Sample records for vaccine purified inactivated

  1. 75 FR 6211 - Prospective Grant of Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Exclusive License: Purified Inactivated Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1,2,3, and 4 AGENCY: National Institutes of Health, Public Health...., ``Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue Viruses''-- European Patent...

  2. Randomized Trials Comparing Inactivated Vaccine After Medium- or High-titer Measles Vaccine With Standard Titer Measles Vaccine After Inactivated Vaccine: A Meta-analysis.

    PubMed

    Aaby, Peter; Ravn, Henrik; Benn, Christine S; Rodrigues, Amabelia; Samb, Badara; Ibrahim, Salah A; Libman, Michael D; Whittle, Hilton C

    2016-11-01

    Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated vaccines [after medium-titer MV (MTMV) or high-titer MV (HTMV)] and a live standard titer MV (after an initial inactivated vaccine). The trials were conducted in Sudan, Senegal, The Gambia and Guinea-Bissau. The intervention group received live MTMV or HTMV from 4 to 5 months and then an inactivated vaccine from 9 to 10 months of age; the control children received inactivated vaccine/placebo from 4 to 5 months and standard titer MV from 9 to 10 months of age. We compared mortality from 9 months until end of study at 3 to 5 years of age for children who received inactivated vaccine (after MTMV or HTMV) and standard titer MV (after inactivated vaccine), respectively. The original datasets were analyzed using a Cox proportional hazards model stratified by trial. The mortality rate ratio (MRR) was 1.38 (95% confidence interval: 1.05-1.83) after an inactivated vaccine (after MTMV or HTMV) compared with a standard titer MV (after inactivated vaccine). Girls had a MRR of 1.89 (1.27-2.80), whereas there was no effect for boys, the sex-differential effect being significant (P = 0.02). Excluding measles cases did not alter these conclusions, the MRR after inactivated vaccines (after MTMV or HTMV) being 1.40 (1.06-1.86) higher overall and 1.92 (1.29-2.86) for girls. Control for variations in national immunization schedules for other vaccines did not modify these results. After 9 months of age, all children had been immunized against measles, and mortality in girls was higher when they had received inactivated vaccines (after MTMV or HTMV) rather than live standard titer MV (after an inactivated vaccine).

  3. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  4. Studies on an inactivated vaccine against rabies virus in domestic animals.

    PubMed

    Monaco, F; Franchi, P M; Lelli, R

    2006-01-01

    An inactivated vaccine against rabies virus was prepared from the attenuated ATCC PV-12 viral rabbit Pasteur strain. The virus was grown on Baby Hamster Kidney (BHK21) cells, and the supernatant was purified by filtration and inactivated with beta-propriolactone. The inactivated product was checked according to the NHI and European Pharmacopoeia methods. Part of the product was then lyophilised and the other part was adjuvanted with Al(OH)3. Both parts were used to vaccinate and boost groups of horses, cattle and sheep at different intervals. Their immunogenicity was compared with a similar commercial product. Blood samples were collected on a regular basis and the antibody titre was determined by the Fluorescence Antibody Virus Neutralisation (FAVN) test. No significant differences were found between species after both inoculations even though the immune response increased in intensity and duration after the booster dose in all the animals tested and was stronger and lasted longer with the adjuvanted aliquot.

  5. Non-thermal plasma for inactivated-vaccine preparation.

    PubMed

    Wang, Guomin; Zhu, Ruihao; Yang, Licong; Wang, Kaile; Zhang, Qian; Su, Xia; Yang, Bing; Zhang, Jue; Fang, Jing

    2016-02-17

    Vaccines are of great importance in controlling the spread of infectious diseases in poultry farming. The safety and efficacy of vaccines are also essential. To explore the feasibility of a novel technology (non-thermal plasma) in inactivated vaccine preparation, an alternating current atmospheric pressure non-thermal plasma (NTP) jet with Ar/O2/N2 as the operating gas was used to inactivate a Newcastle disease virus (NDV, LaSota) strain and H9N2 avian influenza virus (AIV, A/Chicken/Hebei/WD/98) for vaccine preparation. The results showed that complete inactivation could be achieved with 2 min of NTP treatment for both NDV and AIV. Moreover, a proper NTP treatment time is needed for inactivation of a virus without destruction of the antigenic determinants. Compared to traditional formaldehyde-inactivated vaccine, the vaccine made from NDV treated by NTP for 2 min (NTP-2 min-NDV-vaccine) could induce a higher NDV-specific antibody titer in specific pathogen-free (SPF) chickens, and the results of a chicken challenge experiment showed that NTP-2 min-NDV-vaccine could protect SPF chickens from a lethal NDV challenge. Vaccines made from AIV treated by NTP for 2 min (NTP-2 min-AIV-vaccine) also showed a similar AIV-specific antibody titer compared with traditional AIV vaccines prepared using formaldehyde inactivation. Studies of the morphological changes of the virus, chemical analysis of NDV allantoic fluid and optical emission spectrum analysis of NTP suggested that reactive oxygen species and reactive nitrogen species produced by NTP played an important role in the virus inactivation process. All of these results demonstrated that it could be feasible to use non-thermal NTP as an alternative strategy to prepare inactivated vaccines for Newcastle disease and avian influenza. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Protection against murine potomac horse fever by an inactivated Ehrlichia risticii vaccine.

    PubMed

    Rikihisa, Y

    1991-05-01

    Ehrlichia risticii propagated in a murine macrophage cell line were freed from the host cell by hypotonic lysis of the infected cells. The cell-free ehrlichiae were inactivated with beta-propiolactone and combined or not combined with polymyxin-B. The vaccines were administered to mice with Quil-A (saponin) as an adjuvant twice at 2 to 3 week intervals and the mice were challenged with live E. risticii 2 to 3 weeks after the last vaccination. With or without the addition of polymyxin-B, the vaccine preparations protected mice from developing clinical signs and gross pathologic changes such as thymic atrophy, splenomegaly, and increase in whole intestinal weight. Mice vaccinated with or without polymyxin-B developed high titer IgG antibody against E. risticii before and after the challenge with live E. risticii. Spleen lymphocyte proliferative response assay at 11 days post challenge revealed that with polymyxin-B a higher lymphocyte proliferation occurred as compared with that of the mice which received polymyxin-B-free vaccine. Spleen lymphocytes of the placebo (polymyxin-B and Quil-A) pretreated/challenged mice showed no proliferative activity. Western blot analysis revealed that vaccinated mice reacted mainly with 110, 57 and 33 kDa antigen bands before and after challenge. The placebo (polymyxin-B and Quil-A)/challenged mice showed a very weak response to ehrlichial antigens at day 10 to 11 post challenge. Comparison with inactivated Renografin-purified E. risticii or 0.25% SDS-insoluble fraction of E. risticii with the inactivated host cell-free vaccine revealed no increased protection. These results indicate that inactivated host cell-free E. risticii can protect mice from murine Potomac horse fever. The presence of polymyxin-B appeared to be not harmful but rather beneficial for lymphocyte proliferation response upon challenge with live E. risticii.

  7. Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines

    DTIC Science & Technology

    2017-09-01

    transcriptomics; innate immunity; adaptive immunity; correlates of immunity; live-attenuated; purified inactivated; biomarkers; T- cell; B-cell; epitope. 5...original copies of journal articles, reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys ...of DENV and capable of secreting IgG were detected in all arms at 6 moths post-vaccination. Of note is that little correlation with contemporaneous

  8. An inactivated cell-culture vaccine against yellow fever.

    PubMed

    Monath, Thomas P; Fowler, Elizabeth; Johnson, Casey T; Balser, John; Morin, Merribeth J; Sisti, Maggie; Trent, Dennis W

    2011-04-07

    Yellow fever is a lethal viral hemorrhagic fever occurring in Africa and South America. A highly effective live vaccine (17D) is widely used for travelers to and residents of areas in which yellow fever is endemic, but the vaccine can cause serious adverse events, including viscerotropic disease, which is associated with a high rate of death. A safer, nonreplicating vaccine is needed. In a double-blind, placebo-controlled, dose-escalation, phase 1 study of 60 healthy subjects between 18 and 49 years of age, we investigated the safety and immunogenicity of XRX-001 purified whole-virus, β-propiolactone-inactivated yellow fever vaccine produced in Vero cell cultures and adsorbed to aluminum hydroxide (alum) adjuvant. On two visits 21 days apart, subjects received intramuscular injections of vaccine that contained 0.48 μg or 4.8 μg of antigen. Levels of neutralizing antibodies were measured at baseline and on days 21, 31, and 42. The vaccine induced the development of neutralizing antibodies in 100% of subjects receiving 4.8 μg of antigen in each injection and in 88% of subjects receiving 0.48 μg of antigen in each injection. Antibody levels increased by day 10 after the second injection, at which time levels were significantly higher with the 4.8-μg formulation than with the 0.48-μg formulation (geometric mean titer, 146 vs. 39; P<0.001). Three adverse events occurred at a higher incidence in the two vaccine groups than in the placebo group: mild pain, tenderness, and (much less frequently) itching at the injection site. One case of urticaria was observed on day 3 after the second dose of 4.8 μg of vaccine. A two-dose regimen of the XRX-001 vaccine, containing inactivated yellow fever antigen with an alum adjuvant, induced neutralizing antibodies in a high percentage of subjects. XRX-001 has the potential to be a safer alternative to live attenuated 17D vaccine. (Funded by Xcellerex; ClinicalTrials.gov number, NCT00995865.).

  9. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    PubMed Central

    Sridhar, Saranya; Brokstad, Karl A.; Cox, Rebecca J.

    2015-01-01

    Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection. PMID:26343192

  10. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  11. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  12. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  13. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  14. Intranasal Inactivated Influenza Vaccines: a Reasonable Approach to Improve the Efficacy of Influenza Vaccine?

    PubMed

    Tamura, Shin-Ichi; Ainai, Akira; Suzuki, Tadaki; Kurata, Takeshi; Hasegawa, Hideki

    2016-01-01

    Influenza is a contagious, acute respiratory disease caused by the influenza virus. The mucosal lining in the host respiratory tract is not only the site of virus infection, but also the site of defense; it is at this site that the host immune response targets the virus and protects against reinfection. One of the most effective methods to prevent influenza is to induce specific antibody (Ab) responses in the respiratory tract by vaccination. Two types of influenza vaccines, intranasal live attenuated influenza virus (LAIV) vaccines and parenteral (injectable) inactivated vaccines, are currently used worldwide. These vaccines are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration. Live attenuated vaccines induce both secretory IgA (S-IgA) and serum IgG antibodies (Abs), whereas parenteral vaccines induce only serum IgG Abs. However, intranasal administration of inactivated vaccines together with an appropriate adjuvant induces both S-IgA and IgG Abs. Several preclinical studies on adjuvant-combined, nasal-inactivated vaccines revealed that nasal S-IgA Abs, a major immune component in the upper respiratory tract, reacted with homologous virus hemagglutinin (HA) and were highly cross-reactive with viral HA variants, resulting in protection and cross-protection against infection by both homologous and variant viruses, respectively. Serum-derived IgG Abs, which are present mainly in the lower respiratory tract, are less cross-reactive and cross-protective. In addition, our own clinical trials have shown that nasal-inactivated whole virus vaccines, including a built-in adjuvant (single-stranded RNA), induced serum hemagglutination inhibition (HI) Ab titers that fulfilled the EMA criteria for vaccine efficacy. The nasal-inactivated whole virus vaccines also induced high levels of nasal HI and neutralizing Ab titers, although we have not yet evaluated the nasal HI titers due to the lack of official criteria to establish efficacy based

  15. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus.

    PubMed

    Tiwari, Mugdha; Parida, Manmohan; Santhosh, S R; Khan, Mohsin; Dash, Paban Kumar; Rao, P V Lakshmana

    2009-04-21

    The recent resurgence of Chikungunya virus (CHIKV) in India and Indian Ocean Islands with unusual clinical severity is a matter of great public health concern. Despite the fact that CHIKV resurgence is associated with epidemic of unprecedented magnitude, no approved licensed vaccine is currently available. In the present study, a Vero cell adapted purified formalin inactivated prototype vaccine candidate was prepared using a current Indian strain implicated with the explosive epidemic during 2006. The bulk preparation of the vaccine candidate was undertaken in microcarrier based spinner culture using cytodex-1 in virus production serum free medium. The inactivation of the virus was accomplished through standard formalin inactivation protocol. The mice were immunized subcutaneously with alhydrogel gel formulation of inactivated virus preparation. The assessment of both humoral and cell-mediated immune response was accomplished through ELISA, plaque reduction neutralization test (PRNT), microcytotoxicity assay and cytokine production assay. The results revealed that formalin inactivated vaccine candidate induced both high titered ELISA (1:51,200) and plaque reduction neutralizing antibodies (1:6400) with peak antibody titer being observed during 6 -- 8 weeks of post-vaccination. In the absence of suitable murine challenge model, the protective efficacy was established by both in vitro and in vivo neutralization tests. Further assessment of cellular immunity through in vitro stimulation of spleenocytes from immunized mice revealed augmentation of high levels of both pro- and anti-inflammatory cytokines, indicating a mixed balance of Th1 and Th2 response. These findings suggest that the formalin inactivated Chikungunya vaccine candidate reported in this study has very good immunogenic potential to neutralize the virus infectivity by augmenting both humoral and cell-mediated immune response.

  16. [Methods of testing inactivated antirabies vaccines].

    PubMed

    Nedosekov, V V; Vishniakov, I F; Gruzdev, K N

    2001-01-01

    Methods for evaluating the potency of inactivated rabies vaccines are reviewed. Shortcomings of the traditional NIH method and advantages of modern rapid immunological in vitro methods (antibody binding test, radial immunodiffusion test, enzyme linked immunoadsorbent assay) for estimation of antigenic activity of vaccines are discussed.

  17. Influvac, a trivalent inactivated subunit influenza vaccine.

    PubMed

    Zuccotti, Gian Vincenzo; Fabiano, Valentina

    2011-01-01

    Influenza represents a major sanitary and socio-economic burden and vaccination is universally considered the most effective strategy for preventing the disease and its complications. Traditional influenza vaccines have been on the market since the late 1940s, with million of doses administered annually worldwide, and demonstrated a substantial efficacy and safety. The trivalent inactivated subunit vaccine has been available for more than 25 years and has been studied in healthy children, adults and the elderly and in people affected by underlying chronic medical conditions. We describe vaccine technology focusing on subunit vaccine production procedures and mode of action and provide updated information on efficacy and safety available data. A review of efficacy and safety data in healthy subjects and in high risk populations from major sponsor- and investigator-driven studies. The vaccine showed a good immunogenicity and a favorable safety profile in all target groups. In the panorama of actually available influenza vaccines, trivalent inactivated subunit vaccine represents a well-established tool for preventing flu and the associated complications.

  18. Experiments with a homologous, inactivated canine parvovirus vaccine in vaccination programmers for dogs.

    PubMed

    Wilson, J H; Hermann-Dekkers, W M

    1982-01-01

    The significance of canine parvovirus (CPV) infections as a permanent threat susceptible dogs, in particular pups, made the authors develop three liquid homologous inactivated adjuvant CPV vaccines that were compatible with existing canine vaccines and could be incorporated in current vaccination programmes. On vaccine (Kavak Parvo) contained only the CPV component, the second product (Kavak i-LP) also contained two inactivated leptospiral antigens, and the third vaccine (Kavak i-HLP) contained in addition an inactivated canine hepatitis virus. This paper reports on the studies conducted to test the safety and efficacy of the three products. They were used as such and as diluents for freeze dried vaccines containing live attenuated measles, distemper, and hepatitis viruses. The study was performed in a breeding kennel where all dogs were free from CPV antibodies and the nonvaccinated sentinels remained so for the course of the study. All vaccines proved to be safe in dogs of all ages, including pregnant bitches. The efficacy of the CPV component was studied both by monitoring antibody titres for more than a year and by challenge exposure of some dogs to virulent CPV. The results obtained from these studies prove that the CPV component used in the three vaccines can be incorporated as indicated in the recommended canine vaccination programmes. The observations that the inactivated CPV and hepatitis components do induce an active immunity in pups that are still protected by low levels of maternally derived antibodies against these viruses, make those vaccines very suitable in breeding kennels. Additional studies on a comparative basis are being continued in edemically CPV infected breeding kennels to quantify the significance of these observations in these special conditions.

  19. Dog response to inactivated canine parvovirus and feline panleukopenia virus vaccines.

    PubMed

    Pollock, R V; Carmichael, L E

    1982-01-01

    Inactivated canine parvovirus (CPV) and inactivated feline panleukopenia virus (FPV) vaccines were evaluated in dogs. Maximal serologic response occurred within 1-2 weeks after vaccination. Antibody titers then declined rapidly to low levels that persisted at least 20 weeks. Immunity to CPV, defined as complete resistance to infection, was correlated with serum antibody titer and did not persist longer than 6 weeks after vaccination with inactivated virus. However, protection against generalized infection was demonstrated 20 weeks after vaccination. In unvaccinated dogs, viremia and generalized infection occurred after oronasal challenge with virulent CPV. In contrast, viral replication was restricted to the intestinal tract and gut-associated lymphoid tissue of vaccinated dogs. Canine parvovirus was inactivated by formalin, beta-propiolactone (BPL), and binary ethylenimine (BEI) in serum-free media; inactivation kinetics were determined. Formalin resulted in a greater loss of viral HA than either BEI of BPL, and antigenicity was correspondingly reduced.

  20. Chemical-free inactivated whole influenza virus vaccine prepared by ultrashort pulsed laser treatment

    NASA Astrophysics Data System (ADS)

    Tsen, Shaw-Wei David; Donthi, Nisha; La, Victor; Hsieh, Wen-Han; Li, Yen-Der; Knoff, Jayne; Chen, Alexander; Wu, Tzyy-Choou; Hung, Chien-Fu; Achilefu, Samuel; Tsen, Kong-Thon

    2015-05-01

    There is an urgent need for rapid methods to develop vaccines in response to emerging viral pathogens. Whole inactivated virus (WIV) vaccines represent an ideal strategy for this purpose; however, a universal method for producing safe and immunogenic inactivated vaccines is lacking. Conventional pathogen inactivation methods such as formalin, heat, ultraviolet light, and gamma rays cause structural alterations in vaccines that lead to reduced neutralizing antibody specificity, and in some cases, disastrous T helper type 2-mediated immune pathology. We have evaluated the potential of a visible ultrashort pulsed (USP) laser method to generate safe and immunogenic WIV vaccines without adjuvants. Specifically, we demonstrate that vaccination of mice with laser-inactivated H1N1 influenza virus at about a 10-fold lower dose than that required using conventional formalin-inactivated influenza vaccines results in protection against lethal H1N1 challenge in mice. The virus, inactivated by the USP laser irradiation, has been shown to retain its surface protein structure through hemagglutination assay. Unlike conventional inactivation methods, laser treatment did not generate carbonyl groups in protein, thereby reducing the risk of adverse vaccine-elicited T helper type 2 responses. Therefore, USP laser treatment is an attractive potential strategy to generate WIV vaccines with greater potency and safety than vaccines produced by current inactivation techniques.

  1. Influenza (flu) vaccine (Inactivated or Recombinant): What you need to know

    MedlinePlus

    ... taken in its entirety from the CDC Inactivated Influenza Vaccine Information Statement (VIS) www.cdc.gov/vaccines/hcp/vis/vis-statements/flu.html CDC review information for Inactivated Influenza VIS: ...

  2. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.

    PubMed

    Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena

    2015-08-20

    Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Experiements with an inactivated hepatitis leptospirosis vaccine in vaccination programmes for dogs.

    PubMed

    Wilson, J H; Hermann-Dekkers, W M; Leemans-Dessy, S; Meijer, J W

    1977-06-25

    A fluid adjuvanted vaccine consisting of inactivated hepatitis virus (iH) and leptospirae antigens (L) was developed. The vaccine (Kavak iHL; Duphar) was tested in several vaccination programmes both alone and in combination with freeze dried measles (M) or distemper (D) vaccines. The results demonstrate that this new vaccine is also effective in pups with maternally derived antibodies, although a second vaccination at 14 weeks of age is recommended to boost the first vaccination. For the booster vaccination either the iHL-vaccine or the liver attenuated hepatitis vaccine (H) can be used.

  4. Phase I Randomized Study of a Tetravalent Dengue Purified Inactivated Vaccine in Healthy Adults from Puerto Rico

    PubMed Central

    Diaz, Clemente; Lin, Leyi; Martinez, Luis J.; Eckels, Kenneth H.; Campos, Maribel; Jarman, Richard G.; De La Barrera, Rafael; Lepine, Edith; Toussaint, Jean-François; Febo, Irma; Innis, Bruce L.; Thomas, Stephen J.; Schmidt, Alexander C.

    2018-01-01

    Abstract. The safety and immunogenicity of four adjuvanted formulations of an investigational tetravalent dengue purified inactivated vaccine (DPIV) were evaluated in a predominantly dengue-primed population in Puerto Rico. In this placebo-controlled, randomized, observer-blind, phase I trial, 100 healthy adults were randomized 1:1:1:1:1 to receive DPIV at Day (D)0 and D28 (1 μg per dengue virus [DENV] type 1–4 adjuvanted with either alum, AS01E or AS03B, or 4 μg per DENV type adjuvanted with alum) or saline placebo. Functional antibody responses were assessed using a microneutralization assay at D56, Month (M)7, and M13. All DPIV formulations were well tolerated and no safety signals were identified through M13. The M13 according-to-protocol (ATP) immunogenicity cohort included 83 participants. The ATP analysis of immunogenicity was performed only on the 78 subjects seropositive for ≥ 1 DENV type at baseline: 69 tetravalent, three trivalent, two bivalent, and four monovalent. In all DPIV groups, geometric mean antibody titers (GMTs) increased from D0 to D56 and waned modestly through M13, while remaining well above prevaccination levels. The 4 μg + alum and the AS01E- and AS03B-adjuvanted formulations were highly immunogenic, with M13-neutralizing antibody GMTs against all four DENV types above 1,000. M13/D0 GMT ratios were highest in the 1 μg + AS03B group (ranging 3.2–3.7 depending on the DENV type). These results encourage continued clinical development of DPIV (ClinicalTrials.gov: NCT01702857). PMID:29512481

  5. Phase I Randomized Study of a Tetravalent Dengue Purified Inactivated Vaccine in Healthy Adults from Puerto Rico.

    PubMed

    Diaz, Clemente; Lin, Leyi; Martinez, Luis J; Eckels, Kenneth H; Campos, Maribel; Jarman, Richard G; De La Barrera, Rafael; Lepine, Edith; Toussaint, Jean-François; Febo, Irma; Innis, Bruce L; Thomas, Stephen J; Schmidt, Alexander C

    2018-05-01

    The safety and immunogenicity of four adjuvanted formulations of an investigational tetravalent dengue purified inactivated vaccine (DPIV) were evaluated in a predominantly dengue-primed population in Puerto Rico. In this placebo-controlled, randomized, observer-blind, phase I trial, 100 healthy adults were randomized 1:1:1:1:1 to receive DPIV at Day (D)0 and D28 (1 μg per dengue virus [DENV] type 1-4 adjuvanted with either alum, AS01 E or AS03 B , or 4 μg per DENV type adjuvanted with alum) or saline placebo. Functional antibody responses were assessed using a microneutralization assay at D56, Month (M)7, and M13. All DPIV formulations were well tolerated and no safety signals were identified through M13. The M13 according-to-protocol (ATP) immunogenicity cohort included 83 participants. The ATP analysis of immunogenicity was performed only on the 78 subjects seropositive for ≥ 1 DENV type at baseline: 69 tetravalent, three trivalent, two bivalent, and four monovalent. In all DPIV groups, geometric mean antibody titers (GMTs) increased from D0 to D56 and waned modestly through M13, while remaining well above prevaccination levels. The 4 μg + alum and the AS01 E - and AS03 B -adjuvanted formulations were highly immunogenic, with M13-neutralizing antibody GMTs against all four DENV types above 1,000. M13/D0 GMT ratios were highest in the 1 μg + AS03 B group (ranging 3.2-3.7 depending on the DENV type). These results encourage continued clinical development of DPIV (ClinicalTrials.gov: NCT01702857).

  6. Comparison of serum hemagglutinin and neuraminidase inhibition antibodies after 2010-2011 trivalent inactivated influenza vaccination in healthcare personnel.

    PubMed

    Laguio-Vila, Maryrose R; Thompson, Mark G; Reynolds, Sue; Spencer, Sarah M; Gaglani, Manjusha; Naleway, Allison; Ball, Sarah; Bozeman, Sam; Baker, Steven; Martínez-Sobrido, Luis; Levine, Min; Katz, Jackie; Fry, Alicia M; Treanor, John J

    2015-01-01

    Background.  Most inactivated influenza vaccines contain purified and standardized hemagglutinin (HA) and residual neuraminidase (NA) antigens. Vaccine-associated HA antibody responses (hemagglutination inhibition [HAI]) are well described, but less is known about the immune response to the NA. Methods.  Serum of 1349 healthcare personnel (HCP) electing or declining the 2010-2011 trivalent-inactivated influenza vaccine ([IIV3], containing A/California/7/2009 p(H1N1), A/Perth/16/2009 [H3N2], B/Brisbane/60/2008 strains) were tested for NA-inhibiting (NAI) antibody by a modified lectin-based assay using pseudotyped N1 and N2 influenza A viruses with an irrelevant (H5) HA. Neuraminidase-inhibiting and HAI antibody titers were evaluated approximately 30 days after vaccination and end-of-season for those with polymerase chain reaction (PCR)-confirmed influenza infection. Results.  In 916 HCP (68%) receiving IIV3, a 2-fold increase in N1 and N2 NAI antibody occurred in 63.7% and 47.3%, respectively. Smaller responses occurred in HCP age >50 years and those without prior 2009-2010 IIV3 nor monovalent A(H1N1)pdm09 influenza vaccinations. Forty-four PCR-confirmed influenza infections were observed, primarily affecting those with lower pre-exposure HAI and NAI antibodies. Higher pre-NAI titers correlated with shorter duration of illness for A(H1N1)pdm09 virus infections. Conclusions.  Trivalent-inactivated influenza vaccine is modestly immunogenic for N1 and N2 antigens in HCP. Vaccines eliciting robust NA immune responses may improve efficacy and reduce influenza-associated morbidity.

  7. Safety and effectiveness of the new inactivated hepatitis A virus vaccine.

    PubMed Central

    Furesz, J; Scheifele, D W; Palkonyay, L

    1995-01-01

    PURPOSE: To examine the evidence concerning the safety and effectiveness of the inactivated hepatitis A virus vaccine recently licensed for use in Canada. DATA SOURCES: The main source of information were papers presented at the International Symposium on Active Immunization against Hepatitis A, held in Vienna, Austria, Jan. 27-29, 1992. The bibliographies of these papers were searched for additional references. Recent articles describing the new vaccine and the epidemiologic aspects of infection with hepatitis A virus (HAV) were also reviewed. STUDY SELECTION: Peer-reviewed reports of trials approved by a government regulatory agency on the safety, immunogenic properties and efficacy of the vaccine. DATA EXTRACTION: The authors assembled key reports on adverse reactions, protection from disease and serologic assessment of immune response in vaccine recipients; data from these reports were tabulated and analysed. RESULTS OF DATA SYNTHESIS: The new vaccine contains the HM175 strain of HAV, which is adapted to grow in tissue culture. The virus is purified, inactivated with the use of formaldehyde and adsorbed onto aluminum hydroxide. The recommended dose for adults is 720 enzyme-linked immunosorbent assay (ELISA) units in a 1.0-mL dose and for children 360 ELISA units in a 0.5-mL dose, injected intramuscularly. The usual schedule is three serial doses, the second given 1 month and the third 6 to 12 months after the initial dose. Reported side effects are infrequent and minor. In healthy persons who have received two doses, the seroconversion rate is almost 100%. Protective efficacy after two doses is estimated to be 94%. However, the persistence of protective antibodies has been studied only over the short term (3 years). CONCLUSIONS: The new HAV vaccine is safe, effective and best suited to pre-exposure prophylaxis in people with an increased risk of infection for an extended period, such as travellers to areas where the disease is endemic. Further studies are

  8. Efficacy assessment of an inactivated Tembusu virus vaccine candidate in ducks.

    PubMed

    Zhang, Lijiao; Li, Zhanhong; Zhang, Qingshui; Sun, Mengxu; Li, Shuang; Su, Wenliang; Hu, Xueying; He, Weiyong; Su, Jingliang

    2017-02-01

    Duck Tembusu virus (TMUV) is a recently identified pathogen that causes severe egg drop and neurological disease in domestic duck and goose flocks. The infection has spread across the China mainland since its outbreak in 2010. Effective vaccines are needed to fight the disease. In this work, we describe the development and laboratory assessment of a cell culture-derived, inactivated duck TMUV vaccine. The TMUV-JXSP strain was successfully propagated on a baby hamster kidney cell line (BHK-21), inactivated with beta-propiolactone (BPL) and emulsified with mineral oil. The efficacy of different vaccination schedules was assessed in laying ducks and table ducks using virus challenge experiments. Two doses of vaccine provided efficient protection against the virus challenge to avoid the egg production drop in laying ducks. An ELISA demonstrated that 97% (39/40) of ducks seroconverted on day 21 after one dose of the inactivated vaccine and that significant increases in antibody titers against the virus were induced after the second immunization. For table ducks, a single dose of vaccine immunization resulted in a protection index of 87% and significant reduction of viral loads in tissues. Sterilizing immunity can be attained after second immunization. Our results demonstrate that BHK-21 cell culture is suitable for duck TMUV propagation and that BPL-inactivated TMUV vaccine can provide a high level of protection from virus challenge in laying ducks and table ducks. These data provide a scientific basis for the development of an inactivated vaccine for the prevention of duck TMUV infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Inactivated coxsackievirus A10 experimental vaccines protect mice against lethal viral challenge.

    PubMed

    Shen, Chaoyun; Liu, Qingwei; Zhou, Yu; Ku, Zhiqiang; Wang, Lili; Lan, Ke; Ye, Xiaohua; Huang, Zhong

    2016-09-22

    Coxsackievirus A10 (CVA10) has become one of the major causative agents of hand, foot and mouth disease (HFMD). It is now recognized that CVA10 should be targeted for vaccine development. We report here that β-propiolactone inactivated whole-virus based CVA10 vaccines can elicit protective immunity in mice. We prepared two inactivated CVA10 experimental vaccines derived from the prototype strain CVA10/Kowalik and from a clinical isolate CVA10/S0148b, respectively. Immunization with the experimental vaccines elicited CVA10-specific serum antibodies in mice. The antisera from vaccinated mice could potently neutralize in vitro infection with either homologous or heterologous CVA10 strains. Importantly, passive transfer of the anti-CVA10 sera protected recipient mice against CVA10/Kowalik or CVA10/S0148b infections. Moreover, active immunization with the inactivated vaccines also conferred protection against homologous and heterologous infections in mice. Collectively, our results demonstrate the proof-of-concept for inactivated whole-virus based CVA10 vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparison of Serum Hemagglutinin and Neuraminidase Inhibition Antibodies After 2010–2011 Trivalent Inactivated Influenza Vaccination in Healthcare Personnel

    PubMed Central

    Laguio-Vila, Maryrose R.; Thompson, Mark G.; Reynolds, Sue; Spencer, Sarah M.; Gaglani, Manjusha; Naleway, Allison; Ball, Sarah; Bozeman, Sam; Baker, Steven; Martínez-Sobrido, Luis; Levine, Min; Katz, Jackie; Fry, Alicia M.; Treanor, John J.

    2015-01-01

    Background. Most inactivated influenza vaccines contain purified and standardized hemagglutinin (HA) and residual neuraminidase (NA) antigens. Vaccine-associated HA antibody responses (hemagglutination inhibition [HAI]) are well described, but less is known about the immune response to the NA. Methods. Serum of 1349 healthcare personnel (HCP) electing or declining the 2010–2011 trivalent-inactivated influenza vaccine ([IIV3], containing A/California/7/2009 p(H1N1), A/Perth/16/2009 [H3N2], B/Brisbane/60/2008 strains) were tested for NA-inhibiting (NAI) antibody by a modified lectin-based assay using pseudotyped N1 and N2 influenza A viruses with an irrelevant (H5) HA. Neuraminidase-inhibiting and HAI antibody titers were evaluated approximately 30 days after vaccination and end-of-season for those with polymerase chain reaction (PCR)-confirmed influenza infection. Results. In 916 HCP (68%) receiving IIV3, a 2-fold increase in N1 and N2 NAI antibody occurred in 63.7% and 47.3%, respectively. Smaller responses occurred in HCP age >50 years and those without prior 2009–2010 IIV3 nor monovalent A(H1N1)pdm09 influenza vaccinations. Forty-four PCR-confirmed influenza infections were observed, primarily affecting those with lower pre-exposure HAI and NAI antibodies. Higher pre-NAI titers correlated with shorter duration of illness for A(H1N1)pdm09 virus infections. Conclusions. Trivalent-inactivated influenza vaccine is modestly immunogenic for N1 and N2 antigens in HCP. Vaccines eliciting robust NA immune responses may improve efficacy and reduce influenza-associated morbidity. PMID:25884004

  11. [Immune response to one booster dose of inactivated hepatitis A vaccine in college students].

    PubMed

    Liao, Z; Feng, X W; Liu, X E; Zhou, Y S; Wen, H R; Peng, S H; Zhang, Y X; Xu, B; Zhuang, H; Chen, H Y

    2017-05-10

    Objective: To evaluate the safety and immunogenicity of one booster dose of inactivated hepatitis A vaccine in young adults. Methods: The subjects were selected from participants in the clinical trial of immunogenicity of inactivated and attenuated live hepatitis A vaccine in young adults. Eligible subjects were those who had received one dose of inactivated or attenuated hepatitis A vaccine, could be contacted and were sero-negative before primary vaccination. All qualified subjects were immunized with one booster dose of inactivated hepatitis A vaccine. The blood samples were collected before booster dose vaccination and 28 days after the immunization. Anti-HAV antibody titer ≥20 mIU/ml was considered to be sero-protected against hepatitis A virus. Results: The GMCs in the inactivated HAV vaccine group and attenuated live vaccine group before booster dose vaccination were 70.80 mIU/ml and 50.12 mIU/ml, respectively, and the sero-protection rates were 94.7 % and 65.0 % , respectively. After the vaccination of the booster dose, the sero-protection rates in both groups were 100.0 % , and the GMCs were 2 816.09 mIU/ml and 2 654.55 mIU/ml, respectively. Conclusion: The GMCs and sero-protection rates of anti-HAV antibody in young adults declined after three years of the primary vaccination. However, the higher GMC and sero-protection rate were observed in the inactivated vaccine group than in the attenuated live vaccine group. Significant increases of GMC levels were observed in both groups after one booster dose vaccination.

  12. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... guinea pigs, the test shall be satisfied if the product provides satisfactory results using either the subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea pig. The requirements for general safety for inactivated influenza vaccine shall not be considered to...

  13. Antibody response in cattle after vaccination with inactivated and attenuated rabies vaccines.

    PubMed

    Rodrigues da Silva, A C; Caporale, G M; Gonçalves, C A; Targueta, M C; Comin, F; Zanetti, C R; Kotait, I

    2000-01-01

    Despite the absence of current official reports showing the number of cattle infected by rabies, it is estimated that nearly 30,000 bovines are lost each year in Brazil. In order to minimize the important economic losses, control of the disease is achieved by eliminating bat colonies and by herd vaccination. In this study, we compare the antibody response in cattle elicited by vaccination with an attenuated ERA vaccine (AEvac) and an inactivated-adjuvanted PV (IPVvac) vaccine. The antibody titers were appraised by cell-culture neutralization test and ELISA, and the percentage of seropositivity was ascertained for a period of 180 days. IPVvac elicited complete seropositivity rates from day 30 to day 150, and even on day 180, 87% of the sera showed virus-neutralizing antibody titers (VNA) higher than 0.5IU/ml. There were no significant differences between the VNA titers and seropositivity rates obtained with IPVvac in the two methods tested. AEvac, however, elicited significantly lower titers than those observed in the group receiving inactivated vaccine. In addition, the profiles of antirabies IgG antibodies, evaluated by ELISA, and VNA, appraised by cell-culture neutralization test, were slightly different, when both vaccines were compared.

  14. Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials.

    PubMed

    Modjarrad, Kayvon; Lin, Leyi; George, Sarah L; Stephenson, Kathryn E; Eckels, Kenneth H; De La Barrera, Rafael A; Jarman, Richard G; Sondergaard, Erica; Tennant, Janice; Ansel, Jessica L; Mills, Kristin; Koren, Michael; Robb, Merlin L; Barrett, Jill; Thompson, Jason; Kosel, Alison E; Dawson, Peter; Hale, Andrew; Tan, C Sabrina; Walsh, Stephen R; Meyer, Keith E; Brien, James; Crowell, Trevor A; Blazevic, Azra; Mosby, Karla; Larocca, Rafael A; Abbink, Peter; Boyd, Michael; Bricault, Christine A; Seaman, Michael S; Basil, Anne; Walsh, Melissa; Tonwe, Veronica; Hoft, Daniel F; Thomas, Stephen J; Barouch, Dan H; Michael, Nelson L

    2018-02-10

    A safe, effective, and rapidly scalable vaccine against Zika virus infection is needed. We developed a purified formalin-inactivated Zika virus vaccine (ZPIV) candidate that showed protection in mice and non-human primates against viraemia after Zika virus challenge. Here we present the preliminary results in human beings. We did three phase 1, placebo-controlled, double-blind trials of ZPIV with aluminium hydroxide adjuvant. In all three studies, healthy adults were randomly assigned by a computer-generated list to receive 5 μg ZPIV or saline placebo, in a ratio of 4:1 at Walter Reed Army Institute of Research, Silver Spring, MD, USA, or of 5:1 at Saint Louis University, Saint Louis, MO, USA, and Beth Israel Deaconess Medical Center, Boston, MA, USA. Vaccinations were given intramuscularly on days 1 and 29. The primary objective was safety and immunogenicity of the ZPIV candidate. We recorded adverse events and Zika virus envelope microneutralisation titres up to day 57. These trials are registered at ClinicalTrials.gov, numbers NCT02963909, NCT02952833, and NCT02937233. We enrolled 68 participants between Nov 7, 2016, and Jan 25, 2017. One was excluded and 67 participants received two injections of Zika vaccine (n=55) or placebo (n=12). The vaccine caused only mild to moderate adverse events. The most frequent local effects were pain (n=40 [60%]) or tenderness (n=32 [47%]) at the injection site, and the most frequent systemic reactogenic events were fatigue (29 [43%]), headache (26 [39%]), and malaise (15 [22%]). By day 57, 52 (92%) of vaccine recipients had seroconverted (microneutralisation titre ≥1:10), with peak geometric mean titres seen at day 43 and exceeding protective thresholds seen in animal studies. The ZPIV candidate was well tolerated and elicited robust neutralising antibody titres in healthy adults. Departments of the Army and Defense and National Institute of Allergy and Infectious Diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques

    PubMed Central

    Lee, Sujin; Nguyen, Minh Trang; Currier, Michael G.; Jenkins, Joe B.; Strobert, Elizabeth A.; Kajon, Adriana E.; Madan-Lala, Ranjna; Bochkov, Yury A.; Gern, James E.; Roy, Krishnendu; Lu, Xiaoyan; Erdman, Dean D.; Spearman, Paul; Moore, Martin L.

    2016-01-01

    As the predominant aetiological agent of the common cold, human rhinovirus (HRV) is the leading cause of human infectious disease. Early studies showed that a monovalent formalin-inactivated HRV vaccine can be protective, and virus-neutralizing antibodies (nAb) correlated with protection. However, co-circulation of many HRV types discouraged further vaccine efforts. Here, we test the hypothesis that increasing virus input titres in polyvalent inactivated HRV vaccine may result in broad nAb responses. We show that serum nAb against many rhinovirus types can be induced by polyvalent, inactivated HRVs plus alhydrogel (alum) adjuvant. Using formulations up to 25-valent in mice and 50-valent in rhesus macaques, HRV vaccine immunogenicity was related to sufficient quantity of input antigens, and valency was not a major factor for potency or breadth of the response. Thus, we have generated a vaccine capable of inducing nAb responses to numerous and diverse HRV types. PMID:27653379

  16. [Experimental study of an antirabies vaccine from sheep brain tissue inactivated by UV rays (author's transl)].

    PubMed

    Pospeeva, N A; Morogova, V M; Gil'dina, S S; Nikolaeva, N V; Losev, M N

    1975-01-01

    The optimal regimen of sheep brain rabies vaccine inactivation with UV rays has been developed. The immunogenic activity of 22 experimental lots of UV-inactivated rabies vaccine was found to be considerably higher than that of commercial Fermi vaccine. The antigenic activity of the inactivated vaccine in animals was also high.

  17. EDQM biological reference preparation for rabies vaccine (inactivated) for veterinary use.

    PubMed

    Daas, A; Bruckner, L; Milne, C

    2015-01-01

    Rabies is a deadly zoonotic disease. Control of rabies in animals by vaccination is an important strategy to protect humans from infection and control the spread of the disease. Requirements for the quality control of rabies vaccines (inactivated) for veterinary use include an in vivo quantitative potency determination as outlined in the Ph. Eur. monograph 0451. Performance of this assay requires a reference preparation calibrated in International Units (IU). A European Pharmacopeia (Ph. Eur.) Biological Reference Preparation (BRP) for rabies vaccines (inactivated) for veterinary use, calibrated in IU, has been established for this purpose. Due to the dwindling stocks of the current batch (batch 4) of Ph. Eur. BRP for rabies vaccines (inactivated) for veterinary use, a collaborative study was run as part of the EDQM Biological Standardisation Programme to establish BRP batch 5. Ten laboratories, including Official Medicines Control Laboratories and manufacturers, participated. The candidate BRP5 was assayed against the 6(th) International Standard for rabies vaccine using the in vivo vaccination-challenge assay (monograph 0451) to assign a potency value. The candidate was also compared to BRP batch 4 to establish continuity. Taking into account the results from the comparisons a potency of 10 IU/vial was assigned and in March 2015 the Ph. Eur. Commission adopted the material as Ph. Eur. BRP for rabies vaccines (inactivated) for veterinary use batch 5. In addition to the in vivo assay 3 laboratories tested the candidate material using their in-house in vitro assays for information.

  18. Does a monovalent inactivated human rotavirus vaccine induce heterotypic immunity?

    PubMed Central

    Jiang, Baoming; Wang, Yuhuan; Glass, Roger I.

    2013-01-01

    There is substantial evidence for broad cross-reactive immunity and heterotypic protection among human rotavirus strains in children with natural infection or with monovalent Rotarix vaccination. In this commentary, we addressed this same topic by testing sera of guinea pigs and gnotobiotic piglets that were intramuscularly immunized with an inactivated human rotavirus vaccine and also demonstrated a broad cross-protective immunity among human rotavirus strains. Our findings from a single human strain in animal studies bode well for a low cost and efficacious inactivated vaccine to protect children against rotavirus disease throughout the world. PMID:23744507

  19. Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity.

    PubMed

    Monath, Thomas P; Lee, Cynthia K; Julander, Justin G; Brown, Alicja; Beasley, David W; Watts, Douglas M; Hayman, Edward; Guertin, Patrick; Makowiecki, Joseph; Crowell, Joseph; Levesque, Philip; Bowick, Gavin C; Morin, Merribeth; Fowler, Elizabeth; Trent, Dennis W

    2010-05-14

    In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age <9 months and >60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (P<0.001, ANOVA)]. Hamsters given a single dose or two doses of inactivated vaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Establishment of a biological reference preparation for hepatitis A vaccine (inactivated, non-adsorbed).

    PubMed

    Stalder, J; Costanzo, A; Daas, A; Rautmann, G; Buchheit, K-H

    2010-04-01

    A reference standard calibrated in International Units (IU) is needed for the in vitro potency assay of hepatitis A vaccines prepared by formalin-inactivation of purified hepatitis A virus grown in cell cultures. Thus, a project was launched by the European Directorate for the Quality of Medicines & HealthCare (EDQM) to establish one or more non-adsorbed inactivated hepatitis A vaccine reference preparation(s) as working standard(s), calibrated against the 1st International Standard (IS), for the in vitro potency assay (ELISA) of all vaccines present on the European market. Four non-adsorbed liquid preparations of formalin-inactivated hepatitis A antigen with a known antigen content were obtained from 3 manufacturers as candidate Biological Reference Preparations (BRPs). Thirteen laboratories participated in the collaborative study. They were asked to use an in vitro ELISA method adapted from a commercially available kit for the detection of antibodies to hepatitis A virus. In-house validated assays were to be run in parallel, where available. Some participants also included commercially available hepatitis A vaccines in the assays, after appropriate desorption. During the collaborative study, several participants using the standard method were faced with problems with some of the most recent lots of the test kits. Due to these problems, the standard method did not perform satisfactorily and a high number of assays were invalid, whereas the in-house methods appeared to perform better. Despite this, the overall mean results of the valid assays using both methods were in agreement. Nonetheless, it was decided to base the assignment of the potency values on the in-house methods only. The results showed that all candidate BRPs were suitable for the intended purpose. However, based on availability of the material and on the results of end-product testing, 2 candidate reference preparations, Samples C and D, were selected. Both were from the same batch but filled on

  1. Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.

    PubMed

    Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A

    2012-04-19

    The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Subcutaneous immunization with inactivated bacterial components and purified protein of Escherichia coli, Fusobacterium necrophorum and Trueperella pyogenes prevents puerperal metritis in Holstein dairy cows.

    PubMed

    Machado, Vinícius Silva; Bicalho, Marcela Luccas de Souza; Meira Junior, Enoch Brandão de Souza; Rossi, Rodolfo; Ribeiro, Bruno Leonardo; Lima, Svetlana; Santos, Thiago; Kussler, Arieli; Foditsch, Carla; Ganda, Erika Korzune; Oikonomou, Georgios; Cheong, Soon Hon; Gilbert, Robert Owen; Bicalho, Rodrigo Carvalho

    2014-01-01

    In this study we evaluate the efficacy of five vaccine formulations containing different combinations of proteins (FimH; leukotoxin, LKT; and pyolysin, PLO) and/or inactivated whole cells (Escherichia coli, Fusobacterium necrophorum, and Trueperella pyogenes) in preventing postpartum uterine diseases. Inactivated whole cells were produced using two genetically distinct strains of each bacterial species (E. coli, F. necrophorum, and T. pyogenes). FimH and PLO subunits were produced using recombinant protein expression, and LKT was recovered from culturing a wild F. necrophorum strain. Three subcutaneous vaccines were formulated: Vaccine 1 was composed of inactivated bacterial whole cells and proteins; Vaccine 2 was composed of proteins only; and Vaccine 3 was composed of inactivated bacterial whole cells only. Two intravaginal vaccines were formulated: Vaccine 4 was composed of inactivated bacterial whole cells and proteins; and Vaccine 5 was composed of PLO and LKT. To evaluate vaccine efficacy, a randomized clinical trial was conducted at a commercial dairy farm; 371 spring heifers were allocated randomly into one of six different treatments groups: control, Vaccine 1, Vaccine 2, Vaccine 3, Vaccine 4 and Vaccine 5. Late pregnant heifers assigned to one of the vaccine groups were each vaccinated twice: at 230 and 260 days of pregnancy. When vaccines were evaluated grouped as subcutaneous and intravaginal, the subcutaneous ones were found to significantly reduce the incidence of puerperal metritis. Additionally, subcutaneous vaccination significantly reduced rectal temperature at 6±1 days in milk. Reproduction was improved for cows that received subcutaneous vaccines. In general, vaccination induced a significant increase in serum IgG titers against all antigens, with subcutaneous vaccination again being more effective. In conclusion, subcutaneous vaccination with inactivated bacterial components and/or protein subunits of E. coli, F. necrophorum and T. pyogenes

  3. Safety and immunogenicity of a quadrivalent inactivated influenza vaccine compared to licensed trivalent inactivated influenza vaccines in adults.

    PubMed

    Greenberg, David P; Robertson, Corwin A; Noss, Michael J; Blatter, Mark M; Biedenbender, Rex; Decker, Michael D

    2013-01-21

    To evaluate the safety and immunogenicity of a prototype quadrivalent inactivated influenza vaccine (QIV) containing two influenza B strains, one of each lineage, compared with licensed trivalent inactivated influenza vaccines (TIVs) containing either a Victoria B-lineage strain (2009-2010 TIV) or a Yamagata B-lineage strain (2008-2009 TIV). Healthy adults ≥18 years of age were eligible to participate in this phase II, open-label, randomized, controlled, multicenter study conducted in the US. Participants received a single dose of 2009-2010 TIV, 2008-2009 TIV, or QIV. Sera were collected before and 21 days after vaccine administration to test for hemagglutination inhibition (HAI) antibodies to each of the four influenza strains. Immunogenicity endpoints included geometric mean HAI antibody titers (GMTs) and rates of seroprotection (titer ≥1:40) and seroconversion (4-fold rise pre- to post-vaccination). Safety endpoints included frequency of solicited injection-site and systemic reactions occurring within 3 days of vaccination, and unsolicited non-serious adverse events (AEs) and serious AEs (SAEs) within 21 days of vaccination. One hundred and ninety participants were enrolled to each vaccine group. QIV induced GMTs to each A and B strain that were noninferior to those induced by the 2009-2010 and 2008-2009 TIVs (i.e., lower limit of the two-sided 95% confidence interval of the ratio of GMT(QIV)/GMT(TIV)>0.66 for each strain). Rates of seroprotection and seroconversion were similar in all groups. Incidence and severity of solicited injection-site and systemic reactions, AEs, and SAEs were similar among groups. QIV, containing two B strains (one from each B lineage), was as safe and immunogenic as licensed TIV. QIV has the potential to be a useful alternative to TIV and offer protection against both B lineages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Observations on the use of an inactivated canine parvovirus vaccine.

    PubMed

    Smith, J R; Johnson, R H

    1986-04-05

    Data are presented on studies of field and experimental use of a formalin-inactivated canine parvovirus vaccine. There was an absolute correlation between a single successful vaccination and subsequent protection against clinical disease. Unsuccessful vaccinations were consistently associated with the presence of maternal antibody at the time of vaccination. The vaccine induced an antibody response within two days and anamnestic responses within 24 hours. It is suggested that a single successful vaccination probably protects against clinical parvovirus disease for life.

  5. [Evaluation on the effect of immunization and safety of live attenuated and inactivated hepatitis A vaccine in China].

    PubMed

    Li, Hui; Zhang, Xiao-shu; An, Jing

    2013-01-01

    To evaluate the safety of both domestic live attenuated and inactivated hepatitis A vaccines, and to provide reference for emergent vaccination after hepatitis A outbreaks. 493 children aged 6 - 9 with negative antibody to HAV (produced by Abbott) were randomly divided into four groups as vaccinated with domestic live attenuated hepatitis A vaccine (Group A), domestic inactivated hepatitis A vaccine (Group B), imported inactivated hepatitis A vaccine (Group C) and hepatitis B vaccine (Group D) respectively. Adverse events following the immunization were observed 30 minutes, 24, 48 and 72 hours after the vaccination, under double-blind method. The main AEFIs were: fever, local pain and scleroma but no other severe AEFIs were observed. The rates of AEFIs were 13.95% in Group A, 15.25% in group B, 16.80% in group C and 25.62% in group D, with no statistical differences between these groups (χ(2) = 6.953, P > 0.05). 2 weeks after the vaccination, the positive conversion rates of domestic live attenuated hepatitis A vaccine and domestic inactivated hepatitis A vaccine were 85.0% and 94.59% respectively. The rate of domestic inactivated hepatitis A vaccine reached 100% at 4 weeks after the vaccination. The antibody levels of HAV-IgG of Group A and B in 2, 4 and 12 weeks of vaccination and of Group C were higher than that of Group D. After 12 weeks of vaccination, the antibody level of group B became higher than it was Group C. There were no differences on safety among domestic live attenuated hepatitis A vaccine, domestic inactivated hepatitis A vaccine or imported inactivated hepatitis A vaccine under routine or emergency vaccination. All the vaccines showed satisfactory effects.

  6. Enterovirus 71: a whole virion inactivated enterovirus 71 vaccine.

    PubMed

    Zhou, Yang; Li, Jing-Xin; Jin, Peng-Fei; Wang, Yu-Xiao; Zhu, Feng-Cai

    2016-07-01

    Enterovirus A71 (EV71) is the predominant causative agent of hand, foot, and mouth disease (HFMD), which is often associated with severe cases and even deaths. EV71-associated epidemics have emerged as a serious threat to public health, particularly in the Asia-Pacific region. We searched PubMed using the terms 'enterovirus 71', 'hand, foot, and mouth disease', and 'vaccine', with no date or language restrictions for all publications before April 27, 2016. Among various vaccine candidates, the alum-adjuvant inactivated EV71 vaccines are most promising. Three alum-adjuvant inactivated EV71 vaccines developed by mainland China showed high efficacy, good immunogenicity persistence and acceptable safety profiles in clinical trials. Recently, two of these EV71 vaccines have been approved for marketing in China and the other one is undergoing the review process of licensure. In this manuscript, we summarized previous study results as well as discussed the regulatory affairs and post-market surveillances issues. Expert commentary: The marketing of EV71 vaccines is a milestone in the controlling of HFMD. International clinical trials are needed to further assess the efficacy and cross-immunogenicity. Establishing a sensitive pathogen monitoring system would be essential to monitor the variation of genotypes and control HFMD epidemics.

  7. Safety and immunogenicity of two inactivated poliovirus vaccines in combination with an acellular pertussis vaccine and diphtheria and tetanus toxoids in seventeen- to nineteen-month-old infants.

    PubMed

    Halperin, S A; Davies, H D; Barreto, L; Guasparini, R; Meekison, W; Humphreys, G; Eastwood, B J

    1997-04-01

    To compare the safety and immunity of an acellular pertussis vaccine containing pertussis toxoid, filamentous hemagglutinin, 69 kd protein, fimbriae 2 and 3 combined with diphtheria and tetanus toxoids given as single or separate injection with inactivated poliovirus vaccine (MRC-5-or Vero cell-derived) or live attenuated polio vaccine. A total of 425 healthy children between 17 and 19 months of age who were receiving the fourth dose of their routine immunization series were randomly allocated to receive either the acellular pertussis vaccine and oral poliovirus vaccine or one of two inactivated poliovirus vaccines as a combined injection or separate injections. Although minor adverse events were commonly reported, differences between the groups were few. Fever and decreased feeding were less common in recipients of live attenuated poliovirus vaccine than the combination vaccine containing MRC-5 cell-derived inactivated poliovirus vaccine. A significant antibody response was demonstrated in all groups against all the antigens contained in the vaccines. Antibodies against poliovirus were higher in the groups immunized with the inactivated poliovirus vaccine than the live attenuated vaccine. Anti-69 kd protein antibodies were higher in the group given the MRC-5 cell-derived inactivated poliovirus vaccine as a combined injection than in the group given the separate injection or the group immunized with the live attenuated poliovirus vaccine. The five-component acellular pertussis vaccine combined with diphtherid and tetanus toxoids is safe and immunogenic when combined with either MRC-5- or Vero cell-derived inactivated poliovirus vaccine. This will facilitate the implementation of acellular pertussis vaccine and the movement to inactivated poliovirus vaccine programs.

  8. In elderly persons live attenuated influenza A virus vaccines do not offer an advantage over inactivated virus vaccine in inducing serum or secretory antibodies or local immunologic memory.

    PubMed Central

    Powers, D C; Fries, L F; Murphy, B R; Thumar, B; Clements, M L

    1991-01-01

    In a double-blind, randomized trial, 102 healthy elderly subjects were inoculated with one of four preparations: (i) intranasal bivalent live attenuated influenza vaccine containing cold-adapted A/Kawasaki/86 (H1N1) and cold-adapted A/Bethesda/85 (H3N2) viruses; (ii) parenteral trivalent inactivated subvirion vaccine containing A/Taiwan/86 (H1N1), A/Leningrad/86 (H3N2), and B/Ann Arbor/86 antigens; (iii) both vaccines; or (iv) placebo. To determine whether local or systemic immunization augmented mucosal immunologic memory, all volunteers were challenged intranasally 12 weeks later with the inactivated virus vaccine. We used a hemagglutination inhibition assay to measure antibodies in sera and a kinetic enzyme-linked immunosorbent assay to measure immunoglobulin G (IgG) and IgA antibodies in sera and nasal washes, respectively. In comparison with the live virus vaccine, the inactivated virus vaccine elicited higher and more frequent rises of serum antibodies, while nasal wash antibody responses were similar. The vaccine combination induced serum and local antibodies slightly more often than the inactivated vaccine alone did. Coadministration of live influenza A virus vaccine did not alter the serum antibody response to the influenza B virus component of the inactivated vaccine. The anamnestic nasal antibody response elicited by intranasal inactivated virus challenge did not differ in the live, inactivated, or combined vaccine groups from that observed in the placebo group not previously immunized. These results suggest that in elderly persons cold-adapted influenza A virus vaccines offer little advantage over inactivated virus vaccines in terms of inducing serum or secretory antibody or local immunological memory. Studies are needed to determine whether both vaccines in combination are more efficacious than inactivated vaccine alone in people in this age group. PMID:2037667

  9. Polio endgame: the global introduction of inactivated polio vaccine.

    PubMed

    Patel, Manish; Zipursky, Simona; Orenstein, Walt; Garon, Julie; Zaffran, Michel

    2015-05-01

    In 2013, the World Health Assembly endorsed a plan that calls for the ultimate withdrawal of oral polio vaccines (OPV) from all immunization programs globally. The withdrawal would begin in a phased manner with removal of the type 2 component of OPV in 2016 through a global switch from trivalent OPV to bivalent OPV (containing only types 1 and 3). To mitigate risks associated with immunity gaps after OPV type 2 withdrawal, the WHO Strategic Advisory Group of Experts has recommended that all 126 OPV-only using countries introduce at least one dose of inactivated polio vaccine into routine immunization programs by end-2015, before the trivalent OPV-bivalent OPV switch. The introduction of inactivated polio vaccine would reduce risks of reintroduction of type 2 poliovirus by providing some level of seroprotection, facilitating interruption of transmission if outbreaks occur, and accelerating eradication by boosting immunity to types 1 and 3 polioviruses.

  10. Characterization of 10 adjuvants for inactivated avian influenza virus (AIV) vaccines against challenge with highly pathogenic AIV in chickens

    USDA-ARS?s Scientific Manuscript database

    Inactivated vaccines comprise 95% of all vaccine used for avian influenza virus (AIV) by dose. Optimizing the adjuvant is one way to improve vaccine efficacy. Inactivated vaccines were produced with beta-propiolactone inactivated A/chicken/BC/314514-1/2004 H7N3 low pathogenicity AIV and standardiz...

  11. Immunogenicity of an inactivated oil-emulsion canine distemper vaccine in African wild dogs.

    PubMed

    Cirone, Francesco; Elia, Gabriella; Campolo, Marco; Friedrich, Klaus; Martella, Vito; Pratelli, Annamaria; Buonavoglia, Canio

    2004-04-01

    The immunogenicity of an inactivated oil-emulsion vaccine against canine distemper virus was evaluated in nine captive African wild dogs (Lycaon pictus). Antibody levels were determined by neutralization test in Vero cells. No significant local or systemic adverse reactions were observed in the animals. Virus neutralizing antibody levels >1:20 were detected, especially in animals that were vaccinated twice. The use of oil adjuvants is suggested as a good way to enhance the immune response to inactivated canine distemper vaccine.

  12. [Inactivated poliovirus vaccines: an inevitable choice for eliminating poliomyelitis].

    PubMed

    Vidor, J D; Jean-Denis, Shu

    2016-12-06

    The inactivated poliovirus vaccine (IPV) is a very old tool in the fight against poliomyelitis. Though supplanted by oral poliovirus vaccine (OPV) in the 1960s and 1970s, the IPV has now become an inevitable choice because of the increasingly recognized risks associated with continuous use of OPVs. Following the pioneering work of Jonas Salk, who established key principles for the IPV, considerable experience has accumulated over the years. This work has led to modern Salk IPV-containing vaccines, based on the use of inactivated wildtype polioviruses, which have been deployed for routine use in many countries. Very good protection against paralysis is achieved with IPV through the presence of circulating antibodies able to neutralize virus infectivity toward motor neurons. In addition, with IPV, a variable degree of protection against mucosal infection (and therefore transmission) through mucosal antibodies and immune cells is achieved, depending on previous exposure of subjects to wildtype or vaccine polioviruses. The use of an IPV-followed-by-OPV sequential immunization schedule has the potential advantage of eliminating the vaccine-associated paralytic poliomyelitis (VAPP) risk, while limiting the risks of vaccine-derived poliovirus (VDPVs). Sabin strain-derived IPVs are new tools, only recently beginning to be deployed, and data are being generated to document their performance. IPVs will play an irreplaceable role in global eradication of polio.

