the safety and immunogenicity of the thiomersal-free (TF) and thiomersal-containing (TC) formulations of Hepavax-Gene in healthy Vietnamese neonates. A single-blind, randomized, controlled study in Ho Chi Minh City, Vietnam. Healthy infants, born after a normal gestational period (37-42 weeks) to hepatitis B surface antigen-negative mothers, participated in the study. Subjects were randomly allocated in a 1:1 ratio to receive either Hepavax-Gene TC or Hepavax-Gene TF using a standard 0-1-6-month administration schedule. Postvaccination blood samples were taken at months 1, 6 and 7. Parents/legal guardians recorded solicited local and systemic adverse events up to 4 weeks after each vaccination. Very high proportions of subjects were seroprotected. Seroprotection rates at 1, 6 and 7 months were all above 95% using a 10 IU/L cutoff, and were mostly above 90% using a 100 IU/L cutoff. Seroprotection rates between the 2 formulations were equivalent within a 5% margin for either cutoff titer both after 6 and 7 months. There were no significant differences in the number of adverse events reported between the 2 formulations. Safety results were in line with previous reports for Hepavax-Gene. Both formulations of Hepavax-Gene were well tolerated. There were no local adverse events reported in the TF group. No serious adverse events were reported during the study. The thiomersal-free formulation of Hepavax-Gene was noninferior to the thiomersal-containing formulation of Hepavax-Gene in terms of immunogenicity. There was evidence that the thiomersal-free vaccine was associated with fewer local adverse events.

  5. Association between thimerosal-containing vaccine and autism.

    PubMed

    Hviid, Anders; Stellfeld, Michael; Wohlfahrt, Jan; Melbye, Mads

    2003-10-01

    Mercuric compounds are nephrotoxic and neurotoxic at high doses. Thimerosal, a preservative used widely in vaccine formulations, contains ethylmercury. Thus it has been suggested that childhood vaccination with thimerosal-containing vaccine could be causally related to neurodevelopmental disorders such as autism. To determine whether vaccination with a thimerosal-containing vaccine is associated with development of autism. Population-based cohort study of all children born in Denmark from January 1, 1990, until December 31, 1996 (N = 467 450) comparing children vaccinated with a thimerosal-containing vaccine with children vaccinated with a thimerosal-free formulation of the same vaccine. Rate ratio (RR) for autism and other autistic-spectrum disorders, including trend with dose of ethylmercury. During 2 986 654 person-years, we identified 440 autism cases and 787 cases of other autistic-spectrum disorders. The risk of autism and other autistic-spectrum disorders did not differ significantly between children vaccinated with thimerosal-containing vaccine and children vaccinated with thimerosal-free vaccine (RR, 0.85 [95% confidence interval [CI], 0.60-1.20] for autism; RR, 1.12 [95% CI, 0.88-1.43] for other autistic-spectrum disorders). Furthermore, we found no evidence of a dose-response association (increase in RR per 25 microg of ethylmercury, 0.98 [95% CI, 0.90-1.06] for autism and 1.03 [95% CI, 0.98-1.09] for other autistic-spectrum disorders). The results do not support a causal relationship between childhood vaccination with thimerosal-containing vaccines and development of autistic-spectrum disorders.

  6. A Natural Cream-to-Powder Formulation Developed for the Prevention of Diaper Dermatitis in Diaper-Wearing Infants and Children: Barrier Property and In-Use Tolerance Studies.

    PubMed

    Gunt, Hemali B; Levy, Stanley B; Lutrario, Celeste A

    2018-05-01

    Diaper dermatitis is a common condition that develops in the diaper area due to factors such as elevated moisture, increased skin surface pH, and exposure to irritants from urine and feces. These factors suggest interventions to prevent or treat diaper dermatitis such as exposing the skin to air, frequent diaper changes, and thorough cleansing of the diaper area. Barrier creams and powders also have a role in preventing and treating diaper dermatitis. We developed a cream-to-powder product with a formula based on corn starch and other natural ingredients for use in the diaper area. Dye exclusion study: The barrier properties of the cream-to-powder product were assessed using a dye exclusion protocol. Skin color at treated and untreated forearm sites was measured at baseline and after exposure to crystal violet stain. The cream-to-powder product's ability to inhibit the water-soluble dye from reaching the skin was judged by comparing color changes at the treated and untreated sites. Tolerance-in-use study: The safety of the cream-to-powder product was assessed in a four-week tolerance-in-use study conducted in a group of 52 diaper-wearing infants and toddlers. Subjects' parents/guardians applied the cream-to-powder product at each diaper change. A pediatrician judged safety endpoints of erythema, dryness, and edema in the diaper area at baseline and at study end. Parents/guardians also completed a questionnaire at study end. These studies have complied with Good Clinical Practices (GCP/ICH). The cream-to-powder product prevented about 70% of the test dye from reaching the skin surface, demonstrating its ability to supplement the skin barrier. The tolerance-in-use study showed no statistically significant changes in any of the safety endpoints; there were no adverse events. Parents/guardians responses to the cream-to-powder product were overwhelmingly positive. Taken together, these results support that the cream-to-powder formulation is safe and effective for

  7. Current state and challenges in developing oral vaccines.

    PubMed

    Vela Ramirez, Julia E; Sharpe, Lindsey A; Peppas, Nicholas A

    2017-05-15

    While vaccination remains the most cost effective strategy for disease prevention, communicable diseases persist as the second leading cause of death worldwide. There is a need to design safe, novel vaccine delivery methods to protect against unaddressed and emerging diseases. Development of vaccines administered orally is preferable to traditional injection-based formulations for numerous reasons including improved safety and compliance, and easier manufacturing and administration. Additionally, the oral route enables stimulation of humoral and cellular immune responses at both systemic and mucosal sites to establish broader and long-lasting protection. However, oral delivery is challenging, requiring formulations to overcome the harsh gastrointestinal (GI) environment and avoid tolerance induction to achieve effective protection. Here we address the rationale for oral vaccines, including key biological and physicochemical considerations for next-generation oral vaccine design. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A microarray MEMS device for biolistic delivery of vaccine and drug powders.

    PubMed

    Pirmoradi, Fatemeh Nazly; Pattekar, Ashish V; Linn, Felicia; Recht, Michael I; Volkel, Armin R; Wang, Qian; Anderson, Greg B; Veiseh, Mandana; Kjono, Sandra; Peeters, Eric; Uhland, Scott A; Chow, Eugene M

    2015-01-01

    We report a biolistic technology platform for physical delivery of particle formulations of drugs or vaccines using parallel arrays of microchannels, which generate highly collimated jets of particles with high spatial resolution. Our approach allows for effective delivery of therapeutics sequentially or concurrently (in mixture) at a specified target location or treatment area. We show this new platform enables the delivery of a broad range of particles with various densities and sizes into both in vitro and ex vivo skin models. Penetration depths of ∼1 mm have been achieved following a single ejection of 200 µg high-density gold particles, as well as 13.6 µg low-density polystyrene-based particles into gelatin-based skin simulants at 70 psi inlet gas pressure. Ejection of multiple shots at one treatment site enabled deeper penetration of ∼3 mm in vitro, and delivery of a higher dose of 1 mg gold particles at similar inlet gas pressure. We demonstrate that particle penetration depths can be optimized in vitro by adjusting the inlet pressure of the carrier gas, and dosing is controlled by drug reservoirs that hold precise quantities of the payload, which can be ejected continuously or in pulses. Future investigations include comparison between continuous versus pulsatile payload deliveries. We have successfully delivered plasmid DNA (pDNA)-coated gold particles (1.15 µm diameter) into ex vivo murine and porcine skin at low inlet pressures of ∼30 psi. Integrity analysis of these pDNA-coated gold particles confirmed the preservation of full-length pDNA after each particle preparation and jetting procedures. This technology platform provides distinct capabilities to effectively deliver a broad range of particle formulations into skin with specially designed high-speed microarray ejector nozzles.

  9. A microarray MEMS device for biolistic delivery of vaccine and drug powders

    PubMed Central

    Pirmoradi, Fatemeh Nazly; Pattekar, Ashish V; Linn, Felicia; Recht, Michael I; Volkel, Armin R; Wang, Qian; Anderson, Greg B; Veiseh, Mandana; Kjono, Sandra; Peeters, Eric; Uhland, Scott A; Chow, Eugene M

    2015-01-01

    We report a biolistic technology platform for physical delivery of particle formulations of drugs or vaccines using parallel arrays of microchannels, which generate highly collimated jets of particles with high spatial resolution. Our approach allows for effective delivery of therapeutics sequentially or concurrently (in mixture) at a specified target location or treatment area. We show this new platform enables the delivery of a broad range of particles with various densities and sizes into both in vitro and ex vivo skin models. Penetration depths of ∼1 mm have been achieved following a single ejection of 200 µg high-density gold particles, as well as 13.6 µg low-density polystyrene-based particles into gelatin-based skin simulants at 70 psi inlet gas pressure. Ejection of multiple shots at one treatment site enabled deeper penetration of ∼3 mm in vitro, and delivery of a higher dose of 1 mg gold particles at similar inlet gas pressure. We demonstrate that particle penetration depths can be optimized in vitro by adjusting the inlet pressure of the carrier gas, and dosing is controlled by drug reservoirs that hold precise quantities of the payload, which can be ejected continuously or in pulses. Future investigations include comparison between continuous versus pulsatile payload deliveries. We have successfully delivered plasmid DNA (pDNA)-coated gold particles (1.15 µm diameter) into ex vivo murine and porcine skin at low inlet pressures of ∼30 psi. Integrity analysis of these pDNA-coated gold particles confirmed the preservation of full-length pDNA after each particle preparation and jetting procedures. This technology platform provides distinct capabilities to effectively deliver a broad range of particle formulations into skin with specially designed high-speed microarray ejector nozzles. PMID:26090875

  10. Liposomal adjuvant development for leishmaniasis vaccines.

    PubMed

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-08-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis.

  11. Liposomal adjuvant development for leishmaniasis vaccines

    PubMed Central

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-01-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis. PMID:29201374

  12. Porcine Dendritic Cells as an In Vitro Model to Assess the Immunological Behaviour of Streptococcus suis Subunit Vaccine Formulations and the Polarizing Effect of Adjuvants

    PubMed Central

    Martelet, Léa; Lacouture, Sonia; Goyette-Desjardins, Guillaume; Beauchamp, Guy; Surprenant, Charles; Gottschalk, Marcelo; Segura, Mariela

    2017-01-01

    An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science. PMID:28327531

  13. Stability of nonaqueous suspension formulations of plasma derived factor IX and recombinant human alpha interferon at elevated temperatures.

    PubMed

    Knepp, V M; Muchnik, A; Oldmark, S; Kalashnikova, L

    1998-07-01

    To identify a suitable nonaqueous, parenterally acceptable suspending vehicle whereby a therapeutic protein is delivered as a stable flowable powder, making it amenable to delivery from sustained delivery systems maintained at body temperature. Formulations of plasma derived Factor IX (pdFIX) and recombinant human alpha interferon (rhalpha-IFN) were formulated as dry powders, suspended in various vehicles (perfluorodecalin, perfluorotributylamine, methoxyflurane, polyethylene glycol 400, soybean oil, tetradecane or octanol) and stored at 37 degrees C. Stability was assessed by size exclusion chromatography, reverse phase chromatography, ion exchange chromatography, and bioassay, and was compared to the stability of dry powder formulations stored at 37 degrees C and -80 degrees C. PdFIX was stable when stored at 37 degrees C as a dry powder, or when the dry powder was suspended in the pharmaceutically acceptable vehicles perfluorodecalin or perfluorotributylamine. Suspensions of the powder in other pharmaceutically/parenterally acceptable vehicles such as soybean oil or PEG 400 resulted in aggregation and loss of bioactivity. A dry powder formulation of rhalpha-IFN suspended in perfluorodecalin was also stable at 37 degrees C. This study shows the potential utility of perfluorinated hydrocarbons as nonaqueous suspending vehicles for long term in-vivo delivery of therapeutic proteins.

  14. Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model

    PubMed Central

    Hess, Jessica A.; Zhan, Bin; Bonne-Année, Sandra; Deckman, Jessica M.; Bottazzi, Maria Elena; Hotez, Peter J.; Klei, Thomas R.; Lustigman, Sara; Abraham, David

    2014-01-01

    Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunization protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans. PMID:24907553

  15. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response.

    PubMed

    Tzeng, Stephany Y; McHugh, Kevin J; Behrens, Adam M; Rose, Sviatlana; Sugarman, James L; Ferber, Shiran; Langer, Robert; Jaklenec, Ana

    2018-05-21

    Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule-based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. Copyright © 2018 the Author(s). Published by PNAS.

  16. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response

    PubMed Central

    Tzeng, Stephany Y.; McHugh, Kevin J.; Behrens, Adam M.; Rose, Sviatlana; Sugarman, James L.; Ferber, Shiran; Jaklenec, Ana

    2018-01-01

    Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule–based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. PMID:29784798

  17. On Identification of Critical Material Attributes for Compression Behaviour of Pharmaceutical Diluent Powders

    PubMed Central

    Zhang, Jianyi; Pan, Xin; Wu, Chuanbin

    2017-01-01

    As one of the commonly-used solid dosage forms, pharmaceutical tablets have been widely used to deliver active drugs into the human body, satisfying patient’s therapeutic requirements. To manufacture tablets of good quality, diluent powders are generally used in formulation development to increase the bulk of formulations and to bind other inactive ingredients with the active pharmaceutical ingredients (APIs). For formulations of a low API dose, the drug products generally consist of a large fraction of diluent powders. Hence, the attributes of diluents become extremely important and can significantly influence the final product property. Therefore, it is essential to accurately characterise the mechanical properties of the diluents and to thoroughly understand how their mechanical properties affect the manufacturing performance and properties of the final products, which will build a sound scientific basis for formulation design and product development. In this study, a comprehensive evaluation of the mechanical properties of the widely-used pharmaceutical diluent powders, including microcrystalline cellulose (MCC) powders with different grades (i.e., Avicel PH 101, Avicel PH 102, and DG), mannitol SD 100, lactose monohydrate, and dibasic calcium phosphate, were performed. The powder compressibility was assessed with Heckel and Kawakita analyses. The material elastic recovery during decompression and in storage was investigated through monitoring the change in the dimensions of the compressed tablets over time. The powder hygroscopicity was also evaluated to examine the water absorption ability of powders from the surroundings. It was shown that the MCC tablets exhibited continuous volume expansion after ejection, which is believed to be induced by (1) water absorption from the surrounding, and (2) elastic recovery. However, mannitol tablets showed volume expansion immediately after ejection, followed by the material shrinkage in storage. It is anticipated that

  18. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  19. Mucosal Vaccine Development Based on Liposome Technology

    PubMed Central

    Norling, Karin; Bally, Marta; Höök, Fredrik

    2016-01-01

    Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination of mucosal adjuvants with the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines. PMID:28127567

  20. Powder bed charging during electron-beam additive manufacturing

    DOE PAGES

    Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; ...

    2016-11-18

    Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.

  1. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model.

    PubMed

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kodama, Yukinobu; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Ichinose, Akitoyo; Yanagi, Tetsuo; Sasaki, Hitoshi; Yui, Katsuyuki; Tien, Nguyen Huy; Karbwang, Juntra; Hirayama, Kenji

    2014-04-07

    We have previously reported the new formulation of polyethylimine (PEI) with gamma polyglutamic acid (γ-PGA) nanoparticle (NP) to have provided Plasmodium yoelii merozoite surface protein-1 (PyMSP-1) plasmid DNA vaccine with enhanced protective cellular and humoral immunity in the lethal mouse malaria model. PyGPI8p-transamidase-related protein (PyTAM) was selected as a possible candidate vaccine antigen by using DNA vaccination screening from 29 GPI anchor and signal sequence motif positive genes picked up using web-based bioinformatics tools; though the observed protection was not complete. Here, we observed augmented protective effect of PyTAM DNA vaccine by using PEI and γ-PGA complex as delivery system. NP-coated PyTAM plasmid DNA immunized mice showed a significant survival rate from lethal P. yoelii challenge infection compared with naked PyTAM plasmid or with NP-coated empty plasmid DNA group. Antigen-specific IgG1 and IgG2b subclass antibody levels, proportion of CD4 and CD8T cells producing IFN-γ in the splenocytes and IL-4, IFN-γ, IL-12 and TNF-α levels in the sera and in the supernatants from ex vivo splenocytes culture were all enhanced by the NP-coated PyTAM DNA vaccine. These data indicates that NP augments PyTAM protective immune response, and this enhancement was associated with increased DC activation and concomitant IL-12 production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Vaccines to combat river blindness: expression, selection and formulation of vaccines against infection with Onchocerca volvulus in a mouse model.

    PubMed

    Hess, Jessica A; Zhan, Bin; Bonne-Année, Sandra; Deckman, Jessica M; Bottazzi, Maria Elena; Hotez, Peter J; Klei, Thomas R; Lustigman, Sara; Abraham, David

    2014-08-01

    Human onchocerciasis is a neglected tropical disease caused by Onchocerca volvulus and an important cause of blindness and chronic disability in the developing world. Although mass drug administration of ivermectin has had a profound effect on control of the disease, additional tools are critically needed including the need for a vaccine against onchocerciasis. The objectives of the present study were to: (i) select antigens with known vaccine pedigrees as components of a vaccine; (ii) produce the selected vaccine antigens under controlled conditions, using two expression systems and in one laboratory and (iii) evaluate their vaccine efficacy using a single immunisation protocol in mice. In addition, we tested the hypothesis that joining protective antigens as a fusion protein or in combination, into a multivalent vaccine, would improve the ability of the vaccine to induce protective immunity. Out of eight vaccine candidates tested in this study, Ov-103, Ov-RAL-2 and Ov-CPI-2M were shown to reproducibly induce protective immunity when administered individually, as fusion proteins or in combination. Although there was no increase in the level of protective immunity induced by combining the antigens into one vaccine, these antigens remain strong candidates for inclusion in a vaccine to control onchocerciasis in humans. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  3. Physico-chemical properties of instant ogbono (Irvingia gabonensis) mix powder

    PubMed Central

    Bamidele, Oluwaseun P; Ojedokun, Omotayo S; Fasogbon, Beatrice M

    2015-01-01

    The main objective of the research is to develop a recipe of instant dry soup mix for easy preparation of ogbono soup. Instant ogbono mix powder was processed using common locally ingredients. Dika kernel powder, dried ugwu leaf, crayfish, stock fish, and a mixture of locust bean, onion, seasoning and Cameroon powder were formulated at different ratios to find the best acceptable ogbono mix powder. The samples were subjected to proximate, functional, vitamin, mineral, and sensory analyses. The formulated sample D with the highest ratio of crayfish and stock fish had the highest value of protein and carbohydrate (24.13 and 35.61%, respectively). The control sample (100% dika kernel powder) was low in moisture content (6.20%) but high in crude fat, other samples followed in this order (control > A > B > C > D) for crude fat. Ash, crude fiber, and carbohydrate showed a significant difference (P < 0.05) in all the samples. The functional properties of the sample showed a significant difference (P < 0.05) in all the samples with the control having the highest value for the water absorption, swelling capacity, and bulk density which may be due to the high crude fiber and low moisture content recorded for the control sample in the proximate analysis. The mineral content of all the samples were higher than the control with phosphorous having the highest value and iron the least value. Vitamin C was the main dominating vitamin in the sample followed by vitamin B2, vitamin A, and vitamin B3. The sensory evaluation revealed that 100% dika kernel powder gave a good attribute of the soup but with less nutritional composition, while some formulated samples showed a similar attribute with higher nutritional value. Sample A with the highest overall acceptability had the best attribute of ogbono soup. Instant ogbono mix powder has higher nutritional value and easy to cook. PMID:26288723

  4. Safety and Immunogenicity of Sequential Rotavirus Vaccine Schedules

    PubMed Central

    Libster, Romina; McNeal, Monica; Walter, Emmanuel B.; Shane, Andi L.; Winokur, Patricia; Cress, Gretchen; Berry, Andrea A.; Kotloff, Karen L.; Sarpong, Kwabena; Turley, Christine B.; Harrison, Christopher J.; Pahud, Barbara A.; Marbin, Jyothi; Dunn, John; El-Khorazaty, Jill; Barrett, Jill

    2016-01-01

    BACKGROUND AND OBJECTIVES: Although both licensed rotavirus vaccines are safe and effective, it is often not possible to complete the schedule by using the same vaccine formulation. The goal of this study was to investigate the noninferiority of the immune responses to the 2 licensed rotavirus vaccines when administered as a mixed schedule compared with administering a single vaccine formulation alone. METHODS: Randomized, multicenter, open-label study. Healthy infants (6–14 weeks of age) were randomized to receive rotavirus vaccines in 1 of 5 different schedules (2 using a single vaccine for all doses, and 3 using mixed schedules). The group receiving only the monovalent rotavirus vaccine received 2 doses of vaccine and the other 4 groups received 3 doses of vaccine. Serum for immunogenicity testing was obtained 1 month after the last vaccine dose and the proportion of seropositive children (rotavirus immunoglobulin A ≥20 U/mL) were compared in all the vaccine groups. RESULTS: Between March 2011 and September 2013, 1393 children were enrolled and randomized. Immune responses to all the sequential mixed vaccine schedules were shown to be noninferior when compared with the 2 single vaccine reference groups. The proportion of children seropositive to at least 1 vaccine antigen at 1 month after vaccination ranged from 77% to 96%, and was not significantly different among all the study groups. All schedules were well tolerated. CONCLUSIONS: Mixed schedules are safe and induced comparable immune responses when compared with the licensed rotavirus vaccines given alone. PMID:26823540

  5. Development of a Soluplus budesonide freeze-dried powder for nasal drug delivery.

    PubMed

    Pozzoli, Michele; Traini, Daniela; Young, Paul M; Sukkar, Maria B; Sonvico, Fabio

    2017-09-01

    The aim of this work was to develop an amorphous solid dispersions/solutions (ASD) of a poorly soluble drug, budesonide (BUD) with a novel polymer Soluplus ® (BASF, Germany) using a freeze-drying technique, in order to improve dissolution and absorption through the nasal route. The small volume of fluid present in the nasal cavity limits the absorption of a poorly soluble drug. Budesonide is a corticosteroid, practically insoluble and normally administered as a suspension-based nasal spray. The formulation was prepared through freeze-drying of polymer-drug solution. The formulation was assessed for its physicochemical (specific surface area, calorimetric analysis and X-ray powder diffraction), release properties and aerodynamic properties as well as transport in vitro using RPMI 2650 nasal cells, in order to elucidate the efficacy of the Soluplus-BUD formulation. The freeze-dried Soluplus-BUD formulation (LYO) showed a porous structure with a specific surface area of 1.4334 ± 0.0178 m 2 /g. The calorimetric analysis confirmed an interaction between BUD and Soluplus and X-ray powder diffraction the amorphous status of the drug. The freeze-dried formulation (LYO) showed faster release compared to both water-based suspension and dry powder commercial products. Furthermore, a LYO formulation, bulked with calcium carbonate (LYO-Ca), showed suitable aerodynamic characteristics for nasal drug delivery. The permeation across RPMI 2650 nasal cell model was higher compared to a commercial water-based BUD suspension. Soluplus has been shown to be a promising polymer for the formulation of BUD amorphous solid suspension/solution. This opens up opportunities to develop new formulations of poorly soluble drug for nasal delivery.

  6. A Phase 2 randomized, observer-blind, placebo-controlled, dose-ranging trial of aluminum-adjuvanted respiratory syncytial virus F particle vaccine formulations in healthy women of childbearing age.

    PubMed

    August, Allison; Glenn, Gregory M; Kpamegan, Eloi; Hickman, Somia P; Jani, Dewal; Lu, Hanxin; Thomas, D Nigel; Wen, Judy; Piedra, Pedro A; Fries, Louis F

    2017-06-27

    Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants. We are developing an RSV fusion (F) protein nanoparticle vaccine for immunization of third trimester pregnant women to passively protect infants through transfer of RSV-specific maternal antibodies. The present trial was performed to assess the immunogenicity and safety of several formulations of RSV F vaccine in 1-dose or 2-dose schedules. Placebo, or vaccine with 60μg or 120μg RSV F protein and 0.2, 0.4, or 0.8mg aluminum, were administered intramuscularly on Days 0 and 28 to healthy women 18-35years old. Immunogenicity was assessed from Days 0 through 91 based on anti-F IgG and palivizumab-competitive antibody (PCA) by ELISA, and RSV A and B neutralizing antibodies by microneutralization (MN) assay. Solicited adverse events were collected through Day 7 and unsolicited adverse events through Day 91. All formulations were well-tolerated, with no treatment-related serious adverse events. Anti-F IgG and PCA responses were correlated and increased after both doses, while MN increased significantly only after the first dose, then plateaued. The timeliest and most robust antibody responses followed one dose of 120μg RSV F protein and 0.4mg aluminum, but persistence through 91days was modestly (∼25%) superior following two doses of 60μg RSV F protein and 0.8mg aluminum. Western blot analysis showed RSV infections in active vaccinees were reduced by 52% overall (p=0.009 overall) over the Day 0 through 90 period. RSV F nanoparticle vaccine formulations were well tolerated and immunogenic. The optimal combination of convenience and rapid response for immunization in the third trimester occurred with 120μg RSV F and 0.4mg aluminum, which achieved peak immune responses in 14days and sufficient persistence through 91days to allow for passive transfer of IgG antibodies to the fetus. NCT01960686. Copyright © 2017 Novavax. Published by Elsevier Ltd.. All rights reserved.

  7. Enabling skin vaccination using new delivery technologies

    PubMed Central

    Kim, Yeu-Chun; Prausnitz, Mark R.

    2011-01-01

    The skin is known to be a highly immunogenic site for vaccination, but few vaccines in clinical use target skin largely because conventional intradermal injection is difficult and unreliable to perform. Now, a number of new or newly adapted delivery technologies have been shown to administer vaccine to the skin either by non-invasive or minimally invasive methods. Non-invasive methods include high-velocity powder and liquid jet injection, as well as diffusion-based patches in combination with skin abrasion, thermal ablation, ultrasound, electroporation, and chemical enhancers. Minimally invasive methods are generally based on small needles, including solid microneedle patches, hollow microneedle injections, and tattoo guns. The introduction of these advanced delivery technologies can make the skin a site for simple, reliable vaccination that increases vaccine immunogenicity and offers logistical advantages to improve the speed and coverage of vaccination. PMID:21799951

  8. Enabling skin vaccination using new delivery technologies

    PubMed Central

    Kim, Yeu-Chun; Prausnitz, Mark R.

    2011-01-01

    The skin is known to be a highly immunogenic site for vaccination, but few vaccines in clinical use target skin largely because conventional intradermal injection is difficult and unreliable to perform. Now, a number of new or newly adapted delivery technologies have been shown to administer vaccine to the skin either by non-invasive or minimally invasive methods. Non-invasive methods include high-velocity powder and liquid jet injection, as well as diffusion-based patches in combination with skin abrasion, thermal ablation, ultrasound, electroporation, and chemical enhancers. Minimally invasive methods are generally based on small needles, including solid microneedle patches, hollow microneedle injections and tattoo guns. The introduction of these advanced delivery technologies can make the skin a site for simple, reliable vaccination that increases vaccine immunogenicity and offers logistical advantages to improve the speed and coverage of vaccination. PMID:21472533

  9. Designing pediatric vaccine formularies and pricing pediatric combination vaccines using operations research models and algorithms.

    PubMed

    Jacobson, Sheldon H; Sewell, Edward C; Allwine, Daniel A; Medina, Enrique A; Weniger, Bruce G

    2003-02-01

    The National Immunization Program, housed within the Centers for Disease Control and Prevention in the USA, has identified several challenges that must be faced in childhood immunization programs to deliver and procure vaccines that immunize children from the plethora of childhood diseases. The biomedical issues cited include how drug manufacturers can combine and formulate vaccines, how such vaccines are scheduled and administered and how economically sound vaccine procurement can be achieved. This review discusses how operations research models can be used to address the economics of pediatric vaccine formulary design and pricing, as well as how such models can be used to address a new set of pediatric formulary problems that will surface with the introduction of pediatric combination vaccines into the US pediatric immunization market.

  10. Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines

    PubMed Central

    Hossain, Md Kamal; Wall, Katherine A.

    2016-01-01

    Aberrantly glycosylated mucin 1 (MUC1) is a recognized tumor-specific antigen on epithelial cell tumors. A wide variety of MUC1 glycopeptide anti-cancer vaccines have been formulated by many research groups. Some researchers have used MUC1 alone as an immunogen whereas other groups used different antigenic carrier proteins such as bovine serum albumin or keyhole limpet hemocyanin for conjugation with MUC1 glycopeptide. A variety of adjuvants have been used with MUC1 glycopeptides to improve their immunogenicity. Fully synthetic multicomponent vaccines have been synthesized by incorporating different T helper cell epitopes and Toll-like receptor agonists. Some vaccine formulations utilized liposomes or nanoparticles as vaccine delivery systems. In this review, we discuss the immunological evaluation of different conjugate or synthetic MUC1 glycopeptide vaccines in different tumor or mouse models that have been published since 2012. PMID:27472370

  11. Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy

    PubMed Central

    Fox, Christopher B.; Barnes V, Lucien; Evers, Tara; Chesko, James D.; Vedvick, Thomas S.; Coler, Rhea N.; Reed, Steven G.; Baldwin, Susan L.

    2012-01-01

    Please cite this paper as: Fox et al. (2012) Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12031. Abstract Background  Adjuvant formulations are critical components of modern vaccines based on recombinant proteins, which are often poorly immunogenic without additional immune stimulants. Oil‐in‐water emulsions comprise an advanced class of vaccine adjuvants that are components of approved seasonal and pandemic influenza vaccines. However, few reports have been published that systematically evaluate the in vitro stability and in vivo adjuvant effects of different emulsion components. Objectives  To evaluate distinct classes of surfactants, oils, and excipients, for their effects on emulsion particle size stability, antigen structural interactions, and in vivo activity when formulated with a recombinant H5N1 antigen. Methods  Emulsions were manufactured by high pressure homogenization and characterized alone or in the presence of vaccine antigen by dynamic light scattering, zeta potential, viscosity, pH, hemolytic activity, electron microscopy, fluorescence spectroscopy, and SDS‐PAGE. In vivo vaccine activity in the murine model was characterized by measuring antibody titers, antibody‐secreting plasma cells, hemagglutination inhibition titers, and cytokine production. Results  We demonstrate that surfactant class and presence of additional excipients are not critical for biological activity, whereas oil structure is crucial. Moreover, we report that simplified two‐component emulsions appear more stable by particle size than more complex formulations.Finally, differences in antigen structural interactions with the various emulsions do not appear to correlate with in vivo activity. Conclusions  Oil‐in‐water emulsions can significantly enhance antibody and cellular immune responses to a pandemic influenza

  12. An adjuvant-modulated vaccine response in human whole blood

    PubMed Central

    Hakimi, Jalil; Azizi, Ali; Ausar, Salvador F.; Todryk, Stephen M.; Rahman, Nausheen; Brookes, Roger H.

    2017-01-01

    ABSTRACT The restimulation of an immune memory response by in vitro culture of blood cells with a specific antigen has been used as a way to gauge immunity to vaccines for decades. In this commentary we discuss a less appreciated application to support vaccine process development. We report that human whole blood from pre-primed subjects can generate a profound adjuvant-modulated, antigen-specific response to several different vaccine formulations. The response is able to differentiate subtle changes in the quality of an immune memory response to vaccine formulations and can be used to select optimal conditions relating to a particular manufacture process step. While questions relating to closeness to in vivo vaccination remain, the approach is another big step nearer to the more relevant human response. It has special importance for new adjuvant development, complementing other preclinical in vivo and in vitro approaches to considerably de-risk progression of novel vaccines before and throughout early clinical development. Broader implications of the approach are discussed. PMID:28605295

  13. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    Many types of manufacturing processes involve powders and are affected by powder behavior. It is highly desirable to implement tools that allow the behavior of bulk powder to be predicted based on the behavior of only small quantities of powder. Such descriptions can enable engineers to significantly improve the performance of powder processing and formulation steps. In this work, an enhancement of the centrifuge technique is proposed as a means of powder characterization. This enhanced method uses specially designed substrates with hemispherical indentations within the centrifuge. The method was tested using simulations of the momentum balance at the substrate surface. Initial simulations were performed with an ideal powder containing smooth, spherical particles distributed on substrates designed with indentations. The van der Waals adhesion between the powder, whose size distribution was based on an experimentally-determined distribution from a commercial silica powder, and the indentations was calculated and compared to the removal force created in the centrifuge. This provided a way to relate the powder size distribution to the rotational speed required for particle removal for various indentation sizes. Due to the distinct form of the data from these simulations, the cumulative size distribution of the powder and the Hamaker constant for the system were be extracted. After establishing adhesion force characterization for an ideal powder, the same proof-of-concept procedure was followed for a more realistic system with a simulated rough powder modeled as spheres with sinusoidal protrusions and intrusions around the surface. From these simulations, it was discovered that an equivalent powder of smooth spherical particles could be used to describe the adhesion behavior of the rough spherical powder by establishing a size-dependent 'effective' Hamaker constant distribution. This development made it possible to describe the surface roughness effects of the entire

  14. Processing polymeric powders

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1989-01-01

    The concept of uniformly and continuously depositing and sinter-fusing nominal 0.1 to 40 microns dimensioned electrostatically charged polymer powder particles onto essentially uniformly spread 5 to 20 micron grounded continuous fiber tow to produce a respoolable thermoplastic composite two-preg was formulated at NASA Langley. The process was reduced to practice under a NASA grant at the University of Akron this spring. The production of tow-preg is called phase 1. The production of ultrafine polymer powders from 5 to 10 percent (wt) polymer solids in solvent is considered. This is phase 0 and is discussed. The production of unitape from multi tow-pregs was also considered. This is phase 2 and is also discussed. And another approach to phase 1, also proposed last summer, was scoped. This is phase 1A and is also discussed.

  15. Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

    PubMed Central

    Nam, Hyo Song; Anderson, Anne J.; Kim, Young Cheol

    2018-01-01

    Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above 1 × 108 colony forming units/g after storage of the powder at 25 °C for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes. PMID:29887780

  16. A DNA vaccine against yellow fever virus: development and evaluation.

    PubMed

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  17. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    PubMed Central

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  18. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: a phase I/II randomized clinical study.

    PubMed

    Leroux-Roels, Geert; Maes, Cathy; De Boever, Fien; Traskine, Magali; Rüggeberg, Jens U; Borys, Dorota

    2014-11-28

    New vaccines containing highly conserved Streptococcus pneumoniae proteins such as pneumolysin toxoid (dPly) and histidine-triad protein D (PhtD) are being developed to provide broader protection against pneumococcal disease. This study evaluated the safety, reactogenicity and immunogenicity of different pneumococcal protein-containing formulations in adults. In a phase I double-blind study (www.clinicaltrials.gov: NCT00707798), healthy adults (18-40 years) were randomized (1:2:2:2:2:2:2) to receive two doses of one of six investigational vaccine formulations 2 months apart, or a single dose of the control 23-valent pneumococcal polysaccharide vaccine (23PPV; Pneumovax23™, Sanofi Pasteur MSD) followed by placebo. The investigational formulations contained dPly alone (10 or 30 μg), or both dPly and PhtD (10 or 30 μg each) alone or combined with the polysaccharide conjugates of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV; Synflorix™, GlaxoSmithKline Vaccines). Two groups primed with a formulation containing dPly and PhtD (10 or 30 μg each) continued to the follow-up phase II study (NCT00896064), in which they received a booster dose at 5-9 months after primary vaccination. Of 156 enrolled and vaccinated adults, 146 completed the primary immunization and 43 adults received a booster dose. During primary and booster vaccination, for any formulation, ≤ 8.9% of doses were followed by grade 3 solicited local or general adverse events. No fever >39.5°C (oral temperature) was reported. Unsolicited adverse events considered causally related to vaccination were reported following ≤ 33.3% of investigational vaccine doses. No serious adverse events were reported for adults receiving investigational vaccine formulations. Formulations containing dPly with or without PhtD were immunogenic for these antigens; polysaccharide conjugate-containing formulations were also immunogenic for those 10 polysaccharides

  19. Development of carrier-based formulation of root endophyte Piriformospora indica and its evaluation on Phaseolus vulgaris L.

    PubMed

    Tripathi, Swati; Das, Aparajita; Chandra, Anil; Varma, Ajit

    2015-02-01

    Endophytic fungi are plant beneficial rhizospheric microorganisms often applied as bioinoculants for enhanced and disease-free crop production. The objectives of the present work were to develop a carrier-based formulation of root endophyte Piriformospora indica as a bioinoculant. Powder formulation of four different carrier materials viz., talcum powder, clay, sawdust and bioboost (organic supplement) were evaluated and a talc-based formulation was optimized for a longer shelf life with respect to microbial concentration, storage temperature and biological activity. Finally the effect of optimized talc formulation on plant productivity was determined. The application dosages were optimized by studies on plant growth parameters of Phaseolus vulgaris L. plants under green house conditions. Five percent formulation (w/w) of talcum powder was observed to be the most stable at 30 °C with 10(8) CFU g(-1) and effective for a storage period of 6 months. The application of this optimized formulation resulted in increase of growth parameters of P. vulgaris L. and better adaptation of plants under green house conditions.