  13. Five-year antibody persistence in children after one dose of inactivated or live attenuated hepatitis A vaccine.

    PubMed

    Zhang, Zhilun; Zhu, Xiangjun; Hu, Yuansheng; Liang, Miao; Sun, Jin; Song, Yufei; Yang, Qi; Ji, Haiquan; Zeng, Gang; Song, Lifei; Chen, Jiangting

    2017-06-03

    In China, both inactivated hepatitis A (HA) vaccine and live attenuated HA vaccine are available. We conducted a trial to evaluate 5-year immune persistence induced by one dose of inactivated or live attenuated HA vaccines in children. Subjects with no HA vaccination history had randomly received one dose of inactivated or live attenuated HA vaccine at 18-60 months of age. Anti-HAV antibody concentrations were measured before vaccination and at the first, second, and fifth year after vaccination. Suspected cases of hepatitis A were monitored during the study period. A total of 332 subjects were enrolled and 182 provided evaluable serum samples at all planned time points. seropositive rate at 5 y was 85.9% in the inactivated HA vaccine group and 90.7% in the live attenuated HA vaccine group. GMCs were 76.3% mIU/ml (95% CI: 61.7 - 94.4) and 66.8mIU/ml (95% CI: 57.8 - 77.3), respectively. No significant difference in antibody persistence between 2 groups was found. No clinical hepatitis A case was reported. A single dose of an inactivated or live attenuated HA vaccine at 18-60 months of age resulted in high HAV seropositive rate and anti-HAV antibody concentrations that lasted for at least 5 y.

  14. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases.

    PubMed

    Barrett, P Noel; Terpening, Sara J; Snow, Doris; Cobb, Ronald R; Kistner, Otfried

    2017-09-01

    Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.

  15. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies.

    PubMed

    Muralidharan, Abenaya; Li, Changgui; Wang, Lisheng; Li, Xuguang

    2017-04-01

    Respiratory syncytial virus (RSV) infection is responsible for one-third of deaths of acute lower respiratory infection in children less than one-year-old. The formaldehyde-inactivated RSV vaccine trial conducted in the 1960s predisposed the vaccinees to more serious RSV infection instead of protection. Better understanding of the underlying mechanism is of critical importance for better designing of safe and effective RSV vaccines. Areas covered: PubMed was searched to review immunopathology induced by RSV vaccines. We intend to dissect the differences in clinical and pathological manifestations of enhanced respiratory disease (ERD) in different animal models in comparison with humans. Formaldehyde-inactivated RSV vaccine causes ERD in both humans and animals, while RSV vaccine without formaldehyde treatment could also induce similar disease in animals, suggesting multiple pathways may be involved. Expert commentary: Identification of biomarkers pertinent to clinical evaluation should be further explored for safety assessment of RSV vaccines in human trials.

  16. Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches

    PubMed Central

    Chu, Leonard Y.; Ye, Ling; Dong, Ke; Compans, Richard W.; Yang, Chinglai; Prausnitz, Mark R.

    2015-01-01

    Purpose This study tested the hypothesis that encapsulation of influenza vaccine in microneedle patches increases vaccine stability during storage at elevated temperature. Methods Whole inactivated influenza virus vaccine (A/Puerto Rico/8/34) was formulated into dissolving microneedle patches and vaccine stability was evaluated by in vitro and in vivo assays of antigenicity and immunogenicity after storage for up to 3 months at 4, 25, 37 and 45°C. Results While liquid vaccine completely lost potency as determined by hemagglutination (HA) activity within 1–2 weeks outside of refrigeration, vaccine in microneedle patches lost 40–50% HA activity during or shortly after fabrication, but then had no significant additional loss of activity over 3 months of storage, independent of temperature. This level of stability required reduced humidity by packaging with desiccant, but was not affected by presence of oxygen. This finding was consistent with additional stability assays, including antigenicity of the vaccine measured by ELISA, virus particle morphological structure captured by transmission electron microscopy and protective immune responses by immunization of mice in vivo. Conclusions These data show that inactivated influenza vaccine encapsulated in dissolving microneedle patches has enhanced stability during extended storage at elevated temperatures. PMID:26620313

  17. Cold-Chain Adaptability During Introduction of Inactivated Polio Vaccine in Bangladesh, 2015.

    PubMed

    Billah, Mallick M; Zaman, K; Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I A; Russell, Kevin L; Chai, Shua J

    2017-07-01

    Introduction of inactivated polio vaccine creates challenges in maintaining the cold chain for vaccine storage and distribution. We evaluated the cold chain in 23 health facilities and 36 outreach vaccination sessions in 8 districts and cities of Bangladesh, using purposive sampling during August-October 2015. We interviewed immunization and cold-chain staff, assessed equipment, and recorded temperatures during vaccine storage and transportation. All health facilities had functioning refrigerators, and 96% had freezers. Temperature monitors were observed in all refrigerators and freezers but in only 14 of 66 vaccine transporters (21%). Recorders detected temperatures >8°C for >60 minutes in 5 of 23 refrigerators (22%), 3 of 6 cold boxes (50%) transporting vaccines from national to subnational depots, and 8 of 48 vaccine carriers (17%) used in outreach vaccination sites. Temperatures <2°C were detected in 4 of 19 cold boxes (21%) transporting vaccine from subnational depots to health facilities and 14 of 48 vaccine carriers (29%). Bangladesh has substantial cold-chain storage and transportation capacity after inactivated polio vaccine introduction, but temperature fluctuations during vaccine transport could cause vaccine potency loss that could go undetected. Bangladesh and other countries should strive to ensure consistent and sufficient cold-chain storage and monitor the cold chain during vaccine transportation at all levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  18. Intradermal Inactivated Poliovirus Vaccine: A Preclinical Dose-Finding Study

    PubMed Central

    Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin

    2015-01-01

    Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost. PMID:25391313

  19. Enhancing immune responses to inactivated porcine parvovirus oil emulsion vaccine by co-inoculating porcine transfer factor in mice.

    PubMed

    Wang, Rui-ning; Wang, Ya-bin; Geng, Jing-wei; Guo, Dong-hui; Liu, Fang; Chen, Hong-ying; Zhang, Hong-ying; Cui, Bao-an; Wei, Zhan-yong

    2012-07-27

    Inactivated porcine parvovirus (PPV) vaccines are available commercially and widely used in the breeding herds. However, inactivated PPV vaccines have deficiencies in induction of specific cellular immune response. Transfer factor (TF) is a material that obtained from the leukocytes, and is a novel immune-stimulatory reagent that as a modulator of the immune system. In this study, the immunogenicity of PPV oil emulsion vaccine and the immuno-regulatory activities of TF were investigated. The inactivated PPV oil emulsion vaccines with or without TF were inoculated into BALB/c mice by subcutaneous injection. Then humoral and cellular immune responses were evaluated by indirect enzyme-linked immunosorbent assays (ELISA), fluorescence-activated cell sorter analyses (FACS). The results showed that the PPV specific immune responses could be evoked in mice by inoculating with PPV oil emulsion vaccine alone or by co-inoculation with TF. The cellular immune response levels in the co-inoculation groups were higher than those groups receiving the PPV oil emulsion vaccine alone, with the phenomena of higher level of IFN-γ, a little IL-6 and a trace of IL-4 in serum, and a vigorous T-cell response. However, there was no significant difference in antibody titers between TF synergy inactivated vaccine and the inactivated vaccine group (P>0.05). In conclusion, these results suggest that TF possess better cellular immune-enhancing capability and would be exploited into an effective immune-adjuvant for inactivated vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Vaccine-associated enhanced respiratory disease is influenced by hemagglutinin and neuraminidase in whole inactivated influenza virus vaccines

    USDA-ARS?s Scientific Manuscript database

    Multiple subtypes and many antigenic variants of influenza A virus (IAV) co-circulate in swine in the USA, complicating effective use of commercial vaccines to control disease and transmission. Whole inactivated virus (WIV) vaccines may provide partial protection against IAV with substantial antigen...

  1. Adjuvants and Inactivated Polio Vaccine: A Systematic Review

    PubMed Central

    Hawken, Jennifer; Troy, Stephanie B.

    2012-01-01

    Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by universal use of inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV. PMID:23041122

  2. Adjuvants and inactivated polio vaccine: a systematic review.

    PubMed

    Hawken, Jennifer; Troy, Stephanie B

    2012-11-19

    Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by use of universal inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Humoral response to 2 inactivated bluetongue virus serotype-8 vaccines in South American camelids.

    PubMed

    Zanolari, P; Bruckner, L; Fricker, R; Kaufmann, C; Mudry, M; Griot, C; Meylan, M

    2010-01-01

    Bluetongue virus serotype 8 (BTV-8) has caused disease in domestic ruminants in several countries of northern Europe since 2006. In 2008 a mass-vaccination program was launched in most affected countries using whole virus inactivated vaccines. To evaluate 2 inactivated vaccines (Bovilis BTV 8; BTVPUR AlSap8) for immunogenicity and safety against BTV-8 in South American camelids (SAC) in a field trial. Forty-two SAC (25 Alpacas, 17 Llamas) aged between 1 and 16 years. The animals were vaccinated twice at intervals of 21 days. They were observed clinically for adverse local, systemic, or both reactions throughout the trial. Blood samples collected on days 0, 14, 21, 43, and 156 after vaccination were tested for the presence of BTV-8 virus by real time-polymerase chain reaction and of specific antibodies by competitive ELISA and a serum neutralization test. All vaccinated animals developed antibodies to BTV-8 after the 2nd administration of the vaccine. No adverse effects were observed except for moderate local swellings at the injection site, which disappeared within 21 days. Slightly increased body temperatures were only observed in the first 2 days after vaccination. The BTV was not detected in any of the samples analyzed. The administration of the 2 inactivated commercial vaccines was safe and induced seroconversion against BTV-8 in all vaccinated animals. The results of this study suggest that 2 doses injected 3 weeks apart is a suitable vaccination regimen for SAC.

  4. Correlates of protection for inactivated enterovirus 71 vaccine: the analysis of immunological surrogate endpoints.

    PubMed

    Zhu, Wenbo; Jin, Pengfei; Li, Jing-Xin; Zhu, Feng-Cai; Liu, Pei

    2017-09-01

    Inactivated Enterovirus 71 (EV71) vaccines showed significant efficacy against the diseases associated with EV71 and a neutralizing antibody (NTAb) titer of 1:16-1:32 was suggested as the correlates of the vaccine protection. This paper aims to further estimate the immunological surrogate endpoints for the protection of inactivated EV71 vaccines and the effect factors. Pre-vaccination NTAb against EV71 at baseline (day 0), post-vaccination NTAb against EV71 at day 56, and the occurrence of laboratory-confirmed EV71-associated diseases during a 24-months follow-up period were collected from a phase 3 efficacy trial of an inactivated EV71 vaccine. We used the mixed-scaled logit model and the absolute sigmoid function by some extensions in continuous models to estimate the immunological surrogate endpoint for the EV71 vaccine protection, respectively. For children with a negative baseline of EV71 NTAb titers, an antibody level of 26.6 U/ml (1:30) was estimated to provide at least a 50% protection for 12 months, and an antibody level of 36.2 U/ml (1:42) may be needed to achieve a 50% protective level of the population for 24 months. Both the pre-vaccination NTAb level and the vaccine protective period could affect the estimation of the immunological surrogate for EV71 vaccine. A post-vaccination NTAb titer of 1:42 or more may be needed for long-term protection. NCT01508247.

  5. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    PubMed

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [Comparison of antibody persistence between live attenuated and inactivated hepatitis A vaccines].

    PubMed

    Liu, Huai-Feng; Zhang, Xin-Jiang; Zhang, Jian-Li

    2009-08-01

    To study the antibody persistence of live attenuated hepatitits A vaccine, and to compare the antibody between with inactivated vaccine. 211 HAV susceptible children were divided randomly into three groups, Group A was injected three doses HepA-L at 0, 6 and 12 monthes; Group B was administrated two dose HepA-L at 0 and 6 months, and group C was immunized with inactivated vaccine at month 0 and 6. Serum samples were detected for Anti-HAV at 1, 6, 7, 12, 13, 24, 84 months after vaccination in each group. The seroconversion rates reached 100% after 2nd dose in all groups. The highest GMC was 2938.1 mlU/ml, founded in group C, and it was 1315.6 mlU/ml and 1586 mlU/ml in group A and B respectively. After the 3rd dose at month 12 in group A, the antibody increased dramatic, which reached 1945.3 mlU/ml. 84 months after first dose in each group, the antibody can be detected from all subjects. Though the GMC in group A declined to 336.8 mlU/ml, it was significant higher than that in group B and C. The good booster effect with HepA-L was well observed in a short-term. The immune response induced by 2 to 3 doses HepA-L could compete with inactivated hepatitis A vaccine. However, long-term effects of both vaccines need further study.

  7. [Preparation of the vaccine with inactivated Feline Panleukopenia Virus isolated from tiger and the preliminary application].

    PubMed

    Yu, Yali; Zhou, Ming; Zhang, Jin; Hua, Yuping; Wang, Ligang; Liu, Yinan; Liu, Dan; Xia, Xianzhu

    2009-05-01

    To prepare a vaccine with inactivated Feline Panleukopenia Virus (FPV) isolated from Siberian tigers and to evaluate its immunological effect. FPV-HLJ, an FPV strain previously isolated from Siberian tiger in our lab was used to inoculate cat kidney cell line F81 with dose 1/10(v/v) using the synchronizing inoculation method. Inoculated F81 cell line was cultured at 37 degrees C and collected when cytopathic effect was up to 75%. Viral suspension was inactivated by using formaldehyde for 24 h and inactive vaccine preapred by adding aluminium hydroxide gel as adjuvant to the suspension. The inactive vaccine was applied to 2-month-old kitten tigers of hypodermically after protection effect was proved in 2-month-old nonimmunized cats by using the same vaccination procedure. Antibody level in vaccinated cats revealed an increasing trend that the valence of antibody reached 1:1024-2048 after three times of vaccination. All vaccinated cats survived challenges of virulent FPV virus. The valence of antibody reached 1:1024 in most vaccinated tigers 15 days after the third vaccination. The results indicated that the inactivated vaccine can produce immunoprotection for tigers.

  8. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains

    PubMed Central

    Westdijk, Janny; Koedam, Patrick; Barro, Mario; Steil, Benjamin P.; Collin, Nicolas; Vedvick, Thomas S.; Bakker, Wilfried A.M.; van der Ley, Peter; Kersten, Gideon

    2013-01-01

    Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titers (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotype 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7- 20- 27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants. PMID:23313617

  9. Development and introduction of inactivated poliovirus vaccines derived from Sabin strains in Japan.

    PubMed

    Shimizu, Hiroyuki

    2016-04-07

    During the endgame of global polio eradication, the universal introduction of inactivated poliovirus vaccines is urgently required to reduce the risk of vaccine-associated paralytic poliomyelitis and polio outbreaks due to wild and vaccine-derived polioviruses. In particular, the development of inactivated poliovirus vaccines (IPVs) derived from the attenuated Sabin strains is considered to be a highly favorable option for the production of novel IPV that reduce the risk of facility-acquired transmission of poliovirus to the communities. In Japan, Sabin-derived IPVs (sIPVs) have been developed and introduced for routine immunization in November 2012. They are the first licensed sIPVs in the world. Consequently, trivalent oral poliovirus vaccine was used for polio control in Japan for more than half a century but has now been removed from the list of vaccines licensed for routine immunization. This paper reviews the development, introduction, characterization, and global status of IPV derived from attenuated Sabin strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Preparation of Rocky Mountain spotted fever vaccine suitable for human immunization.

    PubMed Central

    Kenyon, R H; Pedersen, C E

    1975-01-01

    Rocky Mountain spotted fever vaccine was produced from rickettsiae grown in chicken embryo cells in roller bottle cultures. The rickettsiae were concentrated and purified by passage through a sucrose gradient and inactivated with formalin. This vaccine satisfactorily passed preinactivation and final container testing and is believed to be superior to the presently available yolk sac vaccine. PMID:809483

  11. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    PubMed

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  12. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains.

    PubMed

    Westdijk, Janny; Koedam, Patrick; Barro, Mario; Steil, Benjamin P; Collin, Nicolas; Vedvick, Thomas S; Bakker, Wilfried A M; van der Ley, Peter; Kersten, Gideon

    2013-02-18

    Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titres (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotypes 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7-20-27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Bacillus atrophaeus inactivated spores as a potential adjuvant for veterinary rabies vaccine.

    PubMed

    Oliveira-Nascimento, L; Caricati, A T P; Abdulack-Lopes, F; Neves, L C M; Caricati, C P; Penna, T C V; Stephano, M A

    2012-05-14

    Rabies is a viral encephalitis, nearly always fatal, but preventable through vaccines. Rabid animal bite is the prime transmission act, while veterinary vaccination is one of the best strategies for rabies general prevention. Aluminum compounds and saponin are the commercial adjuvants used for this vaccine nowadays. Nevertheless, aluminum compounds can provoke undesired side effects and saponin has a narrow activity range without toxicity. B. atrophaeus inactivated spores (BAIS), with or without saponin, were then used as an alternative to boost the inactivated rabies virus response. BAIS was as effective as saponin in augmenting antibody titers, but combination of both adjuvants doubled the titers raised by them individually. The combined adjuvant formulation maintained viability for 21 months when stored at 4-8°C. Overall, BAIS was demonstrated as a viable alternative to commercial adjuvants, while its combination with saponin resulted in even higher vaccine potency with good stability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Intranasal cold-adapted influenza virus vaccine combined with inactivated influenza virus vaccines: an extra boost for the elderly?

    PubMed

    Targonski, Paul V; Poland, Gregory A

    2004-01-01

    Although influenza vaccine delivery strategies have improved coverage rates to unprecedented levels nationally among persons aged 65 years and older, influenza remains one of the greatest vaccine-preventable threats to public health among elderly in the US. A new, intranasal live attenuated influenza vaccine (LAIV) was recently approved by the US FDA for use in persons aged 5-49 years, which excludes the elderly population. Limitations of immune response to inactivated influenza vaccine (IAIV) and effectiveness of current influenza vaccination strategies among the elderly suggest that a combined approach using LAIV and/or the IAIV in various permutations might benefit this group. We explore characteristics of the LAIV, data regarding its utility in protecting against influenza in the elderly, and challenges and opportunities regarding potential combined inactivated/live attenuated vaccination strategies for the elderly. Although LAIV appears to hold promise either alone or in combination with IAIV, large well conducted randomised trials are necessary to define further the role of LAIV in preventing influenza morbidity and mortality among the elderly. We also suggest that innovative vaccine coverage strategies designed to optimise prevention and control of influenza and minimise viral transmission in the community must accompany, in parallel, the acquisition of clinical trials data to best combat morbidity and mortality from influenza.

  15. A single center, open label study of intradermal administration of an inactivated purified chick embryo cell culture rabies virus vaccine in adults.

    PubMed

    Recuenco, Sergio; Warnock, Eli; Osinubi, Modupe O V; Rupprecht, Charles E

    2017-08-03

    In the USA, rabies vaccines (RVs) are licensed for intramuscular (IM) use only, although RVs are licensed for use by the intradermal (ID) route in many other countries. Recent limitations in supplies of RV in the USA reopened discussions on the more efficient use of available biologics, including utilization of more stringent risk assessments, and potential ID RV administration. A clinical trial was designed to compare the immunogenic and adverse effects of a purified chicken embryo cell (PCEC) RV administered ID or IM. Enrollment was designed in four arms, ID Pre-Exposure Prophylaxis (Pre-EP), IM Pre-EP, ID Booster, and IM Booster vaccination. Enrollment included 130 adult volunteers. The arms with IM administration received vaccine according to the current ACIP recommendations: Pre-EP, three 1mL (2.5 I.U.) RV doses, each on day 0, 7, and 21; or a routine Booster, one 1ml dose. The ID groups received the same schedule, but doses administered were in a volume of 0.1mL (0.25 I.U.). The rate of increase in rabies virus neutralizing antibody titers 14-21days after vaccination were similar in the ID and correspondent IM groups. The GMT values for ID vaccination were slightly lower than those for IM vaccination, for both naïve and booster groups, and these differences were statistically significant by t-test. Fourteen days after completing vaccination, all individuals developed RV neutralizing antibody titers over the minimum arbitrary value obtained with the rapid fluorescent focus inhibition test (RFFIT). Antibodies were over the set threshold until the end of the trial, 160days after completed vaccination. No serious adverse reactions were reported. Most frequent adverse reactions were erythema, induration and tenderness, localized at the site of injection. Multi use of 1mL rabies vaccine vials for ID doses of 0.1 was demonstrated to be both safe and inmunogenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterization of a whole, inactivated influenza (H5N1) vaccine.

    PubMed

    Tada, Yoshikazu

    2008-11-01

    Effective vaccines against the highly pathogenic influenza A/H5N1 virus are being developed worldwide. In Japan, two adjuvanted, inactivated, whole-virion influenza vaccines were recently developed and licensed as mock-up, pre-pandemic vaccine formulations by the Ministry of Health and Labor Welfare of Japan. During the vaccine design and development process, various obstacles were overcome and, in this report, we introduce the non clinical production, immunogenicity data in human and development process that was associated with egg-derived adjuvanted, inactivated, whole-virion influenza A (H5N1) vaccine. Pilot lots of H5N1 vaccine were produced using the avirulent H5N1 reference strain A/Vietnam/1194/2004 (H5N1) NIBRG-14 and administered following adsorption with aluminum hydroxide as an adjuvant. Quality control and formulation stability tests were performed before clinical trials were initiated (phase I-III). The research foundation for microbial diseases of Osaka University (BIKEN) carried out vaccine production, quality control, stability testing and the phase I clinical trial in addition to overseeing the licensing of this vaccine. Mitsubishi Chemical Safety Institute Ltd. carried out the non clinical pharmacological toxicity and safety studies and the Japanese medical association carried out the phase II/III trials. Phase I-III trials took place in 2006. The production processes were well controlled by established tests and validations. Vaccine quality was confirmed by quality control, stability and pre-clinical tests, and the vaccine was approved as a mock-up, pre-pandemic vaccine by the Ministry of Health and Labor Welfare of Japan. Numerous safety and efficacy procedures were carried out prior to the approval of the described vaccine formulation. Some of these procedures were of particular importance e.g., vaccine development, validation, and quality control tests that included strict monitoring of the hemagglutinin (HA) content of the vaccine

  17. Efficacy of an inactivated, recombinant bovine herpesvirus type 5 (BoHV-5) vaccine.

    PubMed

    Campos, F S; Dezen, D; Antunes, D A; Santos, H F; Arantes, T S; Cenci, A; Gomes, F; Lima, F E S; Brito, W M E D; Filho, H C K; Batista, H B C R; Spilki, F R; Franco, A C; Rijsewijk, F A M; Roehe, P M

    2011-02-24

    Bovine herpesvirus type 5 (BoHV-5) is the causative agent of bovine herpetic encephalitis. In countries where BoHV-5 is prevalent, attempts to vaccinate cattle to prevent clinical signs from BoHV-5-induced disease have relied essentially on vaccination with BoHV-1 vaccines. However, such practice has been shown not to confer full protection to BoHV-5 challenge. In the present study, an inactivated, oil adjuvanted vaccine prepared with a recombinant BoHV-5 from which the genes coding for glycoprotein I (gI), glycoprotein E (gE) and membrane protein US9 were deleted (BoHV-5 gI/gE/US9(-)), was evaluated in cattle in a vaccination/challenge experiment. The vaccine was prepared from a virus suspension containing a pre-inactivation antigenic mass equivalent to 10(7.69) TCID(50)/dose. Three mL of the inactivated vaccine were administered subcutaneously to eight calves serologically negative for BoHV-5 (vaccinated group). Four other calves were mock-vaccinated with an equivalent preparation without viral antigens (control group). Both groups were boostered 28 days later. Neither clinical signs of disease nor adverse effects were observed during or after vaccination. A specific serological response, revealed by the development of neutralizing antibodies, was detected in all vaccinated animals after the first dose of vaccine, whereas control animals remained seronegative. Calves were subsequently challenged on day 77 post-vaccination (pv) with 10(9.25) TCID(50) of the wild-type BoHV-5 (parental strain EVI 88/95). After challenge, vaccinated cattle displayed mild signs of respiratory disease, whereas the control group developed respiratory disease and severe encephalitis, which led to culling of 2/4 calves. Searches for viral DNA in the central nervous system (CNS) of vaccinated calves indicated that wild-type BoHV-5 did not replicate, whereas in CNS tissues of calves on the control group, viral DNA was widely distributed. BoHV-5 shedding in nasal secretions was significantly

  18. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes

    PubMed Central

    Kon, Theone C.; Onu, Adrian; Berbecila, Laurentiu; Lupulescu, Emilia; Ghiorgisor, Alina; Kersten, Gideon F.; Cui, Yi-Qing; Amorij, Jean-Pierre; Van der Pol, Leo

    2016-01-01

    The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months. PMID:26959983

  19. Protective efficacy of an inactivated vaccine against H9N2 avian influenza virus in ducks.

    PubMed

    Teng, Qiaoyang; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Chen, Lin; Li, Xuesong; Chen, Hongjun; Yang, Jianmei; Li, Zejun

    2015-09-17

    Wild ducks play an important role in the evolution of avian influenza viruses (AIVs). Domestic ducks in China are known to carry and spread H9N2 AIVs that are thought to have contributed internal genes for the recent outbreak of zoonotic H7N9 virus. In order to protect animal and public health, an effective vaccine is urgently needed to block and prevent the spread of H9N2 virus in ducks. We developed an inactivated H9N2 vaccine (with adjuvant Montanide ISA 70VG) based on an endemic H9N2 AIV and evaluated this vaccine in ducks. The results showed that the inactivated H9N2 vaccine was able to induce a strong and fast humoral immune response in vaccinated ducks. The hemagglutination inhibition titer in the sera increased fast, and reached its peak of 12.3 log2 at 5 weeks post-vaccination in immunized birds and remained at a high level for at least 37 weeks post-vaccination. Moreover, viral shedding was completely blocked in vaccinated ducks after challenge with a homologous H9N2 AIV at both 3 and 37 weeks post-vaccination. The results of this study indicate that the inactivated H9N2 vaccine induces high and prolonged immune response in vaccinated ducks and are efficacious in protecting ducks from H9N2 infection.

  20. Effective protection of monkeys against death from street virus by post-exposure administration of tissue-culture rabies vaccine

    PubMed Central

    Sikes, R. K.; Cleary, W. F.; Koprowski, H.; Wiktor, T. J.; Kaplan, M. M.

    1971-01-01

    Three series of experiments on rabies vaccines were carried out on rhesus monkeys using suckling-mouse-brain vaccine, rabbit-brain vaccine, duck-embryo vaccine, and purified, concentrated tissue-culture vaccine. The latter was prepared in a human diploid cell strain and inactivated with β-propiolactone, and consisted of tissue-culture fluid concentrated 200-fold with a final infectivity titre of 109.8 plaque-forming units per ml before inactivation. In the first two series of experiments, several vaccines were tested for relative immunogenicity on a pre-exposure basis. In the third series, a successful model was developed in which a single inoculation of the tissue-culture vaccine administered after exposure to rabies virus, with or without accompanying standard doses of antirabies serum, was evaluated as a method of prevention. A single dose of the tissue-culture vaccine protected 7 out of 8 monkeys from death by street virus. Homologous or heterologous antirabies serum alone gave poor results. The results indicate great promise for prophylaxis in man with one dose, or perhaps a few doses, of highly concentrated, purified tissue-culture vaccine. PMID:5004004

  1. Antibody response to influenza A(H1N1)pdm09 among healthcare personnel receiving trivalent inactivated vaccine: effect of prior monovalent inactivated vaccine.

    PubMed

    Gaglani, Manjusha; Spencer, Sarah; Ball, Sarah; Song, Juhee; Naleway, Allison; Henkle, Emily; Bozeman, Sam; Reynolds, Sue; Sessions, Wendy; Hancock, Kathy; Thompson, Mark

    2014-06-01

    Few data are available on the immunogenicity of repeated annual doses of influenza A(H1N1)pdm09-containing vaccines. We enrolled healthcare personnel (HCP) in direct patient care during the autumn of 2010 at 2 centers with voluntary immunization. We verified the receipt of A(H1N1)pdm09-containing monovalent inactivated influenza vaccine (MIIV) and 2010-2011 trivalent inactivated vaccine (TIV). We performed hemagglutination inhibition antibody (HI) assays on preseason, post-TIV, and end-of-season serum samples. We compared the proportion of HCPs with HI titer ≥ 40 against A(H1N1)pdm09 per receipt of prior-season MIIV, current-season TIV, both, or neither. At preseason (n = 1417), HI ≥ 40 was significantly higher among those who received MIIV (34%) vs those who did not (14%) (adjusted relative risk [ARR], 3.26; 95% confidence interval [CI], 2.72-3.81). At post-TIV (n = 865), HI ≥ 40 was lower among HCP who received MIIV and TIV (66%) than among those receiving only TIV (85%) (ARR, 0.93 [95% CI, .84-.997]). At end-of-season (n = 1254), HI ≥ 40 was 40% among those who received both MIIV and TIV and 67% among those receiving only TIV (ARR, 0.76 [95% CI, .65-.88]), 52% among those who received MIIV only, and 12% among those receiving neither. HCP immunization programs should consider effects of host immune response and vaccine antigenic distance on immunogenicity of repeated annual doses of influenza vaccines.

  2. Intradermal inactivated poliovirus vaccine: a preclinical dose-finding study.

    PubMed

    Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin

    2015-05-01

    Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Review of 10 years of marketing experience with Chinese domestic inactivated hepatitis A vaccine Healive®

    PubMed Central

    Wu, Jun-Yu; Liu, Yan; Chen, Jiang-Ting; Xia, Ming; Zhang, Xiao-Mei

    2012-01-01

    In 2002, the first Chinese domestic preservative-free inactivated hepatitis A vaccine, Healive®, was introduced in China. It is highly immunogenic, and provides lasting protection in healthy individuals and generates protective levels of antibodies in other at-risk individuals. Over 10 years since its first licensure, postmarketing surveillance data have confirmed the outstanding safety profile of the vaccine. Comparative clinical trials indicated that Healive® induce equal or similar immunogenicity with other currently available inactivated hepatitis A vaccines and are interchangeable for the course of HAV immunization in Chinese children. The vaccine is effective in curbing outbreaks of hepatitis A due to rapid seroconversion and the long incubation period of the disease. Additional issues surrounding the use of the vaccine are also reviewed. PMID:23032165

  4. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  5. Safety and immunogenicity of a quadrivalent inactivated influenza vaccine in adults.

    PubMed

    Pépin, Stéphanie; Donazzolo, Yves; Jambrecina, Alen; Salamand, Camille; Saville, Melanie

    2013-11-12

    Although two antigenically distinct B strain lineages of influenza have co-circulated globally since the mid-1980s, trivalent influenza vaccines (TIVs) contain only one, resulting in frequent mismatches. This study examined the safety and immunogenicity of an inactivated quadrivalent influenza vaccine (QIV) candidate. This was a phase III, randomized, active-controlled, multicenter trial in adults during the 2011/2012 influenza season. Enrollment was stratified to include equal numbers of subjects 18-60 and >60 years of age. Subjects were randomized 5:1:1 to be vaccinated with the QIV, the licensed TIV, or an investigational TIV containing the alternate B strain lineage. Hemagglutinin inhibition antibody titers were assessed pre-vaccination and 21 days post-vaccination. 1116 subjects were vaccinated with QIV, 226 with the licensed TIV, and 223 with the investigational TIV. For all four vaccine strains, antibody responses to the QIV were non-inferior to the response to the TIV for the matched strains. For both B strains, post-vaccination antibody responses to the QIV were superior to the responses to the TIVs lacking the corresponding B strain. The QIV met all European Medicines Agency criteria for all four vaccine strains. Solicited reactions, unsolicited adverse events, and serious adverse events were similar for the QIV and pooled TIV groups. The most commonly reported solicited reactions were injection-site pain, headache, and myalgia, and most solicited reactions were mild or moderate and appeared and resolved within 3 days of vaccination. No treatment-related serious adverse events or deaths were reported. The inactivated QIV was well tolerated without any safety concerns. For all four vaccine strains, antibody responses to the QIV were superior to the responses to TIV for the unmatched strains and non-inferior for the matched strains. QIV could therefore help address an unmet need due to mismatched B strains in previous influenza vaccines. EudraCT: 2011

  6. The immune enhancement of propolis adjuvant on inactivated porcine parvovirus vaccine in guinea pig.

    PubMed

    Ma, Xia; Guo, Zhenhuan; Shen, Zhiqiang; Wang, Jinliang; Hu, Yuanliang; Wang, Deyun

    2011-01-01

    Two experiments were carried out. In immune response test, the immune enhancement of propolis, oilemulsion and aluminium salt were compared in guinea pig vaccinated with inactivated porcine parvovirus (PPV) vaccine. The result showed that three adjuvants could enhance antibody titer, T lymphocyte proliferation, IL-2 and IL-4 secretion of splenic lymphocyte. The action of propolis was similar to that of oilemulsion and superior to that of aluminium salt, especially in early period of vaccination propolis could accelerate antibody production. In immune protection test, the effects of three adjuvants on PPV infection were compared in guinea pig vaccinated with PPV vaccine then challenged with PPV. The result showed that propolis and oilemulsion could enhance the antibody titer, IL-2 and IL-4 content in serum and decrease the PPV content in blood and viscera. In the effect of improving cellular immune response, the propolis was the best. These results indicated that propolis possessed better immune enhancement and would be exploited into a effective adjuvant of inactivated vaccine. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Efficacy of single dose of an inactivated porcine circovirus type 2 (PCV2) whole-virus vaccine with oil adjuvant in piglets.

    PubMed

    Yang, Kun; Li, Wentao; Niu, Huihui; Yan, Weidong; Liu, Xiaoli; Wang, Yang; Cheng, Shuang; Ku, Xugang; He, Qigai

    2012-11-21

    Post-weaning multisystemic wasting syndrome (PMWS) associated with PCV2 is one of the most costly diseases currently faced by the swine industry. The development of effective vaccines against PCV2 infection has been accepted as an important strategy in the prophylaxis of PMWS. In the present study, a PK-15 cell-adapted formalin-inactivated prototype vaccine candidate was prepared using a strain of PCV2 from China. Inactivation of the virus was accomplished using a standard formalin inactivation protocol. The protective properties of the inactivated PCV2 vaccine were evaluated in piglets. Ten 28-day-old pigs were randomly assigned to two groups, each with five. Group 1 was vaccinated intramuscularly with the inactivated virus preparation; Group 2 received sterile PBS as a placebo. By 28 days post-vaccination (DPV), Groups 1 and 2 were challenged intranasally and intramuscularly with 5 × 107 TCID50 of a virulent PCV2 isolate. The vaccinated pigs seroconverted to PCV2 and had high levels of serum antibodies to PCV2 at 28 days after vaccination, whereas the control pigs remained seronegative. No significant signs of clinical disease were recorded following the challenge with PCV2, but moderate amounts of PCV2 antigen were detected in most lymphoid organs of the control pigs. PCV2 was detected in two out of the five vaccinated pigs. Furthermore, pathological lesions and viremia were milder in the vaccinated group. The obtained results indicate that the inactivated PCV2 virus vaccine with an oil adjuvant induce an immunological response in pigs that appears to provide protection from infection with PCV2. The vaccine, therefore, may have the potential to serve as a vaccine aimed to protect pigs from developing PMWS.

  8. [Specific activity of an UV-inactivated antirabies vaccine made from brain tissue administered in a shortened schedule].

    PubMed

    Morogova, V M; Magazov, R Sh; Gil'dina, S S; Latypova, R G; Shafeeva, R S

    1982-04-01

    The results obtained in the study of the specific potency of rabies vaccine prepared from sheep brain tissue and inactivated by UV irradiation indicate that, even in the presence of the lowest immunogenicity index (0.5), 5-6 injections of the vaccine, made not daily, but at interval of 3 and 7 days, induced the production of antibodies in the titers not lower than those resulting from 14-20 daily injections of the same vaccine or Fermi vaccine. The preparation inactivated by UV irradiation should be introduced for therapy according to the shortened immunization schedule with intervals, taking into account the immunogenicity index.

  9. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  10. Establishing the 1st Chinese National Standard for inactivated hepatitis A vaccine.

    PubMed

    Gao, Fan; Mao, Qun-Ying; Wang, Yi-Ping; Chen, Pan; Liang, Zheng-Lun

    2016-07-01

    A reference standard calibrated in the International Units is needed for the quality control of hepatitis A vaccine. Thus, National Institutes for Food and Drug Control launched a project to establish a non-adsorbed inactivated hepatitis A vaccine reference as the working standard calibrated against the 1st International Standard (IS). Two national standard candidates (NSCs) were obtained from two manufacturers, and designated as NSC A (lyophilized form) and NSC B (liquid form). Six laboratories participated in the collaborative study and were asked to use their in-house validated enzyme-linked immunosorbent assay methods to detect hepatitis A vaccine antigen content. Although both exhibited good parallelism and linear relationship with IS, NSC B showed a better agreement among laboratories than NSC A. And based on suitability of the candidates, NSC B was selected. The accelerated degradation study showed that NSC B was stable at the storage temperature (≤-70 °C). Therefore NSC B was approved as the first Chinese national antigen standard for inactivated hepatitis A vaccine, with an assigned antigen content of 70 IU/ml. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    PubMed

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  12. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies

    PubMed Central

    Blanchfield, Kristy; Belser, Jessica A.; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R.; Levine, Min Z.; York, Ian A.

    2017-01-01

    ABSTRACT Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with

  13. Comparison of Immunogenicity Between Inactivated and Live Attenuated Hepatitis A Vaccines Among Young Adults: A 3-Year Follow-up Study.

    PubMed

    Liu, Xue-en; Chen, Hai-ying; Liao, Zheng; Zhou, Yisheng; Wen, Hairong; Peng, Shihui; Liu, Yan; Li, Rui; Li, Jie; Zhuang, Hui

    2015-10-15

    A randomized clinical trial of hepatitis A vaccines (1 or 2 doses of inactivated vaccine [Healive] or 1 dose of live attenuated vaccine [Biovac]) was conducted among adults to evaluate seroprotection rates and geometric mean concentrations of antibody against hepatitis A virus for 36 months. High rates of seroprotection persisted for at least 36 months among adults who received 1 or 2 doses of inactivated hepatitis A vaccine but not among adults who received 1 dose of live attenuated hepatitis A vaccine. The long-term serial monitoring of immunogenicity induced by 1 dose of inactivated hepatitis A vaccine is needed to determine an effective alternative to a 2-dose schedule. NCT01865968. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Immunopotentiating reconstituted influenza virus virosome vaccine delivery system for immunization against hepatitis A.

    PubMed Central

    Glück, R; Mischler, R; Brantschen, S; Just, M; Althaus, B; Cryz, S J

    1992-01-01

    Hepatitis A virus (HAV) was purified from MRC-5 human diploid cell cultures, inactivated with formalin, and evaluated for safety and immunogenicity in humans. Three vaccine formulations were produced: (a) a fluid preparation containing inactivated HAV, (b) inactivated HAV adsorbed to Al(OH)3, and (c) inactivated HAV coupled to novel immunopotentiating reconstituted influenza virosomes (IRIV). IRIV were prepared by combining phosphatidylcholine, phosphatidylethanolamine, phospholipids originating from the influenza virus envelope, influenza virus hemagglutinin, and neuraminidase. The HAV-IRIV appeared as unilamellar vesicles with a diameter of approximately 150 nm when viewed by transmission electron microscopy. Upon intramuscular injection, the alum-adsorbed vaccine was associated with significantly (P < 0.01) more local adverse reactions than either the fluid or IRIV formulations. 14 d after a single dose of vaccine, all the recipients of the IRIV formulation seroconverted (> or = 20 mIU/ml) versus 30 and 44% for those who received the fluid and alum-adsorbed vaccines, respectively (P < 0.001). The geometric mean anti-HAV antibody titer achieved after immunization with the IRIV-HAV vaccine was also significantly higher (P < 0.005) compared with the other two vaccines. Images PMID:1334977

  15. Role of Global Alliance for Vaccines and Immunization (GAVI) in Accelerating Inactivated Polio Vaccine Introduction.

    PubMed

    Thacker, Naveen; Thacker, Deep; Pathak, Ashish

    2016-08-07

    Global Alliance for Vaccines and Immunization (GAVI, the Vaccine Alliance) is an international organization built through public-private partnership. GAVI has supported more than 200 vaccine introductions in the last 5 years by financing major proportion of costs of vaccine to 73 low-income countries using a co-financing model. GAVI has worked in close co-ordination with Global Polio Eradication Initiative (GPEI) since 2013, to strengthen health systems in countries so as to accelerate introduction of inactivated polio vaccine (IPV). GAVI is involved in many IPV related issues like demand generation, supply, market shaping, communications, country readiness etc. Most of the 73 GAVI eligible countries are also high priority countries for GPEI. GAVI support has helped India to accelerate introduction of IPV in all its states. However, GAVI faces challenges in IPV supply-related issues in the near future. It also needs to play a key role in global polio legacy planning and implementation.

  16. Trivalent inactivated influenza vaccine is not associated with sickle cell crises in children.

    PubMed

    Hambidge, Simon J; Ross, Colleen; Glanz, Jason; McClure, David; Daley, Matthew F; Xu, Stan; Shoup, Jo Ann; Narwaney, Komal; Baggs, James; Weintraub, Eric

    2012-01-01

    Children with sickle cell disease are considered at high risk for complications from influenza infection and are recommended to receive annual influenza vaccination. However, data on the safety of influenza vaccination in children with sickle cell anemia are sparse. Using a retrospective cohort of children aged 6 months to 17 years in 8 managed care organizations that comprise the Vaccine Safety Datalink and who had a diagnosis of sickle cell anemia from 1999 to 2006, we conducted matched case-control and self-controlled case series studies to examine the association of trivalent inactivated influenza vaccination with hospitalization for sickle cell crisis in the 2 weeks after vaccination. From an original pool of 1085 pediatric subjects with a diagnosis of sickle cell anemia, we identified 179 children with at least 1 sickle cell crisis during any influenza season (October 1-March 31). In the matched case-control study (matching on age category, gender, Vaccine Safety Datalink site, and season), the odds ratio of hospitalization for a crisis in vaccinated compared with unvaccinated children was not significant: 1.3 (95% confidence interval 0.8-2.2). In the self-controlled case series study of hospitalized cases, the incident rate ratio for hospitalization with sickle cell crisis in the 2 weeks after trivalent inactivated influenza vaccination was also not significant: 1.2 (95% confidence interval 0.75-1.95). This large cohort study did not find an association of influenza vaccination and hospitalization for sickle cell crises in children with sickle cell anemia.

  17. A combined Clostridium perfringens/Trueperella pyogenes inactivated vaccine induces complete immunoprotection in a mouse model.

    PubMed

    Zhang, Wenlong; Wang, Pu; Wang, Bing; Ma, Bo; Wang, Junwei

    2017-05-01

    Clostridium perfringens (C. perfringens) and Trueperella pyogenes (T. pyogenes) are two bacterial pathogens frequently associated with wound infections and following lethal complications in livestock. However, prudent use of antimicrobial agents is highly required given the emergence of multidrug-resistant strains of both bacteria and need for food safety. In the current study, a combined vaccine, composed of inactivated C. perfringens and T. pyogenes, was prepared. The amount of formaldehyde being used to inactivate two bacteria was optimized to retain the immunogenicity of antigens. Three adjuvants were tested for their potency in improving specific immune responses against the candidate antigens. Then inactivated combined C. perfringens/T. pyogenes vaccine was prepared using inactive cultures of two organisms. The ratio of inactive cultures of two organisms for preparation of combined vaccine was optimized to gain effective protective immunity against the two pathogens. Results revealed that combined C. perfringens/T. pyogenes inactive vaccine can elicit high level of exotoxins and cell-associated antigen-specific antibodies and induce complete protection against C. perfringens and T. pyogenes infections in mice. The combined vaccine could be used as an alternative of antibiotics for prevention of C. perfringens and T. pyogenes infections in animals. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  18. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    USDA-ARS?s Scientific Manuscript database

    Purpose: To evaluate and compare humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine. Methods: Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each....

  19. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    USDA-ARS?s Scientific Manuscript database

    Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were va...

  20. Electron-beam-inactivated vaccine against Salmonella enteritidis colonization in molting hens

    USDA-ARS?s Scientific Manuscript database

    Electron Beam (eBeam) ionization technology has a variety of applications in modern society. The underlying hypothesis was that electron beam (eBeam) inactivated Salmonella enterica serovar Enteritidis (SE) cells can serve as a vaccine to control Salmonella colonization and Salmonella shedding in c...

  1. [Development of an inactivated vaccine for the protection of cattle against Aujeszky's disease].

    PubMed

    Straub, O C

    1990-07-01

    The effects of an inactivated strain of Aujeszky's disease vaccine in cattle were investigated. It has not been possible to use vaccines licensed for use in pigs successfully in cattle even though cattle develop neutralizing antibodies to these vaccines. The addition of zinc compounds to the vaccines resulted in protection in cattle. The basis for the use of zinc is discussed. A mutant based vaccine was effective following local administration, but was not when administered parenterally. Anti-prostaglandin was not effective either, despite its successful use in sheep when administered with BHV1. The vaccine presents a prospect for immunising dogs and cats, and the addition of zinc compounds to other drugs and inducers is discussed.

  2. Inactivated- or killed-virus HIV/AIDS vaccines.

    PubMed

    Sheppard, Haynes W

    2005-06-01

    Inactivated or "killed" virus (KV) is a "classical" approach that has produced safe and effective human and veterinary vaccines but has received relatively little attention in the effort to develop an HIV/AIDS vaccine. Initially, KV and rgp120 subunit vaccines were the two most obvious approaches but, unfortunately, rgp120 has not been efficacious and the KV approach has been limited by a variety of scientific, technical, and sociological factors. For example, when responses to cellular antigens, present on SIV grown in human cells, proved to be largely responsible for efficacy, the KV approach was widely discounted. Similarly, when lab-adapted HIV-1 appeared to lose envelope glycoprotein during preparation (not the case for primary isolates), this was viewed as a fundamental barrier to the KV concept. Also, a preference for "safer", genetically-engineered vaccines, and emphasis on cellular immunity, have left KV low on the priority list for funding agencies and investigators. The recent suggestion that "native" trimeric gp120 displays conserved conformational neutralization epitopes, along with the failure of rgp120, and difficulties in raising strong cellular responses with DNA or vectored vaccines, has restored some interest in the KV concept. In the past 15 years, several groups have initiated pre-clinical development of KV candidates for SIV or HIV and promising, albeit limited, information has been produced. In this chapter we discuss the rationale (including pros and cons) for producing and testing killed-HIV vaccines, the prospects for success, the nature and scope of research needed to test the KV concept, what has been learned to date, and what remains undone.

  3. The control of H5 or H7 mildly pathogenic avian influenza: a role for inactivated vaccine.

    PubMed

    Halvorson, David A

    2002-02-01

    Biosecurity is the first line of defence in the prevention and control of mildly pathogenic avian influenza (MPAI). Its use has been highly successful in keeping avian influenza (AI) out of commercial poultry worldwide. However, sometimes AI becomes introduced into poultry populations and, when that occurs, biosecurity again is the primary means of controlling the disease. There is agreement that routine serological monitoring, disease reporting, isolation or quarantine of affected flocks, application of strict measures to prevent the contamination of and movement of people and equipment, and changing flock schedules are necessities for controlling AI. There is disagreement as to the disposition of MPAI-infected flocks: some advocate their destruction and others advocate controlled marketing. Sometimes biosecurity is not enough to stop the spread of MPAI. In general, influenza virus requires a dense population of susceptible hosts to maintain itself. When there is a large population of susceptible poultry in an area, use of an inactivated AI vaccine can contribute to AI control by reducing the susceptibility of the population. Does use of inactivated vaccine assist, complicate or interfere with AI control and eradication? Yes, it assists MPAI control (which may reduce the risk of highly pathogenic AI (HPAI)) but, unless steps are taken to prevent it, vaccination may interfere with sero-epidemiology in the case of an HPAI outbreak. Does lack of vaccine assist, complicate or interfere with AI control and eradication? Yes, it assists in identification of sero-positive (convalescent) flocks in a HPAI eradication program, but it interferes with MPAI control (which in turn may increase the risk of emergence of HPAI).A number of hypothetical concerns have been raised about the use of inactivated AI vaccines. Infection of vaccinated flocks, serology complications and spreading of virus by vaccine crews are some of the hypothetical concerns. The discussion of these concerns

  4. Feline panleukopenia virus, feline herpesvirus-1 and feline calicivirus antibody responses in seronegative specific pathogen-free kittens after parenteral administration of an inactivated FVRCP vaccine or a modified live FVRCP vaccine.

    PubMed

    Lappin, Michael R

    2012-02-01

    Two groups of feline panleukopenia (FPV), feline calicivirus (FCV) and feline herpesvirus 1 (FHV-1) seronegative kittens (six cats per group) were administered one of two feline viral rhinotracheitis, calcivirus and panleukopenia (FVRCP) vaccines subcutaneously (one inactivated and one modified live) and the serological responses to each agent were followed over 49 days (days 0, 2, 5, 7, 10, 14, 21, 28, 35, 42, 49). While the kittens administered the modified live FPV vaccine were more likely to seroconvert on day 7 after the first inoculation than kittens administered the inactivated vaccine, all kittens had seroconverted by day 14. In contrast, FHV-1 serological responses were more rapid following administration of the inactivated FVRCP vaccine when compared with the modified live FVRCP vaccine. There were no statistical differences between the serological response rates between the two FVRCP vaccines in regard to FCV.

  5. The immunogenicity of recombinant vaccines based on modified Vaccinia Ankara (MVA) viruses expressing African horse sickness virus VP2 antigens depends on the levels of expressed VP2 protein delivered to the host.

    PubMed

    Calvo-Pinilla, Eva; Gubbins, Simon; Mertens, Peter; Ortego, Javier; Castillo-Olivares, Javier

    2018-06-01

    African horse sickness (AHS) is a lethal equine disease transmitted by Culicoides biting midges and caused by African horse sickness virus (AHSV). AHS is endemic to sub-Saharan Africa, but devastating outbreaks have been recorded periodically outside this region. The perceived risk of an AHS outbreak occurring in Europe has increased following the frequent epidemics caused in ruminants by bluetongue virus, closely related to AHSV. Attenuated vaccines for AHS are considered unsuitable for use in non-endemic countries due bio-safety concerns. Further, attenuated and inactivated vaccines are not compatible with DIVA (differentiate infected from vaccinated animals) strategies. All these factors stimulated the development of novel AHS vaccines that are safer, more efficacious and DIVA compatible. We showed previously that recombinant modified Vaccinia Ankara virus (MVA) vaccines encoding the outer capsid protein of AHSV (AHSV-VP2) induced virus neutralising antibodies (VNAb) and protection against AHSV in a mouse model and also in the horse. Passive immunisation studies demonstrated that immunity induced by MVA-VP2 was associated with pre-challenge VNAb titres in the vaccinates. Analyses of the inoculum of these MVA-VP2 experimental vaccines showed that they contained pre-formed AHSV-VP2. We continued studying the influence of pre-formed AHSV-VP2, present in the inoculum of MVA-VP2 vaccines, in the immunogenicity of MVA-VP2 vaccines. Thus, we compared correlates of immunity in challenged mice that were previously vaccinated with: a) MVA-VP2 (live); b) MVA-VP2 (live and sucrose gradient purified); c) MVA-VP2 (UV light inactivated); d) MVA-VP2 (UV light inactivated and diluted); e) MVA-VP2 (heat inactivated); f) MVA-VP2 (UV inactivated) + MVA-VP2 (purified); g) MVA-VP2 (heat inactivated) + MVA-VP2 (purified); and h) wild type-MVA (no insert). The results of these experiments showed that protection was maximal using MVA-VP2 (live) vaccine and that the protection

  6. Impact of universal mass vaccination with monovalent inactivated hepatitis A vaccines - A systematic review.

    PubMed

    Stuurman, Anke L; Marano, Cinzia; Bunge, Eveline M; De Moerlooze, Laurence; Shouval, Daniel

    2017-03-04

    The WHO recommends integration of universal mass vaccination (UMV) against hepatitis A virus (HAV) in national immunization schedules for children aged ≥1 year, if justified on the basis of acute HAV incidence, declining endemicity from high to intermediate and cost-effectiveness. This recommendation has been implemented in several countries. Our aim was to assess the impact of UMV using monovalent inactivated hepatitis A vaccines on incidence and persistence of anti-HAV (IgG) antibodies in pediatric populations. We conducted a systematic review of literature published between 2000 and 2015 in PubMed, Cochrane Library, LILACS, IBECS identifying a total of 27 studies (Argentina, Belgium, China, Greece, Israel, Panama, the United States and Uruguay). All except one study showed a marked decline in the incidence of hepatitis A post introduction of UMV. The incidence in non-vaccinated age groups decreased as well, suggesting herd immunity but also rising susceptibility. Long-term anti-HAV antibody persistence was documented up to 17 y after a 2-dose primary vaccination. In conclusion, introduction of UMV in countries with intermediate endemicity for HAV infection led to a considerable decrease in the incidence of hepatitis A in vaccinated and in non-vaccinated age groups alike.

  7. Cost Effectiveness of Influenza Vaccine for U.S. Children: Live Attenuated and Inactivated Influenza Vaccine.

    PubMed

    Shim, Eunha; Brown, Shawn T; DePasse, Jay; Nowalk, Mary Patricia; Raviotta, Jonathan M; Smith, Kenneth J; Zimmerman, Richard K

    2016-09-01

    Prior studies showed that live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in children aged 2-8 years, supporting the Centers for Disease Control and Prevention (CDC) recommendations in 2014 for preferential LAIV use in this age group. However, 2014-2015 U.S. effectiveness data indicated relatively poor effectiveness of both vaccines, leading CDC in 2015 to no longer prefer LAIV. An age-structured model of influenza transmission and vaccination was developed, which incorporated both direct and indirect protection induced by vaccination. Based on this model, the cost effectiveness of influenza vaccination strategies in children aged 2-8 years in the U.S. was estimated. The base case assumed a mixed vaccination strategy where 33.3% and 66.7% of vaccinated children aged 2-8 years receive LAIV and IIV, respectively. Analyses were performed in 2014-2015. Using published meta-analysis vaccine effectiveness data (83% LAIV and 64% IIV), exclusive LAIV use would be a cost-effective strategy when vaccinating children aged 2-8 years, whereas IIV would not be preferred. However, when 2014-2015 U.S. effectiveness data (0% LAIV and 15% IIV) were used, IIV was likely to be preferred. The cost effectiveness of influenza vaccination in children aged 2-8 years is highly dependent on vaccine effectiveness; the vaccine type with higher effectiveness is preferred. In general, exclusive IIV use is preferred over LAIV use, as long as vaccine effectiveness is higher for IIV than for LAIV. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. A national reference for inactivated polio vaccine derived from Sabin strains in Japan.

    PubMed

    Shirato, Haruko; Someya, Yuichi; Ochiai, Masaki; Horiuchi, Yoshinobu; Takahashi, Motohide; Takeda, Naokazu; Wakabayashi, Kengo; Ouchi, Yasumitsu; Ota, Yoshihiro; Tano, Yoshio; Abe, Shinobu; Yamazaki, Shudo; Wakita, Takaji

    2014-09-08

    As one aspect of its campaign to eradicate poliomyelitis, the World Health Organization (WHO) has encouraged development of the inactivated polio vaccine (IPV) derived from the Sabin strains (sIPV) as an option for an affordable polio vaccine, especially in low-income countries. The Japan Poliomyelitis Research Institute (JPRI) inactivated three serotypes of the Sabin strains and made sIPV preparations, including serotypes 1, 2 and 3 D-antigens in the ratio of 3:100:100. The National Institute of Infectious Diseases, Japan, assessed the immunogenic stability of these sIPV preparations in a rat potency test, according to an evaluation method recommended by the WHO. The immunogenicity of the three serotypes was maintained for at least 4 years when properly stored under -70°C. Based on these data, the sIPV preparations made by JPRI have been approved as national reference vaccines by the Japanese national control authority and used for the quality control of the tetracomponent sIPV-containing diphtheria-tetanus-acellular pertussis combination vaccines that were licensed for a routine polio immunization in Japan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Efficacy of an inactivated feline panleucopenia virus vaccine against a canine parvovirus isolated from a domestic cat.

    PubMed

    Gamoh, K; Senda, M; Inoue, Y; Itoh, O

    2005-09-03

    Canine parvovirus type 2a (CPV-2a) and type 2b (CPV-2b) have recently been isolated from cats throughout the world, and CPV-2b strain FP84 has been reported to be virulent in domestic cats. Although live feline panleucopenia virus (FPLV) vaccines protect domestic cats from CPV infection, the efficacy of inactivated FPLV vaccines has not been established. In this study, two domestic cats were vaccinated with a commercial inactivated FPLV vaccine and challenged with CPV-2b strain FP84 isolated from a domestic cat. The cats were protected against CPV-2b strain FP84 infection and their clinical signs were suppressed, although the two unvaccinated cats showed the typical clinical signs of parvovirus infection.

  10. A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular immunity and protects against lethal West Nile virus infection in aged mice.

    PubMed

    Pinto, Amelia K; Richner, Justin M; Poore, Elizabeth A; Patil, Pradnya P; Amanna, Ian J; Slifka, Mark K; Diamond, Michael S

    2013-02-01

    West Nile virus (WNV) is an emerging pathogen that is now the leading cause of mosquito-borne and epidemic encephalitis in the United States. In humans, a small percentage of infected individuals develop severe neuroinvasive disease, with the greatest relative risk being in the elderly and immunocompromised, two populations that are difficult to immunize effectively with vaccines. While inactivated and subunit-based veterinary vaccines against WNV exist, currently there is no vaccine or therapy available to prevent or treat human disease. Here, we describe the generation and preclinical efficacy of a hydrogen peroxide (H(2)O(2))-inactivated WNV Kunjin strain (WNV-KUNV) vaccine as a candidate for further development. Both young and aged mice vaccinated with H(2)O(2)-inactivated WNV-KUNV produced robust adaptive B and T cell immune responses and were protected against stringent and lethal intracranial challenge with a heterologous virulent North American WNV strain. Our studies suggest that the H(2)O(2)-inactivated WNV-KUNV vaccine is safe and immunogenic and may be suitable for protection against WNV infection in vulnerable populations.

  11. Experimental iron-inactivated Pasteurella multocida A: 1 vaccine adjuvanted with bacterial DNA is safe and protects chickens from fowl cholera.

    PubMed

    Herath, Chitra; Kumar, Pankaj; Singh, Mithilesh; Kumar, Devender; Ramakrishnan, Saravanan; Goswami, Tapas Kumar; Singh, Ajit; Ram, G C

    2010-03-08

    Fowl cholera is a serious problem in large and small scale poultry production. The present study describes the development and testing of an inactivated whole-cell, low-cost, safe, and effective vaccine for fowl cholera based on a previous work (Vaccine 23:5590-5598). Pasteurella multocida A: 1 grown in the presence of low FeCl(3) concentrations, inactivated with higher concentrations of FeCl(3), and adjuvanted with bacterial DNA from P. multocida B: 2 containing immunostimulatory CpG motifs protect chickens with a lethal P. multocida A: 1 challenge. Chickens were immunized with two whole-cell inactivated vaccine doses at 4 weeks apart and challenged 4 weeks after booster immunization. Experimental vaccines were pure, easy injectable, and caused very little distress in chickens due to their aqueous consistency. Vaccines and bacterial DNA (bDNA) posed no safety problems when chickens were injected subcutaneously (s.c.) with a single, double, and overdose of these preparations. Immunized chickens produced systemic IgY antibodies (Ab) responses and vaccine adjuvanted with bDNA protected 100% chickens from lethal intrapertoneal (i.p.) P. multocida A: 1 challenge. This work suggests that use of bDNA as an adjuvant can improve the cost-effectiveness of inactivated veterinary vaccines for their use in developing countries. Our future studies will focus on safety and potency evaluation of experimental and current vaccines using bDNA as an adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Co-administration of live measles and yellow fever vaccines and inactivated pentavalent vaccines is associated with increased mortality compared with measles and yellow fever vaccines only. An observational study from Guinea-Bissau.

    PubMed

    Fisker, Ane Bærent; Ravn, Henrik; Rodrigues, Amabelia; Østergaard, Marie Drivsholm; Bale, Carlito; Benn, Christine Stabell; Aaby, Peter

    2014-01-23

    Studies from low-income countries indicate that co-administration of inactivated diphtheria-tetanus-pertussis (DTP) vaccine and live attenuated measles vaccine (MV) is associated with increased mortality compared with receiving MV only. Pentavalent (DTP-H. Influenza type B-Hepatitis B) vaccine is replacing DTP in many low-income countries and yellow fever vaccine (YF) has been introduced to be given together with MV. Pentavalent and YF vaccines were introduced in Guinea-Bissau in 2008. We investigated whether co-administration of pentavalent vaccine with MV and yellow fever vaccine has similar negative effects. In 2007-2011, we conducted a randomised placebo-controlled trial of vitamin A at routine vaccination contacts among children aged 6-23 months in urban and rural Guinea-Bissau. In the present study, we included 2331 children randomised to placebo who received live vaccines only (MV or MV+YF) or a combination of live and inactivated vaccines (MV+DTP or MV+YF+pentavalent). Mortality was compared in Cox proportional hazards models stratified for urban/rural enrolment adjusted for age and unevenly distributed baseline factors. While DTP was still used 685 children received MV only and 358 MV+DTP; following the change in programme, 940 received MV+YF only and 348 MV+YF+pentavalent. During 6 months of follow-up, the adjusted mortality rate ratio (MRR) for co-administered live and inactivated vaccines compared with live vaccines only was 3.24 (1.20-8.73). For MV+YF+pentavalent compared with MV+YF only, the adjusted MRR was 7.73 (1.79-33.4). In line with previous studies of DTP, the present results indicate that pentavalent vaccine co-administered with MV and YF is associated with increased mortality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Oral vaccination of cattle with heat inactivated Mycobacterium bovis does not compromise bovine TB diagnostic tests.

    PubMed

    Jones, Gareth J; Steinbach, Sabine; Sevilla, Iker A; Garrido, Joseba M; Juste, Ramon; Vordermeier, H Martin

    2016-12-01

    In this study we investigated whether oral uptake of a heat inactivated M. bovis wildlife vaccine by domestic cattle induced systemic immune responses that compromised the use of tuberculin or defined antigens in diagnostic tests for bovine TB. Positive skin test and blood-based IFN-γ release assay (IGRA) results were observed in all calves vaccinated via the parenteral route (i.e. intramuscular). In contrast, no positive responses to tuberculin or defined antigens were observed in either the skin test or IGRA test when performed in calves vaccinated via the oral route. In conclusion, our results suggest that the heat inactivated M. bovis vaccine could be used to vaccinate wildlife in a baited form in conjunction with the following in cattle: (i) continuation of existing tuberculin skin testing or novel skin test formats based on defined antigens; and (ii) the use of IGRA tests utilizing tuberculin or defined antigens. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  14. Monitoring the bulk milk antibody response to bovine viral diarrhea in dairy herds vaccinated with inactivated vaccines.

    PubMed

    Gonzalez, A M; Arnaiz, I; Eiras, C; Camino, F; Sanjuán, M L; Yus, E; Diéguez, F J

    2014-01-01

    This study was designed to determine long-term responses in dairy herds after vaccination with 1 of 3 inactivated bovine viral diarrhea virus (BVDV) vaccines with regard to antibodies against p80 protein in bulk tank milk samples, as detected by ELISA. In the present study, 29 dairy herds were vaccinated with Bovilis BVD (MSD Animal Health, Milton Keynes, UK), 11 with Hiprabovis Balance (Laboratorios Hipra, Amer, Spain), and 9 with Pregsure BVD (Zoetis, Florham Park, NJ). In these herds, bulk tank milk samples were collected and examined at the time of the first vaccination and every 6 mo during a 3-yr period. Samples were analyzed with a commercial ELISA test for the p80 protein of BVDV. The results demonstrated that vaccination affected the level of antibodies against p80. Hence, vaccination status should be taken into consideration when interpreting bulk tank milk antibody tests. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Experimental induction of chicken amyloid A amyloidosis in white layer chickens by inoculation with inactivated vaccines.

    PubMed

    Habibi, Wazir Ahmad; Hirai, Takuya; Niazmand, Mohammad Hakim; Okumura, Naoko; Yamaguchi, Ryoji

    2017-10-01

    We investigated the amyloidogenic potential of inactivated vaccines and the localized production of serum amyloid A (SAA) at the injection site in white layer chickens. Hens in the treated group were injected intramuscularly three times with high doses of inactivated oil-emulsion Salmonella Enteritidis vaccine and multivalent viral and bacterial inactivated oil-emulsion vaccines at two-week intervals. Chickens in the control group did not receive any inoculum. In the treated group, emaciation and granulomas were present, while several chickens died between 4 and 6 weeks after the first injection. Hepatomegaly was seen at necropsy, and the liver parenchyma showed inconsistent discolouration with patchy green to yellowish-brown areas, or sometimes red-brown areas with haemorrhage. Amyloid deposition in the liver, spleen, duodenum, and at injection sites was demonstrated using haematoxylin and eosin staining, Congo red, and immunohistochemistry. The incidence of chicken amyloid A (AA) amyloidosis was 47% (28 of 60) in the treated group. In addition, RT-PCR was used to identify chicken SAA mRNA expression in the liver and at the injection sites. Furthermore, SAA mRNA was detected by in situ hybridization in fibroblasts at the injection sites, and also in hepatocytes. We believe that this is the first report of the experimental induction of systemic AA amyloidosis in white layer chickens following repeated inoculation with inactivated vaccines without the administration of amyloid fibrils or other amyloid-enhancing factors.

  16. Trivalent inactivated influenza vaccine and spontaneous abortion.

    PubMed

    Irving, Stephanie A; Kieke, Burney A; Donahue, James G; Mascola, Maria A; Baggs, James; DeStefano, Frank; Cheetham, T Craig; Jackson, Lisa A; Naleway, Allison L; Glanz, Jason M; Nordin, James D; Belongia, Edward A

    2013-01-01

    To estimate the association between spontaneous abortion and influenza vaccine receipt with a case-control study utilizing data from six health care organizations in the Vaccine Safety Datalink. Women aged 18-44 years with spontaneous abortion during the autumn of 2005 or 2006 were identified using International Classification of Diseases, 9th Revision, Clinical Modification codes. Cases of spontaneous abortion at 5-16 weeks of gestation were confirmed by medical record review; date of fetal demise was based on ultrasound information when available. Control group individuals with a live birth were individually matched to case group individuals by health care organization and date of last menstrual period (LMP). The primary exposure of interest was influenza vaccination during the 28 days preceding the date of spontaneous abortion of the matched pair. Conditional logistic regression models adjusted for maternal age, health care utilization, maternal diabetes, and parity. Our final analysis included 243 women with spontaneous abortion and 243 matched control group women; 82% of women with spontaneous abortion had ultrasound confirmation of fetal demise. Using clinical diagnosis and ultrasound data, the mean gestational age at fetal demise was 7.8 weeks. Mean ages at LMP of case group women and control group women were 31.7 and 29.3 years, respectively (P<.001). Sixteen women with spontaneous abortion (7%) and 15 (6%) matched control group women received influenza vaccine within the 28-day exposure window. There was no association between spontaneous abortion and influenza vaccination in the 28-day exposure window (adjusted matched odds ratio 1.23, 95% confidence interval 0.53-2.89; P=.63). There was no statistically significant increase in the risk of pregnancy loss in the 4 weeks after seasonal inactivated influenza vaccination. II.

  17. European Pharmacopoeia biological reference preparation for poliomyelitis vaccine (inactivated): collaborative study for the establishment of batch No. 3.

    PubMed

    Martin, J; Daas, A; Milne, C

    2016-01-01

    Inactivated poliomyelitis vaccines are an important part of the World Health Organization (WHO) control strategy to eradicate poliomyelitis. Requirements for the quality control of poliomyelitis vaccines (inactivated) include the use of an in vitro D antigen quantification assay for potency determination on the final lot as outlined in the European Pharmacopoeia (Ph. Eur.) monograph 0214. Performance of this assay requires a reference preparation calibrated in International Units (IU). A Ph. Eur. biological reference preparation (BRP) for poliomyelitis vaccine (inactivated) calibrated in IU has been established for this purpose. Due to the dwindling stocks of batch 2 of the BRP a collaborative study was run as part of the European Directorate for the Quality of Medicines & HealthCare (EDQM) Biological Standardisation Programme to establish BRP batch 3 (BRP3). Twelve laboratories including Official Medicines Control Laboratories (OMCLs) and manufacturers participated. The candidate BRP3 (cBRP3) was from the same source and had the same characteristics as BRP batch 2 (BRP2). During the study the candidate was calibrated against the 3 rd International Standard for inactivated poliomyelitis vaccine using in-house D antigen ELISA assays in line with the Ph. Eur. monograph 0214. The candidate was also compared to BRP2 to evaluate the continuity. Based on the results of the study, values of 320 DU/mL, 78 DU/mL and 288 DU/mL (D antigen units/mL) (IU) for poliovirus type 1, 2 and 3 respectively were assigned to the candidate. In June 2016, the Ph. Eur. Commission adopted the material as Ph. Eur. BRP for poliomyelitis vaccine (inactivated) batch 3.

  18. Quantifying benefits and risks of vaccinating Australian children aged six months to four years with trivalent inactivated seasonal influenza vaccine in 2010.

    PubMed

    Kelly, H; Carcione, D; Dowse, G; Effler, P

    2010-09-16

    Australian and New Zealand health authorities identified seasonal trivalent inactivated influenza vaccines manufactured by CSL Biotherapies as the probable cause of increased febrile convulsions in children under five within 24 hours of vaccination and recommended against their use in this age group. We quantified the benefit-risk profile of the CSL vaccines using the number needed to vaccinate and suggest they might have caused two to three hospital admissions due to febrile convulsions for every hospital admission due to influenza prevented.

  19. Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.

    PubMed

    Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming

    2010-07-26

    Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.

  20. An inactivated gE-deleted pseudorabies vaccine provides complete clinical protection and reduces virus shedding against challenge by a Chinese pseudorabies variant.

    PubMed

    Wang, Jichun; Guo, Rongli; Qiao, Yongfeng; Xu, Mengwei; Wang, Zhisheng; Liu, Yamei; Gu, Yiqi; Liu, Chang; Hou, Jibo

    2016-12-07

    Since the end of 2011 an outbreak of pseudorabies affected Chinese pig herds that had been vaccinated with the commercial vaccine made of Bartha K61 strain. It is now clear that the outbreak was caused by an emergent PRV variant. Even though vaccines made of PRV Bartha K61 strain can confer certain cross protection against PRV variants based on experimental data, less than optimal clinical protection and virus shedding reduction were observed, making the control or eradication of this disease difficult. An infectious clone of PRV AH02LA strain was constructed to generate a gE deletion mutant PRV(LA-A B ) strain. PRV(LA-A B ) strain can reach a titer of 10 8.43 TCID 50 /mL (50% tissue culture infectious dose) on BHK-21 cells. To evaluate the efficiency of the inactivated vaccine made of PRV(LA-A B ) strain, thirty 3-week-old PRV-negative piglets were divided randomly into six groups for vaccination and challenge test. All five piglets in the challenge control showed typical clinical symptoms of pseudorabies post challenge. Sneezing and nasal discharge were observed in four and three piglets in groups C(vaccinated with inactivated PRV Bartha K61 strain vaccine) and D(vaccinated with live PRV Bartha K61 strain vaccine) respectively. In contrast, piglets in both groups A(vaccinated with inactivated PRV LA-AB strain vaccine) and B(vaccinated with inactivated PRV LA-A B strain vaccine with adjuvant) presented mild or no clinical symptoms. Moreover, viral titers detected via nasal swabs were approximately 100 times lower in group B than in the challenge control, and the duration of virus shedding (3-4 days) was shorter than in either the challenge control (5-10 days) or groups C and D (5-6 days). The infectious clone constructed in this study harbors the whole genome of the PRV variant AH02LA strain. The gE deletion mutant PRV(LA-A B )strain generated from PRV AH02LA strain can reach a high titer on BHK-21 cells. An inactivated vaccine of PRV LA-A B provides clinical

  1. Comparative Effectiveness of Two Oil Adjuvant-Inactivated Avian Influenza H9N2 Vaccines.

    PubMed

    Kilany, Walid H; Bazid, Abdel-Hamid I; Ali, Ahmed; El-Deeb, Ayman H; El-Abideen, Mohamed A Zain; Sayed, Magdy El; El-Kady, Magdy F

    2016-05-01

    Low pathogenic avian influenza H9N2 virus infection has been an important risk to the Egyptian poultry industry since 2011. Economic losses have occurred from early infection and co-infection with other pathogens. Therefore, H9N2 vaccination of broiler chicks as young as 7 days old was recommended. The current inactivated H9N2 vaccines (0.5 ml/bird) administered at a reduced dose (0.25 ml/bird) do not guarantee the delivery of an effective dose for broilers. In this study, the efficacy of the reduced-dose volume (0.3 ml/bird), compared with the regular vaccine dose (0.5 ml/bird) of inactivated H9N2 vaccines using two different commercially available adjuvants, was investigated. The vaccines were prepared from the local H9N2 virus (Ck/EG/114940v/NLQP/11) using the same antigen content: 300 hemagglutinating units. Postvaccination (PV) immune response was monitored using the hemagglutination inhibition test. At 4 wk PV, both vaccinated groups were challenged using the homologous H9N2 strain at a 50% egg infective dose (EID50) of 10(6) EID50/bird via the intranasal route. Clinical signs, mortality, and virus shedding in oropharyngeal swabs were monitored at 2, 4, 6, and 10 days postchallenge (DPC). The reduced-dose volume of vaccine induced a significantly faster and higher immune response than the regular volume of vaccine at 2 and 3 wk PV. No significant difference in virus shedding between the two vaccine formulas was found (P ≥ 0.05), and both vaccines were able to stop virus shedding by 6 DPC. The reduced-dose volume of vaccine using a suitable oil adjuvant and proper antigen content can be used effectively for early immunization of broiler chicks.

  2. Impact of universal mass vaccination with monovalent inactivated hepatitis A vaccines – A systematic review

    PubMed Central

    Stuurman, Anke L.; Marano, Cinzia; Bunge, Eveline M.; De Moerlooze, Laurence; Shouval, Daniel

    2017-01-01

    ABSTRACT The WHO recommends integration of universal mass vaccination (UMV) against hepatitis A virus (HAV) in national immunization schedules for children aged ≥1 year, if justified on the basis of acute HAV incidence, declining endemicity from high to intermediate and cost-effectiveness. This recommendation has been implemented in several countries. Our aim was to assess the impact of UMV using monovalent inactivated hepatitis A vaccines on incidence and persistence of anti-HAV (IgG) antibodies in pediatric populations. We conducted a systematic review of literature published between 2000 and 2015 in PubMed, Cochrane Library, LILACS, IBECS identifying a total of 27 studies (Argentina, Belgium, China, Greece, Israel, Panama, the United States and Uruguay). All except one study showed a marked decline in the incidence of hepatitis A post introduction of UMV. The incidence in non-vaccinated age groups decreased as well, suggesting herd immunity but also rising susceptibility. Long-term anti-HAV antibody persistence was documented up to 17 y after a 2-dose primary vaccination. In conclusion, introduction of UMV in countries with intermediate endemicity for HAV infection led to a considerable decrease in the incidence of hepatitis A in vaccinated and in non-vaccinated age groups alike. PMID:27786671

  3. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response.

    PubMed

    Tzeng, Stephany Y; McHugh, Kevin J; Behrens, Adam M; Rose, Sviatlana; Sugarman, James L; Ferber, Shiran; Langer, Robert; Jaklenec, Ana

    2018-05-21

    Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule-based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. Copyright © 2018 the Author(s). Published by PNAS.

  4. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response

    PubMed Central

    Tzeng, Stephany Y.; McHugh, Kevin J.; Behrens, Adam M.; Rose, Sviatlana; Sugarman, James L.; Ferber, Shiran; Jaklenec, Ana

    2018-01-01

    Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule–based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. PMID:29784798

  5. Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy.

    PubMed

    Miller, Elizabeth; Spadaccia, Meredith; Sabado, Rachel; Chertova, Elena; Bess, Julian; Trubey, Charles Mac; Holman, Rose Marie; Salazar, Andres; Lifson, Jeffrey; Bhardwaj, Nina

    2015-01-03

    Therapeutic interventions for HIV-1 that successfully augment adaptive immunity to promote killing of infected cells may be a requisite component of strategies to reduce latent cellular reservoirs. Adoptive immunotherapies utilizing autologous monocyte-derived dendritic cells (DCs) that have been activated and antigen loaded ex vivo may serve to circumvent defects in DC function that are present during HIV infection in order to enhance adaptive immune responses. Here we detail the clinical preparation of DCs loaded with autologous aldrithiol-2 (AT-2)-inactivated HIV that have been potently activated with the viral mimic, Polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose (Poly-ICLC). HIV is first propagated from CD4+ T cells from HIV-infected donors and then rendered non-replicative by chemical inactivation with aldrithiol-2 (AT-2), purified, and quantified. Viral inactivation is confirmed through measurement of Tat-regulated β-galactosidase reporter gene expression following infection of TZM-bl cells. In-process testing for sterility, mycoplasma, LPS, adventitious agents, and removal of AT-2 is performed on viral preparations. Autologous DCs are generated and pulsed with autologous AT-2-inactivated virus and simultaneously stimulated with Poly-ICLC to constitute the final DC vaccine product. Phenotypic identity, maturation, and induction of HIV-specific adaptive immune responses are confirmed via flow cytometric analysis of DCs and cocultured autologous CD4+ and CD8+ T cells. Lot release criteria for the DC vaccine have been defined in accordance with Good Manufacturing Practice (GMP) guidelines. The demonstrated feasibility of this approach has resulted in approval by the FDA for investigational use in antiretroviral (ART) suppressed individuals. We discuss how this optimized DC formulation may enhance the quality of anti-HIV adaptive responses beyond what has been previously observed during DC immunotherapy trials for HIV infection. Copyright

  6. Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles.

    PubMed

    Rueda, P; Fominaya, J; Langeveld, J P; Bruschke, C; Vela, C; Casal, J I

    2000-11-22

    We have demonstrated earlier the usefulness of recombinant porcine parvovirus (PPV) virus-like particles (VLPs) as an efficient recombinant vaccine for PPV. Here, we have demonstrated that preparations of PPV VLPs could be contaminated by recombinant baculoviruses. Since these baculoviruses can be a problem for the registration and safety requirements of the recombinant vaccine, we have tested different baculovirus inactivation strategies, studying simultaneously the integrity and immunogenicity of the VLPs. These methods were pasteurization, treatment with detergents and alkylation with binary ethylenimine (BEI). The structural and functional integrity of the PPV VLPs after the inactivation treatments were analyzed by electron microscopy, hemagglutination, double antibody sandwich (DAS)-ELISA and immunogenicity studies. Binary ethylenimine and Triton X-100 inactivated particles maintained all the original structural and antigenic properties. In addition, PPV VLPs were subjected to size-exclusion chromatography to analyze the presence of VP2 monomers or any other contaminant. The resulting highly purified material was used as the standard of reference to quantify PPV VLPs in order to determine the dose of vaccine by DAS-ELISA. After immunization experiments in guinea pigs, the antibody titers obtained with all the inactivation procedures were very similar. Triton X-100 treatment was selected for further testing in animals because of the speed, simplicity and safety of the overall procedure.

  7. Inactivated poliovirus vaccine and the final stages of poliovirus eradication.

    PubMed

    Hovi, T

    2001-03-21

    The use of the inactivated poliovirus vaccine (IPV) will increase before and probably also after the global eradication of the wild type poliovirus. Before eradication, the switch from the use of oral poliovirus vaccine (OPV) to IPV has been due to the better safety record of IPV. Introduction of IPV in the regular immunisation schedules is made easier by the development of several combination vaccines, including IPV. Maternal antibodies and young age, often considered problematic for early initiation of IPV schedules, did not compromise optimal maintenance of seropositivity during infancy or long-term persisting antibody levels in our studies. OPV-derived, potentially pathogenic and transmissible poliovirus strains, excreted by some individuals for years, may present a problem for a blunt stopping of all polio immunisations after eradication. Our recent results suggest that locally excreted IgA might have a role in the elimination of poliovirus infection in the intestinal tissues.

  8. Prospects for new viral vaccines.

    PubMed

    Marmion, B P

    1980-08-11

    Animal virology has made outstanding contributions to preventive medicine by the development of vaccines for the control of infectious disease in man and animals. Cost-benefit analysis indicates substantial savings in health care costs from the control of diseases such as smallpox, poliomyelitis, yellow fever and measels. Areas for further development include vaccines for influenza (living, attenuated virus), the herpes group (varicella: cytomegalovirus), respiratory syncytial virus, rotavirus and hepatitis A, B, and non A/non B. The general options for vaccine formulation are discussed with particular emphasis on approaches with the use of viral genetics to 'tailor make' vaccine viruses with defined growth potential in laboratory systems, low pathogenicity, and defined antigens. Current progress with the development of an inactivated hepatitis B vaccine is reviewed as a case study in vaccine development. The impact of recent experiments in cloning hepatitis B virus DNA in E. coli on the production of a purified viral polypeptide vaccine is assessed.

  9. Protective effect of inactivated hepatitis A vaccine against the outbreak of hepatitis A in an open rural community

    PubMed Central

    Shen, Yue-Gen; Gu, Xie-Jun; Zhou, Jian-Hong

    2008-01-01

    AIM: To evaluate the protective effect of inactivated hepatitis A vaccine (Healive®) against hepatitis A outbreak in an emergency vaccination campaign. METHODS: During an outbreak of hepatitis A in Honghe Town, Xiuzhou District, Jiaxing City, Zhejiang Province, two nonrandomized controlled trials were conducted in September 2006. The first trial was to vaccinate 108 anti-HAV negative individuals with close contacts of the patients from September with 1 dose of an inactivated hepatitis A vaccine, Healive®. The control group comprised of 115 individuals with close contacts of the patients before September. The second trial was to vaccinate 3365 primary and secondary school students who volunteered to receive a dose of Healive® and 2572 students who did not receive Healive® serving as its controls. An epidemiological survey was conducted to evaluate the protective efficacy of the vaccine. RESULTS: A total of 136 hepatitis A cases were reported during an outbreak that started in June, peaked in August and September, and ended after December of 2006. After a massive vaccination of school children in September, the number of cases declined significantly. No hepatitis A was detected in the 108 vaccinated individuals with close contacts of patients, whereas 4 cases of hepatitis A were found in the controls. The infection rate of hepatitis A was not significantly different in the individuals with close contacts of patients whether or not they received the vaccine (P = 0.122). No hepatitis A was detected in the 3365 students who received the vaccine, four cases of hepatitis A were found in the controls. The infection rate of students with or without vaccination was significantly different in the students who received the vaccine (0/3365 vs 4/2572, P = 0.035). The protective efficacy of the vaccine was 100%. CONCLUSION: Inactivated hepatitis A vaccine demonstrates a good protective effect against an outbreak of hepatitis A. PMID:18461664

  10. Comparison of immune persistence among inactivated and live attenuated hepatitis a vaccines 2 years after a single dose.

    PubMed

    Zhang, Xiaoshu; An, Jing; Tu, Aixia; Liang, Xuefeng; Cui, Fuqiang; Zheng, Hui; Tang, Yu; Liu, Jianfeng; Wang, Xuxia; Zhang, Ningjing; Li, Hui

    2016-09-01

    Compare immune persistence from one dose of each of 3 different hepatitis A vaccines when given to school-age children: a domestic, live attenuated hepatitis A vaccine (H2 vaccine); a domestic inactivated hepatitis A vaccine (Healive®); and an imported, inactivated hepatitis A vaccine (Havrix®),. School-age children were randomized into 1 of 4 groups to receive a single dose of a vaccine: H2 vaccine, Healive®, Havrix®, or hepatitis B vaccine [control]. Serum samples were collected 12 and 24 months after vaccination for measurement of anti-HAV IgG using microparticle enzyme immunoassay. Seropositivity was defined as ≥ 20 mUI/ml. We compared groups on seropositivity and geometric mean concentration (GMC). Seropositive rates for the H2, Healive®, Havrix®, and control groups were 64%, 94.4%, 73%, and 1.0%, respectively, 12-months post-vaccination; and 63%, 95.6%, 72%, and 1.0%, respectively 24-months post-vaccination. Seropositivity was greater for Healive® than for H2 and Havrix® at 12 months (p-values < 0.001) and 24 months (p-values < 0.0001). Average GMCs for the H2, Healive®, Havrix®, and control groups, in mIU/ml, were 29.7, 81.0, 36.4, and 2.9, respectively at 12 months, and 30.9, 112.2, 44.3, and 2.9, respectively, at 24 months. GMCs were greater for Healive® than for H2 and Havrix® at 12 months (p-values < 0.0001 and < 0.001, respectively) and 24 months (p-values < 0.001). No statistically significant differences in seropositivity or GMC were found within groups between 12 and 24 months. Immunity persisted 24 months after a single dose of inactivated hepatitis A vaccine and live attenuated hepatitis A vaccine.

  11. Extrapolating theoretical efficacy of inactivated influenza A/H5N1 virus vaccine from human immunogenicity studies

    PubMed Central

    Feldstein, Leora R.; Matrajt, Laura; Halloran, M. Elizabeth; Keitel, Wendy A.; Longini, Ira M.

    2016-01-01

    Influenza A virus subtype H5N1 has been a public health concern for almost 20 years due to its potential ability to become transmissible among humans. Phase I and II clinical trials have assessed safety, reactogenicity and immunogenicity of inactivated influenza A/H5N1 virus vaccines. A shortage of vaccine is likely to occur during the first months of a pandemic. Hence, determining whether to give one dose to more people or two doses to fewer people to best protect the population is essential. We use hemagglutination-inhibition antibody titers as an immune correlate for avian influenza vaccines. Using an established relationship to obtain a theoretical vaccine efficacy from immunogenicity data from thirteen arms of six phase I and phase II clinical trials of inactivated influenza A/H5N1 virus vaccines, we assessed: 1) the proportion of theoretical vaccine efficacy achieved after a single dose (defined as primary response level), and 2) whether theoretical efficacy increases after a second dose, with and without adjuvant. Participants receiving vaccine with AS03 adjuvant had higher primary response levels (range: 0.48–0.57) compared to participants receiving vaccine with MF59 adjuvant (range: 0.32–0.47), with no observed trends in primary response levels by antigen dosage. After the first and second doses, vaccine with AS03 at dosage levels 3.75, 7.5 and 15 mcg had the highest estimated theoretical vaccine efficacy: Dose 1) 45% (95%CI: 36–57%), 53% (95%CI: 42–63%) and 55% (95%CI: 44–64%), respectively and Dose 2) 93% (95%CI: 89–96%), 97% (95%CI: 95–98%) and 97% (95%CI: 96–100%), respectively. On average, the estimated theoretical vaccine efficacy of lower dose adjuvanted vaccines (AS03 and MF59) was 17% higher than that of higher dose unadjuvanted vaccines, suggesting that including an adjuvant is dose-sparing. These data indicate adjuvanted inactivated influenza A/H5N1 virus vaccine produces high theoretical efficacy after two doses to protect

  12. Lessons Learned From the Introduction of Inactivated Poliovirus Vaccine in Bangladesh.

    PubMed

    Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I; Billah, Mallick M; Chai, Shua J; Wassilak, Steven G; Heffelfinger, James D; Zaman, K

    2017-07-01

    We assessed programmatic adaptations and infants' uptake of inactivated poliovirus vaccine (IPV) after its introduction into the routine immunization schedule in Bangladesh. Using convenience and probability sampling, we selected 23 health facilities, 36 vaccinators, and 336 caregivers, within 5 districts and 3 city corporations. We collected data during August-October 2015 by conducting interviews, reviewing vaccination records, and observing activities. Knowledge about IPV was high among vaccinators (94%). No problems with IPV storage, transport, or waste disposal were detected, but shortages were reported in 20 health facilities (87%). Wastage per 5-dose vaccine vial was above the recommended 30% in 20 health facilities (87%); all were related to providing <5 doses per open vial. Among eligible infants, 87% and 86% received the third dose of pentavalent and oral poliovirus vaccine, respectively, but only 65% received IPV at the same visit. Among 73 infants not vaccinated with IPV, 58% of caregivers reported that vaccine was unavailable. Bangladesh successfully introduced IPV, but shortages related to insufficient global supply and high vaccine wastage in small outreach immunization sessions might reduce its impact on population immunity. Minimizing wastage and use of a 2-dose fractional-IPV schedule could extend IPV immunization to more children. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  13. Intranasal and sublingual delivery of inactivated polio vaccine.

    PubMed

    Kraan, Heleen; Soema, Peter; Amorij, Jean-Pierre; Kersten, Gideon

    2017-05-09

    Polio is on the brink of eradication. Improved inactivated polio vaccines (IPV) are needed towards complete eradication and for the use in the period thereafter. Vaccination via mucosal surfaces has important potential advantages over intramuscular injection using conventional needle and syringe, the currently used delivery method for IPV. One of them is the ability to induce both serum and mucosal immune responses: the latter may provide protection at the port of virus entry. The current study evaluated the possibilities of polio vaccination via mucosal surfaces using IPV based on attenuated Sabin strains. Mice received three immunizations with trivalent sIPV via intramuscular injection, or via the intranasal or sublingual route. The need of an adjuvant for the mucosal routes was investigated as well, by testing sIPV in combination with the mucosal adjuvant cholera toxin. Both intranasal and sublingual sIPV immunization induced systemic polio-specific serum IgG in mice that were functional as measured by poliovirus neutralization. Intranasal administration of sIPV plus adjuvant induced significant higher systemic poliovirus type 3 neutralizing antibody titers than sIPV delivered via the intramuscular route. Moreover, mucosal sIPV delivery elicited polio-specific IgA titers at different mucosal sites (IgA in saliva, fecal extracts and intestinal tissue) and IgA-producing B-cells in the spleen, where conventional intramuscular vaccination was unable to do so. However, it is likely that a mucosal adjuvant is required for sublingual vaccination. Further research on polio vaccination via sublingual mucosal route should include the search for safe and effective adjuvants, and the development of novel oral dosage forms that improve antigen uptake by oral mucosa, thereby increasing vaccine immunogenicity. This study indicates that both the intranasal and sublingual routes might be valuable approaches for use in routine vaccination or outbreak control in the period after

  14. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus.

    PubMed

    Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C

    2006-11-30

    Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.

  15. Study of the efficacy of an inactivated virus vaccine against porcine parvovirus.

    PubMed

    Vannier, P; Brun, A; Chappuis, G; Reynaud, G

    1986-01-01

    The efficacy of an inactivated virus vaccine against porcine parvovirus has been studied by immunizing 4 sows during pregnancy. A parvovirus virulent strain has been inoculated to these sows and to two other unvaccinated sows used as controls. The infection was performed between the 52nd and the 57th day of gestation. In the litters born from the vaccinated sows, 82% of the piglets were alive and normal. Neither PPV antibodies nor antigen could be revealed in the stillborn fetuses born from the 4 vaccinated sows. Reversely, only 9.5% of the piglets born from the 2 unvaccinated sows were alive at birth, although they were probably infected during pregnancy. In total, 86% of fetuses in these 2 litters were mummified. A field study allowed to show that the double vaccination antibodies induced, persisted with constant titers for, at least, 13 months. Moreover, the reproductive performance of 413 gilts, vaccinated twice before mating, were not affected by this treatment.

  16. [Immunogenicity of sabin inactivated poliovirus vaccine induced by diphtheria-tetanus-acellular pertussis and Sabin inactivated poliovirus combined vaccine].

    PubMed

    Ma, Yan; Qin, Min; Hu, Hui-Qiong; Ji, Guang; Feng, Ling; Gao, Na; Gu, Jie; Xie, Bing-Feng; He, Ji-Hong; Sun, Ming-Bo

    2011-06-01

    In order to search the preparation process and optimazing dosage ratio of adsorbed diphtheria-tetanus-acellular pertussis and sabin inactivated poliovirus combined vaccine (DTaP-sIPV), the neutralizing antibody titers of IPV induced by different concentration of DTaP-sIPV were investigated on rats. Two batches of DTaP-sLPV were produced using different concentration of sIPV and the quality control was carried. Together with sabin-IPV and DTaP-wIPV ( boostrix-polio, GSK, Belgium) as control group, the DTaP-sIPV were administrated on three-dose schedule at 0, 1, 2 month on rats. Serum sample were collected 30 days after each dose and neutralizing antibody titers against three types poliovirus were determined using micro-neutralization test. Two batches of prepared DTaP-sIPV and control sLPV were according to the requirement of Chinese Pharmacopoeia (Volume III, 2005 edition) and showed good stability. The seropositivity rates were 100% for sabin inactivated poliovirus antigen in all groups. The GMTs (Geometric mean titers) of neutralizing antibodies against three types poliovirus increased. The prepared DTaP-sIPV was safe, stable and effective and could induced high level neutralizing antibody against poliovirus on rats.

  17. Positive regulation of humoral and innate immune responses induced by inactivated Avian Influenza Virus vaccine in broiler chickens.

    PubMed

    Abdallah, Fatma; Hassanin, Ola

    2015-12-01

    Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.

  18. Succeeding in New Vaccine Introduction: Lessons Learned From the Introduction of Inactivated Poliovirus Vaccine in Cameroon, Kenya, and Nigeria

    PubMed Central

    Snidal, Sarah; Saidu, Yauba; Ojumu, Abiola; Ngatia, Antony; Bagana, Murtala; Mutuku, Faith; Sobngwi, Joelle; Efe-Aluta, Oniovo; Roper, Julia; LeTallec, Yann; Kang’ethe, Alice

    2017-01-01

    Abstract Introducing a new vaccine is a large-scale endeavor that can face many challenges, resulting in introduction delays and inefficiencies. The development of national task teams and tools, such as prelaunch trackers, for the introduction of new vaccines (hereafter, “new vaccine introductions” [NVIs]) can help countries implement robust project management systems, front-load critical preparatory activities, and ensure continuous communication around vaccine supply and financing. In addition, implementing postlaunch assessments to take rapid corrective action accelerates the uptake of the new vaccines. NVIs can provide an opportunity to strengthen routine immunization, through strengthening program management systems or by reinforcing local immunization managers’ abilities, among others. This article highlights key lessons learned during the introduction of inactivated poliovirus vaccine in 3 countries that would make future NVIs more successful. The article concludes by considering how the Immunization Systems Management Group of the Global Polio Eradication Initiative has been useful to the NVI process and how such global structures could be further enhanced. PMID:28838156

  19. Review of seasonal influenza in Canada: Burden of disease and the cost-effectiveness of quadrivalent inactivated influenza vaccines

    PubMed Central

    Thommes, Edward W.; Kruse, Morgan; Kohli, Michele; Sharma, Rohita; Noorduyn, Stephen G.

    2017-01-01

    ABSTRACT In the 2015/16 influenza season, the Canadian National Advisory Committee on Immunization (NACI) recommended vaccination with quadrivalent inactivated influenza vaccine (QIV) for infants aged 6–23 months and trivalent inactivated influenza vaccines (TIVs) or QIVs in adults. The objective of this review (GSK study identifier: HO-13-14054) is to examine the epidemiology and disease burden of influenza in Canada and the economic benefits of vaccination. To inform this review, we performed a systematic literature search of relevant Canadian literature and National surveillance data. Influenza B viruses from phylogenetically-distinct lineages (B/Yamagata and B/Victoria) co-circulate in Canada, and are an important cause of influenza complications. Modeling studies, including those postdating the search suggest that switching from TIV to QIV in Canada reduces the burden of influenza and would likely be cost-effective. However, more robust real-world outcomes data is required to inform health policy decision makers on appropriate influenza vaccination strategies for Canada. PMID:27858509

  20. Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability.

    PubMed

    Caridi, Flavia; Vázquez-Calvo, Ángela; Borrego, Belén; McCullough, Kenneth; Summerfield, Artur; Sobrino, Francisco; Martín-Acebes, Miguel A

    2017-05-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. Vaccines based on inactivated FMDV virions provide a useful tool for the control of this pathogen. However, long term storage at 4°C (the temperature for vaccine storage) or ruptures of the cold chain, provoke the dissociation of virions, reducing the immunogenicity of the vaccine. An FMDV mutant carrying amino acid replacements VP1 N17D and VP2 H145Y isolated previously rendered virions with increased resistance to dissociation at 4°C. We have evaluated the immunogenicity in swine (a natural FMDV host) of a chemically inactivated vaccine based on this mutant. The presence of these amino acid substitutions did not compromise the immunological potential, including its ability to elicit neutralizing antibodies. These results support the feasibility of this kind of mutants with increased capsid stability as suitable viruses for producing improved FMDV vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    PubMed

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  2. An inactivated vaccine made from a U.S. field isolate of porcine epidemic disease virus is immunogenic in pigs as demonstrated by a dose-titration.

    PubMed

    Collin, Emily A; Anbalagan, Srivishnupriya; Okda, Faten; Batman, Ron; Nelson, Eric; Hause, Ben M

    2015-03-15

    Porcine epidemic diarrhea virus (PEDV), a highly pathogenic and transmissible virus in swine, was first detected in the U.S. in May, 2013, and has caused tremendous losses to the swine industry. Due to the difficulty in isolating and growing this virus in cell culture, few vaccine studies using cell culture propagated PEDV have been performed on U.S. strains in pigs. Therefore, the objective of this study was to evaluate the humoral immune response to the selected inactivated PEDV vaccine candidate in a dose-titration manner. PEDV was isolated from a pig with diarrhea and complete genome sequencing found >99% nucleotide identity to other U.S. PEDV. Inactivated adjuvanted monovalent vaccines were administered intramuscularly to five week old pigs in a dose titration experimental design, ranging from 6.0-8.0 log10 tissue culture infective dose (TCID50/mL), to evaluate immunogenicity using a fluorescent foci neutralization assay (FFN), fluorescent microsphere immunoassay (FMIA), and enzyme-linked immunosorbent assay (ELISA) on sera. Pigs vaccinated with 8.0 log10 TCID50/mL inactivated virus showed significantly higher FFN titers as well as FMIA and ELISA values than 6.0 log10 TCID50/mL vaccinates and the negative controls. These results demonstrate the immunogenicity of a PEDV inactivated viral vaccine with a U.S. strain via dose-titration. A future vaccination-challenge study would illustrate the efficacy of an inactivated vaccine and help evaluate protective FFN titers and ELISA and FMIA responses.

  3. Effect of inactivated viral vaccines (human) on frequency of micronuclei in bone marrow erythrocytes of mice.

    PubMed

    Rao, L V; Polasa, H

    1991-07-01

    Cytogenetic effects of the two inactivated viral vaccines (polio and antirabies) were studied in adult male mice by the micronucleus test. Polio salk vaccine did not induce micronuclei formation at both human (0.5 ml) and 1/5th human doses. Antirabies vaccine induced micronuclei in poly and total erythrocytes only at human dose of 2 ml. Beta-propiolactone (BPL) induced micronuclei at higher dose of 5.7 mg, but not at 0.57 mg (approximate concentration present in 2 ml of rabies vaccine). The P/N ratio was not affected in vaccinated and BPL inoculated animals. Antirabies vaccine induced micronuclei percentage was more than the BPL value.

  4. Maternal immunisation with trivalent inactivated influenza vaccine for prevention of influenza in infants in Mali: a prospective, active-controlled, observer-blind, randomised phase 4 trial.

    PubMed

    Tapia, Milagritos D; Sow, Samba O; Tamboura, Boubou; Tégueté, Ibrahima; Pasetti, Marcela F; Kodio, Mamoudou; Onwuchekwa, Uma; Tennant, Sharon M; Blackwelder, William C; Coulibaly, Flanon; Traoré, Awa; Keita, Adama Mamby; Haidara, Fadima Cheick; Diallo, Fatoumata; Doumbia, Moussa; Sanogo, Doh; DeMatt, Ellen; Schluterman, Nicholas H; Buchwald, Andrea; Kotloff, Karen L; Chen, Wilbur H; Orenstein, Evan W; Orenstein, Lauren A V; Villanueva, Julie; Bresee, Joseph; Treanor, John; Levine, Myron M

    2016-09-01

    Despite the heightened risk of serious influenza during infancy, vaccination is not recommended in infants younger than 6 months. We aimed to assess the safety, immunogenicity, and efficacy of maternal immunisation with trivalent inactivated influenza vaccine for protection of infants against a first episode of laboratory-confirmed influenza. We did this prospective, active-controlled, observer-blind, randomised phase 4 trial at six referral centres and community health centres in Bamako, Mali. Third-trimester pregnant women (≥28 weeks' gestation) were randomly assigned (1:1), via a computer-generated, centre-specific list with alternate block sizes of six or 12, to receive either trivalent inactivated influenza vaccine or quadrivalent meningococcal vaccine. Study personnel administering vaccines were not masked to treatment allocation, but allocation was concealed from clinicians, laboratory personnel, and participants. Infants were visited weekly until age 6 months to detect influenza-like illness; laboratory-confirmed influenza diagnosed with RT-PCR. We assessed two coprimary objectives: vaccine efficacy against laboratory-confirmed influenza in infants born to women immunised any time prepartum (intention-to-treat population), and vaccine efficacy in infants born to women immunised at least 14 days prepartum (per-protocol population). The primary outcome was the occurrence of a first case of laboratory-confirmed influenza by age 6 months. This trial is registered with ClinicalTrials.gov, number NCT01430689. We did this trial from Sept 12, 2011, to Jan 28, 2014. Between Sept 12, 2011, and April 18, 2013, we randomly assigned 4193 women to receive trivalent inactivated influenza vaccine (n=2108) or quadrivalent meningococcal vaccine (n=2085). There were 4105 livebirths; 1797 (87%) of 2064 infants in the trivalent inactivated influenza vaccine group and 1793 (88%) of 2041 infants in the quadrivalent meningococcal vaccine group were followed up until age 6 months

  5. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    USDA-ARS?s Scientific Manuscript database

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  6. Comparison of immune persistence among inactivated and live attenuated hepatitis a vaccines 2 years after a single dose

    PubMed Central

    Zhang, Xiaoshu; An, Jing; Tu, Aixia; Liang, Xuefeng; Cui, Fuqiang; Zheng, Hui; Tang, Yu; Liu, Jianfeng; Wang, Xuxia; Zhang, Ningjing; Li, Hui

    2016-01-01

    ABSTRACT Objective: Compare immune persistence from one dose of each of 3 different hepatitis A vaccines when given to school-age children: a domestic, live attenuated hepatitis A vaccine (H2 vaccine); a domestic inactivated hepatitis A vaccine (Healive®); and an imported, inactivated hepatitis A vaccine (Havrix®),.Methods: School-age children were randomized into 1 of 4 groups to receive a single dose of a vaccine: H2 vaccine, Healive®, Havrix®, or hepatitis B vaccine [control]. Serum samples were collected 12 and 24 months after vaccination for measurement of anti-HAV IgG using microparticle enzyme immunoassay. Seropositivity was defined as ≥ 20 mUI/ml. We compared groups on seropositivity and geometric mean concentration (GMC). Results: Seropositive rates for the H2, Healive®, Havrix®, and control groups were 64%, 94.4%, 73%, and 1.0%, respectively, 12-months post-vaccination; and 63%, 95.6%, 72%, and 1.0%, respectively 24-months post-vaccination. Seropositivity was greater for Healive® than for H2 and Havrix® at 12 months (p-values < 0.001) and 24 months (p-values < 0.0001). Average GMCs for the H2, Healive®, Havrix®, and control groups, in mIU/ml, were 29.7, 81.0, 36.4, and 2.9, respectively at 12 months, and 30.9, 112.2, 44.3, and 2.9, respectively, at 24 months. GMCs were greater for Healive® than for H2 and Havrix® at 12 months (p-values < 0.0001 and < 0.001, respectively) and 24 months (p-values < 0.001). No statistically significant differences in seropositivity or GMC were found within groups between 12 and 24 months. Conclusion: Immunity persisted 24 months after a single dose of inactivated hepatitis A vaccine and live attenuated hepatitis A vaccine. PMID:27494260

  7. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C) Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity

    PubMed Central

    Kim, Eun-Do; Han, Soo Jung; Byun, Young-Ho; Yoon, Sang Chul; Choi, Kyoung Sub; Seong, Baik Lin; Seo, Kyoung Yul

    2015-01-01

    The eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice. Among the adjuvants, poly (I:C) showed as much enhancement in antigen-specific serum IgG and mucosal IgA antibody production as cholera toxin (CT) after vaccinations with trivalent hemagglutinin-subunits or split H1N1 vaccine antigen in mice. Vaccination with split H1N1 eyedrop vaccine antigen plus poly(I:C) showed a similar or slightly lower efficacy in inducing antibody production than intranasal vaccination; the eyedrop vaccine-induced immunity was enough to protect mice from lethal homologous influenza A/California/04/09 (H1N1) virus challenge. Additionally, ocular inoculation with poly(I:C) plus vaccine antigen generated no signs of inflammation within 24 hours: no increases in the mRNA expression levels of inflammatory cytokines nor in the infiltration of mononuclear cells to administration sites. In contrast, CT administration induced increased expression of IL-6 cytokine mRNA and mononuclear cell infiltration in the conjunctiva within 24 hours of vaccination. Moreover, inoculated visualizing materials by eyedrop did not contaminate the surface of the olfactory bulb in mice; meanwhile, intranasally administered materials defiled the surface of the brain. On the basis of these findings, we propose that the use of eyedrop inactivated influenza vaccine plus poly(I:C) is a safe and effective mucosal vaccine strategy for inducing protective anti-influenza immunity. PMID:26355295

  8. Pertussis vaccination and whooping cough: and now what?

    PubMed

    Guiso, Nicole

    2014-10-01

    Pertussis or whooping cough is a respiratory disease caused by Bordetella pertussis or Bordetella parapertussis that are only known to infect humans. This severe and acute respiratory disease presents epidemic cycles and became a vaccine-preventable disease in the 1940s/1950s when developed countries introduced vaccination. The first type of vaccine developed against this disease was a whole-cell pertussis (wP) vaccine containing inactivated B. pertussis bacteria. Most developed countries produced their own vaccine and given the pediatric nature of the disease at the time of licensure, infants and toddlers were the primary targets and were thus massively vaccinated. The characterization of few virulence factors produced by B. pertussis enabled the development of second-generation pertussis vaccines called the acellular pertussis (aP) vaccines. These only contain 1-5 purified, detoxified B. pertussis proteins and were first introduced in Japan around 30 years ago. Australia, Europe and North America introduced aP vaccines approximately 15 years later, which replaced wP vaccines since then.

  9. New Generation of Inactivated Poliovirus Vaccines for Universal Immunization After Eradication of Poliomyelitis

    PubMed Central

    Chumakov, Konstantin; Ehrenfeld, Ellie

    2008-01-01

    Twenty years of global polio eradication efforts may soon eliminate wild-type poliovirus transmission. However, new information about poliovirus learned during this campaign, as well as the political realities of a modern world demand that universal immunity against poliomyelitis be maintained even after wild poliovirus is eradicated. Although two excellent vaccines have proven highly effective in the past, neither the live nor current inactivated products are optimal for use in the post-eradication setting. Therefore, concerted efforts are urgently needed to develop a new generation of vaccine that is risk-free and affordable and can be produced on a global scale. Here we discuss the desired properties and ways to create a new polio vaccine. PMID:18990066

  10. Immune Serum From Sabin Inactivated Poliovirus Vaccine Immunization Neutralizes Multiple Individual Wild and Vaccine-Derived Polioviruses.

    PubMed

    Sun, Mingbo; Li, Changgui; Xu, Wenbo; Liao, Guoyang; Li, Rongcheng; Zhou, Jian; Li, Yanping; Cai, Wei; Yan, Dongmei; Che, Yanchun; Ying, Zhifang; Wang, Jianfeng; Yang, Huijuan; Ma, Yan; Ma, Lei; Ji, Guang; Shi, Li; Jiang, Shude; Li, Qihan

    2017-05-15

    A Sabin strain-based inactivated poliomyelitis vaccine (Sabin-IPV) is the rational option for completely eradicating poliovirus transmission. The neutralizing capacity of Sabin-IPV immune serum to different strains of poliovirus is a key indicator of the clinical protective efficacy of this vaccine. Sera collected from 500 infants enrolled in a randomized, blinded, positive control, phase 2 clinical trial were randomly divided into 5 groups: Groups A, B, and C received high, medium, and low doses, respectively, of Sabin-IPV, while groups D and E received trivalent oral polio vaccine and Salk strain-based IPV, respectively, all on the same schedule. Immune sera were collected after the third dose of primary immunization, and tested in cross-neutralization assays against 19 poliovirus strains of all 3 types. All immune sera from all 5 groups interacted with the 19 poliovirus strains with various titers and in a dose-dependent manner. One type 2 immunodeficiency-associated vaccine-derived poliovirus strain was not recognized by these immune sera. Sabin-IPV vaccine can induce protective antibodies against currently circulating and reference wild poliovirus strains and most vaccine-derived poliovirus strains, with rare exceptions. NCT01056705. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  11. Decay of Sabin inactivated poliovirus vaccine (IPV)-boosted poliovirus antibodies.

    PubMed

    Resik, Sonia; Tejeda, Alina; Fonseca, Magile; Sein, Carolyn; Hung, Lai Heng; Martinez, Yenisleidys; Diaz, Manuel; Okayasu, Hiromasa; Sutter, Roland W

    We conducted a follow-on study to a phase I randomized, controlled trial conducted in Cuba, 2012, to assess the persistence of poliovirus antibodies at 21-22 months following booster dose of Sabin-IPV compared to Salk-IPV in adults who had received multiple doses of oral poliovirus vaccine (OPV) during childhood. In 2012, 60 healthy adult males aged 19-23 were randomized to receive one booster dose, of either Sabin-inactivated poliovirus vaccine (Sabin-IPV), adjuvanted Sabin-IPV (aSabin-IPV), or conventional Salk-IPV. In the original study, blood was collected at days 0 (before) and 28 (after vaccination), respectively. In this study, an additional blood sample was collected 21-22 months after vaccination, and tested for neutralizing antibodies to Sabin poliovirus types 1, 2 and 3. We collected sera from 59/60 (98.3%) subjects; 59/59 (100%) remained seropositive to all poliovirus types, 21-22 months after vaccination. The decay curves were very similar among the study groups. Between day 28 and 21-22 months, there was a reduction of ⩾87.4% in median antibody levels for all poliovirus types in all study groups, with no significant differences between the study groups. The decay of poliovirus antibodies over a 21-22-month period was similar regardless of the type of booster vaccine used, suggesting the scientific data of Salk IPV long-term persistence and decay may be broadly applicable to Sabin IPV.

  12. Formalin-inactivated Venezuelan Equine Encephalomyelitis (Trinidad Strain) Vaccine Produced in Rolling-Bottle Cultures of Chicken Embryo Cells

    PubMed Central

    Cole, Francis E.; May, Stephen W.; Robinson, David M.

    1973-01-01

    Formalin-inactivated Venezuelan equine encephalomyelitis vaccine was prepared from virus grown in rolling-bottle cultures of chicken embryo cells. Trinidad strain virus was propagated in these cultures with a maintenance medium consisting of serum-free medium 199 containing 0.25% human serum albumin (USP) and antibiotics. Manipulation of multiplicity of inoculum (0.06 to 0.00006) and maintenance medium volume (100 to 300 ml) resulted in high-titered virus yields and only moderate cell destruction when fluids from infected cultures were harvested at 18 to 24 hr. The virus was inactivated at 37 C by 0.05% Formalin within 8 to 10 hr and with 0.1% Formalin within 6 to 8 hr. Single dose, antigen extinction tests in mice performed with 30 small-scale vaccine lots showed excellent potency at either Formalin concentration with inactivation periods ranging from 24 to 96 hr. PMID:4694345

  13. Antibodies induced by vaccination with purified chick embryo cell culture vaccine (PCECV) cross-neutralize non-classical bat lyssavirus strains.

    PubMed

    Malerczyk, Claudius; Selhorst, Thomas; Tordo, Noël; Moore, Susan; Müller, Thomas

    2009-08-27

    Tissue-culture vaccines like purified chick embryo cell vaccine (PCECV) have been shown to provide protection against classical rabies virus (RABV) via pre-exposure or post-exposure prophylaxis. A cross-neutralization study was conducted using a panel of 100 human sera, to determine, to what extent after vaccination with PCECV protection exists against non-classical bat lyssavirus strains like European bat lyssavirus (EBLV) type 1 and 2 and Australian bat lyssavirus (ABLV). Virus neutralizing antibody (VNA) concentrations against the rabies virus variants CVS-11, ABLV, EBLV-1 and EBLV-2 were determined by using a modified rapid fluorescent focus inhibition test. For ABLV and EBLV-2, the comparison to CVS-11 revealed almost identical results (100% adequate VNA concentrations >or=0.5 IU/mL; correlation coefficient r(2)=0.69 and 0.77, respectively), while for EBLV-1 more scattering was observed (97% adequate VNA concentrations; r(2)=0.50). In conclusion, vaccination with PCECV produces adequate VNA concentrations against classical RABV as well as non-classical lyssavirus strains ABLV, EBLV-1, and EBLV-2.

  14. Recent advances in the preparation of antirabies vaccine containing inactivated virus

    PubMed Central

    Powell, H. M.; Culbertson, C. G.

    1954-01-01

    This paper describes experiments undertaken to determine the usefulness of 15 nitrogen-mustard and mustard-like drugs in inactivating fixed rabies virus for the preparation of experimental antirabies vaccines. One or more of the five agents eventually selected gives promise of practical value in rendering rabbit-brain fixed rabies virus and duck-embryo fixed rabies virus noninfective for mice, at the same time allowing of successful antirabies immunization. PMID:13182604

  15. Recent advances in the preparation of antirabies vaccines containing inactivated virus.

    PubMed

    POWELL, H M; CULBERTSON, C G

    1954-01-01

    This paper describes experiments undertaken to determine the usefulness of 15 nitrogen-mustard and mustard-like drugs in inactivating fixed rabies virus for the preparation of experimental antirabies vaccines. One or more of the five agents eventually selected gives promise of practical value in rendering rabbit-brain fixed rabies virus and duck-embryo fixed rabies virus noninfective for mice, at the same time allowing of successful antirabies immunization.

  16. Characterization of Immune Responses to an Inactivated Avian Influenza Virus Vaccine Adjuvanted with Nanoparticles Containing CpG ODN.

    PubMed

    Singh, Shirene M; Alkie, Tamiru N; Abdelaziz, Khaled Taha; Hodgins, Douglas C; Novy, Anastasia; Nagy, Éva; Sharif, Shayan

    2016-06-01

    Avian influenza virus (AIV), a mucosal pathogen, gains entry into host chickens through respiratory and gastrointestinal routes. Most commercial AIV vaccines for poultry consist of inactivated, whole virus with adjuvant, delivered by parenteral administration. Recent advances in vaccine development have led to the application of nanoparticle emulsion delivery systems, such as poly (d,l-lactic-co-glycolic acid) (PLGA) nanoparticles to enhance antigen-specific immune responses. In chickens, the Toll-like receptor 21 ligand, CpG oligodeoxynucleotides (ODNs), have been demonstrated to be immunostimulatory. The objective of this study was to compare the adjuvant potential of CpG ODN 2007 encapsulated in PLGA nanoparticles with nonencapsulated CpG ODN 2007 when combined with a formalin-inactivated H9N2 virus, through intramuscular and aerosol delivery routes. Chickens were vaccinated at days 7 and 21 posthatch for the intramuscular route and at days 7, 21, and 35 for the aerosol route. Antibody-mediated responses were evaluated weekly in sera and lacrimal secretions in specific pathogen-free chickens. The results indicate that nonencapsulated CpG ODN 2007 in inactivated AIV vaccines administered by the intramuscular route generated higher antibody responses compared to the encapsulated CpG ODN 2007 formulation by the same route. Additionally, encapsulated CpG ODN 2007 in AIV vaccines administered by the aerosol route elicited higher mucosal responses compared to nonencapsulated CpG ODN 2007. Future studies may be aimed at evaluating protective immune responses induced with PLGA encapsulation of AIV and adjuvants.

  17. An inactivated whole-virus porcine parvovirus vaccine protects pigs against disease but does not prevent virus shedding even after homologous virus challenge.

    PubMed

    Foerster, Tessa; Streck, André Felipe; Speck, Stephanie; Selbitz, Hans-Joachim; Lindner, Thomas; Truyen, Uwe

    2016-06-01

    Inactivated whole-virus vaccines against porcine parvovirus (PPV) can prevent disease but not infection and virus shedding after heterologous virus challenge. Here, we showed that the same is true for a homologous challenge. Pregnant sows were vaccinated with an experimental inactivated vaccine based on PPV strain 27a. They were challenged on day 40 of gestation with the virulent porcine parvovirus PPV-27a from which the vaccine was prepared (homologous challenge). On day 90 of gestation, the fetuses from vaccinated sows were protected against disease, while the fetuses of the non-vaccinated sows (control group) exhibited signs of parvovirus disease. All gilts, whether vaccinated or not vaccinated, showed a boost of PPV-specific antibodies indicative of virus infection and replication. Low DNA copy numbers, but not infectious virus, could be demonstrated in nasal or rectal swabs of immunized sows, but high copy numbers of challenge virus DNA as well as infectious virus could both be demonstrated in non-vaccinated sows.

  18. Introduction of Inactivated Poliovirus Vaccine and Impact on Vaccine-Associated Paralytic Poliomyelitis - Beijing, China, 2014-2016.

    PubMed

    Zhao, Dan; Ma, Rui; Zhou, Tao; Yang, Fan; Wu, Jin; Sun, Hao; Liu, Fang; Lu, Li; Li, Xiaomei; Zuo, Shuyan; Yao, Wei; Yin, Jian

    2017-12-15

    When included in a sequential polio vaccination schedule, inactivated polio vaccine (IPV) reduces the risk for vaccine-associated paralytic poliomyelitis (VAPP), a rare adverse event associated with receipt of oral poliovirus vaccine (OPV). During January 2014, the World Health Organization (WHO) recommended introduction of at least 1 IPV dose into routine immunization schedules in OPV-using countries (1). The Polio Eradication and Endgame Strategic Plan 2013-2018 recommended completion of IPV introduction in 2015 and globally synchronized withdrawal of OPV type 2 in 2016 (2). Introduction of 1 dose of IPV into Beijing's Expanded Program on Immunization (EPI) on December 5, 2014 represented China's first province-wide IPV introduction. Coverage with the first dose of polio vaccine was maintained from 96.2% to 96.9%, similar to coverage with the first dose of diphtheria and tetanus toxoids and pertussis vaccine (DTP) (96.5%-97.2%); the polio vaccine dropout rate (the percentage of children who received the first dose of polio vaccine but failed to complete the series) was 1.0% in 2015 and 0.4% in 2016. The use of 3 doses of private-sector IPV per child decreased from 18.1% in 2014, to 17.4% in 2015, and to 14.8% in 2016. No cases of VAPP were identified during 2014-2016. Successful introduction of IPV into the public sector EPI program was attributed to comprehensive planning, preparation, implementation, robust surveillance for adverse events after immunization (AEFI), and monitoring of vaccination coverage. This evaluation provided information that helped contribute to the expansion of IPV use in China and in other OPV-using countries.

  19. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains.

    PubMed

    Verdijk, Pauline; Rots, Nynke Y; Bakker, Wilfried A M

    2011-05-01

    Following achievement of polio eradication, the routine use of all live-attenuated oral poliovirus vaccines should be discontinued. However, the costs per vaccine dose for the alternative inactivated poliovirus vaccine (IPV) are significantly higher and the current production capacity is not sufficient for worldwide distribution of the vaccine. In order to achieve cost-prize reduction and improve affordability, IPV production processes and dose-sparing strategies should be developed to facilitate local manufacture at a relatively lower cost. The use of attenuated Sabin instead of wild-type polio strains will provide additional safety during vaccine production and permits production in low-cost settings. Sabin-IPV is under development by several manufacturers. This article gives an overview of results from clinical trials with Sabin-IPV and discusses the requirements and challenges in the clinical development of this novel IPV.