  20. Limitations of high dose carrier based formulations.

    PubMed

    Yeung, Stewart; Traini, Daniela; Tweedie, Alan; Lewis, David; Church, Tanya; Young, Paul M

    2018-06-10

    This study was performed to investigate how increasing the active pharmaceutical ingredient (API) content within a formulation affects the dispersion of particles and the aerosol performance efficiency of a carrier based dry powder inhalable (DPI) formulation, using a custom dry powder inhaler (DPI) development rig. Five formulations with varying concentrations of API beclomethasone dipropionate (BDP) between 1% and 30% (w/w) were formulated as a multi-component carrier system containing coarse lactose and fine lactose with magnesium stearate. The morphology of the formulation and each component were investigated using scanning electron micrographs while the particle size was measured by laser diffraction. The aerosol performance, in terms of aerodynamic diameter, was assessed using the British pharmacopeia Apparatus E cascade impactor (Next generation impactor). Chemical analysis of the API was observed by high performance liquid chromatography (HPLC). Increasing the concentration of BDP in the blend resulted in increasing numbers and size of individual agglomerates and densely packed BDP multi-layers on the surface of the lactose carrier. BDP present within the multi-layer did not disperse as individual primary particles but as dense agglomerates, which led to a decrease in aerosol performance and increased percentage of BDP deposition within the Apparatus E induction port and pre-separator. As the BDP concentration in the blends increases, aerosol performance of the formulation decreases, in an inversely proportional manner. Concurrently, the percentage of API deposition in the induction port and pre-separator could also be linked to the amount of micronized particles (BDP and Micronized composite carrier) present in the formulation. The effect of such dose increase on the behaviour of aerosol dispersion was investigated to gain greater insight in the development and optimisation of higher dosed carrier-based formulations. Copyright © 2018 Elsevier B.V. All

  1. Newcastle disease oil emulsion vaccines prepared with animal, vegetable, and synthetic oils.

    PubMed

    Stone, H D

    1997-01-01

    Animal, vegetable, and synthetic oils were tested as potential replacements for mineral oil in Newcastle disease oil emulsion vaccines. Emulsifying surfactants of seed oil origin comprised 10% of the the oil phase that was used to prepare water-in-oil emulsion vaccines that contained a final concentration of 20% aqueous antigen. The hemagglutination inhibition responses of chickens inoculated with 46 of the newly formulated oil vaccines were, in most cases, not significantly different from those of control chickens inoculated with mineral oil vaccine. Tissue reactions associated with animal, vegetable, and synthetic oil vaccines were less severe than those associated with mineral oil vaccines. Viscosity of the mineral oil formulations ranged from 1/2 to 3 1/2 times that of the mineral oil control vaccines. These findings indicate that any of several oils may be more suitable than mineral oil for preparation of immune adjuvants for poultry vaccines.

  2. A review of oral vaccination with transgenic vegetables.

    PubMed

    Tacket, C O; Mason, H S

    1999-08-01

    Mucosal immunization of the gastrointestinal tract is an effective way to stimulate local and systemic immune responses. Oral vaccines must be formulated in such a way that antigens are protected as they pass through the adverse environment of the stomach and are delivered to the mucosal inductive sites. Vaccine antigens cloned into edible transgenic plants are a promising new delivery system for oral vaccines. Such vaccines could be safe, inexpensive, and multicomponent.

  3. Vaccine stabilization: research, commercialization, and potential impact.

    PubMed

    Kristensen, Debra; Chen, Dexiang; Cummings, Ray

    2011-09-22

    All vaccines are susceptible to damage by elevated temperatures and many are also damaged by freezing. The distribution, storage, and use of vaccines therefore present challenges that could be reduced by enhanced thermostability, with resulting improvements in vaccine effectiveness. Formulation and processing technologies exist that can improve the stability of vaccines at temperature extremes, however, customization is required for individual vaccines and results are variable. Considerations affecting decisions about stabilization approaches include development cost, manufacturing cost, and the ease of use of the final product. Public sector agencies can incentivize vaccine developers to prioritize stabilization efforts through advocacy and by implementing policies that increase demand for thermostable vaccines. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Vaccine hypersensitivity--update and overview.

    PubMed

    Fritsche, Philipp J; Helbling, Arthur; Ballmer-Weber, Barbara K

    2010-05-01

    Concerns about possible reactions to vaccines or vaccinations are frequently raised. However, the rate of reported vaccine-induced adverse events is low and ranges between 4.8-83.0 per 100,000 doses of the most frequently used vaccines. The number of true allergic reactions to routine vaccines is not known; estimations range from 1 per 500,000 to 1 per 1,000,000 doses for most vaccines. When allergens such as gelatine or egg proteins are components of the formulation, the rate for serious allergic reactions may be higher. Nevertheless, anaphylactic, potentially life-threatening reactions to vaccines are still a rare event (approximately 1 per 1,500,000 doses). The variety of reported vaccine-related adverse events is broad. Most frequently, reactions to vaccines are limited to the injection site and result from a non specific activation of the inflammatory system by, for example, aluminium salts or the active microbial components. If allergy is suspected, an accurate examination followed by algorithms is the key for correct diagnosis, treatment and the decision regarding revaccination in patients with immediate-type reactions to vaccines.

  5. Crystal coating via spray drying to improve powder tabletability.

    PubMed

    Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C

    2014-11-01

    A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.

  6. Framework for Optimal Global Vaccine Stockpile Design for Vaccine-Preventable Diseases: Application to Measles and Cholera Vaccines as Contrasting Examples.

    PubMed

    Thompson, Kimberly M; Duintjer Tebbens, Radboud J

    2016-07-01

    Managing the dynamics of vaccine supply and demand represents a significant challenge with very high stakes. Insufficient vaccine supplies can necessitate rationing, lead to preventable adverse health outcomes, delay the achievements of elimination or eradication goals, and/or pose reputation risks for public health authorities and/or manufacturers. This article explores the dynamics of global vaccine supply and demand to consider the opportunities to develop and maintain optimal global vaccine stockpiles for universal vaccines, characterized by large global demand (for which we use measles vaccines as an example), and nonuniversal (including new and niche) vaccines (for which we use oral cholera vaccine as an example). We contrast our approach with other vaccine stockpile optimization frameworks previously developed for the United States pediatric vaccine stockpile to address disruptions in supply and global emergency response vaccine stockpiles to provide on-demand vaccines for use in outbreaks. For measles vaccine, we explore the complexity that arises due to different formulations and presentations of vaccines, consideration of rubella, and the context of regional elimination goals. We conclude that global health policy leaders and stakeholders should procure and maintain appropriate global vaccine rotating stocks for measles and rubella vaccine now to support current regional elimination goals, and should probably also do so for other vaccines to help prevent and control endemic or epidemic diseases. This work suggests the need to better model global vaccine supplies to improve efficiency in the vaccine supply chain, ensure adequate supplies to support elimination and eradication initiatives, and support progress toward the goals of the Global Vaccine Action Plan. © 2014 Society for Risk Analysis.

  7. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures.

    PubMed

    Thakkar, Sachin G; Ruwona, Tinashe B; Williams, Robert O; Cui, Zhengrong

    2017-04-03

    Insoluble aluminum salts such as aluminum oxyhydroxide have been used for decades as adjuvants in human vaccines, and many vaccines contain aluminum salts as adjuvants. Aluminum salt-adjuvanted vaccines must be managed in cold-chain (2-8° C) during transport and storage, as vaccine antigens in general are too fragile to be stable in ambient temperatures, and unintentional slowing freezing causes irreversible aggregation and permanent damage to the vaccines. Previously, we reported that thin-film freeze-drying can be used to convert vaccines adjuvanted with an aluminum salt from liquid suspension into dry powder without causing particle aggregation or decreasing in immunogenicity following reconstitution. In the present study, using ovalbumin (OVA)-adsorbed Alhydrogel® (i.e. aluminum oxyhydroxide, 2% w/v) as a model vaccine, we showed that the immunogenicity of thin-film freeze-dried OVA-adsorbed Alhydrogel® vaccine powder was not significantly changed after it was exposed for an extended period of time in temperatures as high as 40° C or subjected to repeated slow freezing-and-thawing. It is expected that immunization programs can potentially benefit by integrating thin-film freeze-drying into vaccine preparations.

  8. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures

    PubMed Central

    Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2017-01-01

    ABSTRACT Insoluble aluminum salts such as aluminum oxyhydroxide have been used for decades as adjuvants in human vaccines, and many vaccines contain aluminum salts as adjuvants. Aluminum salt-adjuvanted vaccines must be managed in cold-chain (2–8° C) during transport and storage, as vaccine antigens in general are too fragile to be stable in ambient temperatures, and unintentional slowing freezing causes irreversible aggregation and permanent damage to the vaccines. Previously, we reported that thin-film freeze-drying can be used to convert vaccines adjuvanted with an aluminum salt from liquid suspension into dry powder without causing particle aggregation or decreasing in immunogenicity following reconstitution. In the present study, using ovalbumin (OVA)-adsorbed Alhydrogel® (i.e. aluminum oxyhydroxide, 2% w/v) as a model vaccine, we showed that the immunogenicity of thin-film freeze-dried OVA-adsorbed Alhydrogel® vaccine powder was not significantly changed after it was exposed for an extended period of time in temperatures as high as 40° C or subjected to repeated slow freezing-and-thawing. It is expected that immunization programs can potentially benefit by integrating thin-film freeze-drying into vaccine preparations. PMID:28051903

  9. Self-organizing map analysis using multivariate data from theophylline powders predicted by a thin-plate spline interpolation.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Kikuchi, Shingo; Takayama, Kozo

    2010-11-01

    The quality by design concept in pharmaceutical formulation development requires establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline powders were prepared based on the standard formulation. The angle of repose, compressibility, cohesion, and dispersibility were measured as the response variables. These responses were predicted quantitatively on the basis of a nonlinear TPS. A large amount of data on these powders was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the powders could be classified into several distinctive clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and powder characteristics. For instance, the quantities of microcrystalline cellulose (MCC) and magnesium stearate (Mg-St) were classified distinctly into each cluster, indicating that the quantities of MCC and Mg-St were crucial for determining the powder characteristics. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline powder formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  10. Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design.

    PubMed

    Guenette, Estelle; Barrett, Andrew; Kraus, Debbie; Brody, Rachel; Harding, Ljiljana; Magee, Gavin

    2009-10-01

    Medicines for delivering therapeutic agents to the lung as dry powders primarily consist of a carrier and a micronised active pharmaceutical ingredient (API). The performance of an inhaled formulation will depend on a number of factors amongst which the particle size distribution (PSD) plays a key role. It is suggested that increasing the number of fine particles in the carrier can improve the aerosolisation of the API. In addition the effect of PSD upon a bulk powder is also broadly understood in terms of powder flow. Other aspects of functionality that different size fractions of the carrier affect are not clearly understood; for example, it is not yet clearly known how different size fractions contribute to the different functionalities of the carrier. It is the purpose of this investigation to examine the effects of different lactose size fractions on fine particle dose, formulation stability and the ability to process and fill the material in the preferred device. In order to understand the true impact of the size fractions of lactose on the performance of dry powder inhaled (DPI) products, a statistically designed study has been conducted. The study comprised various DPI blend formulations prepared using lactose monohydrate carrier systems consisting of mixtures of four size fractions. Interactive mixtures were prepared containing 1% (w/w) salbutamol sulphate. The experimental design enabled the evaluation of the effect of lactose size fractions on processing and performance attributes of the formulation. Furthermore, the results of the study demonstrate that an experimental design approach can be used successfully to support dry powder formulation development.

  11. Recent insights into cutaneous immunization: How to vaccinate via the skin.

    PubMed

    Engelke, Laura; Winter, Gerhard; Hook, Sarah; Engert, Julia

    2015-09-08

    Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Self-Assembly DNA Polyplex Vaccine inside Dissolving Microneedles for High-Potency Intradermal Vaccination.

    PubMed

    Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei

    2017-01-01

    The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries.

  13. Bioavailability of a Sustained Release Formulation of Curcumin

    PubMed Central

    Madhavi, Doddabele; Kagan, Daniel

    2014-01-01

    Context Curcumin has a number of beneficial effects, such as functioning as a potent antioxidant,1 anti-inflammatory, 2 and anticancer agent. Because of its poor oral bioavailability, very high oral doses and repeated dosing have been used to obtain effective plasma levels, with mixed results. High doses of curcumin may cause gastric disturbance, often resulting in poor patient compliance. Objective The objective of this study was to compare the relative bioavailability of MicroActive Curcumin—an advanced, micronized formulation of curcumin that is 25% curcuminoids in a sustained release matrix—with that of an unformulated, 95% pure curcumin powder. Design A dissolution study compared the solubility of the formulated and the unformulated curcumin. The research team also performed a single-dose, 12-h, crossover uptake study with 10 participants and a high-dose tolerability and accumulation study with 3 participants, comparing the 2 forms of curcumin. Setting The study was done in MAZE Laboratories (Purchase, NY, USA). Participants Ten healthy male and female volunteers, aged 21–66 y, took part in the single-dose study. Three participants, 2 female and 1 male aged 40–55 y, took part in the tolerability and accumulation study. The participants were people from the community. Intervention For the dissolution study, the research team filled hard gelatin capsules with unformulated 95% curcumin powder and the MicroActive Curcumin powder to the equivalent of 25 mg curcuminoids. For the single-dose study, participants received 500 mg of curcumin in 2 forms. MicroActive Curcumin capsules were administered after breakfast, and blood samples were drawn at 1, 2, 4, 8, and 12 h postdose. After a 7-d washout period, the protocol was repeated for unformulated, 95% curcumin powder capsules. For the tolerability study, the unformulated, 95% curcumin powder was given at a dose that provided 2 g of curcumin for 7 d followed by 5 g of curcumin for an additional 7 d. After a

  14. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients.

    PubMed

    Minne, Antoine; Boireau, Hélène; Horta, Maria Joao; Vanbever, Rita

    2008-11-01

    The aim of this study was to investigate the influence of formulation excipients on physical characteristics of inhalation dry powders prepared by spray-drying. The excipients used were a series of amino acids (glycine, alanine, leucine, isoleucine), trehalose and dipalmitoylphosphatidylcholine (DPPC). The particle diameter and the powder density were assessed by laser diffraction and tap density measurements, respectively. The aerosol behaviour of the powders was studied in a Multi-Stage Liquid Impinger. The nature and the relative proportion of the excipients affected the aerosol performance of the powders, mainly by altering powder tap density and degree of particle aggregation. The alanine/trehalose/DPPC (30/10/60 w/w/w) formulation showed optimal aerodynamic behaviour with a mass median aerodynamic diameter of 4.7 microm, an emitted dose of 94% and a fine particle fraction of 54% at an airflow rate of 100 L/min using a Spinhaler inhaler device. The powder had a tap density of 0.10 g/cm(3). The particles were spherical with a granular surface and had a 4 microm volume median diameter. In conclusion, optimization of the aerosolization properties of inhalation dry powders could be achieved by appropriately selecting the composition of the particles.

  16. Ensuring the optimal safety of licensed vaccines: a perspective of the vaccine research, development, and manufacturing companies.

    PubMed

    Kanesa-thasan, Niranjan; Shaw, Alan; Stoddard, Jeffrey J; Vernon, Thomas M

    2011-05-01

    Vaccine safety is increasingly a focus for the general public, health care providers, and vaccine manufacturers, because the efficacy of licensed vaccines is accepted as a given. Commitment to ensuring safety of all vaccines, including childhood vaccines, is addressed by the federal government, academia, and industry. Safety activities conducted by the vaccine research, development, and manufacturing companies occur at all stages of product development, from selection and formulation of candidate vaccines through postlicensure studies and surveillance of adverse-event reports. The contributions of multiple interacting functional groups are required to execute these tasks through the life cycle of a product. We describe here the safeguards used by vaccine manufacturers, including specific examples drawn from recent experience, and highlight some of the current challenges. Vaccine-risk communication becomes a critical area for partnership of vaccine companies with government, professional associations, and nonprofit advocacy groups to provide information on both benefits and risks of vaccines. The crucial role of the vaccine companies in ensuring the optimal vaccine-safety profile, often overlooked, will continue to grow with this dynamic arena.

  17. Heat transfer model and finite element formulation for simulation of selective laser melting

    NASA Astrophysics Data System (ADS)

    Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.

    2017-10-01

    A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

  18. First-in-human safety and immunogenicity investigations of three adjuvanted reduced dose inactivated poliovirus vaccines (IPV-Al SSI) compared to full dose IPV Vaccine SSI when given as a booster vaccination to adolescents with a history of IPV vaccination at 3, 5, 12months and 5years of age.

    PubMed

    Lindgren, Line M; Tingskov, Pernille N; Justesen, Annette H; Nedergaard, Bettina S; Olsen, Klaus J; Andreasen, Lars V; Kromann, Ingrid; Sørensen, Charlotte; Dietrich, Jes; Thierry-Carstensen, Birgit

    2017-01-23

    There is a demand of affordable IPV in the World. Statens Serum Institut (SSI) has developed three reduced dose IPV formulations adsorbed to aluminium hydroxide; 1/3 IPV-Al, 1/5 IPV-Al and 1/10 IPV-Al SSI, and now report the results of the first investigations in humans. 240 Danish adolescents, aged 10-15years, and childhood vaccinated with IPV were booster vaccinated with 1/3 IPV-Al, 1/5 IPV-Al, 1/10 IPV-Al or IPV Vaccine SSI. The booster effects (GMTRs) of the three IPV-Al SSI were compared to IPV Vaccine SSI, and evaluated for non-inferiority. The pre-vaccination GMTs were similar across the groups; 926 (type 1), 969 (type 2) and 846 (type 3) in the total trial population. The GMTRs by poliovirus type and IPV formulation were: Type 1: 17.0 (1/3 IPV-Al), 13.0 (1/5 IPV-Al), 7.1 (1/10 IPV-Al) and 42.2 (IPV Vaccine SSI). Type 2: 12.5 (1/3 IPV-Al), 13.1 (1/5 IPV-Al), 7.6 (1/10 IPV-Al) and 47.8 (IPV Vaccine SSI). Type 3: 14.5 (1/3 IPV-Al), 16.2 (1/5 IPV-Al), 8.9 (1/10 IPV-Al) and 62.4 (IPV Vaccine SSI) Thus, the three IPV-Al formulations were highly immunogenic, but inferior to IPV Vaccine SSI, in this booster vaccination trial. No SAE and no AE of severe intensity occurred. 59.2% of the subjects reported at least one AE. Injection site pain was the most frequent AE in all groups; from 24.6% to 43.3%. Injection site redness and swelling frequencies were<5% in most and<10% in all groups. The most frequent systemic AEs were fatigue (from 8.2% to 15.0%) and headache (from 15.0% to 28.3%). Most AEs were of mild intensity. In conclusion, the three IPV-Al SSI were safe in adolescents and the booster effects were satisfactory. ClinicalTrials.gov registration number: NCT02280447. Copyright © 2016. Published by Elsevier Ltd.

  19. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Ravendra

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not inducedmore » by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.« less

  20. Acceptability of different oral formulations in infants and preschool children

    PubMed Central

    van Riet-Nales, Diana A; de Neef, Barbara J; Schobben, Alfred F A M; Ferreira, José A; Egberts, Toine C G; Rademaker, Catharine M A

    2013-01-01

    Objective Liquid medicines are easy to swallow. However, they may have disadvantages, such as a bad taste or refrigerated storage conditions. These disadvantages may be avoided by the use of oral solid medicines, such as powders or tablets. The aim of this study was to investigate the acceptability of and preference among four oral formulations in domiciliary infants and preschool children in The Netherlands. Methods Parents administered four oral placebo dosage forms that were aimed at a neutral taste, at home, to their child (1–4 years of age) twice on one day following a randomised cross-over design: small (4 mm) tablet, powder, suspension and syrup. They were asked to report the child's acceptability by a score on a 10 cm visual analogue scale (VAS score) and by the result of the intake. At the end of the study, they were asked to report the preference of the child and themselves. Results 183 children were included and 148 children were evaluated. The data revealed a period/cross-over effect. The estimate of the mean VAS score was significantly higher for the tablet than for the suspension (tablet 9.39/9.01; powder 8.84/8.20, suspension 8.26/7.90, syrup 8.35/8.19; data day 1/all days). The estimate of the mean number of intakes fully swallowed was significantly higher for the tablet than for the other formulations (all p values <0.05). Children and parents preferred the tablet and syrup over the suspension and the suspension over the powder (all p values <0.05). Conclusions All formulations were well accepted. The tablets were the best accepted formulation; the tablets and syrup the most preferred. Trial Registration number ISRCTN63138435. PMID:23853004

  1. Ultrasound-assisted powder-coating technique to improve content uniformity of low-dose solid dosage forms.

    PubMed

    Genina, Natalja; Räikkönen, Heikki; Antikainen, Osmo; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-09-01

    An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium phosphate, producing a uniform drug layer on the particle surfaces. It was possible to regulate the amount of API in the treated powder. The thickness of the API layer on the surface of the MCC particles increased near linearly as the number of coating cycles increased, allowing a precise control of the drug content. The tablets (n = 950) prepared from the coated powder showed significantly improved weight and content uniformity in comparison with the reference tablets compressed from a physical binary powder mixture. This was due to the coated formulation remaining uniform during the entire tabletting process, whereas the physical mixture of the powders was subject to segregation. In conclusion, the ultrasound-assisted technique presented here is an effective tool for homogeneous drug coating of powders of irregular particle shape and broad particle size distribution, improving content uniformity of low-dose API in tablets, and consequently, ensuring the safe delivery of a potent active substance to patients.

  2. Carbohydrate-based vaccine adjuvants - discovery and development.

    PubMed

    Hu, Jing; Qiu, Liying; Wang, Xiaoli; Zou, Xiaopeng; Lu, Mengji; Yin, Jian

    2015-10-01

    The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.

  3. Gastroretentive behavior of orally administered radiolabeled tamarind seed formulations in rabbits validated by gamma scintigraphy.

    PubMed

    Razavi, Mahboubeh; Karimian, Hamed; Yeong, Chai Hong; Fadaeinasab, Mehran; Khaing, Si Lay; Chung, Lip Yong; Mohamad Haron, Didi Erwandi B; Noordin, Mohamed Ibrahim

    2017-01-01

    This study aimed to formulate floating gastroretentive tablets containing metformin hydrochloric acid (HCl), using various grades of hydrogel such as tamarind powders and xanthan to overcome short gastric residence time of the conventional dosage forms. Different concentrations of the hydrogels were tested to determine the formulation that could provide a sustained release of 12 h. Eleven formulations with different ratios of tamarind seed powder/tamarind kernel powder (TKP):xanthan were prepared. The physical parameters were observed, and in vitro drug-release studies of the prepared formulations were carried out. Optimal formulation was assessed for physicochemical properties, thermal stability, and chemical interaction followed by in vivo gamma scintigraphy study. MKP3 formulation with a TKP:xanthan ratio of 3:2 was found to have 99.87% release over 12 h. Furthermore, in vivo gamma scintigraphy study was carried out for the optimized formulation in healthy New Zealand White rabbits, and the pharmacokinetic parameters of developed formulations were obtained. 153 Sm 2 O 3 was used to trace the profile of release in the gastrointestinal tract of the rabbits, and the drug release was analyzed. The time ( T max ) at which the maximum concentration of metformin HCl in the blood ( C max ) was observed, and it was extended four times for the gastroretentive formulation in comparison with the formulation without polymers. C max and the half-life were found to be within an acceptable range. It is therefore concluded that MKP3 is the optimal formulation for sustained release of metformin HCl over a period of 12 h as a result of its floating properties in the gastric region.

  4. Gastroretentive behavior of orally administered radiolabeled tamarind seed formulations in rabbits validated by gamma scintigraphy

    PubMed Central

    Razavi, Mahboubeh; Karimian, Hamed; Yeong, Chai Hong; Fadaeinasab, Mehran; Khaing, Si Lay; Chung, Lip Yong; Mohamad Haron, Didi Erwandi B; Noordin, Mohamed Ibrahim

    2017-01-01

    This study aimed to formulate floating gastroretentive tablets containing metformin hydrochloric acid (HCl), using various grades of hydrogel such as tamarind powders and xanthan to overcome short gastric residence time of the conventional dosage forms. Different concentrations of the hydrogels were tested to determine the formulation that could provide a sustained release of 12 h. Eleven formulations with different ratios of tamarind seed powder/tamarind kernel powder (TKP):xanthan were prepared. The physical parameters were observed, and in vitro drug-release studies of the prepared formulations were carried out. Optimal formulation was assessed for physicochemical properties, thermal stability, and chemical interaction followed by in vivo gamma scintigraphy study. MKP3 formulation with a TKP:xanthan ratio of 3:2 was found to have 99.87% release over 12 h. Furthermore, in vivo gamma scintigraphy study was carried out for the optimized formulation in healthy New Zealand White rabbits, and the pharmacokinetic parameters of developed formulations were obtained. 153Sm2O3 was used to trace the profile of release in the gastrointestinal tract of the rabbits, and the drug release was analyzed. The time (Tmax) at which the maximum concentration of metformin HCl in the blood (Cmax) was observed, and it was extended four times for the gastroretentive formulation in comparison with the formulation without polymers. Cmax and the half-life were found to be within an acceptable range. It is therefore concluded that MKP3 is the optimal formulation for sustained release of metformin HCl over a period of 12 h as a result of its floating properties in the gastric region. PMID:28031701

  5. Prospects for new viral vaccines.

    PubMed

    Marmion, B P

    1980-08-11

    Animal virology has made outstanding contributions to preventive medicine by the development of vaccines for the control of infectious disease in man and animals. Cost-benefit analysis indicates substantial savings in health care costs from the control of diseases such as smallpox, poliomyelitis, yellow fever and measels. Areas for further development include vaccines for influenza (living, attenuated virus), the herpes group (varicella: cytomegalovirus), respiratory syncytial virus, rotavirus and hepatitis A, B, and non A/non B. The general options for vaccine formulation are discussed with particular emphasis on approaches with the use of viral genetics to 'tailor make' vaccine viruses with defined growth potential in laboratory systems, low pathogenicity, and defined antigens. Current progress with the development of an inactivated hepatitis B vaccine is reviewed as a case study in vaccine development. The impact of recent experiments in cloning hepatitis B virus DNA in E. coli on the production of a purified viral polypeptide vaccine is assessed.

  6. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines.

    PubMed

    Wedlock, D Neil; Aldwell, Frank E; Vordermeier, H Martin; Hewinson, R Glyn; Buddle, Bryce M

    2011-12-15

    Mycobacterium bovis bacille Calmette-Guérin (BCG) delivered to calves by the oral route in a formulated lipid matrix has been previously shown to induce protection against bovine tuberculosis. A study was conducted in cattle to determine if a combination of a low dose of oral BCG and a protein vaccine could induce protective immunity to tuberculosis while not sensitising animals to tuberculin. Groups of calves (10 per group) were vaccinated by administering 2 × 10(7)colony forming units (CFU) of BCG orally or a combination of 2 × 10(7)CFU oral BCG and a protein vaccine comprised of M. bovis culture filtrate proteins (CFP) formulated with the adjuvants Chitin and Gel 01 and delivered by the intranasal route, or CFP formulated with Emulsigen and the TLR2 agonist Pam(3)CSK(4) and administered by the subcutaneous (s.c.) route. Two further groups were vaccinated with the CFP/Chitin/Gel 01 or CFP/Emulsigen/Pam(3)CSK(4) vaccines alone. Positive control groups were given 10(8)CFU oral BCG or 10(6)CFU s.c. BCG while a negative control group was non-vaccinated. All animals were challenged with M. bovis 15 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Groups of cattle vaccinated with s.c. BCG, 10(8)CFU or 2 × 10(7)CFU oral BCG showed significant reductions in seven, three and four pathological or microbiological disease parameters, respectively, compared to the results for the non-vaccinated group. There was no evidence of protection in calves vaccinated with the combination of oral BCG and CFP/Emulsigen/Pam(3)CSK(4) or oral BCG and CFP/Chitin/Gel 01 or vaccinated with the protein vaccines alone. Positive responses in the comparative cervical skin test at 12 weeks after vaccination were only observed in animals vaccinated with s.c. BCG, 10(8)CFU oral BCG or a combination of 2 × 10(7)CFU oral BCG and CFP/Chitin/Gel 01. In conclusion, co-administration of a protein vaccine, administered by either systemic or mucosal routes with oral

  7. The Density Code for the Development of a Vaccine?

    PubMed Central

    Cheng, Wei

    2016-01-01

    The development of prophylactic vaccines remains largely empirical in nature and rarely have general rules been applied in the strategic decision and the formulation of a viral vaccine. Currently there are a total of 15 virus agents from 12 unique virus families with vaccines licensed by the US Food and Drug Administration. Extensive structural information on these viral particles and potential mechanisms of protection are available for the majority of these virus pathogens and their respective vaccines. Here I review the quantitative features of these viral surface antigens in relation to the molecular mechanisms of B cell activation, and point out a potential correlation between the density of immunogenic proteins displayed on the surface of the vaccine antigen carrier and the success of a vaccine. These features help us understand the humoral immunity induced by viral vaccines on a quantitative ground and re-emphasize the importance of antigen density on the activation of the immune system. Although the detailed mechanisms behind this phenomenon remain to be explored, it implies that both the size of antigen carriers and the density of immunogenic proteins displayed on these carriers are important parameters that may need to be optimized for the formulation of a vaccine. PMID:27649885

  8. [Study on the optimal extraction process of chaihushugan powder].

    PubMed

    Wang, Chun-yan; Zhang, Wan-ming; Zhang, Dan-shen; An, Fang; Tian, Jia-ming

    2009-11-01

    To study the optimal extraction process of chaihushugan powder by orthogonal design. RP-HPLC method was developed for the determination of saikosaponin a, ferulic acid, hesperidin and paeoniflorin in chaihushugan powder. The contents of the components and the extraction yield were selected as assessment indices. Four factors were study by L9 (3(4)), including the alcohol concentration, amount of alcohol, duration of extraction and times of extraction. The optimal extracting condition was 80% alcohol consumed as 10 times of crude herb amount, and extracting two times for 90 min each time. This study supplies theoretical base for the development of chaihushugan powder formulation.

  9. Stability of Commercially Available Macular Carotenoid Supplements in Oil and Powder Formulations

    PubMed Central

    Phelan, David

    2017-01-01

    We previously identified that the concentration of zeaxanthin in some commercially available carotenoid supplements did not agree with the product’s label claim. The conclusion of this previous work was that more quality assurance was needed to guarantee concordance between actual and declared concentrations of these nutrients i.e., lutein (L) zeaxanthin (Z) and meso-zeaxanthin (MZ) in commercially available supplements. Since this publication, we performed further analyses using different commercially available macular carotenoid supplements. Three capsules from one batch of eight products were analysed at two different time points. The results have been alarming. All of the powder filled products (n = 3) analysed failed to comply with their label claim (L: 19–74%; Z: 57–73%; MZ: 83–97%); however, the oil filled soft gel products (n = 5) met or were above their label claim (L: 98–122%; Z: 117–162%; MZ: 97–319%). We also identified that the carotenoid content of the oil filled capsules were stable over time (e.g., L average percentage change: −1.7%), but the powder filled supplements degraded over time (e.g., L average percentage change: −17.2%). These data are consistent with our previous work, and emphasize the importance of using carotenoid interventions in oil based formulas rather than powder filled formulas. PMID:29039801

  10. Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine

    PubMed Central

    Ahmad, Gul; Zhang, Weidong; Torben, Workineh; Haskins, Chad; Diggs, Sue; Noor, Zahid; Le, Loc

    2009-01-01

    Advent of an effective schistosome vaccine would contribute significantly toward reducing the disease spectrum and transmission of schistosomiasis. We have targeted a functionally important antigen, Sm-p80, as a vaccine candidate because of its consistent immunogenicity, protective and antifecundity potentials, and important role in the immune evasion process. In this study, we report that using two vaccination approaches (prime boost and recombinant protein), Sm-p80-based vaccine formulation(s) confer up to 70% reduction in worm burden in mice. Animals immunized with the vaccine exhibited a decrease in egg production by up to 75%. The vaccine elicited strong immune responses that included IgM, IgA, and IgG (IgG1, IgG2a, IgG2b, and IgG3) in vaccinated animals. Splenocytes proliferated in response to Sm-p80 produced Th1 and Th17 response enhancing cytokines. These results again emphasize the potential of Sm-p80 as a viable vaccine candidate for schistosomiasis. PMID:19809833

  11. Intradermal needle-free powdered drug injection by a helium-powered device.

    PubMed

    Liu, John; Hogan, N Catherine; Hunter, Ian W

    2012-01-01

    We present a new method for needle-free powdered drug injection via a bench-top gas-powered device. This injector provides an alternative method of vaccine delivery to address the cold chain problem--the cost and risk of transporting temperature sensitive vaccines to developing countries. The device houses interchangeable nozzle inserts to vary orifice geometries and is capable of delivering polymer beads (1-5 µm diameter) into the dermal layer of porcine tissue. Results for injection shape and injection depth versus nozzle orifice diameter demonstrate the device's controllability.

  12. Liposomal adjuvants for human vaccines.

    PubMed

    Alving, Carl R; Beck, Zoltan; Matyas, Gary R; Rao, Mangala

    2016-06-01

    Liposomes are well-known as drug carriers, and are now critical components of two of six types of adjuvants present in licensed vaccines. The liposomal vaccine adjuvant field has long been dynamic and innovative, and research in this area is further examined as new commercial products appear in parallel with new vaccines. In an arena where successful products exist the potential for new types of vaccines with liposomal adjuvants, and alternative liposomal adjuvants that could emerge for new types of vaccines, are discussed. Major areas include: virosomes, constructed from phospholipids and proteins from influenza virus particles; liposomes containing natural and synthetic neutral or anionic phospholipids, cholesterol, natural or synthetic monophosphoryl lipid A, and QS21 saponin; non-phospholipid cationic liposomes; and combinations and mixtures of liposomes and immunostimulating ingredients as adjuvants for experimental vaccines. Liposomes containing monophosphoryl lipid A and QS21 have considerable momentum that will result soon in emergence of prophylactic vaccines to malaria and shingles, and possible novel cancer vaccines. The licensed virosome vaccines to influenza and hepatitis A will be replaced with virosome vaccines to other infectious diseases. Alternative liposomal formulations are likely to emerge for difficult diseases such as tuberculosis or HIV-1 infection.

  13. Formulation, stability and pharmacokinetics of sugar-based salmon calcitonin-loaded nanoporous/nanoparticulate microparticles (NPMPs) for inhalation.

    PubMed

    Amaro, Maria Inês; Tewes, Frederic; Gobbo, Oliviero; Tajber, Lidia; Corrigan, Owen I; Ehrhardt, Carsten; Healy, Anne Marie

    2015-04-10

    A challenge exists to produce dry powder inhaler (DPI) formulations with appropriate formulation stability, biological activity and suitable physicochemical and aerosolisation characteristics that provide a viable alternative to parenteral formulations. The present study aimed to produce sugar-based nanoporous/nanoparticulate microparticles (NPMPs) loaded with a therapeutic peptide - salmon calcitonin (sCT). The physicochemical properties of the powders and their suitability for pulmonary delivery of sCT were determined. Production of powders composed of sCT loaded into raffinose or trehalose with or without hydroxypropyl-β-cyclodextrin was carried out using a laboratory scale spray dryer. Spray dried microparticles were spherical, porous and of small geometric size (≤2 μm). Aerodynamic assessment showed that the fine particle fraction (FPF) less than 5 μm ranged from 45 to 86%, depending on the formulation. The mass median aerodynamic diameter (MMAD) varied between 1.9 and 4.7 μm. Compared to unprocessed sCT, sCT:raffinose composite systems presented a bioactivity of approximately 100% and sCT:trehalose composite systems between 70-90% after spray drying. Storage stability studies demonstrated composite systems with raffinose to be more stable than those containing trehalose. These sugar-based salmon calcitonin-loaded NPMPs retain reasonable sCT bioactivity and have micromeritic and physicochemical properties which indicate their suitability for pulmonary delivery. Formulations presented a similar pharmacokinetic profile to sCT solution. Hence the advantage of a dry powder formulation is its non-invasive delivery route and ease of administration of the sCT. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology.

    PubMed

    Cheng, Y S; Yazzie, D; Gao, J; Muggli, D; Etter, J; Rosenthal, G J

    2003-01-01

    Polylactic acid (PLA) powders have been used as vector particles to carry pharmaceutical material. Drugs incorporated in the PLA powder can be retained in the lung for a longer period and may be more effective than free-form drugs. A new formulation of L-PLA dry powder, which was easy to disperse in the air, was produced by using a supercritical technology. The L-PLA powder was characterized in terms of physical particle size and aerodynamic size as generated with a Turbuhaler dry powder inhaler (DPI). Electron microscopy analysis of the particles indicated that they were individual particles in bulk form and became aggregate particles after generation by the Turbuhaler. Aerodynamic particle size analysis using both an Aerodynamic Particle Sizer (APS) aerosol spectrometer and Andersen impactor showed that the aerodynamic size decreased as the flow rate in the Turbuhaler increased from 28.3 to 90 L min(-1). Deposition patterns in the human respiratory tract were estimated using a realistic physical replica of human airways. Deposition of the L-PLA was high (80.8%) in the oral airway at 28.3 L min(-1) and an average of 73.4% at flow rates of 60 and 90 L min(-1). In the lung region, the deposition totaled 7.2% at 28.3 L min(-1), 18.3% at 60 L min(-1), and 17.6% at 90 L min(-1). These deposition patterns were consistent with aerodynamic size measurement, which showed 76 to 86% deposition in the USP/EP (US Pharmacopoeia/European Pharmacopoeia) induction port. As the flow rate increased, fewer aggregates were formed resulting in the smaller aerodynamic particles. As a result, more particles penetrated the oral airways and were available for deposition in the lung. Our results showed that L-PLA particles as manufactured by the supercritical technology could be used in a DPI that does not require the use of carrier particles to facilitate aerosol delivery.

  15. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.

    PubMed

    Tanner, Matthew W; Sattenspiel, Lisa; Ntaimo, Lewis

    2008-10-01

    We present a stochastic programming framework for finding the optimal vaccination policy for controlling infectious disease epidemics under parameter uncertainty. Stochastic programming is a popular framework for including the effects of parameter uncertainty in a mathematical optimization model. The problem is initially formulated to find the minimum cost vaccination policy under a chance-constraint. The chance-constraint requires that the probability that R(*) vaccination reproduction number. We also show how to formulate the problem in two additional cases: (a) finding the optimal vaccination policy when vaccine supply is limited and (b) a cost-benefit scenario. The class of epidemic models for which this method can be used is described and we present an example formulation for which the resulting problem is a mixed-integer program. A short numerical example based on plausible parameter values and distributions is given to illustrate how including parameter uncertainty improves the robustness of the optimal strategy at the cost of higher coverage of the population. Results derived from a stochastic programming analysis can also help to guide decisions about how much effort and resources to focus on collecting data needed to provide better estimates of key parameters.

  16. HIV-1 vaccines

    PubMed Central

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  17. Formulation and nutritional evaluation of a healthy vegetable soup powder supplemented with soy flour, mushroom, and moringa leaf.

    PubMed

    Farzana, Tasnim; Mohajan, Suman; Saha, Trissa; Hossain, Md Nur; Haque, Md Zahurul

    2017-07-01

    The research study was conducted to develop a healthy vegetables soup powder supplemented with soy flour, mushroom, moringa leaf and compare its nutritional facts with locally available soup powders. Proximate analysis and sensory evaluation were done by standard method. In this study, moisture, ash, protein, fat, fiber, carbohydrate, and energy content were ranged from 2.83% to 5.46%, 9.39% to 16.48%, 6.92% to 16.05%, 4.22% to 6.39%, 0.22% to 1.61%, 58.81% to 75.41%, and 337.42 to 386.72 kcal/100 g, respectively. Highest content of vitamin D, minerals, protein, and fiber and lowest content of moisture, fat, and carbohydrate were found in the presently developed soy-mushroom-moringa soup powder compare to locally available soup powders. Vitamin C was also found significantly higher than locally available soup powders S1, S2, and S3. Heavy metals were not found in any of the soup powders. On the sensory and microbiological point of view, the presently developed soup powder was found highly acceptable up to 6 months. So, the developed soy-mushroom-moringa soup powder is nutritionally superior to locally available soup powders and sufficient to meet day-to-day nutritional requirements as a supplement.