  20. Introduction of sequential inactivated polio vaccine-oral polio vaccine schedule for routine infant immunization in Brazil's National Immunization Program.

    PubMed

    Domingues, Carla Magda Allan S; de Fátima Pereira, Sirlene; Cunha Marreiros, Ana Carolina; Menezes, Nair; Flannery, Brendan

    2014-11-01

    In August 2012, the Brazilian Ministry of Health introduced inactivated polio vaccine (IPV) as part of sequential polio vaccination schedule for all infants beginning their primary vaccination series. The revised childhood immunization schedule included 2 doses of IPV at 2 and 4 months of age followed by 2 doses of oral polio vaccine (OPV) at 6 and 15 months of age. One annual national polio immunization day was maintained to provide OPV to all children aged 6 to 59 months. The decision to introduce IPV was based on preventing rare cases of vaccine-associated paralytic polio, financially sustaining IPV introduction, ensuring equitable access to IPV, and preparing for future OPV cessation following global eradication. Introducing IPV during a national multivaccination campaign led to rapid uptake, despite challenges with local vaccine supply due to high wastage rates. Continuous monitoring is required to achieve high coverage with the sequential polio vaccine schedule. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    USDA-ARS?s Scientific Manuscript database

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  2. Standardization of inactivated H5N2 influenza vaccine and efficacy against lethal A/Chicken/Pennsylvania/1370/83 infection.

    PubMed

    Wood, J M; Kawaoka, Y; Newberry, L A; Bordwell, E; Webster, R G

    1985-01-01

    The hemagglutinin concentration of beta-propiolactone-inactivated influenza vaccine containing A/Duck/N.Y./189/82 (H5N2) virus was measured by single-radial-immunodiffusion (SRD) test. After administration of vaccine to chickens in Freund's complete adjuvant, vaccine efficacy was assessed by challenge with lethal A/Chicken/Penn./1370/83 (H5N2) virus. SRD potency values correlated with post-vaccination antibody levels and protection against infection.

  3. Efficacy of an inactivated bivalent vaccine against the prevalent strains of Newcastle disease and H9N2 avian influenza.

    PubMed

    Zhao, Jing; Yang, Huiming; Xu, Hongjun; Ma, Zengbin; Zhang, Guozhong

    2017-03-16

    Newcastle disease (ND) and avian influenza subtype H9N2 (H9N2 AI) are two of the most important diseases of poultry, causing severe economic losses in the global poultry industry. Vaccination is an effective way to prevent and control the spread of ND virus (NDV) and H9N2 AI virus (AIV), but the antigenic differences between the current circulating strains and the vaccine strains might account for recent ND and H9N2 AI outbreaks in vaccinated poultry flocks. We developed an inactivated bivalent H9N2 and NDV vaccine based on the current prevalent strains of H9N2 AIV and NDV in China and evaluated its efficacy in chickens in this study. The results indicated that the inactivated bivalent vaccine could induce a fast antibody response in vaccinated chickens. The hemagglutination inhibition (HI) titer in the sera increased rapidly, and the highest HI titer was observed at 4 weeks post-vaccination (wpv) with a mean titre of 8.6 log 2 for NDV and 9.5 log 2 for H9N2. Up until 15 wpv, HI titers were still detectable at a high level of over 6 log 2 . The immunized chickens showed no signs of disease after challenge at 3 wpv with the prevalent strains of NDV and H9N2 AIV isolated in 2012-2014. Moreover, viral shedding was completely inhibited in vaccinated chickens after challenge with H9N2 AIV and inhibited by at least 90% with NDV compared to the controls at 5dpc. Our findings suggest that the inactivated NDV and H9N2 vaccine induces a fast and strong antibody response in vaccinated chickens and is efficacious in poultry against NDVs and H9N2 AIVs.

  4. The response of mute swans (Cygnus olor, Gm. 1789) to vaccination against avian influenza with an inactivated H5N2 vaccine.

    PubMed

    Dolka, Beata; Żbikowski, Artur; Dolka, Izabella; Szeleszczuk, Piotr

    2016-10-22

    Recent epidemics of highly pathogenic avian influenza (HPAI) produced an unprecedented number of cases in mute swans (Cygnus olor) in European countries, which indicates that these birds are very sensitive to the H5N1 virus. The HPAI outbreaks stirred a debate on the controversial stamping-out policy in populations of protected bird species. After preventive vaccination had been approved in the European Union, several countries have introduced vaccination schemes to protect poultry, captive wild birds or exotic birds in zoos against HPAI. The aim of this study was to investigate the immune response of wild mute swans to immunization with an inactivated AI H5N2 vaccine approved for use in poultry. The serological responses of mute swans were assessed by comparison with racing pigeons (Columba livia), a species which is characterized by different susceptibility to infection with the H5N1 HPAI virus and plays a questionable role in the ecology of influenza (H5N1) viruses. Swans were vaccinated once or twice at an interval of 4 weeks. The humoral immune response was evaluated by hemagglutination inhibition (HI) and NP-ELISA. The lymphocyte blast transformation test was used to determine the cell-mediated immune response. Higher values of the geometric mean titer (GMT) and 100 % seroconversion (HI ≥32) were noted in double vaccinated swans (1448.2) than in single vaccinated swans (128.0) or in double vaccinated pigeons (215.3). Significant differences in HI titers were observed between swans and pigeons, but no variations in ELISA scores were noted after the booster dose. Immunization of swans had no effect on the proliferative activity of lymphocytes. The inactivated H5N2 vaccine was safe and immunogenic for mute swans and pigeons. Vaccination may have practical implications for swans kept in zoos, wildlife parks or rehabilitation centers. However, challenge studies are needed to prove the efficacy of the H5N2 AI vaccine.

  5. Distinct Cross-reactive B-Cell Responses to Live Attenuated and Inactivated Influenza Vaccines

    PubMed Central

    Sasaki, Sanae; Holmes, Tyson H.; Albrecht, Randy A.; García-Sastre, Adolfo; Dekker, Cornelia L.; He, Xiao-Song; Greenberg, Harry B.

    2014-01-01

    Background. The immunological bases for the efficacies of the 2 currently licensed influenza vaccines, live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV), are not fully understood. The goal of this study was to identify specific B-cell responses correlated with the known efficacies of these 2 vaccines. Methods. We compared the B-cell and antibody responses after immunization with 2010/2011 IIV or LAIV in young adults, focusing on peripheral plasmablasts 6–8 days after vaccination. Results. The quantities of vaccine-specific plasmablasts and plasmablast-derived polyclonal antibodies (PPAbs) in IIV recipients were significantly higher than those in LAIV recipients. No significant difference was detected in the avidity of vaccine-specific PPAbs between the 2 vaccine groups. Proportionally, LAIV induced a greater vaccine-specific immunoglobulin A plasmablast response, as well as a greater plasmablast response to the conserved influenza nuclear protein, than IIV. The cross-reactive plasmablast response to heterovariant strains, as indicated by the relative levels of cross-reactive plasmablasts and the cross-reactive PPAb binding reactivity, was also greater in the LAIV group. Conclusions. Distinct quantitative and qualitative patterns of plasmablast responses were induced by LAIV and IIV in young adults; a proportionally greater cross-reactive response was induced by LAIV. PMID:24676204

  6. Immunogenicity and sustainability of the immune response in Brazilian HIV-1-infected individuals vaccinated with inactivated triple influenza vaccine.

    PubMed

    Souza, Thiago Moreno L; Santini-Oliveira, Marilia; Martorelli, Andressa; Luz, Paula M; Vasconcellos, Mauricio T L; Giacoia-Gripp, Carmem B W; Morgado, Mariza; Nunes, Estevão P; Lemos, Alberto S; Ferreira, Ana C G; Moreira, Ronaldo I; Veloso, Valdiléa G; Siqueira, Marilda; Grinsztejn, Beatriz; Camacho, Luiz A B

    2016-03-01

    HIV-infected individuals have a higher risk of serious illnesses following infection by infection with influenza. Although anti-influenza vaccination is recommended, immunosuppression may limit their response to active immunization. We followed-up a cohort of HIV-infected individuals vaccinated against influenza to assess the immunogenicity and sustainability of the immune response to vaccination. Individuals were vaccinated 2011 with inactivated triple influenza vaccine (TIV), and they had received in 2010 the monovalent anti-A(H1N1)pdm09 vaccine. The sustainability of the immune response to A(H1N1)pdm09 at 12 months after monovalent vaccination fell, both in individuals given two single or two double doses. For these individuals, A(H1N1)pdm09 component from TIV acted as a booster, raising around 40% the number of seroprotected individuals. Almost 70% of the HIV-infected individuals were already seroprotected to A/H3N2 at baseline. Again, TIV boosted over 90% the seroprotection to A/H3N2. Anti-A/H3N2 titers dropped by 20% at 6 months after vaccination. Pre-vaccination seroprotection rate to influenza B (victoria lineage) was the lowest among those tested, seroconversion rates were higher after vaccination. Seroconversion/protection after TIV vaccination did not differ significantly across categories of clinical and demographic variables. Anti-influenza responses in Brazilian HIV-infected individuals reflected both the previous history of virus circulation in Brazil and vaccination. © 2015 Wiley Periodicals, Inc.

  7. Comparing live attenuated and inactivated hepatitis A vaccines: an immunogenicity study after one single dose.

    PubMed

    Zheng, Hui; Chen, Yuansheng; Wang, Fuzhen; Gong, Xiaohong; Wu, Zhenhua; Miao, Ning; Zhang, Xiaoshu; Li, Hui; Chen, Chao; Hou, Xiang; Cui, Fuqiang; Wang, Huaqing

    2011-11-08

    While three types of hepatitis A vaccines are available in China, little data are available to compare them in terms of early antibody response. We conducted a trial to compare antibody response at 7, 14 and 28 days. We randomized primary school children in Gansu and Jilin provinces into four groups to receive either (1) Chinese live attenuated hepatitis A vaccine (H2 strain), (2) domestic inactivated hepatitis A vaccine (Healive(®)), (3) imported inactivated hepatitis A vaccine (Havrix(®)) or (4) hepatitis B vaccine (Control group). We compared groups at 7, 14 and 28 days in terms of proportion of sero-conversions (≥10 mUI/ml), and Geometric Mean Concentration (GMC) of antibodies measured with a Microparticle Enzyme Immunoassay (MEIA). We compared rates of self-reported adverse events following immunization (AEFI) in the first three days. 204 children received the H2 vaccine, 208 received Healive(®), 214 received Havrix(®), and 215 received hepatitis B vaccine (no differences across groups in terms of age, sex, weight and height). At seven days, sero-conversion proportions were 25%, 35%, 27% and 2% (p<0.0001) with GMC of 6 mIU/ml, 8 mIU/ml, 6 mIU/ml and 3 mIU/ml, respectively for the four groups. At 28 days, sero-conversion proportions were 98%, 100%, 93% and 3% (p<0.0001) with GMC of 47 mIU/ml, 71 mIU/ml, 67 mIU/ml and 3 mIU/ml, respectively. AEFI were benign and did not differ across groups (p=0.94). While our study was not able to identify differences between Havrix(®), Healive(®) and H2 vaccine in terms of sero-conversion proportion and GMC between seven and 28 days, further studies should evaluate non-inferiority or equivalence of the Chinese vaccines, particularly with respect to the GMC concentration for the H2 vaccine since it could affect long-term protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The efficacy of inactivated Escherichia coli autogenous vaccines against the E. coli peritonitis syndrome in layers.

    PubMed

    Landman, W J M; van Eck, J H H

    2017-12-01

    Autogenous Escherichia coli vaccines to prevent the E. coli peritonitis syndrome (EPS) in laying hens are often used in the field, although their effectiveness has not been demonstrated yet. Therefore, in this study, which consisted of two experiments, their efficacy was assessed. In the first experiment, the EPS-inducing ability of three E. coli isolates originating from bone marrow of hens that died due to EPS and with different Pulsed-Field Gel Electrophoresis patterns, was examined by intravenous inoculation of the isolates in 17-week-old brown layers. Based on the results one isolate was chosen for the preparation of the vaccines and for homologous challenge and another one for heterologous challenge performed in the second experiment. In the named experiment, groups of laying hens which had been vaccinated intramuscularly at 14 and 18 weeks of age with inactivated vaccine either formulated as aqueous suspension or as water-in-oil emulsion were homologously or heterologously challenged per aerosol at 30 weeks of age. The vaccines contained ≥10 8.2 formaldehyde-inactivated colony-forming units (cfu) of E. coli per hen dose in 0.5 ml. The estimated E. coli challenge dose uptake ranged from 10 5.8 to 10 6.5  cfu per hen. Groups consisted of 18 hens each and were housed in separate isolators from 27 weeks of age. Control groups were included in this experiment, which was ended eight days after challenge. Vaccinations had no effect on body growth and both vaccine types induced (almost) complete protection against homologous challenge, while protection against heterologous challenge was inconclusive.

  9. Fractional-Dose Inactivated Poliovirus Vaccine Campaign - Sindh Province, Pakistan, 2016.

    PubMed

    Pervaiz, Aslam; Mbaeyi, Chukwuma; Baig, Mirza Amir; Burman, Ashley; Ahmed, Jamal A; Akter, Sharifa; Jatoi, Fayaz A; Mahamud, Abdirahman; Asghar, Rana Jawad; Azam, Naila; Shah, Muhammad Nadeem; Laghari, Mumtaz Ali; Soomro, Kamaluddin; Wadood, Mufti Zubair; Ehrhardt, Derek; Safdar, Rana M; Farag, Noha

    2017-12-01

    Following the declaration of eradication of wild poliovirus (WPV) type 2 in September 2015, trivalent oral poliovirus vaccine (tOPV) was withdrawn globally to reduce the risk for type 2 vaccine-derived poliovirus (VDPV2) transmission; all countries implemented a synchronized switch to bivalent OPV (type 1 and 3) in April 2016 (1,2). Any isolation of VDPV2 after the switch is to be treated as a potential public health emergency and might indicate the need for supplementary immunization activities (3,4). On August 9, 2016, VDPV2 was isolated from a sewage sample taken from an environmental surveillance site in Hyderabad, Sindh province, Pakistan. Possible vaccination activities in response to VDPV2 isolation include the use of injectable inactivated polio vaccine (IPV), which poses no risk for vaccine-derived poliovirus transmission. Fractional-dose, intradermal IPV (fIPV), one fifth of the standard intramuscular dose, has been developed to more efficiently manage limited IPV supplies. fIPV has been shown in some studies to be noninferior to full-dose IPV (5,6) and was used successfully in response to a similar detection of a single VDPV2 isolate from sewage in India (7). Injectable fIPV was used for response activities in Hyderabad and three neighboring districts. This report describes the findings of an assessment of preparatory activities and subsequent implementation of the fIPV campaign. Despite achieving high coverage (>80%), several operational challenges were noted. The lessons learned from this campaign could help to guide the planning and implementation of future fIPV vaccination activities.

  10. A user-friendly and scalable process to prepare a ready-to-use inactivated vaccine: the example of heartwater in ruminants under tropical conditions.

    PubMed

    Marcelino, Isabel; Lefrançois, Thierry; Martinez, Dominique; Giraud-Girard, Ken; Aprelon, Rosalie; Mandonnet, Nathalie; Gaucheron, Jérôme; Bertrand, François; Vachiéry, Nathalie

    2015-01-29

    The use of cheap and thermoresistant vaccines in poor tropical countries for the control of animal diseases is a key issue. Our work aimed at designing and validating a process for the large-scale production of a ready-to-use inactivated vaccine for ruminants. Our model was heartwater caused by the obligate intracellular bacterium Ehrlichia ruminantium (ER). The conventional inactivated vaccine against heartwater (based on whole bacteria inactivated with sodium azide) is prepared immediately before injection, using a syringe-extrusion method with Montanide ISA50. This is a fastidious time-consuming process and it limits the number of vaccine doses available. To overcome these issues, we tested three different techniques (syringe, vortex and homogenizer) and three Montanide ISA adjuvants (50, 70 and 70M). High-speed homogenizer was the optimal method to emulsify ER antigens with both ISA70 and 70M adjuvants. The emulsions displayed a good homogeneity (particle size below 1 μm and low phase separation), conductivity below 10 μS/cm and low antigen degradation at 4 °C for up to 1 year. The efficacy of the different formulations was then evaluated during vaccination trials on goats. The inactivated ER antigens emulsified with ISA70 and ISA70M in a homogenizer resulted in 80% and 100% survival rates, respectively. A cold-chain rupture assay using ISA70M+ER was performed to mimic possible field conditions exposing the vaccine at 37 °C for 4 days before delivery. Surprisingly, the animal survival rate was still high (80%). We also observed that the MAP-1B antibody response was very similar between animals vaccinated with ISA70+ER and ISA70M+ER emulsions, suggesting a more homogenous antigen distribution and presentation in these emulsions. Our work demonstrated that the combination of ISA70 or ISA70M and homogenizer is optimal for the production of an effective ready-to-use inactivated vaccine against heartwater, which could easily be produced on an industrial scale

  11. Different secretory IgA antibody responses after immunization with inactivated and live poliovirus vaccines.

    PubMed

    Hanson, L A; Carlsson, B; Jalil, F; Lindblad, B S; Khan, S R; van Wezel, A L

    1984-01-01

    The influence on secretory IgA antibody levels in milk and saliva of vaccination with oral, live poliovirus vaccine ( OPV ) and inactivated poliovirus vaccine (IPV) was studied. IPV, especially the antigen-rich Dutch vaccine, more often induced increases in antibody titers in milk (50%) than did OPV (26%) (P less than .01). OPV more often decreased the antibody levels in milk (40%) than did IPV (10%) (P less than .01). It was striking that mainly high prevaccination titers were decreased. The increases of IgA antibody in saliva were less striking. IPV caused increases as often in milk as in saliva, whereas OPV more often induced increases in IgA antibody in saliva, but there was a poor correlation between the changes in antibody titers in milk and those in saliva.

  12. The compatibility of inactivated-Enterovirus 71 vaccination with Coxsackievirus A16 and Poliovirus immunizations in humans and animals

    PubMed Central

    Mao, Qunying; Wang, Yiping; Shao, Jie; Ying, Zhifang; Gao, Fan; Yao, Xin; Li, Changgui; Ye, Qiang; Xu, Miao; Li, Rongcheng; Zhu, Fengcai; Liang, Zhenglun

    2015-01-01

    Enterovirus 71 (EV71) is the key pathogen for Hand, Foot, and Mouth Disease (HFMD) and can result in severe neurological complications and death among young children. Three inactivated-EV71 vaccines have gone through phase III clinical trials and have demonstrated good safety and efficacy. These vaccines will benefit young children under the threat of severe HFMD. However, the potential immunization-related compatibility for different enterovirus vaccines remains unclear, making it hard to include the EV71 vaccine in Expanded Program on Immunization (EPI). Here, we measured the neutralizing antibodies (NTAbs) against EV71, Coxsackievirus A16 (CA16) and Poliovirus from infants enrolled in those EV71 vaccine clinical trials. The results indicated that the levels of NTAb GMTs for EV71 increased significantly in all 3 vaccine groups (high, middle and low dosages, respectively) post-vaccination. Seroconversion ratios and Geometric mean fold increase were significantly higher in the vaccine groups (≥7/9 and 8.9~228.1) than in the placebo group (≤1/10 and 0.8~1.7, P < 0.05). But no similar NTAb response trends were found in CA16 and 3 types of Poliovirus. The decrease of 3 types of Poliovirus NTAb GMTs and an increase of CA16 GMTs post-EV71-vaccination were found in vaccine and placebo groups. Further animal study on CA16 and poliovirus vaccine co-immunization or pre-immunization with EV71 vaccine in mice indicated that there was no NTAb cross-activity between EV71 and CA16/Poliovirus. Our research showed that inactivated-EV71 vaccine has good specific-neutralizing capacity and can be included in EPI. PMID:25715318

  13. Assessment of potential public health impact of a quadrivalent inactivated influenza vaccine in Thailand.

    PubMed

    Kittikraisak, Wanitchaya; Chittaganpitch, Malinee; Gregory, Christopher J; Laosiritaworn, Yongjua; Thantithaveewat, Thanawadee; Dawood, Fatimah S; Lindblade, Kim A

    2016-05-01

    Each year, an influenza B strain representing only one influenza B lineage is included in the trivalent inactivated influenza vaccine (IIV3); a mismatch between the selected lineage and circulating viruses can result in suboptimal vaccine effectiveness. We modeled the added potential public health impact of a quadrivalent inactivated influenza vaccine (IIV4) that includes strains from both influenza B lineages compared to IIV3 on influenza-associated morbidity and mortality in Thailand. Using data on the incidence of influenza-associated hospitalizations and deaths, vaccine effectiveness, and vaccine coverage from the 2007-2012 influenza seasons in Thailand, we estimated rates of influenza-associated outcomes that might be averted using IIV4 instead of IIV3. We then applied these rates to national population estimates to calculate averted illnesses, hospitalizations, and deaths for each season. We assumed that the influenza B lineage included in IIV3 would provide a relative vaccine effectiveness of 75% against the other B lineage. Compared to use of IIV3, use of IIV4 might have led to an additional reduction ranging from 0·4 to 14·3 influenza-associated illnesses per 100 000 population/year, <0·1 to 0·5 hospitalizations per 100 000/year, and <0·1 to 0·4 deaths per 1000/year. Based on extrapolation to national population estimates, replacement of IIV3 with IIV4 might have averted an additional 267-9784 influenza-associated illnesses, 9-320 hospitalizations, and 0-3 deaths. Compared to use of IIV3, IIV4 has the potential to further reduce the burden of influenza-associated morbidity and mortality in Thailand. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  14. Evaluation of adaptive immune responses and heterologous protection induced by inactivated bluetongue virus vaccines.

    PubMed

    Breard, Emmanuel; Belbis, Guillaume; Viarouge, Cyril; Nomikou, Kyriaki; Haegeman, Andy; De Clercq, Kris; Hudelet, Pascal; Hamers, Claude; Moreau, Francis; Lilin, Thomas; Durand, Benoit; Mertens, Peter; Vitour, Damien; Sailleau, Corinne; Zientara, Stéphan

    2015-01-15

    Eradication of bluetongue virus is possible, as has been shown in several European countries. New serotypes have emerged, however, for which there are no specific commercial vaccines. This study addressed whether heterologous vaccines would help protect against 2 serotypes. Thirty-seven sheep were randomly allocated to 7 groups of 5 or 6 animals. Four groups were vaccinated with commercial vaccines against BTV strains 2, 4, and 9. A fifth positive control group was given a vaccine against BTV-8. The other 2 groups were unvaccinated controls. Sheep were then challenged by subcutaneous injection of either BTV-16 (2 groups) or BTV-8 (5 groups). Taken together, 24/25 sheep from the 4 experimental groups developed detectable antibodies against the vaccinated viruses. Furthermore, sheep that received heterologous vaccines showed significantly reduced viraemia and clinical scores for BTV-16 when compared to unvaccinated controls. Reductions in clinical signs and viraemia among heterologously vaccinated sheep were not as common after challenge with BTV-8. This study shows that heterologous protection can occur, but that it is difficult to predict if partial or complete protection will be achieved following inactivated-BTV vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effectiveness and safety of immunization with live-attenuated and inactivated vaccines for pediatric liver transplantation recipients.

    PubMed

    Kawano, Yoshihiko; Suzuki, Michio; Kawada, Jun-ichi; Kimura, Hiroshi; Kamei, Hideya; Ohnishi, Yasuharu; Ono, Yasuyuki; Uchida, Hiroo; Ogura, Yasuhiro; Ito, Yoshinori

    2015-03-17

    Liver transplantation recipients are at high risk for severe complications due to infections because of being treated with immunosuppressive drugs that affect the immune system. Vaccination for liver transplantation candidates is generally recommended before surgery, but the opportunities for vaccination prior to transplantation in pediatric candidates are often limited by severe disease conditions. The participants in this study comprised 39 pediatric recipients of living donor liver transplantation performed between 2005 and 2013. Criteria for administering live-attenuated (measles, rubella, mumps, and varicella) and inactivated (hepatitis B, pertussis, and Japanese encephalitis) vaccines were as follows: (1) >1 year after transplantation; (2) no use of systemic steroids to treat acute rejection within the last 6 months; (3) serum trough concentration of tacrolimus <5 ng/mL; (4) no severe immunosuppression according to blood examinations; and (5) provision of written informed consent. Median age at transplantation was 17 months, and median period from transplantation to the beginning of immunization was 18 months. Seroprotection rates for measles, rubella, mumps, varicella, hepatitis B, pertussis, and Japanese encephalitis after post-transplant immunization were 44% (11/25), 70% (19/27), 48% (12/25), 32% (6/19), 83% (19/23), 87% (13/15), and 88% (7/8), respectively. Seroprotection rates for measles, rubella, mumps, and varicella after second vaccination for recipients with primary vaccine failure after first vaccination were 100% (8/8), 50% (1/2), 71% (5/7), and 50% (5/10), respectively. While four recipients contracted mumps and eight contracted varicella before immunization, one recipient developed varicella after immunization. No serious systemic adverse events were observed in vaccinated recipients. Seroprotection rates for measles, mumps, and varicella appeared low in children after the first post-transplantation vaccination. Immunizations with four live

  16. Feasibility of conducting intradermal vaccination campaign with inactivated poliovirus vaccine using Tropis intradermal needle free injection system, Karachi, Pakistan.

    PubMed

    Yousafzai, Mohammad Tahir; Saleem, Ali Faisal; Mach, Ondrej; Baig, Attaullah; Sutter, Roland W; Zaidi, Anita K M

    2017-08-01

    Administration of intradermal fractional dose of inactivated poliovirus vaccine (fIPV) has proven to be safe and immunogenic; however, its intradermal application using needle and syringe is technically difficult and requires trained personnel. We assessed feasibility of conducting an intradermal fIPV campaign in polio high risk neighborhood of Karachi using Tropis needle-free injector. During the one-day fIPV campaign, we measured average "application time" to administer fIPV with Tropis, collected ergonomic information and measured vaccine wastage. Eleven vaccinator teams, after two-day training, immunized 582 children between 4 months and 5 years of age. Average "application time" ranged from 35-75 seconds; the "application time" decreased with the number of children vaccinated from 68 to 38 seconds between 1st and 30th child. 10/11 (91%) vaccinator teams found no ergonomic issues; 1/11 (9%) assessed that it was not easy to remove air bubbles when filling the device. There was 0% vaccine loss reported. No adverse events following immunizations were reported. We demonstrated that it is feasible, safe and efficient to use Tropis for the administration of fIPV in a campaign setting.

  17. Vaccine Development for Zika Virus-Timelines and Strategies.

    PubMed

    Durbin, Anna P

    2016-09-01

    Zika virus is a mosquito-borne Flavivirus that spread rapidly through South and Central America in 2015 to 2016. Microcephaly has been causally associated with Zika virus infection during pregnancy and the World Health Organization declared Zika virus as a Public Health Emergency of International Concern. To address this crisis, many groups have expressed their commitment to developing a Zika virus vaccine. Different strategies for Zika virus vaccine development are being considered including recombinant live attenuated vaccines, purified inactivated vaccines (PIVs), DNA vaccines, and viral vectored vaccines. Important to Zika virus vaccine development will be the target group chosen for vaccination and which end point(s) is chosen for efficacy determination. The first clinical trials of Zika virus vaccine candidates will begin in Q3/4 2016 but the pathway to licensure for a Zika virus vaccine is expected to take several years. Efforts are ongoing to accelerate Zika virus vaccine development and evaluation with the ultimate goal of reducing time to licensure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Vaccination with UV-inactivated nodavirus partly protects European sea bass against infection, while inducing few changes in immunity.

    PubMed

    Valero, Yulema; Mokrani, Djamal; Chaves-Pozo, Elena; Arizcun, Marta; Oumouna, Mustapha; Meseguer, José; Esteban, M Ángeles; Cuesta, Alberto

    2018-05-15

    Developing viral vaccines through the ultraviolet (UV) inactivation of virus is promising technique since it is straightforward and economically affordable, while the resulting viruses are capable of eliciting an adequate antiviral immune response. Nodavirus (NNV) is a devastating virus that mainly affects European sea bass juveniles and larvae, causing serious economic losses in Mediterranean aquaculture. In this work, a potential vaccine consisting on UV-inactivated NNV (iNNV) was generated and administered to healthy juveniles of European sea bass to elucidate whether it triggers the immune response and improves their survival upon challenge. First, iNNV failed to replicate in cell cultures and its intraperitoneal administration to sea bass juveniles also failed to produce fish mortality and induction of the type I interferon (IFN) pathway, indicating that the NNV was efficiently inactivated. By contrast, iNNV administration induced significant serum non-specific antimicrobial activity as well as a specific antiviral activity and immunoglobulin M (IgM) titres against NNV. Interestingly, few changes were observed at transcriptional level in genes related to either innate or adaptive immunity, suggesting that iNNV could be modulating the immune response at protein or functional level. In addition, the iNNV vaccinated group showed improved survival, reaching a relative survival percentage of 57.9%. Moreover, challenged fish that had been vaccinated presented increased serum antibacterial, antiviral and IgM titres, as well as the higher transcription of mhc1a, ifn, isg15 and cd8a genes in brain, while in the head-kidney the transcription of mhc1a, mhc2b and cd8a was down-regulated and mx, isg15 and tcrb was up-regulated. Although the UV-inactivated vaccine against NNV showed promising results, more effort should be addressed to improving this prophylactic method by increasing our understanding of its action mechanisms, thus enabling the mortality rate of NNV to be

  19. Immune interference in the setting of same-day administration of two similar inactivated alphavirus vaccines: eastern equine and western equine encephalitis.

    PubMed

    Reisler, Ronald B; Gibbs, Paul H; Danner, Denise K; Boudreau, Ellen F

    2012-11-26

    We compared the effect on primary vaccination plaque-reduction neutralization 80% titers (PRNT80) responses of same-day administration (at different injection sites) of two similar investigational inactivated alphavirus vaccines, eastern equine encephalitis (EEE) vaccine (TSI-GSD 104) and western equine encephalitis (WEE) vaccine (TSI-GSD 210) to separate administration. Overall, primary response rate for EEE vaccine was 524/796 (66%) and overall primary response rate for WEE vaccine was 291/695 (42%). EEE vaccine same-day administration yielded a 59% response rate and a responder geometric mean titer (GMT)=89 while separate administration yielded a response rate of 69% and a responder GMT=119. WEE vaccine same-day administration yielded a 30% response rate and a responder GMT=53 while separate administration yielded a response rate of 54% and a responder GMT=79. EEE response rates for same-day administration (group A) vs. non-same-day administration (group B) were significantly affected by gender. A logistic regression model predicting response to EEE comparing group B to group A for females yielded an OR=4.10 (95% CL 1.97-8.55; p=.0002) and for males yielded an OR=1.25 (95% CL 0.76-2.07; p=.3768). WEE response rates for same-day administration vs. non-same-day administration were independent of gender. A logistic regression model predicting response to WEE comparing group B to group A yielded an OR=2.14 (95% CL 1.22-3.73; p=.0077). We report immune interference occurring with same-day administration of two completely separate formalin inactivated viral vaccines in humans. These findings combined with the findings of others regarding immune interference would argue for a renewed emphasis on studying the immunological mechanisms of induction of inactivated viral vaccine protection. Copyright © 2012. Published by Elsevier Ltd.

  20. Determination of influenza B identity and potency in quadrivalent inactivated influenza vaccines using lineage-specific monoclonal antibodies

    PubMed Central

    Verma, Swati; Soto, Jackeline; Vasudevan, Anupama; Schmeisser, Falko; Alvarado-Facundo, Esmeralda; Wang, Wei; Weiss, Carol D.

    2017-01-01

    Co-circulation of two antigenically and genetically distinct lineages of influenza B virus, represented by prototype viruses B/Victoria/2/1987 and B/Yamagata/16/1988, has led to the development of quadrivalent influenza vaccines that contain two influenza B antigens. The inclusion of two influenza B antigens presents challenges for the production and regulation of inactivated quadrivalent vaccines, including the potential for cross-reactivity of the reagents used in identity and potency assays because of the relative close relatedness of the hemagglutinin (HA) from the two virus lineages. Monoclonal antibodies (mAbs) specific for the two lineages of influenza B HA were generated and characterized and used to set-up simple identity tests that distinguish the influenza B antigens in inactivated trivalent and quadrivalent vaccines. The lineage-specific mAbs bound well to the HA of influenza B strains included in influenza vaccines over a period of more than 10 years, suggesting that identity tests using such lineage-specific mAbs would not necessarily have to be updated with every influenza B vaccine strain change. These lineage-specific mAbs were also used in an antibody capture ELISA format to quantify HA in vaccine samples, including monovalent, trivalent, and quadrivalent vaccine samples from various manufacturers. The results demonstrated correlation with HA values determined by the traditional single radial immunodiffusion (SRID) assay. Further, the antibody-capture ELISA was able to distinguish heat-stressed vaccine from unstressed vaccine, and was similar to the SRID in quantifying the resultant loss of potency. These mAb reagents should be useful for further development of antibody-based alternative influenza B identity and potency assays. PMID:28423025

  1. Determination of influenza B identity and potency in quadrivalent inactivated influenza vaccines using lineage-specific monoclonal antibodies.

    PubMed

    Verma, Swati; Soto, Jackeline; Vasudevan, Anupama; Schmeisser, Falko; Alvarado-Facundo, Esmeralda; Wang, Wei; Weiss, Carol D; Weir, Jerry P

    2017-01-01

    Co-circulation of two antigenically and genetically distinct lineages of influenza B virus, represented by prototype viruses B/Victoria/2/1987 and B/Yamagata/16/1988, has led to the development of quadrivalent influenza vaccines that contain two influenza B antigens. The inclusion of two influenza B antigens presents challenges for the production and regulation of inactivated quadrivalent vaccines, including the potential for cross-reactivity of the reagents used in identity and potency assays because of the relative close relatedness of the hemagglutinin (HA) from the two virus lineages. Monoclonal antibodies (mAbs) specific for the two lineages of influenza B HA were generated and characterized and used to set-up simple identity tests that distinguish the influenza B antigens in inactivated trivalent and quadrivalent vaccines. The lineage-specific mAbs bound well to the HA of influenza B strains included in influenza vaccines over a period of more than 10 years, suggesting that identity tests using such lineage-specific mAbs would not necessarily have to be updated with every influenza B vaccine strain change. These lineage-specific mAbs were also used in an antibody capture ELISA format to quantify HA in vaccine samples, including monovalent, trivalent, and quadrivalent vaccine samples from various manufacturers. The results demonstrated correlation with HA values determined by the traditional single radial immunodiffusion (SRID) assay. Further, the antibody-capture ELISA was able to distinguish heat-stressed vaccine from unstressed vaccine, and was similar to the SRID in quantifying the resultant loss of potency. These mAb reagents should be useful for further development of antibody-based alternative influenza B identity and potency assays.

  2. Establishment of hepatitis A vaccine (inactivated, non-adsorbed) BRP batches 2 and 3.

    PubMed

    Morgeaux, S; Manniam, I; Variot, P; Buchheit, K H; Daas, A; Wierer, M; Costanzo, A

    2015-01-01

    The current hepatitis A vaccine (HAV), inactivated, non-adsorbed, European Pharmacopoeia (Ph. Eur.) Biological Reference Preparation (BRP) is used for the in vitro potency assay of HAV as prescribed by the Ph. Eur. general chapter 2.7.14 Assay of hepatitis A vaccine. This reference preparation was calibrated in 2008 through an international collaborative study and was assigned a potency of 12 IU/mL. During use of this BRP it appeared to be inapplicable in certain cases due to a low nominal antigen content. Consequently, the European Directorate for the Quality of Medicines and HealthCare (EDQM) established replacement batches for this BRP, calibrated against the 1(st) WHO International Standard (IS) for HAV (inactivated), using the standard in vitro ELISA (enzyme-linked immunosorbent assay) method validated previously. The results of the study showed that the candidate BRPs were suitable for the intended purpose, and following completion of the study, they were adopted in November 2014 by the Ph. Eur. Commission as HAV (inactivated, non-adsorbed) BRP batches 2 and 3, with an assigned potency of 1350 IU/mL, for in vitro antigen content determination by ELISA. As the amount of material in each vial largely exceeds the amount required for the performance of a single assay, the BRPs are to be aliquoted by users as single-use aliquots and refrozen below -50 °C prior to their use as reference preparations.

  3. Immunogenicity and safety of Southern Hemisphere inactivated quadrivalent influenza vaccine: a Phase III, open-label study of adults in Brazil.

    PubMed

    Zerbini, Cristiano A F; Ribeiro Dos Santos, Rodrigo; Jose Nunes, Maria; Soni, Jyoti; Li, Ping; Jain, Varsha K; Ofori-Anyinam, Opokua

    The World Health Organization influenza forecast now includes an influenza B strain from each of the influenza B lineages (B/Yamagata and B/Victoria) for inclusion in seasonal influenza vaccines. Traditional trivalent influenza vaccines include an influenza B strain from one lineage, but because two influenza B lineages frequently co-circulate, the effectiveness of trivalent vaccines may be reduced in seasons of influenza B vaccine-mismatch. Thus, quadrivalent vaccines may potentially reduce the burden of influenza compared with trivalent vaccines. In this Phase III, open-label study, we assessed the immunogenicity and safety of Southern Hemisphere inactivated quadrivalent influenza vaccine (Fluarix™ Tetra) in Brazilian adults (NCT02369341). The primary objective was to assess hemagglutination-inhibition antibody responses against each vaccine strain 21 days after vaccination in adults (aged ≥18-60 years) and older adults (aged >60 years). Solicited adverse events for four days post-vaccination, and unsolicited adverse events and serious adverse events for 21 days post-vaccination were also assessed. A total of 63 adults and 57 older adults received one dose of inactivated quadrivalent influenza vaccine at the beginning of the 2015 Southern Hemisphere influenza season. After vaccination, in adults and older adults, the hemagglutination-inhibition titers fulfilled the European licensure criteria for immunogenicity. In adults, the seroprotection rates with HI titer ≥1:40 were 100% (A/H1N1), 98.4% (A/H3N2), 100% (B/Yamagata), and 100% (B/Victoria); in older adults were 94.7% (A/H1N1), 96.5% (A/H3N2), 100% (B/Yamagata), and 100% (B/Victoria). Pain was the most common solicited local adverse events in adults (27/62) and in older adults (13/57), and the most common solicited general adverse events in adults was myalgia (9/62), and in older adults were myalgia and arthralgia (both 2/57). Unsolicited adverse events were reported by 11/63 adults and 10/57 older adults

  4. Diagnostic Approach for Differentiating Infected from Vaccinated Poultry on the Basis of Antibodies to NS1, the Nonstructural Protein of Influenza A Virus

    PubMed Central

    Tumpey, Terrence M.; Alvarez, Rene; Swayne, David E.; Suarez, David L.

    2005-01-01

    Vaccination programs for the control of avian influenza (AI) in poultry have limitations due to the problem of differentiating between vaccinated and virus-infected birds. We have used NS1, the conserved nonstructural protein of influenza A virus, as a differential diagnostic marker for influenza virus infection. Experimentally infected poultry were evaluated for the ability to induce antibodies reactive to NS1 recombinant protein produced in Escherichia coli or to chemically synthesized NS1 peptides. Immune sera were obtained from chickens and turkeys inoculated with live AI virus, inactivated purified vaccines, or inactivated commercial vaccines. Seroconversion to positivity for antibodies to the NS1 protein was achieved in birds experimentally infected with multiple subtypes of influenza A virus, as determined by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. In contrast, animals inoculated with inactivated gradient-purified vaccines had no seroconversion to positivity for antibodies to the NS1 protein, and animals vaccinated with commercial vaccines had low, but detectable, levels of NS1 antibodies. The use of a second ELISA with diluted sera identified a diagnostic test that results in seropositivity for antibodies to the NS1 protein only in infected birds. For the field application phase of this study, serum samples were collected from vaccinated and infected poultry, diluted, and screened for anti-NS1 antibodies. Field sera from poultry that received commercial AI vaccines were found to possess antibodies against AI virus, as measured by the standard agar gel precipitin (AGP) test, but they were negative by the NS1 ELISA. Conversely, diluted field sera from AI-infected poultry were positive for both AGP and NS1 antibodies. These results demonstrate the potential benefit of a simple, specific ELISA for anti-NS1 antibodies that may have diagnostic value for the poultry industries. PMID:15695663

  5. Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle

    PubMed Central

    2014-01-01

    Background Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals. The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. Results In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All

  6. Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle.

    PubMed

    Romera, Sonia Alejandra; Puntel, Mariana; Quattrocchi, Valeria; Del Médico Zajac, Paula; Zamorano, Patricia; Blanco Viera, Javier; Carrillo, Consuelo; Chowdhury, Shafiqul; Borca, Manuel V; Sadir, Ana M

    2014-01-08

    Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals.The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All animals vaccinated with

  7. Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles

    PubMed Central

    Choi, Hyo-Jick; Song, Jae-Min; Bondy, Brian J.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2015-01-01

    Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1) and high Arrhenius activation energy (E a = 15.0 kcal mol–1), indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination. PMID:26230936

  8. A novel inactivated gE/gI deleted pseudorabies virus (PRV) vaccine completely protects pigs from an emerged variant PRV challenge.

    PubMed

    Gu, Zhenqing; Dong, Jing; Wang, Jichun; Hou, Chengcai; Sun, Haifeng; Yang, Wenping; Bai, Juan; Jiang, Ping

    2015-01-02

    A highly virulent and antigenic variant of pseudorabies virus (PRV) broke out in China at the end of 2011 and caused great economic loss in the pig industry. In this study, an infectious bacterial artificial chromosome (BAC) clone containing the full-length genome of the emerged variant PRV ZJ01 strain was generated. The BAC-derived viruses, vZJ01-GFPΔgE/gI (gE/gI deleted strain, and exhibiting green autofluorescence), vZJ01ΔgE/gI (gE/gI deleted strain), and vZJ01gE/gI-R (gE/gI revertant strain), showed similar in vitro growth to their parent strain. In pigs, inactivated vZJ01ΔgE/gI vaccine generated significantly high levels of neutralizing antibodies against ZJ01 compared with Bartha-K61 live vaccine (p<0.05). After fatal ZJ01 challenge, all five animals in the inactivated vZJ01ΔgE/gI vaccine group survived without exhibiting any clinical sings, but two of five animals exhibited central nervous signs in the Bartha-K61 group. Meanwhile, all the non-vaccinated control animals died at 7 days post-challenge. This indicates that the inactivated vZJ01ΔgE/gI vaccine is a promising vaccine candidate for controlling the variant strains of PRV now circulating in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cost-effectiveness of inactivated seasonal influenza vaccination in a cohort of Thai children ≤60 months of age

    PubMed Central

    Suntarattiwong, Piyarat; Ditsungnoen, Darunee; Pallas, Sarah E.; Abimbola, Taiwo O.; Klungthong, Chonticha; Fernandez, Stefan; Srisarang, Suchada; Chotpitayasunondh, Tawee; Dawood, Fatimah S.; Olsen, Sonja J.; Lindblade, Kim A.

    2017-01-01

    Background Vaccination is the best measure to prevent influenza. We conducted a cost-effectiveness evaluation of trivalent inactivated seasonal influenza vaccination, compared to no vaccination, in children ≤60 months of age participating in a prospective cohort study in Bangkok, Thailand. Methods A static decision tree model was constructed to simulate the population of children in the cohort. Proportions of children with laboratory-confirmed influenza were derived from children followed weekly. The societal perspective and one-year analytic horizon were used for each influenza season; the model was repeated for three influenza seasons (2012–2014). Direct and indirect costs associated with influenza illness were collected and summed. Cost of the trivalent inactivated seasonal influenza vaccine (IIV3) including promotion, administration, and supervision cost was added for children who were vaccinated. Quality-adjusted life years (QALY), derived from literature, were used to quantify health outcomes. The incremental cost-effectiveness ratio (ICER) was calculated as the difference in the expected total costs between the vaccinated and unvaccinated groups divided by the difference in QALYs for both groups. Results Compared to no vaccination, IIV3 vaccination among children ≤60 months in our cohort was not cost-effective in the introductory year (2012 season; 24,450 USD/QALY gained), highly cost-effective in the 2013 season (554 USD/QALY gained), and cost-effective in the 2014 season (16,200 USD/QALY gained). Conclusion The cost-effectiveness of IIV3 vaccination among children participating in the cohort study varied by influenza season, with vaccine cost and proportion of high-risk children demonstrating the greatest influence in sensitivity analyses. Vaccinating children against influenza can be economically favorable depending on the maturity of the program, influenza vaccine performance, and target population. PMID:28837594

  10. Cost-effectiveness of inactivated seasonal influenza vaccination in a cohort of Thai children ≤60 months of age.

    PubMed

    Kittikraisak, Wanitchaya; Suntarattiwong, Piyarat; Ditsungnoen, Darunee; Pallas, Sarah E; Abimbola, Taiwo O; Klungthong, Chonticha; Fernandez, Stefan; Srisarang, Suchada; Chotpitayasunondh, Tawee; Dawood, Fatimah S; Olsen, Sonja J; Lindblade, Kim A

    2017-01-01

    Vaccination is the best measure to prevent influenza. We conducted a cost-effectiveness evaluation of trivalent inactivated seasonal influenza vaccination, compared to no vaccination, in children ≤60 months of age participating in a prospective cohort study in Bangkok, Thailand. A static decision tree model was constructed to simulate the population of children in the cohort. Proportions of children with laboratory-confirmed influenza were derived from children followed weekly. The societal perspective and one-year analytic horizon were used for each influenza season; the model was repeated for three influenza seasons (2012-2014). Direct and indirect costs associated with influenza illness were collected and summed. Cost of the trivalent inactivated seasonal influenza vaccine (IIV3) including promotion, administration, and supervision cost was added for children who were vaccinated. Quality-adjusted life years (QALY), derived from literature, were used to quantify health outcomes. The incremental cost-effectiveness ratio (ICER) was calculated as the difference in the expected total costs between the vaccinated and unvaccinated groups divided by the difference in QALYs for both groups. Compared to no vaccination, IIV3 vaccination among children ≤60 months in our cohort was not cost-effective in the introductory year (2012 season; 24,450 USD/QALY gained), highly cost-effective in the 2013 season (554 USD/QALY gained), and cost-effective in the 2014 season (16,200 USD/QALY gained). The cost-effectiveness of IIV3 vaccination among children participating in the cohort study varied by influenza season, with vaccine cost and proportion of high-risk children demonstrating the greatest influence in sensitivity analyses. Vaccinating children against influenza can be economically favorable depending on the maturity of the program, influenza vaccine performance, and target population.

  11. Developing an Inactivated Rotavirus Vaccine and Evaluating the Immunogenicity Against a Commercially Available Attenuated Rotavirus Vaccine Using a Mice Animal Model.

    PubMed

    Hashim, Ayaa S M; Aboshanab, Khaled M A; El-Sayed, Aly F M

    2016-12-01

    There is a high demand for public immunization against Rotavirus (RV), especially in Africa. In Africa, the attenuated RV vaccination is contraindicated in patients with immune diseases and nutrition deficiency. Therefore, the inactivated RV vaccine (IRVV) could be an alternative. In this study, we aimed to develop a pentavalent-IRVV using the most circulating RV strains in Egypt and evaluate it against the commercially available Rotarix ® vaccine. Trial-IRVV was developed with 5% sucrose, 2% polysorbate-80, and adsorbed on Alum to potentiate the vaccine immune response. Then, it was injected subcutaneously into mice groups at 0-, 21-, and 35-time intervals. In parallel, Rotarix was administered twice on 0 and 28 th day. The success of the pentavalent-IRVV/monovalent-Rotarix vaccine immunity rested on achieving immunoglobulin G (IgG) exceeding 1:6,400 that implies less susceptibility to RV infection (RVI). IRVV stimulating IgG >1:6,400 could be an alternative vaccination approach to reach a reasonable protective immunization level against RVI. In addition, Alum adjuvant incorporation effectively provoked a triple elevation of the immunization pattern.

  12. Serum and mucosal immune responses to an inactivated influenza virus vaccine induced by epidermal powder immunization.

    PubMed

    Chen, D; Periwal, S B; Larrivee, K; Zuleger, C; Erickson, C A; Endres, R L; Payne, L G

    2001-09-01

    Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.

  13. Five-year immunity persistence following immunization with inactivated enterovirus 71 type (EV71) vaccine in healthy children: A further observation.

    PubMed

    Hu, Yuemei; Zeng, Gang; Chu, Kai; Zhang, Jing; Han, Weixiao; Zhang, Ying; Li, Jing; Zhu, Fengcai

    2018-02-26

    The longevity of antibodies induced by inactivated enterovirus 71 type (EV71) vaccine is not well studied. To estimate the immunity persistence following two-dose vaccination of EV71 vaccine, a five-year follow-up study was conducted as an extension of a Phase III clinical trial. In this study, a sub-cohort of volunteers who was eligible for enrollment and randomly administrated either 2 dose EV71 vaccine or placebo in the phase III clinical trial was selected, and then further observed 64 months post the 1st vaccination. 211 Subjects (106 vaccine subjects and 105 placebo subjects) who provided a full series of blood samples (at all the sampling points) were included in the final analyzed population. Seropositive rate (SR) and geometric mean titer (GMT) of the neutralizing antibodies (NAb) was calculated to detect the dynamic profiles of EV71 vaccine-induced immunogenicity. SR at the 5th year remained 94.34% in the vaccine subjects, with a GMT of 141.42. The SR was 71.43% in the placebo subjects, with a GMT of 71.83. Despite natural infection consistently promoted the NAb increase in the placebo subjects, the SR and GMT in vaccine subjects remained significantly higher than that in the placebo subjects at all the sampling points. The inactivated EV71 vaccine-induced immunity had a good persistence, within 5 years following the primary vaccination.

  14. Immunogenicity and safety of a quadrivalent inactivated influenza vaccine compared with two trivalent inactivated influenza vaccines containing alternate B strains in adults: A phase 3, randomized noninferiority study.

    PubMed

    Treanor, John T; Albano, Frank R; Sawlwin, Daphne C; Graves Jones, Alison; Airey, Jolanta; Formica, Neil; Matassa, Vince; Leong, Jane

    2017-04-04

    Vaccination is the most effective means of influenza prevention. Efficacy of trivalent vaccines may be enhanced by including both B strain lineages. This phase 3, double-blind study assessed the immunogenicity and safety/tolerability of a quadrivalent inactivated influenza vaccine (IIV4) versus the United States (US)-licensed 2014-2015 trivalent inactivated influenza vaccine (IIV3-Yamagata [IIV3-YAM]; Afluria) and IIV3 containing the alternate Victoria B strain (IIV3-VIC) in adults ≥18years. Participants (n=3484) were randomized 2:1:1 and stratified by age to receive IIV4 (n=1741), IIV3-YAM (n=871), or IIV3-VIC (n=872). The primary objective was to demonstrate noninferiority of the immunological response to IIV4 versus IIV3-YAM and IIV3-VIC. Noninferiority was assessed by hemagglutination inhibition geometric mean titer (GMT) ratio (IIV3/IIV4; upper bound of two-sided 95% confidence interval [CI]≤1.5) and seroconversion rate (SCR) difference (IIV3 - IIV4; upper bound of two-sided 95% CI≤10%) for vaccine strains. Solicited local and systemic adverse events (AEs) were assessed for 7days postvaccination, AEs recorded for 28days postvaccination, and serious AEs for 6months postvaccination. IIV4 elicited a noninferior immune response for matched strains, and superior response for unmatched B strains not contained in IIV3 comparators. Adjusted GMT ratios (95% CI) for A/H1N1, A/H3N2, B/YAM, and B/VIC strains were 0.93 (0.88, 0.99), 0.93 (0.88, 0.98), 0.87 (IIV3-YAM; 0.82, 0.93), and 0.95 (IIV3-VIC; 0.88, 1.03), respectively. Corresponding values for SCR differences (95% CI) were -1.1 (-4.5, 2.3), -1.7 (-5.0, 1.7), -3.2 (IIV3-YAM; -7.4, 0.9), and -1.6 (IIV3-VIC; -5.8, 2.5). AEs were generally mild and experienced by 52.9% of participants. Serious AEs were reported with a slightly higher frequency with IIV4 (2.3%) versus IIV3-YAM (1.6%) and IIV3-VIC (1.5%). IIV4 demonstrated immunological noninferiority to the US-licensed IIV3, and superiority for unmatched B strains

  15. Inactivated infectious bronchitis virus vaccine encapsulated in chitosan nanoparticles induces mucosal immune responses and effective protection against challenge.

    PubMed

    Lopes, Priscila Diniz; Okino, Cintia Hiromi; Fernando, Filipe Santos; Pavani, Caren; Casagrande, Viviane Mariguela; Lopez, Renata F V; Montassier, Maria de Fátima Silva; Montassier, Helio José

    2018-05-03

    Avian infectious bronchitis virus (IBV) is one of the most important viral diseases of poultry. The mucosa of upper respiratory tract, specially the trachea, is the primary replication site for this virus. However, conventional inactivate IBV vaccines usually elicit reduced mucosal immune responses and local protection. Thus, an inactivated IBV vaccine containing BR-I genotype strain encapsulated in chitosan nanoparticles (IBV-CS) was produced by ionic gelation method to be administered by oculo-nasal route to chickens. IBV-CS vaccine administered alone resulted in markedly mucosal immune responses, characterized by high levels of anti-IBV IgA isotype antibodies and IFNγ gene expression at 1dpi. The association of live attenuated Massachusetts IBV and IBV-CS vaccine also induced strong mucosal immune responses, though a switch from IgA isotype to IgG was observed, and IFNγ gene expression peak was late (at 5 dpi). Efficacy of IBV-CS was evaluated by tracheal ciliostasis analysis, histopathology examination, and viral load determination in the trachea and kidney. The results indicated that IBV-CS vaccine administered alone or associated with a live attenuated heterologous vaccine induced both humoral and cell-mediated immune responses at the primary site of viral replication, and provided an effective protection against IBV infection at local (trachea) and systemic (kidney) sites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    PubMed Central

    Naggar, Heba M. El; Madkour, Mohamed Sayed; Hussein, Hussein Ali

    2017-01-01

    Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND) and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2) based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles Montanide™ adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2) viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses. PMID:28344402

  17. Analysis of the dose-sparing effect of adjuvanted Sabin-inactivated poliovirus vaccine (sIPV).

    PubMed

    Li, Zhuofan; Ding, Wenting; Guo, Qi; Liu, Ze; Zhu, Zhe; Song, Shaohui; Li, Weidong; Liao, Guoyang

    2018-03-30

    Sabin-based inactivated poliovirus vaccine(sIPV) is gradually replacing live-attenuated oral polio vaccine(OPV). Sabin-inactivated poliovirus vaccine(sIPV) has played a vital role in reducing economic burden of poliomyelitis and maintaining appropriate antibody levels in the population. However, due to its high cost and limited manufacturing capacity, sIPV cannot reach its full potential for global poliovirus eradication in developing countries. Therefore, to address this situation, we designed this study to evaluate the dose-sparing effects of AS03, CpG oligodeoxynucleotides (CpG-ODN) and polyinosinic:polycytidylic acid (PolyI:C) admixed with sIPV in rats. Our results showed that a combination of 1/4-dose sIPV adjuvanted with AS03 or AS03 with BW006 provides a seroconversion rate similar to that of full-dose sIPV without adjuvant and that, this rate is 5-fold higher than that of 1/4-dose sIPV without adjuvant after the first immunization. The combination of AS03 or AS03 with BW006 as an adjuvant effectively reduced sIPV dose by at least 4-fold and induced both humoral and cellular immune responses. Therefore, our study revealed that the combination of AS03 or AS03 with BW006 is a promising adjuvant for sIPV development.

  18. Safety of a Trivalent Inactivated Influenza Vaccine in Health Care Workers in Kurdistan Province, Western Iran; A Longitudinal Follow-up Study.

    PubMed

    Soltani, Jafar; Jamil Amjadi, Mohamad

    2014-03-01

    We studied the safety of a trivalent inactivated surface antigen (split virion, inactivated) influenza vaccine, Begrivac® (Novartis Company), widely used in health care workers in Kurdistan. A longitudinal follow-up study was performed in Sanandaj city, west of Iran, recruiting 936 people. A questionnaire was completed for each participant, and all symptoms or abnormal physical findings were recorded. In part 1 of the study, the post-vaccination complaints were headache (5.3%), fever (7.9%), weakness (9.6%), chills (10.1%), sweating (10.5%), arthralgia (20.2%), and malaise (21.5%). Swelling of the injection site was seen in 267 (30.3%) participants, and pruritus of the injection site was seen in 290 (32.9%) participants. Redness and induration were also reported in 42.5% of the participants. Local reactions were mainly mild and lasted for 1-2 days. No systemic reactions were reported in the second part of the study. None of the participants experienced any inconvenience. We concluded that local adverse reactions after the trivalent inactivated split influenza vaccine, Begrivac®, in health care workers were far more common than expected. Continuous surveillance is needed to assess the potential risks and benefits of newly produced influenza vaccines.

  19. Safety of a Trivalent Inactivated Influenza Vaccine in Health Care Workers in Kurdistan Province, Western Iran; A Longitudinal Follow-up Study

    PubMed Central

    Soltani, Jafar; Jamil Amjadi, Mohamad

    2014-01-01

    We studied the safety of a trivalent inactivated surface antigen (split virion, inactivated) influenza vaccine, Begrivac® (Novartis Company), widely used in health care workers in Kurdistan. A longitudinal follow-up study was performed in Sanandaj city, west of Iran, recruiting 936 people. A questionnaire was completed for each participant, and all symptoms or abnormal physical findings were recorded. In part 1 of the study, the post-vaccination complaints were headache (5.3%), fever (7.9%), weakness (9.6%), chills (10.1%), sweating (10.5%), arthralgia (20.2%), and malaise (21.5%). Swelling of the injection site was seen in 267 (30.3%) participants, and pruritus of the injection site was seen in 290 (32.9%) participants. Redness and induration were also reported in 42.5% of the participants. Local reactions were mainly mild and lasted for 1-2 days. No systemic reactions were reported in the second part of the study. None of the participants experienced any inconvenience. We concluded that local adverse reactions after the trivalent inactivated split influenza vaccine, Begrivac®, in health care workers were far more common than expected. Continuous surveillance is needed to assess the potential risks and benefits of newly produced influenza vaccines. PMID:24753646

  20. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of an Inactivated Porcine Circovirus Type 2 (PCV2) Vaccine on PCV2 Virus Shedding in Semen from Experimentally Infected Boars ▿

    PubMed Central

    Seo, Hwi Won; Han, Kiwon; Kim, Duyeol; Oh, Yeonsu; Kang, Ikjae; Park, Changhoon; Jang, Hyun; Chae, Chanhee

    2011-01-01

    The objective of the present study was to determine the effect of an inactivated porcine circovirus type 2 (PCV2) vaccine on PCV2b virus shedding in the semen of experimentally infected boars by measuring the immunological response and the PCV2b DNA load in blood and semen. Twelve boars were randomly divided into three groups. The boars in group 1 (n = 4) were immunized with an inactivated PCV2 vaccine and were challenged with PCV2b. The boars in group 2 (n = 4) were only challenged with PCV2b. The boars in group 3 (n = 4) served as negative controls. The number of PCV2 genome copies of PCV2 in the serum and semen were significantly lower in vaccinated challenged boars than in nonvaccinated challenged boars at 7, 10, 14, 21, 32, 35, 42, 49, and 60 days postinoculation. The number of PCV2b genomes in the semen correlated with the number of PCV2b genomes in the blood in both vaccinated challenged (R = 0.714) and nonvaccinated challenged (R = 0.861) boars. The results of the present study demonstrate that the inactivated PCV2 vaccine significantly decreases the amount of PCV2b DNA shedding in semen from vaccinated boars after experimental infection with PCV2b. PMID:21613465

  2. [Caprine arthritis-encephalitis: trial of an adjuvant vaccine preparation. I. Clinical and virological study].

    PubMed

    Russo, P; Vitu, C; Fontaine, J J; Vignoni, M

    1993-04-01

    In purpose to protect goats against caprine arthritis encephalitis virus (CAEV), the first group of kids (I) was inoculated with purified, inactivated and adjuvant-treated virions, the second group (II) with adjuvant and the third one (III) with culture medium. 2-4 months later, the three groups were challenged with virulent CAEV by intraarticular route. On the clinical level, vaccinated and challenged kids show more early and severe arthritis than other groups. On the virological level, isolation of lentivirus from white blood cells and different organs is more important in group I than groups II and III. Therefore, vaccinations with inactivated and adjuvant-treated virions do not protect against a virulent challenge; there is an enhancement of lesions. We note that the adjuvant elicits a mild non-specific protection against virulent challenge.

  3. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    PubMed

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  4. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs.

    PubMed

    Dhakal, Santosh; Hiremath, Jagadish; Bondra, Kathryn; Lakshmanappa, Yashavanth S; Shyu, Duan-Liang; Ouyang, Kang; Kang, Kyung-Il; Binjawadagi, Basavaraj; Goodman, Jonathan; Tabynov, Kairat; Krakowka, Steven; Narasimhan, Balaji; Lee, Chang Won; Renukaradhya, Gourapura J

    2017-02-10

    Swine influenza virus (SwIV) is one of the important zoonotic pathogens. Current flu vaccines have failed to provide cross-protection against evolving viruses in the field. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable FDA approved polymer and widely used in drug and vaccine delivery. In this study, inactivated SwIV H1N2 antigens (KAg) encapsulated in PLGA nanoparticles (PLGA-KAg) were prepared, which were spherical in shape with 200 to 300nm diameter, and induced maturation of antigen presenting cells in vitro. Pigs vaccinated twice with PLGA-KAg via intranasal route showed increased antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory and cytotoxic T cells (CTLs) in peripheral blood mononuclear cells (PBMCs). In PLGA-KAg vaccinated and heterologous SwIV H1N1 challenged pigs, clinical flu symptoms were absent, while the control pigs had fever for four days. Grossly and microscopically, reduced lung pathology and viral antigenic mass in the lung sections with clearance of infectious challenge virus in most of the PLGA-KAg vaccinated pig lung airways were observed. Immunologically, PLGA-KAg vaccine irrespective of not significantly boosting the mucosal antibody response, it augmented the frequency of IFN-γ secreting total T cells, T-helper and CTLs against both H1N2 and H1N1 SwIV. In summary, inactivated influenza virus delivered through PLGA-NPs reduced the clinical disease and induced cross-protective cell-mediated immune response in a pig model. Our data confirmed the utility of a pig model for intranasal particulate flu vaccine delivery platform to control flu in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evaluating the effectiveness, impact and safety of live attenuated and seasonal inactivated influenza vaccination: protocol for the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study

    PubMed Central

    Lone, Nazir I; Kavanagh, Kimberley; Robertson, Chris; McMenamin, Jim; von Wissmann, Beatrix; Vasileiou, Eleftheria; Butler, Chris; Ritchie, Lewis D; Gunson, Rory; Schwarze, Jürgen; Sheikh, Aziz

    2017-01-01

    Introduction Seasonal (inactivated) influenza vaccination is recommended for all individuals aged 65+ and in individuals under 65 who are at an increased risk of complications of influenza infection, for example, people with asthma. Live attenuated influenza vaccine (LAIV) was recommended for children as they are thought to be responsible for much of the transmission of influenza to the populations at risk of serious complications from influenza. A phased roll-out of the LAIV pilot programme began in 2013/2014. There is limited evidence for vaccine effectiveness (VE) in the populations targeted for influenza vaccination. The aim of this study is to examine the safety and effectiveness of the live attenuated seasonal influenza vaccine programme in children and the inactivated seasonal influenza vaccination programme among different age and at-risk groups of people. Methods and analysis Test negative and cohort study designs will be used to estimate VE. A primary care database covering 1.25 million people in Scotland for the period 2000/2001 to 2015/2016 will be linked to the Scottish Immunisation Recall Service (SIRS), Health Protection Scotland virology database, admissions to Scottish hospitals and the Scottish death register. Vaccination status (including LAIV uptake) will be determined from the primary care and SIRS database. The primary outcome will be influenza-positive real-time PCR tests carried out in sentinel general practices and other healthcare settings. Secondary outcomes include influenza-like illness and asthma-related general practice consultations, hospitalisations and death. An instrumental variable analysis will be carried out to account for confounding. Self-controlled study designs will be used to estimate the risk of adverse events associated with influenza vaccination. Ethics and dissemination We obtained approval from the National Research Ethics Service Committee, West Midlands—Edgbaston. The study findings will be presented at

  6. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation.

    PubMed

    Barrett, Alan D T

    2018-01-01

    Zika virus (ZIKV), a mosquito-borne flavivirus, was first identified in the 1940s in Uganda in Africa and emerged in the Americas in Brazil in May 2015. In the 30 months since ZIKV emerged as a major public health problem, spectacular progress has been made with vaccine development cumulating with the publication of three reports of phase 1 clinical trials in the 4th quarter of 2017. Clinical trials involving candidate DNA and purified inactivated virus vaccines showed all were safe and well-tolerated in the small number of volunteers and all induced neutralizing antibodies, although these varied by vaccine candidate and dosing regimen. These results suggest that a Zika vaccine can be developed and that phase 2 clinical trials are warranted. However, it is difficult to compare the results from the different phase 1 studies or with neutralizing antibodies induced by licensed flavivirus vaccines (Japanese encephalitis, tick-borne encephalitis, and yellow fever) as neutralizing antibody assays vary and, unfortunately, there are no standards for Zika virus neutralizing antibodies. In addition to clinical studies, substantial progress continues to be made in nonclinical development, particularly in terms of the ability of candidate vaccines to protect reproductive tissues, and the potential use of monoclonal antibodies for passive prophylaxis.

  7. Clinical and Immune Responses to Inactivated Influenza A(H1N1)pdm09 Vaccine in Children

    PubMed Central

    Kotloff, Karen L.; Halasa, Natasha B.; Harrison, Christopher J.; Englund, Janet A.; Walter, Emmanuel B.; King, James C.; Creech, C. Buddy; Healy, Sara A.; Dolor, Rowena J.; Stephens, Ina; Edwards, Kathryn M.; Noah, Diana L.; Hill, Heather; Wolff, Mark

    2014-01-01

    Background As the influenza AH1N1 pandemic emerged in 2009, children were found to experience high morbidity and mortality and were prioritized for vaccination. This multicenter, randomized, double-blind, age-stratified trial assessed the safety and immunogenicity of inactivated influenza A(H1N1)pdm09 vaccine in healthy children aged 6 months to 17 years. Methods Children received two doses of approximately 15 μg or 30 μg hemagglutin antigen 21 days apart. Reactogenicity was assessed for 8 days after each dose, adverse events through day 42, and serious adverse events or new-onset chronic illnesses through day 201. Serum hemagglutination inhibition (HAI) titers were measured on days 0 (pre-vaccination), 8, 21, 29, and 42. Results A total of 583 children received the first dose and 571 received the second dose of vaccine. Vaccinations were generally well-tolerated and no related serious adverse events were observed. The 15 μg dosage elicited a seroprotective HAI (≥1:40) in 20%, 47%, and 93% of children in the 6-35 month, 3-9 year, and 10-17 year age strata 21 days after dose 1 and in 78%, 82%, and 98% of children 21 days after dose 2, respectively. The 30 μg vaccine dosage induced similar responses. Conclusions The inactivated influenza A(H1N1)pdm09 vaccine exhibited a favorable safety profile at both dosage levels. While a single 15 or 30 μg dose induced seroprotective antibody responses in most 10-17 year olds, younger children required 2 doses, even when receiving dosages 4-6 fold higher than recommended. Well-tolerated vaccines are needed that induce immunity after a single dose for use in young children during influenza pandemics. PMID:25222307

  8. Post-marketing surveillance of adverse events following immunization with inactivated quadrivalent and trivalent influenza vaccine in health care providers in Western Australia.

    PubMed

    Regan, Annette K; Tracey, Lauren; Gibbs, Robyn

    2015-11-17

    In 2015, inactivated quadrivalent influenza vaccine (QIV) was first introduced into the Australian market. A routine vaccine safety surveillance system in Western Australia was used to conduct post-licensure surveillance of adverse events following immunization with inactivated QIV and trivalent influenza vaccines (TIV) in a sample of 1685 healthcare providers (HCPs). A similar percentage of HCPs who received QIV reported having any reaction seven days post-vaccination as HCPs who received TIV (13.6 vs. 12.8%, respectively; p=0.66). However, a slightly higher percentage of HCPs who received QIV reported pain or swelling at the injection site as compared to HCPs who received TIV (6.9% vs. 4.2%, respectively; p=0.02). No serious vaccine-associated adverse events were detected during follow-up of either vaccine. Acknowledging the study limitations, the results of this post-marketing surveillance support the safety of QIV, suggesting there is little difference in the reactogenicity of QIV as compared to TIV. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Safety and immunogenicity of a freeze-dried, Vero cell culture-derived, inactivated Japanese encephalitis vaccine (KD-287, ENCEVAC®) versus a mouse brain-derived inactivated Japanese encephalitis vaccine in children: a phase III, multicenter, double-blinded, randomized trial.

    PubMed

    Yun, Ki Wook; Lee, Hoan Jong; Kang, Jin Han; Eun, Byung Wook; Kim, Yae-Jean; Kim, Kyung-Hyo; Kim, Nam Hee; Hong, Young Jin; Kim, Dong Ho; Kim, Hwang Min; Cha, Sung-Ho

    2015-01-08

    Although mouse brain-derived, inactivated Japanese encephalitis vaccines (JE-MBs) have been successfully used for a long time, potential rare neurological complications have prompted the development of a Vero cell culture-derived inactivated vaccine (JE-VC). In a phase III clinical study, we aimed to compare the safety and immunogenicity of a JE-VC, KD-287 with a JE-MB, JEV-GCC, in children. In this multicenter, double-blinded, randomized controlled trial, the study population consisted of 205 healthy Korean children aged 12-23 months. Each subject was subcutaneously vaccinated with either KD-287 or JEV-GCC twice at an interval of 2 weeks and then vaccinated once 12 months after the second vaccination. Neutralizing antibodies were measured by the plaque reduction neutralization test using the homologous and heterologous, as a post hoc analysis, challenge virus strains. The three-dose regimen of KD-287 showed a comparable safety profile with JEV-GCC except higher incidence of fever after the first dose (30.4% and 14.7%, respectively). Most of the fever was mild degree (61.3% and 66.7%, respectively). KD-287 fulfilled the non-inferiority criteria for seroconversion rate (SCR) and geometric mean titer (GMT) of the neutralizing antibody, which were the primary endpoints, at 4 weeks after the third vaccination (95% CI: -1.00, 3.10 for the SCR difference and 10.8, 17.6 for the GMT ratio). The SCRs of KD-287 were all 100% and the GMTs were higher in the KD-287 group than in the JEV-GCC group after the second vaccination and before and after the third vaccination (GMT ratio: 5.59, 20.13, and 13.79, respectively, p < 0.001 in all). GMTs were higher in the KD-287 group in the heterologous analysis also (GMT ratio: 4.05, 5.15, and 4.19, respectively, p < 0.001 in all). This study suggests that the KD-287, a JE-VC is as safe as and may be more effective than the licensed MB-derived vaccine. KD-287 could thus be useful as a second-generation vaccine and substitute

  10. Infectious bovine rhinotracheitis: study on the experimentally induced disease and its prevention using an inactivated, adjuvanted vaccine.

    PubMed

    Soulebot, J P; Guillemin, F; Brun, A; Dubourget, P; Espinasse, J; Terre, J

    1982-01-01

    Experimentally induced IBR was studied in calves. Intranasal challenge enabled reproducible results to be obtained, both from qualitative (clinical aspect) and quantitative points of view (virus excretion, temperature); local and general immunity were also evaluated. This challenge method is useful when studying IBR vaccines. The disease was also experimentally induced by putting healthy animals into contact with diffusor calves. A single injection of inactivated vaccine in oily adjuvant already conferred good protection; it was 100% successful against the experimentally induced disease when administered two times at a 7 or 14 day interval. Immunity obtained was long-lasting and even persisted up to one year. Therefore, this vaccine is advised for vaccination in both contaminated and high risk areas. Results obtained for both safety and potency suggest that this killed vaccine should be used rather than live vaccines.

  11. High-dose inactivated influenza vaccine is associated with cost savings and better outcomes compared to standard-dose inactivated influenza vaccine in Canadian seniors.

    PubMed

    Becker, Debbie L; Chit, Ayman; DiazGranados, Carlos A; Maschio, Michael; Yau, Eddy; Drummond, Michael

    2016-12-01

    Seasonal influenza infects approximately 10-20% of Canadians each year, causing an estimated 12,200 hospitalizations and 3,500 deaths annually, mostly occurring in adults ≥65 years old (seniors). A 32,000-participant, randomized controlled clinical trial (FIM12; Clinicaltrials.gov NCT01427309) showed that high-dose inactivated influenza vaccine (IIV-HD) is superior to standard-dose vaccine (SD) in preventing laboratory-confirmed influenza illness in seniors. In this study, we performed a cost-utility analysis (CUA) of IIV-HD versus SD in FIM12 participants from a Canadian perspective. Healthcare resource utilization data collected in FIM12 included: medications, non-routine/urgent care and emergency room visits, and hospitalizations. Unit costs were applied using standard Canadian cost sources to estimate the mean direct medical and societal costs associated with each vaccine (2014 CAD). Clinical illness data from the trial were mapped to quality-of-life data from the literature to estimate differences in effectiveness between vaccines. Time horizon was one influenza season, however, quality-adjusted life-years (QALYs) lost due to death during the study were captured over a lifetime. A probabilistic sensitivity analysis (PSA) was also performed. Average per-participant medical costs were $47 lower and societal costs $60 lower in the IIV-HD arm. Hospitalizations contributed 91% of the total cost and were less frequent in the IIV-HD arm. IIV-HD provided a gain in QALYs and, due to cost savings, dominated SD in the CUA. The PSA indicated that IIV-HD is 89% likely to be cost saving. In Canada, IIV-HD is expected to be a less costly and more effective alternative to SD, driven by a reduction in hospitalizations.

  12. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    PubMed

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  13. Inactivation of purified human recombinant monoamine oxidases A and B by rasagiline and its analogues.

    PubMed

    Hubálek, Frantisek; Binda, Claudia; Li, Min; Herzig, Yaacov; Sterling, Jeffrey; Youdim, Moussa B H; Mattevi, Andrea; Edmondson, Dale E

    2004-03-25

    The inactivation of purified human recombinant monoamine oxidases (MAO) A and B by rasagiline [N-propargyl-1(R)-aminoindan] and four of its analogues [N-propargyl-1(S)-aminoindan (S-PAI), 6-hydroxy-N-propargyl-1(R)-aminoindan (R-HPAI), N-methyl-N-propargyl-1(R)-aminoindan (R-MPAI), and 6-(N-methyl-N-ethyl carbamoyloxy)-N-propargyl-1(R)-aminoindan (R-CPAI)] has been investigated. All compounds tested, with the exception of R-CPAI, form stoichiometric N(5) flavocyanine adducts with the FAD moiety of either enzyme. No H(2)O(2) is produced during either MAO A or MAO B inactivation, which demonstrates that covalent addition occurs in a single turnover. Rasagiline has the highest specificity for MAO B, as demonstrated by a 100-fold higher inhibition potency (k(inact)/K(i)) compared to MAO A, with the remaining compounds exhibiting lower isozyme specificities. MAO B and MAO A are more selective for the R-enantiomer (rasagiline) compared to the S-enantiomer (S-PAI) by 2500-fold and 17-fold, respectively. Differences in UV/vis and CD spectral data of the complexes of the studied compounds with both MAO A and MAO B are interpreted in light of crystallographic data of complexes of MAO B with rasagiline and its analogues (Binda, C.; et al. J. Med. Chem. 2004, 47, 1767-1774.

  14. Field trials of an inactivated, oil-emulsion porcine parvovirus vaccine in British pig herds.

    PubMed

    Wrathall, A E

    1988-04-23

    Inactivated porcine parvovirus vaccines have been available commercially in Britain since 1984 and are now widely used in breeding herds. To investigate their value in cost benefit terms an oil-emulsion vaccine developed at Weybridge was used in trials on 1243 gilts in 12 herds during the period 1984 to 1986. In each herd approximately half the gilts were given the vaccine before breeding and the remainder were left unvaccinated. Blood samples were taken at vaccination and two to four weeks later to measure the serological responses, and the reproductive performances of the two groups were compared. When the data from all the gilts in the 12 herds were combined and analysed together there was surprisingly little difference between the reproductive performance of the vaccinated and unvaccinated groups. Only when the results from individual herds were analysed and interpreted against a background knowledge of wild parvovirus activity (as derived from a study of the serological results) did an understanding and evaluation of the benefits of vaccination become possible. As herds vary with respect to the absence or presence of porcine parvovirus and the epidemiology of the infection it is recommended that vaccination be used with discrimination; it should then prove highly cost effective.

  15. Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine.

    PubMed

    Poore, Elizabeth A; Slifka, Dawn K; Raué, Hans-Peter; Thomas, Archana; Hammarlund, Erika; Quintel, Benjamin K; Torrey, Lindsay L; Slifka, Ariel M; Richner, Justin M; Dubois, Melissa E; Johnson, Lawrence P; Diamond, Michael S; Slifka, Mark K; Amanna, Ian J

    2017-01-05

    West Nile virus (WNV) is a mosquito-transmitted pathogen with a wide geographical range that can lead to long-term disability and death in some cases. Despite the public health risk posed by WNV, including an estimated 3 million infections in the United States alone, no vaccine is available for use in humans. Here, we present a scaled manufacturing approach for production of a hydrogen peroxide-inactivated whole virion WNV vaccine, termed HydroVax-001WNV. Vaccination resulted in robust virus-specific neutralizing antibody responses and protection against WNV-associated mortality in mice or viremia in rhesus macaques (RM). A GLP-compliant toxicology study performed in rats demonstrated an excellent safety profile with clinical findings limited to minor and transient irritation at the injection site. An in vitro relative potency (IVRP) assay was developed and shown to correlate with in vivo responses following forced degradation studies. Long-term in vivo potency comparisons between the intended storage condition (2-8°C) and a thermally stressed condition (40±2°C) demonstrated no loss in vaccine efficacy or protective immunity over a 6-month span of time. Together, the positive pre-clinical findings regarding immunogenicity, safety, and stability indicate that HydroVax-001WNV is a promising vaccine candidate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Efficacy of parenteral vaccination against tuberculosis with heat-inactivated Mycobacterium bovis in experimentally challenged goats.

    PubMed

    Arrieta-Villegas, Claudia; Perálvarez, Tania; Vidal, Enric; Puighibet, Zoë; Moll, Xavier; Canturri, Albert; Sevilla, Iker A; Espada, Yvonne; Juste, Ramón A; Domingo, Mariano; Pérez de Val, Bernat

    2018-01-01

    Tuberculosis (TB) in animals is a re-emerging disease with a wide range of hosts that causes large economic losses in livestock. Goats are particularly susceptible to TB and, in endemic areas, vaccination may be a valuable measure to control the disease. The main aim of this study was to evaluate the efficacy of parenteral vaccination of goats with a heat-inactivated Mycobacterium bovis (HIMB) vaccine, and compare it to M. bovis Bacille Calmette-Guérin (BCG) vaccine. Twenty-four goat kids were divided in 3 groups as following: HIMB vaccinated group (n = 8), BCG vaccinated group (n = 8) and unvaccinated group (n = 8). Afterwards, goats were experimentally challenged with Mycobacterium caprae by the endobronchial route. Antigen specific interferon-γ release assays and serology were performed after vaccination and challenge. Pathological and bacteriological parameters were evaluated after necropsy at 9 weeks post-challenge (p.c.). HIMB vaccine showed similar levels of protection to BCG in terms of volume reduction of thoracic TB lesions, presence of extra-pulmonary lesions, as well as a slight reduction of bacterial load in pulmonary lymph nodes. Moreover, HIMB vaccine did not induce interferences on the interferon-γ release assay based on reagents previously developed to differentiate infected from BCG vaccinated individuals. The results indicate that HIMB is a suitable vaccine candidate for further larger-scale trials under field conditions in goats.

  17. Immunogenicity and safety of a booster dose of diphtheria, tetanus, acellular pertussis and inactivated poliomyelitis vaccine (Tdap-IPV; Repevax) administered concomitantly versus non-concomitantly with an influenza vaccine (Vaxigrip) to adults aged ≥60 years: an open-label, randomised trial.

    PubMed

    Zimmermann, Ulrich; Gavazzi, Gaëtan; Richard, Patrick; Eymin, Cécile; Soubeyrand, Benoît; Baudin, Martine

    2013-03-01

    Annual influenza vaccination provides an opportunity to administer a booster dose of diphtheria, tetanus, acellular pertussis and inactivated poliomyelitis vaccine (Tdap-IPV) to the elderly. This study evaluated immune responses to and safety of the two vaccines administered concomitantly or sequentially to elderly individuals in France and Germany. Individuals aged ≥60 years who had received a diphtheria/tetanus booster within 5-15 years were randomised (1:1) to receive either Tdap-IPV and an inactivated influenza vaccine concomitantly (Group 1) or inactivated influenza vaccine then Tdap-IPV 28-35 days later (Group 2). Antibody titres were measured before and 28-35 days after each vaccination. The mean age of randomised individuals (n=954) was 68.8 years. Post-vaccination seroprotection rates (≥0.1 IU/mL for diphtheria/tetanus and ≥8 1/dilution for polio) for Group 1 were non-inferior to Group 2 for diphtheria (85.4% vs. 87.5%), tetanus (both 100%), polio type 1 (99.8% vs. 100%), polio type 2 (both 100%) and polio type 3 (99.3% vs. 99.8%). Similarly, percentages of individuals with pertussis antibodies ≥5 EU/mL for Group 1 were non-inferior to Group 2: pertussis toxin (94.3% vs. 98.1%), filamentous haemagglutinin (99.8% vs. 100%), pertactin (97.3% vs. 96.0%), fimbriae 2 and 3 (91.7% vs. 89.5%). Post-vaccination geometric mean titres of anti-influenza haemagglutinin antibodies for Group 1 were non-inferior to Group 2. Adverse events following administration of Tdap-IPV were similar in both study groups, with no vaccine-related serious adverse events. Tdap-IPV and inactivated influenza vaccine can be administered concomitantly in the elderly without impairing tolerability or the immune response to either vaccine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse.

    PubMed

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system.

  19. Effects of Toll-Like Receptor Stimulation on Eosinophilic Infiltration in Lungs of BALB/c Mice Immunized with UV-Inactivated Severe Acute Respiratory Syndrome-Related Coronavirus Vaccine

    PubMed Central

    Iwata-Yoshikawa, Naoko; Uda, Akihiko; Suzuki, Tadaki; Tsunetsugu-Yokota, Yasuko; Sato, Yuko; Morikawa, Shigeru; Tashiro, Masato; Sata, Tetsutaro; Hasegawa, Hideki

    2014-01-01

    ABSTRACT Severe acute respiratory syndrome-related coronavirus (SARS-CoV) is an emerging pathogen that causes severe respiratory illness. Whole UV-inactivated SARS-CoV (UV-V), bearing multiple epitopes and proteins, is a candidate vaccine against this virus. However, whole inactivated SARS vaccine that includes nucleocapsid protein is reported to induce eosinophilic infiltration in mouse lungs after challenge with live SARS-CoV. In this study, an ability of Toll-like receptor (TLR) agonists to reduce the side effects of UV-V vaccination in a 6-month-old adult BALB/c mouse model was investigated, using the mouse-passaged Frankfurt 1 isolate of SARS-CoV. Immunization of adult mice with UV-V, with or without alum, resulted in partial protection from lethal doses of SARS-CoV challenge, but extensive eosinophil infiltration in the lungs was observed. In contrast, TLR agonists added to UV-V vaccine, including lipopolysaccharide, poly(U), and poly(I·C) (UV-V+TLR), strikingly reduced excess eosinophilic infiltration in the lungs and induced lower levels of interleukin-4 and -13 and eotaxin in the lungs than UV-V-immunization alone. Additionally, microarray analysis showed that genes associated with chemotaxis, eosinophil migration, eosinophilia, and cell movement and the polarization of Th2 cells were upregulated in UV-V-immunized but not in UV-V+TLR-immunized mice. In particular, CD11b+ cells in the lungs of UV-V-immunized mice showed the upregulation of genes associated with the induction of eosinophils after challenge. These findings suggest that vaccine-induced eosinophil immunopathology in the lungs upon SARS-CoV infection could be avoided by the TLR agonist adjuvants. IMPORTANCE Inactivated whole severe acute respiratory syndrome-related coronavirus (SARS-CoV) vaccines induce neutralizing antibodies in mouse models; however, they also cause increased eosinophilic immunopathology in the lungs upon SARS-CoV challenge. In this study, the ability of adjuvant Toll

  20. Use of an inactivated eastern equine encephalitis virus vaccine in cranes

    USGS Publications Warehouse

    Carpenter, J.W.; Dein, F.J.; Clark, G.G.; Watts, D.M.; Crabbs, C.L.

    1986-01-01

    An unprecedented outbreak of fatal eastern equine encephalitis (EEE) virus occurred during the late summer and fall of 1984 in endangered whooping cranes (Grus americana) at the Patuxent Wildlife Research Center, Laurel, Maryland. As part of efforts to prevent future epizootics of EEE. studies were conducted to evaluate the antibody response of cranes following vaccination with a formalin-inactivated EEE virus vaccine. Viral specific neutralizing antibody was elicited in sandhill cranes (Grus canadensis) and whooping cranes following 1M inoculation with the vaccine. Among the 1M-inoculated cranes, peak antibody titers of 1:80 on days 30 to 60 had waned to undetectable levels by days 90 to 120. Although the initial titers were not increased by the first booster dose, the duration of the antibody was extended considerably. Whooping cranes, receiving vaccine 6 months after their first vaccination, developed titers of 1:80 to 1:320 by day 30. At 45 days after the final vaccination, these titers had dropped to 1:10 to 1:160. Cranes with preexisting EEE virus antibody, apparently reflecting natural infection, exhibited an anamnestic response indicated by a rapid increase and sustained high antibody titer. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to assess the significance of this response as a strategy for protecting whooping cranes against natural EEE virus infection. The loss of captive whooping cranes to the EEE virus presented a previously unrecognized risk and obstacle to recovery of this species. Not only was, there a setback in the captive breeding and reintroduction program for the whooping crane, but, because of the susceptibility of the species to the EEE virus. establishment of additional crane populations may be more complicated than initially envisioned. However, through continued surveillance, serological monitoring, and vaccination activities, we are confident that

  1. Persistence of antibodies six years after booster vaccination with inactivated vaccine against Japanese encephalitis.

    PubMed

    Paulke-Korinek, Maria; Kollaritsch, Herwig; Kundi, Michael; Zwazl, Ines; Seidl-Friedrich, Claudia; Jelinek, Tomas

    2015-07-09

    Japanese Encephalitis (JE) virus occurs in wide regions of Asia with over 3 billion people living in areas at risk for JE. An estimated 68,000 clinical cases of JE occur every year, and vaccination is the most effective prophylactic measure. One internationally licensed vaccine containing the inactivated JE virus strain SA14-14-2 is Ixiaro (Valneva, Austria). According to recommendations, basic immunization consists of vaccinations on day 0, day 28, and a booster dose 12-24 months later. Protection in terms of neutralizing antibody titers has been assessed up to 12 months after the third dose of the vaccine. The current investigation was designed to evaluate antibody decline over time and to predict long-term duration of seroprotection after a booster dose. In a preceding trial, volunteers received basic immunization (day 0, day 28) and one booster dose against JE 15 months later. A follow up blood draw 6 years following their booster dose was carried out in 67 subjects. For antibody testing, a 50% plaque reduction neutralization test (PRNT50-test) was used. PRNT50 values of 10 and above are surrogate levels of protection according to WHO standards. Seventy-six months following the booster dose, 96% of the tested subjects had PRNT50 titers of 10 or higher. Geometric mean titer (GMT) was 148 (95% CI confidence interval: 107-207). Antibody titers were lower in volunteers 50 years of age and older. Vaccination history against other flaviviruses (yellow fever or tick borne encephalitis) did not significantly influence PRNT50 titers. A two-step log-linear decline model predicted protection against JE of approximately 14 years after the booster dose. Six years after a booster dose against JE, long-term protection could be demonstrated. According to our results, further booster doses should be scheduled 10 years following the first booster dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Willingness and influential factors of parents to vaccinate their children with novel inactivated enterovirus 71 vaccines in Guangzhou, China.

    PubMed

    Li, Tiegang; Wang, Hui; Lu, Yin; Li, Qin; Chen, Chun; Wang, Dahu; Li, Meixia; Li, Yilan; Lu, Jianyun; Chen, Zongqiu; Ma, Yu; Liu, Wenhui; Ma, Mengmeng; Wu, Di; Lu, Jiachun; Yang, Zhicong

    2018-05-15

    Hand, foot and mouth disease (HFMD) primarily affects children younger than 5 years of age. Recently, HFMD has ranked as the top notifiable infectious disease in China. In December 2015, China approved two novel inactivated enterovirus 71 vaccines (EV71 vaccines) for HFMD. Parents' acceptance is often essential for vaccination program success. The goal of this study was to identify willingness and influential factors to vaccinate among parents of kindergarteners in Guangzhou, China. A cross-sectional survey of face-to-face interviews was conducted from March to July 2016. Fifty-five kindergartens were randomly selected from 11 districts of Guangzhou. An anonymous self-designed questionnaire was used to investigate awareness, knowledge and attitude towards HFMD and EV71 vaccines. A total of 868 parents participated in the survey. Mean(±standard deviation) knowledge score of HFMD was 6.32(±1.70). Approximately 32.03% of parents had heard of the EV71 vaccines with 22.58% receiving information before this study. Nearly 44.24% of parents showed willingness to vaccinate their children. Previously receiving EV71 vaccine-related information [adjusted odds ratio (aOR) = 1.48, 95% confidence interval (CI): 1.04-2.11], no fear of adverse effects (aOR = 4.25, 95%CI: 2.77-6.53), perceived susceptibility of children to HFMD (aOR = 2.15, 95%CI: 1.42-3.25) and children not previously diagnosed with HFMD (aOR = 1.56, 95%CI: 1.07-2.27) were positively associated with EV71 vaccination acceptability. However, parental education background (aOR = 0.54, 95%CI: 0.37-0.80) was negatively correlated with vaccination acceptability. Our study provides baseline information for future vaccination campaigns to help improve the EV71 vaccine uptake rate. Special efforts are urgently needed to improve the awareness and knowledge of EV71 vaccines in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Immunogenicity and efficacy of fowlpox-vectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies

    USDA-ARS?s Scientific Manuscript database

    Inactivated and fowlpox (FP)-vectored vaccines have been used to control avian influenza (AI) in poultry. In endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of several immunogenicity and efficacy studies ...

  4. Vaxtracker: Active on-line surveillance for adverse events following inactivated influenza vaccine in children.

    PubMed

    Cashman, Patrick; Moberley, Sarah; Dalton, Craig; Stephenson, Jody; Elvidge, Elissa; Butler, Michelle; Durrheim, David N

    2014-09-22

    Vaxtracker is a web based survey for active post marketing surveillance of Adverse Events Following Immunisation. It is designed to efficiently monitor vaccine safety of new vaccines by early signal detection of serious adverse events. The Vaxtracker system automates contact with the parents or carers of immunised children by email and/or sms message to their smart phone. A hyperlink on the email and text messages links to a web based survey exploring adverse events following the immunisation. The Vaxtracker concept was developed during 2011 (n=21), and piloted during the 2012 (n=200) and 2013 (n=477) influenza seasons for children receiving inactivated influenza vaccine (IIV) in the Hunter New England Local Health District, New South Wales, Australia. Survey results were reviewed by surveillance staff to detect any safety signals and compare adverse event frequencies among the different influenza vaccines administered. In 2012, 57% (n=113) of the 200 participants responded to the online survey and 61% (290/477) in 2013. Vaxtracker appears to be an effective method for actively monitoring adverse events following influenza vaccination in children. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  5. Safety of diphtheria, tetanus, acellular pertussis and inactivated poliovirus (DTaP-IPV) vaccine.

    PubMed

    Daley, Matthew F; Yih, W Katherine; Glanz, Jason M; Hambidge, Simon J; Narwaney, Komal J; Yin, Ruihua; Li, Lingling; Nelson, Jennifer C; Nordin, James D; Klein, Nicola P; Jacobsen, Steven J; Weintraub, Eric

    2014-05-23

    In 2008, a diphtheria, tetanus, acellular pertussis, and inactivated poliovirus combined vaccine (DTaP-IPV) was licensed for use in children 4 through 6 years of age. While pre-licensure studies did not demonstrate significant safety concerns, the number vaccinated in these studies was not sufficient to examine the risk of uncommon but serious adverse events. To assess the risk of serious adverse events following DTaP-IPV vaccination. The study was conducted from January 2009 through September 2012 in the Vaccine Safety Datalink (VSD) project. In the VSD, electronic vaccination and encounter data are updated and aggregated weekly as part of ongoing surveillance activities. Based on previous reports and biologic plausibility, eight potential adverse events were monitored: meningitis/encephalitis; seizures; stroke; Guillain-Barré syndrome; Stevens-Johnson syndrome; anaphylaxis; serious allergic reactions other than anaphylaxis; and serious local reactions. Adverse event rates in DTaP-IPV recipients were compared to historical incidence rates in the VSD population prior to 2009. Sequential probability ratio testing was used to analyze the data on a weekly basis. During the study period, 201,116 children received DTaP-IPV vaccine. Ninety-seven percent of DTaP-IPV recipients also received other vaccines on the same day, typically measles-mumps-rubella and varicella vaccines. There was no statistically significant increased risk of any of the eight pre-specified adverse events among DTaP-IPV recipients when compared to historical incidence rates. In this safety surveillance study of more than 200,000 DTaP-IPV vaccine recipients, there was no evidence of increased risk for any of the pre-specified adverse events monitored. Continued surveillance of DTaP-IPV vaccine safety may be warranted to monitor for rare adverse events, such as Guillain-Barré syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Estimated Effect of Inactivated Poliovirus Vaccine Campaigns, Nigeria and Pakistan, January 2014-April 2016.

    PubMed

    Shirreff, George; Wadood, Mufti Zubair; Vaz, Rui Gama; Sutter, Roland W; Grassly, Nicholas C

    2017-02-01

    In 2014, inactivated poliovirus vaccine (IPV) campaigns were implemented in Nigeria and Pakistan after clinical trials showed that IPV boosts intestinal immunity in children previously given oral poliovirus vaccine (OPV). We estimated the effect of these campaigns by using surveillance data collected during January 2014-April 2016. In Nigeria, campaigns with IPV and trivalent OPV (tOPV) substantially reduced the incidence of poliomyelitis caused by circulating serotype-2 vaccine-derived poliovirus (incidence rate ratio [IRR] 0.17 for 90 days after vs. 90 days before campaigns, 95% CI 0.04-0.78) and the prevalence of virus in environmental samples (prevalence ratio [PR] 0.16, 95% CI 0.02-1.33). Campaigns with tOPV alone resulted in similar reductions (IRR 0.59, 95% CI 0.18-1.97; PR 0.45, 95% CI 0.21-0.95). In Pakistan, the effect of IPV+tOPV campaigns on wild-type poliovirus was not significant. Results suggest that administration of IPV alongside OPV can decrease poliovirus transmission if high vaccine coverage is achieved.

  7. A single dose of whole inactivated H7N9 influenza vaccine confers protection from severe disease but not infection in ferrets.

    PubMed

    Wong, Sook-San; Jeevan, Trushar; Kercher, Lisa; Yoon, Sun-Woo; Petkova, Atanaska-Marinova; Crumpton, Jeri-Carol; Franks, John; Debeauchamp, Jennifer; Rubrum, Adam; Seiler, Patrick; Krauss, Scott; Webster, Robert; Webby, Richard J

    2014-07-31

    The H7N9 influenza virus caused significant mortality and morbidity in infected humans during an outbreak in China in 2013 stimulating vaccine development efforts. As previous H7-based vaccines have been poorly immunogenic in humans we sought to determine the immunogenic and protective properties of an inactivated whole virus vaccine derived from a 2013 H7N9 virus in ferrets. As whole virus vaccine preparations have been shown to be more immunogenic in humans, but less likely to be used, than split or surface antigen formulations, we vaccinated ferrets with a single dose of 15, 30, or 50 μg of the vaccine and subsequently challenged with wild-type A/Anhui/1/2013 (H7N9) either by direct instillation or by contact with infected animals. Although ferrets vaccinated with higher doses of vaccine had higher serum hemagglutinin inhibition (HI) titers, the titers were still low. During subsequent instillation challenge, however, ferrets vaccinated with 50 μg of vaccine showed no illness and shed significantly less virus than mock vaccinated controls. All vaccinated ferrets had lower virus loads in their lungs as compared to controls. In a separate study where unvaccinated-infected ferrets were placed in the same cage with vaccinated-uninfected ferrets, vaccination did not prevent infection in the contact ferrets, although they showed a trend of lower viral load. Overall, we conclude that inactivated whole-virus H7N9 vaccine was able to reduce the severity of infection and viral load, despite the lack of hemagglutinin-inhibiting antibodies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Vaccines against Botulism.

    PubMed

    Sundeen, Grace; Barbieri, Joseph T

    2017-09-02

    Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin.

  9. Vaccines against Botulism

    PubMed Central

    Sundeen, Grace; Barbieri, Joseph T.

    2017-01-01

    Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin. PMID:28869493

  10. Inactivated and live, attenuated influenza vaccines protect mice against influenza:Streptococcus pyogenes super-infections

    PubMed Central

    Chaussee, Michael S.; Sandbulte, Heather R.; Schuneman, Margaret J.; DePaula, Frank P.; Addengast, Leslie A.; Schlenker, Evelyn H.; Huber, Victor C.

    2011-01-01

    Mortality associated with influenza virus super-infections is frequently due to secondary bacterial complications. To date, super-infections with Streptococcus pyogenes have been studied less extensively than those associated with S. pneumoniae. This is significant because a vaccine for S. pyogenes is not clinically available, leaving vaccination against influenza virus as our only means for preventing these super-infections. In this study, we directly compared immunity induced by two types of influenza vaccine, either inactivated influenza virus (IIV) or live, attenuated influenza virus (LAIV), for the ability to prevent super-infections. Our data demonstrate that both IIV and LAIV vaccines induce similar levels of serum antibodies, and that LAIV alone induces IgA expression at mucosal surfaces. Upon super-infection, both vaccines have the ability to limit the induction of pro-inflammatory cytokines within the lung, including IFN-γ which has been shown to contribute to mortality in previous models of super-infection. Limiting expression of these pro-inflammatory cytokines within the lungs subsequently limits recruitment of macrophages and neutrophils to pulmonary surfaces, and ultimately protects both IIV- and LAIV-vaccinated mice from mortality. Despite their overall survival, both IIV- and LAIV-vaccinated mice demonstrated levels of bacteria within the lung tissue to levels that are similar to those seen in unvaccinated mice. Thus, influenza virus:bacteria super-infections can be limited by vaccine-induced immunity against influenza virus, but the ability to prevent morbidity is not complete. PMID:21440037

  11. Assessing the potency and immunogenicity of inactivated poliovirus vaccine after exposure to freezing temperatures.

    PubMed

    White, Jessica A; Estrada, Marcus; Weldon, William C; Chumakov, Konstantin; Kouiavskaia, Diana; Fournier-Caruana, Jacqueline; Stevens, Eric; Gary, Howard E; Maes, Edmond F; Oberste, M Steven; Snider, Cynthia J; Anand, Abhijeet; Chen, Dexiang

    2018-05-01

    According to manufacturers, inactivated poliovirus vaccines (IPVs) are freeze sensitive and require storage between 2°C and 8°C, whereas oral poliovirus vaccine requires storage at -20 °C. Introducing IPV into ongoing immunization services might result in accidental exposure to freezing temperatures and potential loss of vaccine potency. To better understand the effect of freezing IPVs, samples of single-dose vaccine vials from Statens Serum Institut (VeroPol) and multi-dose vaccine vials from Sanofi Pasteur (IPOL) were exposed to freezing temperatures mimicking what a vaccine vial might encounter in the field. D-antigen content was measured to determine the in vitro potency by ELISA. Immunogenicity testing was conducted for a subset of exposed IPVs using the rat model. Freezing VeroPol had no detectable effect on in vitro potency (D-antigen content) in all exposures tested. Freezing of the IPOL vaccine for 7 days at -20 °C showed statistically significant decreases in D-antigen content by ELISA in poliovirus type 1 (p < 0.0001) and type 3 (p = 0.048). Reduction of poliovirus type 2 potency also approached significance (p = 0.062). The observed loss in D-antigen content did not affect immunogenicity in the rat model. Further work is required to determine the significance of the loss observed and the implications for vaccine handling policies and practices. Copyright © 2018. Published by Elsevier Ltd.

  12. Evaluating the effectiveness, impact and safety of live attenuated and seasonal inactivated influenza vaccination: protocol for the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study.

    PubMed

    Simpson, Colin R; Lone, Nazir I; Kavanagh, Kimberley; Robertson, Chris; McMenamin, Jim; von Wissmann, Beatrix; Vasileiou, Eleftheria; Butler, Chris; Ritchie, Lewis D; Gunson, Rory; Schwarze, Jürgen; Sheikh, Aziz

    2017-02-28

    Seasonal (inactivated) influenza vaccination is recommended for all individuals aged 65+ and in individuals under 65 who are at an increased risk of complications of influenza infection, for example, people with asthma . Live attenuated influenza vaccine (LAIV) was recommended for children as they are thought to be responsible for much of the transmission of influenza to the populations at risk of serious complications from influenza. A phased roll-out of the LAIV pilot programme began in 2013/2014. There is limited evidence for vaccine effectiveness (VE) in the populations targeted for influenza vaccination. The aim of this study is to examine the safety and effectiveness of the live attenuated seasonal influenza vaccine programme in children and the inactivated seasonal influenza vaccination programme among different age and at-risk groups of people. Test negative and cohort study designs will be used to estimate VE. A primary care database covering 1.25 million people in Scotland for the period 2000/2001 to 2015/2016 will be linked to the Scottish Immunisation Recall Service (SIRS), Health Protection Scotland virology database, admissions to Scottish hospitals and the Scottish death register. Vaccination status (including LAIV uptake) will be determined from the primary care and SIRS database. The primary outcome will be influenza-positive real-time PCR tests carried out in sentinel general practices and other healthcare settings. Secondary outcomes include influenza-like illness and asthma-related general practice consultations, hospitalisations and death. An instrumental variable analysis will be carried out to account for confounding. Self-controlled study designs will be used to estimate the risk of adverse events associated with influenza vaccination. We obtained approval from the National Research Ethics Service Committee, West Midlands-Edgbaston. The study findings will be presented at international conferences and published in peer-reviewed journals

  13. The Use of Gamma Radiation for the Preparation of Virus Vaccines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, John R.

    1962-08-01

    Suspensions of the viruses (mumps, influenza A (PR8), A/sub 1/ (FM/sub 1/ ), B, and swine influenza A) were irradiated in a Co/sup 60/ cell with a dose of 1.5 x 10/sup 6/ rad, which is about 50% higher thin the dose calculated to be required for inactivation. A protective agent such as histidine or Na p- aminohippurite was added to purified suspensions of influenzi and mumps viruses. It was then possible to inactivate them while retaining most of the hemagglutination titer. It was demonstrated in mice that a vaccine prepared from a mouse-adapted virus (Shope's swine influenza) conferred protectionmore » against challenge by the live virus and produced an antibody response as measured by the hemagglutinationinhibition technique. Vaccines prepared with the viruses of influenza A(PR8), influenza B, and mumps were shown to produce antibody responses in guinea pigs as measured by the hemigglutination-inhibition and serum neutralization techniques. The use of gamma irradiation has an advantage over most chemical procedures because its dosage of inactivation can be more accurately controlled. (H.H.D.)« less

  14. Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children.

    PubMed

    Saha, Amit; Chowdhury, Mohiul I; Nazim, Mohammad; Alam, Mohammad Murshid; Ahmed, Tanvir; Hossain, Mohammad Bakhtiar; Hore, Samar Kumar; Sultana, Gazi Nurun Nahar; Svennerholm, Ann-Mari; Qadri, Firdausi

    2013-01-11

    Immune responses to the inactivated oral whole cell cholera toxin B (CTB) subunit cholera vaccine, Dukoral(®), as well as three childhood vaccines in the national immunization system were compared in children living in high and low arsenic contaminated areas in Bangladesh. In addition, serum complement factors C3 and C4 levels were evaluated among children in the two areas. VACCINATIONS: Toddlers (2-5 years) were orally immunized with two doses of Dukoral 14 days apart. Study participants had also received diphtheria, tetanus and measles vaccines according to the Expanded Program on Immunization (EPI) in Bangladesh. The mean level of arsenic in the urine specimens in the children of the high arsenic area (HAA, Shahrasti, Chandpur) was 291.8μg/L while the level was 6.60μg/L in the low arsenic area (LAA, Mirpur, Dhaka). Cholera specific vibriocidal antibody responses were significantly increased in the HAA (87%, P<0.001) and the LAA (75%, P<0.001) children after vaccination with Dukoral, but no differences were found between the two groups. Levels of CTB specific IgA and IgG antibodies were comparable between the two groups, whereas LPS specific IgA and IgG were higher in the LAA group, although response rates were comparable. Diphtheria and tetanus vaccine specific IgG responses were significantly higher in the HAA compared to the LAA group (P<0.001, P=0.048 respectively), whereas there were no differences in the measles specific IgG responses between the groups. Complement C3 and C4 levels in sera were higher in participants from the HAA than the LAA groups (P<0.001, P=0.049 respectively). The study demonstrates that the oral cholera vaccine as well as the EPI vaccines studied are immunogenic in children in high and low arsenic areas in Bangladesh. The results are encouraging for the potential use of cholera vaccines as well as the EPI vaccines in arsenic endemic areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Acceptance of multiple injectable vaccines in a single immunization visit in The Gambia pre and post introduction of inactivated polio vaccine.

    PubMed

    Idoko, Olubukola T; Hampton, Lee M; Mboizi, Robert B; Agbla, Schadrac C; Wallace, Aaron S; Harris, Jennifer B; Sowe, Dawda; Ehlman, Daniel C; Kampmann, Beate; Ota, Martin O; Hyde, Terri B

    2016-09-22

    As the World Health Organization (WHO) currently recommends that children be protected against 11 different pathogens, it is becoming increasingly necessary to administer multiple injectable vaccines during a single immunization visit. In this study we assess Gambian healthcare providers' and infant caregivers' attitudes and practices related to the administration of multiple injectable vaccines to a child at a single immunization visit before and after the 2015 introduction of inactivated polio vaccine (IPV). IPV introduction increased the number of injectable vaccines recommended for the 4-month immunization visit from two to three in The Gambia. We conducted a cross-sectional questionnaire-based survey before and after the introduction of IPV at 4months of age in a representative sample of all health facilities providing immunizations in The Gambia. Healthcare providers who administer vaccines at the selected health facilities and caregivers who brought infants for their 4month immunization visit were surveyed. Prior to IPV introduction, 9.9% of healthcare providers and 35.7% of infant caregivers expressed concern about a child receiving more than 2 injections in a single visit. Nevertheless, 98.8% and 90.9% of infants received all required vaccinations for the visit before and after IPV introduction, respectively. The only reason why vaccines were not received was vaccine stock-outs. Infant caregivers generally agreed that vaccinators could be trusted to provide accurate information regarding the number of vaccines that a child needed. Healthcare providers and infant caregivers in this resource limited setting accepted an increase in the number of injectable vaccines administered at a single visit even though some expressed concerns about the increase. Published by Elsevier Ltd.

  16. Cost-effectiveness of live attenuated influenza vaccine versus inactivated influenza vaccine among children aged 24-59 months in the United States.

    PubMed

    Luce, Bryan R; Nichol, Kristin L; Belshe, Robert B; Frick, Kevin D; Li, Su Xia; Boscoe, Audra; Rousculp, Matthew D; Mahadevia, Parthiv J

    2008-06-02

    The US Advisory Committee on Immunization Practices (ACIP) recently expanded the influenza vaccine recommendation to include children 24-59 months of age. In a large head-to-head randomized controlled trial, live attenuated influenza vaccine, trivalent (LAIV) demonstrated a 54% relative reduction in culture-confirmed influenza illness compared with trivalent inactivated influenza vaccine (TIV) among children aged 24-59 months. To evaluate the relative cost and benefit between two influenza vaccines (LAIV and TIV) for healthy children 24-59 months of age. Using patient-level data from the clinical trial supplemented with cost data from published literature, we modeled the cost-effectiveness of these two vaccines. Effectiveness was measured in quality-adjusted life years (QALY) and cases of influenza avoided. The analysis used the societal perspective. Due to its higher acquisition cost, LAIV increased vaccination costs by USD7.72 per child compared with TIV. However, compared with TIV, LAIV reduced the number of influenza illness cases and lowered the subsequent healthcare use of children and productivity losses of parents. The estimated offsets in direct and indirect costs saved USD15.80 and USD37.72 per vaccinated child, respectively. LAIV had a net total cost savings of USD45.80 per child relative to TIV. One-way and probabilistic sensitivity analyses indicated that the model was robust across a wide range of relative vaccine efficacy and cost estimates. Due to its increased relative vaccine efficacy over TIV, LAIV reduced the burden of influenza and lowered both direct health care and societal costs among children 24-59 months of age.

  17. Divergent immune responses and disease outcomes in piglets immunized with inactivated and attenuated H3N2 swine influenza vaccines in the presence of maternally-derived antibodies

    USDA-ARS?s Scientific Manuscript database

    Vaccine-associated enhanced respiratory disease (VAERD) can occur in pigs immunized with whole-inactivated influenza virus (WIV) vaccine and subsequently infected with an antigenically divergent virus of the same HA subtype. Live-attenuated influenza virus (LAIV) vaccines administered intranasally h...

  18. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... flu vaccine. This risk has been estimated at 1 or 2 additional cases per million people vaccinated. This is much lower than the risk of severe complications from flu, which can be prevented by flu vaccine. Young children who get the flu shot along with pneumococcal vaccine (PCV13) and/or DTaP ...

  19. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge.

    PubMed

    Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi

    2017-10-01

    Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.

  20. Impact of inactivated poliovirus vaccine on mucosal immunity: implications for the polio eradication endgame

    PubMed Central

    Parker, Edward PK; Molodecky, Natalie A; Pons-Salort, Margarita; O’Reilly, Kathleen M; Grassly, Nicholas C

    2015-01-01

    The polio eradication endgame aims to bring transmission of all polioviruses to a halt. To achieve this aim, it is essential to block viral replication in individuals via induction of a robust mucosal immune response. Although it has long been recognized that inactivated poliovirus vaccine (IPV) is incapable of inducing a strong mucosal response on its own, it has recently become clear that IPV may boost immunity in the intestinal mucosa among individuals previously immunized with oral poliovirus vaccine. Indeed, mucosal protection appears to be stronger following a booster dose of IPV than oral poliovirus vaccine, especially in older children. Here, we review the available evidence regarding the impact of IPV on mucosal immunity, and consider the implications of this evidence for the polio eradication endgame. We conclude that the implementation of IPV in both routine and supplementary immunization activities has the potential to play a key role in halting poliovirus transmission, and thereby hasten the eradication of polio. PMID:26159938

  1. Inactivated and live bivalent fowl adenovirus (FAdV8b + FAdV11) breeder vaccines provide broad-spectrum protection in chicks against inclusion body hepatitis (IBH).

    PubMed

    Gupta, Ashish; Popowich, Shelly; Ojkic, Davor; Kurukulasuriya, Shanika; Chow-Lockerbie, Betty; Gunawardana, Thushari; Goonewardene, Kalhari; Karunarathna, Ruwani; Ayalew, Lisanework E; Ahmed, Khawaja Ashfaque; Tikoo, Suresh K; Willson, Philip; Gomis, Susantha

    2018-01-29

    Fowl adenovirus (FAdV) is comprised of five species (A to E) and 12 serotypes (1-7, 8a, 8b, 9-11). Inclusion body hepatitis (IBH) is caused by FAdV-7, 8a, 8b (species E) and FAdV-2 and 11 (species D). Commercial vaccines against IBH are not available in Canada. Autogenous FAdV broiler breeder vaccines are now used in some areas where outbreaks of IBH are occurring. The objective of this study was to evaluate the efficacy of a bivalent (species D and E) live and an inactivated FAdV broiler breeder vaccine in protecting broiler chicks against IBH through maternal antibody (MtAb) transfer. FAdV seronegative broiler breeders (n = 300/group) received either a live or inactivated bivalent (FAdV-8b-SK + FAdV-11-1047) vaccine. The live vaccine (1 × 10 4 TCID 50 of each virus/bird) was given orally once at 16 weeks of age and the inactivated vaccine (1 × 10 6 TCID 50 of each virus + 20% Emulsigen D) was given intramuscularly at 16 and 19 weeks of age. Controls (n = 150) were given saline orally. The inactivated vaccine group was boosted 3 weeks later with the same vaccine. Neutralizing antibodies (NAb) in sera (n = 10) were detected at 19, 22, 30 and 48 weeks of age. NAb were able to neutralize various FAdV serotypes within species D and E. Mean NAb were similar in the both live and killed vaccine groups at 19, 30 and 48 weeks and ranged from 2.4 to 3.7 log 10 . Approximately 26 ± 7% of MtAbs were passively transferred through eggs to day-old chicks. Progeny challenged with a lethal dose (1 × 10 7 TCID 50 /bird intramuscularly) of FAdV-8b-SK, FAdV-11-1047, or FAdV-2-685 (n = 90/group) at 14 days post-hatch (dph) showed 98-100% protection in broiler chicks to homologous or heterologous FAdV challenges. Our data suggests that a bivalent live and an inactivated FAdV vaccine are equally effective and have the potential for the control of IBH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Long-term immunogenicity of an initial booster dose of an inactivated, Vero cell culture-derived Japanese encephalitis vaccine (JE-VC) and the safety and immunogenicity of a second JE-VC booster dose in children previously vaccinated with an inactivated, mouse brain-derived Japanese encephalitis vaccine.

    PubMed

    Yun, Ki Wook; Lee, Hoan Jong; Park, Ji Young; Cho, Hye-Kyung; Kim, Yae-Jean; Kim, Kyung-Hyo; Kim, Nam Hee; Hong, Young Jin; Kim, Dong Ho; Kim, Hwang Min; Cha, Sung-Ho

    2018-03-07

    This study was performed with the aim of determining the long-term immunogenicity of an inactivated, Vero cell culture-derived Japanese encephalitis (JE) vaccine (JE-VC) and an inactivated, mouse brain-derived JE vaccine (JE-MB) after the 1st booster dose at 2 years of age, as well as the safety and immunogenicity of the 2nd booster dose of JE-VC at 6 years of age, in children primed and given a 1st booster dose of either JE-VC or JE-MB. In this multicenter, open-label clinical trial, the study population consisted of healthy Korean children (aged 6 years) who participated in the previous JE vaccine trial. All subjects were subcutaneously vaccinated once for the booster immunization with Boryung Cell Culture Japanese Encephalitis Vaccine® (JE-VC). Approximately 4 years after the 1st booster dose of JE-VC, the seroprotection rate (SPR) and geometric mean titer (GMT) of the neutralizing antibody were 100% and 1113.8, respectively. In children primed and given a 1st booster dose of JE-MB, the SPR and GMT were 88.5% and 56.3, respectively. After the 2nd booster dose of JE-VC, all participants primed and given a 1st booster dose of either JE-MB or JE-VC were seroprotective against JE virus. The GMT of the neutralizing antibody was higher in children primed and given a 1st booster dose of JE-VC (8144.1) than in those primed and given a 1st booster dose of JE-MB (942.5) after the vaccination (p < 0.001). In addition, the 2nd booster dose of JE-VC showed a good safety profile with no serious vaccine-related adverse events. The 1st booster dose of JE-VC and JE-MB showed long-term immunogenicity of at least 4 years, and the 2nd booster dose of JE-VC showed a good safety and immunogenicity profile in children primed and given a 1st booster dose of either JE-VC or JE-MB. ClinicalTtrials.gov Identifier: NCT02532569. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Inactivated H9N2 avian influenza virus vaccine with gel-primed and mineral oil-boosted regimen could produce improved immune response in broiler breeders.

    PubMed

    Lee, D-H; Kwon, J-S; Lee, H-J; Lee, Y-N; Hur, W; Hong, Y-H; Lee, J-B; Park, S-Y; Choi, I-S; Song, C-S

    2011-05-01

    The frequent economic losses incurred with H9N2 low pathogenic avian influenza viruses (LPAI) infection have raised serious concerns for the poultry industry. A 1-dose regimen with inactivated H9N2 LPAI vaccine could not prevent vaccinated poultry from becoming infected and from shedding wild viruses. A study was conducted to determine whether a 2-dose regimen of inactivated H9N2 LPAI vaccine could enhance the immunologic response in chickens. Such gel-primed and mineral oil-boosted regimen has produced encouraging results associated with improved immune responses to an H9N2 LPAI. This strategy could be cost effective and helpful for preventing avian influenza virus in the poultry industry.

  4. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    PubMed

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  5. A novel approach for preparation of the antisera reagent for potency determination of inactivated H7N9 influenza vaccines.

    PubMed

    Schmeisser, Falko; Jing, Xianghong; Joshi, Manju; Vasudevan, Anupama; Soto, Jackeline; Li, Xing; Choudhary, Anil; Baichoo, Noel; Resnick, Josephine; Ye, Zhiping; McCormick, William; Weir, Jerry P

    2016-03-01

    The potency of inactivated influenza vaccines is determined using a single-radial immunodiffusion (SRID) assay and requires standardized reagents consisting of a Reference Antigen and an influenza strain-specific antiserum. Timely availability of reagents is a critical step in influenza vaccine production, and the need for backup approaches for reagent preparation is an important component of pandemic preparedness. When novel H7N9 viruses emerged in China in 2013, candidate inactivated H7N9 influenza vaccines were developed for evaluation in clinical trials, and reagents were needed to measure vaccine potency. We previously described an alternative approach for generating strain-specific potency antisera, utilizing modified vaccinia virus Ankara vectors to produce influenza hemagglutinin (HA)-containing virus-like particles (VLPs) for immunization. Vector-produced HA antigen is not dependent upon the success of the traditional bromelain-digestion and HA purification. Antiserum for H7N9 vaccines, produced after immunization of sheep with preparations of bromelain-HA (br-HA), was not optimal for the SRID assay, and the supply of antiserum was limited. However, antiserum obtained from sheep boosted with VLPs containing H7 HA greatly improved the ring quality in the SRID assay. Importantly, this antiserum worked well with both egg- and cell-derived antigen and was distributed to vaccine manufacturers. Utilizing a previously developed approach for preparing vaccine potency antiserum, we have addressed a major bottleneck encountered in preparation of H7N9 vaccine reagents. The combination of br-HA and mammalian VLPs for sequential immunization represents the first use of an alternative approach for producing an influenza vaccine potency antiserum. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  6. Production and evaluation of a chromatographically purified Vero cell rabies vaccine (PVRV) in China using microcarrier technology

    PubMed Central

    Yu, Pengcheng; Huang, Ying; Zhang, Yibin; Tang, Qing; Liang, Guodong

    2012-01-01

    China is a high population country with millions of animal bite cases every year; thus, it is necessary to explore and develop more effective and productive rabies vaccines for human use. To establish a safe, effective, inexpensive and high-yield rabies vaccine, a non-adjuvant purified Vero cell rabies vaccine produced in the SPEEDA PVRV microcarrier bioreactor was developed by Liaoning Chengda Biology Co. Ltd. in China. This vaccine was produced using Vero cells that were cultured in a microcarrier bioreactor. A microcarrier bioreactor containing 25 g/L of Cytodex-1 was used for perfusion culture. The Vero cell culture density was up to 1.2–1.5 × 107 cells/ml, viruses could be constantly harvested for 18–22 days, and the resulting vaccine immunizing potency was ≥ 4.5 IU/ml. Vaccine safety and immunogenicity post-immunization were also assessed. A total of 602 volunteers were enrolled and divided into two groups that were vaccinated with either SPEEDA PVRV or VERORAB PVRV on days 0, 3, 7, 14 and 28. All subjects vaccinated with SPEEDA PVRV showed no serious local or systemic adverse effects. The positive conversion rate of serum neutralizing antibodies against the rabies virus reached 100% in both the test and control groups (inoculated with VERORAB PVRV) at 14 days and 45 days after vaccination, and no significant difference was found between the neutralizing antibody geometric mean titers (GMTs) of the two groups. SPEEDA PVRV is appropriate for mass production and shows satisfactory clinical safety and immunogenicity for human post-exposure prophylaxis of rabies. PMID:22894963

  7. A live-attenuated and an inactivated chimeric porcine circovirus (PCV)1-2 vaccine are both effective at inducing a humoral immune response and reducing PCV2 viremia and intrauterine infection in female swine of breeding age.