  18. Designing Vaccines for the Twenty-First Century Society

    PubMed Central

    Finco, Oretta; Rappuoli, Rino

    2013-01-01

    The history of vaccination clearly demonstrates that vaccines have been highly successful in preventing infectious diseases, reducing significantly the incidence of childhood diseases and mortality. However, many infections are still not preventable with the currently available vaccines and they represent a major cause of mortality worldwide. In the twenty-first century, the innovation brought by novel technologies in antigen discovery and formulation together with a deeper knowledge of the human immune responses are paving the way for the development of new vaccines. Final goal will be to rationally design effective vaccines where conventional approaches have failed. PMID:24478777

  19. Effective High-Frequency Permeability of Compacted Metal Powders

    NASA Astrophysics Data System (ADS)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  20. The influence of crystal habit on the prediction of dry powder inhalation formulation performance using the cohesive-adhesive force balance approach.

    PubMed

    Hooton, Jennifer C; Jones, Matthew D; Harris, Haggis; Shur, Jagdeep; Price, Robert

    2008-09-01

    The aim of this investigation was to study the influence of crystalline habit of active pharmaceutical ingredients on the cohesive-adhesive force balance within model dry powder inhaler (DPI) formulations and the corresponding affect on DPI formulation performance. The cohesive-adhesive balance (CAB) approach to colloid probe atomic force microscopy (AFM) was employed to determine the cohesive and adhesive interactions of micronized budesonide particles against the {102} and {002} faces of budesonide single crystals and crystalline substrates of different sugars (cyclodextrin, lactose, trehalose, raffinose, and xylitol), respectively. These data were used to measure the relative level of cohesion and adhesion via CAB and the possible influence on in vitro performance of a carrier-based DPI formulation. Varying the crystal habit of the drug had a significant effect on the cohesive measurement of micronized budesonide probes, with the cohesive values on the {102} faces being approximately twice that on the {002} crystal faces. However, although different CAB values were measured with the sugars with respect to the crystal faces chosen for the cohesive-based measurement, the overall influence on the rank order of the CAB values was not directly influenced. For these data sets, the CAB gradient indicated that a decrease in the dominance of the adhesive forces led to a concomitant increase in fine particle delivery, reaching a plateau as the cohesive forces became dominant. The study suggested that crystal habit of the primary drug crystals influences the cohesive interactions and the resulting force balance measurements of colloid probe CAB analysis.

  1. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    PubMed

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  2. Immunopotentiating reconstituted influenza virus virosome vaccine delivery system for immunization against hepatitis A.

    PubMed Central

    Glück, R; Mischler, R; Brantschen, S; Just, M; Althaus, B; Cryz, S J

    1992-01-01

    Hepatitis A virus (HAV) was purified from MRC-5 human diploid cell cultures, inactivated with formalin, and evaluated for safety and immunogenicity in humans. Three vaccine formulations were produced: (a) a fluid preparation containing inactivated HAV, (b) inactivated HAV adsorbed to Al(OH)3, and (c) inactivated HAV coupled to novel immunopotentiating reconstituted influenza virosomes (IRIV). IRIV were prepared by combining phosphatidylcholine, phosphatidylethanolamine, phospholipids originating from the influenza virus envelope, influenza virus hemagglutinin, and neuraminidase. The HAV-IRIV appeared as unilamellar vesicles with a diameter of approximately 150 nm when viewed by transmission electron microscopy. Upon intramuscular injection, the alum-adsorbed vaccine was associated with significantly (P < 0.01) more local adverse reactions than either the fluid or IRIV formulations. 14 d after a single dose of vaccine, all the recipients of the IRIV formulation seroconverted (> or = 20 mIU/ml) versus 30 and 44% for those who received the fluid and alum-adsorbed vaccines, respectively (P < 0.001). The geometric mean anti-HAV antibody titer achieved after immunization with the IRIV-HAV vaccine was also significantly higher (P < 0.005) compared with the other two vaccines. Images PMID:1334977

  3. The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice.

    PubMed

    Hess, Jessica A; Zhan, Bin; Torigian, April R; Patton, John B; Petrovsky, Nikolai; Zhan, Tingting; Bottazzi, Maria Elena; Hotez, Peter J; Klei, Thomas R; Lustigman, Sara; Abraham, David

    2016-07-01

    In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans.

  4. Vaccine production, distribution, access, and uptake.

    PubMed

    Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W

    2011-07-30

    For human vaccines to be available on a global scale, complex production methods, meticulous quality control, and reliable distribution channels are needed to ensure that the products are potent and effective at the point of use. The technologies used to manufacture different types of vaccines can strongly affect vaccine cost, ease of industrial scale-up, stability, and, ultimately, worldwide availability. The complexity of manufacturing is compounded by the need for different formulations in different countries and age-groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, to ensure optimum access and uptake, strong partnerships are needed between private manufacturers, regulatory authorities, and national and international public health services. For vaccines whose supply is insufficient to meet demand, prioritisation of target groups can increase the effect of these vaccines. In this report, we draw from our experience of vaccine development and focus on influenza vaccines as an example to consider production, distribution, access, and other factors that affect vaccine uptake and population-level effectiveness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Impact of BRICS’ investment in vaccine development on the global vaccine market

    PubMed Central

    Milstien, Julie; Schmitt, Sarah

    2014-01-01

    Abstract Brazil, the Russian Federation, India, China and South Africa – the countries known as BRICS – have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector’s price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS’ accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes. PMID:24940018

  6. Impact of BRICS' investment in vaccine development on the global vaccine market.

    PubMed

    Kaddar, Miloud; Milstien, Julie; Schmitt, Sarah

    2014-06-01

    Brazil, the Russian Federation, India, China and South Africa--the countries known as BRICS--have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector's price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS' accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes.

  7. In situ absorption and relative bioavailability studies of zaleplon loaded self-nanoemulsifying powders.

    PubMed

    Janga, Karthik Y; Jukanti, Raju; Sunkavalli, Sharath; Velpula, Ashok; Bandari, Suresh; Kandadi, Prabhakar; Veerareddy, Prabhakar Reddy

    2013-01-01

    Self-nanoemulsifying drug delivery systems (SNEDDSs) offer potential as suitable carriers for improved oral delivery of poorly soluble and low bioavailable drugs. To derive self-nanoemulsifying powders (SNEPs), the optimized Z-SNEDDS formulation was adsorbed onto different carriers and based on micromeritics the formulation loaded onto neusilin US2 (SNEP-N) was selected for further characterization. The solid-state characterization (scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction) studies unravel the transformation of native crystalline state to amorphous and/or molecular state. The higher predictive effective permeability coefficient and fraction absorbed in humans extrapolated from in situ single-pass intestinal absorption study data in rats provide an insight on the potential of SNEPs for augment in absorption across gastrointestinal barrier. Overall a 3.5-fold enhancement in the extent of absorption of zaleplon from SNEP-N formulation proves the feasibility of SNEPs formulation for improved oral delivery of zaleplon.

  8. From The Cover: Poly- amino ester-containing microparticles enhance the activity of nonviral genetic vaccines

    NASA Astrophysics Data System (ADS)

    Little, Steven R.; Lynn, David M.; Ge, Qing; Anderson, Daniel G.; Puram, Sidharth V.; Chen, Jianzhu; Eisen, Herman N.; Langer, Robert

    2004-06-01

    Current nonviral genetic vaccine systems are less effective than viral vaccines, particularly in cancer systems where epitopes can be weakly immunogenic and antigen-presenting cell processing and presentation to T cells is down-regulated. A promising nonviral delivery method for genetic vaccines involves microencapsulation of antigen-encoding DNA, because such particles protect plasmid payloads and target them to phagocytic antigen-presenting cells. However, conventional microparticle formulations composed of poly lactic-co-glycolic acid take too long to release encapsulated payload and fail to induce high levels of target gene expression. Here, we describe a microparticle-based DNA delivery system composed of a degradable, pH-sensitive poly- amino ester and poly lactic-co-glycolic acid. These formulations generate an increase of 3-5 orders of magnitude in transfection efficiency and are potent activators of dendritic cells in vitro. When used as vaccines in vivo, these microparticle formulations, unlike conventional formulations, induce antigen-specific rejection of transplanted syngenic tumor cells.

  9. A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study.

    PubMed

    Wiedermann, Ursula; Wiltschke, C; Jasinska, J; Kundi, M; Zurbriggen, R; Garner-Spitzer, E; Bartsch, R; Steger, G; Pehamberger, H; Scheiner, O; Zielinski, C C

    2010-02-01

    We have previously shown in mice that vaccination with three Her-2-peptides representing B-cell epitopes of the extracellular domain of Her-2/neu induces Her-2/neu-specific IgG antibodies with strong anti-tumor activity in vitro and in vivo. We have now finalized a phase I clinical trial with an anti-Her-2/neu vaccine-construct of immunopotentiating reconstituted influenza virosomes with the three peptides in patients with metastatic breast cancer (MBC). Ten MBC patients with low protein overexpression of Her-2/neu of MBC (+ or ++ upon immunohistochemistry, FISH negative) and positive hormone receptor status were enrolled in a single center phase I study. The virosomal formulated vaccine, consisting of 10 microg/peptide, was intramuscularly applied three times on days 1, 28, and 56. The primary endpoint of the study, which lasted 12 weeks, was safety, the secondary endpoint immunogenicity. Local erythema at the injection site was the only vaccine-related side effect occurring in four patients. In 8 of 10 patients an increase in peptide-specific antibody titer measured by ELISA was found. Importantly, the induced antibodies were also directed against the native Her-2/neu protein. Cellular immune responses, as measured by in vitro production of IL-2, IFN-c, and TNF-a of PBMCs showed a marked increase after vaccination in the majority of vaccinees. Notably, the number of CD4+CD25+Foxp3+T regulatory cells, which were significantly increased compared to healthy controls prior to vaccination, was markedly reduced following vaccination. In all, the immunological responses after vaccination indicated that the patients in stage IV of disease were immunocompetent and susceptible to vaccination. The Her-2/neu multipeptide vaccine was safe, well tolerated and effective in overcoming immunological tolerance to Her-2/neu. The induction of anti-Her-2-specific antibodies could result in clinical benefit comparable to passive anti-Her-2 antibody therapy.

  10. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance.

    PubMed

    Dorji, Dorji; Mooi, Frits; Yantorno, Osvaldo; Deora, Rajendar; Graham, Ross M; Mukkur, Trilochan K

    2018-02-01

    Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.

  11. Designing an effective vaccine to prevent Epstein-Barr virus-associated diseases: challenges and opportunities.

    PubMed

    Dasari, Vijayendra; Bhatt, Kunal H; Smith, Corey; Khanna, Rajiv

    2017-04-01

    Epstein-Barr virus (EBV) is a ubiquitous herpesvirus associated with a number of clinical manifestations. Primary EBV infection in young adolescents often manifests as acute infectious mononucleosis and latent infection is associated with multiple lymphoid and epithelial cancers and autoimmune disorders, particularly multiple sclerosis. Areas covered: Over the last decade, our understanding of pathogenesis and immune regulation of EBV-associated diseases has provided an important platform for the development of novel vaccine formulations. In this review, we discuss developmental strategies for prophylactic and therapeutic EBV vaccines which have been assessed in preclinical and clinical settings. Expert commentary: Major roadblocks in EBV vaccine development include no precise understanding of the clinical correlates of protection, uncertainty about adjuvant selection and the unavailability of appropriate animal models. Recent development of new EBV vaccine formulations provides exciting opportunities for the formal clinical assessment of novel formulations.

  12. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.

    PubMed

    Silva, A L; Soema, P C; Slütter, B; Ossendorp, F; Jiskoot, W

    2016-04-02

    Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.

  13. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.

    PubMed

    Singh, Deepak J; Jain, Rajesh R; Soni, P S; Abdul, Samad; Darshana, Hegde; Gaikwad, Rajiv V; Menon, Mala D

    2015-08-01

    Dry powder inhalers (DPI) are generally formulated by mixing micronized drug particles with coarse lactose carrier particles to assist powder handling during the manufacturing and powder aerosol delivery during patient use. In the present study, surface modified lactose (SML) particles were produced using force control agents, and their in vitro performance on dry powder inhaler (DPI) formulation of Fluticasone propionate was studied. With a view to reduce surface passivation of high surface free energy sites on the most commonly used DPI carrier, α- lactose monohydrate, effects of various force control agents such as Pluronic F-68, Cremophor RH 40, glyceryl monostearate, polyethylene glycol 6000, magnesium stearate, and soya lecithin were studied. DPI formulations prepared with SML showed improved flow properties, and atomic force microscopy (AFM) studies revealed decrease in surface roughness. The DSC and X-ray diffraction patterns of SML showed no change in the crystal structure and thermal behavior under the experimental conditions. The fine particle fraction (FPF) values of lactose modified with Pluronic F-68, Cremophor RH 40, glyceryl monostearate were improved, with increase in concentration up to 0.5%. Soya lecithin and PEG 6000 modified lactose showed decrease in FPF value with increase in concentration. Increase in FPF value was observed with increasing concentration of magnesium stearate. Two different DPI devices, Rotahaler(®) and Diskhaler(®), were compared to evaluate the performance of SML formulations. FPF value of all SML formulations were higher using both devices as compared to the same formulations prepared using untreated lactose. One month stability of SML formulations at 40°C/75% RH, in permeable polystyrene tubes did not reveal any significant changes in FPF values. SML particles can help in reducing product development hindrances and improve inhalational properties of DPI.

  14. An investigation into the impact of magnesium stearate on powder feeding during roller compaction.

    PubMed

    Dawes, Jason; Gamble, John F; Greenwood, Richard; Robbins, Phil; Tobyn, Mike

    2012-01-01

    A systematic evaluation on the effect of magnesium stearate on the transmission of a placebo formulation from the hopper to the rolls during screw fed roller compaction has been carried out. It is demonstrated that, for a system with two 'knurled' rollers, addition of 0.5% w/w magnesium stearate can lead to a significant increase in ribbon mass throughput, with a consequential increase in roll gap, compared to an unlubricated formulation (manufactured at equivalent process conditions). However, this effect is reduced if one of the rollers is smooth. Roller compaction of a lubricated formulation using two smooth rollers was found to be ineffective due to a reduction in friction at the powder/roll interface, i.e. powder was not drawn through the rollers leading to a blockage in the feeding system. An increase in ribbon mass throughput could also be achieved if the equipment surfaces were pre-lubricated. However this increase was found to be temporary suggesting that the residual magnesium stearate layer was removed from the equipment surfaces. Powder sticking to the equipment surfaces, which is common during pharmaceutical manufacturing, was prevented if magnesium stearate was present either in the blend, or at the roll surface. It is further demonstrated that the influence of the hopper stirrer, which is primarily used to prevent bridge formation in the hopper and help draw powder more evenly into the auger chamber, can lead to further mixing of the formulation, and could therefore affect a change in the lubricity of the carefully blended input material.

  15. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W; Kersten, Gideon F A; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn's disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab.

  16. An oral Mycobacterium bovis BCG vaccine for wildlife produced in the absence of animal-derived reagents.

    PubMed

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2009-09-01

    Cultures of Mycobacterium bovis BCG, comprising predominantly single-cell bacilli, were prepared in broth without animal-derived reagents. When formulated into a vegetable-derived lipid matrix, the vaccine was stable in vitro and was immunogenic in vivo upon feeding it to mice. This formulation could be useful for oral vaccination of wildlife against tuberculosis, where concern over transmissible prions may preclude the field use of vaccines containing animal products.

  17. Vaccine production, distribution, access and uptake

    PubMed Central

    Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W.

    2011-01-01

    Making human vaccines available on a global scale requires the use of complex production methods, meticulous quality control and reliable distribution channels that ensure the products are potent and effective at their point of use. The technologies involved in manufacturing different types of vaccines may strongly influence vaccine cost, ease of industrial scale-up, stability and ultimately world-wide availability. Manufacturing complexity is compounded by the need for different formulations for different countries and age groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, ensuring optimal access and uptake also requires strong partnerships between private manufacturers, regulatory authorities and national and international public health services. For vaccines whose supplies are limited, either due to rapidly emerging diseases or longer-term mismatch of supply and demand, prioritizing target groups can increase vaccine impact. Focusing on influenza vaccines as an example that well illustrates many of the relevant points, this article considers current production, distribution, access and other factors that ultimately impact on vaccine uptake and population-level effectiveness. PMID:21664680

  18. Peptide Vaccines for Leishmaniasis.

    PubMed

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  19. The potential of 1018 ISS adjuvant in hepatitis B vaccines: HEPLISAV™ review.

    PubMed

    Eng, Nelson F; Bhardwaj, Nitin; Mulligan, Rebecca; Diaz-Mitoma, Francisco

    2013-08-01

    Hepatitis B (HBV) virus infects the liver, and upon chronic infection, can cause liver cirrhosis and hepatocellular carcinoma. Despite universal vaccination programs against the virus, HBV still affects over 2 billion people worldwide, with over 240 million developing a chronic infection. While current alum-adjuvanted vaccines have shown efficacy in promoting seroprotection in healthy adults, 5-10% of immune-competent populations fail to achieve long-lasting seroprotection from these formulations. Furthermore, a large proportion of immunocompromised patients fail to achieve seroprotective antibody titers after receiving these vaccines. A novel vaccine candidate, HEPLISAV™, uses immunostimulatory sequences (ISS), in its formulation that helps induce a robust humoral and cell mediated immunity against HBV. In Phase III clinical trials, HEPLISAV™ has been shown to elicit seroprotective antibody titers with fewer immunizations. Similar safety profiles are demonstrated when compared with current HBV vaccines. For these reasons, HEPLISAV™ is an attractive vaccine to combat this global disease.

  20. Overview of Vaccine Adjuvants: Introduction, History, and Current Status.

    PubMed

    Shah, Ruchi R; Hassett, Kimberly J; Brito, Luis A

    2017-01-01

    Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.

  1. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.

    PubMed

    Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no

  2. The Thermal Stabilization of Vaccines Against Agents of Bioterrorism

    DTIC Science & Technology

    2005-09-01

    to determine (1) whether rPA in the formulation buffer in the absence of excipients binds to Alhydrogel®and (2) the binding capacity . The aluminum...botulinum toxin (Allergan), A ricin vaccine (DOR Biopharma ) and a vaccine against Norwalk virus (Ligocyte) were also initiated and are in various

  3. Aluminum in erythropoietin formulations: lyophilized versus liquid forms.

    PubMed

    Veiga, Marlei; Bohrer, Denise; Noremberg, Simone; Mattiazzi, Patricia; do Nascimento, Paulo C; de Carvalho, Leandro M

    2013-01-01

    Erythropoietin (EPO) formulations may comprise aluminum (Al) as a contaminant. Due to the toxicity of Al in chronic kidney disease patients, possible sources of Al were investigated. Since EPO formulations are stored in container-closure systems made of glass and rubber, and both contain Al, formulation ingredients may enable its leaching into the solution during shelf-life. Individual solutions of formulation ingredients were stored in new glass vials and in contact with the rubber stopper and kept at 4 ± 2 °C. For 12 months, aliquots of each solution were collected for analysis. Fifteen commercial samples of EPO were analyzed for their Al content. Aluminum was determined by atomic absorption spectrometry. Glass and rubber are sources of Al for EPO formulations. Storage assay showed that citrate and phosphate (used as buffers) extracted high amounts of Al from the container/closure parts. The most important difference, however, was found when comparing liquid and lyophilized samples. While in liquid forms the Al level reached 943 μg/L, in lyophilized forms the level did not exceed 20 μg/L. The container system was also confirmed as a source of Al in reconstituted lyophilized samples. Al in reconstituted samples stored in their own vials increased 19-fold in 12 months. Lyophilized powders stored for 2 years in glass vials contained less Al than in 1 month after dissolution. The difference in the Al measured in liquid forms of EPO and in lyophilized powders suggests that the latter would be the best pharmaceutical form for CKD patients.

  4. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  5. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  6. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Making evidence-based selections of influenza vaccines.

    PubMed

    Childress, Billy-Clyde; Montney, Joshua D; Albro, Elise A

    2014-01-01

    Years ago, intramuscular influenza vaccines were the only option for those who wanted to arm themselves against the flu. Today there are alternatives, including intradermal injections and intranasal sprays. In order to select the right influenza vaccine for their patients, pharmacists, and other healthcare professionals must have a basic understanding of the immune system. Influenza vaccines elicit different levels of immune response involving innate and adaptive immunity, which are critical to fighting infection. For the 2013-2014 flu season, there were 13 different formulations of influenza vaccines on the market with vast differences in indications, contraindications, and effectiveness. The CDC does not recommend one vaccine over another, but recommends that all patients be vaccinated against the flu. Preventing the spread of influenza is no simple task; however, the most recent evidence on influenza vaccines and sufficient knowledge of the immune system will allow pharmacists and other healthcare providers to better advocate for vaccines, determine which are most appropriate, and ensure their proper administration.

  8. Microneedle and mucosal delivery of influenza vaccines

    PubMed Central

    Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun

    2017-01-01

    In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both non-invasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia) and intranasal vaccines (FluMist) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated micorneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross protective mucosal immunity but effective non-live mucosal vaccines remain to be developed. PMID:22697052

  9. Novel Adjuvants and Immunomodulators for Veterinary Vaccines.

    PubMed

    Heegaard, Peter M H; Fang, Yongxiang; Jungersen, Gregers

    2016-01-01

    Adjuvants are crucial for efficacy of vaccines, especially subunit and recombinant vaccines. Rational vaccine design, including knowledge-based and molecularly defined adjuvants tailored for directing and potentiating specific types of host immune responses towards the antigens included in the vaccine is becoming a reality with our increased understanding of innate and adaptive immune activation. This will allow future vaccines to induce immune reactivity having adequate specificity as well as protective and recallable immune effector mechanisms in appropriate body compartments, including mucosal surfaces. Here we describe these new developments and, when possible, relate new immunological knowledge to the many years of experience with traditional, empirical adjuvants. Finally, some protocols are given for production of emulsion (oil-based) and liposome-based adjuvant/antigen formulations.

  10. Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids

    PubMed Central

    Villa, Joseph A.; Huang, Edward T. S.; Yang, Tzung-Horng; Carpenter, John F.; Sievers, Robert E.

    2008-01-01

    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions. PMID:18581212

  11. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  12. Optimized formulation of solid self-microemulsifying sirolimus delivery systems

    PubMed Central

    Cho, Wonkyung; Kim, Min-Soo; Kim, Jeong-Soo; Park, Junsung; Park, Hee Jun; Cha, Kwang-Ho; Park, Jeong-Sook; Hwang, Sung-Joo

    2013-01-01

    Background The aim of this study was to develop an optimized solid self-microemulsifying drug delivery system (SMEDDS) formulation for sirolimus to enhance its solubility, stability, and bioavailability. Methods Excipients used for enhancing the solubility and stability of sirolimus were screened. A phase-separation test, visual observation for emulsifying efficiency, and droplet size analysis were performed. Ternary phase diagrams were constructed to optimize the liquid SMEDDS formulation. The selected liquid SMEDDS formulations were prepared into solid form. The dissolution profiles and pharmacokinetic profiles in rats were analyzed. Results In the results of the oil and cosolvent screening studies, Capryol™ Propylene glycol monocapry late (PGMC) and glycofurol exhibited the highest solubility of all oils and cosolvents, respectively. In the surfactant screening test, D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) was determined to be the most effective stabilizer of sirolimus in pH 1.2 simulated gastric fluids. The optimal formulation determined by the construction of ternary phase diagrams was the T32 (Capryol™ PGMC:glycofurol:vitamin E TPGS = 30:30:40 weight ratio) formulation with a mean droplet size of 108.2 ± 11.4 nm. The solid SMEDDS formulations were prepared with Sucroester 15 and mannitol. The droplet size of the reconstituted solid SMEDDS showed no significant difference compared with the liquid SMEDDS. In the dissolution study, the release amounts of sirolimus from the SMEDDS formulation were significantly higher than the raw sirolimus powder. In addition, the solid SMEDDS formulation was in a more stable state than liquid SMEDDS in pH 1.2 simulated gastric fluids. The results of the pharmacokinetic study indicate that the SMEDDS formulation shows significantly greater bioavailability than the raw sirolimus powder or commercial product (Rapamune® oral solution). Conclusion The results of this study suggest the potential use

  13. Phytol-based novel adjuvants in vaccine formulation: 2. Assessment of efficacy in the induction of protective immune responses to lethal bacterial infections in mice.

    PubMed

    Lim, So-Yon; Bauermeister, Adam; Kjonaas, Richard A; Ghosh, Swapan K

    2006-10-23

    Adjuvants are known to significantly enhance vaccine efficacy. However, commercial adjuvants often have limited use because of toxicity in humans. The objective of this study was to determine the comparative effectiveness of a diterpene alcohol, phytol and its hydrogenated derivative PHIS-01, relative to incomplete Freund's adjuvant (IFA), a commonly used adjuvant in augmenting protective immunity in mice against E. coli and S. aureus, and in terms of inflammatory cytokines. Vaccines, consisting of heat-attenuated E. coli or S. aureus and either of the two phytol-based adjuvants or IFA, were tested in female BALB/c mice. The vaccines were administered intraperitoneally at 10-day intervals. The efficacy of the phytol and PHIS-01, as compared to IFA, was assessed by ELISA in terms of anti-bacterial antibody and inflammatory cytokines. We also examined the ability of the vaccines to induce specific protective immunity by challenging mice with different doses of live bacteria. IFA, phytol, and PHIS-01 were equally efficient in evoking anti-E. coli antibody response and in providing protective immunity against live E. coli challenges. In contrast, the antibody response to S. aureus was significant when PHIS-01 was used as the adjuvant. However, in terms of the ability to induce protective immunity, phytol was most effective against S. aureus. Moreover, during challenges with live E. coli and S. aureus immune mice produced much less IL-6, the mediators of fatal septic shock syndromes. Our results show that vaccine formulations containing phytol and PHIS-01 as adjuvants confer a robust and protective immunity against both Gram-negative and Gram-positive bacteria without inducing adverse inflammatory cytokine due to IL-6.

  14. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  15. Assessment of bivalent and tetravalent dengue vaccine formulations in flavivirus-naïve adults in Mexico.

    PubMed

    Dayan, Gustavo H; Galán-Herrera, Juan-Francisco; Forrat, Remi; Zambrano, Betzana; Bouckenooghe, Alain; Harenberg, Anke; Guy, Bruno; Lang, Jean

    2014-01-01

    Several ChimeriVax-Dengue (CYD)-based vaccination strategies were investigated as potential alternatives to vaccination with tetravalent CYD vaccine (CYD-TDV) in this phase IIa trial conducted in 2008-9 in 150 healthy adults. Participants were randomized and vaccinated on D0 and D105 (± 15 days). One group received bivalent CYD vaccine against serotypes 1 and 3 (CYD-1;3) on day 0 and CYD-2;4 on day 105 (± 15 days). Two groups received an injection at each timepoint of a tetravalent blend of CYD-1;3;4 and a VERO cell derived, live attenuated vaccine against serotype 2 (VDV-2), or the reference CYD-TDV. A fourth group received Japanese encephalitis (JE) vaccine on days -14, -7 and 0, followed by CYD-TDV on day 105. Viraemia was infrequent in all groups. CYD-4 viraemia was most frequent after tetravalent vaccination, while CYD-3 viraemia was most frequent after the first bivalent vaccination. Immunogenicity as assessed by 50% plaque reduction neutralisation test on D28 was comparable after the first injection of either tetravalent vaccine, and increased after the second injection, particularly with the blended CYD-1;3;4/ VDV-2 vaccine. In the bivalent vaccine group, immune response against serotype 3 was highest and the second injection elicited a low immune response against CYD 2 and 4. Immune responses after the first injection of CYD-TDV in the JE-primed group were in general higher than after the first injection in the other groups. All tested regimens were well tolerated without marked differences between groups. Bivalent vaccination showed no advantage in terms of immunogenicity. NCT00740155.

  16. Russian vaccines against especially dangerous bacterial pathogens

    PubMed Central

    Feodorova, Valentina A; Sayapina, Lidiya V; Corbel, Michael J; Motin, Vladimir L

    2014-01-01

    In response to the epidemiological situation, live attenuated or killed vaccines against anthrax, brucellosis, cholera, glanders, plague and tularemia were developed and used for immunization of at-risk populations in the Former Soviet Union. Certain of these vaccines have been updated and currently they are used on a selective basis, mainly for high risk occupations, in the Russian Federation. Except for anthrax and cholera these vaccines currently are the only licensed products available for protection against the most dangerous bacterial pathogens. Development of improved formulations and new products is ongoing. PMID:26038506

  17. Methamphetamine Vaccines: Improvement through Hapten Design.

    PubMed

    Collins, Karen C; Schlosburg, Joel E; Bremer, Paul T; Janda, Kim D

    2016-04-28

    Methamphetamine (MA) addiction is a serious public health problem, and current methods to abate addiction and relapse are currently ineffective for mitigating this growing global epidemic. Development of a vaccine targeting MA would provide a complementary strategy to existing behavioral therapies, but this has proven challenging. Herein, we describe optimization of both hapten design and formulation, identifying a vaccine that elicited a robust anti-MA immune response in mice, decreasing methamphetamine-induced locomotor activity.

  18. The Human Hookworm Vaccine.

    PubMed

    Hotez, Peter J; Diemert, David; Bacon, Kristina M; Beaumier, Coreen; Bethony, Jeffrey M; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; Freire, Marcos da Silva; Homma, Akira; Lee, Bruce Y; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K

    2013-04-18

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel(®) and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Human Hookworm Vaccine

    PubMed Central

    Hotez, Peter J.; Diemert, David; Bacon, Kristina M.; Beaumier, Coreen; Bethony, Jeffrey M.; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; da Silva Freire, Marcos; Homma, Akira; Lee, Bruce Y.; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K.

    2013-01-01

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel® and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases. PMID:23598487

  20. Molecular analysis of varicella vaccines and varicella-zoster virus from vaccine-related skin lesions.

    PubMed

    Thiele, Sonja; Borschewski, Aljona; Küchler, Judit; Bieberbach, Marc; Voigt, Sebastian; Ehlers, Bernhard

    2011-07-01

    To prevent complications that might follow an infection with varicella-zoster virus (VZV), the live attenuated Oka strain (V-Oka) is administered to children in many developed countries. Three vaccine brands (Varivax from Sanofi Pasteur MSD; Varilrix and Priorix-Tetra, both from Glaxo-Smith-Kline) are licensed in Germany and have been associated with both different degrees of vaccine effectiveness and adverse effects. To identify genetic variants in the vaccines that might contribute to rash-associated syndromes, single nucleotide polymorphism (SNP) profiles of variants from the three vaccines and rash-associated vaccine-type VZV from German vaccinees were quantitatively compared by PCR-based pyrosequencing (PSQ). The Varivax vaccine contained an estimated 3-fold higher diversity of VZV variants, with 20% more wild-type (wt) SNPs than Varilrix and Priorix-Tetra. These minor VZV variants in the vaccines were identified by analyzing cloned full-length open reading frame (ORF) orf62 sequences by chain termination sequencing and PSQ. Some of these sequences amplified from vaccine VZV were very similar or identical to those of the rash-associated vaccine-type VZV from vaccinees and were almost exclusively detected in Varivax. Therefore, minorities of rash-associated VZV variants are present in varicella vaccine formulations, and it can be concluded that the analysis of a core set of four SNPs is required as a minimum for a firm diagnostic differentiation of vaccine-type VZV from wt VZV.

  1. Safety and long-term humoral immune response in adults after vaccination with an H1N1 2009 pandemic influenza vaccine with or without AS03 adjuvant.

    PubMed

    Ferguson, Murdo; Risi, George; Davis, Matthew; Sheldon, Eric; Baron, Mira; Li, Ping; Madariaga, Miguel; Fries, Louis; Godeaux, Olivier; Vaughn, David

    2012-03-01

    In this study (NCT00985088) we evaluated different formulations of an H1N1 2009 pandemic influenza vaccine that deliver various viral hemagglutinin (HA) doses with or without AS03 (a tocopherol-based oil-in-water adjuvant system). A total of 1340 healthy subjects aged ≥18 years were randomized to receive 1 or 2 doses of an adjuvanted (3.75-μg HA/AS03(A) or 1.9-μg HA/AS03(B)) or nonadjuvanted vaccine formulation. Safety and immunogenicity (by hemagglutination-inhibition [HI] assay) after each dose and 6 months after dose 1 are reported here. A single dose of AS03(A)-adjuvanted 3.75-μg HA H1N1 2009 induced the strongest immune responses in subjects aged 18-64 years (seroprotection rate [SPR], 97.2%; seroconversion rate [SCR], 90.1%) as well as in subjects aged >64 years (SPR, 91.1%; SCR, 78.2%) 21 days after vaccination. Six months after dose 1, subjects who received 2 doses of either the adjuvanted formulation or 1 dose of the adjuvanted 3.75-μg HA formulation continued to meet all Center for Biologics Evaluation and Research and Committee for Medicinal Products for Human Use criteria. All formulations had clinically acceptable safety profiles. A single dose of the 3.75-μg HA AS03(A)-adjuvanted H1N1 2009 influenza vaccine was highly immunogenic in both age strata (18-64 and >64 years), inducing long-term persistence of the immune response until at least 6 months after dose 1.

  2. Vaccine adjuvant technology: from mechanistic concepts to practical applications.

    PubMed

    Degen, Winfried G J; Jansen, Theo; Schijns, Virgil E J C

    2003-04-01

    Distinct types of immune responses are required for efficient elimination of different pathogens. Programming of the desired type of immune response by safe nonreplicating vaccines requires suitable vaccine adjuvants. Adjuvants largely determine the magnitude and quality of immune responses specific for the coadministered antigen. Unfortunately, rational vaccine design requiring a rational choice of vaccine adjuvant, is hampered by a lack of knowledge about the mechanism(s) of vaccine adjuvant activity. The current review addresses different critical immunological processes possibly explaining adjuvant functions. In addition, we discuss traditional vaccine adjuvant formulations and their possible mode of action. Finally, we reflect on the latest technologies for the identification of novel adjuvants using molecular analysis of immune activation and functional genomics.

  3. Future Approaches to DNA Vaccination Against Hemorrhagic Fever Viruses.

    PubMed

    Suschak, John J; Schmaljohn, Connie S

    2018-01-01

    To date, there is no protective vaccine for Ebola virus infection. Safety concerns have prevented the use of live-attenuated vaccines, and forced researchers to examine new vaccine formulations. DNA vaccination is an attractive method for inducing protective immunity to a variety of pathogens, but the low immunogenicity seen in larger animals and humans has hindered its usage. Various approaches have been used to improve the immunogenicity of DNA vaccines, but the most successful, and widespread, is electroporation. Of increasing interest is the use of molecular adjuvants to produce immunomodulatory signals that can both amplify and direct the immune response. When combined, these approaches have the possibility to push DNA vaccination into the forefront of medicine.

  4. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w

  5. Stability of live attenuated rotavirus vaccine with selected preservatives and primary containers.

    PubMed

    Lal, Manjari; Jarrahian, Courtney; Zhu, Changcheng; Hosken, Nancy A; McClurkan, Chris L; Koelle, David M; Saxon, Eugene; Roehrig, Andrew; Zehrung, Darin; Chen, Dexiang

    2016-05-11

    Rotavirus infection, which can be prevented by vaccination, is responsible for a high burden of acute gastroenteritis disease in children, especially in low-income countries. An appropriate formulation, packaging, and delivery device for oral rotavirus vaccine has the potential to reduce the manufacturing cost of the vaccine and the logistical impact associated with introduction of a new vaccine, simplify the vaccination procedure, and ensure that the vaccine is safely and accurately delivered to children. Single-dose prefilled presentations can be easy to use; however, they are typically more expensive, can be a bottleneck during production, and occupy a greater volume per dose vis-à-vis supply chain storage and medical waste disposal, which is a challenge in low-resource settings. Multi-dose presentations used thus far have other issues, including increased wastage of vaccine and the need for separate delivery devices. In this study, the goals were to evaluate both the technical feasibility of using preservatives to develop a liquid multi-dose formulation and the primary packaging alternatives for orally delivered, liquid rotavirus vaccines. The feasibility evaluation included evaluation of commonly used preservatives for compatibility with rotavirus vaccines and stability testing of rotavirus vaccine in various primary containers, including Lameplast's plastic tubes, BD's oral dispenser version of Uniject™ (Uniject DP), rommelag's blow-fill-seal containers, and MEDInstill's multi-dose vial and pouch. These presentations were compared to a standard glass vial. The results showed that none of the preservatives tested were compatible with a live attenuated rotavirus vaccine because they had a detrimental effect on the viability of the virus. In the presence of preservatives, vaccine virus titers declined to undetectable levels within 1 month. The vaccine formulation without preservatives maintained a stability profile over 12 months in all primary containers

  6. An overview of bioinformatics tools for epitope prediction: implications on vaccine development.

    PubMed

    Soria-Guerra, Ruth E; Nieto-Gomez, Ricardo; Govea-Alonso, Dania O; Rosales-Mendoza, Sergio

    2015-02-01

    Exploitation of recombinant DNA and sequencing technologies has led to a new concept in vaccination in which isolated epitopes, capable of stimulating a specific immune response, have been identified and used to achieve advanced vaccine formulations; replacing those constituted by whole pathogen-formulations. In this context, bioinformatics approaches play a critical role on analyzing multiple genomes to select the protective epitopes in silico. It is conceived that cocktails of defined epitopes or chimeric protein arrangements, including the target epitopes, may provide a rationale design capable to elicit convenient humoral or cellular immune responses. This review presents a comprehensive compilation of the most advantageous online immunological software and searchable, in order to facilitate the design and development of vaccines. An outlook on how these tools are supporting vaccine development is presented. HIV and influenza have been taken as examples of promising developments on vaccination against hypervariable viruses. Perspectives in this field are also envisioned. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  8. Sex and Gender Impact Immune Responses to Vaccines Among the Elderly

    PubMed Central

    Fink, Ashley L.