    PubMed

    Hemann, Michelle; Beach, Nathan M; Meng, Xiang-Jin; Wang, Chong; Halbur, Patrick G; Opriessnig, Tanja

    2014-01-01

    The objective of this pilot study was to determine the efficacy of inactivated (1 or 2 dose) and live-attenuated chimeric porcine circovirus (PCV)1-2 vaccines in sows using the PCV2-spiked semen model. Thirty-five sows were randomly divided into 6 groups: negative and positive controls, 1 dose inactivated PCV1-2 vaccine challenged (1-VAC-PCV2), 2 dose inactivated PCV1-2 vaccine challenged (2-VAC-PCV2), 1 dose live-attenuated PCV1-2 vaccine unchallenged (1-LIVE-VAC), and 1 dose live-attenuated PCV1-2 vaccine challenged (1-LIVE-VAC-PCV2). The inactivated PCV1-2 vaccine induced higher levels of PCV2-specific antibodies in dams. All vaccination strategies provided good protection against PCV2 viremia in dams, whereas the majority of the unvaccinated sows were viremic. Four of the 35 dams became pregnant: a negative control, a positive control, a 2-VAC-PCV2 sow, and a 1-LIVE-VAC-PCV2 sow. The PCV2 DNA was detected in 100%, 67%, and 29% of the fetuses obtained from the positive control, inactivated vaccinated, or live-attenuated vaccinated dams, respectively. The PCV2 antigen in hearts was only detectable in the positive control litter (23% of the fetuses). The PCV1-2 DNA was detected in 29% of the fetuses in the litter from the 1-LIVE-VAC-PCV2 dam. Under the conditions of this pilot study, both vaccines protected against PCV2 viremia in breeding age animals; however, vertical transmission was not prevented.

  8. A live-attenuated and an inactivated chimeric porcine circovirus (PCV)1-2 vaccine are both effective at inducing a humoral immune response and reducing PCV2 viremia and intrauterine infection in female swine of breeding age

    PubMed Central

    Hemann, Michelle; Beach, Nathan M.; Meng, Xiang-Jin; Wang, Chong; Halbur, Patrick G.; Opriessnig, Tanja

    2014-01-01

    The objective of this pilot study was to determine the efficacy of inactivated (1 or 2 dose) and live-attenuated chimeric porcine circovirus (PCV)1-2 vaccines in sows using the PCV2-spiked semen model. Thirty-five sows were randomly divided into 6 groups: negative and positive controls, 1 dose inactivated PCV1-2 vaccine challenged (1-VAC-PCV2), 2 dose inactivated PCV1-2 vaccine challenged (2-VAC-PCV2), 1 dose live-attenuated PCV1-2 vaccine unchallenged (1-LIVE-VAC), and 1 dose live-attenuated PCV1-2 vaccine challenged (1-LIVE-VAC-PCV2). The inactivated PCV1-2 vaccine induced higher levels of PCV2-specific antibodies in dams. All vaccination strategies provided good protection against PCV2 viremia in dams, whereas the majority of the unvaccinated sows were viremic. Four of the 35 dams became pregnant: a negative control, a positive control, a 2-VAC-PCV2 sow, and a 1-LIVE-VAC-PCV2 sow. The PCV2 DNA was detected in 100%, 67%, and 29% of the fetuses obtained from the positive control, inactivated vaccinated, or live-attenuated vaccinated dams, respectively. The PCV2 antigen in hearts was only detectable in the positive control litter (23% of the fetuses). The PCV1-2 DNA was detected in 29% of the fetuses in the litter from the 1-LIVE-VAC-PCV2 dam. Under the conditions of this pilot study, both vaccines protected against PCV2 viremia in breeding age animals; however, vertical transmission was not prevented. PMID:24396175

  9. Efficacy and synergy of live-attenuated and inactivated influenza vaccines in young chickens

    PubMed Central

    Jang, Hyesun; Elaish, Mohamed; KC, Mahesh; Abundo, Michael C.; Ghorbani, Amir; Lee, Chang-Won

    2018-01-01

    Outbreaks of novel highly pathogenic avian influenza viruses have been reported in poultry species in the United States since 2014. These outbreaks have proven the limitations of biosecurity control programs, and new tools are needed to reinforce the current avian influenza control arsenal. Some enzootic countries have implemented inactivated influenza vaccine (IIV) in their control programs, but there are serious concerns that a long-term use of IIV without eradication may result in the selection of novel antigenically divergent strains. A broadly protective vaccine is needed, such as live-attenuated influenza vaccine (LAIV). We showed in our previous studies that pc4-LAIV (a variant that encodes a C-terminally truncated NS1 protein) can provide significant protection against heterologous challenge virus in chickens vaccinated at 2–4 weeks of age through upregulation of innate and adaptive immune responses. The current study was conducted to compare the performances of pc4-LAIV and IIV in young chickens vaccinated at 1 day of age. A single dose of pc4-LAIV was able to induce stronger innate and mucosal IgA responses and protect young immunologically immature chickens better than a single dose of IIV. Most importantly, when 1-day-old chickens were intranasally primed with pc4-LAIV and subcutaneously boosted with IIV three weeks later, they showed a rapid, robust, and highly cross-reactive serum antibody response and a high level of mucosal IgA antibody response. This vaccination regimen warrants further optimization to increase its range of protection. PMID:29624615

  10. Booster and higher antigen doses of inactivated influenza vaccine in HIV-infected patients.

    PubMed

    Johnston, Jessica A; Tincher, Lindsey B; Lowe, Denise K

    2013-12-01

    To review the literature regarding booster or higher doses of influenza antigen for increasing immunogenicity of inactivated influenza vaccine (IIV) in HIV-infected patients. MEDLINE (1966 to September 2013) was searched using the terms immunize, influenza, vaccine, and HIV or AIDS in combination with two-dose, booster-dose, increased antigen, or high-dose. One trial of booster dosing with standard doses (SDs) of IIV, trivalent (IIV3); 2 trials of booster dosing with intermediate doses (ID) of H1N1 IIV or IIV3; and 1 trial of high-dose (HD) IIV3 were identified. Trials administering 2-dose, booster-dose, or increased antigen of influenza vaccine to patients with HIV were reviewed. Because adjuvanted IIV is not available and IIV, quadrivalent was recently approved in the United States, studies evaluating these vaccines were excluded. HIV-infected individuals are at high risk for influenza-related complications; however, vaccination with SD IIV may not confer optimal protection. It has been postulated that booster or higher doses of influenza antigen may lead to increased immunogenicity. When ID and SD or ID with boosters were evaluated in HIV-infected patients, significant increases in surrogate markers for influenza protection were not achieved. However, HD IIV3 did result in significant increases in seroprotective antibody levels, though 'clinical' influenza was not evaluated. Currently, evidence is insufficient to reach conclusions about the efficacy of booster dosing, ID, or HD influenza vaccine in HIV-infected patients. Trials evaluating booster or higher-antigen doses of IIV for 'clinical' influenza are necessary before routinely recommending for HIV-infected patients.

  11. Randomized trial to compare the safety and immunogenicity of CSL Limited's 2009 trivalent inactivated influenza vaccine to an established vaccine in United States children.

    PubMed

    Brady, Rebecca C; Hu, Wilson; Houchin, Vonda G; Eder, Frank S; Jackson, Kenneth C; Hartel, Gunter F; Sawlwin, Daphne C; Albano, Frank R; Greenberg, Michael

    2014-12-12

    A trivalent inactivated influenza vaccine (CSL's TIV, CSL Limited) was licensed under USA accelerated approval regulations for use in persons≥18 years. We performed a randomized, observer-blind study to assess the safety and immunogenicity of CSL's TIV versus an established US-licensed vaccine in a population≥6 months to <18 years of age. Subjects were stratified as follows: Cohort A (≥6 months to <3 years); Cohort B (≥3 years to <9 years); and Cohort C (≥9 years to <18 years). The subject's age and influenza vaccination history determined the dosing regimen (one or two vaccinations). Subjects received CSL's TIV (n=739) or the established vaccine (n=735) in the autumn of 2009. Serum hemagglutination-inhibition titers were determined pre-vaccination and 30 days after the last vaccination. No febrile seizures or other vaccine-related SAEs were reported. After the first vaccination for Cohorts A and B, respectively, the relative risks of fever were 2.73 and 2.32 times higher for CSL's TIV compared to the established vaccine. Irritability and loss of appetite (for Cohort A) and malaise (for Cohort B) were also significantly higher for CSL's TIV compared to the established vaccine. Post-vaccination geometric mean titers (GMTs) for CSL's TIV versus the established vaccine were 385.49 vs. 382.45 for H1N1; 669.13 vs. 705.61 for H3N2; and 100.65 vs. 93.72 for B. CSL's TIV demonstrated immunological non-inferiority to the established vaccine in all cohorts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Development of a peptide ELISA to discriminate vaccine-induced immunity from natural infection of hepatitis A virus in a phase IV study.

    PubMed

    Ye, C; Luo, J; Wang, X; Xi, J; Pan, Y; Chen, J; Yang, X; Li, G; Sun, Q; Yang, J

    2017-11-01

    Hepatitis A virus (HAV) is a highly infectious agent that causes acute liver disease. The infection can trigger the production of antibodies against the structural and non-structural proteins of HAV. Nonetheless, vaccination with an HAV vaccine leads to the production of a primary antibody against the structural proteins. Because the non-structural proteins are only produced during active virus replication, there is no or very little antibody production against the non-structural proteins. However, the current commercial immunoassay cannot distinguish between antibodies produced during natural infection and those from vaccination against HAV. In our study, six immune-dominant epitopes from the non-structural proteins were designed, synthesized, linked together and cloned into pGEX-5X-1 plasmid. The recombinant protein was expressed in E. coli and purified by Ni 2+ -coated magnetic agarose beads. Then the purified recombinant protein was used as an ELISA antigen to detect antibodies for HAV non-structural proteins in serum samples. Seventy-seven attenuated and 89 inactivated vaccinated samples collected from our previous phase IV study of HAV vaccines were detected by peptide ELISA developed in this study. The mean OD 450 value for the vaccination samples and acute infection samples were 0.529 (0.486 for the attenuated group and 0.567 for the inactivated group) and 1.187, respectively. According to the receiver operating characteristic (ROC) curve, the sensitivity and specificity of the peptide ELISA were 93.80% and 91.00%, respectively. This peptide ELISA was confirmed to discriminate vaccine-induced immunity from natural infection of HAV in a phase IV study with high sensitivity and specificity.

  13. Formulation and immunological evaluation of a trivalent vaccine comprising emulsified submicron particles and inactivated virions of H5N1/EV71/JEV

    PubMed Central

    Lin, Chih-Wei; Chang, Ching-Yun; Chen, Wei-Lin; Lin, Shih-Chang; Liao, Chien-Chun; Chang, Jui-Yuan; Liu, Chia-Chyi; Hu, Alan Yung-Chih; Lu, Tsung-Chun; Chou, Ai-Hsiang; Wu, Suh-Chin; Chong, Pele; Huang, Ming-Hsi

    2013-01-01

    Combination vaccines can reduce the number of injections and simplify the immunization schedule required to prevent different diseases. Here we assessed the immunogenicity in a mouse model of a vaccine composition comprising inactivated influenza viruses (H5N1/H1N1), enterovirus 71 (EV71), and/or Japanese encephalitis virus (JEV) and investigated whether the vaccine formulations can overcome the immunologic interference between the individual vaccine components. We demonstrated that the antigenic competition happens between H5N1/H1N1 or H5N1/EV71 inactivated virions when the vaccine combinations either formulated with Alum suspensions or without adjuvant. In the presence of PELC emulsified particles, EV71-specific immune responses before and after incorporating H5N1 virus into EV71 vaccine were detected of no significant difference; in addition, H5N1- and EV71-specific immune responses were found at the same level when H5N1/EV71/JEV consolidating into combination vaccine. Emulsified vaccine formulation was represented as a potential tool that is found to reduce the number of injections required to prevent multiple infectious strains causing the same disease (H5N1/H1N1) and/or that protect against different diseases (H5N1/EV71). Combination vaccines can also include a third component to protect against H5N1/EV71/JEV at the same time. PMID:23838466

  14. Booster vaccination of pre-school children with reduced-antigen-content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine co-administered with measles-mumps-rubella-varicella vaccine

    PubMed Central

    Ferrera, Giuseppe; Cuccia, Mario; Mereu, Gabriele; Icardi, Giancarlo; Bona, Gianni; Esposito, Susanna; Marchetti, Federico; Messier, Marc; Kuriyakose, Sherine; Hardt, Karin

    2012-01-01

    Background: Pertussis occurs in older children, adolescents and adults due to waning immunity after primary vaccination. Booster vaccination for pre-school children has been recommended in Italy since 1999. In this study (NCT00871000), the immunogenicity, safety and reactogenicity of a booster dose of reduced-antigen content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine (dTpa-IPV; GSK Biologicals Boostrix™-Polio; 3-component pertussis) vs. full-strength DTPa-IPV vaccine (sanofi-pasteur—MSD Tetravac™; 2-component pertussis) was evaluated in pre-school Italian children.   Methods: Healthy children aged 5–6 y primed in a routine vaccination setting with three doses of DTPa-based vaccines were enrolled and randomized (1:1) in this phase IIIb, booster study to receive a single dose of dTpa-IPV or DTPa-IPV; the MMRV vaccine was co-administered. Antibody concentrations/titers against diphtheria, tetanus, pertussis and poliovirus 1–3 were measured before and one month post-booster. Reactogenicity and safety was assessed. Results: 305 subjects were enrolled of whom 303 (dTpa-IPV = 151; DTPa-IPV = 152) received booster vaccination. One month post-booster, all subjects were seroprotected/seropositive for anti-diphtheria, anti-tetanus, anti-PT, anti-FHA and anti-poliovirus 1–3; 99.3% of dTpa-IPV and 60.4% of DTPa-IPV subjects were seropositive for anti-PRN; 98–100% of subjects were seropositive against MMRV antigens post-booster. Pain at the injection site (dTpa-IPV: 63.6%; DTPa-IPV: 63.2%) and fatigue (dTpa-IPV: 26.5%; DTPa-IPV: 23.7%) were the most commonly reported solicited local and general symptoms, during the 4-d follow-up period. No SAEs or fatalities were reported. Conclusions: The reduced-antigen-content dTpa-IPV vaccine was non-inferior to full-strength DTPa-IPV vaccine with respect to immunogenicity. The vaccine was well-tolerated and can be confidently used as a booster dose in pre-school children. PMID:22327497

  15. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity

    PubMed Central

    Kim, Yeu-Chun; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2009-01-01

    Microneedle patches coated with solid-state influenza vaccine have been developed to improve vaccine efficacy and patient coverage. However, dip coating microneedles with influenza vaccine can reduce antigen activity. In this study, we sought to determine the experimental factors and mechanistic pathways by which inactivated influenza vaccine can lose activity, as well as develop and assess improved microneedle coating formulations that protect the antigen from activity loss. After coating microneedles using a standard vaccine formulation, antigenicity was reduced to just 2%, as measured by hemagglutination activity. The presence of carboxymethylcellulose, which was added to increase viscosity of the coating formulation, was shown to contribute to vaccine activity loss. After screening a panel of candidate stabilizers, the addition of trehalose to the coating formulation was shown to protect the antigen and retain 48–82% antigen activity for all three major strains of seasonal influenza: H1N1, H3N2 and B. Influenza vaccine coated in this way also exhibited thermal stability, such that activity loss was independent of temperature over the range of 4 – 37°C for 24 h. Dynamic light scattering measurements showed that antigen activity loss was associated with virus particle aggregation, and that stabilization using trehalose largely blocked this aggregation. Finally, microneedles using an optimized vaccine coating formulation were applied to the skin to vaccinate mice. Microneedle vaccination induced robust systemic and functional antibodies and provided complete protection against lethal challenge infection similar to conventional intramuscular injection. Overall, these results show that antigen activity loss during microneedle coating can be largely prevented through optimized formulation and that stabilized microneedle patches can be used for effective vaccination. PMID:19840825

  16. Antibody responses of Macaca fascicularis against a new inactivated polio vaccine derived from Sabin strains (sIPV) in DTaP-sIPV vaccine.

    PubMed

    Sato, Y; Shiosaki, K; Goto, Y; Sonoda, K; Kino, Y

    2013-05-01

    Antibody responses of Macaca fascicularis against a new tetravalent vaccine composed of diphtheria toxoid, tetanus toxoid, acellular pertussis antigens, and inactivated poliovirus derived from Sabin strains (sIPV) was investigated to predict an optimal dose of sIPV in a new tetravalent vaccine (DTaP-sIPV) prior to conducting a dose-defined clinical study. Monkeys were inoculated with DTaP-sIPVs containing three different antigen units of sIPVs: Vaccine A (types 1:2:3 = 3:100:100 DU), Vaccine B (types 1:2:3 = 1.5:50:50 DU), and Vaccine C (types 1:2:3 = 0.75:25:25 DU). There was no difference in the average titers of neutralizing antibody against the attenuated or virulent polioviruses between Vaccines A and B. The average neutralizing antibody titers of Vaccine C tended to be lower than those of Vaccines A and B. The sIPV antigens did not affect the anti-diphtheria or anti-tetanus antibody titers of DTaP-sIPV. Furthermore, the average neutralizing antibody titers of Vaccine A against the attenuated and virulent polioviruses were comparable between M. fascicularis and humans. These results suggest that M. fascicularis may be a useful animal model for predicting the antibody responses to sIPVs in humans, and that it may be likely to reduce the amount of sIPVs contained in DTaP-sIPVs, even for humans. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  17. Methods for the Quality Control of Inactivated Poliovirus Vaccines.

    PubMed

    Wilton, Thomas

    2016-01-01

    Inactivated poliovirus vaccine (IPV) plays an instrumental role in the Global Poliovirus Eradication Initiative (GPEI). The quality of IPV is controlled by assessment of the potency of vaccine batches. The potency of IPV can be assessed by both in vivo and in vitro methods. In vitro potency assessment is based upon the assessment of the quantity of the D-Antigen (D-Ag) units in an IPV. The D-Ag unit is used as a measure of potency as it is largely expressed on native infectious virions and is the protective immunogen. The most commonly used in vitro test is the indirect ELISA which is used to ensure consistency throughout production.A range of in vivo assays have been developed in monkeys, chicks, guinea pigs, mice, and rats to assess the potency of IPV. All are based on assessment of the neutralizing antibody titer within the sera of the respective animal model. The rat potency test has become the favored in vivo potency test as it shows minimal variation between laboratories and the antibody patterns of rats and humans are similar. With the development of transgenic mice expressing the human poliovirus receptor, immunization-challenge tests have been developed to assess the potency of IPVs. This chapter describes in detail the methodology of these three laboratory tests to assess the quality of IPVs.

  18. Comparison of immunogenicity and persistence between inactivated hepatitis A vaccine Healive® and Havrix® among children: A 5-year follow-up study.

    PubMed

    Yu, Chengkai; Song, Yufei; Qi, Yangyang; Li, Chanjuan; Jiang, Zhiwei; Li, Chen; Zhang, Wei; Wang, Ling; Xia, Jielai

    2016-10-02

    Inactivated vaccines for hepatitis A virus (HAV) infection are widely used in China. Mass vaccination programs drive the need for data on long-term persistence of vaccine-induced protection. A prospective, randomized, open-label clinical trial was conducted to compare geometric mean concentrations (GMCs) and seroconversion rates (SRs) of anti-HAV antibody elicited by the inactivated vaccines Healive and Havrix for 5 y post immunization, in which 400 healthy children were randomly assigned in a 3:1 ratio to receive 2 doses of Healive or Havrix at 0 and 6 month. Anti-HAV antibody concentration was detected by microparticle enzyme immunoassay (MEIA) during the study. Furthermore, an attempt was made to predict persistence of protective immunogenicity by using a suitable statistical model. The GMCs were significantly higher after vaccination with Healive than after Havrix as comparator vaccine at 1, 6, 7, 18, 30, 42, 54 and 66 month (P < 0.01) with the peak point at 7 month (3427.2 mIU/ml for Healive and 1441.9 mIU/ml for Comparator). Similarly significant differences of SRs were found between the 2 groups at 1 and 6 month (P < 0.01). Afterwards, the SRs of both groups reached 100% at 7 month and did not decline until 66 month(99.1% for Healive and 97.5% for Comparator). A linear mixed model with a change point at 18 month(Model 3) was found to be suitable to predict persistence of protective immunogenicity induced by vaccines. It was estimated that the duration of protection for Healive was at least 20 y with a lower limit of GMC 95% confidence interval (CI) no less than 20 mIU/mL. Compared with Havrix, the new preservative-free inactivated hepatitis A vaccine (Healive) in 2 doses showed better persistence of antibody concentrations for 5 y after full-course immunization among children and the persistence of protective immunogenicity was estimated for at least 20 y.

  19. Co-administration of a meningococcal glycoconjugate ACWY vaccine with travel vaccines: a randomized, open-label, multi-center study.

    PubMed

    Alberer, Martin; Burchard, Gerd; Jelinek, Tomas; Reisinger, Emil; Beran, Jiri; Meyer, Seetha; Forleo-Neto, Eduardo; Gniel, Dieter; Dagnew, Alemnew F; Arora, Ashwani Kumar

    2014-01-01

    Potential interactions between vaccines may compromise the immunogenicity and/or safety of individual vaccines so must be assessed before concomitant administration is recommended. In this study, the immunogenicity and safety of travel vaccines against Japanese encephalitis (JEV) and rabies (PCECV) administered together with or without a quadrivalent meningococcal glycoconjugate ACWY-CRM vaccine were evaluated (NCT01466387). Healthy adults aged 18 to ≤60 years were randomized to one of four vaccine regimens: JEV + PCECV + MenACWY-CRM, JEV + PCECV, PCECV or MenACWY-CRM. Immunogenicity at baseline and 28 days post-complete vaccination was assessed by serum bactericidal assay using human complement or neutralization tests. Adverse events (AEs) were collected throughout the study period. JEV + PCECV + MenACWY-CRM was non-inferior to JEV + PCECV. Post-vaccination seroprotective neutralizing titers or concentrations were achieved in 98-99% (JE) and 100% (rabies) of subjects across the vaccine groups. Antibody responses to vaccine meningococcal serogroups were in the same range for MenACWY-CRM and JEV + PCECV + MenACWY-CRM. Rates of reporting of AEs were similar for JEV + PCECV and JEV + PCECV + MenACWY-CRM. MenACWY-CRM was administered with an inactivated adjuvanted JE and a purified chick embryo cell-culture rabies vaccine without compromising immunogenicity or safety of the individual vaccines. These data provide evidence that MenACWY-CRM could be effectively incorporated into travel vaccination programs. NCT01466387. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The failure of an inactivated mink enteritis virus vaccine in four preparations to provide protection to dogs against challenge with canine parvovirus-2.

    PubMed

    Carman, S; Povey, C

    1982-01-01

    Four experimental vaccine preparations comprising a strain of mink enteritis virus inactivated by either formalin or beta-propiolactone, and either adjuvanted or nonadjuvanted, failed to stimulate a consistent serum antibody response in 20 vaccinated dogs and failed to protect all but one of these dogs against oral challenge with canine parvovirus-2.

  1. A randomized trial of candidate inactivated quadrivalent influenza vaccine versus trivalent influenza vaccines in children aged 3-17 years.

    PubMed

    Domachowske, Joseph B; Pankow-Culot, Heidemarie; Bautista, Milagros; Feng, Yang; Claeys, Carine; Peeters, Mathieu; Innis, Bruce L; Jain, Varsha

    2013-06-15

    Two antigenically distinct influenza B lineages have cocirculated since 2001, yet trivalent influenza vaccines (TIVs) contain 1 influenza B antigen, meaning lineage mismatch with the vaccine is frequent. We assessed a candidate inactivated quadrivalent influenza vaccine (QIV) containing both B lineages vs TIV in healthy children aged 3-17 years. Children were randomized 1:1:1 to receive QIV or 1 of 2 TIVs (either B/Victoria or B/Yamagata lineage; N = 2738). Hemagglutination-inhibition assays were performed 28 days after 1 or 2 doses in primed and unprimed children, respectively. Immunological noninferiority of QIV vs TIV against shared strains, and superiority against alternate-lineage B strains was based on geometric mean titers (GMTs) and seroconversion rates. Reactogenicity and safety were also assessed (Clinicaltrials.gov NCT01196988). Noninferiority against shared strains and superiority against alternate-lineage B strains was demonstrated for QIV vs TIV. QIV was highly immunogenic; seroconversion rates were 91.4%, 72.3%, 70.0%, and 72.5% against A/H1N1, A/H3N2, B/Victoria, and B/Yamagata, respectively. Reactogenicity and safety of QIV was consistent with TIV. QIV vs TIV showed superior immunogenicity for the additional B strain without interfering with immune responses to shared strains. QIV may offer improved protection against influenza B in children compared with current trivalent vaccines.

  2. Mucosal Immunity and Protective Efficacy of Intranasal Inactivated Influenza Vaccine Is Improved by Chitosan Nanoparticle Delivery in Pigs.

    PubMed

    Dhakal, Santosh; Renu, Sankar; Ghimire, Shristi; Shaan Lakshmanappa, Yashavanth; Hogshead, Bradley T; Feliciano-Ruiz, Ninoshkaly; Lu, Fangjia; HogenEsch, Harm; Krakowka, Steven; Lee, Chang Won; Renukaradhya, Gourapura J

    2018-01-01

    Annually, swine influenza A virus (SwIAV) causes severe economic loss to swine industry. Currently used inactivated SwIAV vaccines administered by intramuscular injection provide homologous protection, but limited heterologous protection against constantly evolving field viruses, attributable to the induction of inadequate levels of mucosal IgA and cellular immune responses in the respiratory tract. A novel vaccine delivery platform using mucoadhesive chitosan nanoparticles (CNPs) administered through intranasal (IN) route has the potential to elicit strong mucosal and systemic immune responses in pigs. In this study, we evaluated the immune responses and cross-protective efficacy of IN chitosan encapsulated inactivated SwIAV vaccine in pigs. Killed SwIAV H1N2 (δ-lineage) antigens (KAg) were encapsulated in chitosan polymer-based nanoparticles (CNPs-KAg). The candidate vaccine was administered twice IN as mist to nursery pigs. Vaccinates and controls were then challenged with a zoonotic and virulent heterologous SwIAV H1N1 (γ-lineage). Pigs vaccinated with CNPs-KAg exhibited an enhanced IgG serum antibody and mucosal secretory IgA antibody responses in nasal swabs, bronchoalveolar lavage (BAL) fluids, and lung lysates that were reactive against homologous (H1N2), heterologous (H1N1), and heterosubtypic (H3N2) influenza A virus strains. Prior to challenge, an increased frequency of cytotoxic T lymphocytes, antigen-specific lymphocyte proliferation, and recall IFN-γ secretion by restimulated peripheral blood mononuclear cells in CNPs-KAg compared to control KAg vaccinates were observed. In CNPs-KAg vaccinated pigs challenged with heterologous virus reduced severity of macroscopic and microscopic influenza-associated pulmonary lesions were observed. Importantly, the infectious SwIAV titers in nasal swabs [days post-challenge (DPC) 4] and BAL fluid (DPC 6) were significantly ( p  < 0.05) reduced in CNPs-KAg vaccinates but not in KAg vaccinates when compared to

  3. The effect of age and recent influenza vaccination history on the immunogenicity and efficacy of 2009-10 seasonal trivalent inactivated influenza vaccination in children.

    PubMed

    Ng, Sophia; Ip, Dennis K M; Fang, Vicky J; Chan, Kwok-Hung; Chiu, Susan S; Leung, Gabriel M; Peiris, J S Malik; Cowling, Benjamin J

    2013-01-01

    There is some evidence that annual vaccination of trivalent inactivated influenza vaccine (TIV) may lead to reduced vaccine immunogenicity but evidence is lacking on whether vaccine efficacy is affected by prior vaccination history. The efficacy of one dose of TIV in children 6-8 y of age against influenza B is uncertain. We examined whether immunogenicity and efficacy of influenza vaccination in school-age children varied by age and past vaccination history. We conducted a randomized controlled trial of 2009-10 TIV. Influenza vaccination history in the two preceding years was recorded. Immunogenicity was assessed by comparison of HI titers before and one month after receipt of TIV/placebo. Subjects were followed up for 11 months with symptom diaries, and respiratory specimens were collected during acute respiratory illnesses to permit confirmation of influenza virus infections. We found that previous vaccination was associated with reduced antibody responses to TIV against seasonal A(H1N1) and A(H3N2) particularly in children 9-17 y of age, but increased antibody responses to the same lineage of influenza B virus in children 6-8 y of age. Serological responses to the influenza A vaccine viruses were high regardless of vaccination history. One dose of TIV appeared to be efficacious against confirmed influenza B in children 6-8 y of age regardless of vaccination history. Prior vaccination was associated with lower antibody titer rises following vaccination against seasonal influenza A vaccine viruses, but higher responses to influenza B among individuals primed with viruses from the same lineage in preceding years. In a year in which influenza B virus predominated, no impact of prior vaccination history was observed on vaccine efficacy against influenza B. The strains that circulated in the year of study did not allow us to study the effect of prior vaccination on vaccine efficacy against influenza A.

  4. Comparison of safety and immunogenicity of purified chick embryo cell vaccine using Zagreb and Essen regimens in patients with category II exposure in China.

    PubMed

    Hu, Quan; Liu, Man-Qing; Zhu, Zheng-Gang; Zhu, Ze-Rong; Lu, Sha

    2014-01-01

    The aim was to compare the safety and immunogenicity of purified chick embryo cell vaccine (PCECV) with Zagreb 2-1-1 and Essen 1-1-1-1-1 regimens in patients with WHO category II exposure in China. Side effects including systemic and local symptoms were recorded for all patients during vaccination with purified chick embryo cell vaccine (PCECV) under Zagreb 2-1-1 or Essen 1-1-1-1-1 regimens, and the rabies neutralization antibody titers in patients' serum at days 0, 7, 14, 45, 365 post-immunization were measured to determine the immunogenicity. Fever and pain were the most common events for systemic and local symptoms respectively, and most side effects (86.78%, 105/121) occurred after the first dose of vaccination. Safety analysis showed differences in side effects in<5-year-old patients between Zagreb and Essen regimens, especially after the first dose of vaccination (P = 0.043). Immunogenicity analysis indicated that Zagreb can achieve higher neutralization antibody titers and a greater seroconversion rate in a shorter time but had less persistence than Essen. When compared with the Essen regimen, the Zagreb regimen had a different immunogenicity in all study subjects, and different safety profile in young children, and a further study with a larger population and longer surveillance is warranted.

  5. Live Attenuated Versus Inactivated Influenza Vaccine in Hutterite Children: A Cluster Randomized Blinded Trial.

    PubMed

    Loeb, Mark; Russell, Margaret L; Manning, Vanessa; Fonseca, Kevin; Earn, David J D; Horsman, Gregory; Chokani, Khami; Vooght, Mark; Babiuk, Lorne; Schwartz, Lisa; Neupane, Binod; Singh, Pardeep; Walter, Stephen D; Pullenayegum, Eleanor

    2016-11-01

    Whether vaccinating children with intranasal live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in providing both direct protection in vaccinated persons and herd protection in unvaccinated persons is uncertain. Hutterite colonies, where members live in close-knit, small rural communities in which influenza virus infection regularly occurs, offer an opportunity to address this question. To determine whether vaccinating children and adolescents with LAIV provides better community protection than IIV. A cluster randomized blinded trial conducted between October 2012 and May 2015 over 3 influenza seasons. (ClinicalTrials.gov: NCT01653015). 52 Hutterite colonies in Alberta and Saskatchewan, Canada. 1186 Canadian children and adolescents aged 36 months to 15 years who received the study vaccine and 3425 community members who did not. Children were randomly assigned according to community in a blinded manner to receive standard dosing of either trivalent LAIV or trivalent IIV. The primary outcome was reverse transcriptase polymerase chain reaction-confirmed influenza A or B virus in all participants (vaccinated children and persons who did not receive the study vaccine). Mean vaccine coverage among children in the LAIV group was 76.9% versus 72.3% in the IIV group. Influenza virus infection occurred at a rate of 5.3% (295 of 5560 person-years) in the LAIV group versus 5.2% (304 of 5810 person-years) in the IIV group. The hazard ratio comparing LAIV with IIV for influenza A or B virus was 1.03 (95% CI, 0.85 to 1.24). The study was conducted in Hutterite communities, which may limit generalizability. Immunizing children with LAIV does not provide better community protection against influenza than IIV. The Canadian Institutes for Health Research.

  6. Assessing Inactivated Polio Vaccine Introduction and Utilization in Kano State, Nigeria, April-November 2015.

    PubMed

    Osadebe, Lynda U; MacNeil, Adam; Elmousaad, Hashim; Davis, Lora; Idris, Jibrin M; Haladu, Suleiman A; Adeoye, Olorunsogo B; Nguku, Patrick; Aliu-Mamudu, Uneratu; Hassan, Elizabeth; Vertefeuille, John; Bloland, Peter

    2017-07-01

    Kano State, Nigeria, introduced inactivated polio vaccine (IPV) into its routine immunization (RI) schedule in March 2015 and was the pilot site for an RI data module for the National Health Management Information System (NHMIS). We determined factors impacting IPV introduction and the value of the RI module on monitoring new vaccine introduction. Two assessment approaches were used: (1) analysis of IPV vaccinations reported in NHMIS, and (2) survey of 20 local government areas (LGAs) and 60 associated health facilities (HF). By April 2015, 66% of LGAs had at least 20% of HFs administering IPV, by June all LGAs had HFs administering IPV and by July, 91% of the HFs in Kano reported administering IPV. Among surveyed staff, most rated training and implementation as successful. Among HFs, 97% had updated RI reporting tools, although only 50% had updated microplans. Challenges among HFs included: IPV shortages (20%), hesitancy to administer 2 injectable vaccines (28%), lack of knowledge on multi-dose vial policy (30%) and age of IPV administration (8%). The introduction of IPV was largely successful in Kano and the RI module was effective in monitoring progress, although certain gaps were noted, which should be used to inform plans for future vaccine introductions. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  7. Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus.

    PubMed

    Gauger, Phillip C; Vincent, Amy L; Loving, Crystal L; Lager, Kelly M; Janke, Bruce H; Kehrli, Marcus E; Roth, James A

    2011-03-24

    Influenza is an economically important respiratory disease affecting swine world-wide with potential zoonotic implications. Genetic reassortment and drift has resulted in genetically and antigenically distinct swine influenza viruses (SIVs). Consequently, prevention of SIV infection is challenging due to the increased rate of genetic change and a potential lack of cross-protection between vaccine strains and circulating novel isolates. This report describes a vaccine-heterologous challenge model in which pigs were administered an inactivated H1N2 vaccine with a human-like (δ-cluster) H1 six and three weeks before challenge with H1 homosubtypic, heterologous 2009 pandemic H1N1. At necropsy, macroscopic and microscopic pneumonia scores were significantly higher in the vaccinated and challenged (Vx/Ch) group compared to non-vaccinated and challenged (NVx/Ch) pigs. The Vx/Ch group also demonstrated enhanced clinical disease and a significantly elevated pro-inflammatory cytokine profile in bronchoalveolar lavage fluid compared to the NVx/Ch group. In contrast, viral shedding and replication were significantly higher in NVx/Ch pigs although all challenged pigs, including Vx/Ch pigs, were shedding virus in nasal secretions. Hemagglutination inhibition (HI) and serum neutralizing (SN) antibodies were detected to the priming antigen in the Vx/Ch pigs but no measurable cross-reacting HI or SN antibodies were detected to pandemic H1N1 (pH1N1). Overall, these results suggest that inactivated SIV vaccines may potentiate clinical signs, inflammation and pneumonia following challenge with divergent homosubtypic viruses that do not share cross-reacting HI or SN antibodies. Published by Elsevier Ltd.

  8. Assessment of BCG and inactivated Mycobacterium bovis vaccines in an experimental tuberculosis infection model in sheep.

    PubMed

    Balseiro, Ana; Altuzarra, Raúl; Vidal, Enric; Moll, Xavier; Espada, Yvonne; Sevilla, Iker A; Domingo, Mariano; Garrido, Joseba M; Juste, Ramón A; Prieto, Miguel; Pérez de Val, Bernat

    2017-01-01

    Animal tuberculosis (TB) is a complex animal health problem that causes disruption to trade and significant economic losses. TB involves a multi-host system where sheep, traditionally considered a rare host of this infection, have been recently included. The aims of this study were to develop an experimental TB infection model in sheep with a Mycobacterium caprae field strain isolated from a tuberculous diseased ewe, and to use this to evaluate the safety and efficacy of two vaccines against TB in sheep, the live-attenuated M. bovis BCG vaccine (Danish strain) and a heat-inactivated M. bovis (HIMB) vaccine. Eighteen 2 month-old lambs were experimentally challenged with M. caprae by the endotracheal route (1.5 × 103 CFU). They were separated per treatment group into parenterally vaccinated with a live BCG Danish strain vaccine (n = 6), orally vaccinated with a suspension of HIMB (n = 6) and unvaccinated controls (n = 6). Clinical, immunological, pathological and bacteriological parameters of infection were measured. All lambs were successfully infected and developed gross TB lesions in the respiratory system. The BCG vaccine conferred considerable protection against experimental TB in lambs, as measured by a reduction of the gross lesion volumes and bacterial load. However, HIMB vaccinated animals did not show protection. This study proposes a reliable new experimental model for a better understanding of tuberculosis in sheep. BCG vaccination offers an effective prospect for controlling the disease. Moreover alternative doses and/or routes of administration should be considered to evaluate the efficacy of the HIMB vaccine candidate.

  9. Post-licensure surveillance of quadrivalent inactivated influenza (IIV4) vaccine in the United States, Vaccine Adverse Event Reporting System (VAERS), July 1, 2013-May 31, 2015.

    PubMed

    Haber, Penina; Moro, Pedro L; Lewis, Paige; Woo, Emily Jane; Jankosky, Christopher; Cano, Maria

    2016-05-11

    Quadrivalent inactivated influenza vaccines (IIV4) were first available for use during 2013-14 influenza season for individuals aged ≥6 months. IIV4 is designed to protect against four different flu viruses; two influenza A viruses and two influenza B viruses. We searched the Vaccine Adverse Event Reporting System (VAERS) for US reports after IIV4 and trivalent inactivated influenza vaccine (IIV3) from 7/1/2013-5/31/2015. Medical records were requested for non-manufacturer reports classified as serious (i.e. death, hospitalization, prolonged hospitalization, life-threatening illness, permanent disability). The review included automated data analysis, clinical review of all serious reports, reports of special interest, and empirical Bayesian data mining. VAERS received 1,838 IIV4 reports; 512 (28%) in persons aged 6 months-17 years of which 42 (8.2%) were serious reports; 1,265 (69%) in persons aged >18 years of which 84 (6.6%) were serious reports; two in children <6 months and 59 in persons of unknown age. Injection site erythema (24%), fever (14%) and injection site swelling (17%) were the most frequent adverse events among persons aged 6 months-17 years, while injection site pain (16%), pain (15%) and pain in extremity (13%) were the most frequent among persons aged 18-64 years given the vaccine alone. Among non-death serious reports, injection site reactions, constitutional symptoms, Guillain-Barré syndrome, seizures, and anaphylaxis were the most frequently reported adverse events. Data mining detected disproportional reporting for incorrect vaccine administration with no associated adverse events. Adverse events following IIV4 reported to VAERS were similar to those following IIV3. In our review of VAERS reports, IIV4 had a similar safety profile to IIV3. Most of the reported AEs were non-serious. Our findings are consistent with data from pre-licensure studies of IIV4. Published by Elsevier Ltd.

  10. Comparison of reproductive protection against bovine viral diarrhea virus provided by multivalent viral vaccines containing inactivated fractions of bovine viral diarrhea virus 1 and 2.

    PubMed

    Walz, Paul H; Riddell, Kay P; Newcomer, Benjamin W; Neill, John D; Falkenberg, Shollie M; Cortese, Victor S; Scruggs, Daniel W; Short, Thomas H

    2018-04-23

    Bovine viral diarrhea virus (BVDV) is an important viral cause of reproductive disease, immune suppression and clinical disease in cattle. The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. BVDV negative beef heifers and cows (n = 122) were randomly assigned to one of four groups. Groups A-C (n = 34/group) received two pre-breeding doses of one of three commercially available multivalent vaccines containing inactivated fractions of BVDV 1 and BVDV 2, and Group D (n = 20) served as negative control and received two doses of saline prior to breeding. Animals were bred, and following pregnancy diagnosis, 110 cattle [Group A (n = 31); Group B (n = 32); Group C (n = 31); Group D (n = 16)] were subjected to a 28-day exposure to cattle persistently infected (PI) with BVDV (1a, 1b and 2a). Of the 110 pregnancies, 6 pregnancies resulted in fetal resorption with no material for testing. From the resultant 104 pregnancies, BVDV transplacental infections were demonstrated in 73 pregnancies. The BVDV fetal infection rate (FI) was calculated at 13/30 (43%) for Group A cows, 27/29 (93%) for Group B cows, 18/30 (60%) for Group C cows, and 15/15 (100%) for Group D cows. Statistical differences were observed between groups with respect to post-vaccination antibody titers, presence and duration of viremia in pregnant cattle, and fetal infection rates in offspring from BVDV-exposed cows. Group A vaccination resulted in significant protection against BVDV infection as compared to all other groups based upon outcome measurements, while Group B vaccination did not differ in protection against BVDV infection from control Group D. Ability of inactivated BVDV vaccines to provide protection against BVDV fetal infection varies significantly among commercially available products; however, in this challenge

  11. Introduction of Sequential Inactivated Polio Vaccine–Oral Polio Vaccine Schedule for Routine Infant Immunization in Brazil’s National Immunization Program

    PubMed Central

    Domingues, Carla Magda Allan S.; de Fátima Pereira, Sirlene; Marreiros, Ana Carolina Cunha; Menezes, Nair; Flannery, Brendan

    2015-01-01

    In August 2012, the Brazilian Ministry of Health introduced inactivated polio vaccine (IPV) as part of sequential polio vaccination schedule for all infants beginning their primary vaccination series. The revised childhood immunization schedule included 2 doses of IPV at 2 and 4 months of age followed by 2 doses of oral polio vaccine (OPV) at 6 and 15 months of age. One annual national polio immunization day was maintained to provide OPV to all children aged 6 to 59 months. The decision to introduce IPV was based on preventing rare cases of vaccine-associated paralytic polio, financially sustaining IPV introduction, ensuring equitable access to IPV, and preparing for future OPV cessation following global eradication. Introducing IPV during a national multivaccination campaign led to rapid uptake, despite challenges with local vaccine supply due to high wastage rates. Continuous monitoring is required to achieve high coverage with the sequential polio vaccine schedule. PMID:25316829

  12. Intranasal vaccination with an inactivated whole influenza virus vaccine induces strong antibody responses in serum and nasal mucus of healthy adults

    PubMed Central

    Ainai, Akira; Tamura, Shin-ichi; Suzuki, Tadaki; van Riet, Elly; Ito, Ryo; Odagiri, Takato; Tashiro, Masato; Kurata, Takeshi; Hasegawa, Hideki

    2013-01-01

    Haemagglutination inhibition (HI) and neutralization (NT) titers as well as haemagglutinin (HA) specific antibody responses were examined in 50 healthy adults aged between 22 and 69 y old after two intranasal administrations of an inactivated whole virus vaccine derived from A/Victoria/210/2009 virus (45 μg HA per dose) at 3 week intervals. Serum HI titers after two-doses of the nasal vaccine showed >2.5-fold rise in the ratio of geometric mean titer upon vaccination, >40% of subjects with a ≥4-fold increase in titer and >70% of subjects with a titer of ≥1:40, all parameters associated with an effective outcome of vaccination in the criteria defined by the European Medicines Agency. Serum neutralizing antibody responses correlated with HI antibody responses, although NT titers were about 2-fold higher than HI titers. These high levels of serum responses were accompanied by high levels of HI and neutralizing antibody responses in nasal mucus as measured in concentrated nasal wash samples that were about 10 times diluted compared with natural nasal mucus. Serum and nasal HI and neutralizing antibody responses consisted of HA-specific IgG and IgA antibody responses, with IgG and IgA antibodies being dominant in serum and nasal responses, respectively. PMID:23896606

  13. A brief history of vaccines: smallpox to the present.

    PubMed

    Hsu, Jennifer L

    2013-01-01

    Modern vaccine history began in the late 18th century with the discovery of smallpox immunization by Edward Jenner. This pivotal step led to substantial progress in prevention of infectious diseases with inactivated vaccines for multiple infectious diseases, including typhoid, plague and cholera. Each advance produced significant decreases in infection-associated morbidity and mortality, thus shaping our modem cultures. As knowledge of microbiology and immunology grew through the 20th century, techniques were developed for cell culture of viruses. This allowed for rapid advances in prevention of polio, varicella, influenza and others. Finally, recent research has led to development of alternative vaccine strategies through use of vectored antigens, pathogen subunits (purified proteins or polysaccharides) or genetically engineered antigens. As the science of vaccinology continues to rapidly evolve, knowledge of the past creates added emphasis on the importance of developing safe and effective strategies for infectious disease prevention in the 21st century.

  14. New Japanese encephalitis vaccines: alternatives to production in mouse brain.

    PubMed

    Halstead, Scott B; Thomas, Stephen J

    2011-03-01

    Japanese encephalitis virus (JEV), a flavivirus maintained in a zoonotic cycle and transmitted by the mosquito Culex tritaeniorhynchus, causes epidemics of encephalitis throughout much of Asia. Resident populations, including short- or long-term visitors to enzootic regions, are at risk of infection and disease. For the past several decades, killed viral vaccines prepared in tissue culture or mouse brain have been used effectively to immunize travelers and residents of enzootic countries. Cost, efficacy and safety concerns led to the development of a live-attenuated virus vaccine (SA14-14-2) and more recently, to the licensure in the USA, Europe, Canada, and Australia of a purified inactivated, tissue culture-based Japanese encephalitis vaccine (IXIARO(®), referred to as IC51; Intercell AG, Vienna, Austria). In addition, a live-attenuated yellow fever-Japanese encephalitis chimeric vaccine (IMOJEV™, referred to as Japanese encephalitis-CV; Sanofi Pasteur, Lyon, France) was recently licensed in Australia and is under review in Thailand. A broad portfolio of safe and effective Japanese encephalitis vaccines has become available to meet the needs of at-risk populations; when appropriately delivered, these new vaccines should greatly diminish the burden of disease.

  15. Post-marketing safety surveillance for inactivated and live-attenuated Japanese encephalitis vaccines in China, 2008-2013.

    PubMed

    Wu, Wendi; Liu, Dawei; Li, Keli; Nuorti, J Pekka; Nohynek, Hanna M; Xu, Disha; Ye, Jiakai; Zheng, Jingshan; Wang, Huaqing

    2017-06-22

    Two types of Japanese encephalitis (JE) vaccines, inactivated JE vaccine (JE-I) and live-attenuated JE vaccine (JE-L), are available and used in China. In particular, one JE-L, produced by a domestic manufacturer in China, was prequalified by WHO in 2013. We assessed the safety of JE vaccines in China during 2008-2013 using the Chinese National Adverse Events Following Immunization Information System (CNAEFIS) data. We retrieved AEFI reporting data about JE vaccines from CNAEFIS, 2008-2013, examined demographic characteristics of AEFI cases, and used administrative data on vaccine doses as denominator to calculate and compare crude reporting rates. We also used disproportionality reporting analysis between JE-I and JE-L to assess potential safety signals. A total of 34,879 AEFIs related with JE-I and JE-L were reported, with a ratio of male to female as 1.3:1; 361 (1.0%) cases were classified as serious. JE vaccines were administered concurrently with one or more other vaccines in 13,592 (39.0%) of cases. The overall AEFI reporting rates were 214.4 per million vaccination doses for JE-L and 176.9 for JE-I (rate ratio [RR]: 1.2, 95% confidence interval [CI]: 1.1-1.3) in 2010-2013. Febrile convulsions (FC) following JE-I was found as a signal of disproportionate reporting (SDR). However, there was no significant difference between the reporting rates of FC of JE-I and JE-L (0.3 per million vaccination doses for JE-L, 0.4 for JE-I, p=0.05). While our analysis did not find apparent safety concern of JE vaccines in China, further study should consider JE-I vaccines and febrile convulsion, and taking more sensitive methods to detect signals. Copyright © 2017. Published by Elsevier Ltd.

  16. Measles vaccination before the measles-mumps-rubella vaccine.

    PubMed

    Hendriks, Jan; Blume, Stuart

    2013-08-01

    At the beginning of the 1960s, it was clear that a vaccine against measles would soon be available. Although measles was (and remains) a killer disease in the developing world, in the United States and Western Europe this was no longer so. Many parents and many medical practitioners considered measles an inevitable stage of a child's development. Debating the desirability of measles immunization, public health experts reasoned differently. In the United States, introduction of the vaccine fit well with Kennedy's and Johnson's administrations' political commitments. European policymakers proceeded cautiously, concerned about the acceptability of existing vaccination programs. In Sweden and the Netherlands, recent experience in controlling polio led researchers to prefer an inactivated virus vaccine. Although in the early 1970s attempts to develop a sufficiently potent inactivated vaccine were abandoned, we have argued that the debates and initiatives of the time during the vaccine's early history merit reflection in today's era of standardization and global markets.

  17. Immunogenicity and safety assessment of a trivalent, inactivated split influenza vaccine in Korean children: Double-blind, randomized, active-controlled multicenter phase III clinical trial.

    PubMed

    Han, Seung Beom; Rhim, Jung-Woo; Shin, Hye Jo; Lee, Soo Young; Kim, Hyun-Hee; Kim, Jong-Hyun; Lee, Kyung-Yil; Ma, Sang Hyuk; Park, Joon Soo; Kim, Hwang Min; Kim, Chun Soo; Kim, Dong Ho; Choi, Young Youn; Cha, Sung-Ho; Hong, Young Jin; Kang, Jin Han

    2015-01-01

    A multicenter, double-blind, randomized, active-control phase III clinical trial was performed to assess the immunogenicity and safety of a trivalent, inactivated split influenza vaccine. Korean children between the ages of 6 months and 18 y were enrolled and randomized into a study (study vaccine) or a control vaccine group (commercially available trivalent, inactivated split influenza vaccine) in a 5:1 ratio. Antibody responses were determined using hemagglutination inhibition assay, and post-vaccination immunogenicity was assessed based on seroconversion and seroprotection rates. For safety assessment, solicited local and systemic adverse events up to 28 d after vaccination and unsolicited adverse events up to 6 months after vaccination were evaluated. Immunogenicity was assessed in 337 and 68 children of the study and control groups. In the study vaccine group, seroconversion rates against influenza A/H1N1, A/H3N2, and B strains were 62.0% (95% CI: 56.8-67.2), 53.4% (95% CI: 48.1-58.7), and 54.9% (95% CI: 48.1-60.2), respectively. The corresponding seroprotection rates were 95.0% (95% CI: 92.6-97.3), 93.8% (95% CI: 91.2-96.4), and 95.3% (95% CI: 93.0-97.5). The lower 95% CI limits of the seroconversion and seroprotection rates were over 40% and 70%, respectively, against all strains. Seroconversion and seroprotection rates were not significantly different between the study and control vaccine groups. Furthermore, the frequencies of adverse events were not significantly different between the 2 vaccine groups, and no serious vaccination-related adverse events were noted. In conclusion, the study vaccine exhibited substantial immunogenicity and safety in Korean children and is expected to be clinically effective.

  18. Estimated Effect of Inactivated Poliovirus Vaccine Campaigns, Nigeria and Pakistan, January 2014–April 2016

    PubMed Central

    Shirreff, George; Wadood, Mufti Zubair; Vaz, Rui Gama; Sutter, Roland W.

    2017-01-01

    In 2014, inactivated poliovirus vaccine (IPV) campaigns were implemented in Nigeria and Pakistan after clinical trials showed that IPV boosts intestinal immunity in children previously given oral poliovirus vaccine (OPV). We estimated the effect of these campaigns by using surveillance data collected during January 2014–April 2016. In Nigeria, campaigns with IPV and trivalent OPV (tOPV) substantially reduced the incidence of poliomyelitis caused by circulating serotype-2 vaccine–derived poliovirus (incidence rate ratio [IRR] 0.17 for 90 days after vs. 90 days before campaigns, 95% CI 0.04–0.78) and the prevalence of virus in environmental samples (prevalence ratio [PR] 0.16, 95% CI 0.02–1.33). Campaigns with tOPV alone resulted in similar reductions (IRR 0.59, 95% CI 0.18–1.97; PR 0.45, 95% CI 0.21–0.95). In Pakistan, the effect of IPV+tOPV campaigns on wild-type poliovirus was not significant. Results suggest that administration of IPV alongside OPV can decrease poliovirus transmission if high vaccine coverage is achieved. PMID:27861118

  19. Primary and booster vaccination with an inactivated poliovirus vaccine (IPV) is immunogenic and well-tolerated in infants and toddlers in China.

    PubMed

    Li, Rongcheng; Li, Chang Gui; Li, Yanping; Liu, Youping; Zhao, Hong; Chen, Xiaoling; Kuriyakose, Sherine; Van Der Meeren, Olivier; Hardt, Karin; Hezareh, Marjan; Roy-Ghanta, Sumita

    2016-03-14

    Replacing live-attenuated oral poliovirus vaccines (OPV) with inactivated poliovirus vaccines (IPV) is part of the global strategy to eradicate poliomyelitis. China was declared polio-free in 2000 but continues to record cases of vaccine-associated-poliomyelitis and vaccine-derived-poliovirus outbreaks. Two pilot safety studies and two larger immunogenicity trials evaluated the non-inferiority of IPV (Poliorix™, GSK Vaccines, Belgium) versus OPV in infants and booster vaccination in toddlers primed with either IPV or OPV in China. In pilot safety studies, 25 infants received 3-dose IPV primary vaccination (Study A, www.clinicaltrial.gov NCT00937404) and 25 received an IPV booster after priming with three OPV doses (Study B, NCT01021293). In the randomised, controlled immunogenicity and safety trial (Study C, NCT00920439), infants received 3-dose primary vaccination with IPV (N=541) or OPV (N=535) at 2,3,4 months of age, and a booster IPV dose at 18-24 months (N=470, Study D, NCT01323647: extension of study C). Blood samples were collected before and one month post-dose-3 and booster. Reactogenicity was assessed using diary cards. Serious adverse events (SAEs) were captured throughout each study. Study A and B showed that IPV priming and IPV boosting (after OPV) was safe. Study C: One month post-dose-3, all IPV and ≥ 98.3% OPV recipients had seroprotective antibody titres towards each poliovirus type. The immune response elicited by IPV was non-inferior to Chinese OPV. Seroprotective antibody titres persisted in ≥ 94.7% IPV and ≥ 96.1% OPV recipients at 18-24 months (Study D). IPV had a clinically acceptable safety profile in all studies. Grade 3 local and systemic reactions were uncommon. No SAEs were related to IPV administration. Trivalent IPV is non-inferior to OPV in terms of seroprotection (in the Chinese vaccination schedule) in infant and toddlers, with a clinically acceptable safety profile. Copyright © 2016 The Authors. Published by Elsevier Ltd

  20. Asthma exacerbations among asthmatic children receiving live attenuated versus inactivated influenza vaccines.

    PubMed

    Ray, G Thomas; Lewis, Ned; Goddard, Kristin; Ross, Pat; Duffy, Jonathan; DeStefano, Frank; Baxter, Roger; Klein, Nicola P

    2017-05-09

    To investigate whether there is a difference in the risk of asthma exacerbations between children with pre-existing asthma who receive live attenuated influenza vaccine (LAIV) compared with inactivated influenza vaccine (IIV). We identified IIV and LAIV immunizations occurring between July 1, 2007 and March 31, 2014 among Kaiser Permanente Northern California members aged 2 to <18years with a history of asthma, and subsequent asthma exacerbations seen in the inpatient or Emergency Department (ED) setting. We calculated the ratio of the odds (OR) of an exacerbation being in the risk interval (1-14days) versus the comparison interval (29-42days) following immunization, separately for LAIV and IIV, and then examined whether the OR differed between children receiving LAIV and those receiving IIV ("difference-in-differences"). Among 387,633 immunizations, 85% were IIV and 15% were LAIV. Children getting LAIV vs. IIV were less likely to have "current or recent, persistent" asthma (25% vs. 47%), and more likely to have "remote history" of asthma (47% vs. 25%). Among IIV-vaccinated asthmatic children, the OR of an inpatient/ED asthma exacerbation was 0.97 (95% CI: 0.82-1.15). Among LAIV-vaccinated asthmatic children the OR was 0.38 (95% CI: 0.17-0.90). In the difference-in-differences analysis, the odds of asthma exacerbation following LAIV were less than IIV (Ratio of ORs: 0.40, CI: 0.17-0.95, p value: 0.04). Among children ≥2years old with asthma, we found no increased risk of asthma exacerbation following LAIV or IIV, and a decreased risk following LAIV compared to IIV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Phase II and III Clinical Studies of Diphtheria-Tetanus-Acellular Pertussis Vaccine Containing Inactivated Polio Vaccine Derived from Sabin Strains (DTaP-sIPV).

    PubMed

    Okada, Kenji; Miyazaki, Chiaki; Kino, Yoichiro; Ozaki, Takao; Hirose, Mizuo; Ueda, Kohji

    2013-07-15

    Phase II and III clinical studies were conducted to evaluate immunogenicity and safety of a novel DTaP-IPV vaccine consisting of Sabin inactivated poliovirus vaccine (sIPV) and diphtheria-tetanus-acellular pertussis vaccine (DTaP). A Phase II study was conducted in 104 healthy infants using Formulation H of the DTaP-sIPV vaccine containing high-dose sIPV (3, 100, and 100 D-antigen units for types 1, 2, and 3, respectively), and Formulations M and L, containing half and one-fourth of the sIPV in Formulation H, respectively. Each formulation was administered 3 times for primary immunization and once for booster immunization. A Phase III study was conducted in 342 healthy infants who received either Formulation M + oral polio vaccine (OPV) placebo or DTaP + OPV. The OPV or OPV placebo was orally administered twice between primary and booster immunizations. Formulation M was selected as the optimum dose. In the Phase III study, the seropositive rate was 100% for all Sabin strains after primary immunization, and the neutralizing antibody titer after booster immunization was higher than in the control group (DTaP + OPV). All adverse reactions were clinically acceptable. DTaP-sIPV was shown to be a safe and immunogenic vaccine. JapicCTI-121902 for Phase II study, JapicCTI-101075 for Phase III study (http://www.clinicaltrials.jp/user/cte_main.jsp).