    2015-01-01

    In response to the recommended vaccines in older-aged individuals, sex differences occur in response to those that protect against influenza, tetanus, pertussis, shingles, and pneumococcal infections. The efficacy of vaccines recommended for older-aged adults is consistently greater for females than for males. Gender differences as well as biological sex differences can influence vaccine uptake, responses, and outcome in older-aged individuals, which should influence guidelines, formulations, and dosage recommendations for vaccines in the elderly. PMID:26525340

  9. Design, Formulation, and Physicochemical Evaluation of Montelukast Orally Disintegrating Tablet

    PubMed Central

    Aslani, Abolfazl; Beigi, Maryam

    2016-01-01

    Background: Orally disintegrating tablets (ODTs) are a modern form of tablets that when placed in the oral cavity, disperses rapidly. These tablets have advantages, particularly good applications for children and old patients who have a complication in chewing or swallowing solid dosage forms. The aim of this study was to design, formulate, and evaluate the physicochemical properties of 5 mg montelukast ODTs for the prevention of asthma and seasonal allergies. Methods: Formulations were prepared with different amounts of super disintegrating agents and effervescent bases as disintegrant agents. Flowability and compressibility of mixed powders were evaluated. The prepared formulations were tested for hardness, thickness, friability, weight variation, drug content, wetting time, disintegration time, dissolution study, and moisture uptake studies. Results: The compressibility index and angle of repose were in the range of 15.87%–23.43% and 32.93–34.65, respectively. Hardness, thickness, friability, wetting time, and content uniformity of formulations were in the range of 33.7–37.1 N, 3.00–3.81 mm, 0.27%–0.43%, 31–50 s and 96.28%–99.90%, respectively. Disintegration time of the tablets prepared with super disintegrating agents, effervescent bases, and combination of two were in the range of 30–50, more than 60 and 20–36 s, respectively. Conclusions: Mixture of powders and tablets passed all the specified tests. The results showed formulations prepared by super disintegrating agents and super disintegrating agents with effervescent bases had shorter disintegration time compared to formulations with effervescent bases alone. PMID:27857833

  10. Self-Setting Calcium Orthophosphate Formulations

    PubMed Central

    Dorozhkin, Sergey V.

    2013-01-01

    In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided. PMID:24956191

  11. Analyzing and strengthening the vaccine safety program in Manitoba.

    PubMed

    Montalban, J M; Ogbuneke, C; Hilderman, T

    2014-12-04

    The emergence of a novel influenza A virus in 2009 and the rapid introduction of new pandemic vaccines prompted an analysis of the current state of the adverse events following immunization (AEFI) surveillance response in several provinces. To highlight aspects of the situational analysis of the Manitoba Health, Healthy Living and Seniors (MHHLS's) AEFI surveillance system and to demonstrate how common business techniques could be usefully applied to a provincial vaccine safety monitoring program. Situational analysis of the AEFI surveillance system in Manitoba was developed through a strengths-weaknesses-opportunities-threats (SWOT) analysis and informed by the National Immunization Strategy vaccine safety priorities. Strategy formulation was developed by applying the threats-opportunities-weaknesses-strengths (TOWS) matrix. Thirteen strategies were formulated that use strengths to either take advantage of opportunities or avoid threats, that exploit opportunities to overcome weaknesses, or that rectify weaknesses to circumvent threats. These strategies entailed the development of various tools and resources, most of which are either actively underway or completed. The SWOT analysis and the TOWS matrix enabled MHHLS to enhance the capacity of its vaccine safety program.

  12. Oral vaccination of guinea pigs with a Mycobacterium bovis bacillus Calmette-Guerin vaccine in a lipid matrix protects against aerosol infection with virulent M. bovis.

    PubMed

    Clark, Simon; Cross, Martin L; Nadian, Allan; Vipond, Julia; Court, Pinar; Williams, Ann; Hewinson, R Glyn; Aldwell, Frank E; Chambers, Mark A

    2008-08-01

    Increased incidence of bovine tuberculosis (TB) in the United Kingdom caused by infection with Mycobacterium bovis is a cause of considerable economic loss to farmers and the government. The Eurasian badger (Meles meles) represents a wildlife source of recurrent M. bovis infections of cattle in the United Kingdom, and its vaccination against TB with M. bovis bacillus Calmette-Guérin (BCG) is an attractive disease control option. Delivery of BCG in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. Using a guinea pig pulmonary challenge model, we evaluated the protective efficacy of candidate badger oral vaccines, based on broth-grown or ball-milled BCG, delivered either as aqueous suspensions or formulated in two lipids with differing fatty acid profiles (one being animal derived and the other being vegetable derived). Protection was determined in terms of increasing body weight after aerosol challenge with virulent M. bovis, reduced dissemination of M. bovis to the spleen, and, in the case of one oral formulation, restricted growth of M. bovis in the lungs. Only oral BCG formulated in lipid gave significant protection. These data point to the potential of the BCG-lipid formulation for further development as a tool for controlling tuberculosis in badgers.

  13. Vaccination of cattle with Mycobacterium bovis BCG by a combination of systemic and oral routes.

    PubMed

    Buddle, Bryce M; Denis, Michel; Aldwell, Frank E; Martin Vordermeier, H; Glyn Hewinson, R; Neil Wedlock, D

    2008-11-01

    Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine delivered to calves by the subcutaneous (s.c.) or by the oral route in a formulated lipid matrix has been previously shown to induce similar levels of protection against bovine tuberculosis. The current study was aimed at determining whether a combination of delivering BCG by s.c. and oral routes would enhance levels of protection, compared to only one route of vaccination. Forty calves were randomly divided into four groups (10/group). Calves were vaccinated with 10(6)colony forming units (CFU) of BCG Pasteur by the s.c. route or orally with 10(9)CFU BCG incorporated into a lipid formulation. One group received a combination of BCG administered by both the s.c. and oral routes and a non-vaccinated group served as a control. The two groups of calves that received s.c. BCG produced strong IFN-gamma responses in whole blood cultures stimulated with bovine purified protein derivative (PPD) 3 weeks after vaccination. Cattle vaccinated just with oral BCG in a lipid matrix produced a strong IFN-gamma response 8 weeks after vaccination, and peaking at 11 weeks after vaccination. All calves were challenged by the intratracheal route with M. bovis 15 weeks after vaccination and were euthanized and necropsied to assess protection at 17 weeks following challenge. BCG given s.c. or orally induced significant and comparable levels of protection against the virulent challenge. Vaccination of cattle by a combination of s.c./oral routes did not enhance protection beyond that achieved by s.c. or oral vaccination alone. We conclude that vaccination of cattle with BCG by a combination of routes has no beneficial additive effects, compared to a single s.c. administration of BCG or BCG given orally in a lipid formulation.

  14. Influence of polymeric subcoats on the drug release properties of tablets powder-coated with pre-plasticized Eudragit L 100-55.

    PubMed

    Sauer, Dorothea; Watts, Alan B; Coots, Lonique B; Zheng, Weijia C; McGinity, James W

    2009-02-09

    The aim of the study was to investigate the properties of sodium valproate tablets that were dry powder-coated with pre-plasticized Eudragit L 100-55. Polyethylene glycol 3350 (PEG 3350) was used as primer to facilitate initial coating powder adhesion. Solubility parameters were employed to determine the wetting properties of the PEG 3350 primer. Additional PEG 3350 within the powder coating formulation was required to enable powder adhesion to the tablet cores. The application of a subcoat of either Eudragit E PO or Eudragit RL PO facilitated adhesion of the enteric polymer to the tablet cores and reduced the amount PEG 3350 required in the coating formulation. Since reduction of the PEG 3350 content produced less water-vapor permeable films, the enteric coating level necessary to control the drug release was decreased. PEG 3350 and Methocel K4M were incorporated in both Eudragit E PO and Eudragit RL PO subcoating formulations as pore forming agents. The influence of the pore forming excipients on physicochemical properties of free powder-cast films was investigated. The miscibility of the PEG 3350 and Methocel K4M in the film coating was correlated with their ability to function as pore forming agent.

  15. On the die compaction of powders used in pharmaceutics.

    PubMed

    Aryanpour, Gholamreza; Farzaneh, Masoud

    2018-07-01

    Die compaction is widely used in the compaction of pharmaceutical powders (tableting). It is well known that the powder densification is a result of particle rearrangement and particle deformation. The former is considered to be the governing mechanism of densification in an initial stage of compaction and the latter is regarded as the governing mechanism in the compaction at the higher pressure range. As a more realistic assumption, one can consider that a simultaneous performance of both the rearrangement and deformation mechanisms takes place from the beginning of compaction. To mathematically formulate this assumption, a piston equation is presented where the material relative density is given as a function of the applied pressure on the powder. From the equation, it is possible to obtain the contribution of each mechanism to the material densification at each value of the applied pressure. In the continuation, the piston equation is applied to the tabletting of some pharmaceutical powders. These are the powders of Ascorbic Acid, Avicel ® PH 101, Avicel ® PH 301, Emcompress ® , Sodium Chloride, and Tablettose ® whose tableting results have been previously published in the literature. The results show the piston equation as a suitable approach to describe the tabletting of pharmaceutical powders.

  16. Understanding the Different Effects of Inhaler Design on the Aerosol Performance of Drug-Only and Carrier-Based DPI Formulations. Part 1: Grid Structure.

    PubMed

    Leung, Cassandra Ming Shan; Tong, Zhenbo; Zhou, Qi Tony; Chan, John Gar Yan; Tang, Patricia; Sun, Siping; Yang, Runyu; Chan, Hak-Kim

    2016-09-01

    The design of a dry powder inhaler device has significant influence on aerosol performance; however, such influence may be different between the drug-only and carrier-based formulations. The present study aims to examine the potential difference on the dispersion between these distinct types of formulations, using Aerolizer(®) as a model inhaler with the original or modified (cross-grid) designs. A coupled CFD-discrete element method analysis was employed to determine the flow characteristics and particle impaction. Micronized salbutamol sulphate as a drug-only formulation and three lactose carrier-based formulations with various drug-to-carrier weight ratios 1:5, 1:10 and 1:100 were used. The in vitro aerosolization performance was assessed by a next-generation impactor operating at 100 L/min. Using the original device, FPFloaded was reduced from 47.5 ± 3.8% for the drug-only formulation to 31.8 ± 0.7%, 32.1 ± 0.7% and 12.9 ± 1.0% for the 1:5, 1:10 and 1:100 formulations, respectively. With the cross-grid design, powder-mouthpiece impaction was increased, which caused not only powder deagglomeration but also significant drug retention (doubling or more) in the mouthpiece, and the net result is a significant decrease in FPFloaded to 36.8 ± 1.2%, 20.9 ± 2.6% and 21.9 ± 1.5% for the drug-only, 1:5 and 1:10 formulations, respectively. In contrast, the FPFloaded of the 1:100 formulation remained the same at 12.1 ± 1.3%, indicating the increased mouthpiece drug retention was compensated by increased drug detachment from carriers caused by increased powder-mouthpiece impaction. In conclusion, this study has elucidated different effects and the mechanism on the aerosolization of varied dry powder inhaler formulations due to the grid design.

  17. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations.

    PubMed

    Bielski, Elizabeth; Zhong, Qian; Mirza, Hamad; Brown, Matthew; Molla, Ashura; Carvajal, Teresa; da Rocha, Sandro R P

    2017-07-15

    The regulation of genes utilizing the RNA interference (RNAi) mechanism via the delivery of synthetic siRNA has great potential in the treatment of a variety of lung diseases. However, the delivery of siRNA to the lungs is challenging due to the poor bioavailability of siRNA when delivered intraveneously, and difficulty in formulating and maintaining the activity of free siRNA when delivered directly to the lungs using inhalation devices. The use of non-viral vectors such as cationic dendrimers can help enhance the stability of siRNA and its delivery to the cell cytosol. Therefore, in this work, we investigate the ability of a triphenylphosphonium (TPP) modified generation 4 poly(amidoamine) (PAMAM) dendrimer (G4NH 2 -TPP) to enhance the in vitro transfection efficiency of siRNA in a model of the pulmonary epithelium and their aerosol formulations in pressurized metered dose inhalers (pMDIs) and dry powder inhalers (DPIs). Complexes of siRNA and G4NH 2 -TPP were prepared with varying TPP densities and increasing N/P ratios. The complexation efficiency was modulated by the presence of the TPP on the dendrimer surface, allowing for a looser complexation compared to unmodified dendrimer as determined by gel electrophoresis and polyanion competition assay. An increase in TPP density and N/P ratio led to an increase in the in vitro gene knockdown of stably green fluorescent protein (eGFP) expressing lung alveolar epithelial (A549) cells. G4NH 2 -12TPP dendriplexes (G4NH 2 PAMAM dendrimers containing 12 TPP molecules on the surface complexed with siRNA) at N/P ratio 30 showed the highest in vitro gene knockdown efficiency. To assess the potential of TPP-dendriplexes for pulmonary use, we also developed micron particle technologies for both pMDIs and DPIs and determined their aerosol characteristics utilizing an Andersen Cascade Impactor (ACI). Mannitol microparticles encapsulating 12TPP-dendriplexes were shown to be effective in producing aerosols suitable for deep lung

  18. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    PubMed

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  19. Advances in the vaccination of the elderly against influenza: role of a high-dose vaccine.

    PubMed

    Sullivan, Seth J; Jacobson, Robert; Poland, Gregory A

    2010-10-01

    On 23 December 2009, the US FDA approved Fluzone® High Dose, a high-dose formulation of the trivalent inactivated influenza vaccine, for prevention of influenza in people 65 years of age and older. As it was approved via an accelerated process designed to allow expeditious availability of safe and effective products with promise to treat or prevent serious or life-threatening diseases, the manufacturer is required to conduct further studies to demonstrate effectiveness. Although these studies are underway, a recently completed randomized, controlled trial demonstrated that this vaccine, containing four-times more hemagglutinin than standard-dose inactivated influenza vaccines, can produce an enhanced immunologic response in subjects of 65 years of age and older, while maintaining a favorable safety profile. This article introduces the vaccine, presents currently available safety and immunogenicity data, discusses current recommendations for use, and proposes what we can expect in the coming years.

  20. Vaccine refrigeration

    PubMed Central

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209

  1. 17DD yellow fever vaccine

    PubMed Central

    Martins, Reinaldo M.; Maia, Maria de Lourdes S.; Farias, Roberto Henrique G.; Camacho, Luiz Antonio B.; Freire, Marcos S.; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C.; Lima, Sheila Maria B.; Nogueira, Rita Maria R.; Sá, Gloria Regina S.; Hokama, Darcy A.; de Carvalho, Ricardo; Freire, Ricardo Aguiar V.; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-01-01

    Objective: To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Results: Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Methods: Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. Conclusion: In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. International Register ISRCTN 38082350. PMID:23364472

  2. Vaccine process technology.

    PubMed

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory

  3. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    PubMed

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  4. Protection of hydrophobic amino acids against moisture-induced deterioration in the aerosolization performance of highly hygroscopic spray-dried powders.

    PubMed

    Yu, Jiaqi; Chan, Hak-Kim; Gengenbach, Thomas; Denman, John A

    2017-10-01

    Inhalable particles containing amorphous form of drugs or excipients may absorb atmospheric moisture, causing powder aggregation and recrystallization, adversely affecting powder dispersion and lung deposition. The present study aims to explore hydrophobic amino acids for protection against moisture in spray-dried amorphous powders, using disodium cromoglycate (DSCG) as a model drug. DSCG powders were produced by co-spray drying with isoleucine (Ile), valine (Val) and methionine (Met) in various concentrations (10, 20 and 40%w/w). Particle size distribution and morphology were measured by laser diffraction and scanning electron microscopy (SEM). Physiochemical properties of the powders were characterized by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). Particle surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performance was evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH) for one month and three months. Ile, Val and Met significantly reduced the deleterious effect of moisture on aerosol performance, depending on the amount of amino acids in the formulation. Formulations containing 10% or 20% of Ile, Val and Met showed notable deterioration in aerosol performance, with fine particle fraction (FPF) reduced by 6-15% after one-month storage at both 60% and 75% RH. However, 40% Ile was able to maintain the aerosol performance of DSCG stored at 75% RH for one month, while the FPF dropped by 7.5% after three months of storage. In contrast, 40% Val or Met were able to maintain the aerosol performance at 60% RH storage but not at 75% RH. At 40%w/w ratio, these formulations had particle surface coverage of 94.5% (molar percent) of Ile, 87.1% of Val and 84.6% of Met, respectively, which may explain their

  5. An inactivated cell-culture vaccine against yellow fever.

    PubMed

    Monath, Thomas P; Fowler, Elizabeth; Johnson, Casey T; Balser, John; Morin, Merribeth J; Sisti, Maggie; Trent, Dennis W

    2011-04-07

    Yellow fever is a lethal viral hemorrhagic fever occurring in Africa and South America. A highly effective live vaccine (17D) is widely used for travelers to and residents of areas in which yellow fever is endemic, but the vaccine can cause serious adverse events, including viscerotropic disease, which is associated with a high rate of death. A safer, nonreplicating vaccine is needed. In a double-blind, placebo-controlled, dose-escalation, phase 1 study of 60 healthy subjects between 18 and 49 years of age, we investigated the safety and immunogenicity of XRX-001 purified whole-virus, β-propiolactone-inactivated yellow fever vaccine produced in Vero cell cultures and adsorbed to aluminum hydroxide (alum) adjuvant. On two visits 21 days apart, subjects received intramuscular injections of vaccine that contained 0.48 μg or 4.8 μg of antigen. Levels of neutralizing antibodies were measured at baseline and on days 21, 31, and 42. The vaccine induced the development of neutralizing antibodies in 100% of subjects receiving 4.8 μg of antigen in each injection and in 88% of subjects receiving 0.48 μg of antigen in each injection. Antibody levels increased by day 10 after the second injection, at which time levels were significantly higher with the 4.8-μg formulation than with the 0.48-μg formulation (geometric mean titer, 146 vs. 39; P<0.001). Three adverse events occurred at a higher incidence in the two vaccine groups than in the placebo group: mild pain, tenderness, and (much less frequently) itching at the injection site. One case of urticaria was observed on day 3 after the second dose of 4.8 μg of vaccine. A two-dose regimen of the XRX-001 vaccine, containing inactivated yellow fever antigen with an alum adjuvant, induced neutralizing antibodies in a high percentage of subjects. XRX-001 has the potential to be a safer alternative to live attenuated 17D vaccine. (Funded by Xcellerex; ClinicalTrials.gov number, NCT00995865.).

  6. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    PubMed Central

    Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681

  7. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  8. The effect of excipients on the stability and aerosol performance of salmon calcitonin dry powder inhalers prepared via the spray freeze drying process.

    PubMed

    Poursina, Narges; Vatanara, Alireza; Rouini, Mohammad Reza; Gilani, Kambiz; Najafabadi, Abdolhossein Rouholamini

    2016-06-01

    Spray freeze drying was developed to produce dry powders suitable for applications such as inhalation delivery. In the current study, the spray freeze drying technique was employed to produce inhalable salmon calcitonin microparticles. Effects of the carrier type, concentration of hydroxyl propyl-β-cyclodextrin and the presence of Tween 80 on the chemical and structural stability, as well as on the aerosol performance of the particles were investigated. The results indicated that hydroxyl propyl-β-cyclodextrin had the most important effect on the chemical stability of the powder and strongly increased its stability by increasing its concentration in the formulation. Chemically stable formulations (over 90 % recovery) were selected for further examinations. Fluorescence spectroscopy and circular dichroism suggested that the formulations were structurally stable. Aerosol performance showed that the Tween-free powders produced higher fine particle fraction values than the formulations containing Tween (53.7 vs. 41.92 % for trehalose content and 52.85 vs. 43.06 % for maltose content).

  9. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections

    PubMed Central

    Leung, Sharon S.Y.; Parumasivam, Thaigarajan; Gao, Fiona G.; Carrigy, Nicholas B.; Vehring, Reinhard; Finlay, Warren H.; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-01-01

    Purpose The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. Method A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. Results A significant titer loss (~ 2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 104 pfu and SD-F2 = 11.0 ± 1.4 × 104 pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 104 pfu and SFD-F2 = 2.1 ± 0.3 × 104 pfu). Conclusion Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2. PMID:26928668

  10. Concentrated Protein Body Product Derived from Rice Endosperm as an Oral Tolerogen for Allergen-Specific Immunotherapy—A New Mucosal Vaccine Formulation against Japanese Cedar Pollen Allergy

    PubMed Central

    Wakasa, Yuhya; Takagi, Hidenori; Watanabe, Nobumasa; Kitamura, Noriko; Fujiwara, Yoshihiro; Ogo, Yuko; Hayashi, Shimpei; Yang, Lijun; Ohta, Masaru; Thet Tin, Wai Wai; Sekikawa, Kenji; Takano, Makoto; Ozawa, Kenjirou; Hiroi, Takachika; Takaiwa, Fumio

    2015-01-01

    The endoplasmic reticulum-derived type-I protein body (PB-I) from rice endosperm cells is an ideal candidate formulation for the oral delivery of bioencapsulated peptides as tolerogens for allergen-specific immunotherapy. In the present study, PBs containing the deconstructed Japanese cedar pollen allergens Cryptomeria japonica 1 (Cry j 1) and Cry j 2 were concentrated by treatment with thermostable α-amylase at 90°C to remove the starch from milled rice powder, which resulted in a 12.5-fold reduction of dry weight compared to the starting material. The modified Cry j 1 and Cry j 2 antigens in this concentrated PB product were more resistant to enzymatic digestion than those in the milled seed powder despite the absence of intact cell wall and starch, and remained stable for at least 10 months at room temperature without detectable loss or degradation. The high resistance of these allergens could be attributed to changes in protein physicochemical properties induced by the high temperature concentration process, as suggested by the decreased solubility of the antigens and seed proteins in PBs in step-wise-extraction experiments. Confocal microscopy showed that the morphology of antigen-containing PB-Is was preserved in the concentrated PB product. The concentrated PB product induced specific immune tolerance against Cry j 1 and Cry j 2 in mice when orally administered, supporting its potential use as a novel oral tolerogen formulation. PMID:25774686

  11. Combined Effect of Kimchi Powder and Onion Peel Extract on Quality Characteristics of Emulsion Sausages Prepared with Irradiated Pork.

    PubMed

    Lee, Soo-Yoen; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Choi, Min-Sung; Ham, Youn-Kyung; Choi, Yun-Sang; Lee, Ju-Woon; Lee, Si-Kyung; Kim, Cheon-Jei

    2015-01-01

    This study was conducted to investigate the effects of kimchi powder and onion peel extract on the quality characteristics of emulsion sausage manufactured with irradiated pork. The emulsion sausages were formulated with 2% kimchi powder and/or 0.05% onion peel extract. The changes in pH value of all treatments were similar, depending on storage periods. The addition of kimchi powder increased the redness and yellowness of the emulsion sausage. The addition of onion peel extract decreased the thiobarbituric acid reactive substances value of the emulsion sausages prepared with irradiated pork. The volatile basic nitrogen value of the emulsion sausage prepared with kimchi powder was the highest, whereas that of the emulsion sausage prepared with onion peel extract was the lowest. The treatment without kimchi powder or onion peel extract and the treatments prepared with onion peel extract showed lower microbial populations than the other treatment. Sensory evaluations indicated that a higher acceptability was attained when kimchi powder was added to the emulsion sausages manufactured with irradiated pork. In conclusion, our results suggest that combined use of kimchi powder and onion peel extract could improve quality characteristics and shelf stability of the emulsion sausage formulated with irradiated pork during chilled storage.

  12. Combined Effect of Kimchi Powder and Onion Peel Extract on Quality Characteristics of Emulsion Sausages Prepared with Irradiated Pork

    PubMed Central

    Choi, Yun-Sang; Lee, Ju-Woon; Lee, Si-Kyung

    2015-01-01

    This study was conducted to investigate the effects of kimchi powder and onion peel extract on the quality characteristics of emulsion sausage manufactured with irradiated pork. The emulsion sausages were formulated with 2% kimchi powder and/or 0.05% onion peel extract. The changes in pH value of all treatments were similar, depending on storage periods. The addition of kimchi powder increased the redness and yellowness of the emulsion sausage. The addition of onion peel extract decreased the thiobarbituric acid reactive substances value of the emulsion sausages prepared with irradiated pork. The volatile basic nitrogen value of the emulsion sausage prepared with kimchi powder was the highest, whereas that of the emulsion sausage prepared with onion peel extract was the lowest. The treatment without kimchi powder or onion peel extract and the treatments prepared with onion peel extract showed lower microbial populations than the other treatment. Sensory evaluations indicated that a higher acceptability was attained when kimchi powder was added to the emulsion sausages manufactured with irradiated pork. In conclusion, our results suggest that combined use of kimchi powder and onion peel extract could improve quality characteristics and shelf stability of the emulsion sausage formulated with irradiated pork during chilled storage. PMID:26761840

  13. A simple method for measuring porcine circovirus 2 whole virion particles and standardizing vaccine formulation.

    PubMed

    Zanotti, Cinzia; Amadori, Massimo

    2015-03-01

    Porcine Circovirus 2 (PCV2) is involved in porcine circovirus-associated disease, that causes great economic losses to the livestock industry worldwide. Vaccination against PCV2 proved to be very effective in reducing disease occurrence and it is currently performed on a large scale. Starting from a previous model concerning Foot-and Mouth Disease Virus antigens, we developed a rapid and simple method to quantify PCV2 whole virion particles in inactivated vaccines. This procedure, based on sucrose gradient analysis and fluorometric evaluation of viral genomic content, allows for a better standardization of the antigen payload in vaccine batches. It also provides a valid indication of virion integrity. Most important, such a method can be applied to whole virion vaccines regardless of the production procedures, thus enabling meaningful comparisons on a common basis. In a future batch consistency approach to PCV2 vaccine manufacture, our procedure represents a valuable tool to improve in-process controls and to guarantee conformity of the final product with passmarks for approval. This might have important repercussions in terms of reduced usage of animals for vaccine batch release, in the framework of the current 3Rs policy. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  14. Methods for Health Economic Evaluation of Vaccines and Immunization Decision Frameworks: A Consensus Framework from a European Vaccine Economics Community.

    PubMed

    Ultsch, Bernhard; Damm, Oliver; Beutels, Philippe; Bilcke, Joke; Brüggenjürgen, Bernd; Gerber-Grote, Andreas; Greiner, Wolfgang; Hanquet, Germaine; Hutubessy, Raymond; Jit, Mark; Knol, Mirjam; von Kries, Rüdiger; Kuhlmann, Alexander; Levy-Bruhl, Daniel; Perleth, Matthias; Postma, Maarten; Salo, Heini; Siebert, Uwe; Wasem, Jürgen; Wichmann, Ole

    2016-03-01

    Incremental cost-effectiveness and cost-utility analyses [health economic evaluations (HEEs)] of vaccines are routinely considered in decision making on immunization in various industrialized countries. While guidelines advocating more standardization of such HEEs (mainly for curative drugs) exist, several immunization-specific aspects (e.g. indirect effects or discounting approach) are still a subject of debate within the scientific community. The objective of this study was to develop a consensus framework for HEEs of vaccines to support the development of national guidelines in Europe. A systematic literature review was conducted to identify prevailing issues related to HEEs of vaccines. Furthermore, European experts in the field of health economics and immunization decision making were nominated and asked to select relevant aspects for discussion. Based on this, a workshop was held with these experts. Aspects on 'mathematical modelling', 'health economics' and 'decision making' were debated in group-work sessions (GWS) to formulate recommendations and/or--if applicable--to state 'pros' and 'contras'. A total of 13 different aspects were identified for modelling and HEE: model selection, time horizon of models, natural disease history, measures of vaccine-induced protection, duration of vaccine-induced protection, indirect effects apart from herd protection, target population, model calibration and validation, handling uncertainty, discounting, health-related quality of life, cost components, and perspectives. For decision making, there were four aspects regarding the purpose and the integration of HEEs of vaccines in decision making as well as the variation of parameters within uncertainty analyses and the reporting of results from HEEs. For each aspect, background information and an expert consensus were formulated. There was consensus that when HEEs are used to prioritize healthcare funding, this should be done in a consistent way across all interventions

  15. Formulation of a mmaA4 Gene Deletion Mutant of Mycobacterium bovis BCG in Cationic Liposomes Significantly Enhances Protection against Tuberculosis

    PubMed Central

    Derrick, Steven C.; Dao, Dee; Yang, Amy; Kolibab, Kris; Jacobs, William R.; Morris, Sheldon L.

    2012-01-01

    A new vaccination strategy is urgently needed for improved control of the global tuberculosis (TB) epidemic. Using a mouse aerosol Mycobacterium tuberculosis challenge model, we investigated the protective efficacy of a mmaA4 gene deletion mutant of Mycobacterium bovis BCG (ΔmmaA4BCG) formulated in dimethyl dioctadecyl ammonium bromide (DDA) – D(+) trehalose 6,6 dibenenate (TDB) (DDA/TDB) adjuvant. In previous studies, deletion of the mmaA4 gene was shown to reduce the suppression of IL-12 production often seen after mycobacterial infections. While the non-adjuvanted ΔmmaA4BCG strain did not protect mice substantially better than conventional BCG against a tuberculous challenge in four protection experiments, the protective responses induced by the ΔmmaA4BCG vaccine formulated in DDA/TDB adjuvant was consistently increased relative to nonadjuvanted BCG controls. Furthermore, the ΔmmaA4BCG-DDA/TDB vaccine induced significantly higher frequencies of multifunctional (MFT) CD4 T cells expressing both IFNγ and TNFα (double positive) or IFNγ, TNFα and IL-2 (triple positive) than CD4 T cells derived from mice vaccinated with BCG. These MFT cells were characterized by having higher IFNγ and TNFα median fluorescence intensity (MFI) values than monofunctional CD4 T cells. Interestingly, both BCG/adjuvant and ΔmmaA4BCG/adjuvant formulations induced significantly higher frequencies of CD4 T cells expressing TNFα and IL-2 than nonadjuvanted BCG or ΔmmaA4BCG vaccines indicating that BCG/adjuvant mixtures may be more effective at inducing central memory T cells. Importantly, when either conventional BCG or the mutant were formulated in adjuvant and administered to SCID mice or immunocompromised mice depleted of IFNγ, significantly lower vaccine-derived mycobacterial CFU were detected relative to immunodeficient mice injected with non-adjuvanted BCG. Overall, these data suggest that immunization with the ΔmmaA4BCG/adjuvant formulation may be an effective, safe

  16. Economic and practical challenges to the formulation of vaccines against endemic infectious diseases such as malaria.

    PubMed

    Plebanski, Magdalena; Lopez, Ester; Proudfoot, Owen; Cooke, Brian M; Itzstein, Mark von; Coppel, Ross L

    2006-09-01

    Herein, we analyze in general the current vaccine market and identify potential factors driving and modulating supply and demand for vaccines. An emphasis is placed on changes in regulation in the last 20 years which have led to increased indirect costs of production, and which can create a barrier against the timely use of technological advances to reduce direct costs. Other defining industry characteristics, such as firm numbers and sizes, cost and pricing strategies, nature extent and impact of Government involvement and international regulation are noted. These considerations, far from being removed from basic vaccine research, influence its ability to achieve aims that can be then progressed into effective vaccine products. We discuss specifically the development of particulate vaccines against malaria, a major lethal disease and health problem prevalent in Africa, including some key economic and methodological challenges and opportunities. We note some practical issues blocking the development of effective particulate vaccines for the Third World, mainly driven by the regulatory spiral noted above.

  17. Strategy of topical vaccination with nanoparticles

    NASA Astrophysics Data System (ADS)

    Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen

    2009-03-01

    Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached ~70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.

  18. Strategy of topical vaccination with nanoparticles.

    PubMed

    Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen

    2009-01-01

    Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached approximately 70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.

  19. Nephro-protective effect of a novel formulation of unopened coconut inflorescence sap powder on gentamicin induced renal damage by modulating oxidative stress and inflammatory markers.

    PubMed

    Jose, Svenia P; S, Asha; Im, Krishnakumar; M, Ratheesh; Santhosh, Savitha; S, Sandya; B, Girish Kumar; C, Pramod

    2017-01-01

    Fresh oyster white translucent sap obtained from the tender unopened inflorescence of coconut trees (Cocos nucifera) is identified to have great health benefits. Drug induced Nephrotoxicity is one of the major causes of renal damage in present generation. As a therapeutic agent, gentamicin imparts direct toxicity to kidney, resulting in acute tubular necrosis, glomerular and tubulointerstitial injury, haemodynamically mediated damage and obstructive nephropathy.There exists an increasing demand for safe and natural agents for the treatment and/or preventionofchronic nephrotoxicity and pathogenesis of kidney diseases. Our study shows the nephro protective/curing effect of a novel powder formulation of micronutrient enriched, unfermented coconut flower sap (CSP). The study was performed on adult male Wistar rats. The animals were grouped into three and treated separately with vehicle, gentamicin and gentamicin+CSP for 16days. Initially, gentamicin treatment significantly (p<0.05)reduced thelevels of antioxidant enzymes (SOD, CAT, GPx) and GSH and increased (p<0.05) the levels of creatinine, uric acid, urea, inflammatory markers (nitrite, IL-6, TNF- α, iNOS) and lipid peroxidation. Supplementation of coconut flower sap powder showed significant (p<0.05) reversal of all these biochemical parameters indicating an effective inhibition of the pathogenesis of nephrotoxicity and kidney disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. International Dengue Vaccine Communication and Advocacy: Challenges and Way Forward.

    PubMed

    Carvalho, Ana; Van Roy, Rebecca; Andrus, Jon

    2016-01-01

    Dengue vaccine introduction will likely occur soon. However, little has been published on international dengue vaccine communication and advocacy. More effort at the international level is required to review, unify and strategically disseminate dengue vaccine knowledge to endemic countries' decision makers and potential donors. Waiting to plan for the introduction of new vaccines until licensure may delay access in developing countries. Concerted efforts to communicate and advocate for vaccines prior to licensure are likely challenged by unknowns of the use of dengue vaccines and the disease, including uncertainties of vaccine impact, vaccine access and dengue's complex pathogenesis and epidemiology. Nevertheless, the international community has the opportunity to apply previous best practices for vaccine communication and advocacy. The following key strategies will strengthen international dengue vaccine communication and advocacy: consolidating existing coalitions under one strategic umbrella, urgently convening stakeholders to formulate the roadmap for integrated dengue prevention and control, and improving the dissemination of dengue scientific knowledge.

  1. The effects of stopper drying on moisture levels of Haemophilus influenzae conjugate vaccine.

    PubMed

    Earle, J P; Bennett, P S; Larson, K A; Shaw, R

    1992-01-01

    The discovery and development of increasingly potent biological and pharmaceutical products have resulted in very small amounts of the active ingredient in final product formulations. Pediatric vaccines with sub-milliliter dose sizes pose unique problems for final formulation and lyophilization, especially when stabilizers used are present in small amounts or are hygroscopic. Lyophilized Haemophilus b Conjugate Vaccine (Meningococcal Protein Conjugate) (PedvaxHIB) has a plug weight of about 3 mg in its final formulation. Microgram amounts of water absorbed by the lyophilized plug can cause drastic changes in the moisture content of the product. In a small percentage of the final containers absorption of moisture by the vaccine may cause aesthetic defects (plug collapse) over time, or at elevated temperatures. This paper describes drying methods developed to control residual moisture levels in stoppers used as final container closures. Results on the moisture stability of the product capped with dried and non-dried stoppers are presented.

  2. The filling of powdered herbs into two-piece hard capsules using hydrogenated cotton seed oil as lubricant.

    PubMed

    Aling, Joanna; Podczeck, Fridrun

    2012-11-20

    The aim of this work was to investigate the plug formation and filling properties of powdered herbal leaves using hydrogenated cotton seed oil as an alternative lubricant. In a first step, unlubricated and lubricated herbal powders were studied on a small scale using a plug simulator, and low-force compression physics and parameterization techniques were used to narrow down the range in which the optimum amount of lubricant required would be found. In a second step these results were complemented with investigations into the flow properties of the powders based on packing (tapping) experiments to establish the final optimum lubricant concentration. Finally, capsule filling of the optimum formulations was undertaken using an instrumented tamp filling machine. This work has shown that hydrogenated cotton seed oil can be used advantageously for the lubrication of herbal leaf powders. Stickiness as observed with magnesium stearate did not occur, and the optimum lubricant concentration was found to be less than that required for magnesium stearate. In this work, lubricant concentrations of 1% or less hydrogenated cotton seed oil were required to fill herbal powders into capsules on the instrumented tamp-filling machine. It was found that in principle all powders could be filled successfully, but that for some powders the use of higher compression settings was disadvantageous. Relationships between the particle size distributions of the powders, their flow and consolidation as well as their filling properties could be identified by multivariate statistical analysis. The work has demonstrated that a combination of the identification of plug formation and powder flow properties is helpful in establishing the optimum lubricant concentration required using a small quantity of powder and a powder plug simulator. On an automated tamp-filling machine, these optimum formulations produced satisfactory capsules in terms of coefficient of fill weight variability and capsule weight

  3. Combination vaccines against diarrheal diseases

    PubMed Central

    Venkatesan, Malabi M; Van de Verg, Lillian L

    2015-01-01

    Abstract Diarrheal diseases remain a leading cause of global childhood mortality and morbidity. Several recent epidemiological studies highlight the rate of diarrheal diseases in different parts of the world and draw attention to the impact on childhood growth and survival. Despite the well-documented global burden of diarrheal diseases, currently there are no combination diarrheal vaccines, only licensed vaccines for rotavirus and cholera, and Salmonella typhi-based vaccines for typhoid fever. The recognition of the impact of diarrheal episodes on infant growth, as seen in resource-poor countries, has spurred action from governmental and non-governmental agencies to accelerate research toward affordable and effective vaccines against diarrheal diseases. Both travelers and children in endemic countries will benefit from a combination diarrheal vaccine, but it can be argued that the greater proportion of any positive impact will be on the public health status of the latter. The history of combination pediatric vaccines indicate that monovalent or single disease vaccines are typically licensed first prior to formulation in a combination vaccine, and that the combinations themselves undergo periodic revision in response to need for improvement in safety or potential for wider coverage of important pediatric pathogens. Nevertheless combination pediatric vaccines have proven to be an effective tool in limiting or eradicating communicable childhood diseases worldwide. The landscape of diarrheal vaccine candidates indicates that there now several in active development that offer options for potential testing of combinations to combat those bacterial and viral pathogens responsible for the heaviest disease burden—rotavirus, ETEC, Shigella, Campylobacter, V. cholera and Salmonella. PMID:25891647

  4. Analyzing and strengthening the vaccine safety program in Manitoba

    PubMed Central

    Montalban, JM; Ogbuneke, C; Hilderman, T

    2014-01-01

    Background: The emergence of a novel influenza A virus in 2009 and the rapid introduction of new pandemic vaccines prompted an analysis of the current state of the adverse events following immunization (AEFI) surveillance response in several provinces. Objectives To highlight aspects of the situational analysis of the Manitoba Health, Healthy Living and Seniors (MHHLS’s) AEFI surveillance system and to demonstrate how common business techniques could be usefully applied to a provincial vaccine safety monitoring program. Method Situational analysis of the AEFI surveillance system in Manitoba was developed through a strengths-weaknesses-opportunities-threats (SWOT) analysis and informed by the National Immunization Strategy vaccine safety priorities. Strategy formulation was developed by applying the threats-opportunities-weaknesses-strengths (TOWS) matrix. Results Thirteen strategies were formulated that use strengths to either take advantage of opportunities or avoid threats, that exploit opportunities to overcome weaknesses, or that rectify weaknesses to circumvent threats. These strategies entailed the development of various tools and resources, most of which are either actively underway or completed. Conclusion The SWOT analysis and the TOWS matrix enabled MHHLS to enhance the capacity of its vaccine safety program. PMID:29769910

  5. Formulation of an aloe-based product according to Iranian traditional medicine and development of its analysis method.

    PubMed

    Moein, Elham; Hajimehdipoor, Homa; Toliyat, Tayebeh; Choopani, Rasool; Hamzeloo-Moghadam, Maryam

    2017-08-29

    Currently, people are more interested to traditional medicine. The traditional formulations should be converted to modern drug delivery systems to be more acceptable for the patients. In the present investigation, a poly herbal medicine "Ayarij-e-Faiqra" (AF) based on Iranian traditional medicine (ITM) has been formulated and its quality control parameters have been developed. The main ingredients of AF including barks of Cinnamomum zeylanicum Blume and Cinnamomum cassia J. Presl, the rhizomes of Nardostachys jatamansi DC., the fruits of Piper cubeba L.f., the flowers of Rosa damascena Herrm., the oleo gum resin of Pistacia terebinthus L. and Aloe spp. dried juice were powdered and used for preparing seven tablet formulations of the herbal mixture. Flowability of the different formulated powders was examined and the best formulations were selected (F6&F7). The tablets were prepared from the selected formulations compared according to the physical characteristics and finally, F7 was selected and coated. Physicochemical characters of core and coated AF tablets were determined and the HPLC method for quantitation of aloin as a marker of tablets was selected and verified according to selectivity, linearity, precision, recovery, LOD and LOQ. The results showed that core and coated AF tablets were in agreement with USP requirements for herbal drugs. They had acceptable appearance, disintegration time, friability, hardness, dissolution behavior, weight variation and content uniformity. The amount of aloin in tablets was found 123.1 mg/tab. The HPLC method for aloin determination in AF tablets was verified according to selectivity, linearity (5-500 μg/ml, r 2 :0.9999), precision (RSD: 1.62%), recovery (108.0%), LOD & LOQ (0.0053 & 0.0161 μg/ml). The formulated tablets could be a good substitute for powder and capsules of AF in ITM clinics with a feasible and precise method for its quality control. Ayarij-e-Faiqra formulation.

  6. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes

    PubMed Central

    Rosada, Rogério S; Torre, Lucimara Gaziola de la; Frantz, Fabiani G; Trombone, Ana PF; Zárate-Bladés, Carlos R; Fonseca, Denise M; Souza, Patrícia RM; Brandão, Izaíra T; Masson, Ana P; Soares, Édson G; Ramos, Simone G; Faccioli, Lúcia H; Silva, Célio L; Santana, Maria HA; Coelho-Castelo, Arlete AM

    2008-01-01

    Background The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. Results We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 μg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-γ and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 μg). Conclusion Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease. PMID

  7. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults.

    PubMed

    Fries, Louis; Shinde, Vivek; Stoddard, Jeffrey J; Thomas, D Nigel; Kpamegan, Eloi; Lu, Hanxin; Smith, Gale; Hickman, Somia P; Piedra, Pedro; Glenn, Gregory M

    2017-01-01

    A preventative strategy for Respiratory Syncytial Virus (RSV) infection constitutes an under-recognized unmet medical need among older adults. Four formulations of a novel recombinant RSV F nanoparticle vaccine (60 or 90 μg RSV F protein, with or without aluminum phosphate adjuvant) administered concurrently with a licensed inactivated trivalent influenza vaccine (TIV) in older adult subjects were evaluated for safety and immunogenicity in this randomized, observer-blinded study. A total of 220 healthy males and females ≥ 60 years of age, without symptomatic cardiopulmonary disease, were vaccinated concurrently with TIV and RSV F vaccine or placebo. All vaccine formulations produced an acceptable safety profile, with no vaccine-related serious adverse events or evidence of systemic toxicity. Vaccine-induced immune responses were rapid, rising as early as 7 days post-vaccination; and were comparable in all formulations in terms of magnitude, with maximal levels attained within 28 (unadjuvanted) or 56 (adjuvanted) days post-vaccination. Peak anti-F protein IgG antibody levels rose 3.6- to 5.6-fold, with an adjuvant effect observed at the 60 μg dose, and a dose-effect observed between the unadjuvanted 60 and 90 μg regimens. The anti-F response persisted through 12 months post-vaccination. Palivizumab-competitive antibodies were below quantifiable levels (<33 μg/mL) at day 0. The rise of antibodies with specificity for Site II peptide, and the palivizumab-competitive binding activity, denoting antibodies binding at, or in proximity to, antigenic Site II on the F protein, closely paralleled the anti-F response. However, a larger proportion of antibodies in adjuvanted vaccine recipients bound to the Site II peptide at high avidity. Day 0 neutralizing antibodies were high in all subjects and rose 1.3- to 1.7-fold in response to vaccination. Importantly, the RSV F vaccine co-administered with TIV did not impact the serum hemagglutination inhibition

  8. Challenges of assessing the clinical efficacy of asexual blood-stage Plasmodium falciparum malaria vaccines.

    PubMed

    Sheehy, Susanne H; Douglas, Alexander D; Draper, Simon J

    2013-09-01

    In the absence of any highly effective vaccine candidate against Plasmodium falciparum malaria, it remains imperative for the field to pursue all avenues that may lead to the successful development of such a formulation. The development of a subunit vaccine targeting the asexual blood-stage of Plasmodium falciparum malaria infection has proven particularly challenging with only limited success to date in clinical trials. However, only a fraction of potential blood-stage vaccine antigens have been evaluated as targets, and a number of new promising candidate antigen formulations and delivery platforms are approaching clinical development. It is therefore essential that reliable and sensitive methods of detecting, or ruling out, even modest efficacy of blood-stage vaccines in small clinical trials be established. In this article we evaluate the challenges facing blood-stage vaccine developers, assess the appropriateness and limitations of various in vivo approaches for efficacy assessment and suggest future directions for the field.

  9. Vaccines for Canine Leishmaniasis

    PubMed Central

    Palatnik-de-Sousa, Clarisa B.

    2012-01-01

    Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost–effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL. PMID:22566950

  10. Development and pre-clinical evaluation in the swine model of a mucosal vaccine tablet for human influenza viruses: A proof-of-concept study.

    PubMed

    Busignies, V; Simon, G; Mollereau, G; Bourry, O; Mazel, V; Rosa-Calatrava, M; Tchoreloff, P

    2018-03-01

    Liquid vaccine formulations present some disadvantages such as stability problems, cold chain requirement or administration by trained personnel. Vaccine formulated as tablets would present a wide range of progress such as an increase stability that would facilitate the administration, the distribution and the storage of vaccine formulations. This work investigates the possibility to develop a mucosal tablet vaccine for human influenza viruses. The tablets were tested in vitro for biological efficacy and stability and in vivo in swine as a model for influenza A virus immunity. First, the ability to produce by compaction a stable vaccine with a preserved antigen was demonstrated. In a second part, vaccine tablets were used to immunize pigs. After positioning the tablets on the buccal mucosa, the animals were challenged by inoculation of the A/H1N1 pandemic virus. The responses were compared to those observed in animals vaccinated intramuscularly with the commercial liquid vaccine. It was observed signs of priming of the pig's immune system with vaccine tablets, even if the immune response stayed lower than vaccination by intramuscular route. Thus, we present attractive results that indicate a promising potential for mucosal vaccine tablets. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis.

    PubMed

    Cecílio, Pedro; Pérez-Cabezas, Begoña; Fernández, Laura; Moreno, Javier; Carrillo, Eugenia; Requena, José M; Fichera, Epifanio; Reed, Steven G; Coler, Rhea N; Kamhawi, Shaden; Oliveira, Fabiano; Valenzuela, Jesus G; Gradoni, Luigi; Glueck, Reinhard; Gupta, Gaurav; Cordeiro-da-Silva, Anabela

    2017-11-01

    The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the "natural infection".

  12. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis

    PubMed Central

    Cecílio, Pedro; Pérez-Cabezas, Begoña; Fernández, Laura; Moreno, Javier; Carrillo, Eugenia; Requena, José M.; Fichera, Epifanio; Reed, Steven G.; Coler, Rhea N.; Kamhawi, Shaden; Oliveira, Fabiano; Valenzuela, Jesus G.; Gradoni, Luigi; Glueck, Reinhard; Gupta, Gaurav

    2017-01-01

    The notion that previous infection by Leishmania spp. in endemic areas leads to robust anti-Leishmania immunity, supports vaccination as a potentially effective approach to prevent disease development. Nevertheless, to date there is no vaccine available for human leishmaniasis. We optimized and assessed in vivo the safety and immunogenicity of an innovative vaccine candidate against human visceral leishmaniasis (VL), consisting of Virus-Like Particles (VLP) loaded with three different recombinant proteins (LJL143 from Lutzomyia longipalpis saliva as the vector-derived (VD) component, and KMP11 and LeishF3+, as parasite-derived (PD) antigens) and adjuvanted with GLA-SE, a TLR4 agonist. No apparent adverse reactions were observed during the experimental time-frame, which together with the normal hematological parameters detected seems to point to the safety of the formulation. Furthermore, measurements of antigen-specific cellular and humoral responses, generally higher in immunized versus control groups, confirmed the immunogenicity of the vaccine formulation. Interestingly, the immune responses against the VD protein were reproducibly more robust than those elicited against leishmanial antigens, and were apparently not caused by immunodominance of the VD antigen. Remarkably, priming with the VD protein alone and boosting with the complete vaccine candidate contributed towards an increase of the immune responses to the PD antigens, assessed in the form of increased ex vivo CD4+ and CD8+ T cell proliferation against both the PD antigens and total Leishmania antigen (TLA). Overall, our immunogenicity data indicate that this innovative vaccine formulation represents a promising anti-Leishmania vaccine whose efficacy deserves to be tested in the context of the “natural infection”. PMID:29176865

  13. Knowledge, awareness and practices towards seasonal influenza and its vaccine: implications for future vaccination campaigns in Jordan.

    PubMed

    Abu-Rish, Eman Y; Elayeh, Eman R; Mousa, Lubabah A; Butanji, Yasser K; Albsoul-Younes, Abla M

    2016-12-01

    Influenza is an underestimated contributor to morbidity and mortality. Population knowledge regarding influenza and its vaccination has a key role in enhancing vaccination coverage. This study aimed to identify the gaps of knowledge among Jordanian population towards influenza and its vaccine, and to identify the major determinants of accepting seasonal influenza vaccine in adults and children in Jordan. This was a cross-sectional study that enrolled 941 randomly selected adults in Amman, Jordan. A four-section questionnaire was used which included questions about the sociodemographic characteristics, knowledge about influenza and the factors that affect seasonal influenza vaccine acceptance and refusal. Only 47.3% of the participants were considered knowledgeable. About half of the participants (51.9%) correctly identified the main influenza preventative measures. Lack of knowledge about the important role of seasonal influenza vaccine in disease prevention was observed. Low vaccination rate (20% of adults) was reported. The most critical barrier against vaccination in adults and children was the concern about the safety and the efficacy of the vaccine, while the most important predictors for future vaccination in adults and children were physician recommendation and government role. In children, the inclusion of the vaccine within the national immunization program was an important determinant of vaccine acceptance. Formulating new strategies to improve the population's level of knowledge, assuring the population about the safety and the efficacy of the vaccine and the inclusion of the vaccine within the national immunization program are the essential factors to enhance vaccination coverage in Jordan. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Vaccination policies and programs: the federal government's role in making the system work.

    PubMed

    Schwartz, B; Orenstein, W A

    2001-12-01

    Government agencies play a key role, from preclinical development to postlicensure monitoring, in making vaccinations one of the leading public health interventions. Important steps in this process include development and testing of vaccine antigens, evaluation of clinical and manufacturing data leading to licensure, formulation of recommendations, vaccine purchase, defining strategies to improve coverage, compensation of those injured by vaccine adverse reactions, and monitoring vaccine impact and safety. Using examples of newly recommended vaccines, this article describes the infrastructure that underlies a safe and effective program and highlights some of the opportunities and threats likely to impact the system in coming years.

  15. Human Papillomavirus Vaccination Guideline Update: American Cancer Society Guideline Endorsement

    PubMed Central

    Saslow, Debbie; Andrews, Kimberly S.; Manassaram-Baptiste, Deana; Loomer, Lacey; Lam, Kristina E.; Fisher-Borne, Marcie; Smith, Robert A.; Fontham, Elizabeth T. H.

    2017-01-01

    The American Cancer Society (ACS) reviewed and updated its guideline on human papillomavirus (HPV) vaccination based on a methodologic and content review of the Advisory Committee on Immunization Practices (ACIP) HPV vaccination recommendations. A literature review was performed to supplement the evidence considered by the ACIP and to address new vaccine formulations and recommendations as well as new data on population outcomes since publication of the 2007 ACS guideline. The ACS Guideline Development Group determined that the evidence supports ACS endorsement of the ACIP recommendations, with one qualifying statement related to late vaccination. The ACS recommends vaccination of all children at ages 11 and 12 years to protect against HPV infections that lead to several cancers and precancers. Late vaccination for those not vaccinated at the recommended ages should be completed as soon as possible, and individuals should be informed that vaccination may not be effective at older ages. PMID:27434803

  16. Current Status of Veterinary Vaccines

    PubMed Central

    Meeusen, Els N. T.; Walker, John; Peters, Andrew; Pastoret, Paul-Pierre; Jungersen, Gregers

    2007-01-01

    The major goals of veterinary vaccines are to improve the health and welfare of companion animals, increase production of livestock in a cost-effective manner, and prevent animal-to-human transmission from both domestic animals and wildlife. These diverse aims have led to different approaches to the development of veterinary vaccines from crude but effective whole-pathogen preparations to molecularly defined subunit vaccines, genetically engineered organisms or chimeras, vectored antigen formulations, and naked DNA injections. The final successful outcome of vaccine research and development is the generation of a product that will be available in the marketplace or that will be used in the field to achieve desired outcomes. As detailed in this review, successful veterinary vaccines have been produced against viral, bacterial, protozoal, and multicellular pathogens, which in many ways have led the field in the application and adaptation of novel technologies. These veterinary vaccines have had, and continue to have, a major impact not only on animal health and production but also on human health through increasing safe food supplies and preventing animal-to-human transmission of infectious diseases. The continued interaction between animals and human researchers and health professionals will be of major importance for adapting new technologies, providing animal models of disease, and confronting new and emerging infectious diseases. PMID:17630337

  17. Detection and characterization of smokeless powders with ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Hernandez, Neiza M.; Rosario, Santa V.; Hernandez, Samuel P.; Mina, Nairmen

    2005-05-01

    Smokeless Powders are a class of propellants that were developed in the late 19th century to replace black powder; it has been used as an explosive in shotguns, rifles, firearms and many other larger caliber weapons. These propellants can be placed into one of three different classes according to the chemical composition of their primary energetic ingredients. Advance equipment have been designed and used for the detection of explosives devices and compounds potentially energetic. In this research we are developing an analytical methodology to detect different formulation of smokeless powders: Alliant-American Select, Alliant-Bullseye, and Alliant-Red Dot using the ion mobility spectrometry (IMS) technique. We used different surfaces like computer diskettes, CD"s, book covers and plastics to study their adsorption/desorption process. Using micropipettes, we delivered solutions with different amounts of Smokeless Powders from a 1000 ppm solution and deposit it on various types of filters to make a calibration curve. Several amounts of Smokeless Powder were deposited to the different surfaces and collected with filter paper. The samples were desorbed directly from the filter to the instrument inlet port. Subsequently, the percentage of explosive recovered was calculated.

  18. Investigating high-concentration monoclonal antibody powder suspension in nonaqueous suspension vehicles for subcutaneous injection.

    PubMed

    Bowen, Mayumi; Armstrong, Nick; Maa, Yuh-Fun

    2012-12-01

    Developing high-concentration monoclonal antibody (mAb) liquid formulations for subcutaneous (s.c.) administration is challenging because increased viscosity makes injection difficult. To overcome this obstacle, we investigated a nonaqueous powder suspension approach. Three IgG1 mAbs were spray dried and suspended at different concentrations in Miglyol® 840, benzyl benzoate, or ethyl lactate. Suspensions were characterized for viscosity, particle size, and syringeability; physical stability was visually inspected. Suspensions generally outperformed liquid solutions for injectability despite higher viscosity at the same mAb concentrations. Powder formulations and properties had little effect on viscosity or injectability. Ethyl lactate suspensions had lowest viscosity (<20 cP) and lowest syringe injection glide force (<15 N) at mAb concentrations as high as 333 mg/mL (500 mg powder/mL). Inverse gas chromatography analysis indicated that the vehicle was the most important factor impacting suspension performance. Ethyl lactate rendered greater heat of sorption (suggesting strong particle-suspension vehicle interaction may reduce particle-particle self-association, leading to low suspension viscosity and glide force) but lacked the physical suspension stability exhibited by the other vehicles. Specific mixtures of ethyl lactate and Miglyol® 840 improved overall performance in high mAb concentration suspensions. This study demonstrated the viability of high mAb concentration (>300 mg/mL) in suspension formulations for s.c. administration. Copyright © 2012 Wiley Periodicals, Inc.

  19. Cutaneous immunization: an evolving paradigm in influenza vaccines

    PubMed Central

    Gill, Harvinder S; Kang, Sang-Moo; Quan, Fu-Shi; Compans, Richard W

    2014-01-01

    Introduction Most vaccines are administered by intramuscular injection using a hypodermic needle and syringe. Some limitations of this procedure include reluctance to be immunized because of fear of needlesticks, and concerns associated with the safe disposal of needles after their use. Skin delivery is an alternate route of vaccination that has potential to be painless and could even lead to dose reduction of vaccines. Recently, microneedles have emerged as a novel painless approach for delivery of influenza vaccines via the skin. Areas covered In this review, we briefly summarize the approaches and devices used for skin vaccination, and then focus on studies of skin immunization with influenza vaccines using microneedles. We discuss both the functional immune response and the nature of this immune response following vaccination with microneedles. Expert opinion The cutaneous administration of influenza vaccines using microneedles offers several advantages: it is painless, elicits stronger immune responses in preclinical studies and could improve responses in high-risk populations. These dry formulations of vaccines provide enhanced stability, a property of high importance in enabling their rapid global distribution in response to possible outbreaks of pandemic influenza and newly emerging infectious diseases. PMID:24521050

  20. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination.

    PubMed

    Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M

    2016-01-01

    The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.

  1. Immunogenicity and safety of cell-derived MF59®-adjuvanted A/H1N1 influenza vaccine for children

    PubMed Central

    Knuf, Markus; Leroux-Roels, Geert; Rümke, Hans; Rivera, Luis; Pedotti, Paola; Arora, Ashwani Kumar; Lattanzi, Maria; Kieninger, Dorothee; Cioppa, Giovanni Della

    2015-01-01

    Mass immunization of children has the potential to decrease infection rates and prevent the transmission of influenza. We evaluated the immunogenicity, safety, and tolerability of different formulations of cell-derived MF59-adjuvanted and nonadjuvanted A/H1N1 influenza vaccine in children and adolescents. This was a randomized, single-blind, multicenter study with a total of 666 healthy subjects aged 6 months–17 y in one of 3 vaccination groups, each receiving formulations containing different amounts of influenza A/H1N1 antigen with or without MF59. A booster trivalent seasonal MF59 vaccine was administered one year after primary vaccinations. Antibody titers were assessed by hemagglutination inhibition (HI) and microneutralization assays obtained on days 1, 22, 43, 366, and 387 (3 weeks post booster). Safety was monitored throughout the study. One vaccination with 3.75 μg of A/H1N1 antigen formulated with 50% MF59 (3.75_halfMF59) or 7.5 μg of A/H1N1 antigen formulated with 100% MF59 (7.5_fullMF59) induced an HI titer ≥1:40 in >70% of children in the 1–<3, 3–8, and 9–17 y cohorts; however, 2 vaccinations with nonadjuvanted 15 μg A/H1N1 antigen were needed to achieve this response in the 1–<3 and 3–8 y cohorts. Among children aged 6–11 months, 1 dose of 7.5_fullMF59 resulted in an HI titer ≥1:40 in >70% while 2 doses of 3.75_halfMF59 were required to achieve this result. All vaccines were well tolerated. Our findings support the immunogenicity and safety of the 3.75_halfMF59 (2 doses for children <12 months) and 7.5_fullMF59 vaccine formulations for use in children and adolescents aged 6 months to 17 y The use of the 3.75_halfMF59 could have the benefit of antigen and adjuvant sparing, increasing the available vaccine doses allowing vaccination of more people. PMID:25621884

  2. Vaccination of ferrets with a recombinant G glycoprotein subunit vaccine provides protection against Nipah virus disease for over 12 months.

    PubMed

    Pallister, Jackie A; Klein, Reuben; Arkinstall, Rachel; Haining, Jessica; Long, Fenella; White, John R; Payne, Jean; Feng, Yan-Ru; Wang, Lin-Fa; Broder, Christopher C; Middleton, Deborah

    2013-07-16

    Nipah virus (NiV) is a zoonotic virus belonging to the henipavirus genus in the family Paramyxoviridae. Since NiV was first identified in 1999, outbreaks have continued to occur in humans in Bangladesh and India on an almost annual basis with case fatality rates reported between 40% and 100%. Ferrets were vaccinated with 4, 20 or 100 μg HeVsG formulated with the human use approved adjuvant, CpG, in a prime-boost regime. One half of the ferrets were exposed to NiV at 20 days post boost vaccination and the other at 434 days post vaccination. The presence of virus or viral genome was assessed in ferret fluids and tissues using real-time PCR, virus isolation, histopathology, and immunohistochemistry; serology was also carried out. Non-immunised ferrets were also exposed to virus to confirm the pathogenicity of the inoculum. Ferrets exposed to Nipah virus 20 days post vaccination remained clinically healthy. Virus or viral genome was not detected in any tissues or fluids of the vaccinated ferrets; lesions and antigen were not identified on immunohistological examination of tissues; and there was no increase in antibody titre during the observation period, consistent with failure of virus replication. Of the ferrets challenged 434 days post vaccination, all five remained well throughout the study period; viral genome - but not virus - was recovered from nasal secretions of one ferret given 20 μg HeVsG and bronchial lymph nodes of the other. There was no increase in antibody titre during the observation period, consistent with lack of stimulation of a humoral memory response. We have previously shown that ferrets vaccinated with 4, 20 or 100 μg HeVsG formulated with CpG adjuvant, which is currently in several human clinical trials, were protected from HeV disease. Here we show, under similar conditions of use, that the vaccine also provides protection against NiV-induced disease. Such protection persists for at least 12 months post-vaccination, with data supporting

  3. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The future potential for cocaine vaccines.

    PubMed

    Orson, Frank M; Wang, Rongfu; Brimijoin, Stephen; Kinsey, Berma M; Singh, Rana Ak; Ramakrishnan, Muthu; Wang, Helen Y; Kosten, Thomas R

    2014-09-01

    Addiction to cocaine is a major problem around the world, but especially in developed countries where the combination of wealth and user demand has created terrible social problems. Although only some users become truly addicted, those who are often succumb to a downward spiral in their lives from which it is very difficult to escape. From the medical perspective, the lack of effective and safe, non-addictive therapeutics has instigated efforts to develop alternative approaches for treatment, including anticocaine vaccines designed to block cocaine's pharmacodynamic effects. This paper discusses the implications of cocaine pharmacokinetics for robust vaccine antibody responses, the results of human vaccine clinical trials, new developments in animal models for vaccine evaluation, alternative vaccine formulations and complementary therapy to enhance anticocaine effectiveness. Robust anti-cocaine antibody responses are required for benefit to cocaine abusers, but since any reasonably achievable antibody level can be overcome with higher drug doses, sufficient motivation to discontinue use is also essential so that the relative barrier to cocaine effects will be appropriate for each individual. Combining a vaccine with achievable levels of an enzyme to hydrolyze cocaine to inactive metabolites, however, may substantially increase the blockade and improve treatment outcomes.

  5. Vaccines and future global health needs

    PubMed Central

    Nossal, G. J. V.

    2011-01-01

    Increased international support for both research into new vaccines and their deployment in developing countries has been evident over the past decade. In particular, the GAVI Alliance has had a major impact in increasing uptake of the six common infant vaccines as well as those against hepatitis B and yellow fever. It further aims to introduce pneumococcal and rotavirus vaccines in the near future and several others, including those against human papillomavirus, meningococcal disease, rubella and typhoid not long after that. In addition, there is advanced research into vaccines against malaria, HIV/AIDS and tuberculosis. By 2030, we may have about 20 vaccines that need to be used in the developing world. Finding the requisite funds to achieve this will pose a major problem. A second and urgent question is how to complete the job of global polio eradication. The new strategic plan calls for completion by 2013, but both pre-eradication and post-eradication challenges remain. Vaccines will eventually become available beyond the field of infectious diseases. Much interesting work is being done in both autoimmunity and cancer. Cutting across disease groupings, there are issues in methods of delivery and new adjuvant formulations. PMID:21893548

  6. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties.

    PubMed

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2016-09-14

    Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.

  7. Protective efficacy of a recombinant subunit West Nile virus vaccine in domestic geese (Anser anser)

    USGS Publications Warehouse

    Jarvi, S.I.; Lieberman, M.M.; Hofmeister, E.; Nerurkar, V.R.; Wong, T.; Weeks-Levy, C.

    2008-01-01

    Introduction of the West Nile virus (WNV) to Hawai'i will undoubtedly devastate many populations of critically endangered avian species indigenous to Hawai'i. The protective efficacy of a protein-based WNV subunit vaccine formulated with adjuvant was evaluated in domestic geese as a surrogate species for the endangered Ne??ne??, the state bird of Hawai'i. Prevention of viremia following viral infection of vaccinated birds was used as the clinical endpoint of protection. ELISA and plaque reduction neutralization tests demonstrate that significant levels of vaccine antigen-specific antibody were produced in groups of birds vaccinated with 5 or 10 ??g of the WN-80E antigen formulated with ISA720 adjuvant. Moreover, after challenge with WNV, no viremia was detected in vaccinated birds, whereas viremia was detected up to 4 days after and virus was detected by oral swab for 6 days after infection among control groups. Safe and effective vaccination of managed or captive endangered bird populations will protect species with critically low numbers that could not survive the added mortality of introduced disease. ?? 2008 Elsevier Ltd.

  8. Imagine the Superiority of Dry Powder Inhalers from Carrier Engineering

    PubMed Central

    2018-01-01

    Inhalation therapy has strong history of more than 4000 years and it is well recognized around the globe within every culture. In early days, inhalation therapy was designed for treatment of local disorders such as asthma and other pulmonary diseases. Almost all inhalation products composed a simple formulation of a carrier, usually α-lactose monohydrate orderly mixed with micronized therapeutic agent. Most of these formulations lacked satisfactory pulmonary deposition and dispersion. Thus, various alternative carrier's molecules and powder processing techniques are increasingly investigated to achieve suitable aerodynamic performance. In view of this fact, more suitable and economic alternative carrier's molecules with advanced formulation strategies are discussed in the present review. Furthermore, major advances, challenges, and the future perspective are discussed. PMID:29568652

  9. An international technology platform for influenza vaccines.

    PubMed

    Hendriks, Jan; Holleman, Marit; de Boer, Otto; de Jong, Patrick; Luytjes, Willem

    2011-07-01

    Since 2008, the World Health Organization has provided seed grants to 11 manufacturers in low- and middle-income countries to establish or improve their pandemic influenza vaccine production capacity. To facilitate this ambitious project, an influenza vaccine technology platform (or "hub") was established at the Netherlands Vaccine Institute for training and technology transfer to developing countries. During its first two years of operation, a robust and transferable monovalent pilot process for egg-based inactivated whole virus influenza A vaccine production was established under international Good Manufacturing Practice standards, as well as in-process and release assays. A course curriculum was designed, including a two-volume practical handbook on production and quality control. Four generic hands-on training courses were successfully realized for over 40 employees from 15 developing country manufacturers. Planned extensions to the curriculum include cell-culture based technology for viral vaccine production, split virion influenza production, and generic adjuvant formulation. We conclude that technology transfer through the hub model works well, significantly builds vaccine manufacturing capacity in developing countries, and thereby increases global and equitable access to vaccines of high public health relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Case study for a vaccine against leishmaniasis.

    PubMed

    Alvar, Jorge; Croft, Simon L; Kaye, Paul; Khamesipour, Ali; Sundar, Shyam; Reed, Steven G

    2013-04-18

    Leishmaniasis in many ways offers a unique vaccine case study. Two reasons for this are that leishmaniasis is a disease complex caused by several different species of parasite that are highly related, thus raising the possibility of developing a single vaccine to protect against multiple diseases. Another reason is the demonstration that a leishmaniasis vaccine may be used therapeutically as well as prophylactically. Although there is no registered human leishmaniasis vaccine today, immunization approaches using live or killed organisms, as well as defined vaccine candidates, have demonstrated at least some degree of efficacy in humans to prevent and to treat some forms of leishmaniasis, and there is a vigorous pipeline of candidates in development. Current approaches include using individual or combined antigens of the parasite or of salivary gland extract of the parasites' insect vector, administered with or without formulation in adjuvant. Animal data obtained with several vaccine candidates are promising and some have been or will be entered into clinical testing in the near future. There is sufficient scientific and epidemiological justification to continue to invest in the development of vaccines against leishmaniasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Vaccination against typhoid fever: present status.

    PubMed Central

    Ivanoff, B.; Levine, M. M.; Lambert, P. H.

    1994-01-01

    Typhoid fever remains an underestimated important health problem in many developing countries, causing more than 600,000 deaths annually in the world. Because of the reactogenicity of the parenteral, killed whole-cell vaccine, research has been oriented towards vaccination orally using live organisms and purified antigen. Live vaccine Ty21a, given by the oral route, has been extensively tested in several studies in developing countries. Its liquid formulation was the most effective, providing more than 60% protection after 7 years of follow-up. A Vi polysaccharide vaccine has been elaborated and provided more than 65% protection; after 3 years of follow-up the Vi antibody level was still at a high level. These two vaccines are therefore candidates for use in public health control programmes. Before such use, however, they need further evaluation for safety and protective efficacy when administered to the EPI-targeted age groups. The question of whether typhoid fever vaccines interfere with the response to simultaneously administered measles vaccine must also be studied. New live vaccines, given by the oral route in one dose, have been constructed through genetic engineering. The first results are promising, but they must be improved before use in a large-scale study. These strains could be used as live vector to deliver foreign antigens to the intestinal mucosa. PMID:7867143

  12. Vaccines for the future: learning from human immunology

    PubMed Central

    De Gregorio, Ennio; Rappuoli, Rino

    2012-01-01

    Summary Conventional vaccines have been extremely successful in preventing infections by pathogens expressing relatively conserved antigens through antibody‐mediated effector mechanisms. Thanks to vaccination some diseases have been eradicated and mortality due to infectious diseases has been significantly reduced. However, there are still many infections that are not preventable with vaccination, which represent a major cause of mortality worldwide. Some of these infections are caused by pathogens with a high degree of antigen variability that cannot be controlled only by antibodies, but require a mix of humoral and cellular immune responses. Novel technologies for antigen discovery, expression and formulation allow now for the development of vaccines that can better cope with pathogen diversity and trigger multifunctional immune responses. In addition, the application of new genomic assays and systems biology approaches in human immunology can help to better identify vaccine correlates of protection. The availability of novel vaccine technologies, together with the knowledge of the distinct human immune responses that are required to prevent different types of infection, should help to rationally design effective vaccines where conventional approaches have failed. PMID:21880117

  13. A facile approach to enhance antigen response for personalized cancer vaccination

    NASA Astrophysics Data System (ADS)

    Li, Aileen Weiwei; Sobral, Miguel C.; Badrinath, Soumya; Choi, Youngjin; Graveline, Amanda; Stafford, Alexander G.; Weaver, James C.; Dellacherie, Maxence O.; Shih, Ting-Yu; Ali, Omar A.; Kim, Jaeyun; Wucherpfennig, Kai W.; Mooney, David J.

    2018-06-01

    Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR-PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR-PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR-PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy. Our findings from three independent tumour models suggest that the MSR-PEI vaccine approach may serve as a facile and powerful multi-antigen platform to enable robust personalized cancer vaccination.

  14. Optimization of formulation and processing of Moringa oleifera and spirulina complex tablets.

    PubMed

    Zheng, Yi; Zhu, Fan; Lin, Dan; Wu, Jun; Zhou, Yichao; Mark, Bohn

    2017-01-01

    Objective: To prepare a more comprehensive nutrition, more balanced proportion of natural nutritional supplement tablets with Moringa oleifera leaves and spirulina the two nutrients which have complementary natural food ingredients. Method: On the basis of research M. oleifera leaves with spirulina nutrient composition was determined on M. oleifera leaves and spirulina ratio of raw materials, and the choice of microcrystalline cellulose, sodium salt of caboxy methyl cellulose(CMC),magnesium stearate excipient, through single factor and orthogonal experiment, selecting the best formula tablets prepared by powder direct compression technology, for preparation of M. oleifera and spirulina complex tablets. Results: The best ratio of raw material for the M. oleifera leaves powder: spirulina powder was 7:3, the best raw materials for the tablet formulation was 88.5%, 8.0% microcrystalline cellulose, CMC 2.0%, stearin magnesium 1.5%, the optimum parameters for the raw material crushing 200-300 mesh particle size, moisture content of 7%, tableting pressure 40 kN. Conclusion: Through formulation and process optimization, we can prepare more comprehensive and balanced nutrition M. oleifera and spirulina complex tablets, its sheet-shaped appearance, piece weight variation, hardness, friability, disintegration and other indicators have reached the appropriate quality requirements.

  15. Texture and quality properties of Chinese fresh egg noodles formulated with green seaweed (Monostroma nitidum) powder.

    PubMed

    Chang, H C; Wu, L-C

    2008-10-01

    The objective of this study was to compare fresh Chinese noodles made with different levels of green seaweed. Green seaweed powder was incorporated in proportions of 4%, 6%, and 8% in noodles, which were made with or without additional eggs. Proximate compositions, cooking properties, textural intensities, and sensory qualities of noodles were assessed. The addition of seaweed powder increased the crude fiber contents of raw fresh noodles; the fiber contents were 0.100%+/- 0.015 to 0.449%+/- 0.013 for noodles made with eggs from 0% to 8% additional seaweed and 0.247%+/- 0.018 to 0.344%+/- 0.021 for those without eggs. Higher cooking yields were found in the noodles, due to water absorption during cooking by the fibers and polysaccharides in the seaweed. Significantly higher cooking yields (P < 0.05) were found in the noodles with 8% additional seaweed powder; water uptake readings measured 2.39 +/- 0.38 and 2.43 +/- 0.25 g H(2)O/g noodle for samples made without and with eggs, respectively. Higher water absorption by the seaweed led to softer and spongier textural intensities in the noodles. Breaking energy of cooked fresh egg noodles were 28.94 +/- 3.42 to 6.43 +/- 1.01 N x mm for 8% to 0% additional seaweed, and the intensities decreased as the amount of seaweed increased; the same pattern was observed in noodles without eggs, where readings were 8.66 +/- 1.02 to 3.49 +/- 0.25 N x mm. Capacities of extensibility measured 61.81 +/- 2.04 to 30.74 +/- 0.90 mm for fresh egg noodles with additional seaweed powder from 0% to 8%, and 47.46 +/- 2.41 to 28.36 +/- 2.25 mm for cooked fresh noodles without eggs. The results from Pearson's correlation analysis indicated that textural parameters were influenced not only by additional eggs and seaweed powder, but also by cooking properties.

  16. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines.

    PubMed

    Démoulins, Thomas; Milona, Panagiota; Englezou, Pavlos C; Ebensen, Thomas; Schulze, Kai; Suter, Rolf; Pichon, Chantal; Midoux, Patrick; Guzmán, Carlos A; Ruggli, Nicolas; McCullough, Kenneth C

    2016-04-01

    Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Thermal stability of self-assembled peptide vaccine materials.

    PubMed

    Sun, Tao; Han, Huifang; Hudalla, Gregory A; Wen, Yi; Pompano, Rebecca R; Collier, Joel H

    2016-01-01

    The majority of current vaccines depend on a continuous "cold chain" of storage and handling between 2 and 8°C. Vaccines experiencing temperature excursions outside this range can suffer from reduced potency. This thermal sensitivity results in significant losses of vaccine material each year and risks the administration of vaccines with diminished protective ability, issues that are heightened in the developing world. Here, using peptide self-assemblies based on the fibril-forming peptide Q11 and containing the epitopes OVA323-339 from ovalbumin or ESAT651-70 from Mycobacterium tuberculosis, the chemical, conformational, and immunological stability of supramolecular peptide materials were investigated. It was expected that these materials would exhibit advantageous thermal stability owing to their adjuvant-free and fully synthetic construction. Neither chemical nor conformational changes were observed for either peptide when stored at 45°C for 7days. ESAT651-70-Q11 was strongly immunogenic whether it was stored as a dry powder or as aqueous nanofibers, showing undiminished immunogenicity even when stored as long as six months at 45°C. This result was in contrast to ESAT651-70 conjugated to a protein carrier and adjuvanted with alum, which demonstrated marked thermal sensitivity in these conditions. Antibody titers and affinities were undiminished in mice for OVA323-339-Q11 if it was stored as assembled nanofibers, yet some diminishment was observed for material stored as a dry powder. The OVA study was done in a different mouse strain and with a different prime/boost regimen, and so it should not be compared directly with the study for the ESAT epitope. This work indicates that peptide self-assemblies can possess attractive thermal stability properties in the context of vaccine development. Almost all current vaccines must be maintained within a tight and refrigerated temperature range, usually between 2 and 8°C. This presents significant challenges for their

  18. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.