  2. Clinical experience with respiratory syncytial virus vaccines.

    PubMed

    Piedra, Pedro A

    2003-02-01

    Respiratory syncytial virus (RSV) infection is at times associated with life-threatening lower respiratory tract illness in infancy. Severe infection during the first year of life may be an important risk factor or indicator for the development of asthma in early childhood. Severe infections primarily occur in healthy infants, and young infants and children with specific risk factors. However, RSV causes respiratory infections in all age groups. Indeed it is now recognized that RSV disease is responsible for significant morbidity and mortality in the geriatric population. RSV infection remains difficult to treat, and prevention is a worldwide goal. For this reason there has been an intensive effort to develop an effective and safe RSV vaccine. Initial infection with RSV affords limited protection to reinfection, yet repeated episodes decrease the risk for lower respiratory tract illness. In the 20 years from 1960 to 1980, trials of several candidate RSV vaccines failed to attain the desired safety and protection against natural infection. Some vaccine types either failed to elicit immunogenicity, as with the live subcutaneous vaccine, or resulted in exaggerated disease on natural exposure to the virus, as with the formalin-inactivated (FI) type. Currently vaccine candidates are being developed based on the molecular virology of RSV. Recent formulations of candidate RSV vaccines have focused on subunit vaccines [such as purified fusion protein (PFP)], subunit vaccines combined with nonspecific immune activating adjuvants, live attenuated vaccines (including cold passaged, temperature-sensitive or cpts mutants), genetically engineered live attenuated vaccines and polypeptide vaccines.

  3. Evaluation of the Protective Efficacy of Poly I:C as an Adjuvant for H9N2 Subtype Avian Influenza Inactivated Vaccine and Its Mechanism of Action in Ducks.

    PubMed

    Zhang, Aiguo; Lai, Hanzhang; Xu, Jiahua; Huang, Wenke; Liu, Yufu; Zhao, Dawei; Chen, Ruiai

    2017-01-01

    Current commercial H9 avian influenza vaccines cannot provide satisfactory protective immunity against antigenic variant influenza viruses in ducks. Poly I:C, when used as an adjuvant, improves humoral and cellular immunity in many animals but has not been tested in ducks. In this study, we investigated the protective efficacy of Poly I:C as an adjuvant for an inactivated H9N2 Avian influenza vaccine in ducks. We found that an H9N2 vaccine administered with poly I:C (H9-PIC vaccine) induced a significantly more rapid response with higher anti-influenza antibody titers than those of the vaccine alone (H9 vaccine). Moreover, virus shedding was reduced in ducks immunized with the H9-PIC vaccine after challenge with an H9 subtype antigenic variant viruses. IFN-α, IFN-γ, IL-6 and MHC-II mRNA levels were all elevated in ducks receiving the H9-PIC vaccine. In addition, lower expression level of MHC-I may be a reason for inefficient protective ability against heterologous influenza viruses in H9-PIC vaccination of ducks. In conclusion, poly I:C adjuvant enhanced both humoral and cellular immune responses in ducks induced by immunization of inactivated H9N2 vaccine.

  4. Evaluation of the Protective Efficacy of Poly I:C as an Adjuvant for H9N2 Subtype Avian Influenza Inactivated Vaccine and Its Mechanism of Action in Ducks

    PubMed Central

    Zhang, Aiguo; Lai, Hanzhang; Xu, Jiahua; Huang, Wenke; Liu, Yufu; Zhao, Dawei; Chen, Ruiai

    2017-01-01

    Current commercial H9 avian influenza vaccines cannot provide satisfactory protective immunity against antigenic variant influenza viruses in ducks. Poly I:C, when used as an adjuvant, improves humoral and cellular immunity in many animals but has not been tested in ducks. In this study, we investigated the protective efficacy of Poly I:C as an adjuvant for an inactivated H9N2 Avian influenza vaccine in ducks. We found that an H9N2 vaccine administered with poly I:C (H9-PIC vaccine) induced a significantly more rapid response with higher anti-influenza antibody titers than those of the vaccine alone (H9 vaccine). Moreover, virus shedding was reduced in ducks immunized with the H9-PIC vaccine after challenge with an H9 subtype antigenic variant viruses. IFN-α, IFN-γ, IL-6 and MHC-II mRNA levels were all elevated in ducks receiving the H9-PIC vaccine. In addition, lower expression level of MHC-I may be a reason for inefficient protective ability against heterologous influenza viruses in H9-PIC vaccination of ducks. In conclusion, poly I:C adjuvant enhanced both humoral and cellular immune responses in ducks induced by immunization of inactivated H9N2 vaccine. PMID:28135294

  5. Preparation for global introduction of inactivated poliovirus vaccine: safety evidence from the US Vaccine Adverse Event Reporting System, 2000-12.

    PubMed

    Iqbal, Shahed; Shi, Jing; Seib, Katherine; Lewis, Paige; Moro, Pedro L; Woo, Emily J; Shimabukuro, Tom; Orenstein, Walter A

    2015-10-01

    Safety data from countries with experience in the use of inactivated poliovirus vaccine (IPV) are important for the global polio eradication strategy to introduce IPV into the immunisation schedules of all countries. In the USA, IPV has been included in the routine immunisation schedule since 1997. We aimed to analyse adverse events after IPV administration reported to the US Vaccine Adverse Event Reporting System (VAERS). We analysed all VAERS data associated with IPV submitted between Jan 1, 2000, and Dec 31, 2012, either as individual or as combination vaccines, for all age and sex groups. We analysed the number and event type (non-serious, non-fatal serious, and death reports) of individual reports, and explored the most commonly coded event terms to describe the adverse event. We classified death reports according to previously published body-system categories (respiratory, cardiovascular, neurological, gastrointestinal, other infectious, and other non-infectious) and reviewed death reports to identify the cause of death. We classified sudden infant death syndrome as a separate cause of death considering previous concerns about sudden infant syndrome after vaccines. We used empirical Bayesian data mining methods to identify disproportionate reporting of adverse events for IPV compared with other vaccines. Additional VAERS data from 1991 to 2000 were analysed to compare the safety profiles of IPV and oral poliovirus vaccine (OPV). Of the 41,792 adverse event reports submitted, 39,568 (95%) were for children younger than 7 years. 38,381 of the reports for children in this age group (97%) were for simultaneous vaccination with IPV and other vaccines (most commonly pneumococcal and acellular pertussis vaccines), whereas standalone IPV vaccines accounted for 0·5% of all reports. 34,880 reports were for non-serious events (88%), 3905 reports were for non-fatal serious events (10%), and 783 reports were death reports (2%). Injection-site erythema was the most

  6. Lessons Learned From Managing the Planning and Implementation of Inactivated Polio Vaccine Introduction in Support of the Polio Endgame.

    PubMed

    Zipursky, Simona; Patel, Manish; Farrell, Margaret; Gonzalez, Alejandro Ramirez; Kachra, Tasleem; Folly, Yann; Kurji, Feyrouz; Veira, Chantal Laroche; Wootton, Emily; Hampton, Lee M

    2017-07-01

    The Immunization Systems Management Group (IMG) was established as a time-limited entity, responsible for the management and coordination of Objective 2 of the Polio Eradication and Endgame Strategic Plan. This objective called for the introduction of at least 1 dose of inactivated polio vaccine (IPV) into the routine immunization programs of all countries using oral polio vaccine (OPV) only. Despite global vaccine shortages, which limited countries' abilities to access IPV in a timely manner, 105 of 126 countries using OPV only introduced IPV within a 2.5-year period, making it the fastest rollout of a new vaccine in history. This achievement can be attributed to several factors, including the coordination work of the IMG; high-level engagement and advocacy across partners; the strong foundations of the Expanded Programme on Immunization at all levels; Gavi, the Vaccine Alliance's vaccine introduction experiences and mechanisms; innovative approaches; and proactive communications. In many ways, the IMG's work on IPV introduction can serve as a model for other vaccine introductions, especially in an accelerated context. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  7. Vaccination of broiler chickens with dispersed dry powder vaccines as an alternative for liquid spray and aerosol vaccination.

    PubMed

    Corbanie, E A; Vervaet, C; van Eck, J H H; Remon, J P; Landman, W J M

    2008-08-18

    Vaccination of chickens with dispersable dry powder vaccines was compared with commercial liquid vaccines. A Clone 30 Newcastle disease vaccine virus was spray dried with mannitol or with a mixture of trehalose, polyvinylpyrrolidone and bovine serum albumin. A coarse (+/-30 microm) and fine (+/-7 microm) powder were produced with both formulations. A commercial reconstituted Clone 30 vaccine was applied as coarse liquid spray (+/-222 microm) or fine liquid aerosol (+/-24 microm). Reduction of virus concentration in the air after dispersion/nebulization was monitored by air sampling and was explained by sedimentation of coarse particles/droplets and evaporation of fine droplets. The vaccine formulations induced high haemagglutination inhibition antibody titres in the serum of 4-week-old broilers (2(7) at 4 weeks post-vaccination). The good serum antibody response with the fine liquid aerosol despite extensive inactivation of virus due to evaporation of droplets, suggested that powder formulations (without inactivation due to evaporation) might allow a significant reduction of vaccine dose, thereby offering new options for fine aerosol vaccination with low-titre vaccines.

  8. Immunogenicity and safety of a quadrivalent inactivated influenza virus vaccine compared with a comparator quadrivalent inactivated influenza vaccine in a pediatric population: A phase 3, randomized noninferiority study.

    PubMed

    Airey, Jolanta; Albano, Frank R; Sawlwin, Daphne C; Jones, Alison Graves; Formica, Neil; Matassa, Vince; Leong, Jane

    2017-05-09

    Seqirus 2010 Southern Hemisphere split-virion trivalent inactivated influenza vaccine (IIV3) was associated with increased febrile reactions in children. Studies in vitro concluded that increasing concentrations of splitting agent decreased residual lipids and attenuated proinflammatory cytokine signals associated with fever. We assessed immunogenicity and safety of a quadrivalent inactivated influenza vaccine (IIV4; produced using higher concentration of splitting agent) versus a United States-licensed comparator IIV4 in healthy children aged 5-17years. Participants (N=2278) were randomized 3:1 and stratified by age (5-8years; 9-17years) to receive IIV4 (n=1709) or comparator IIV4 (n=569). Primary objective was to demonstrate noninferiority of IIV4 versus comparator IIV4 as assessed by hemagglutination inhibition (HI) geometric mean titer (GMT) ratio (upper bound of two-sided 95% confidence interval [CI]≤1.5) and difference in seroconversion rate (upper bound of two-sided 95% CI≤10%) for all four vaccine strains. HI antibody titers were assessed at baseline and 28days postvaccination. Solicited and unsolicited adverse events were assessed during each 7- and 28-day postvaccination period, respectively. IIV4 met immunogenicity criteria for noninferiority. Adjusted GMT ratios (comparator IIV4/IIV4) for A/H1N1, A/H3N2, B/Yamagata, and B/Victoria strains were 1.01 (95% CI; 0.93, 1.09), 1.05 (0.96, 1.15), 0.89 (0.81, 0.98), and 0.92 (0.83, 1.02), respectively. Corresponding values for differences (95% CI) in seroconversion rates (comparator IIV4 minus IIV4) were -3.1 (-8.0, 1.8), 0.4 (-4.5, 5.3), -3.4 (-8.3, 1.5), and -2.0 (-6.9, 2.9). Fever rates were numerically higher, but not statistically different, with IIV4 versus comparator IIV4. No new safety signals were reported. IIV4 demonstrated immunological noninferiority to the comparator IIV4 with a clinically acceptable safety profile in children aged 5-17years. Increased levels of virus splitting agent seem to

  9. Is it time for a new yellow fever vaccine?

    PubMed

    Hayes, Edward B

    2010-11-29

    An inexpensive live attenuated vaccine (the 17D vaccine) against yellow fever has been effectively used to prevent yellow fever for more than 70 years. Interest in developing new inactivated vaccines has been spurred by recognition of rare but serious, sometimes fatal adverse events following live virus vaccination. A safer inactivated yellow fever vaccine could be useful for vaccinating people at higher risk of adverse events from the live vaccine, but could also have broader global health utility by lowering the risk-benefit threshold for assuring high levels of yellow fever vaccine coverage. If ongoing trials demonstrate favorable immunogenicity and safety compared to the current vaccine, the practical global health utility of an inactivated vaccine is likely to be determined mostly by cost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. 72 FR 56765 - Proposed Consolidated Vaccine Information Materials for Multiple Infant Vaccines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2007-10-04

    ... to meningitis (infection of the brain and spinal cord coverings); pneumonia; infections of the blood... vaccines: DTaP, Haemophilus influenzae type b, inactivated polio vaccine, pneumococcal conjugate vaccine... to administration of any of these vaccines. Hepatitis B, Haemophilus influenzae type b (Hib...

  11. Development, Production, and Postmarketing Surveillance of Hepatitis A Vaccines in China

    PubMed Central

    Cui, Fuqiang; Liang, Xiaofeng; Wang, Fuzhen; Zheng, Hui; Hutin, Yvan J; Yang, Weizhong

    2014-01-01

    China has long experience using live attenuated and inactivated vaccines against hepatitis A virus (HAV) infection. We summarize this experience and provide recent data on adverse events after immunization (AEFIs) with hepatitis A vaccines in China. We reviewed the published literature (in Chinese and English) and the published Chinese regulatory documents on hepatitis A vaccine development, production, and postmarketing surveillance of AEFI. We described the safety, immunogenicity, and efficacy of hepatitis A vaccines and horizontal transmission of live HAV vaccine in China. In clinical trials, live HAV vaccine was associated with fever (0.4%–5% of vaccinees), rash (0%–1.1%), and elevated alanine aminotransferase (0.015%). Inactivated HAV vaccine was associated with fever (1%–8%), but no serious AEFIs were reported. Live HAV vaccine had seroconversion rates of 83% to 91%, while inactivated HAV vaccine had seroconversion rates of 95% to 100%. Community trials showed efficacy rates of 90% to 95% for live HAV and 95% to 100% for inactivated HAV vaccine. Postmarketing surveillance showed that HAV vaccination resulted in an AEFI incidence rate of 34 per million vaccinees, which accounted for 0.7% of adverse events reported to the China AEFI monitoring system. There was no difference in AEFI rates between live and inactivated HAV vaccines. Live and inactivated HAV vaccines manufactured in China were immunogenic, effective, and safe. Live HAV vaccine had substantial horizontal transmission due to vaccine virus shedding; thus, further monitoring of the safety of virus shedding is warranted. PMID:24681843

  12. Infective and inactivated filamentous phage as carriers for immunogenic peptides.

    PubMed

    Samoylova, Tatiana I; Norris, Mandy D; Samoylov, Alexandre M; Cochran, Anna M; Wolfe, Karen G; Petrenko, Valery A; Cox, Nancy R

    2012-07-01

    The focus of this study is on development of vaccines using filamentous phage as a delivery vector for immunogenic peptides. The use of phage as a carrier for immunogenic peptides provides significant benefits such as high immunogenicity, low production costs, and high stability of phage preparations. However, introduction of live recombinant phage into the environment might represent a potential ecological problem. This, for example, may occur when vaccines are used in oral or nasal formulations in field conditions for wild and feral animals. To address this issue, comparative studies of antigenic properties of live and inactivated (non-viable) phage were accomplished. Inactivated phage, if released, will not propagate and will degrade as any other protein. In these experiments, a model phage clone that was previously selected from a phage display library and shown to stimulate production of anti-sperm antibodies with contraceptive properties was used. Multiple methods of phage inactivation were tested, including drying, freezing, autoclaving, heating, and UV irradiation. Under studied conditions, heating at 76°C for 3h, UV irradiation, and autoclaving resulted in complete phage inactivation. Phage samples treated by heat and UV were characterized by spectrophotometry and electron microscopy. To test antigenicity, live and inactivated phage preparations were injected into mice and antibody responses assayed by ELISA. It was found that phage killed by heat causes little to no immune responses, probably due to destruction of phage particles. In contrast, UV-inactivated phage stimulated production of IgG serum antibodies at the levels comparable to live phage. Thus, vaccines formulated to include UV-inactivated filamentous phage might represent environmentally safe alternatives to live phage vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Safety and immunogenicity of a new chromatographically purified rabies vaccine in comparison to the human diploid cell vaccine.

    PubMed

    Arora, Ashoni; Moeller, Larry; Froeschle, James

    2004-01-01

    Although human diploid cell vaccine (HDCV) has been available for over two decades and has a proven record of efficacy, it is very expensive to produce and can only be made in small quantities. In this trial, we compared the safety and immunogenicity of a new, chromatographically purified rabies vaccine (CPRV) with those of HDCV. One hundred and thirty-five healthy veterinary students were randomized in a 2:1 ratio between CPRV and HDCV respectively. Each student subsequently received an intramuscular injection of 0.5 mL of CPRV or 1mL of HDCV on days 0, 7, and 28, according to the standard preexposure regimen. Local safety data were collected for 7 days following each dose and systemic safety data for 42 days following the first dose. Vaccine administration and safety evaluation were performed by different site personnel. Sera for immunogenicity analysis were collected on days 0 (prevaccination), 28 and 42. All subjects achieved an antirabies antibody titer greater than or equal to the World Health Organization (WHO) accepted threshold level of seroconversion of 0.5 IU/mL after only two of three doses of vaccine in both groups. The geometric mean titers (IU/mL) in the CPRV and HDCV groups respectively were 6.54 (range 0.50 to 64.80) and 10.22 (range 0.70 to 51.40) on day 28, and 40.51 (range 5.40 to 278.00) and 37.71 (range 5.40 to 278.00) on day 42. The percentage of subjects experiencing local reactions within 3 days after any dose ranged from 65.2% to 80.9% in the CPRV group and from 77.3% to 84.4% in the HDCV group. The local reaction reported by the greatest percentage of subjects after each dose was pain/tenderness at the injection site, and most reactions were mild. Most of the reported local reactions resolved within 0 to 3 days postvaccination. Systemic reactions decreased from 76.4% after dose 1 to 36.0% after dose 3 in the CPRV group, and similarly from 55.6% to 31.8% in the HDCV group. For all postdose periods, the systemic reaction reported by the

  14. [Immunogenicity and safety of a booster dose of inactivated polio vaccine].

    PubMed

    Li, Xiao-mei; Zhang, Zhu-jia-zi; Wang, Hai-hong; Liu, Fang; Zhang, Li-wen; Chu, Ping; Xu, Ying; Zhang, He-run; Li, Juan; Liu, Dong-lei; Lu, Li

    2013-10-01

    To evaluate the immunogenicity and safety of a boost dose of inactivated polio vaccine (IPV) among children aged 18 months who had been administered with primary doses of IPV. Form 2011 to 2012, a total of 97 children were enrolled in the present study who were vaccinated with IPV at 2, 3, 4 months of age and boosted with the same vaccine at 18 months of age. Anti-poliovirus neutralizing antibody titers in serum were measured before and after booster vaccination, geometric mean titers (GMT) and seroprotection rate were calculated. Adverse events occurring within 30 days after booster vaccination were observed, including pain, redness/swelling and induration at the injection site, fever, vomit, abnormal crying, drowsiness, loss of appetite, irritability, and all other physical discomfort and related medications were also recorded. A descriptive analysis was performed for the safety assessment. Immunogenicity was assessed in 84 subjects. The pre-booster seropositivity rates of neutralizing antibody against poliovirus type 1, 2, 3 before booster were all 100% (84/84) and the corresponding GMT (95% CI) was 1: 148.5 (116.49-189.29) , 1: 237.68 (178.39-316.67) and 1: 231.87 (181.27-296.58) , respectively. The seropositivity rates of neutralizing antibody against the three types of poliovirus after booster were all 100% (84/84) and the corresponding GMT (95% CI) was 1: 1612.14 (1470.57-1767.34) , 1: 1854.92 (1715.83-2005.29) and 1: 1625.50 (1452.12-1819.58) , respectively. The pre-booster titer of neutralizing antibody against poliovirus type 1, 2, 3 mainly ranged 1: 128-1: 512, which accounted for 65% (55/84) , 55% (46/84) , 74% (62/84) in each type. After the booster immunization, titers of neutralizing antibody against type 1, 2, 3 were increased as subjects with titer ≥ 1: 1024 accounted for 94% (78/84) , 95% (80/84) , 92% (77/84) , respectively.Safety was evaluated in 96 subjects, of which 16 subjects reported adverse events with the rate of 17%. The observed local

  15. Development of Protective Immunity against Inactivated Iranian Isolate of Foot-and-Mouth Disease Virus Type O/IRN/2007 Using Gamma Ray-Irradiated Vaccine on BALB/c Mice and Guinea Pigs.

    PubMed

    Motamedi-Sedeh, Farahnaz; Soleimanjahi, Hoorieh; Jalilian, Amir Reza; Mahravani, Homayoon; Shafaee, Kamalodin; Sotoodeh, Masood; Taherkarami, Hamdolah; Jairani, Faramarz

    2015-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals and is the most damaging disease of livestock worldwide, leading to great economic losses. The aim of this research was the inactivation of FMDV type O/IRN/1/2007 to produce a gamma ray-irradiated (GRI) vaccine in order to immunize mice and guinea pigs. In this research, the Iranian isolated FMDV type O/IRN/1/2007 was irradiated by gamma ray to prepare an inactivated whole virus antigen and formulated as a GRI vaccine with unaltered antigenic characteristics. Immune responses against this vaccine were evaluated on mice and guinea pigs. The comparison of the immune responses between the GRI vaccine and conventional vaccine did not show any significant difference in neutralizing antibody titer, memory spleen T lymphocytes or IFN-γ, IL-4, IL-2 and IL-10 concentrations (p > 0.05). In contrast, there were significant differences in all of the evaluated immune factors between the two vaccinated groups of mice and negative control mice (p < 0.05). The protective dose 50 for the conventional and GRI vaccines obtained were 6.28 and 7.07, respectively, which indicated the high potency of both vaccines. GRI vaccine is suitable for both routine vaccination and control of FMDV in emergency outbreaks.

  16. Immunogenicity, safety and tolerability of inactivated trivalent influenza vaccine in overweight and obese children.

    PubMed

    Esposito, Susanna; Giavoli, Claudia; Trombetta, Claudia; Bianchini, Sonia; Montinaro, Valentina; Spada, Anna; Montomoli, Emanuele; Principi, Nicola

    2016-01-02

    Obesity may be a risk factor for increased hospitalization and deaths from infections due to respiratory pathogens. Additionally, obese patients appear to have impaired immunity after some vaccinations. To evaluate the immunogenicity, safety and tolerability of an inactivated trivalent influenza vaccine (TIV) in overweight and obese children, 28 overweight/obese pediatric patients and 23 healthy normal weight controls aged 3-14 years received a dose of TIV. Four weeks after vaccine administration, significantly higher seroprotection rates against the A/H1N1 strain were observed among overweight/obese children compared with normal weight controls (p<0.05). Four months after vaccination, similar or slightly higher seroconversion and seroprotection rates against the A/H1N1 and A/H3N2 strains were detected in overweight/obese than in normal weight children, whereas significantly higher rates of seroconversion and seroprotection against the B strain were found in overweight/obese patients than in normal weight controls (p<0.05 for seroconversion and seroprotection). Geometric mean titers (GMTs) and fold increase against B strains were significantly higher in overweight/obese patients than in normal weight controls 4 months after vaccine administration (p<0.01 for GMT values and p<0.05 for fold increase). The frequency of local and systemic reactions was similar between the groups, and there were no serious adverse events. The results of this study indicate that in overweight and obese children, antibody response to TIV administration is similar or slightly higher than that evidenced in normal weight subjects of similar age and this situation persists for at least 4 months after vaccine administration in the presence of a favorable safety profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cross-reactive immune responses following vaccination with a live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs

    USDA-ARS?s Scientific Manuscript database

    Circulating influenza A virus (IAV) in North America pigs consist of H3N2, H1N2, and H1N1 (4 genetic clusters) which contain the triple reassortant internal gene (TRIG) cassette resulting from incorporation of genes from swine, avian, and human IAV. Adjuvanted, whole-inactivated virus (WIV) vaccines...

  18. Comparative safety and efficacy of subcutaneous and intradermal administration of inactivated Japanese encephalitis vaccine during predeployment preparations in the Australian Defence Force.

    PubMed

    Kitchener, Scott; Nasveld, Peter; Brennan, Len; Ward, David

    2006-12-01

    Japanese encephalitis is a viral disease emerging in areas of influence for the Australian Defence Force immediately north of the continent, including the Torres Strait border of Australia and Papua, New Guinea. Only the mouse brain-derived, inactivated, Nakayama strain vaccine is commercially available to the Australian Defence Force. This vaccine has a high cost and significant adverse event profile, requiring restricted duties after administration. To address these issues, intradermal vaccination (either single intradermal administration or two intradermal injections at two separate sites) was assessed, compared with the conventional subcutaneous vaccination method, in a randomized controlled trial among soldiers preparing for deployment. Dual intradermal vaccination (0.1 mL at two sites) was found to have a slightly more favorable adverse event profile while maintaining comparable serological efficacy and reduced cost. An expansion of the concept and a test of logistics were conducted by vaccinating a battalion formation during predeployment medical preparations. The method of vaccination was well accepted and retained comparable immunogenicity.

  19. Exceptional Financial Support for Introduction of Inactivated Polio Vaccine in Middle-Income Countries.

    PubMed

    Blankenhorn, Anne-Line; Cernuschi, Tania; Zaffran, Michel J

    2017-07-01

    In May 2012, the World Health Assembly declared the completion of poliovirus eradication a programmatic emergency for global public health and called for a comprehensive polio endgame strategy. The Polio Eradication and Endgame Strategic Plan 2013-2018 was developed in response to this call and demands that all countries using Oral Polio Vaccine (OPV) only introduce at least 1 dose of Inactivated Polio Vaccine (IPV) into routine immunization schedules by the end of 2015. In November 2013, the Board of Gavi (the Vaccine Alliance) approved the provision of support for IPV introduction in the 72 Gavi-eligible countries. Following analytical work and stakeholder consultations, the IPV Immunization Systems Management Group (IMG) presented a proposal to provide exceptional financial support for IPV introduction to additional OPV-only using countries not eligible for Gavi support and that would otherwise not be able to mobilize the necessary financial resources within the Polio Eradication and Endgame Strategic Plan timelines. In June 2014, the Polio Oversight Board (POB) agreed to make available a maximum envelope of US $45 million toward supporting countries not eligible for Gavi funding. This article describes the design of the funding mechanism that was developed, its implementation and the lessons learned through this process. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. The Effect of Formulation on Spray Dried Sabin Inactivated Polio Vaccine.

    PubMed

    Kanojia, Gaurav; Ten Have, Rimko; Brugmans, Debbie; Soema, Peter C; Frijlink, Henderik W; Amorij, Jean-Pierre; Kersten, Gideon

    2018-05-19

    The objective of this study was to develop a stable spray dried formulation, containing the three serotypes of Sabin inactivated polio vaccine (sIPV), aiming for minimal loss of native conformation (D-antigen) during drying and subsequent storage. The influence of atomization and drying stress during spray drying on trivalent sIPV was investigated. This was followed by excipient screening, in which monovalent sIPV was formulated and spray dried. Excipient combinations and concentrations were tailored to maximize both the antigen recovery of respective sIPV serotypes after spray drying and storage (T= 40°C and t= 7 days). Furthermore, a fractional factorial design was developed around the most promising formulations to elucidate the contribution of each excipient in stabilizing D-antigen during drying. Serotype 1 and 2 could be dried with 98 % and 97 % recovery, respectively. When subsequently stored at 40°C for 7 days, the D-antigenicity of serotype 1 was fully retained. For serotype 2 the D-antigenicity dropped to 71 %. Serotype 3 was more challenging to stabilize and a recovery of 56 % was attained after drying, followed by a further loss of 37 % after storage at 40°C for 7 days. Further studies using a design of experiments approach demonstrated that trehalose/monosodium glutamate and maltodextrin/arginine combinations were crucial for stabilizing serotype 1 and 2, respectively. For sIPV serotype 3, the best formulation contained Medium199, glutathione and maltodextrin. For the trivalent vaccine it is therefore probably necessary to spray dry the different serotypes separately and mix the dry powders afterwards to obtain the trivalent vaccine. Copyright © 2018. Published by Elsevier B.V.

  1. The adjuvanticity of ophiopogon polysaccharide liposome against an inactivated porcine parvovirus vaccine in mice.

    PubMed

    Fan, Yunpeng; Ma, Xia; Hou, Weifeng; Guo, Chao; Zhang, Jing; Zhang, Weimin; Ma, Lin; Song, Xiaoping

    2016-01-01

    In this study, the adjuvant activity of ophiopogon polysaccharide liposome (OPL) was investigated. The effects of OPL on the splenic lymphocyte proliferation of mice were measured in vitro. The results showed that OPL could significantly promote lymphocyte proliferation singly or synergistically with PHA and LPS and that the effect was better than ophiopogon polysaccharide (OP) at most of concentrations. The adjuvant activities of OPL, OP and mineral oil were compared in BALB/c mice inoculated with inactivated PPV in vivo. The results showed that OPL could significantly enhance lymphocyte proliferation, increase the proportion of CD4(+) and CD8(+) T cells, improve the HI antibody titre and specific IgG response, and promote the production of cytokines, and the efficacy of OPL was significantly better than that of OP. In addition, OPL significantly improved the cellular immune response compared with oil adjuvant. These results suggested that OPL possess superior adjuvanticity and that a medium dose had the best efficacy. Therefore, OPL can be used as an effective immune adjuvant for an inactivated PPV vaccine. Copyright © 2015. Published by Elsevier B.V.

  2. Inactivation of SAM-methyltransferase is the mechanism of attenuation of a historic louse borne typhus vaccine strain.

    PubMed

    Liu, Yan; Wu, Bin; Weinstock, George; Walker, David H; Yu, Xue-Jie

    2014-01-01

    Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine.

  3. Intradermal Administration of Fractional Doses of Inactivated Poliovirus Vaccine: A Dose-Sparing Option for Polio Immunization.

    PubMed

    Okayasu, Hiromasa; Sein, Carolyn; Chang Blanc, Diana; Gonzalez, Alejandro Ramirez; Zehrung, Darin; Jarrahian, Courtney; Macklin, Grace; Sutter, Roland W

    2017-07-01

    A fractional dose of inactivated poliovirus vaccine (fIPV) administered by the intradermal route delivers one fifth of the full vaccine dose administered by the intramuscular route and offers a potential dose-sparing strategy to stretch the limited global IPV supply while further improving population immunity. Multiple studies have assessed immunogenicity of intradermal fIPV compared with the full intramuscular dose and demonstrated encouraging results. Novel intradermal devices, including intradermal adapters and disposable-syringe jet injectors, have also been developed and evaluated as alternatives to traditional Bacillus Calmette-Guérin needles and syringes for the administration of fIPV. Initial experience in India, Pakistan, and Sri Lanka suggests that it is operationally feasible to implement fIPV vaccination on a large scale. Given the available scientific data and operational feasibility shown in early-adopter countries, countries are encouraged to consider introducing a fIPV strategy into their routine immunization and supplementary immunization activities. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. Parenteral Vaccination with Heat-Inactivated Mycobacterium Bovis Reduces the Prevalence of Tuberculosis-Compatible Lesions in Farmed Wild Boar.

    PubMed

    Díez-Delgado, I; Rodríguez, O; Boadella, M; Garrido, J M; Sevilla, I A; Bezos, J; Juste, R; Domínguez, L; Gortázar, C

    2017-10-01

    In 2012, a wild boar (Sus scrofa) tuberculosis (TB) control programme was set up in a wild boar farm by means of intramuscular (IM) vaccination with a heat-inactivated Mycobacterium bovis vaccine (IV). The goal was to assess safety and efficacy of the parenterally administered IV in a large farm setting with natural M. bovis circulation. Based on preceding results under laboratory conditions, we hypothesized that vaccinated piglets would show smaller scores of TB-compatible lesions (TBCL) than unvaccinated controls. After vaccination, no adverse reactions were detected by visual inspection or at post-mortem examination (n = 668 and 97, respectively). Post-mortem data on TBCL were available for 97 vaccinated wild boar and 182 controls. The observed TBCL prevalence was 4.1% (95% CI = 0.2-8%) and 12.1% (95% CI = 7.1-17.1%) for vaccinated and control wild boar, respectively (P < 0.05). Among those animals with TBCL, no difference in the mean lesion score was found (P > 0.05). The results show that IV administered intramuscularly to wild boar piglets is safe and protects vaccinated individuals (66% reduction in TBCL prevalence) against natural challenge in a low-prevalence setting. In a context of increasing TB prevalence in wild boar in Mediterranean habitats, vaccination achieved a progressive though slow decline in lesion prevalence since the onset of the vaccination scheme. Hence, vaccination might contribute, along with other tools, to TB control in wild boar and in pigs. © 2016 Blackwell Verlag GmbH.

  5. New Strains Intended for the Production of Inactivated Polio Vaccine at Low-Containment After Eradication

    PubMed Central

    Knowlson, Sarah; Burlison, John; Giles, Elaine; Fox, Helen; Macadam, Andrew J.; Minor, Philip D.

    2015-01-01

    Poliomyelitis has nearly been eradicated through the efforts of the World Health Organization’s Global Eradication Initiative raising questions on containment of the virus after it has been eliminated in the wild. Most manufacture of inactivated polio vaccines currently requires the growth of large amounts of highly virulent poliovirus, and release from a production facility after eradication could be disastrous; WHO have therefore recommended the use of the attenuated Sabin strains for production as a safer option although it is recognised that they can revert to a transmissible paralytic form. We have exploited the understanding of the molecular virology of the Sabin vaccine strains to design viruses that are extremely genetically stable and hyperattenuated. The viruses are based on the type 3 Sabin vaccine strain and have been genetically modified in domain V of the 5’ non-coding region by changing base pairs to produce a cassette into which capsid regions of other serotypes have been introduced. The viruses give satisfactory yields of antigenically and immunogenically correct viruses in culture, are without measurable neurovirulence and fail to infect non-human primates under conditions where the Sabin strains will do so. PMID:26720150

  6. New Strains Intended for the Production of Inactivated Polio Vaccine at Low-Containment After Eradication.

    PubMed

    Knowlson, Sarah; Burlison, John; Giles, Elaine; Fox, Helen; Macadam, Andrew J; Minor, Philip D

    2015-12-01

    Poliomyelitis has nearly been eradicated through the efforts of the World Health Organization's Global Eradication Initiative raising questions on containment of the virus after it has been eliminated in the wild. Most manufacture of inactivated polio vaccines currently requires the growth of large amounts of highly virulent poliovirus, and release from a production facility after eradication could be disastrous; WHO have therefore recommended the use of the attenuated Sabin strains for production as a safer option although it is recognised that they can revert to a transmissible paralytic form. We have exploited the understanding of the molecular virology of the Sabin vaccine strains to design viruses that are extremely genetically stable and hyperattenuated. The viruses are based on the type 3 Sabin vaccine strain and have been genetically modified in domain V of the 5' non-coding region by changing base pairs to produce a cassette into which capsid regions of other serotypes have been introduced. The viruses give satisfactory yields of antigenically and immunogenically correct viruses in culture, are without measurable neurovirulence and fail to infect non-human primates under conditions where the Sabin strains will do so.

  7. Isolation of sabin-like polioviruses from wastewater in a country using inactivated polio vaccine.

    PubMed

    Zurbriggen, Sebastian; Tobler, Kurt; Abril, Carlos; Diedrich, Sabine; Ackermann, Mathias; Pallansch, Mark A; Metzler, Alfred

    2008-09-01

    From 2001 to 2004, Switzerland switched from routine vaccination with oral polio vaccine (OPV) to inactivated polio vaccine (IPV), using both vaccines in the intervening period. Since IPV is less effective at inducing mucosal immunity than OPV, this change might allow imported poliovirus to circulate undetected more easily in an increasingly IPV-immunized population. Environmental monitoring is a recognized tool for identifying polioviruses in a community. To look for evidence of poliovirus circulation following cessation of OPV use, two sewage treatment plants located in the Zurich area were sampled from 2004 to 2006. Following virus isolation using either RD or L20B cells, enteroviruses and polioviruses were identified by reverse transcription-PCR. A total of 20 out of 174 wastewater samples were positive for 62 Sabin-like isolates. One isolate from each poliovirus-positive sample was analyzed in more detail. Sequencing the complete viral protein 1 (VP1) capsid coding region, as well as intratypic differentiation (ITD), identified 3 Sabin type 1, 13 Sabin type 2, and 4 Sabin type 3 strains. One serotype 1 strain showed a discordant result in the ITD. Three-quarters of the strains showed mutations within the 5' untranslated region and VP1, known to be associated with reversion to virulence. Moreover, three strains showed heterotypic recombination (S2/S1 and S3/S2/S3). The low number of synonymous mutations and the partial temperature sensitivity are not consistent with extended circulation of these Sabin virus strains. Nevertheless, the continuous introduction of polioviruses into the community emphasizes the necessity for uninterrupted child vaccination to maintain high herd immunity.

  8. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses

    PubMed Central

    Muller, David A.; Pearson, Frances E.; Fernando, Germain J.P.; Agyei-Yeboah, Christiana; Owens, Nick S.; Corrie, Simon R.; Crichton, Michael L.; Wei, Jonathan C.J.; Weldon, William C.; Oberste, M. Steven; Young, Paul R.; Kendall, Mark A. F.

    2016-01-01

    Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns. PMID:26911254

  9. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses.

    PubMed

    Muller, David A; Pearson, Frances E; Fernando, Germain J P; Agyei-Yeboah, Christiana; Owens, Nick S; Corrie, Simon R; Crichton, Michael L; Wei, Jonathan C J; Weldon, William C; Oberste, M Steven; Young, Paul R; Kendall, Mark A F

    2016-02-25

    Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns.

  10. Immunogenicity, Safety, and Tolerability of Bivalent rLP2086 Meningococcal Group B Vaccine Administered Concomitantly With Diphtheria, Tetanus, and Acellular Pertussis and Inactivated Poliomyelitis Vaccines to Healthy Adolescents.

    PubMed

    Vesikari, Timo; Wysocki, Jacek; Beeslaar, Johannes; Eiden, Joseph; Jiang, Qin; Jansen, Kathrin U; Jones, Thomas R; Harris, Shannon L; O'Neill, Robert E; York, Laura J; Perez, John L

    2016-06-01

    Concomitant administration of bivalent rLP2086 (Trumenba [Pfizer, Inc] and diphtheria, tetanus, and acellular pertussis and inactivated poliovirus vaccine (DTaP/IPV) was immunologically noninferior to DTaP/IPV and saline and was safe and well tolerated. Bivalent rLP2086 elicited robust and broad bactericidal antibody responses to diverse Neisseria meningitidis serogroup B strains expressing antigens heterologous to vaccine antigens after 2 and 3 vaccinations. Bivalent rLP2086, a Neisseria meningitidis serogroup B (MnB) vaccine (Trumenba [Pfizer, Inc]) recently approved in the United States to prevent invasive MnB disease in individuals aged 10-25 years, contains recombinant subfamily A and B factor H binding proteins (fHBPs). This study evaluated the coadministration of Repevax (diphtheria, tetanus, and acellular pertussis and inactivated poliovirus vaccine [DTaP/IPV]) (Sanofi Pasteur MSD, Ltd) and bivalent rLP2086. Healthy adolescents aged ≥11 to <19 years received bivalent rLP2086 + DTaP/IPV or saline + DTaP/IPV at month 0 and bivalent rLP2086 or saline at months 2 and 6. The primary end point was the proportion of participants in whom prespecified levels of antibodies to DTaP/IPV were achieved 1 month after DTaP/IPV administration. Immune responses to bivalent rLP2086 were measured with serum bactericidal assays using human complement (hSBAs) against 4 MnB test strains expressing fHBP subfamily A or B proteins different from the vaccine antigens. Participants were randomly assigned to receive bivalent rLP2086 + DTaP/IPV (n = 373) or saline + DTaP/IPV (n = 376). Immune responses to DTaP/IPV in participants who received bivalent rLP2086 + DTaP/IPV were noninferior to those in participants who received saline + DTaP/IPV.The proportions of bivalent rLP2086 + DTaP/IPV recipients with prespecified seroprotective hSBA titers to the 4 MnB test strains were 55.5%-97.3% after vaccination 2 and 81.5%-100% after vaccination 3. The administration of bivalent rLP2086 was

  11. Vaccines. An Ebola whole-virus vaccine is protective in nonhuman primates.

    PubMed

    Marzi, Andrea; Halfmann, Peter; Hill-Batorski, Lindsay; Feldmann, Friederike; Shupert, W Lesley; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro

    2015-04-24

    Zaire ebolavirus is the causative agent of the current outbreak of hemorrhagic fever disease in West Africa. Previously, we showed that a whole Ebola virus (EBOV) vaccine based on a replication-defective EBOV (EBOVΔVP30) protects immunized mice and guinea pigs against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that EBOVΔVP30 protects nonhuman primates against lethal infection with EBOV. Although EBOVΔVP30 is replication-incompetent, we additionally inactivated the vaccine with hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective in nonhuman primates. EBOVΔVP30 thus represents a safe, efficacious, whole-EBOV vaccine candidate that differs from other EBOV vaccine platforms in that it presents all viral proteins and the viral RNA to the host immune system, which might contribute to protective immune responses. Copyright © 2015, American Association for the Advancement of Science.

  12. Safety and immunogenicity of high-dose trivalent inactivated influenza vaccine in adults 50-64 years of age.

    PubMed

    DiazGranados, Carlos A; Saway, William; Gouaux, James; Baron, Mira; Baker, Jeffrey; Denis, Martine; Jordanov, Emilia; Landolfi, Victoria; Yau, Eddy

    2015-12-16

    Individuals 50-64 years of age have reduced immune responses to influenza vaccines. The current study examined whether a high-dose inactivated trivalent influenza vaccine (IIV3-HD) might improve immune responses over a standard-dose inactivated influenza vaccine (IIV3-SD) in this age group. This was a multicenter, observer-blinded, randomized, active-controlled phase II trial. Adults 50-64 years of age were randomized 1:1 to receive IIV3-HD or IIV3-SD. Hemagglutination inhibition titers were measured before and 28 days after vaccination. Reactogenicity was recorded for 7 days after vaccination and adverse events for 28 days. 148 participants received IIV3-HD and 152 received IIV3-SD. For all vaccine strains, day 28 geometric mean hemagglutination inhibition titers were significantly higher in the IIV3-HD group than in the IIV3-SD group (geometric mean titer ratio [95% confidence interval (CI)]=1.43 [1.04-1.97] for A/H1N1, 1.65 [1.21-2.25] for A/H3N2, and 1.60 [1.23-2.08] for B). Seroconversion rates were significantly higher in the IIV3-HD group than in the IIV3-SD group for strains A/H3N2 and B but not A/H1N1 (difference [95% CI]=13.5% [4.76-22.0] for A/H3N2, 23.1% [11.7-33.6] for B, and -0.2% [-9.66 to 9.18] for A/H1N1). The post-vaccination seroprotection rate was significantly higher in the IIV3-HD group than in the IIV3-SD group for strain B but not for strains A/H1N1 or A/H3N2 (difference=9.1% [2.95-15.7] for B, 2.0% [-0.907 to 5.68] for A/H1N1, and 0.6% [-3.14 to 4.43] for A/H3N2). Reactogenicity was higher in the IIV3-HD group than in the IIV3-SD group, but reactions were mostly of low intensity, transient, and self-limited. Rates of unsolicited adverse events were similar between groups. No serious AEs, AEs leading to early withdrawal, or deaths were reported. The study suggests that in adults 50-64 years of age, IIV3-HD may improve immunogenicity compared to IIV3-SD while maintaining an acceptable safety profile. Copyright © 2015 The Authors. Published

  13. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  14. Immunogenicity and safety of the inactivated hepatitis A vaccine in children with juvenile idiopathic arthritis on methotrexate treatment: a matched case-control study.

    PubMed

    Maritsi, Despoina N; Coffin, Susan E; Argyri, Ioanna; Vartzelis, George; Spyridis, Nick; Tsolia, Maria N

    2017-01-01

    To describe the immunogenicity and side effects of immunisation against hepatitis A virus (HAV) in JIA patients on methotrexate treatment, who have not been previously exposed to HAV. Case-control study performed in JIA patients and healthy controls matched on age and gender. The subjects received two doses of inactivated anti-HAV vaccine (720 mIU/ml) intramuscularly at 0 and 6 months. Seroconversion, seroprotection rates and anti-HAV-IgG titres were measured at 1, 7 and 18 months. Children were monitored for adverse events. 83 JIA patients and 76 controls were enrolled in the study. At one month, seroprotection rates were lower in children with, as compared to those without JIA (48.2% vs. 65%; p=0.05). At 7 and 18 months, rates of seroprotection rose significantly and were similar in both groups. The titre of anti-HAV-IgG was lower in children with JIA than healthy children at all time points (p<0.001). Vaccines were well tolerated. Two doses of inactivated HAV vaccine were well tolerated and immunogenic in most immunosuppressed children with JIA; however, a single dose of HAV vaccine was insufficient to induce seroprotection in half of the patients. Further studies are required to analyse the long-term immunity against HAV in this population and optimal HAV immunisation regimen.

  15. Inactivation of SAM-Methyltransferase is the Mechanism of Attenuation of a Historic Louse Borne Typhus Vaccine Strain

    PubMed Central

    Liu, Yan; Wu, Bin; Weinstock, George; Walker, David H.; Yu, Xue-jie

    2014-01-01

    Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine. PMID:25412248

  16. Potency of an inactivated influenza vaccine prepared from A/duck/Hokkaido/162/2013 (H2N1) against a challenge with A/swine/Missouri/2124514/2006 (H2N3) in mice

    PubMed Central

    SUZUKI, Mizuho; OKAMATSU, Masatoshi; HIONO, Takahiro; MATSUNO, Keita; SAKODA, Yoshihiro

    2017-01-01

    H2N2 influenza virus caused a pandemic starting in 1957 but has not been detected in humans since 1968. Thus, most people are immunologically naive to viruses of the H2 subtype. In contrast, H2 influenza viruses are continually isolated from wild birds, and H2N3 viruses were isolated from pigs in 2006. H2 influenza viruses could cause a pandemic if re-introduced into humans. In the present study, a vaccine against H2 influenza was prepared as an effective control measure against a future human pandemic. A/duck/Hokkaido/162/2013 (H2N1), which showed broad antigenic cross-reactivity, was selected from the candidate H2 influenza viruses recently isolated from wild birds in Asian countries. Sufficient neutralizing antibodies against homologous and heterologous viruses were induced in mice after two subcutaneous injections of the inactivated whole virus particle vaccine. The inactivated vaccine induced protective immunity sufficient to reduce the impact of challenges with A/swine/Missouri/2124514/2006 (H2N3). This study demonstrates that the inactivated whole virus particle vaccine prepared from an influenza virus library would be useful against a future H2 influenza pandemic. PMID:28993601

  17. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines.

    PubMed

    Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong

    2017-09-10

    The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species

    PubMed Central

    Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  19. Development of inactivated poliovirus vaccine from Sabin strains: A progress report.

    PubMed

    Okayasu, Hiromasa; Sein, Carolyn; Hamidi, Ahd; Bakker, Wilfried A M; Sutter, Roland W

    2016-11-01

    The Global Polio Eradication Initiative (GPEI) has seen significant progress since it began in 1988, largely due to the worldwide use of oral poliovirus vaccine (OPV). In order to achieve polio eradication the global cessation of OPV is necessary because OPV contains live attenuated poliovirus, which in rare circumstances could re-gain wild poliovirus (WPV) characteristics with potential to establish transmission. The GPEI endgame strategy for the period 2013-2018 recommends the globally synchronised sequential cessation of the Sabin strains contained in the OPV, starting with type 2 Sabin. The withdrawal of Sabin type 2 took place in April 2016, with the introduction of at least one dose of inactivated poliovirus vaccine (IPV) as a risk mitigation strategy. The introduction of IPV into 126 countries since 2013 has required a rapid scale-up of IPV production by the two manufacturers supplying the global public sector market. This scale-up has been fraught with challenges, resulting in reductions of 40-50% of initial supply commitments. Consequently, 22 countries will not be supplied until 2018, and another 23 countries will experience serious stock-outs. In the last decade repeated calls-for-action were made to the global community to invigorate their vision and investment in developing "new poliovirus vaccines" including the development of IPV from less-virulent strains, such as Sabin-IPV (S-IPV). The conventional Salk-IPV production is limited to high-income industrialized-country manufacturers due to the containment requirements (i.e., high sanitation, low force-of-poliovirus-infection, and high population immunity). The use of Sabin strains in the production of S-IPV carries a lower biosafety risk, and was determined to be suitable for production in developing countries, expanding the manufacturing base and making IPV more affordable and accessible in the long term. Significant progress in the S-IPV has been made since 2006. S-IPV is now licensed as S-IPV in

  20. [Influenza vaccination. Effectiveness of current vaccines and future challenges].

    PubMed

    Ortiz de Lejarazu, Raúl; Tamames, Sonia

    2015-01-01

    Seasonal influenza is an annual challenge for health-care systems, due to factors such as co-circulation of 2 influenza A subtypes jointly with 2 influenza B lineages; the antigenic drift of these virus, which eludes natural immunity, as well as immunity conferred by vaccination; together with influenza impact in terms of morbidity and mortality. Influenza vaccines have been available for more than 70 years and they have progressed in formulation, production and delivery route. Recommendations on vaccination are focused on those with a higher probability of severe disease, and have a progressively wider coverage, and classically based on inactivated vaccines, but with an increasing importance of attenuated live vaccines. More inactivated vaccines are becoming available, from adyuvanted and virosomal vaccines to intradermal delivery, cell-culture or quadrivalent. Overall vaccine effectiveness is about 65%, but varies depending on characteristics of vaccines, virus, population and the outcomes to be prevented, and ranges from less than 10% to almost 90%. Future challenges are formulations that confer more extensive and lasting protection, as well as increased vaccination coverage, especially in groups such as pregnant women and health-care professionals, as well as being extended to paediatrics. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  1. Vaccines and Pregnancy

    MedlinePlus

    ... MotherToBaby at 866-626-6847 to speak with one of our specialists about your specific vaccine. Are there any vaccines that are recommended in pregnancy? Yes. It is recommended that pregnant women receive the seasonal inactivated flu vaccine (flu shot). Pregnant women are at an increased risk of ...

  2. Immunogenicity of live attenuated Japanese encephalitis SA 14-14-2 vaccine among Sri Lankan children with previous receipt of inactivated JE vaccine.

    PubMed

    Wijesinghe, Pushpa Ranjan; Abeysinghe, M R Nihal; Yoksan, Sutee; Yao, Yafu; Zhou, Benli; Zhang, Lei; Fleming, Jessica A; Marfin, Anthony A; Victor, John C

    2016-11-21

    The performance of live attenuated Japanese Encephalitis SA 14-14-2 vaccine (CD-JEV) among children previously given inactivated mouse brain-derived JE vaccine (IMBV) is unknown. We evaluated the safety and immunogenicity of CD-JEV administered to 2- and 5-year-old children in Sri Lanka. In this open-label, single arm trial in the Colombo District of Sri Lanka, generally healthy children 2 and 5years of age who had previously received two and three doses of IMBV, respectively, were administered one dose of CD-JEV subcutaneously. Participants were monitored for adverse events for one year post-vaccination. Serum neutralizing antibody responses were evaluated pre and 28 and 365days post-vaccination using JE plaque reduction neutralization test and characterized as the proportion of participants seroconverting. Seroconversion was defined as either reaching a titer considered seroprotective (⩾1:10) among participants with a baseline titer <1:10 or achieving at least a 4-fold rise in titer among participants with a baseline titer ⩾1:10. Of 305 children given CD-JEV, 294 were included in the primary analysis of immunogenicity. Prior to vaccination, 144/147 (98.0%) 2-year-olds and 146/147 (99.3%) 5-year-olds had seroprotective levels. 28days post-vaccination, 79/147 [53.7% (95% CI, 45.3-62.0)] 2-year olds and of 60/147 [40.8% (95% CI, 32.8-49.2)] 5-year olds achieved seroconversion. Among 2-year-olds, geometric mean titers (GMTs) rose from 697 to 3175 28days post-vaccination. Among 5-year-olds, GMTs rose from 926 to 2776. Most adverse reactions were mild, and no serious adverse events were related to study vaccination. Administration of CD-JEV to these children with pre-existing neutralizing JE antibody titers was safe and resulted in substantial boosting of antibody levels. These results may inform other countries in Asia considering switching from IMBV to now WHO-prequalified CD-JEV vaccine to combat this disease of public health importance. Copyright © 2016 The

  3. Vaccine responsiveness in premature infants.

    PubMed

    Baxter, David

    2010-06-01

    The purpose of this review is to document adaptive immune responses in premature infants with a gestational age ≤32 weeks to the different vaccines used in the primary immunisation programme in the UK. Evidence suggests that these infants have impaired immune functioning that is consequent on maturational status and which resolve at variable time periods after birth - this impacts both on their risk of infection and response to vaccination. Assessing vaccine responsiveness can help establish whether the administration of additional vaccines is appropriate for a premature infant, and this may be determined either by vaccine immunogenicity or efficacy studies. The focus of the paper is immunogenicity studies for the following vaccines: tetanus, and diphtheria (toxoid vaccines), Haemophilus influenzae type b (Hib), meningococcal C (Men C) and pneumococcal (PnC) (subunit glycoconjugate vaccines), pertussis (subunit vaccine) and polio (inactivated vaccine). Data show that immunogenicity in premature infants is vaccine specific and whilst highly protective for the toxoid and inactivated preparations, responses to the subunit preparations are less optimal and consequently additional vaccinations or serology testing for ≤32 week gestation infants be considered.

  4. Environmental Surveillance of Poliovirus in Sewage Water around the Introduction Period for Inactivated Polio Vaccine in Japan

    PubMed Central

    Nakamura, Tomofumi; Hamasaki, Mitsuhiro; Yoshitomi, Hideaki; Ishibashi, Tetsuya; Yoshiyama, Chiharu; Maeda, Eriko; Yoshida, Hiromu

    2015-01-01

    Environmental virus surveillance was conducted at two independent sewage plants from urban and rural areas in the northern prefecture of the Kyushu district, Japan, to trace polioviruses (PVs) within communities. Consequently, 83 PVs were isolated over a 34-month period from April 2010 to January 2013. The frequency of PV isolation at the urban plant was 1.5 times higher than that at the rural plant. Molecular sequence analysis of the viral VP1 gene identified all three serotypes among the PV isolates, with the most prevalent serotype being type 2 (46%). Nearly all poliovirus isolates exhibited more than one nucleotide mutation from the Sabin vaccine strains. During this study, inactivated poliovirus vaccine (IPV) was introduced for routine immunization on 1 September 2012, replacing the live oral poliovirus vaccine (OPV). Interestingly, the frequency of PV isolation from sewage waters declined before OPV cessation at both sites. Our study highlights the importance of environmental surveillance for the detection of the excretion of PVs from an OPV-immunized population in a highly sensitive manner, during the OPV-to-IPV transition period. PMID:25556189

  5. Tomorrow's vector vaccines for small ruminants.

    PubMed

    Kyriakis, C S

    2015-12-14

    Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines.

    PubMed

    Wong, Sook-San; DeBeauchamp, Jennifer; Zanin, Mark; Sun, Yilun; Tang, Li; Webby, Richard

    2017-01-01

    Conventional inactivated avian influenza vaccines have performed poorly in past vaccine trials, leading to the hypothesis that they are less immunogenic than seasonal influenza vaccines. We tested this hypothesis by comparing the immunogenicity of the H5N1 and H7N9 vaccines (avian influenza vaccines) to a seasonal trivalent inactivated influenza vaccine in naïve ferrets, administered with or without the adjuvants MF59 or AS03. Vaccine immunogenicity was assessed by measuring neutralizing antibody titers against hemagglutinin and neuraminidase and by hemagglutinin -specific IgG levels. Two doses of unadjuvanted vaccines induced low or no HA-specific IgG responses and hemagglutination-inhibiting titers. Adjuvanted vaccines induced comparable IgG-titers, but poorer neutralizing antibody titers for the H5 vaccine. All adjuvanted vaccines elicited detectable anti- neuraminidase -antibodies with the exception of the H5N1 vaccine, likely due to the low amounts of neuraminidase in the vaccine. Overall, the H5N1 vaccine had poorer capacity to induce neutralizing antibodies, but not HA-specific IgG, compared to H7N9 or trivalent inactivated influenza vaccine.

  7. Characterization of antibody responses to combinations of a dengue virus type 2 DNA vaccine and two dengue virus type 2 protein vaccines in rhesus macaques.

    PubMed

    Simmons, Monika; Porter, Kevin R; Hayes, Curtis G; Vaughn, David W; Putnak, Robert

    2006-10-01

    We evaluated three nonreplicating dengue virus type 2 (DENV-2) vaccines: (i) a DNA vaccine containing the prM-E gene region (D), (ii) a recombinant subunit protein vaccine containing the B domain (i.e., domain III) of the E protein as a fusion with the Escherichia coli maltose-binding protein (R), and (iii) a purified inactivated virus vaccine (P). Groups of four rhesus macaques each were primed once and boosted twice using seven different vaccination regimens. After primary vaccination, enzyme-linked immunosorbent assay (ELISA) antibody levels increased most rapidly for groups inoculated with the P and DP combination, and by 1 month after the second boost, ELISA titers were similar for all groups. The highest plaque reduction neutralization test (PRNT) titers were seen in those groups that received the DR/DR/DR combination (geometric mean titer [GMT], 510), the P/P/P vaccine (GMT, 345), the DP/DP/DP combination (GMT, 287), and the R/R/R vaccine (GMT, 200). The next highest titers were seen in animals that received the D/R/R vaccine (GMT, 186) and the D/P/P vaccine (GMT, 163). Animals that received the D/D/D vaccine had the lowest neutralizing antibody titer (GMT, 49). Both ELISA and PRNT titers declined at variable rates. The only significant protection from viremia was observed in the P-vaccinated animals (mean of 0.5 days), which also showed the highest antibody concentration, including antibodies to NS1, and highest antibody avidity at the time of challenge.

  8. Administering Multiple Injectable Vaccines During a Single Visit-Summary of Findings From the Accelerated Introduction of Inactivated Polio Vaccine Globally.

    PubMed

    Dolan, Samantha B; Patel, Manish; Hampton, Lee M; Burnett, Eleanor; Ehlman, Daniel C; Garon, Julie; Cloessner, Emily; Chmielewski, Elizabeth; Hyde, Terri B; Mantel, Carsten; Wallace, Aaron S

    2017-07-01

    In 2013, the World Health Organization's (WHO's) Strategic Advisory Group of Experts (SAGE) recommended that all 126 countries using only oral polio vaccine (OPV) introduce at least 1 dose of inactivated polio vaccine (IPV) into their routine immunization schedules by the end of 2015. In many countries, the addition of IPV would necessitate delivery of multiple injectable vaccines (hereafter, "multiple injections") during a single visit, with infants receiving IPV alongside pentavalent vaccine (which covers diphtheria, tetanus, and whole-cell pertussis; hepatitis B; and Haemophilus influenzae type b) and pneumococcal vaccine. Unanticipated concerns emerged from countries over acceptability of multiple injections, sites of administration, and safety. We contextualized the issues surrounding multiple injections by documenting concerns associated with administration of ≥3 injections, existing evidence in the published literature, and findings of a systematic review on administration practices and techniques. Concerns associated with multiple-injection visits were documented from meetings and personal communications with immunization program managers. Published literature on the acceptability of multiple injections by providers and caregivers was summarized, and a systematic review of the literature on administration practices was completed on the following topics: spacing between injection sites (ie, vaccine spacing), site of injection, route of injection, and procedural preparedness. WHO and United Nations Children's Fund data from 2013-2015 were used to assess multiple-injection visits included in national immunization schedules. Healthcare provider and caregiver attitudes and practices indicated concerns about infant pain, potential adverse effects, and uncertainty about vaccine effectiveness with multiple-injection visits. Published literature reinforced the record of safety and acceptance of the recommended schedule of IPV by the SAGE, but the evidence was

  9. Administering Multiple Injectable Vaccines During a Single Visit—Summary of Findings From the Accelerated Introduction of Inactivated Polio Vaccine Globally

    PubMed Central

    Patel, Manish; Hampton, Lee M.; Burnett, Eleanor; Ehlman, Daniel C.; Garon, Julie; Cloessner, Emily; Chmielewski, Elizabeth; Hyde, Terri B.; Mantel, Carsten; Wallace, Aaron S.