    PubMed

    Zhou, Zuoxin; Buchanan, Fraser; Mitchell, Christina; Dunne, Nicholas

    2014-05-01

    In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p<0.05) in the 3DP process parameters were found for CaP (30-110 μm):CaSO4 powders compared to CaP (<20 μm):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (β-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A booster dose of an inactivated enterovirus 71 vaccine in chinese young children: a randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Shenyu, Wang; Jingxin, Li; Zhenglun, Liang; Xiuling, Li; Qunying, Mao; Fanyue, Meng; Hua, Wang; Yuntao, Zhang; Fan, Gao; Qinghua, Chen; Yuemei, Hu; Xin, Yao; Huijie, Guo; Fengcai, Zhu

    2014-10-01

    A significant waning of enterovirus 71 (EV71) antibody titer after priming immunization with an inactivated EV71 vaccine implied the potential need for a booster dose. In this randomized, double-blind, placebo-controlled clinical trial, we recruited participants who had received at least 1 dose of priming EV71 vaccine in an early phase 2 clinical trial that was conducted in healthy infants and children aged 6-35 months. All participants were grouped according to the priming EV71 vaccine formulations (160 U, 320 U, and 640 U with adjuvant and 640 U without adjuvant) and then randomly assigned (ratio, 2:1) to receive a booster dose of vaccine or placebo within each formulation group. The primary end point was the geometric mean titer 28 days after the booster dose. A total of 773 participants were enrolled. Significantly greater immunological responses were induced by the booster shot of all 4 formulations of EV71 vaccine, compared with that induced by placebo (P < .0001). The frequencies of adverse reactions were similar between vaccine and placebo groups within each formulation group. A booster dose of EV71 vaccine 1 year after the priming EV71 immunization shows excellent immunogenicity and good safety profile. Clinical Trials Registration: NCT01734408. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. [Vaccination schedule of the Spanish Association of Pediatrics: recommendations 2005].

    PubMed

    2005-02-01

    The Advisory Committee on Vaccines of the Spanish Association of Pediatrics provides information and comments on the new developments in vaccines that have taken place in 2004 and recommends a few modifications to the Immunization Schedule for 2005. Concerning the meningococcal C vaccine, no change is made to the possibility of administering two doses for the first vaccination with one of the available formulations. The existence of immunization failure in children who have received a first vaccination with three vaccine doses before the age of 12 months is discussed, and the health authorities will probably include a booster dose in the second year of life throughout 2005. The recommendations of the European Medicines Evaluation Agency (EMEA) on hexavalent vaccines continue to be valid and consequently the use of these vaccines should not be stopped. This year the need for adolescents to receive a booster dose of the pertussis vaccine, with administration of an acellular, low antigenic load preparation together with the adult diphtheria and tetanus vaccine is stressed.

  1. Alternative early life vaccination programs for companion animals.

    PubMed

    Poulet, H

    2007-07-01

    An experimental challenge study of multicomponent vaccination of kittens is reported. Seven-to-nine week old, specific pathogen-free kittens received two injections (4 weeks apart) of non-adjuvanted, multicomponent vaccine formulated at the minimum protective dose. Kittens were challenged at 4 weeks or 1 year post-vaccination with individual infectious agents. Vaccination induced complete protection against challenge from feline parvovirus on both occasions, but at 1 year, the protection against feline herpesvirus, feline calicivirus and Chlamydophila felis was not as strong as 4 weeks after vaccination. This demonstration of a decline in protective immunity at the normal time of administration of the first booster vaccine suggests that earlier administration of this booster (at 4-6 months of age) may provide better protection. The effect of maternally derived antibody (MDA) on kitten vaccination was determined by conducting an identical experiment but with kittens born to queens vaccinated during pregnancy. Serum antibody titres to specific vaccine components were measured in these kittens on day 0 (time of first vaccination), day 28 (time of second vaccination) and day 42. There was heterogeneity in transfer of MDA to kittens within a litter, and between litters. MDA may neutralize the serological response of kittens on the first, and occasionally the second, occasion of vaccination when vaccination is performed at 8 and 12 weeks of age. This finding underpins recent recommendations that the final vaccination in the primary series be administered at 16 weeks of age.

  2. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus.

    PubMed

    Peeters, Ben; Tonnis, Wouter F; Murugappan, Senthil; Rottier, Peter; Koch, Guus; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J

    2014-11-12

    Highly pathogenic avian influenza (HPAI) H5N1 virus is a major threat to public health as well as to the global poultry industry. Most fatal human infections are caused by contact with infected poultry. Therefore, preventing the virus from entering the poultry population is a priority. This is, however, problematic in emergency situations, e.g. during outbreaks in poultry, as there are currently no mass application methods to effectively vaccinate large numbers of birds within a short period of time. To evaluate the suitability of needle-free pulmonary immunization for mass vaccination of poultry against HPAI H5N1, we performed a proof-of-concept study in which we investigated whether non-adjuvanted spray-freeze-dried (SFD) whole inactivated virus (WIV) can be used as a dry powder aerosol vaccine to immunize chickens. Our results show that chickens that received SFD-WIV vaccine as aerosolized powder directly at the syrinx (the site of the tracheal bifurcation), mounted a protective antibody response after two vaccinations and survived a lethal challenge with HPAI H5N1. Furthermore, both the number of animals that shed challenge virus, as well as the level of virus shedding, were significantly reduced. Based on antibody levels and reduction of virus shedding, pulmonary vaccination with non-adjuvanted vaccine was at least as efficient as intratracheal vaccination using live virus. Animals that received aerosolized SFD-WIV vaccine by temporary passive inhalation showed partial protection (22% survival) and a delay in time-to-death, thereby demonstrating the feasibility of the method, but indicating that the efficiency of vaccination by passive inhalation needs further improvement. Altogether our results provide a proof-of-concept that pulmonary vaccination using an SFD-WIV powder vaccine is able to protect chickens from lethal HPAI challenge. If the efficacy of pulmonary vaccination by passive inhalation can be improved, this method might be suitable for mass

  3. Use of an Sm-p80–Based Therapeutic Vaccine to Kill Established Adult Schistosome Parasites in Chronically Infected Baboons

    PubMed Central

    Karmakar, Souvik; Zhang, Weidong; Ahmad, Gul; Torben, Workineh; Alam, Mayeen U.; Le, Loc; Damian, Raymond T.; Wolf, Roman F.; White, Gary L.; Carey, David W.; Carter, Darrick; Reed, Steven G.; Siddiqui, Afzal A.

    2014-01-01

    No vaccines are available for human use for any parasitic infections, including the helminthic disease schistosomiasis. Sm-p80, the large subunit of Schistosoma mansoni calpain, is a leading antigen candidate for a schistosomiasis vaccine. Prophylactic and antifecundity efficacies of Sm-p80 have been tested using a variety of vaccine approaches in both rodent and nonhuman primate models. However, the therapeutic efficacy of a Sm-p80–based vaccine had not been determined. In this study, we evaluated the therapeutic efficacy of Sm-p80 by using 2 different strategies and 3 Sm-p80–based vaccine formulations in baboons. Vaccine formulations were able to decrease established adult worms by 10%–36%, reduce retention of eggs in tissues by 10%–57%, and decrease egg excretion in feces by 13%–33%, compared with control formulations. Marked differences were observed in B and T cell immune correlates between vaccinated and control animals. This is the first report of killing of established adult schistosome worms by a vaccine. In addition to distinct prophylactic efficacy of Sm-p80, this study adds to the evidence that Sm-p80 is a potentially important antigen with both substantial prophylactic and therapeutic efficacies. These data reinforce that Sm-p80 should be moved forward along the path toward human clinical trials. PMID:24436452

  4. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections.

    PubMed

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-06-01

    The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 10(4) pfu and SD-F2 = 11.0 ± 1.4 × 10(4) pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 10(4) pfu and SFD-F2 = 2.1 ± 0.3 × 10(4) pfu). Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.

  5. An experimental investigation of temperature rise during compaction of pharmaceutical powders.

    PubMed

    Krok, Alexander; Mirtic, Andreja; Reynolds, Gavin K; Schiano, Serena; Roberts, Ron; Wu, Chuan-Yu

    2016-11-20

    During pharmaceutical powder compaction, temperature rise in the compressed powder can affect physiochemical properties of the powder, such as thermal degradation and change in crystallinity. Thus, it is of practical importance to understand the effect of process conditions and material properties on the thermal response of pharmaceutical formulations during compaction. The aim of this study was to examine the temperature rise of pharmaceutical powders during tableting, in particular, to explore how the temperature rise depends on material properties, compression speed and tablet shape. Three grades of microcrystalline cellulose (MCC) were considered: MCC Avicel pH 101, MCC Avicel pH 102 and MCC DG. These powders were compressed using a compaction simulator at various compaction speeds (10-500mm/s). Flat faced, shallow convex and normal convex tablets were produced and temperature distributions on the surface of theses tablets upon ejection were examined using an infrared thermoviewer. It was found that an increase in the compaction speed led to an increase in the average surface temperature. A higher surface temperature was induced when the powder was compressed into a tablet with larger surface curvature. This was primarily due to the increasing degree of powder deformation (i.e. the volume reduction) and the effect of interparticule/wall friction. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Efficacy and safety of a non-mineral oil adjuvanted injectable vaccine for the protection of Atlantic salmon (Salmo salar L.) against Flavobacterium psychrophilum.

    PubMed

    Hoare, R; Jung, S-J; Ngo, T P H; Bartie, K; Bailey, J; Thompson, K D; Adams, A

    2017-10-07

    Flavobacterium psychrophilum is the causative agent of Rainbow Trout Fry Syndrome which has had a major impact on global salmonid aquaculture. Recent outbreaks in Atlantic salmon in Scotland and Chile have added to the need for a vaccine to protect both salmon and trout. At present no licensed vaccines are available in Europe, leaving antibiotics as the only course of action to contain disease outbreaks. Outbreaks generally occur in fry at temperatures between 10 and 15 °C. Recently outbreaks in larger fish have given added impetus to the development of a vaccine which can provide long term protection from this highly heterogeneous pathogen. Most fish injectable vaccines are formulated with oil emulsion adjuvants to induce strong and long lasting immunity, but which are known to cause side effects. Alternative adjuvants are currently sought to minimise these adverse effects. The current study was performed to assess the efficacy of a polyvalent, whole cell vaccine containing formalin-inactivated F. psychrophilum to induce protective immunity in Atlantic salmon. The vaccine was formulated with an adjuvant containing squalene and aluminium hydroxide, and was compared to a vaccine formulated with a traditional oil adjuvant, Montanide ISA 760VG, and a non-adjuvanted vaccine. Duplicate groups of salmon (23.5 ± 6.8 g) were vaccinated with each of the vaccine formulations or phosphate buffered saline by intraperitoneal injection. Fish were challenged by intramuscular injection with F. psychrophilum six weeks post-vaccination to test the efficacy of the vaccines. Cumulative mortality reached 70% in the control salmon, while the groups of salmon that received vaccine had significantly lower mortality than the controls (p = 0.0001), with no significant difference in survival between vaccinated groups. The squalene/alum adjuvant was safe, more readily metabolised by the fish and induced less histopathological changes than the traditional oil adjuvant. Copyright

  7. WHO policy development processes for a new vaccine: case study of malaria vaccines.

    PubMed

    Milstien, Julie; Cárdenas, Vicky; Cheyne, James; Brooks, Alan

    2010-06-24

    Recommendations from the World Health Organization (WHO) are crucial to inform developing country decisions to use, or not, a new intervention. This article analysed the WHO policy development process to predict its course for a malaria vaccine. The decision-making processes for one malaria intervention and four vaccines were classified through (1) consultations with staff and expert advisors to WHO's Global Malaria Programme (GMP) and Immunization, Vaccines and Biologicals Department (IVB); (2) analysis of the procedures and recommendations of the major policy-making bodies of these groups; (3) interviews with staff of partnerships working toward new vaccine availability; and (4) review and analyses of evidence informing key policy decisions. WHO policy formulation related to use of intermittent preventive treatment in infancy (IPTi) and the following vaccine interventions: Haemophilus influenzae type b conjugate vaccine (Hib), pneumococcal conjugate vaccine (PCV), rotavirus vaccine (RV), and human papillomavirus vaccine (HPV), five interventions which had relatively recently been through systematic WHO policy development processes as currently constituted, was analysed. Required information was categorized in three areas defined by a recent WHO publication on development of guidelines: safety and efficacy in relevant populations, implications for costs and population health, and localization of data to specific epidemiological situations. Data needs for a malaria vaccine include safety; the demonstration of efficacy in a range of epidemiological settings in the context of other malaria prevention interventions; and information on potential rebound in which disease increases subsequent to the intervention. In addition, a malaria vaccine would require attention to additional factors, such as costs and cost-effectiveness, supply and demand, impact of use on other interventions, and distribution issues. Although policy issues may be more complex for future vaccines

  8. Vaccination of cattle against bovine viral diarrhea virus.

    PubMed

    Newcomer, Benjamin W; Chamorro, Manuel F; Walz, Paul H

    2017-07-01

    Bovine viral diarrhea virus (BVDV) is responsible for significant losses to the cattle industry. Currently, modified-live viral (MLV) and inactivated viral vaccines are available against BVDV, often in combination with other viral and bacterial antigens. Inactivated and MLV vaccines provide cattle producers and veterinarians safe and efficacious options for herd immunization to limit disease associated with BVDV infection. Vaccination of young cattle against BVDV is motivated by prevention of clinical disease and limiting viral spread to susceptible animals. For reproductive-age cattle, vaccination to prevent viremia and birth of persistently infected offspring is considered more important, while also more difficult to achieve than prevention of clinical disease. Recent advances have been made in the understanding of BVDV vaccine efficacy. In terms of preventing clinical disease, current BVDV vaccines have been demonstrated to have a rapid onset of immunity and MLV vaccines can be effectively utilized in calves possessing maternal immunity. For reproductive protection, more recent studies using multivalent MLV vaccines have demonstrated consistent fetal protection rates in the range of 85-100% in experimental studies. Proper timing and administration of BVDV vaccines can be utilized to maximize vaccine efficacy to provide an important contribution to reducing risks associated with BVDV infection. With improvements in vaccine formulations and increased understanding of the protective immune response following vaccination, control of BVDV through vaccination can be enhanced. Copyright © 2017. Published by Elsevier B.V.

  9. Dairy cows produce cytokine and cytotoxic T cell responses following vaccination with an antigenic fraction from Streptococcus uberis.

    PubMed

    Wedlock, D Neil; Buddle, Bryce M; Williamson, John; Lacy-Hulbert, S Jane; Turner, Sally-Anne; Subharat, Supatsak; Heiser, Axel

    2014-07-15

    Streptococcus uberis is a major cause of mastitis in dairy cows worldwide and currently, there is no vaccine commercially available against this form of mastitis. In the current study, cell-free extracts (CFE) were prepared from each of three different S. uberis strains, designated as #3, #24 and #363 representative of the three main sequence types of S. uberis that cause mastitis in New Zealand. These proteins were formulated into vaccines with Emulsigen-D and the immunogenicity of the vaccines was determined in both calves and dairy cows. Two groups of calves (n=5/group) were vaccinated subcutaneously with CFE from strain #24 or strains #3, #24 and #363 formulated with Emulsigen-D, respectively. A third group (n=5) was vaccinated with CFE from the three strains formulated with Emulsigen-D and also containing recombinant bovine granulocyte macrophage colony-stimulating factor while, a control group (n=5) was not vaccinated. Vaccinated animals produced strong antibody responses to the S. uberis antigens and an antigen-specific cytotoxic effect against blood monocytes/macrophages that had phagocytosed S. uberis, with no significant differences in responses observed between the three vaccinated groups. In a second trial, the safety and immunogenicity of the vaccine containing CFE from all three strains of S. uberis and Emulsigen-D was determined in dairy cows. A group of six cows were vaccinated subcutaneously at 3 and 1 week prior to dry off and revaccinated 2-3 weeks before calving. Immune responses in blood and mammary gland secretions (MGS) were monitored during the dry period and in the subsequent lactation. The vaccine was well tolerated with no adverse effect from vaccination observed in any of the cows. Vaccination induced an antigen-specific cytotoxic effect against blood monocytes/macrophages that had phagocytosed S. uberis, moderate antigen-specific IFN-γ responses in blood and strong antibody responses in both blood and MGS. In conclusion, the results

  10. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation

    PubMed Central

    Chattopadhyay, Saborni; Chen, Jui-Yi; Chen, Hui-Wen; Hu, Che-Ming Jack

    2017-01-01

    Synthetic nanoparticles play an increasingly significant role in vaccine design and development as many nanoparticle vaccines show improved safety and efficacy over conventional formulations. These nanoformulations are structurally similar to viruses, which are nanoscale pathogenic organisms that have served as a key selective pressure driving the evolution of our immune system. As a result, mechanisms behind the benefits of nanoparticle vaccines can often find analogue to the interaction dynamics between the immune system and viruses. This review covers the advances in vaccine nanotechnology with a perspective on the advantages of virus mimicry towards immune potentiation. It provides an overview to the different types of nanomaterials utilized for nanoparticle vaccine development, including functionalization strategies that bestow nanoparticles with virus-like features. As understanding of human immunity and vaccine mechanisms continue to evolve, recognizing the fundamental semblance between synthetic nanoparticles and viruses may offer an explanation for the superiority of nanoparticle vaccines over conventional vaccines and may spur new design rationales for future vaccine research. These nanoformulations are poised to provide solutions towards pressing and emerging human diseases. PMID:29071191

  11. Room Temperature Stabilization of Oral, Live Attenuated Salmonella enterica serovar Typhi-Vectored Vaccines

    PubMed Central

    Ohtake, Satoshi; Martin, Russell; Saxena, Atul; Pham, Binh; Chiueh, Gary; Osorio, Manuel; Kopecko, Dennis; Xu, DeQi; Lechuga-Ballesteros, David; Truong-Le, Vu

    2011-01-01

    Foam drying, a modified freeze drying process, was utilized to produce a heat-stable, live attenuated Salmonella Typhi ‘Ty21a’ bacterial vaccine. Ty21a vaccine was formulated with pharmaceutically approved stabilizers, including sugars, plasticizers, amino acids, and proteins. Growth media and harvesting conditions of the bacteria were also studied to enhance resistance to desiccation stress encountered during processing as well as subsequent storage at elevated temperatures. The optimized Ty21a vaccine, formulated with trehalose, methionine, and gelatin, demonstrated stability for approximately 12 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1log10 CFU) and no loss in titer at 4 and 25°C following storage for the same duration. Furthermore, the foam dried Ty21a elicited a similar immunogenic response in mice as well as protection in challenge studies compared to Vivotif™, the commercial Ty21a vaccine. The enhanced heat stability of the Ty21a oral vaccine, or Ty21a derivatives expressing foreign antigens (e.g. anthrax), could mitigate risks of vaccine potency loss during long term storage, shipping, delivery to geographical areas with warmer climates or during emergency distribution following a bioterrorist attack. Because the foam drying process is conducted using conventional freeze dryers and can be readily implemented at any freeze drying manufacturing facility, this technology appears ready and appropriate for large scale processing of foam dried vaccines. PMID:21300096

  12. Practical Approaches to Forced Degradation Studies of Vaccines.

    PubMed

    Hasija, Manvi; Aboutorabian, Sepideh; Rahman, Nausheen; Ausar, Salvador F

    2016-01-01

    During the early stages of vaccine development, forced degradation studies are conducted to provide information about the degradation properties of vaccine formulations. In addition to supporting the development of analytical methods for the detection of degradation products, these stress studies are used to identify optimal long-term storage conditions and are part of the regulatory requirements for the submission of stability data. In this chapter, we provide detailed methods for forced degradation analysis under thermal, light, and mechanical stress conditions.

  13. Quality-by-design (QbD): effects of testing parameters and formulation variables on the segregation tendency of pharmaceutical powder measured by the ASTM D 6940-04 segregation tester.

    PubMed

    Xie, Lin; Wu, Huiquan; Shen, Meiyu; Augsburger, Larry L; Lyon, Robbe C; Khan, Mansoor A; Hussain, Ajaz S; Hoag, Stephen W

    2008-10-01

    The objective of this study was to examine the effects of testing parameters and formulation variables on the segregation tendency of pharmaceutical powders measured by the ASTM D 6940-04 segregation tester using design of experiments (DOE) approaches. The test blends consisted of 4% aspirin (ASP) and 96% microcrystalline cellulose (MCC) with and without magnesium stearate (MgS). The segregation tendency of a blend was determined by measuring the last/first (L/F) ratio, the ratio of aspirin concentrations between the first and last samples discharged from the tester. A 2(2) factorial design was used to determine the effects of measurement parameters [amount of material loaded (W), number of segregation cycles] with number of replicates 6. ANOVA showed that W was a critical parameter for segregation testing. The L/F value deviated further from 1 (greater segregation tendency) with increasing W. A 2(3) full factorial design was used to assess the effects of formulation variables: grade of ASP (unmilled, milled), grade of MCC, and amount of lubricant, MgS. MLR and ANOVA showed that the grade of ASP was the main effect contributing to segregation tendency. Principal Component Regression Analysis established a correlation between L/F and the physical properties of the blend related to ASP and MCC, the ASP/MCC particle size ratio (PSR) and powder cohesion. The physical properties of the blend related to density and flow were not influenced by the grade of ASP and were not related to the segregation tendency of the blend. The direct relationship between L/F and PSR was determined by univariate analysis. Segregation tendency increased as the ASP to MCC particle size increased. This study highlighted critical test parameters for segregation testing and identified critical physical properties of the blends that influence segregation tendency. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  14. Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion

    PubMed Central

    Bogers, Willy M.; Oostermeijer, Herman; Mooij, Petra; Koopman, Gerrit; Verschoor, Ernst J.; Davis, David; Ulmer, Jeffrey B.; Brito, Luis A.; Cu, Yen; Banerjee, Kaustuv; Otten, Gillis R.; Burke, Brian; Dey, Antu; Heeney, Jonathan L.; Shen, Xiaoying; Tomaras, Georgia D.; Labranche, Celia; Montefiori, David C.; Liao, Hua-Xin; Haynes, Barton; Geall, Andrew J.; Barnett, Susan W.

    2015-01-01

    Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic. PMID:25234719

  15. Development and Evaluation of Chitosan Microparticles Based Dry Powder Inhalation Formulations of Rifampicin and Rifabutin.

    PubMed

    Pai, Rohan V; Jain, Rajesh R; Bannalikar, Anilkumar S; Menon, Mala D

    2016-04-01

    The lung is the primary entry site and target for Mycobacterium tuberculosis; more than 80% of the cases reported worldwide are of pulmonary tuberculosis. Hence, direct delivery of anti-tubercular drugs to the lung would be beneficial in reducing both, the dose required, as well as the duration of therapy for pulmonary tuberculosis. In the present study, microsphere-based dry powder inhalation systems of the anti-tubercular drugs, rifampicin and rifabutin, were developed and evaluated, with a view to achieve localized and targeted delivery of these drugs to the lung. The drug-loaded chitosan microparticles were prepared by an ionic gelation method, followed by spray-drying to obtain respirable particles. The microparticles were evaluated for particle size and drug release. The drug-loaded microparticles were then adsorbed onto an inhalable lactose carrier and characterized for in vitro lung deposition on an Andersen Cascade Impactor (ACI) followed by in vitro uptake study in U937 human macrophage cell lines. In vivo toxicity of the developed formulations was evaluated using Sprague Dawley rats. Both rifampicin and rifabutin-loaded microparticles had MMAD close to 5 μm and FPF values of 21.46% and 29.97%, respectively. In vitro release study in simulated lung fluid pH 7.4 showed sustained release for 12 hours for rifampicin microparticles and up to 96 hours for rifabutin microparticles, the release being dependent on both swelling of the polymer and solubility of the drugs in the dissolution medium. In vitro uptake studies in U937 human macrophage cell line suggested that microparticles were internalized within the macrophages. In vivo acute toxicity study of the microparticles in Sprague Dawley rats revealed no significant evidence for local adverse effects. Thus, spray-dried microparticles of the anti-tubercular drugs, rifampicin and rifabutin, could prove to be an improved, targeted, and efficient system for treatment of tuberculosis.

  16. Gold nanorod vaccine for respiratory syncytial virus

    NASA Astrophysics Data System (ADS)

    Stone, John W.; Thornburg, Natalie J.; Blum, David L.; Kuhn, Sam J.; Wright, David W.; Crowe, James E., Jr.

    2013-07-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response.

  17. A universal vaccine for serogroup B meningococcus

    PubMed Central

    Giuliani, Marzia M.; Adu-Bobie, Jeannette; Comanducci, Maurizio; Aricò, Beatrice; Savino, Silvana; Santini, Laura; Brunelli, Brunella; Bambini, Stefania; Biolchi, Alessia; Capecchi, Barbara; Cartocci, Elena; Ciucchi, Laura; Di Marcello, Federica; Ferlicca, Francesca; Galli, Barbara; Luzzi, Enrico; Masignani, Vega; Serruto, Davide; Veggi, Daniele; Contorni, Mario; Morandi, Maurizio; Bartalesi, Alessandro; Cinotti, Vanda; Mannucci, Donatella; Titta, Francesca; Ovidi, Elisa; Welsch, Jo Anne; Granoff, Dan; Rappuoli, Rino; Pizza, Mariagrazia

    2006-01-01

    Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use. The vaccine adjuvanted by aluminum hydroxide induced bactericidal antibodies in mice against 78% of a panel of 85 meningococcal strains representative of the global population diversity. The strain coverage could be increased to 90% and above by the addition of CpG oligonucleotides or by using MF59 as adjuvant. The vaccine has the potential to conquer one of the most devastating diseases of childhood. PMID:16825336

  18. A universal vaccine for serogroup B meningococcus.

    PubMed

    Giuliani, Marzia M; Adu-Bobie, Jeannette; Comanducci, Maurizio; Aricò, Beatrice; Savino, Silvana; Santini, Laura; Brunelli, Brunella; Bambini, Stefania; Biolchi, Alessia; Capecchi, Barbara; Cartocci, Elena; Ciucchi, Laura; Di Marcello, Federica; Ferlicca, Francesca; Galli, Barbara; Luzzi, Enrico; Masignani, Vega; Serruto, Davide; Veggi, Daniele; Contorni, Mario; Morandi, Maurizio; Bartalesi, Alessandro; Cinotti, Vanda; Mannucci, Donatella; Titta, Francesca; Ovidi, Elisa; Welsch, Jo Anne; Granoff, Dan; Rappuoli, Rino; Pizza, Mariagrazia

    2006-07-18

    Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use. The vaccine adjuvanted by aluminum hydroxide induced bactericidal antibodies in mice against 78% of a panel of 85 meningococcal strains representative of the global population diversity. The strain coverage could be increased to 90% and above by the addition of CpG oligonucleotides or by using MF59 as adjuvant. The vaccine has the potential to conquer one of the most devastating diseases of childhood.

  19. Maternal vaccination: moving the science forward

    PubMed Central

    Faucette, Azure N.; Unger, Benjamin L.; Gonik, Bernard; Chen, Kang

    2015-01-01

    BACKGROUND Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infections contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the development and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the efficacy and safety in the pregnant women and the offspring. METHODS An outline was synthesized based on the current status and major gaps in the knowledge of maternal vaccination. A systematic literature search in PUBMED was undertaken using the key words in each section title of the outline to retrieve articles relevant to pregnancy. Articles cited were selected based on relevance and quality. On the basis of the reviewed information, a perspective on the future directions of maternal vaccination research was formulated. RESULTS Maternal vaccination can generate active immune protection in the mother and elicit systemic immunoglobulin G (IgG) and mucosal IgG, IgA and IgM responses to confer neonatal protection. The maternal immune system undergoes significant modulation during pregnancy, which influences responsiveness to vaccines. Significant gaps exist in our knowledge of the efficacy and safety of maternal vaccines, and no maternal vaccines against a large number of old and emerging pathogens are available. Public acceptance of maternal vaccination has been low. CONCLUSIONS To tackle the scientific challenges of maternal vaccination and to provide the public with informed vaccination choices, scientists and clinicians in different disciplines must work closely and have a mechanistic understanding of the systemic, reproductive and mammary mucosal immune responses to vaccines. The use of animal models should be

  20. Influence of combinations of fenugreek, garlic, and black pepper powder on production traits of the broilers.

    PubMed

    Kirubakaran, A; Moorthy, M; Chitra, R; Prabakar, G

    2016-05-01

    To study the effects of combinations of fenugreek (Trigonella foenum-graecum L.), garlic (Allium sativum), and black pepper (Piper nigrum) powder supplementation on production traits of broiler chickens. A total of 288 commercial broiler chicks were randomly assigned to 1-9 groups with 4 replicates each. An experiment was conducted in broilers with different feed formulations; control feed, with no added fenugreek, garlic, and black pepper powder; and 8 treatment groups receiving feed supplemented with different combinations of fenugreek, garlic, and black pepper powder. The individual broilers' body weight and feed consumption were recorded and calculate the body weight gain and feed conversion ratio (FCR). Broiler's weight gain and FCR were significantly higher in groups receiving feed supplemented with garlic and black pepper powder combinations (p<0.01). Cumulative feed consumption was significantly higher in groups receiving feed supplemented with garlic and black pepper powder combinations (p<0.01). The combination of garlic and black pepper powder supplemented broiler feed fed groups showed higher production performance. The 5 g/kg garlic powder+1 g/kg black pepper powder and 10 g/kg garlic powder+2 g/kg black pepper powder significantly improved the weight gain and FCR.

  1. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis

    PubMed Central

    Gurung, Ratna B.; Purdie, Auriol C.; Whittington, Richard J.; Begg, Douglas J.

    2014-01-01

    Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate. PMID:25077074

  2. The future potential for cocaine vaccines

    PubMed Central

    Orson, Frank M; Wang, Rongfu; Brimijoin, Stephen; Kinsey, Berma M; Singh, Rana AK; Ramakrishnan, Muthu; Wang, Helen Y; Kosten, Thomas R

    2014-01-01

    Introduction Addiction to cocaine is a major problem around the world, but especially in developed countries where the combination of wealth and user demand has created terrible social problems. Although only some users become truly addicted, those who are often succumb to a downward spiral in their lives from which it is very difficult to escape. From the medical perspective, the lack of effective and safe, non-addictive therapeutics has instigated efforts to develop alternative approaches for treatment, including anticocaine vaccines designed to block cocaine’s pharmacodynamic effects. Areas covered This paper discusses the implications of cocaine pharmacokinetics for robust vaccine antibody responses, the results of human vaccine clinical trials, new developments in animal models for vaccine evaluation, alternative vaccine formulations and complementary therapy to enhance anticocaine effectiveness. Expert opinion Robust anti-cocaine antibody responses are required for benefit to cocaine abusers, but since any reasonably achievable antibody level can be overcome with higher drug doses, sufficient motivation to discontinue use is also essential so that the relative barrier to cocaine effects will be appropriate for each individual. Combining a vaccine with achievable levels of an enzyme to hydrolyze cocaine to inactive metabolites, however, may substantially increase the blockade and improve treatment outcomes. PMID:24835496

  3. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris

    PubMed Central

    Wang, Man; Jiang, Shuai; Wang, Yefu

    2016-01-01

    ABSTRACT Recombinant protein subunit vaccines are formulated using defined protein antigens that can be produced in heterologous expression systems. The methylotrophic yeast Pichia pastoris has become an important host system for the production of recombinant subunit vaccines. Although many basic elements of P. pastoris expression system are now well developed, there is still room for further optimization of protein production. Codon bias, gene dosage, endoplasmic reticulum protein folding and culture condition are important considerations for improved production of recombinant vaccine antigens. Here we comment on current advances in the application of P. pastoris for the synthesis of recombinant subunit vaccines. PMID:27246656

  4. Dose-response of an extrafine dry powder inhaler formulation of glycopyrronium bromide: randomized, double-blind, placebo-controlled, dose-ranging study (GlycoNEXT).

    PubMed

    Beeh, Kai M; Emirova, Aida; Prunier, Hélène; Santoro, Debora; Nandeuil, Marie Anna

    2018-01-01

    An extrafine formulation of the long-acting muscarinic antagonist, glycopyrronium bromide (GB), has been developed for delivery via the NEXThaler dry powder inhaler (DPI). This study assessed the bronchodilator efficacy and safety of different doses of this formulation in patients with COPD to identify the optimal dose for further development. This was a multicenter, randomized, double-blind, placebo-controlled, incomplete block, three-way crossover study, including three 28-day treatment periods, each separated by a 21-day washout period. Eligible patients had a diagnosis of COPD and post-bronchodilator forced expiratory volume in 1 s (FEV 1 ) 40%-70% predicted. Treatments administered were GB 6.25, 12.5, 25 and 50 μg or matched placebo; all were given twice daily (BID) via DPI, with spirometry assessed on Days 1 and 28 of each treatment period. The primary end point was FEV 1 area under the curve from 0 to 12 h (AUC 0-12 h ) on Day 28. A total of 202 patients were randomized (61% male, mean age 62.6 years), with 178 (88%) completing all the three treatment periods. For the primary end point, all the four GB doses were superior to placebo ( p <0.001) with mean differences (95% CI) of 114 (74, 154), 125 (85, 166), 143 (104, 183) and 187 (147, 228) mL for GB 6.25, 12.5, 25 and 50 μg BID, respectively. All four GB doses were also statistically superior to placebo for all secondary efficacy end points, showing clear dose-response relationships for most of the endpoints. Accordingly, GB 25 μg BID met the criteria for the minimally acceptable dose. Adverse events were reported by 15.5, 16.2, 10.9 and 14.3% of patients receiving GB 6.25, 12.5, 25 and 50 μg BID, respectively, and 14.8% receiving placebo. This study supports the selection of GB 25 μg BID as the minimal effective dose for patients with COPD when delivered with this extrafine DPI formulation.

  5. [The effect of the formulation on the shelf-life of biopesticides based on two Colombian isolates of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034].

    PubMed

    Santos, Adriana; García, Magda; Cotes, Alba Marina; Villamizar, Laura

    2012-01-01

    Four biopesticide prototypes formulated as dispersible granules and dry powders based on 2 Colombian isolates of Trichoderma koningiopsis (Th003) and T. asperellum (Th034) were developed. These microorganisms have antagonist activity against Fusarium oxysporum f. sp. lycopersici and Rhizoctonia solani with a reduction in incidence of between 70 and 100% in tomato crops and potato crops, respectively. To determine the effect of the formulation on the shelf-life of 4 biopesticides based on T. koningiopsis Th003 and Trichoderma asperellum Th034 at 3 different temperatures. The formulation effect was determined by evaluating the germination of unformulated and formulated conidia (dispersible granules and dry powder) stored at 8, 18 and 28°C for 18 months. Germination kinetics were used to estimate the shelf-life by using different mathematical models (zero order, first order, second order, Higuchi model, Korsmeyer-Peppas model and polynomial model). The products showed high stability of the conidia germination when they were stored at 8 and 18° C, with shelf-lives of 14.4 and 13.9 months for dry powder based on Th003, and 12.0 and 10.8 months for dry powder based on Th034, respectively. Prototypes formulated as dispersible granules stored at the same temperatures (8 and 18°C) showed lower shelf-lives, with values of 11.6 and 10.9 months for the Th003 product, and 10.7 and 7.2 months for the dispersible granules based on Th034. Significant reductions in germination were observed on unformulated conidia at all storage temperatures evaluated. The formulation type affected the conidia stability of the 2 Trichoderma spp. Colombian isolates. Dry powder was the prototype with the highest stability and shelf-life at all temperatures evaluated. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  6. Vaccination against Salmonella Infection: the Mucosal Way.

    PubMed

    Gayet, Rémi; Bioley, Gilles; Rochereau, Nicolas; Paul, Stéphane; Corthésy, Blaise

    2017-09-01

    Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti- Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy. Copyright © 2017 American Society for Microbiology.

  7. Measles vaccination using a microneedle patch☆

    PubMed Central

    Edens, Chris; Collins, Marcus L.; Ayers, Jessica; Rota, Paul A.; Prausnitz, Mark R.

    2013-01-01

    Measles vaccination programs would benefit from delivery methods that decrease cost, simplify logistics, and increase safety. Conventional subcutaneous injection is limited by the need for skilled healthcare professionals to reconstitute and administer injections, and by the need for safe needle handling and disposal to reduce the risk of disease transmission through needle re-use and needlestick injury. Microneedles are micron-scale, solid needles coated with a dry formulation of vaccine that dissolves in the skin within minutes after patch application. By avoiding the use of hypodermic needles, vaccination using a microneedle patch could be carried out by minimally trained personnel with reduced risk of blood-borne disease transmission. The goal of this study was to evaluate measles vaccination using a microneedle patch to address some of the limitations of subcutaneous injection. Viability of vaccine virus dried onto a microneedle patch was stabilized by incorporation of the sugar, trehalose, and loss of viral titer was less than 1 log10(TCID50) after storage for at least 30 days at room temperature. Microneedle patches were then used to immunize cotton rats with the Edmonston-Zagreb measles vaccine strain. Vaccination using microneedles at doses equaling the standard human dose or one-fifth the human dose generated neutralizing antibody levels equivalent to those of a subcutaneous immunization at the same dose. These results show that measles vaccine can be stabilized on microneedles and that vaccine efficiently reconstitutes in vivo to generate a neutralizing antibody response equivalent to that generated by subcutaneous injection. PMID:23044406

  8. Nano-scale composition of commercial white powders for development of latent fingerprints on adhesives.

    PubMed

    Jones, B J; Reynolds, A J; Richardson, M; Sears, V G

    2010-09-01

    Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide can be suspended in a surfactant and used in the form of a powder suspension. Commercially available products, whilst having nominally similar composition, show varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. X-ray fluorescence (XRF), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and laser particle sizing of the fingerprint powders show TiO(2) particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material, with traces of sodium and sulphur. Such aluminosilicates are commonly used as anti-caking agents and to aid adhesion or functionality of some fingerprint powders; however, the morphology, thickness, coverage and composition of the aluminosilicates are the primary differences between the white powder formulations and could be related to variation in the efficacy of print development. Copyright © 2009 Forensic Science Society. All rights reserved.

  9. Optimization of chlorphenesin emulgel formulation.

    PubMed

    Mohamed, Magdy I

    2004-10-11

    This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 2(3) factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activity, and stability. Commercially available CHL topical powder was used for comparison. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. They also exhibited higher drug release and antifungal activity than the CHL powder. It was found that the emulsifying agent concentration had the most pronounced effect on the drug release from the emulgels followed by the oil phase concentration and finally the type of the gelling agent. The drug release from all the emulgels was found to follow diffusion-controlled mechanism. Rheological studies revealed that the CHL emulgels exhibited a shear-thinning behavior with thixotropy. Stability studies showed that the physical appearance, rheological properties, drug release, and antifungal activity in all the prepared emulgels remained unchanged upon storage for 3 months. As a general conclusion, it was suggested that the CHL emulgel formulation prepared with HPMC with the oil phase concentration in its low level and emulsifying agent concentration in its high level was the formula of choice since it showed the highest drug release and antifungal activity.

  10. Clinical experience with respiratory syncytial virus vaccines.

    PubMed

    Piedra, Pedro A

    2003-02-01

    Respiratory syncytial virus (RSV) infection is at times associated with life-threatening lower respiratory tract illness in infancy. Severe infection during the first year of life may be an important risk factor or indicator for the development of asthma in early childhood. Severe infections primarily occur in healthy infants, and young infants and children with specific risk factors. However, RSV causes respiratory infections in all age groups. Indeed it is now recognized that RSV disease is responsible for significant morbidity and mortality in the geriatric population. RSV infection remains difficult to treat, and prevention is a worldwide goal. For this reason there has been an intensive effort to develop an effective and safe RSV vaccine. Initial infection with RSV affords limited protection to reinfection, yet repeated episodes decrease the risk for lower respiratory tract illness. In the 20 years from 1960 to 1980, trials of several candidate RSV vaccines failed to attain the desired safety and protection against natural infection. Some vaccine types either failed to elicit immunogenicity, as with the live subcutaneous vaccine, or resulted in exaggerated disease on natural exposure to the virus, as with the formalin-inactivated (FI) type. Currently vaccine candidates are being developed based on the molecular virology of RSV. Recent formulations of candidate RSV vaccines have focused on subunit vaccines [such as purified fusion protein (PFP)], subunit vaccines combined with nonspecific immune activating adjuvants, live attenuated vaccines (including cold passaged, temperature-sensitive or cpts mutants), genetically engineered live attenuated vaccines and polypeptide vaccines.

  11. Progress in the Development of a Cervical Cancer Vaccine

    PubMed Central

    Winters, Ursula; Roden, Richard; Kitchener, Henry; Stern, Peter

    2006-01-01

    Persistent infection by ‘high risk’ genotypes of human papilloma virus (HPV) is necessary but not sufficient for the development of over 98% of cervical cancers. Thus the development of vaccines that prevent HPV transmission represent an important opportunity to prevent cervical cancer. There are several prophylactic HPV vaccine formulations based upon L1 virus-like particles (VLPs) currently in phase III trials and recently released data are extremely promising. However, many practical issues surrounding implementation of these vaccines need to be addressed including, who and when to vaccinate, duration of protection, and integration with current screening programs. The vaccines currently being evaluated target the two most prevalent high risk HPV types which are responsible for approximately 70% of cervical cancers. To increase the breadth of protection, it is likely that L1 VLPs of other viral subtypes must be included, although vaccines targeting the conserved regions of the L2 minor capsid protein warrant further exploration in this regard. In addition the vaccines nearing licensing will not combat established HPV-related disease and a therapeutic vaccine, of which there are several candidates in early stages of development, would be desirable. This review discusses the background to and progress in vaccine development and the issues surrounding the introduction of HPV vaccines. PMID:18360601

  12. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    PubMed

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  13. Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems.

    PubMed

    Doroud, Delaram; Rafati, Sima

    2012-01-01

    Although mass vaccination of the entire population of an endemic area would be the most cost-effective tool to diminish Leishmania burden, an effective vaccine is not yet commercially available. Practically, vaccines have failed to achieve the required level of protection, possibly owing to the lack of an appropriate adjuvant and/or delivery system. Therefore, there is still an imperative demand for an improved, safe and efficient delivery system to enhance the immunogenicity of available vaccine candidates. Nanoparticles are proficient in boosting the quality and magnitude of immune responses in a predictable fashion. Herein, we discuss how nanoparticulate vaccine delivery systems can be used to induce appropriate immune responses against leishmaniasis by controlling physicochemical properties of the vaccine. Stability, production reproducibility, low cost per dose and low risk-benefit ratios are desirable characteristics of an ideal vaccine formulation and solid lipid nanoparticles may serve as one of the most promising practical strategies to help to achieve such a leishmanial vaccine, at least in canine species in the developing world.

  14. Vaccine development: From concept to early clinical testing.

    PubMed

    Cunningham, Anthony L; Garçon, Nathalie; Leo, Oberdan; Friedland, Leonard R; Strugnell, Richard; Laupèze, Béatrice; Doherty, Mark; Stern, Peter

    2016-12-20

    In the 21st century, an array of microbiological and molecular allow antigens for new vaccines to be specifically identified, designed, produced and delivered with the aim of optimising the induction of a protective immune response against a well-defined immunogen. New knowledge about the functioning of the immune system and host pathogen interactions has stimulated the rational design of vaccines. The design toolbox includes vaccines made from whole pathogens, protein subunits, polysaccharides, pathogen-like particles, use of viral/bacterial vectors, plus adjuvants and conjugation technology to increase and broaden the immune response. Processes such as recombinant DNA technology can simplify the complexity of manufacturing and facilitate consistent production of large quantities of antigen. Any new vaccine development is greatly enhanced by, and requires integration of information concerning: 1. Pathogen life-cycle & epidemiology. Knowledge of pathogen structure, route of entry, interaction with cellular receptors, subsequent replication sites and disease-causing mechanisms are all important to identify antigens suitable for disease prevention. The demographics of infection, specific risk groups and age-specific infection rates determine which population to immunise, and at what age. 2. Immune control & escape. Interactions between the host and pathogen are explored, with determination of the relative importance of antibodies, T-cells of different types and innate immunity, immune escape strategies during infection, and possible immune correlates of protection. This information guides identification and selection of antigen and the specific immune response required for protection. 3. Antigen selection & vaccine formulation. The selected antigen is formulated to remain suitably immunogenic and stable over time, induce an immune response that is likely to be protective, plus be amenable to eventual scale-up to commercial production. 4. Vaccine preclinical

  15. Interference of Monovalent, Bivalent, and Trivalent Oral Poliovirus Vaccines on Monovalent Rotavirus Vaccine Immunogenicity in Rural Bangladesh.

    PubMed

    Emperador, Devy M; Velasquez, Daniel E; Estivariz, Concepcion F; Lopman, Ben; Jiang, Baoming; Parashar, Umesh; Anand, Abhijeet; Zaman, Khalequ

    2016-01-15

    Trivalent oral poliovirus vaccine (OPV) is known to interfere with monovalent rotavirus vaccine (RV1) immunogenicity. The interference caused by bivalent and monovalent OPV formulations, which will be increasingly used globally in coming years, has not been examined. We conducted a post hoc analysis to assess the effect of coadministration of different OPV formulations on RV1 immunogenicity. Healthy infants in Matlab, Bangladesh, were randomized to receive 3 doses of monovalent OPV type 1 or bivalent OPV types 1 and 3 at either 6, 8, and 10 or 6, 10, and 14 weeks of age or trivalent OPV at 6, 10, and 14 weeks of age. All infants received 2 doses of RV1 at about 6 and 10 weeks of age. Concomitant administration was defined as RV1 and OPV given on the same day; staggered administration as RV1 and OPV given ≥1 day apart. Rotavirus seroconversion was defined as a 4-fold rise in immunoglobulin A titer from before the first RV1 dose to ≥3 weeks after the second RV1 dose. There were no significant differences in baseline RV1 immunogenicity among the 409 infants included in the final analysis. Infants who received RV1 and OPV concomitantly, regardless of OPV formulation, were less likely to seroconvert (47%; 95% confidence interval, 39%-54%) than those who received both vaccines staggered ≥1 day (63%; 57%-70%; P < .001). For staggered administration, we found no evidence that the interval between RV1 and OPV administration affected RV1 immunogenicity. Coadministration of monovalent, bivalent, or trivalent OPV seems to lower RV1 immunogenicity. NCT01633216. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Interference of Monovalent, Bivalent, and Trivalent Oral Poliovirus Vaccines on Monovalent Rotavirus Vaccine Immunogenicity in Rural Bangladesh

    PubMed Central

    Emperador, Devy M.; Velasquez, Daniel E.; Estivariz, Concepcion F.; Lopman, Ben; Jiang, Baoming; Parashar, Umesh; Anand, Abhijeet; Zaman, Khalequ

    2016-01-01

    Background Trivalent oral poliovirus vaccine (OPV) is known to interfere with monovalent rotavirus vaccine (RV1) immunogenicity. The interference caused by bivalent and monovalent OPV formulations, which will be increasingly used globally in coming years, has not been examined. We conducted a post hoc analysis to assess the effect of coadministration of different OPV formulations on RV1 immunogenicity. Methods Healthy infants in Matlab, Bangladesh, were randomized to receive 3 doses of monovalent OPV type 1 or bivalent OPV types 1 and 3 at either 6, 8, and 10 or 6, 10, and 14 weeks of age or trivalent OPV at 6, 10, and 14 weeks of age. All infants received 2 doses of RV1 at about 6 and 10 weeks of age. Concomitant administration was defined as RV1 and OPV given on the same day; staggered administration as RV1 and OPV given ≥1 day apart. Rotavirus seroconversion was defined as a 4-fold rise in immunoglobulin A titer from before the first RV1 dose to ≥3 weeks after the second RV1 dose. Results There were no significant differences in baseline RV1 immunogenicity among the 409 infants included in the final analysis. Infants who received RV1 and OPV concomitantly, regardless of OPV formulation, were less likely to seroconvert (47%; 95% confidence interval, 39%–54%) than those who received both vaccines staggered ≥1 day (63%; 57%–70%; P < .001). For staggered administration, we found no evidence that the interval between RV1 and OPV administration affected RV1 immunogenicity. Conclusions Coadministration of monovalent, bivalent, or trivalent OPV seems to lower RV1 immunogenicity. Clinical Trials Registration NCT01633216. PMID:26349548

  17. Immune responses to in ovo vaccine formulations containing inactivated fowl adenovirus 8b with poly[di(sodium carboxylatoethylphenoxy)]phosphazene (PCEP) and avian beta defensin as adjuvants in chickens.

    PubMed

    Sarfraz, Mishal; Suleman, Muhammed; Tikoo, Suresh K; Wheler, Colette; Potter, Andrew A; Gerdts, Volker; Dar, Arshud

    2017-02-07

    Inclusion body hepatitis (IBH) is one of the major viral infections causing substantial economic loss to the global poultry industry. The disease is characterized by a sudden onset of mortality (2-30%) and high morbidity (60-70%). IBH is caused by a number of serotypes of fowl adenovirus with substantially low levels of serotype cross protection. Thus far, there is no effective and safe vaccine commercially available in the North America for the control of IBH in chickens. Poly[di(sodium carboxylatoethylphenoxy)]phosphazene (PCEP) is a high molecular weight, biodegradable water soluble polymer that has been well characterized as a safe and effective adjuvant for a number of experimental veterinary vaccines. Similarly, host defence peptides, including β-defensins, have also been shown to exhibit strong adjuvant potential. In this study, we evaluated the adjuvant activity of PCEP and avian beta defensin (ABD) in a vaccine formulation containing inactivated fowl adenovirus (FAdV) serotype 8b administered in ovo. Our data showed that a combination of PCEP and inactivated virus is capable of inducing a robust and long lasting antibody response. Moreover, significant enhancement of IFN-γ, IFN-α, IL-12(p40) and IL-6 gene expression under the influence of PCEP suggests that as an in ovo adjuvant PCEP has the ability to activate a substantial balanced immune response in chickens. To our knowledge, these are the first studies in which PCEP and ABD have been characterized as adjuvants for the development of an in ovo poultry vaccine. It is expected that these preliminary studies will be helpful in the development of safer and more effective in ovo vaccine against IBH and other infectious diseases affecting chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague.

    PubMed

    Albrecht, Mark T; Livingston, Brian D; Pesce, John T; Bell, Matt G; Hannaman, Drew; Keane-Myers, Andrea M

    2012-07-06

    Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System. Immunization with the individual pDNA vaccines elicited higher levels of antigen-specific IgG than when used in combination. DNA vaccine effectiveness was proven, the pVAX-PA titers were toxin neutralizing and fully protective against a lethal B. anthracis spore challenge when administered alone or co-formulated with the plague pDNA vaccines. LcrV and F1 pVAX vaccines against plague were synergistic, resulting in 100% survival, but less protective individually and when co-formulated with pVAX-PA. These DNA vaccine responses were Th1/Th2 balanced with high levels of IFN-γ and IL-4 in splenocyte recall assays, contrary to complimentary protein Alum vaccinations displaying a Th2 bias with increased IL-4 and low levels of IFN-γ. These results demonstrate the feasibility of electroporation to deliver and maintain the overall efficacy of an anthrax-plague DNA vaccine cocktail whose individual components have qualitative immunological differences when combined. Published by Elsevier Ltd.

  19. Cattle Immunized with a Recombinant Subunit Vaccine Formulation Exhibits a Trend towards Protection against Histophilus somni Bacterial Challenge.

    PubMed

    Madampage, Claudia Avis; Wilson, Don; Townsend, Hugh; Crockford, Gordon; Rawlyk, Neil; Dent, Donna; Evans, Brock; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2016-01-01

    Histophilosis, a mucosal and septicemic infection of cattle is caused by the Gram negative pathogen Histophilus somni (H. somni). As existing vaccines against H. somni infection have shown to be of limited efficacy, we used a reverse vaccinology approach to identify new vaccine candidates. Three groups (B, C, D) of cattle were immunized with subunit vaccines and a control group (group A) was vaccinated with adjuvant alone. All four groups were challenged with H. somni. The results demonstrate that there was no significant difference in clinical signs, joint lesions, weight change or rectal temperature between any of the vaccinated groups (B,C,D) vs the control group A. However, the trend to protection was greatest for group C vaccinates. The group C vaccine was a pool of six recombinant proteins. Serum antibody responses determined using ELISA showed significantly higher titers for group C, with P values ranging from < 0.0148 to < 0.0002, than group A. Even though serum antibody titers in group B (5 out of 6 antigens) and group D were significantly higher compared to group A, they exerted less of a trend towards protection. In conclusion, the vaccine used in group C exhibits a trend towards protective immunity in cattle and would be a good candidate for further analysis to determine which proteins were responsible for the trend towards protection.

  20. Cattle Immunized with a Recombinant Subunit Vaccine Formulation Exhibits a Trend towards Protection against Histophilus somni Bacterial Challenge

    PubMed Central

    Madampage, Claudia Avis; Wilson, Don; Townsend, Hugh; Crockford, Gordon; Rawlyk, Neil; Dent, Donna; Evans, Brock; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2016-01-01

    Histophilosis, a mucosal and septicemic infection of cattle is caused by the Gram negative pathogen Histophilus somni (H. somni). As existing vaccines against H. somni infection have shown to be of limited efficacy, we used a reverse vaccinology approach to identify new vaccine candidates. Three groups (B, C, D) of cattle were immunized with subunit vaccines and a control group (group A) was vaccinated with adjuvant alone. All four groups were challenged with H. somni. The results demonstrate that there was no significant difference in clinical signs, joint lesions, weight change or rectal temperature between any of the vaccinated groups (B,C,D) vs the control group A. However, the trend to protection was greatest for group C vaccinates. The group C vaccine was a pool of six recombinant proteins. Serum antibody responses determined using ELISA showed significantly higher titers for group C, with P values ranging from < 0.0148 to < 0.0002, than group A. Even though serum antibody titers in group B (5 out of 6 antigens) and group D were significantly higher compared to group A, they exerted less of a trend towards protection. In conclusion, the vaccine used in group C exhibits a trend towards protective immunity in cattle and would be a good candidate for further analysis to determine which proteins were responsible for the trend towards protection. PMID:27501390

  1. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    PubMed

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  2. Application of the thermofluor PaSTRy technique for improving foot-and-mouth disease virus vaccine formulation.

    PubMed

    Kotecha, Abhay; Zhang, Fuquan; Juleff, Nicholas; Jackson, Terry; Perez, Eva; Stuart, Dave; Fry, Elizabeth; Charleston, Bryan; Seago, Julian

    2016-07-01

    Foot-and-mouth disease (FMD) has a major economic impact throughout the world and is a considerable threat to food security. Current FMD virus (FMDV) vaccines are made from chemically inactivated virus and need to contain intact viral capsids to maximize efficacy. FMDV exists as seven serotypes, each made up by a number of constantly evolving subtypes. A lack of immunological cross-reactivity between serotypes and between some strains within a serotype greatly complicates efforts to control FMD by vaccination. Thus, vaccines for one serotype do not afford protection against the others, and multiple-serotype-specific vaccines are required for effective control. The FMDV serotypes exhibit variation in their thermostability, and the capsids of inactivated preparations of the O, C and SAT serotypes are particularly susceptible to dissociation at elevated temperature. Methods to quantify capsid stability are currently limited, lack sensitivity and cannot accurately reflect differences in thermostability. Thus, new, more sensitive approaches to quantify capsid stability would be of great value for the production of more stable vaccines and to assess the effect of production conditions on vaccine preparations. Here we have investigated the application of a novel methodology (termed PaSTRy) that utilizes an RNA-binding fluorescent dye and a quantitative (q)PCR machine to monitor viral genome release and hence dissociation of the FMDV capsid during a slow incremental increase in temperature. PaSTRy was used to characterize capsid stability of all FMDV serotypes. Furthermore, we have used this approach to identify stabilizing factors for the most labile FMDV serotypes.

  3. Application of the thermofluor PaSTRy technique for improving foot-and-mouth disease virus vaccine formulation

    PubMed Central

    Kotecha, Abhay; Zhang, Fuquan; Juleff, Nicholas; Jackson, Terry; Perez, Eva; Stuart, Dave; Fry, Elizabeth; Charleston, Bryan

    2016-01-01

    Foot-and-mouth disease (FMD) has a major economic impact throughout the world and is a considerable threat to food security. Current FMD virus (FMDV) vaccines are made from chemically inactivated virus and need to contain intact viral capsids to maximize efficacy. FMDV exists as seven serotypes, each made up by a number of constantly evolving subtypes. A lack of immunological cross-reactivity between serotypes and between some strains within a serotype greatly complicates efforts to control FMD by vaccination. Thus, vaccines for one serotype do not afford protection against the others, and multiple-serotype-specific vaccines are required for effective control. The FMDV serotypes exhibit variation in their thermostability, and the capsids of inactivated preparations of the O, C and SAT serotypes are particularly susceptible to dissociation at elevated temperature. Methods to quantify capsid stability are currently limited, lack sensitivity and cannot accurately reflect differences in thermostability. Thus, new, more sensitive approaches to quantify capsid stability would be of great value for the production of more stable vaccines and to assess the effect of production conditions on vaccine preparations. Here we have investigated the application of a novel methodology (termed PaSTRy) that utilizes an RNA-binding fluorescent dye and a quantitative (q)PCR machine to monitor viral genome release and hence dissociation of the FMDV capsid during a slow incremental increase in temperature. PaSTRy was used to characterize capsid stability of all FMDV serotypes. Furthermore, we have used this approach to identify stabilizing factors for the most labile FMDV serotypes. PMID:27002540

  4. Serology and longevity of immunity against Echinococcus granulosus in sheep and llama induced by an oil-based EG95 vaccine.

    PubMed

    Poggio, T V; Jensen, O; Mossello, M; Iriarte, J; Avila, H G; Gertiser, M L; Serafino, J J; Romero, S; Echenique, M A; Dominguez, D E; Barrios, J R; Heath, D

    2016-08-01

    An oil-based formulation of the EG95 vaccine to protect grazing animals against infection with Echinococcus granulosus was formulated in Argentina. The efficacy of the vaccine was monitored by serology in sheep and llama (Lama glama) and was compared to the serology in sheep previously published using a QuilA-adjuvanted vaccine. Long-term efficacy was also tested in sheep by challenging with E. granulosus eggs of the G1 strain 4 years after the beginning of the trial. The serological results for both sheep and llama were similar to those described previously, except that there was a more rapid response after the first vaccination. A third vaccination given after 1 year resulted in a transient boost in serology that lasted for about 12 months, which was similar to results previously described. Sheep challenged after 4 years with three vaccinations presented 84·2% reduction of live cysts counts compared with control group, and after a fourth vaccination prior to challenge, this reduction was 94·7%. The oil-based vaccine appeared to be bio-equivalent to the QuilA vaccine. © 2016 John Wiley & Sons Ltd.

  5. Multiple-layer compression-coated tablets: formulation and humidity studies of novel chewable amoxicillin/clavulanate tablet formulations.

    PubMed

    Wardrop, J; Jaber, A B; Ayres, J W

    1998-08-01

    The purpose of this study was to produce novel multiple-layer, compression-coated, chewable tablet formulations containing amoxicillin trihydrate, and clavulanic acid as potassium clavulanate, and to test in vitro dissolution characteristics and the effect of humidity stability compared to Augmentin chewable tablets as a reference. Double- and triple-layer tablets were manufactured on a laboratory scale by multiple-layer dry compression, and dissolution profiles of both active ingredients were determined. Tablets were subjected to stability evaluation in laboratory-scale humidity tanks maintained at constant humidity. Assay of content was determined by HPLC or UV spectroscopy. Physical characteristics of the powder mixture, such as angle of repose, and of tablets for hardness and friability, were also determined. Chewable tablets showed similar dissolution profiles in vitro for both active ingredients, compared to the marketed reference, Augmentin. The stability of clavulanic acid, but not amoxicillin, was increased in the novel triple or bilayer formulation. The tablets showed suitable friability, hardness, and angle of repose for starting materials to suggest that industrial scale-up is feasible. This approach to formulation of drugs containing multiple or moisture-sensitive ingredients has been shown to increase the stability of the central core drug without changing the dissolution pattern of the active ingredients. This formulation is expected to be bioequivalent in vivo based on these in vitro results.

  6. Characterization by X-ray tomography of granulated alumina powder during in situ die compaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrino, Sandrine; Jorand, Yves, E-mail: yves.jorand@insa-lyon.fr; Maire, Eric

    2013-07-15

    Compaction process, the aim of which being to obtain green bodies with low porosity and small size, is often used before sintering treatment. Prior to die filling, the ceramic powder is generally granulated to improve flowability. However during compaction, density heterogeneity and critical size defects may appear due to intergranule and granule-die wall frictions. In this work, the influence of granule formulation on the compact morphology has been studied. To do so, a compaction setup was installed inside an X-ray tomography equipment so that the evolution of the compact morphology could be analysed during the whole compaction process. We havemore » demonstrated that high humidity rate and the addition of binder in the granule formulation increase density heterogeneity and generate larger defects. - Highlights: • An original compaction set up was installed inside an X-Ray tomography equipment. • The compaction process of granulated ceramic powder is imaged. • The compact green microstructure is quantified and related to the compaction stages. • The most detrimental defects of dry-pressed parts are caused by hollow granules. • Formulations without binder allow a reduction of the number of large defects.« less

  7. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  8. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects against RSV-induced replication and lung pathology.

    PubMed

    Blanco, Jorge C G; Boukhvalova, Marina S; Pletneva, Lioubov M; Shirey, Kari Ann; Vogel, Stefanie N

    2014-03-14

    We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Influence of combinations of fenugreek, garlic, and black pepper powder on production traits of the broilers

    PubMed Central

    Kirubakaran, A.; Moorthy, M.; Chitra, R.; Prabakar, G.

    2016-01-01

    Aim: To study the effects of combinations of fenugreek (Trigonella foenum-graecum L.), garlic (Allium sativum), and black pepper (Piper nigrum) powder supplementation on production traits of broiler chickens. Materials and Methods: A total of 288 commercial broiler chicks were randomly assigned to 1-9 groups with 4 replicates each. An experiment was conducted in broilers with different feed formulations; control feed, with no added fenugreek, garlic, and black pepper powder; and 8 treatment groups receiving feed supplemented with different combinations of fenugreek, garlic, and black pepper powder. The individual broilers’ body weight and feed consumption were recorded and calculate the body weight gain and feed conversion ratio (FCR). Results: Broiler’s weight gain and FCR were significantly higher in groups receiving feed supplemented with garlic and black pepper powder combinations (p<0.01). Cumulative feed consumption was significantly higher in groups receiving feed supplemented with garlic and black pepper powder combinations (p<0.01). Conclusion: The combination of garlic and black pepper powder supplemented broiler feed fed groups showed higher production performance. The 5 g/kg garlic powder+1 g/kg black pepper powder and 10 g/kg garlic powder+2 g/kg black pepper powder significantly improved the weight gain and FCR. PMID:27284222

  10. Oral vaccination of brushtail possums with BCG: Investigation into factors that may influence vaccine efficacy and determination of duration of protection.

    PubMed

    Buddle, B M; Aldwell, F E; Keen, D L; Parlane, N A; Hamel, K L; de Lisle, G W

    2006-10-01

    To determine factors that may influence the efficacy of an oral pelleted vaccine containing Mycobacterium bovis bacille Calmette-Guérin (BCG) to induce protection of brushtail possums against tuberculosis. To determine the duration of protective immunity following oral administration of BCG. In Study 1, a group of possums (n=7) was immunised by feeding 10 pellets containing dead Pasteur BCG, followed 15 weeks later with a single pellet of live Pasteur BCG. At that time, four other groups of possums (n=7 per group) were given a single pellet of live Pasteur BCG orally, a single pellet of live Danish BCG orally, 10 pellets of live Pasteur BCG orally, or a subcutaneous injection of live Pasteur BCG. For the oral pelleted vaccines, BCG was formulated into a lipid matrix, and each pellet contained approximately 107 colony forming units (cfu) of BCG, while the vaccine injected subcutaneously contained 106 cfu of BCG. A sixth, non-vaccinated, group (n=7) served as a control. All possums were challenged by the aerosol route with a low dose of virulent M. bovis 7 weeks after vaccination, and killed 7-8 weeks after challenge. Protection against challenge with M. bovis was assessed from pathological and bacteriological findings. In Study 2, lipid-formulated live Danish BCG was administered orally to three groups of possums (10-11 per group), and these possums were challenged with virulent M. bovis 8, 29 or 54 weeks later. The possums were killed 7 weeks after challenge, to assess protection in comparison to a non-vaccinated group. The results from Study 1 showed that vaccine efficacy was not adversely affected by feeding dead BCG prior to live BCG. Feeding 10 vaccine pellets induced a level of protection similar to feeding a single pellet. Protection was similar when feeding possums a single pellet containing the Pasteur or Danish strains of BCG. All vaccinated groups had significantly reduced pathological changes or bacterial counts when compared to the non-vaccinated group

  11. Evaluation of the immunoprophylactic potential of a killed vaccine candidate in combination with different adjuvants against murine visceral leishmaniasis.

    PubMed

    Thakur, Ankita; Kaur, Harpreet; Kaur, Sukhbir

    2015-02-01

    Despite a large number of field trials, till date no prophylactic antileishmanial vaccine exists for human use. Killed antigen formulations offer the advantage of being safe but they have limited immunogenicity. Recent research has documented that efforts to develop effective Leishmania vaccine have been limited due to the lack of an appropriate adjuvant. Addition of adjuvants to vaccines boosts and directs the immunogenicity of antigens. So, the present study was done to evaluate the effectiveness of four adjuvants i.e. alum, saponin, cationic liposomes and monophosphoryl lipid-A in combination with Autoclaved Leishmania donovani (ALD) antigen against murine visceral leishmaniasis (VL). BALB/c mice were immunized thrice with respective vaccine formulation. Two weeks after last booster, challenge infection was given. Mice were sacrificed 15 days after last immunization and on 30, 60 and 90 post infection/challenge days. A considerable protective efficacy was shown by all vaccine formulations. It was evident from significant reduction in parasite load, profound delayed type hypersensitivity responses (DTH), increased IgG2a titres and high levels of Th1 cytokines (IFN-γ, IL-12) as compared to the infected controls. However, level of protection varied with the type of adjuvant used. Maximum protection was achieved with the use of liposome encapsulated ALD antigen and it was closely followed by group immunized with ALD+MPL-A. Significant results were also obtained with ALD+saponin, ALD+alum and ALD antigen (alone) but the protective efficacy was reduced as compared to other immunized groups. The present study reveals greater efficacy of two vaccine formulations i.e. ALD+liposome and ALD+MPL-A against murine VL. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines

    PubMed Central

    Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia

    2014-01-01

    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines. PMID:25335753

  13. Whooping cough, twenty years from acellular vaccines introduction.

    PubMed

    Greco, D; Esposito, S; Tozzi, A; Pandolfi, E; Icardi, G; Giammanco, A

    2015-01-01

    Clinical pertussis resulting from infection with B. pertussis is a significant medical and public health problem, despite the huge success of vaccination that has greatly reduced its incidence. The whole cell vaccine had an undeniable success over the last 50 years, but its acceptance was strongly inhibited by fear, only partially justified, of severe side effects, but also, in the Western world, by the difficulty to enter in combination with other vaccines: today multi-vaccine formulations are essential to maintain a high vaccination coverage. The advent of acellular vaccines was greeted with enthusiasm by the public health world: in the Nineties, several controlled vaccine trials were carried out: they demonstrated a high safety and good efficacy of new vaccines. In fact, in the Western world, the acellular vaccines completely replaced the whole cells ones. In the last years, ample evidence on the variety of protection of these vaccines linked to the presence of different antigens of Bordetella pertussis was collected. It also became clear that the protection provided, on average around 80%, leaves every year a significant cohort of vaccinated susceptible even in countries with a vaccination coverage of 95%, such as Italy. Finally, it was shown that, as for the pertussis disease, protection decreases over time, to leave a proportion of adolescents and adults unprotected. Waiting for improved pertussis vaccines, the disease control today requires a different strategy that includes a booster at 5 years for infants, but also boosters for teenagers and young adults, re-vaccination of health care personnel, and possibly of pregnant women and of those who are in contact with infants (cocooning). Finally, the quest for better vaccines inevitably tends towards pertussis acellular vaccines with at least three components, which have demonstrated superior effectiveness and have been largely in use in Italy for fifteen years.

  14. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  15. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  16. Use of defined TLR ligands as adjuvants within human vaccines

    PubMed Central

    Duthie, Malcolm S.; Windish, Hillarie Plessner; Fox, Christopher B.; Reed, Steven G.

    2018-01-01

    Summary Our improved understanding of how innate immune responses can be initiated and how they can shape adaptive B- and T-cell responses is having a significant impact on vaccine development by directing the development of defined adjuvants. Experience with first generation vaccines, as well as rapid advances in developing defined vaccines containing Toll-like receptor ligands (TLRLs), indicate that an expanded number of safe and effective vaccines containing such molecules will be available in the future. In this review, we outline current knowledge regarding TLRs, detailing the different cell types that express TLRs, the various signaling pathways TLRs utilize, and the currently known TLRLs. We then discuss the current status of TLRLs within vaccine development programs, including the importance of appropriate formulation, and how recent developments can be used to better define the mechanisms of action of vaccines. Finally, we introduce the possibility of using TLRLs, either in combination or with non-TLRLs, to synergistically potentiate vaccine-induced responses to provide not only prophylactic, but therapeutic protection against infectious diseases and cancer. PMID:21198672

  17. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation.

    PubMed

    Chang, Daoxiao; Ma, Yanni; Cao, Guoyu; Wang, Jianhuan; Zhang, Xia; Feng, Jun; Wang, Wenping

    2018-08-01

    Lutein is a kind of natural carotenoids possessing many pharmacological effects. The application of lutein was limited mainly due to its low oral bioavailability caused by poor aqueous solubility. Nanocrystal formulation of lutein was developed to improve the oral bioavailability in this study. The nanosuspension was prepared by the anti-solvent precipitation-ultrasonication method and optimized by Box-Behnken design, followed by freeze-drying to obtain lutein nanocrystals. The nanocrystals were characterized on their physical properties, in vitro dissolution and in vivo absorption performance. Lutein nanocrystals showed as tiny spheres with an average particle size of 110.7 nm. The result of diffractograms indicated that the percent crystallinity of lutein was 89.4% in coarse powder and then declined in nanocrystal formulation. The saturated solubility of lutein in water increased from 7.3 μg/ml for coarse powder up to 215.7 μg/ml for lutein nanocrystals. The dissolution rate of lutein nanocrystals was significantly higher than that of coarse powder or the physical mixture. The C max and AUC 0-24 h of lutein nanocrystals after oral administration in rats was 3.24 and 2.28 times higher than those of lutein suspension, respectively. These results indicated that the nanocrystal formulation could significantly enhance the dissolution and absorption of lutein and might be a promising approach for improving its oral bioavailability.

  18. Effect of Aluminum Hydroxide Adjuvant and Formaldehyde in the Formulation of rPA Anthrax Vaccine

    DTIC Science & Technology

    2007-01-02

    Research Institute of Infectious Diseases , Bacteriology Division, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5033, USA b Goldbelt Raven, LLC...States Army Medical Research Institute of Infectious Diseases , Fort Detrick, MD 8. PERFORMING ORGANIZATION REPORT NUMBER TR-06-124 9. SPONSORING...27] Hambleton P, Carman JA, Melling J. Anthrax: the disease in relation to vaccines. Vaccine 1984;2:125–32. 28] Little SF, Webster WM, Ivins BE

  19. Dynamic of Immune Response induced in Hepatitis B Surface Antigen-transgenic Mice Immunized with a Novel Therapeutic Formulation

    PubMed Central

    Almeida, Freya M Freyre; Blanco, Aracelys; Trujillo, Heidy; Hernández, Dunia; García, Daymir; Alba, José S; Abad, Matilde López; Merino, Nelson; Lobaina, Yadira

    2016-01-01

    ABSTRACT The development of therapeutic vaccines against chronic hepatitis B requires the capacity of the formulation to subvert a tolerated immune response as well as the evaluation of histopathological damage resulting from the treatment. In the present study, the dynamicity of induced immune response to hepatitis B surface antigen (HBsAg) was evaluated in transgenic mice that constitutively express the HBsAg gene (HBsAg-tg mice). After immunization with a vaccine candidate containing both surface (HBsAg) and core (HBcAg) antigens of hepatitis B virus (HBV), the effect of vaccination on clearance of circulating HBsAg and the potential histological alterations were examined. Transgenic (tg) and non-transgenic (Ntg) mice were immunized by intranasal (IN) and subcutaneous (SC) routes simultaneously. A control group received phosphate-buffered saline (PBS) by IN route and aluminum by SC route. Positive responses, at both humoral and cellular levels, were obtained after five immunizations in HBsAg-tg mice. Such responses were delayed and of lower intensity in tg mice, compared to vaccinated Ntg mice. Serum IgG response was characterized by a similar IgG subclass pattern. Even when HBsAg-specific CD8+ T cell responses were clearly detectable by gamma-interferon ELISPOT assay, histopathological alterations were not detected in any organ, including the liver and kidneys. Our study demonstrated, that it is possible to subvert the immune tolerance against HBsAg in tg mice, opening a window for new studies to optimize the schedule, dose, and formulation to improve the immune response to the therapeutic vaccine candidate. These results can be considered a safety proof to support clinical developments for the formulation under study. How to cite this article Freyre FM, Blanco A, Trujillo H, Hernández D, García D, Alba JS, Lopez M, Merino N, Lobaina Y, Aguilar JC. Dynamic of Immune Response induced in Hepatitis B Surface Antigen-transgenic Mice Immunized with a Novel

  20. H5N1 vaccines in humans

    PubMed Central

    Baz, Mariana; Luke, Catherine J; Cheng, Xing; Jin, Hong; Subbarao, Kanta

    2013-01-01

    The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting. PMID:23726847

  1. Oral fluids as a live-animal sample for evaluating cross-reactivity and cross-protection following intranasal influenza A virus vaccination in pigs

    USDA-ARS?s Scientific Manuscript database

    In North American swine there are numerous antigenically distinct influenza A virus (IAV) H1 subtypes currently circulating, making vaccine development difficult due to the inability to formulate a vaccine that provides broad cross-protection. Live-attenuated influenza virus (LAIV) vaccines provide ...

  2. An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy.

    PubMed

    Bonam, Srinivasa Reddy; Partidos, Charalambos D; Halmuthur, Sampath Kumar M; Muller, Sylviane

    2017-09-01

    Adjuvants incorporated in prophylactic and/or therapeutic vaccine formulations impact vaccine efficacy by enhancing, modulating, and/or prolonging the immune response. In addition, they reduce antigen concentration and the number of immunizations required for protective efficacy, therefore contributing to making vaccines more cost effective. Our better understanding of the molecular mechanisms of immune recognition and protection has led research efforts to develop new adjuvants that are currently at various stages of development or clinical evaluation. In this review, we focus mainly on several of these promising adjuvants, and summarize recent work conducted in various laboratories to develop novel lipid-containing adjuvants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Recent advances towards tuberculosis control: vaccines and biomarkers

    PubMed Central

    Weiner, J; Kaufmann, S H E

    2014-01-01

    Weiner 3rd J, Kaufmann SHE (Max Planck Institute for Infection Biology, Berlin, Germany). Recent advances towards tuberculosis control: vaccines and biomarkers. (Review). J Intern Med 2014; 275: 467–480. Of all infectious diseases, tuberculosis (TB) remains one of the most important causes of morbidity and mortality. Recent advances in understanding the biology of Mycobacterium tuberculosis (Mtb) infection and the immune response of the infected host have led to the development of several new vaccines, a number of which are already undergoing clinical trials. These include pre-exposure prime vaccines, which could replace bacille Calmette–Guérin (BCG), and pre-exposure booster vaccines given in addition to BCG. Infants are the target population of these two types of vaccines. In addition, several postexposure vaccines given during adolescence or adult life, in addition to BCG as a priming vaccine during infancy, are undergoing clinical testing. Therapeutic vaccines are currently being assessed for their potential to cure active TB as an adjunct to chemotherapy. BCG replacement vaccines are viable recombinant BCG or double-deletion mutants of Mtb. All booster vaccines are composed of one or several antigens, either expressed by viral vectors or formulated with adjuvants. Therapeutic vaccines are killed mycobacterial preparations. Finally, multivariate biomarkers and biosignatures are being generated from high-throughput data with the aim of providing better diagnostic tools to specifically determine TB progression. Here, we provide a technical overview of these recent developments as well of the relevant computational approaches and highlight the obstacles that still need to be overcome. PMID:24635488

  4. Large animal models for vaccine development and testing.

    PubMed

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity.

    PubMed

    Zhang, Rui; Kramer, Jake S; Smith, Josiah D; Allen, Brittany N; Leeper, Caitlin N; Li, Xiaolei; Morton, Logan D; Gallazzi, Fabio; Ulery, Bret D

    2018-06-01

    Current vaccine research has shifted from traditional vaccines (i.e., whole-killed or live-attenuated) to subunit vaccines (i.e., protein, peptide, or DNA) as the latter is much safer due to delivering only the bioactive components necessary to produce a desirable immune response. Unfortunately, subunit vaccines are very weak immunogens requiring delivery vehicles and the addition of immunostimulatory molecules termed adjuvants to convey protective immunity. An interesting type of delivery vehicle is peptide amphiphile micelles (PAMs), unique biomaterials where the vaccine is part of the nanomaterial itself. Due to the modularity of PAMs, they can be readily modified to deliver both vaccine antigens and adjuvants within a singular construct. Through the co-delivery of a model antigenic epitope (Ovalbumin 319-340 -OVA BT ) and a known molecular adjuvant (e.g., 2,3-dipalmitoyl-S-glyceryl cysteine-Pam 2 C), greater insight into the mechanisms by which PAMs can exert immunostimulatory effects was gained. It was found that specific combinations of antigen and adjuvant can significantly alter vaccine immunogenicity both in vitro and in vivo. These results inform fundamental design rules that can be leveraged to fabricate optimal PAM-based vaccine formulations for future disease-specific applications. Graphical Abstract.

  6. Efficacy of Imiquimod-Based Transcutaneous Immunization Using a Nano-Dispersed Emulsion Gel Formulation

    PubMed Central

    Tenzer, Stefan; Schild, Hansjörg; Stevanovic, Stefan; Langguth, Peter; Radsak, Markus P.

    2014-01-01

    Background Transcutaneous immunization (TCI) approaches utilize skin associated lymphatic tissues to elicit specific immune responses. In this context, the imidazoquinoline derivative imiquimod formulated in Aldara applied onto intact skin together with a cytotoxic T lymphocyte (CTL) epitope induces potent CTL responses. However, the feasibility and efficacy of the commercial imiquimod formulation Aldara is limited by its physicochemical properties as well as its immunogenicity. Methodology/Principal Findings To overcome these obstacles, we developed an imiquimod-containing emulsion gel (IMI-Gel) and characterized it in comparison to Aldara for rheological properties and in vitro mouse skin permeation in a Franz diffusion cell system. Imiquimod was readily released from Aldara, while IMI-Gel showed markedly decreased drug release. Nevertheless, comparing vaccination potency of Aldara or IMI-Gel-based TCI in C57BL/6 mice against the model cytotoxic T-lymphocyte epitope SIINFEKL, we found that IMI-Gel was equally effective in terms of the frequency of peptide-specific T-cells and in vivo cytolytic activity. Importantly, transcutaneous delivery of IMI-Gel for vaccination was clearly superior to the subcutaneous or oral route of administration. Finally, IMI-Gel based TCI was at least equally effective compared to Aldara-based TCI in rejection of established SIINFEKL-expressing E.G7 tumors in a therapeutic setup indicated by enhanced tumor rejection and survival. Conclusion/Significance In summary, we developed a novel imiquimod formulation with feasible pharmaceutical properties and immunological efficacy that fosters the rational design of a next generation transcutaneous vaccination platform suitable for the treatment of cancer or persistent virus infections. PMID:25025233

  7. Zika virus-like particle (VLP) based vaccine

    PubMed Central

    Boigard, Hélène; Alimova, Alexandra; Martin, George R.; Katz, Al; Gottlieb, Paul

    2017-01-01

    The newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount. Here we describe a novel strategy to assemble Zika virus-like particles (VLPs) by co-expressing the structural (CprME) and non-structural (NS2B/NS3) proteins, and demonstrate their effectiveness as vaccines. VLPs are produced in a suspension culture of mammalian cells and self-assembled into particles closely resembling Zika viruses as shown by electron microscopy studies. We tested various VLP vaccines and compared them to analogous compositions of an inactivated Zika virus (In-ZIKV) used as a reference. VLP immunizations elicited high titers of antibodies, as did the In-ZIKV controls. However, in mice the VLP vaccine stimulated significantly higher virus neutralizing antibody titers than comparable formulations of the In-ZIKV vaccine. The serum neutralizing activity elicited by the VLP vaccine was enhanced using a higher VLP dose and with the addition of an adjuvant, reaching neutralizing titers greater than those detected in the serum of a patient who recovered from a Zika infection in Brazil in 2015. Discrepancies in neutralization levels between the VLP vaccine and the In-ZIKV suggest that chemical inactivation has deleterious effects on neutralizing epitopes within the E protein. This along with the inability of a VLP vaccine to cause infection makes it a preferable candidate for vaccine development. PMID:28481898

  8. Immunomodulatory and Physical Effects of Oil Composition in Vaccine Adjuvant Emulsions

    PubMed Central

    Fox, Christopher B.; Baldwin, Susan L.; Duthie, Malcolm S.; Reed, Steven G.; Vedvick, Thomas S.

    2011-01-01

    Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60 °C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60 °C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants. PMID:21906648

  9. Safety and immunogenicity of a killed Leishmania (L.) amazonensis vaccine against cutaneous leishmaniasis in Colombia: a randomized controlled trial.

    PubMed

    Vélez, I D; del Pilar Agudelo, S; Arbelaez, M P; Gilchrist, K; Robledo, S M; Puerta, J A; Zicker, F; Berman, J; Modabber, F

    2000-01-01

    The safety and immunogenicity of an intramuscular (i.m.) and intradermal (ID) formulation of autoclaved Leishmania (Leishmania) amazonensis vaccine was evaluated in 296 volunteers in a randomized, placebo-controlled, double-blind trial in Colombia. There were 4 vaccination groups: i.m. vaccine, i.m. placebo, ID vaccine, and ID placebo. The ID formulations were mixed with BCG as adjuvant at the time of injection. For each group, 3 vaccinations were given with a 20-day interval between injections, and adverse events were monitored at 20 min, and at 2, 7 and 21 days after each injection. BCG-induced adverse reactions resulted in cancellation of the third vaccine administration in the ID groups. Antibody titres did not differ significantly between the groups. Montenegro skin-test conversion was achieved by 86.4% and 90% of the i.m. vaccine group and by 25% and 5% of the i.m. placebo group 80 days and 1 year after vaccination, respectively. A significant increase in mean Leishmania-antigen lymphocyte proliferation indexes was observed after i.m. vaccine immunization, but not after i.m. placebo immunization, 80 days and 1 year after vaccination. Significant levels of IFN gamma but not IL-10 were observed 1 year after vaccination in the i.m. vaccine group compared to the i.m. placebo group. The good safety profile and evidence of Th1 immune reactions due to i.m. vaccination in this phase-I/II study suggest that a population-based phase-III efficacy trial of the i.m. vaccine should be initiated.

  10. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types.

    PubMed

    Zhang, Ting; Xu, Yufei; Qiao, Liang; Wang, Youchun; Wu, Xueling; Fan, Dongsheng; Peng, Qinglin; Xu, Xuemei

    2010-04-26

    Both Human Papillomavirus (HPV) type 16/18 bivalent vaccine and type 16/18/6/11 quadrivalent vaccine have been proved to be safe and effective, and licensed for public use. However, these two vaccines do not quite match the distribution of HPV types in China, Southeast Asia and Latin America, where HPV 58 is highly prevalent. Here we produced three types of virus-like particles (VLPs) in baculovirus expression system, formulated a trivalent vaccine containing HPV 16, 18, and 58 L1 VLPs and examined its in vitro neutralizing titers. This vaccine could induce high level and long-term humoral immunity against the component types. But immune interference was observed when comparing type specific neutralizing antibody levels induced by trivalent vaccine to those by corresponding monovalent vaccines. This kind of interference would become more obvious when formulating more types of VLPs into multivalent vaccines, but could be greatly overcome by decreasing the antigen dosage and adding a proper adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV)

    PubMed Central

    Holst, Johan; Oster, Philipp; Arnold, Richard; Tatley, Michael V.; Næss, Lisbeth M.; Aaberge, Ingeborg S.; Galloway, Yvonne; McNicholas, Anne; O’Hallahan, Jane; Rosenqvist, Einar; Black, Steven

    2013-01-01

    The utility of wild-type outer membrane vesicle (wtOMV) vaccines against serogroup B (MenB) meningococcal disease has been explored since the 1970s. Public health interventions in Cuba, Norway and New Zealand have demonstrated that these protein-based vaccines can prevent MenB disease. Data from large clinical studies and retrospective statistical analyses in New Zealand give effectiveness estimates of at least 70%. A consistent pattern of moderately reactogenic and safe vaccines has been seen with the use of approximately 60 million doses of three different wtOMV vaccine formulations. The key limitation of conventional wtOMV vaccines is their lack of broad protective activity against the large diversity of MenB strains circulating globally. The public health intervention in New Zealand (between 2004–2008) when MeNZB was used to control a clonal MenB epidemic, provided a number of new insights regarding international and public-private collaboration, vaccine safety surveillance, vaccine effectiveness estimates and communication to the public. The experience with wtOMV vaccines also provide important information for the next generation of MenB vaccines designed to give more comprehensive protection against multiple strains. PMID:23857274

  12. Comparison of the single dose pharmacokinetics, pharmacodynamics, and safety of two novel oral formulations of dimethandrolone undecanoate (DMAU): a potential oral, male contraceptive.

    PubMed

    Ayoub, R; Page, S T; Swerdloff, R S; Liu, P Y; Amory, J K; Leung, A; Hull, L; Blithe, D; Christy, A; Chao, J H; Bremner, W J; Wang, C

    2017-03-01

    Dimethandrolone (DMA, 7α,11β-dimethyl-19-nortestosterone) has both androgenic and progestational activities, ideal properties for a male hormonal contraceptive. In vivo, dimethandrolone undecanoate (DMAU) is hydrolyzed to DMA. We showed previously that single oral doses of DMAU powder in capsule taken with food are well tolerated and effective at suppressing both LH and testosterone (T), but absorption was low. We compared the pharmacokinetics and pharmacodynamics of two new formulations of DMAU, in castor oil and in self-emulsifying drug delivery systems (SEDDS), with the previously tested powder formulation. DMAU was dosed orally in healthy adult male volunteers at two academic medical centers. For each formulation tested in this double-blind, placebo-controlled study, 10 men received single, escalating, oral doses of DMAU (100, 200, and 400 mg) and two subjects received placebo. All doses were evaluated for both fasting and with a high fat meal. All three formulations were well tolerated without clinically significant changes in vital signs, blood counts, or serum chemistries. For all formulations, DMA and DMAU showed higher maximum (p < 0.007) and average concentrations (p < 0.002) at the 400 mg dose, compared with the 200 mg dose. The powder formulation resulted in a lower conversion of DMAU to DMA (p = 0.027) compared with both castor oil and SEDDS formulations. DMAU in SEDDS given fasting resulted in higher serum DMA and DMAU concentrations compared to the other two formulations. Serum LH and sex hormone concentrations were suppressed by all formulations of 200 and 400 mg DMAU when administered with food, but only the SEDDS formulation was effectively suppressed serum T when given fasting. We conclude that while all three formulations of oral DMAU are effective and well tolerated when administered with food, DMAU in oil and SEDDS increased conversion to DMA, and SEDDS may have some effectiveness when given fasting. These properties might be

  13. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration.

    PubMed

    Kim, Beom-Su; Sung, Hark-Mo; You, Hyung-Keun; Lee, Jun

    2014-10-01

    Fibrin polymers are widely used in the tissue engineering field as biomaterials. Although numerous researchers have studied the fabrication of scaffolds using fibrin glue (FG) and bone powder, the effects of varied fibrinogen content during the fabrication of scaffolds on human mesenchymal stem cells (hMSCs) and bone regeneration remain poorly understood. In this study, we formulated scaffolds using demineralized bone powder and various fibrinogen concentrations and analyzed the microstructure and mechanical properties. Cell proliferation, cell viability, and osteoblast differentiation assays were performed. The ability of the scaffold to enhance bone regeneration was evaluated using a rabbit calvarial defect model. Micro-computed tomography (micro-CT) showed that bone powders were uniformly distributed on the scaffolds, and scanning electron microscopy (SEM) showed that the fibrin networks and flattened fibrin layers connected adjacent bone powder particles. When an 80 mg/mL fibrinogen solution was used to formulate scaffolds, the porosity decreased 41.6 ± 3.6%, while the compressive strength increased 1.16 ± 0.02 Mpa, when compared with the values for the 10 mg/mL fibrinogen solution. Proliferation assays and SEM showed that the scaffolds prepared using higher fibrinogen concentrations supported and enhanced cell adhesion and proliferation. In addition, mRNA expression of alkaline phosphatase and osteocalcin in cells grown on the scaffolds increased with increasing fibrinogen concentration. Micro-CT and histological analysis revealed that newly formed bone was stimulated in the scaffold implantation group. Our results demonstrate that optimization of the fibrinogen content of fibrin glue/bone powder scaffolds will be beneficial for bone tissue engineering. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Vaccine Adjuvants: from 1920 to 2015 and Beyond

    PubMed Central

    Di Pasquale, Alberta; Preiss, Scott; Tavares Da Silva, Fernanda; Garçon, Nathalie

    2015-01-01

    The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines. PMID:26343190

  15. Vaccination with a codon-optimized A27L-containing plasmid decreases virus replication and dissemination after vaccinia virus challenge.

    PubMed

    Martínez, Osmarie; Bravo Cruz, Ariana; Santos, Saritza; Ramírez, Maite; Miranda, Eric; Shisler, Joanna; Otero, Miguel

    2017-10-20

    Smallpox is a disease caused by Variola virus (VARV). Although eradicated by WHO in 1980, the threat of using VARV on a bioterror attack has increased. The current smallpox vaccine ACAM2000, which consists of live vaccinia virus (VACV), causes complications in individuals with a compromised immune system or with previously reported skin diseases. Thus, a safer and efficacious vaccine needs to be developed. Previously, we reported that our virus-free DNA vaccine formulation, a pVAX1 plasmid encoding codon-optimized VACV A27L gene (pA27LOPT) with and without Imiquimod adjuvant, stimulates A27L-specific production of IFN-γ and increases humoral immunity 7days post-vaccination. Here, we investigated the immune response of our novel vaccine by measuring the frequency of splenocytes producing IFN-γ by ELISPOT, the TH1 and TH2 cytokine profiles, and humoral immune responses two weeks post-vaccination, when animals were challenged with VACV. In all assays, the A27-based DNA vaccine conferred protective immune responses. Specifically, two weeks after vaccination, mice were challenged intranasally with vaccinia virus, and viral titers in mouse lungs and ovaries were significantly lower in groups immunized with pA27LOPT and pA27LOPT+Imiquimod. These results demonstrate that our vaccine formulation decreases viral replication and dissemination in a virus-free DNA vaccine platform, and provides an alternative towards a safer an efficacious vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Exploiting fungal cell wall components in vaccines.

    PubMed

    Levitz, Stuart M; Huang, Haibin; Ostroff, Gary R; Specht, Charles A

    2015-03-01

    Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected.

  17. Exploiting fungal cell wall components in vaccines

    PubMed Central

    Levitz, Stuart M.; Huang, Haibin; Ostroff, Gary R.; Specht, Charles A.

    2014-01-01

    Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by Dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected. PMID:25404118

  18. Lessons Learned from Emergency Response Vaccination Efforts for Cholera, Typhoid, Yellow Fever, and Ebola

    PubMed Central

    Date, Kashmira A.; Sreenivasan, Nandini; Harris, Jennifer B.; Hyde, Terri B.

    2017-01-01

    Countries must be prepared to respond to public health threats associated with emergencies, such as natural disasters, sociopolitical conflicts, or uncontrolled disease outbreaks. Rapid vaccination of populations vulnerable to epidemic-prone vaccine-preventable diseases is a major component of emergency response. Emergency vaccination planning presents challenges, including how to predict resource needs, expand vaccine availability during global shortages, and address regulatory barriers to deliver new products. The US Centers for Disease Control and Prevention supports countries to plan, implement, and evaluate emergency vaccination response. We describe work of the Centers for Disease Control and Prevention in collaboration with global partners to support emergency vaccination against cholera, typhoid, yellow fever, and Ebola, diseases for which a new vaccine or vaccine formulation has played a major role in response. Lessons learned will help countries prepare for future emergencies. Integration of vaccination with emergency response augments global health security through reducing disease burden, saving lives, and preventing spread across international borders. PMID:29155670

  19. Delta inulin-derived adjuvants that elicit Th1 phenotype following vaccination reduces respiratory syncytial virus lung titers without a reduction in lung immunopathology.

    PubMed

    Wong, Terianne M; Petrovsky, Nikolai; Bissel, Stephanie J; Wiley, Clayton A; Ross, Ted M

    2016-08-02

    Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infections resulting in bronchiolitis and even mortality in the elderly and young children/infants. Despite the impact of this virus on human health, no licensed vaccine exists. Unlike many other viral infections, RSV infection or vaccination does not induce durable protective antibodies in humans. In order to elicit high titer, neutralizing antibodies against RSV, we investigated the use of the adjuvant Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles, to enhance antibody titers following vaccination. BALB/c mice were vaccinated intramuscularly with live RSV as a vaccine antigen in combination with one of two formulations of Advax™. Advax-1 was comprised of the standard delta inulin adjuvant and Advax-2 was formulated delta inulin plus CpG oligodendronucleotides (ODNs). An additional group of mice were either mock vaccinated, immunized with vaccine only, or administered vaccine plus Imject Alum. Following 3 vaccinations, mice had neutralizing antibody titers that correlated with reduction in viral titers in the lungs. Advax-1 significantly enhanced serum RSV-specific IgG1 levels at week 6 indicative of a Th2 response, similar to titers in mice administered vaccine plus Imject Alum. In contrast, mice vaccinated with vaccine plus Advax-2 had predominately IgG2a titers indicative of a Th1 response that was maintained during the entire study. Interestingly, regardless of which Advax TM adjuvant was used, the neutralizing titers were similar between groups, but the viral lung titers were significantly lower (∼10E+3pfu/g) in mice administered vaccine with either Advax TM adjuvant compared to mice administered adjuvants only. The lung pathology in vaccinated mice with Advax TM was similar to Imject Alum. Overall, RSV vaccine formulated with Advax TM had high neutralizing antibody titers with low lung viral titers, but exacerbated lung pathology compared

  20. A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures.

    PubMed

    Reynolds, Gavin K; Campbell, Jacqueline I; Roberts, Ron J

    2017-10-05

    A new model to predict the compressibility and compactability of mixtures of pharmaceutical powders has been developed. The key aspect of the model is consideration of the volumetric occupancy of each powder under an applied compaction pressure and the respective contribution it then makes to the mixture properties. The compressibility and compactability of three pharmaceutical powders: microcrystalline cellulose, mannitol and anhydrous dicalcium phosphate have been characterised. Binary and ternary mixtures of these excipients have been tested and used to demonstrate the predictive capability of the model. Furthermore, the model is shown to be uniquely able to capture a broad range of mixture behaviours, including neutral, negative and positive deviations, illustrating its utility for formulation design. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Universal influenza vaccines, a dream to be realized soon.

    PubMed

    Zhang, Han; Wang, Li; Compans, Richard W; Wang, Bao-Zhong

    2014-04-29

    Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine.

  2. Universal Influenza Vaccines, a Dream to Be Realized Soon

    PubMed Central

    Zhang, Han; Wang, Li; Compans, Richard W.; Wang, Bao-Zhong

    2014-01-01

    Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine. PMID:24784572

  3. Protective efficacy of a recombinant HVT-H5 vaccine against lethal H5N1 and H5N2 avian influenza challenge

    USDA-ARS?s Scientific Manuscript database

    Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines (e.g. expressing AI genes) are gaining us...

  4. Safety, Tolerability and Immunogenicity of Pentavalent Rotavirus Vaccine Manufactured by a Modified Process.

    PubMed

    Martinón-Torres, Federico; Greenberg, David; Varman, Meera; Killar, John A; Hille, Darcy; Strable, Erica L; Stek, Jon E; Kaplan, Susan S

    2017-04-01

    Rotavirus is the leading cause of severe diarrhea in infants and young children. The current formulation of pentavalent rotavirus vaccine (RV5) must be stored refrigerated at 2-8°C. A modified formulation of RV5 (RV5mp) has been developed with stability at 37°C for 7 days and an expiry extended to 36 months when stored at 2-8°C. This study (ClinicalTrials.gov identifier: NCT01600092; EudraCT number: 2012-001611-23) evaluated the safety, tolerability and immunogenicity of RV5mp versus the currently marketed RV5 in infants. To maintain blinding, both vaccine formulations were stored refrigerated at 2-8°C for the duration of the study. Immunogenicity endpoints were (1) serum neutralizing antibody titers to human rotavirus serotypes G1, G2, G3, G4 and P1A[8] and (2) proportion of subjects with a ≥3-fold rise from baseline for serum neutralizing antibody to human rotavirus serotypes G1, G2, G3, G4 and P1A[8] and serum antirotavirus immunoglobulin A. The RV5mp group (n = 505) and RV5 group (n = 509) had comparable safety profiles. There were no deaths and no vaccine-related serious adverse events in this study. With respect to immunogenicity, RV5mp was noninferior compared with RV5. Serum neutralizing antibody responses by country and breast-feeding status were generally consistent with the overall results. RV5mp enhances storage requirements while maintaining the immunogenicity and safety profile of the currently licensed RV5. A vaccine that is stable at room temperature may be more convenient for vaccinators, particularly in places where the cold chain is unreliable, and ultimately will permit more widespread use.

  5. Stabilization of IgG1 in spray-dried powders for inhalation.

    PubMed

    Schüle, S; Schulz-Fademrecht, T; Garidel, P; Bechtold-Peters, K; Frieb, W

    2008-08-01

    The protein stabilizing capabilities of spray-dried IgG1/mannitol formulations were evaluated. The storage stability was tested at different residual moisture levels prepared by vacuum-drying or equilibration prior to storage. Vacuum-drying at 32 degrees C/0.1mbar for 24h reduced the moisture level below 1%, constituting an optimal basis for improved storage stability. The crystalline IgG1/mannitol powders with a weight ratio of 20/80 up to 40/60 failed to prevent the antibody aggregation as assessed by size exclusion chromatography during storage. Ratios of 60/40 up to 80/20 IgG1/mannitol provided superior stability of the antibody and the powders could be produced with high yields. The lower the residual moisture, the better was the stabilizing capability. An amount of 20% mannitol provided the best stabilization. Storage stability of 60/40, 70/30, and 80/20 IgG1/mannitol formulations over one year was adequate at 2-8 degrees C and 25 degrees C. Closed storage (sealed in vials) at 40 degrees C/75% RH and open storage at 25 degrees C/60% RH revealed that the stability still required optimization. The lower the protein content, the better was the powder flowability. The aerodynamic properties of powders spray-dried with 10% solids content were inadequate, as the particle size ranged between 5.1 and 7.2 microm and the fine particle fraction accounted for only 4-11%. Reduction of the solids content to 2.5% did improve the aerodynamic properties as the mass mean aerodynamic diameter was reduced to 3.6 microm and the fine particle fraction was increased to about 14%. The reduction of the solids content did not influence the storage stability significantly. Also spray-drying at higher temperatures had no significant impact on the storage stability, despite a higher tendency to form amorphous systems. In order to improve the storage stability and to maintain the good flowability of 70/30 IgG1/mannitol powder or to keep the storage stability but to improve the flowability

  6. Towards the optimisation and adaptation of dry powder inhalers.

    PubMed

    Cui, Y; Schmalfuß, S; Zellnitz, S; Sommerfeld, M; Urbanetz, N

    2014-08-15

    Pulmonary drug delivery by dry powder inhalers is becoming more and more popular. Such an inhalation device must insure that during the inhalation process the drug powder is detached from the carrier due to fluid flow stresses. The goal of the project is the development of a drug powder detachment model to be used in numerical computations (CFD, computational fluid dynamics) of fluid flow and carrier particle motion through the inhaler and the resulting efficiency of drug delivery. This programme will be the basis for the optimisation of inhaler geometry and dry powder inhaler formulation. For this purpose a multi-scale approach is adopted. First the flow field through the inhaler is numerically calculated with OpenFOAM(®) and the flow stresses experienced by the carrier particles are recorded. This information is used for micro-scale simulations using the Lattice-Boltzmann method where only one carrier particle covered with drug powder is placed in cubic flow domain and exposed to the relevant flow situations, e.g. plug and shear flow with different Reynolds numbers. Therefrom the fluid forces on the drug particles are obtained. In order to allow the determination of the drug particle detachment possibility by lift-off, sliding or rolling, also measurements by AFM (atomic force microscope) were conducted for different carrier particle surface structures. The contact properties, such as van der Waals force, friction coefficient and adhesion surface energy were used to determine, from a force or moment balance (fluid forces versus contact forces), the detachment probability by the three mechanisms as a function of carrier particle Reynolds number. These results will be used for deriving the drug powder detachment model. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration

    PubMed Central

    El-Gendy, Nashwa; Berkland, Cory

    2014-01-01

    Purpose To develop an aerosol system for efficient local lung delivery of chemotherapeutics where nanotechnology holds tremendous potential for developing more valuable cancer therapies. Concurrently, aerosolized chemotherapy is generating interest as a means to treat certain types of lung cancer more effectively with less systemic exposure to the compound. Methods Nanoparticles of the potent anticancer drug, paclitaxel, were controllably assembled to form low density microparticles directly after preparation of the nanoparticle suspension. The amino acid, L-leucine, was used as a colloid destabilizer to drive the assembly of paclitaxel nanoparticles. A combination chemotherapy aerosol was formed by assembling the paclitaxel nanoparticles in the presence of cisplatin in solution. Results Freeze-dried powders of the combination chemotherapy possessed desirable aerodynamic properties for inhalation. In addition, the dissolution rates of dried nanoparticle agglomerate formulations (~60% to 66% after 8 h) were significantly faster than that of micronized paclitaxel powder as received (~18% after 8 h). Interestingly, the presence of the water soluble cisplatin accelerated the dissolution of paclitaxel. Conclusions Nanoparticle agglomerates of paclitaxel alone or in combination with cisplatin may serve as effective chemotherapeutic dry powder aerosols to enable regional treatment of certain lung cancers. PMID:19415471

  8. Predicting the shock compression response of heterogeneous powder mixtures

    NASA Astrophysics Data System (ADS)

    Fredenburg, D. A.; Thadhani, N. N.

    2013-06-01

    A model framework for predicting the dynamic shock-compression response of heterogeneous powder mixtures using readily obtained measurements from quasi-static tests is presented. Low-strain-rate compression data are first analyzed to determine the region of the bulk response over which particle rearrangement does not contribute to compaction. This region is then fit to determine the densification modulus of the mixture, σD, an newly defined parameter describing the resistance of the mixture to yielding. The measured densification modulus, reflective of the diverse yielding phenomena that occur at the meso-scale, is implemented into a rate-independent formulation of the P-α model, which is combined with an isobaric equation of state to predict the low and high stress dynamic compression response of heterogeneous powder mixtures. The framework is applied to two metal + metal-oxide (thermite) powder mixtures, and good agreement between the model and experiment is obtained for all mixtures at stresses near and above those required to reach full density. At lower stresses, rate-dependencies of the constituents, and specifically those of the matrix constituent, determine the ability of the model to predict the measured response in the incomplete compaction regime.

  9. Oral delivery of BCG Moreau Rio de Janeiro gives equivalent protection against tuberculosis but with reduced pathology compared to parenteral BCG Danish vaccination.

    PubMed

    Clark, Simon O; Kelly, Dominic L F; Badell, Edgar; Castello-Branco, Luiz Roberto; Aldwell, Frank; Winter, Nathalie; Lewis, David J M; Marsh, Philip D

    2010-10-08

    There is a need for an improved vaccine to better control human tuberculosis (TB), as the only currently available TB vaccine, bacillus Calmette-Guerin (BCG) delivered parenterally, offers variable levels of efficacy. Therefore, recombinant strains expressing additional antigens are being developed alongside alternative routes to parenteral delivery. There is strong evidence that BCG Moreau (RdJ) is a safe and effective vaccine in humans when given by the oral route. This study compared the efficacy of a single oral dose of wild type BCG Moreau Rio de Janeiro (RdJ), or a recombinant RdJ strain expressing Ag85B-ESAT6 fusion protein, formulated with and without lipid to enhance oral delivery, with subcutaneous BCG Danish 1331 and saline control groups in a guinea pig aerosol infection model of pulmonary tuberculosis. Protection was measured as survival at 30 weeks post-challenge and reduced bacterial load and histopathology in lungs and spleen. Results showed that a single oral dose of BCG Moreau (RdJ) or recombinant BCG Moreau (RdJ)-Ag85B-ESAT6, formulated with or without lipid, gave protection equivalent to subcutaneously delivered BCG Danish in the 30 weeks post-challenge survival study. The orally delivered vaccines gave reduced pathology scores in the lungs (three of the four formulations) and spleens (all four formulations) compared to subcutaneously delivered BCG Danish. The oral wild type BCG Moreau (RdJ) in lipid and the unformulated oral wild type BCG Moreau (RdJ) vaccine also gave statistically lower bacterial loads in the lungs and spleens, respectively, compared to subcutaneously delivered BCG Danish. This study provides further evidence to show that lipid formulation does not impair vaccine efficacy and may enhance the delivery and stability of oral vaccines intended for use in countries with poor health infrastructure. Oral delivery also avoids needles (and associated cross-infection risks) and immunisation without the need for specially trained

  10. Novel Approaches in Formulation of Entomopathogenic Fungi for Control of Insects in Soil, Foliar, and Structural Habitats: Thinking Outside the Box and Expecting the Unexpected

    USDA-ARS?s Scientific Manuscript database

    By and large, mycoinsecticide formulations have involved sprayable products, typically oil flowables, emulsifiable suspensions, wettable powders, and water dispersable granules. Various nutritive or inert carriers have been used to create granular formulations for use against soil pests. Sometime...

  11. Novel approaches to vaginal delivery and safety of microbicides: biopharmaceuticals, nanoparticles, and vaccines.

    PubMed

    Whaley, Kevin J; Hanes, Justin; Shattock, Robin; Cone, Richard A; Friend, David R

    2010-12-01

    The HIV-1 epidemic remains unchecked despite existing technology; vaccines and microbicides in development may help reverse the epidemic. Reverse transcriptase inhibitors (RTIs) formulated in gels tenofovir (TFV) and IVRs (dapivirine) are under clinical development. While TFV or similar products may prove successful for HIV-1, alternatives to RTIs may provide additional benefits, e.g., broader STI prevention. Biopharmaceutical agents under development as microbicides include cyanovirin, RANTES analogues, commensals, and Mabs. Cost of manufacturing biopharmaceuticals has been reduced and they can be formulated into tablets, films, and IVRs for vaginal delivery. Nanotechnology offers a novel approach to formulate microbicides potentially leading to uniform epithelial delivery. Delivery through vaginal mucus may be possible by controlling nanoparticle size and surface characteristics. Combining prevention modalities may be the most effective means of preventing STI transmission, importantly, codelivery of microbicides and vaccines has demonstrated. Finally, the safety of microbicide preparations and excipients commonly used can be assessed using a mouse/HSV-2 susceptibility model. Screening of new microbicide candidates and formulation excipients may avoid past issues of enhancing HIV-1 transmission. This article forms part of a special supplement covering several presentations on novel microbicide formulations from the symposium on "Recent Trends in Microbicide Formulations" held on 25 and 26 January 2010, Arlington, VA. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Adjuvants for veterinary vaccines--types and modes of action.

    PubMed

    Gerdts, Volker

    2015-01-01

    Adjuvants are used to improve the immune response to vaccines. Formulation with adjuvants can result in an earlier onset of immunity, an overall stronger immune response, a specific type of immunity, or a longer duration of immunity to the vaccine. Adjuvants were discovered empirically, and for decades, have been used in both humans and animals without understanding the mechanisms of action. With an improved understanding of the immune system, and in particular the interplay between innate and adaptive immunity, we are now getting better insight into the function of adjuvants. As a result, new adjuvants are being developed that are safe and highly effective for common use in humans and animals, as well as for use in high risk populations such as immunocompromised animals, neonates or very old animals. Furthermore, adjuvants can help to reduce the amount of antigen needed in the vaccine, increase the stability of the vaccine and enable alternatiye administration routes such as needle-free delivery of the vaccine. Here, I will provide an over view of the existing adjuvant technologies for veterinary vaccines and provide an outlook into some of the new technologies in preclinical and clinical development.

  13. Formulation and evaluation of different floating tablets containing metronidazole to target stomach.

    PubMed

    Loh, Zhiao C; Elkordy, Amal A

    2015-01-01

    The purpose of this study is to formulate and develop tablets dosage form containing Metronidazole which has swelling and floating properties as a gastroretentive controlled-release drug delivery system to improve drug bioavailability. Fifteen different formulations of effervescence-forming floating systems were designed using HPMC K15M, xanthan gum, co-povidone, Eudragit® RL PO, pluronic® F-127 and/or polypropylene foam powder as swelling agents and sodium bicarbonate with/ without citric acid as gas-forming agents at different compositions. Six out of these 15 formulations which have satisfactory tablet floating behaviour were further studied with the incorporation of Metronidazole. The tablets were evaluated based on tablet physicochemical properties, floating behaviour, swelling ability and drug dissolution studies which were carried out using 0.1M HCl at 37°C for 8 hours. Furthermore, evaluation of the powder mixtures using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscope (SEM) were investigated. Most of the tablets show good physicochemical properties except for F11 which contains pluronic® F-127 as its release-retarding matrix-forming polymer. Other formulations show high swelling capacity, ability to float for at least 8 hours in vitro and have sustained drug release characteristics. Data obtained indicated that F3 which contains HPMC (12.5%w/w), xanthan gum (25%w/w), co-povidone (12.5%w/w) and sodium bicarbonate (31.7%w/w) is a suitable formulation with short floating lag time, good floating behaviour and sustained drug release for at least 8 hours in vitro with a zero order kinetic. Combinations of HPMC K15M and xanthan gum as swelling agents show synergistic effect in retarding drug release and are suitable in providing the most sustained drug release system.

  14. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation.

    PubMed

    Mohri, Kohta; Okuda, Tomoyuki; Mori, Asami; Danjo, Kazumi; Okamoto, Hirokazu

    2010-06-01

    Spray-freeze drying (SFD) is an attractive technique to prepare highly porous dry powders for inhalation. However, there have been few reports of its application to dry powder inhalers (DPIs). Therefore, in this study, we prepared dry plasmid DNA (pDNA) powders with different molecular ratios of chitosan to pDNA (N/P ratios) by SFD. All the pDNA powders were spherical and highly porous, with particles approximately 20-40microm in geometric diameter. The morphology changed little with the alteration of the N/P ratio. On electrophoresis, a band of linear pDNA was detected in the preparation without chitosan, suggesting the destabilization of pDNA through SFD. However, the addition of chitosan protected pDNA from destabilization. Moreover, the pDNA powders were evaluated for pulmonary gene transfection efficiency using an in vivo dual imaging technique for gene DPIs developed previously. Maximum gene expression was observed at 9-12h following pulmonary administration of the powders into mice. The powder with the N/P ratio of 10 had the highest gene transfection efficiency. A higher affinity of chitosan for pDNA and a smaller (approximately 100nm) pDNA/chitosan complex (N/Pf10) were found at pH 6.5 (in lung) than at pH 7.4 (in physiological conditions), suggesting that the effective compaction of pDNA by chitosan at the N/P ratio of 10 at pH 6.5 contributes to the gene transfection efficiency in the lung. These results suggest inhalable dry pDNA powders with chitosan prepared by SFD to be a suitable formulation for pulmonary gene therapy. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. A high ratio of IC31® adjuvant to antigen is necessary for H4 TB vaccine immunomodulation

    PubMed Central

    Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2015-01-01

    A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor. PMID:25997147

  16. A high ratio of IC31(®) adjuvant to antigen is necessary for H4 TB vaccine immunomodulation.

    PubMed

    Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2015-01-01

    A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor.

  17. Lallemantia reylenne seeds as superdisintegrant: Formulation and evaluation of nimesulide orodispersible tablets

    PubMed Central

    Malik, Karan; Arora, Gurpreet; Singh, Inderbir; Arora, Sandeep

    2011-01-01

    Aim: Orodispersible tablets also known as fast dissolving tablets disintegrate instantaneously within the mouth and thus can be consumed without water. The present study was aimed to formulate orodispersible tablets of nimesulide by using Lallemantia reylenne seeds as natural superdisintegrant. Materials and Methods: Powdered lallemantia seeds were characterized for powder flow properties (bulk density, tapped density, carr's consolidation index, hausner ratio, angle of repose), swelling index, viscosity, pH, and loss on drying. The prepared tablets were evaluated for different tablet parametric tests, wetting time, water absorption ratio, effective pore radius, porosity, packing fraction, in vitro and in vivo disintegration time, in vitro dissolution and stability studies. Results and Discussion: Increase in Lallementia reylenne concentration had an appreciable effect on tablet hardness and friability which clearly indicated binding potential of the seeds. Water absorption ratio increased with increase in Lallemantia reylenne concentration from batch A1 to A4. Water uptake coupled natural polymer swelling could be the most probable mechanism for concentration dependent reduction in disintegration time by the Lallemantia reylenne seeds. Porosity of the formulated tablets was found to increase from batch A1-A4. The in vitro disintegration results were in line with in vivo disintegration results. Conclusion: It could be concluded that Lallemantia reylenne seeds could be used as natural superdisintegrant in the formulation of orodispersible tablets. PMID:23071942

  18. Improved tretinoin photostability in a topical nanomedicine replacing original liquid suspension with spray-dried powder with no loss of effectiveness.

    PubMed

    Marchiori, M C L; Rascovetzki, R H; Ourique, A F; Rigo, L A; Silva, C B; Beck, R C R

    2013-04-01

    The use of spray-dried powders containing tretinoin-loaded nanocapsules instead of the original liquid suspension, aimed at the preparation of dermatological nanomedicines with improved photostability, was investigated. Powders were prepared using lactose as a drying adjuvant. Hydrogels were prepared using two approaches: dispersing Carbopol Ultrez 10 in an aqueous redispersion of the powder or incorporating the powder in previously formed hydrogels. The photodegradation of tretinoin in hydrogels prepared with the powders showed similar half-life times (around 19.5 h) compared to preparations with the original liquid nanocapsules (20.7 ± 1.4 h), regardless of the preparation approach. In addition, the topical nanomedicines prepared with the spray-dried powders presented a significant improvement in tretinoin photostability compared to the formulation containing the non-encapsulated drug. This study verified that the addition of the spray-dried powders containing tretinoin-loaded lipid-core nanocapsules to hydrogels did not influence the photoprotection of the drug compared with the preparation procedure using the original liquid suspension.

  19. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections.

    PubMed

    Vandenheuvel, Dieter; Singh, Abhishek; Vandersteegen, Katrien; Klumpp, Jochen; Lavigne, Rob; Van den Mooter, Guy

    2013-08-01

    The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1-5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.