    2017-01-01

    Abstract Background. In 2013, the World Health Organization’s (WHO’s) Strategic Advisory Group of Experts (SAGE) recommended that all 126 countries using only oral polio vaccine (OPV) introduce at least 1 dose of inactivated polio vaccine (IPV) into their routine immunization schedules by the end of 2015. In many countries, the addition of IPV would necessitate delivery of multiple injectable vaccines (hereafter, “multiple injections”) during a single visit, with infants receiving IPV alongside pentavalent vaccine (which covers diphtheria, tetanus, and whole-cell pertussis; hepatitis B; and Haemophilus influenzae type b) and pneumococcal vaccine. Unanticipated concerns emerged from countries over acceptability of multiple injections, sites of administration, and safety. We contextualized the issues surrounding multiple injections by documenting concerns associated with administration of ≥3 injections, existing evidence in the published literature, and findings of a systematic review on administration practices and techniques. Methods. Concerns associated with multiple-injection visits were documented from meetings and personal communications with immunization program managers. Published literature on the acceptability of multiple injections by providers and caregivers was summarized, and a systematic review of the literature on administration practices was completed on the following topics: spacing between injection sites (ie, vaccine spacing), site of injection, route of injection, and procedural preparedness. WHO and United Nations Children’s Fund data from 2013–2015 were used to assess multiple-injection visits included in national immunization schedules. Results. Healthcare provider and caregiver attitudes and practices indicated concerns about infant pain, potential adverse effects, and uncertainty about vaccine effectiveness with multiple-injection visits. Published literature reinforced the record of safety and acceptance of the recommended

  10. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: an international, multicentre, randomised, double-blind, placebo-controlled trial.

    PubMed

    Winston, Drew J; Mullane, Kathleen M; Cornely, Oliver A; Boeckh, Michael J; Brown, Janice Wes; Pergam, Steven A; Trociukas, Igoris; Žák, Pavel; Craig, Michael D; Papanicolaou, Genovefa A; Velez, Juan D; Panse, Jens; Hurtado, Kimberly; Fernsler, Doreen A; Stek, Jon E; Pang, Lei; Su, Shu-Chih; Zhao, Yanli; Chan, Ivan S F; Kaplan, Susan S; Parrino, Janie; Lee, Ingi; Popmihajlov, Zoran; Annunziato, Paula W; Arvin, Ann

    2018-05-26

    Recipients of autologous haemopoietic stem-cell transplants (auto-HSCT) have an increased risk of herpes zoster and herpes zoster-related complications. The aim of this study was to establish the efficacy and safety of an inactivated varicella zoster vaccine for the prevention of herpes zoster after auto-HSCT. In this randomised, double-blind, placebo-controlled phase 3 trial, participants were recruited from 135 medical centres (ie, stem-cell transplant centres and hospitals) in North America, South America, Europe, and Asia. Patients were eligible if they were aged 18 years or older, scheduled to receive an auto-HSCT within 60 days of enrolment, and had a history of varicella infection or were seropositive for antibodies to varicella zoster virus, or both. Exclusion criteria included a history of herpes zoster within the previous year of enrolment, and intended antiviral prophylaxis for longer than 6 months after transplantation. Participants were randomly assigned according to a central randomisation schedule generated by the trial statistician, to receive either the inactivated-virus vaccine from one of three consistency lots, a high-antigen lot, or placebo, stratified by age (<50 vs ≥50 years) and intended duration of antiviral prophylaxis after transplantation (≤3 months vs >3 to ≤6 months). Participants, investigators, trial staff, and the funder's clinical and laboratory personnel were masked to group assignment. Participants were given four doses of inactivated vaccine or placebo, with the first dose 5-60 days before auto-HSCT, and the second, third, and fourth doses at about 30, 60, and 90 days after transplantation. The primary efficacy endpoint was the incidence of herpes zoster, confirmed by PCR or adjudication by a masked clinical committee, or both, assessed in all participants randomly assigned to the vaccine consistency lot group or placebo group who received at least one dose of vaccine and had auto-HSCT. Safety was assessed in all

  11. Safety and immunogenicity of a trivalent, inactivated, mammalian cell culture-derived influenza vaccine in healthy adults, seniors, and children.

    PubMed

    Halperin, Scott A; Smith, Bruce; Mabrouk, Taoufik; Germain, Marc; Trépanier, Pierre; Hassell, Thomas; Treanor, John; Gauthier, Richard; Mills, Elaine L

    2002-01-15

    We performed randomized, double-blind, controlled trials to assess the safety and immunogenicity of an inactivated, Madin Darby Canine Kidney (MDCK)-derived cell line produced influenza vaccine in healthy adults (19-50 years), children (3-12 years) and the elderly (> or =65 years). We studied three lots of cell culture-derived vaccine and one lot of licensed egg-derived vaccine in healthy adults (n=462), two lots of cell culture-derived vaccine and one lot of egg-derived vaccine in seniors (n=269), and one lot of each vaccine in children (n=209). Adverse events were collected during the first 3 days post-immunization; serum was collected before and 1 month after immunization. Rates of local and systemic adverse reactions were similar with both vaccines. An injection site adverse event rated at least moderate severity was reported by 21.9% of children who received the egg-derived vaccine and 25.0% of those who received the cell culture-derived vaccine. In healthy adults the proportions were 12.1 and 15.3%, respectively and 6.7 and 6.3%, respectively in seniors. Systemic events of at least moderate severity were 12.4 and 12.5% in children, 19.8 and 13.6% in healthy adults, and 14.1 and 9.7% in seniors; none of these differences were statistically significant. The antibody response against all three viruses was similar between the two vaccines. From 83 to 100% of children, healthy adults and seniors achieved hemagglutination inhibition titers in excess of 40 post-immunization. We conclude that the cell culture-derived vaccine was safe and immunogenic in children, healthy adults and seniors.

  12. Immunogenicity and Protective Efficacy in Mice and Hamsters of a β-Propiolactone Inactivated Whole Virus SARS-CoV Vaccine

    PubMed Central

    Roberts, Anjeanette; Lamirande, Elaine W.; Vogel, Leatrice; Baras, Benoît; Goossens, Geneviève; Knott, Isabelle; Chen, Jun; Ward, Jerrold M.; Vassilev, Ventzislav

    2010-01-01

    Abstract The immunogenicity and efficacy of β-propiolactone (BPL) inactivated whole virion SARS-CoV (WI-SARS) vaccine was evaluated in BALB/c mice and golden Syrian hamsters. The vaccine preparation was tested with or without adjuvants. Adjuvant Systems AS01B and AS03A were selected and tested for their capacity to elicit high humoral and cellular immune responses to WI-SARS vaccine. We evaluated the effect of vaccine dose and each adjuvant on immunogenicity and efficacy in mice, and the effect of vaccine dose with or without the AS01B adjuvant on the immunogenicity and efficacy in hamsters. Efficacy was evaluated by challenge with wild-type virus at early and late time points (4 and 18 wk post-vaccination). A single dose of vaccine with or without adjuvant was poorly immunogenic in mice; a second dose resulted in a significant boost in antibody levels, even in the absence of adjuvant. The use of adjuvants resulted in higher antibody titers, with the AS01B-adjuvanted vaccine being slightly more immunogenic than the AS03A-adjuvanted vaccine. Two doses of WI-SARS with and without Adjuvant Systems were highly efficacious in mice. In hamsters, two doses of WI-SARS with and without AS01B were immunogenic, and two doses of 2 μg of WI-SARS with and without the adjuvant provided complete protection from early challenge. Although antibody titers had declined in all groups of vaccinated hamsters 18 wk after the second dose, the vaccinated hamsters were still partially protected from wild-type virus challenge. Vaccine with adjuvant provided better protection than non-adjuvanted WI-SARS vaccine at this later time point. Enhanced disease was not observed in the lungs or liver of hamsters following SARS-CoV challenge, regardless of the level of serum neutralizing antibodies. PMID:20883165

  13. Safety, immunogenicity, and lot-to-lot consistency of a quadrivalent inactivated influenza vaccine in children, adolescents, and adults: A randomized, controlled, phase III trial.

    PubMed

    Cadorna-Carlos, Josefina B; Nolan, Terry; Borja-Tabora, Charissa Fay; Santos, Jaime; Montalban, M Cecilia; de Looze, Ferdinandus J; Eizenberg, Peter; Hall, Stephen; Dupuy, Martin; Hutagalung, Yanee; Pépin, Stéphanie; Saville, Melanie

    2015-05-15

    Inactivated quadrivalent influenza vaccine (IIV4) containing two influenza A strains and one strain from each B lineage (Yamagata and Victoria) may offer broader protection against seasonal influenza than inactivated trivalent influenza vaccine (IIV3), containing a single B strain. This study examined the safety, immunogenicity, and lot consistency of an IIV4 candidate. This phase III, randomized, controlled, multicenter trial in children/adolescents (9 through 17 years) and adults (18 through 60 years) was conducted in Australia and in the Philippines in 2012. The study was double-blind for IIV4 lots and open-label for IIV4 vs IIV3. Children/adolescents were randomized 2:2:2:1 and adults 10:10:10:1 to receive one of three lots of IIV4 or licensed IIV3. Safety data were collected for up to 6 months post-vaccination. Hemagglutination inhibition and seroneutralization antibody titers were assessed pre-vaccination and 21 days post-vaccination. 1648 adults and 329 children/adolescents received IIV4, and 56 adults and 55 children/adolescents received IIV3. Solicited reactions, unsolicited adverse events, and serious adverse events were similar for IIV3 and IIV4 recipients in both age groups. Injection-site pain, headache, malaise, and myalgia were the most frequently reported solicited reactions, most of which were mild and resolved within 3 days. No vaccine-related serious adverse events or deaths were reported. Post-vaccination antibody responses, seroconversion rates, and seroprotection rates for the 3 strains common to both vaccines were comparable for IIV3 and IIV4 in both age groups. Antibody responses to IIV4 were equivalent among vaccine lots and comparable between age groups for each of the 4 strains. IIV4 met all European Medicines Agency immunogenicity criteria for adults for all 4 strains. In both age groups, IIV4 was well tolerated and caused no safety concerns, induced robust antibody responses to all 4 influenza strains, and met all EMA immunogenicity

  14. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine

    PubMed Central

    Sanders, Barbara P.; de los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G.; Song, Yutong; Cooper, Gillian; Crawt, Laura E.; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H. H. V.; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-01-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4–9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  15. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    PubMed

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  16. Introduction of inactivated poliovirus vaccine leading into the polio eradication endgame strategic plan; Hangzhou, China, 2010-2014.

    PubMed

    Liu, Yan; Wang, Jun; Liu, Shijun; Du, Jian; Wang, Liang; Gu, Wenwen; Xu, Yuyang; Zuo, Shuyan; Xu, Erping; An, Zhijie

    2017-03-01

    China's Expanded Program on Immunization (EPI) has provided 4 doses of oral poliovirus vaccine (OPV) since the 1970s. Inactivated poliovirus vaccine (IPV) became available in 2010 in Hangzhou as a private-sector, parent-chosen alternative to OPV. In 2015, WHO recommended that countries with all-OPV vaccination schedules introduce at least one dose of IPV, to mitigate risk associated with the withdrawal of type 2 OPV. We analyzed polio vaccine coverage and utilization in Hangzhou to determine patterns of IPV use and the occurrence of vaccine-associated paralytic polio (VAPP) in the various patterns identified. Children born between 2010 and 2014 and registered in Hangzhou's Immunization Information System (HZIIS) were included. VAPP cases were detected through the acute flaccid paralysis surveillance system. We used descriptive epidemiological methods to determine IPV and OPV usage patterns and VAPP occurrence. HZIIS data from 566,894 children were analyzed. Coverage levels of polio vaccine were greater than 92% for each birth cohort. Percentages of children using OPV-only, IPV-only, and IPV/OPV sequential schedules were 70.57%, 27.01% and 2.41%, respectively. IPV-only schedule utilization increased by birth cohort regardless of geographical area or whether the child was locally-born. The highest use of an all-IPV schedule (79.85%) was among urban, locally-born children in the 2014 birth cohort. Five VAPP cases were identified during the study years; all cases occurred following the first polio vaccine dose, which was always OPV for the cases. Type 2 vaccine virus was isolated from 2 VAPP cases, and type 2 and type 3 vaccine virus was isolated from one VAPP case. The incidence of VAPP in the 2010-2014 birth cohorts was 3.76 per 1million doses of OPV. Children in Hangzhou had high polio vaccination coverage. IPV-only schedule use increased by year, and was highest in urban areas among locally-born children. All cases of VAPP were associated with the first dose of OPV

  17. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    PubMed

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-06

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. FluBlok, a next generation influenza vaccine manufactured in insect cells.

    PubMed

    Cox, Manon M J; Hollister, Jason R

    2009-06-01

    FluBlok, a recombinant trivalent hemagglutinin (rHA) vaccine produced in insect cell culture using the baculovirus expression system, provides an attractive alternative to the current egg-based trivalent inactivated influenza vaccine (TIV). Its manufacturing process presents the possibility for safe and expeditious vaccine production. FluBlok contains three times more HA than TIV and does not contain egg-protein or preservatives. The high purity of the antigen enables administration at higher doses without a significant increase in side-effects in human subjects. The insect cell-baculovirus production technology is particularly suitable for influenza where annual adjustment of the vaccine is required. The baculovirus-insect expression system is generally considered a safe production system, with limited growth potential for adventitious agents. Still regulators question and challenge the safety of this novel cell substrate as FluBlok continues to advance toward product approval. This review provides an overview of cell substrate characterization for expresSF cell line used for the manufacturing of FluBlok. In addition, this review includes an update on the clinical development of FluBlok. The highly purified protein vaccine, administered at three times higher antigen content than TIV, is well tolerated and results in stronger immunogenicity, a long lasting immune response and provides cross-protection against drift influenza viruses.

  19. Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines.

    PubMed

    Khan, Tila; Heffron, Connie L; High, Kevin P; Roberts, Paul C

    2014-05-03

    Potent and safe adjuvants are needed to improve the efficacy of parenteral and mucosal vaccines. Cytokines, chemokines and growth factors have all proven to be effective immunomodulatory adjuvants when administered with a variety of antigens. We have previously evaluated the efficacy of membrane-anchored interleukins (IL) such as IL-2 and IL-4 co-presented as Cytokine-bearing Influenza Vaccines (CYT-IVACs) using a mouse model of influenza challenge. Here, we describe studies evaluating the parenteral and mucosal adjuvanticity of membrane-bound IL-12 and IL-23 CYT-IVACs in young adult mice. Mucosal immunization using IL-12 and IL-23 bearing whole influenza virus vaccine (WIV) was more effective at eliciting virus-specific nasal IgA and reducing viral lung burden following challenge compared to control WIV vaccinated animals. Both IL-12 and IL-23 bearing WIV elicited the highest anti-viral IgA levels in serum and nasal washes. This study highlights for the first time the mucosal adjuvant potential of IL-12 and IL-23 CYT-IVAC formulations in eliciting mucosal immune responses and reducing viral lung burden. The co-presentation of immunomodulators in direct context with viral antigen in whole inactivated viral vaccines may provide a means to significantly lower the dose of vaccine required for protection.

  20. Anti-influenza serum and mucosal antibody responses after administration of live attenuated or inactivated influenza vaccines to HIV-infected children.

    PubMed

    Weinberg, Adriana; Song, Lin-Ye; Walker, Robert; Allende, Maria; Fenton, Terence; Patterson-Bartlett, Julie; Nachman, Sharon; Kemble, George; Yi, Ting-Ting; Defechereux, Patricia; Wara, Diane; Read, Jennifer S; Levin, Myron

    2010-10-01

    Live-attenuated influenza vaccine (LAIV) prevents more cases of influenza in immune-competent children than the trivalent inactivated vaccine (TIV). We compared the antibody responses to LAIV or TIV in HIV-infected children. Blood and saliva obtained at enrollment, 4 and 24 weeks postimmunization from 243 HIV-infected children randomly assigned to TIV or LAIV were analyzed. Both vaccines increased the anti-influenza neutralizing antibodies at 4 and 24 weeks postimmunization. At 4 weeks postimmunization, TIV recipients had 2-fold to 3-fold higher neutralizing antibody titers than LAIV recipients, but the proportions of subjects with protective titers (≥ 1:40) were similar between treatment groups (96%-100% for influenza A and 81%-88% for influenza B). Both vaccines increased salivary homotypic IgG antibodies, but not IgA antibodies. Both vaccines also increased serum heterosubtypic antibodies. Among HIV-specific characteristics, the baseline viral load correlated best with the antibody responses to either vaccine. We used LAIV-virus shedding as a surrogate of influenza infection. Influenza-specific humoral and mucosal antibody levels were significantly higher in nonshedders than in shedders. LAIV and TIV generated homotypic and heterosubtypic humoral and mucosal antibody responses in HIV-infected children. High titers of humoral or mucosal antibodies correlated with protection against viral shedding.

  1. Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation

    PubMed Central

    Wen, Feng; Ma, Ji-Hong; Yang, Fu-Ru; Huang, Meng; Zhou, Yan-Jun; Li, Ze-Jun

    2014-01-01

    Novel reassortant H3N2 swine influenza viruses (SwIV) with the matrix gene from the 2009 H1N1 pandemic virus have been isolated in many countries as well as during outbreaks in multiple states in the United States, indicating that H3N2 SwIV might be a potential threat to public health. Since southern China is the world's largest producer of pigs, efficient vaccines should be developed to prevent pigs from acquiring H3N2 subtype SwIV infections, and thus limit the possibility of SwIV infection at agricultural fairs. In this study, a high-growth reassortant virus (GD/PR8) was generated by plasmid-based reverse genetics and tested as a candidate inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice by challenging them with another H3N2 SwIV isolate [A/Swine/Heilongjiang/1/05 (H3N2) (HLJ/05)]. Prime and booster inoculation with GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting antibodies and IgG antibodies. Complete protection of mice against H3N2 SwIV was observed, with significantly reduced lung lesion and viral loads in vaccine-inoculated mice relative to mock-vaccinated controls. These results suggest that the GD/PR8 vaccine may serve as a promising candidate for rapid intervention of H3N2 SwIV outbreaks in China. PMID:24675833

  2. Impact of age and pre-existing influenza immune responses in humans receiving split inactivated influenza vaccine on the induction of the breadth of antibodies to influenza A strains

    PubMed Central

    Nuñez, Ivette A.; Carlock, Michael A.; Allen, James D.; Owino, Simon O.; Moehling, Krissy K.; Nowalk, Patricia; Susick, Michael; Diagle, Kensington; Sweeney, Kristen; Mundle, Sophia; Vogel, Thorsten U.; Delagrave, Simon; Ramgopal, Moti; Zimmerman, Richard K.; Kleanthous, Harry

    2017-01-01

    Most humans have pre-existing immunity to influenza viruses. In this study, volunteers (ages of 18–85 years) were vaccinated with split, inactivated Fluzone™ influenza vaccine in four consecutive influenza seasons from 2013 to 2016 seasons. The impact of repeated vaccination on breadth and durability of antibodies was assessed as a result of vaccine strain changes. Total IgG anti-hemagglutinin (HA) binding antibodies and hemagglutination-inhibition (HAI) activity increased in all age groups against both influenza A HA components in the vaccine post-vaccination (day 21). However, younger subjects maintained seroprotective titers to the vaccine strains, which resulted in higher seroconversion rates in the elderly, since the HAI titers in elderly subjects were more likely to decline prior to the next season. Young subjects had significant HAI activity against historical, as well as contemporary H1 and H3 vaccine strains from the mid-1980s to present. In contrast, elderly subjects had HAI activity to H1 strains from all years, but were more likely to have HAI activity to older strains from 1918-1950s. They also had a more restricted HAI profile against H3 viruses compared to young subjects recognizing H3N2 influenza viruses from the mid-2000s to present. Vaccine recipients were then categorized by whether subjects seroconverted from a seronegative or seropositive pre-vaccination state. Regardless of age, immunological recall or ‘back-boosting’ to antigenically related strains were associated with seroconversion to the vaccine strain. Overall, both younger and older people have the ability to mount a breadth of immune responses following influenza vaccination. This report describes how imprinting exposure differs across age groups, influences antibody cross-reactivity to past hemagglutinin antigenic variants, and shapes immune responses elicited by current split inactivated influenza vaccines. Understanding how current influenza vaccines are influenced by pre

  3. Japanese encephalitis vaccines: current vaccines and future prospects.

    PubMed

    Monath, T P

    2002-01-01

    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.

  4. A genetically inactivated two-component acellular pertussis vaccine, alone or combined with tetanus and reduced-dose diphtheria vaccines, in adolescents: a phase 2/3, randomised controlled non-inferiority trial.

    PubMed

    Sricharoenchai, Sirintip; Sirivichayakul, Chukiat; Chokephaibulkit, Kulkanya; Pitisuttithum, Punnee; Dhitavat, Jittima; Pitisuthitham, Arom; Phongsamart, Wanatpreeya; Boonnak, Kobporn; Lapphra, Keswadee; Sabmee, Yupa; Wittawatmongkol, Orasri; Chinwangso, Pailinrut; Poredi, Indrajeet Kumar; Petre, Jean; Thai, Pham Hong; Viviani, Simonetta

    2018-01-01

    Increasing evidence shows that protection induced by acellular pertussis vaccines is short-lived, requiring repeated booster vaccination to control pertussis disease. We aimed to assess the safety and immunogenicity of a recombinant acellular pertussis vaccine containing genetically inactivated pertussis toxin and filamentous haemagglutinin, as either a monovalent vaccine (aP [PTgen/FHA] ) or in combination with tetanus and reduced-dose diphtheria vaccines (TdaP [PTgen/FHA] ), versus a licensed tetanus and reduced-dose diphtheria and acellular pertussis combination vaccine (Tdap). We did this phase 2/3, randomised controlled non-inferiority trial at two sites in Bangkok, Thailand. Healthy adolescents (aged 12-17 years) were randomly assigned (1:1:1), via a computer-generated randomisation list with block sizes of three, to receive one dose (0·5 mL) of aP (PTgen/FHA) , TdaP (PTgen/FHA) , or Tdap (comparator). Clinical research staff responsible for participant randomisation, vaccine preparation and administration, and accountability were aware of group allocation. However, allocation was concealed from all other site study staff, data management personnel, statisticians, laboratory staff, and study participants. The primary outcome was non-inferior immunogenicity of TdaP (PTgen/FHA) to Tdap based on seroconversion rates (a four-fold increase or more) for pertussis toxin and filamentous haemagglutinin IgG antibodies 28 days after vaccination, with a predefined 10% margin of equivalence. We did analysis by per protocol. This study is registered with the Thai Clinical Trial Registry, number TCTR20150703002. Between July 6 and Aug 20, 2015, we allocated 450 participants to receive one dose of TdaP (PTgen/FHA) (n=150), aP (PTgen/FHA) (n=150), or comparator Tdap (n=150). 28 days after vaccination, seroconversion rates for anti-pertussis toxin IgG were 96·6% (95% CI 93·8-99·5; n=144) in the TdaP (PTgen/FHA) group and 55·0% (47·1-63·0; n=82) in the comparator Tdap

  5. Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus.

    PubMed

    Langeveld, J P; Brennan, F R; Martínez-Torrecuadrada, J L; Jones, T D; Boshuizen, R S; Vela, C; Casal, J I; Kamstrup, S; Dalsgaard, K; Meloen, R H; Bendig, M M; Hamilton, W D

    2001-06-14

    A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1 was inactivated by UV treatment to remove the possibility of replication of the recombinant plant virus in a plant host after manufacture of the vaccine. We show that the inactivated CVP is able to protect dogs from a lethal challenge with CPV following parenteral immunization with the vaccine. Dogs immunized with the inactivated CPMV-PARVO1 in adjuvant displayed no clinical signs of disease and shedding of CPV in faeces was limited following CPV challenge. All immunized dogs elicited high titres of peptide-specific antibody, which neutralized CPV in vitro. Levels of protection, virus shedding and VP2-specific antibody were comparable to those seen in dogs immunized with the same VP2- peptide coupled to keyhole limpet hemocyanin (KLH). Since plant virus-derived vaccines have the potential for cost-effective manufacture and are not known to replicate in mammalian cells, they represent a viable alternative to current replicating vaccine vectors for development of both human and veterinary vaccines.

  6. The Duration of Intestinal Immunity After an Inactivated Poliovirus Vaccine Booster Dose in Children Immunized With Oral Vaccine: A Randomized Controlled Trial

    PubMed Central

    John, Jacob; Giri, Sidhartha; Karthikeyan, Arun S; Lata, Dipti; Jeyapaul, Shalini; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Mani, Mohanraj; Hanusha, Janardhanan; Raman, Uma; Moses, Prabhakar D; Abraham, Asha; Bahl, Sunil; Bandyopadhyay, Ananda S; Ahmad, Mohammad; Grassly, Nicholas C; Kang, Gagandeep

    2017-01-01

    Abstract Background In 2014, 2 studies showed that inactivated poliovirus vaccine (IPV) boosts intestinal immunity in children previously immunized with oral poliovirus vaccine (OPV). As a result, IPV was introduced in mass campaigns to help achieve polio eradication. Methods We conducted an open-label, randomized, controlled trial to assess the duration of the boost in intestinal immunity following a dose of IPV given to OPV-immunized children. Nine hundred healthy children in Vellore, India, aged 1–4 years were randomized (1:1:1) to receive IPV at 5 months (arm A), at enrollment (arm B), or no vaccine (arm C). The primary outcome was poliovirus shedding in stool 7 days after bivalent OPV challenge at 11 months. Results For children in arms A, B, and C, 284 (94.7%), 297 (99.0%), and 296 (98.7%), respectively, were eligible for primary per-protocol analysis. Poliovirus shedding 7 days after challenge was less prevalent in arms A and B compared with C (24.6%, 25.6%, and 36.4%, respectively; risk ratio 0.68 [95% confidence interval: 0.53–0.87] for A versus C, and 0.70 [0.55–0.90] for B versus C). Conclusions Protection against poliovirus remained elevated 6 and 11 months after an IPV boost, although at a lower level than reported at 1 month. Clinical Trials Registration CTRI/2014/09/004979. PMID:28003352

  7. Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania: Preclinical evaluation of split virion inactivated H5N1 vaccine with adjuvant.

    PubMed

    Stavaru, Crina; Onu, Adrian; Lupulescu, Emilia; Tucureanu, Catalin; Rasid, Orhan; Vlase, Ene; Coman, Cristin; Caras, Iuliana; Ghiorghisor, Alina; Berbecila, Laurentiu; Tofan, Vlad; Bowen, Richard A; Marlenee, Nicole; Hartwig, Airn; Bielefeldt-Ohmann, Helle; Baldwin, Susan L; Van Hoeven, Neal; Vedvick, Thomas S; Huynh, Chuong; O'Hara, Michael K; Noah, Diana L; Fox, Christopher B

    2016-04-02

    Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.

  8. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen

    PubMed Central

    Thim, Hanna L.; Villoing, Stéphane; McLoughlin, Marian; Christie, Karen Elina; Grove, Søren; Frost, Petter; Jørgensen, Jorunn B.

    2014-01-01

    Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing receptor (PRR

  9. Licensure of a Diphtheria and Tetanus Toxoids and Acellular Pertussis Adsorbed and Inactivated Poliovirus Vaccine and Guidance for Use as a Booster Dose.

    PubMed

    Liang, Jennifer; Wallace, Greg; Mootrey, Gina

    2015-09-04

    On March 24, 2015, the Food and Drug Administration licensed an additional combined diphtheria and tetanus toxoids and acellular pertussis adsorbed (DTaP) and inactivated poliovirus (IPV) vaccine (DTaP-IPV) (Quadracel, Sanofi Pasteur Inc.). Quadracel is the second DTaP-IPV vaccine to be licensed for use among children aged 4 through 6 years in the United States (1). Quadracel is approved for administration as a fifth dose in the DTaP series and as a fourth or fifth dose in the IPV series in children aged 4 through 6 years who have received 4 doses of DTaP-IPV-Hib (Pentacel, Sanofi Pasteur) and/or DTaP (Daptacel, Sanofi Pasteur) vaccine (2,3). This report summarizes the indications for Quadracel vaccine and provides guidance from the Advisory Committee on Immunization Practices (ACIP) for its use.

  10. Comparison of immunogenicity between inactivated and live attenuated hepatitis A vaccines: a single-blind, randomized, parallel-group clinical trial among children in Xinjiang Uighur Autonomous Region, China.

    PubMed

    Liu, Xue-En; Wushouer, Fuerhati; Gou, Aili; Kuerban, Mahemuti; Li, Xinlan; Sun, Yubo; Zhang, Jiamin; Liu, Yan; Li, Jie; Zhuang, Hui

    2013-07-01

    To compare immunogenicity among an inactivated hepatitis A vaccine (Healive(®)) with one-dose and two-dose regimens, and three kinds of live attenuated vaccines in children. A single-blind, randomized, parallel-group clinical trial was conducted among healthy children aged 1.5-6 y in Xinjiang Uighur Autonomous Region, China. Subjects were randomly assigned to 5 groups. Two groups were administered one-dose or two-dose inactivated vaccine and the remaining groups were immunized with one of three kinds of attenuated vaccines, respectively. Serum samples were collected at 6- and 12-mo follow-ups. Anti-HAV IgG was measured with a microparticle enzyme immunoassay. No significant differences were observed in seroconversion rates (seroprotection rates) among the five groups at 6 or 12 mo (p>0.05). The geometric mean concentration (GMC) of anti-HAV IgG was significantly higher in the two-dose Healive(®) group than in the one-dose Healive(®) group and the attenuated vaccine groups at 12 mo (932.4 vs. 112.7, 135.8, 203.3, 212.8 mIU/ml, respectively, p<0.05). In the one-dose Healive(®) group, the GMC was significantly lower than that in the attenuated vaccine B and C groups at 6 mo (152.6 vs. 212, 204 mIU/ml, p<0.05) and at 12 mo (112.7 vs. 203.3, 212.8, p<0.05), but was similar to the attenuated vaccine A group at 12 mo (112.7 vs. 135.8 mIU/ml, p>0.05). The GMCs were significantly higher in the 1-2 y of age group than in the 3-6 y of age group for all types of vaccines except the attenuated vaccine C (p<0.05) at 12 mo. A higher GMC of anti-HAV IgG was induced in the two-dose Healive(®) than in the one-dose and the attenuated vaccines at 12 mo. The attenuated vaccine B or C produced higher GMCs than the one-dose Healive(®) at 6-12 mo after vaccination.

  11. [Anti-influenza vaccination in animals].

    PubMed

    Bublot, M

    2009-01-01

    Until recently, Influenza was considered as a veterinary problem in avian, swine and horse only. New influenza strains able to infect and cause a disease in dogs and cats emerged these last six years. The most widely used influenza veterinary vaccines are the inactivated adjuvanted vaccines which are based on whole or split virus. New technologies have allowed the development of new generation vaccines including modified-live and vector vaccines. Modified-live influenza vaccines are available for horses only but they are in development in other species. Vector vaccines are already in use in chickens (replicative fowlpox vector) and in horses (non-replicative canarypox vector). These vaccines induce a rapid cellular and humoral immunity. Experimental studies have also shown that these vector vaccines are protective in other domestic species. These vector vaccines are compatible with the "DIVA" strategy which consists in differentiating infected from vaccinated animals and which allows disease eradication. The successive use of vector and inactivated vaccines (heterologous "prime-boost") induces a superior protective immunity in domestic poultry and constitutes a promising strategy for the control of H5N1 infection.

  12. Uptake and Effectiveness of a Trivalent Inactivated Influenza Vaccine in Children in Urban and Rural Kenya, 2010 to 2012.

    PubMed

    Katz, Mark A; Lebo, Emmaculate; Emukule, Gideon O; Otieno, Nancy; Caselton, Deborah L; Bigogo, Godfrey; Njuguna, Henry; Muthoka, Philip M; Waiboci, Lilian W; Widdowson, Marc-Alain; Xu, Xiyan; Njenga, Moses K; Mott, Joshua A; Breiman, Robert F

    2016-03-01

    In Africa, recent surveillance has demonstrated a high burden of influenza, but influenza vaccine is rarely used. In Kenya, a country with a tropical climate, influenza has been shown to circulate year-round, like in other tropical countries. During 3 months in 2010 and 2011 and 2 months in 2012, the Kenya Medical Research Institute/Centers for Disease Control and Prevention-Kenya offered free injectable trivalent inactivated influenza vaccine to children 6 months to 10 years old in 2 resource-poor communities in Kenya-Kibera and Lwak (total population ~50,000). We conducted a case-control study to evaluate vaccine effectiveness (VE) in preventing laboratory-confirmed influenza associated with influenza-like illness and acute lower respiratory illness. Of the approximately 18,000 eligible children, 41%, 48% and 51% received at least 1 vaccine in 2010, 2011 and 2012, respectively; 30%, 36% and 38% were fully vaccinated. VE among fully vaccinated children was 57% [95% confidence interval (CI): 29% to 74%] during a 6-month follow-up period, 39% (95% CI: 17% to 56%) during a 9-month follow-up period and 48% (95% CI: 32% to 61%) during a 12-month follow-up period. For the 12-month follow-up period, VE was statistically significant in children <5 years and in children 5 to <10 years old (50% and 46%, respectively). In Kenya, parents of nearly half of the eligible children <10 years old chose to get their children vaccinated with a free influenza vaccine. During a 12-month follow-up period, the vaccine was moderately effective in preventing medically attended influenza-associated respiratory illness.

  13. Oral and Inactivated Poliovirus Vaccines in the Newborn: A review

    PubMed Central

    Mateen, Farrah J.; Shinohara, Russell T.; Sutter, Roland W.

    2015-01-01

    Background Oral poliovirus vaccine (OPV) remains the vaccine-of-choice for routine immunization and supplemental immunization activities (SIAs) to eradicate poliomyelitis globally. Recent data from India suggested lowerthanexpected immunogenicity of an OPV birth dose, prompting a review of the immunogenicity of OPV or inactivated poliovirus vaccine (IPV) when administered at birth. Methods We evaluated the seroconversion and reported adverse events among infants given a single birth dose (given ≤7 days of life) of OPV or IPV through a systematic review of published articles and conference abstracts from 1959-2011 in any language found on PubMed, Google Scholar, or reference lists of selected articles. Results 25 articles from 13 countries published between1959 and 2011 documented seroconversion rates in newborns following an OPV dose given within the first seven days of life. There were 10 studies that measured seroconversion rates between 4 and 8 weeks of a single birth dose of TOPV, using an umbilical cord blood draw at the time of birth to establish baseline antibody levels. The percentage of newborns who seroconverted at 8 weeks range 6-42% for poliovirus type 1, 2-63% for type 2, and 1-35% for type 3). For mOPV type 1, seroconversion ranged from 10-76%; mOPV type 3, the range was 12-58%; and for the one study reporting bOPV, it was 20% for type 1 and 7% for type 3. There were four studies of IPV in newborns with a seroconversion rate of 8-100% for serotype 1, 15-100% for serotype 2, and 15-94% for serotype 3, measured at 4-6 weeks of life. No serious adverse events related to newborn OPV or IPV dosing were reported, including no cases of acute flaccid paralysis. Conclusions There is great variability of the immunogenicity of a birth dose of OPV for reasons largely unknown. Our review confirms the utility of a birth dose of OPV, particularly in countries where early induction of polio immunity is imperative. IPV has higher seroconversion rates in newborns and

  14. Enhanced immune response to inactivated porcine circovirus type 2 (PCV2) vaccine by conjugation of chitosan oligosaccharides.

    PubMed

    Zhang, Guiqiang; Jia, Peiyuan; Cheng, Gong; Jiao, Siming; Ren, Lishi; Ji, Shaoyang; Hu, Tao; Liu, Hongtao; Du, Yuguang

    2017-06-15

    This study aimed to investigate the effect of chitosan oligosaccharide (COS) conjugation on the immunogenicity of porcine circovirus type-2 (PCV2) vaccine. Two conjugates (PCV2-COS-1 and PCV2-COS-2) were designed by covalent conjugation of an inactivated PCV2 vaccine with COS, and administered to C57BL/6 mice three times at two-week intervals. The results indicate that, as compared to PCV2 alone group, the PCV2-COS conjugates remarkably enhanced both humoral and cellular immunity against PCV2 by promoting T lymphocyte proliferation and initiating a mixed Th1/Th2 response, including the elevated production of PCV-2 specific antibodies and up-regulated secretion of inflammatory cytokines. Noticeably, the immunization with PCV2-COS-1 conjugate displayed similar or even better immune-stimulating effects than that by PCV2/ISA206 (a commercialized adjuvant) and showed no infection or pathological signs at injection sites of the mice. Presumably, the covalent linkage of PCV2 vaccine to COS might be a viable strategy to increase the efficacy against PCV2-associated diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Environmental surveillance of poliovirus in sewage water around the introduction period for inactivated polio vaccine in Japan.

    PubMed

    Nakamura, Tomofumi; Hamasaki, Mitsuhiro; Yoshitomi, Hideaki; Ishibashi, Tetsuya; Yoshiyama, Chiharu; Maeda, Eriko; Sera, Nobuyuki; Yoshida, Hiromu

    2015-03-01

    Environmental virus surveillance was conducted at two independent sewage plants from urban and rural areas in the northern prefecture of the Kyushu district, Japan, to trace polioviruses (PVs) within communities. Consequently, 83 PVs were isolated over a 34-month period from April 2010 to January 2013. The frequency of PV isolation at the urban plant was 1.5 times higher than that at the rural plant. Molecular sequence analysis of the viral VP1 gene identified all three serotypes among the PV isolates, with the most prevalent serotype being type 2 (46%). Nearly all poliovirus isolates exhibited more than one nucleotide mutation from the Sabin vaccine strains. During this study, inactivated poliovirus vaccine (IPV) was introduced for routine immunization on 1 September 2012, replacing the live oral poliovirus vaccine (OPV). Interestingly, the frequency of PV isolation from sewage waters declined before OPV cessation at both sites. Our study highlights the importance of environmental surveillance for the detection of the excretion of PVs from an OPV-immunized population in a highly sensitive manner, during the OPV-to-IPV transition period. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Seasonal influenza vaccines.

    PubMed

    Fiore, Anthony E; Bridges, Carolyn B; Cox, Nancy J

    2009-01-01

    Influenza vaccines are the mainstay of efforts to reduce the substantial health burden from seasonal influenza. Inactivated influenza vaccines have been available since the 1940s and are administered via intramuscular injection. Inactivated vaccines can be given to anyone six months of age or older. Live attenuated, cold-adapted influenza vaccines (LAIV) were developed in the 1960s but were not licensed in the United States until 2003, and are administered via nasal spray. Both vaccines are trivalent preparations grown in eggs and do not contain adjuvants. LAIV is licensed for use in the United States for healthy nonpregnant persons 2-49 years of age.Influenza vaccination induces antibodies primarily against the major surface glycoproteins hemagglutinin (HA) and neuraminidase (NA); antibodies directed against the HA are most important for protection against illness. The immune response peaks at 2-4 weeks after one dose in primed individuals. In previously unvaccinated children <9 years of age, two doses of influenza vaccine are recommended, as some children in this age group have limited or no prior infections from circulating types and subtypes of seasonal influenza. These children require both an initial priming dose and a subsequent booster dose of vaccine to mount a protective antibody response.The most common adverse events associated with inactivated vaccines are sore arm and redness at the injection site; systemic symptoms such as fever or malaise are less commonly reported. Guillian-Barré Syndrome (GBS) was identified among approximately 1 per 100,000 recipients of the 1976 swine influenza vaccine. The risk of influenza vaccine-associated GBS from seasonal influenza vaccine is thought to be at most approximately 1-2 cases per 1 million vaccinees, based on a few studies that have found an association; other studies have found no association.The most common adverse events associated with LAIV are nasal congestion, headache, myalgias or fever. Studies of the

  17. Possible Impact of Yearly Childhood Vaccination With Trivalent Inactivated Influenza Vaccine (TIV) on the Immune Response to the Pandemic Strain H1N1.

    PubMed

    Amer, Ahdi; Fischer, Howard; Li, Xiaoming; Asmar, Basim

    2016-03-01

    Annual vaccination of children against seasonal influenza with trivalent inactivated influenza vaccine (TIV) has shown to be beneficial. However, this yearly practice may have unintended effect. Studies have shown that infection with wild type influenza A viruses can stimulate protective heterotypic immunity against unrelated or new influenza subtypes. We hypothesized that a consequence of yearly TIV vaccination is lack of induction of heterotypic immunity against the recent H1N1 pandemic. This was a retrospective case-control study. We reviewed the medical records of polymerase chain reaction-confirmed cases of 2009 H1N1 influenza infection in children 6 months to 18 years and a matched control group seen during the pandemic. We identified 353 polymerase chain reaction-confirmed H1N1 cases and 396 matching control subjects. Among the H1N1 group, 202/353 (57%) cases received a total of 477 doses of seasonal TIV compared with 218/396 (55%) in the control group who received a total of 435 doses. Seasonal TIV uptake was significantly higher in the H1N1 group 477/548 (87%) than in the control group, 435/532 (81%) (P = .017). Seasonal TIV uptake was significantly higher in H1N1-infected group. The finding suggests that the practice of yearly vaccination with TIV might have negatively affected the immune response against the novel pandemic H1N1 strain. Given the rarity of pandemic novel influenza viruses, and the high predictability of seasonal influenza occurrence, the practice of yearly influenza vaccination should be continued. However, the use of live attenuated intranasal vaccine, as opposed to TIV, may allow for the desirable development of a vigorous heterotypic immune response against future pandemics. © The Author(s) 2015.

  18. Evaluation of the use of various rat strains for immunogenic potency tests of Sabin-derived inactivated polio vaccines.

    PubMed

    Someya, Yuichi; Ami, Yasushi; Takai-Todaka, Reiko; Fujimoto, Akira; Haga, Kei; Murakami, Kosuke; Fujii, Yoshiki; Shirato, Haruko; Oka, Tomoichiro; Shimoike, Takashi; Katayama, Kazuhiko; Wakita, Takaji

    2018-03-01

    Slc:Wistar rats have been the only strain used in Japan for purpose of evaluating a national reference vaccine for the Sabin-derived inactivated polio vaccine (sIPV) and the immunogenicity of sIPV-containing products. However, following the discovery that the Slc:Wistar strain was genetically related to the Fischer 344 strain, other "real" Wistar strains, such as Crlj:WI, that are available worldwide were tested in terms of their usefulness in evaluating the immunogenicity of the past and current lots of a national reference vaccine. The response of the Crlj:WI rats against the serotype 1 of sIPV was comparable to that of the Slc:Wistar rats, while the Crlj:WI rats exhibited a higher level of response against the serotypes 2 and 3. The immunogenic potency units of a national reference vaccine determined using the Slc:Wistar rats were reproduced on tests using the Crlj:WI rats. These results indicate that a titer of the neutralizing antibody obtained in response to a given dose of sIPV cannot be directly compared between these two rat strains, but that, more importantly, the potency units are almost equivalent for the two rat strains. Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  19. Vial usage, device dead space, vaccine wastage, and dose accuracy of intradermal delivery devices for inactivated poliovirus vaccine (IPV).

    PubMed

    Jarrahian, Courtney; Rein-Weston, Annie; Saxon, Gene; Creelman, Ben; Kachmarik, Greg; Anand, Abhijeet; Zehrung, Darin

    2017-03-27

    Intradermal delivery of a fractional dose of inactivated poliovirus vaccine (IPV) offers potential benefits compared to intramuscular (IM) delivery, including possible cost reductions and easing of IPV supply shortages. Objectives of this study were to assess intradermal delivery devices for dead space, wastage generated by the filling process, dose accuracy, and total number of doses that can be delivered per vial. Devices tested included syringes with staked (fixed) needles (autodisable syringes and syringes used with intradermal adapters), a luer-slip needle and syringe, a mini-needle syringe, a hollow microneedle device, and disposable-syringe jet injectors with their associated filling adapters. Each device was used to withdraw 0.1-mL fractional doses from single-dose IM glass vials which were then ejected into a beaker. Both vial and device were weighed before and after filling and again after expulsion of liquid to record change in volume at each stage of the process. Data were used to calculate the number of doses that could potentially be obtained from multidose vials. Results show wide variability in dead space, dose accuracy, overall wastage, and total number of doses that can be obtained per vial among intradermal delivery devices. Syringes with staked needles had relatively low dead space and low overall wastage, and could achieve a greater number of doses per vial compared to syringes with a detachable luer-slip needle. Of the disposable-syringe jet injectors tested, one was comparable to syringes with staked needles. If intradermal delivery of IPV is introduced, selection of an intradermal delivery device can have a substantial impact on vaccine wasted during administration, and thus on the required quantity of vaccine that needs to be purchased. An ideal intradermal delivery device should be not only safe, reliable, accurate, and acceptable to users and vaccine recipients, but should also have low dead space, high dose accuracy, and low overall

  20. Phase 3 Trial of a Sabin Strain-Based Inactivated Poliovirus Vaccine.

    PubMed

    Liao, Guoyang; Li, Rongcheng; Li, Changgui; Sun, Mingbo; Jiang, Shude; Li, Yanping; Mo, Zhaojun; Xia, Jielai; Xie, Zhongping; Che, Yanchun; Yang, Jingsi; Yin, Zhifang; Wang, Jianfeng; Chu, Jiayou; Cai, Wei; Zhou, Jian; Wang, Junzhi; Li, Qihan

    2016-12-01

     The development of a Sabin strain-based inactivated poliovirus vaccine (Sabin-IPV) is imperative to protecting against vaccine-associated paralytic poliomyelitis in developing countries.  In this double-blinded, parallel-group, noninferiority trial, eligible infants aged 60-90 days were randomly assigned in a ratio of 1:1 to receive either 3 doses of Sabin-IPV or Salk strain-based IPV (Salk-IPV) at 30-day intervals and a booster at the age of 18 months. Immunogenicity and safety were assessed on the basis of a protocol.  Of 1438 infants, 1200 eligible infants were recruited and received either Sabin-IPV or Salk-IPV. From the Sabin-IPV and Salk-IPV groups, 570 and 564 infants, respectively, completed the primary immunization and formed the per-protocol population. The seroconversion rates of the participants who received Sabin-IPV were 100%, 94.9%, and 99.0% (types I, II, and III, respectively), and those of the participants who received Salk-IPV were 94.7%, 91.3%, and 97.9% 1 month after the completion of primary immunization. An anamnestic response for poliovirus types I, II, and III was elicited by a booster in both groups. Except in the case of fever, other adverse events were similar between the 2 groups.  The immune response induced by Sabin-IPV was not inferior to that established with Salk-IPV. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Composition and potency characterization of Mycobacterium avium subsp. paratuberculosis purified protein derivatives

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium avium subsp. paratuberculosis (MAP) purified protein derivatives (PPDs) are immunologic reagents prepared from cultured filtrates of the type strain ATCC 19698. Traditional production consists of floating culture incubation at 37oC, organism inactivation by autoclaving, coarse filtrat...

  2. Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders.

    PubMed

    Sarkar-Tyson, Mitali; Smither, Sophie J; Harding, S V; Atkins, Timothy P; Titball, Richard W

    2009-07-16

    Burkholderia pseudomallei and Burkholderia mallei are gram-negative bacilli that are the causative agents of melioidosis and glanders, respectively. Both humans and animals are susceptible to both diseases. There is currently no vaccine available for the prevention of disease. We report the protective efficacy of heat-inactivated Burkholderia thailandensis, B. mallei or B. pseudomallei cells as vaccines against murine melioidosis and glanders. Immunisation with heat-inactivated B. pseudomallei cells provided the highest levels of protection against either melioidosis or glanders. These studies indicate the longer term potential for heat-inactivated bacteria to be developed as vaccines against melioidosis and glanders.

  3. Comparison of reproductive protection against bovine viral diarrhea virus provided by multivalent viral vaccines containing inactivated fractions of bovine viral diarrhea virus 1 and 2

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare reproductive protection in cattle against the impacts of bovine viral diarrhea virus (BVDV) provided by three different multivalent vaccines containing inactivated BVDV. Beef heifers and cows (n=122), seronegative and virus negative for BVDV, were randomly ...

  4. Combined live and inactivated poliovirus vaccine to control poliomyelitis in a developing country--five years after.

    PubMed

    Lasch, E E; Abed, Y; Marcus, O; Gerichter, C B; Melnick, J L

    1986-01-01

    The Gaza Strip is an area in transition which in the 1960's had a high prevalence of malnutrition and infectious diseases. The infant mortality was approximatively 140 per 1000 live births. Pediatric Services were almost non-existant. Trivalent oral poliovaccine (TOPV) has been used since 1967. Coverage however did not exceed 70%. From 1973 a network of comprehensive Child Health Centers was spread throughout the area, a set of laws was passed which made vaccination obligatory and the community became heavily involved in health education. These measures resulted in a vaccination coverage, from fixed centers, of over 90% of the susceptible infant population. Though infant mortality decreased rapidly, poliomyelitis was less affected and the mean annual incidence of the paralytic disease until 1977 continued to be 10 per 100,000 inhabitants. Two outbreaks caused by poliovirus Type 1 were registered in 1974 and 1976 with an incidence of 18 per 100,000 inhabitants. In these outbreaks 34% and 50% of the affected children, respectively, had received 3-4 doses of (TOPV). A new vaccination schedule was implemented in 1978 combining TOPV and inactivated polio vaccine in the form of an injectable quadruple vaccine. In the first three years following this change the annual incidence of the paralytic disease dropped from 10 to 2.2 per 100,000 inhabitants. In the following 5 years (1981-1985) only 4 cases of paralytic poliomyelitis were discovered, an annual incidence of 0.16 per 100,000 inhabitants. A serosurvey was done in 1980 on 117 immunized children age 6 months to three years.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  6. Increased efficacy of inactivated vaccine candidates prepared with Salmonella enterica serovar Typhimurium strains of predominant genotypes in ducks.

    PubMed

    Youn, S Y; Kwon, Y K; Song, C S; Lee, H J; Jeong, O M; Choi, B K; Jung, S C; Kang, M S

    2016-08-01

    Salmonella enterica serovar Typhimurium has been a major causative agent of food-borne human disease, mainly due to consumption of contaminated food animal products. In particular, ducks serve as a reservoir of serovar Typhimurium, and are one of the common sources of human infection. To prevent infection of ducks, and therefore minimize human infection, it is critical to control the persistent epidemic strains in ducks. Here, we analyzed the genetic diversity and virulence of serovar Typhimurium isolates from ducks in Korea to identify the predominant strains that might be used as efficient vaccine candidates for ducks. Among the isolates, 2 representative isolates (ST26 and ST76) of predominant genotypes were selected as vaccine strains on the basis of genotypic analysis by pulsed-field gel electrophoresis and DNA microarrays. Two-week-old ducks were then injected intramuscularly with inactivated vaccine candidates prepared using ST26 or ST76 (10(8) cfu/0.5 mL/duck or 10(9) cfu/0.5 mL/duck), and oral challenge with a highly virulent serovar Typhimurium strain (10(9) cfu/0.5 mL/duck) was carried out 2 wk later. Shedding of the challenge strain was significantly decreased in group 2 after vaccination. The antibody levels by enzyme-linked immunosorbent assay in all vaccinated groups were enhanced significantly (P < 0.05) compared to the unvaccinated control group. Overall, vaccination with ST26 or ST76 reduced bacterial shedding and colonization in internal organs, and induced elevated antibody response. In particular, serovar Typhimurium ST26 (10(8) cfu/0.5 mL/duck) was the most effective vaccine candidate, which can provide efficient protection against serovar Typhimurium in ducks with higher effectiveness compared to a commercial vaccine currently used worldwide. © 2016 Poultry Science Association Inc.

  7. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses.

    PubMed

    Pardi, Norbert; Hogan, Michael J; Naradikian, Martin S; Parkhouse, Kaela; Cain, Derek W; Jones, Letitia; Moody, M Anthony; Verkerke, Hans P; Myles, Arpita; Willis, Elinor; LaBranche, Celia C; Montefiori, David C; Lobby, Jenna L; Saunders, Kevin O; Liao, Hua-Xin; Korber, Bette T; Sutherland, Laura L; Scearce, Richard M; Hraber, Peter T; Tombácz, István; Muramatsu, Hiromi; Ni, Houping; Balikov, Daniel A; Li, Charles; Mui, Barbara L; Tam, Ying K; Krammer, Florian; Karikó, Katalin; Polacino, Patricia; Eisenlohr, Laurence C; Madden, Thomas D; Hope, Michael J; Lewis, Mark G; Lee, Kelly K; Hu, Shiu-Lok; Hensley, Scott E; Cancro, Michael P; Haynes, Barton F; Weissman, Drew

    2018-06-04

    T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4 + T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses. © 2018 Pardi et al.

  8. Introduction of Inactivated Polio Vaccine, Withdrawal of Type 2 Oral Polio Vaccine, and Routine Immunization Strengthening in the Eastern Mediterranean Region.

    PubMed

    Fahmy, Kamal; Hampton, Lee M; Langar, Houda; Patel, Manish; Mir, Tahir; Soloman, Chandrasegarar; Hasman, Andreas; Yusuf, Nasir; Teleb, Nadia

    2017-07-01

    The Global Polio Eradication Initiative has reduced the global incidence of polio by 99% and the number of countries with endemic polio from 125 to 3 countries. The Polio Eradication and Endgame Strategic Plan 2013-2018 (Endgame Plan) was developed to end polio disease. Key elements of the endgame plan include strengthening immunization systems using polio assets, introducing inactivated polio vaccine (IPV), and replacing trivalent oral polio vaccine with bivalent oral polio vaccine ("the switch"). Although coverage in the Eastern Mediterranean Region (EMR) with the third dose of a vaccine containing diphtheria, tetanus, and pertussis antigens (DTP3) was ≥90% in 14 countries in 2015, DTP3 coverage in EMR dropped from 86% in 2010 to 80% in 2015 due to civil disorder in multiple countries. To strengthen their immunization systems, Pakistan, Afghanistan, and Somalia developed draft plans to integrate Polio Eradication Initiative assets, staff, structure, and activities with their Expanded Programmes on Immunization, particularly in high-risk districts and regions. Between 2014 and 2016, 11 EMR countries introduced IPV in their routine immunization program, including all of the countries at highest risk for polio transmission (Afghanistan, Pakistan, Somalia, and Yemen). As a result, by the end of 2016 all EMR countries were using IPV except Egypt, where introduction of IPV was delayed by a global shortage. The switch was successfully implemented in EMR due to the motivation, engagement, and cooperation of immunization staff and decision makers across all national levels. Moreover, the switch succeeded because of the ability of even the immunization systems operating under hardship conditions of conflict to absorb the switch activities. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  9. Efficacy of a single-dose regimen of inactivated whole-cell oral cholera vaccine: results from 2 years of follow-up of a randomised trial.

    PubMed

    Qadri, Firdausi; Ali, Mohammad; Lynch, Julia; Chowdhury, Fahima; Khan, Ashraful Islam; Wierzba, Thomas F; Excler, Jean-Louis; Saha, Amit; Islam, Md Taufiqul; Begum, Yasmin A; Bhuiyan, Taufiqur R; Khanam, Farhana; Chowdhury, Mohiul I; Khan, Iqbal Ansary; Kabir, Alamgir; Riaz, Baizid Khoorshid; Akter, Afroza; Khan, Arifuzzaman; Asaduzzaman, Muhammad; Kim, Deok Ryun; Siddik, Ashraf U; Saha, Nirod C; Cravioto, Alejandro; Singh, Ajit P; Clemens, John D

    2018-06-01

    A single-dose regimen of inactivated whole-cell oral cholera vaccine (OCV) is attractive because it reduces logistical challenges for vaccination and could enable more people to be vaccinated. Previously, we reported the efficacy of a single dose of an OCV vaccine during the 6 months following dosing. Herein, we report the results of 2 years of follow-up. In this placebo-controlled, double-blind trial done in Dhaka, Bangladesh, individuals aged 1 year or older with no history of receipt of OCV were randomly assigned to receive a single dose of inactivated OCV or oral placebo. The primary endpoint was a confirmed episode of non-bloody diarrhoea for which the onset was at least 7 days after dosing and a faecal culture was positive for Vibrio cholerae O1 or O139. Passive surveillance for diarrhoea was done in 13 hospitals or major clinics located in or near the study area for 2 years after the last administered dose. We assessed the protective efficacy of the OCV against culture-confirmed cholera occurring 7-730 days after dosing with both crude and multivariable per-protocol analyses. This trial is registered at ClinicalTrials.gov, number NCT02027207. Between Jan 10, 2014, and Feb 4, 2014, 205 513 people were randomly assigned to receive either vaccine or placebo, of whom 204 700 (102 552 vaccine recipients and 102 148 placebo recipients) were included in the per-protocol analysis. 287 first episodes of cholera (109 among vaccine recipients and 178 among placebo recipients) were detected during the 2-year follow-up; 138 of these episodes (46 in vaccine recipients and 92 in placebo recipients) were associated with severe dehydration. The overall incidence rates of initial cholera episodes were 0·22 (95% CI 0·18 to 0·27) per 100 000 person-days in vaccine recipients versus 0·36 (0·31 to 0·42) per 100 000 person-days in placebo recipients (adjusted protective efficacy 39%, 95% CI 23 to 52). The overall incidence of severe cholera was 0·09 (0·07 to 0

  10. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle.

    PubMed

    Sharma, Vijay K; Schaut, Robert G; Loving, Crystal L

    2018-06-01

    Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaughter. Vaccination is an important strategy to reduce fecal shedding of O157 in cattle. In this study, we evaluated the immunogenicity and efficacy of an inactivated vaccine strain of O157 formulated with an adjuvant. This vaccine strain was deleted of the hha gene enabling high level expression of the locus of enterocyte effacement (LEE) encoded proteins required for O157 colonization in cattle. The inactivated vaccine strain emulsified with the adjuvant or suspended in the phosphate-buffered saline (PBS) was injected in the neck muscles of two groups of weaned calves followed by a booster three weeks later with the corresponding formulation. Animals in groups 3 and 4 were injected similarly with the adjuvant and PBS, respectively. All animals were orally inoculated three weeks post-booster vaccination with a live culture of O157. The animals vaccinated with the adjuvanted vaccine showed higher serum antibody titers to the vaccine strain and shed O157 for a shorter duration and at lower numbers compared to the animals vaccinated with the non-adjuvanted vaccine, adjuvant-only, or PBS. Western blotting of the vaccine strain lysates showed higher immunoreactivity of serum IgG in vaccinated animals to several O157-specific proteins and lipopolysaccharides (LPS). The vaccination induced IgG showed specificity to LEE-encoded proteins and outer membrane LPS as LEE and waaL deletion mutants, unable to produce LEE proteins and synthesize high molecular weight LPS, respectively, yielded significantly lower antibody titers compared to the parent vaccine strain. The positive reactivity of the immune serum was also observed for purified LEE-encoded proteins EspA and EspB. In

  11. Parapoxvirus papillomatosis in the muskoxen (Ovibos moschatus): genetical differences between the virus causing new outbreak in a vaccinated herd, the vaccine virus and a local orf virus.

    PubMed

    Moens, U; Wold, I; Mathiesen, S D; Jørgensen, T; Sørensen, D; Traavik, T

    1990-01-01

    Since 1981 a domesticated muskoxen herd had been successfully vaccinated against papillomatosis with homogenated, glutaraldehyde inactivated papilloma tissue. In the fall of 1985 a new clinical outbreak of disease occurred, affecting previously infected as well as vaccinated animals. The purification of parapox virions directly from papilloma tissue and orf scabs collected in a local sheep farm was followed by restriction endonuclease analysis of viral DNA. The morphological identity of purified virus was controlled by electron microscopy. Comparison of restriction endonuclease digests (10 different enzymes) by gel electrophoresis demonstrated that the muskoxen parapoxvirus from the new outbreak 1985 differed considerably from the 2 other isolates (muskoxen 1981 and local orf). The latter viruses demonstrated a high degree of homology, but differences were evident after digestion with the enzyme EcoRI. During metrizamide gradient purification minor bands containing morphologically intact virions were isolated in addition to the major fractions. The restriction enzyme digests indicated that the virions of the minor bands differed from those in the major bands.

  12. Fiber knob domain lacking the shaft sequence but fused to a coiled coil is a candidate subunit vaccine against egg-drop syndrome.

    PubMed

    Harakuni, Tetsuya; Andoh, Kiyohiko; Sakamoto, Ryu-Ichi; Tamaki, Yukihiro; Miyata, Takeshi; Uefuji, Hirotaka; Yamazaki, Ken-Ichi; Arakawa, Takeshi

    2016-06-08

    Egg-drop syndrome (EDS) virus is an avian adenovirus that causes a sudden drop in egg production and in the quality of the eggs when it infects chickens, leading to substantial economic losses in the poultry industry. Inactivated EDS vaccines produced in embryonated duck eggs or cell culture systems are available for the prophylaxis of EDS. However, recombinant subunit vaccines that are efficacious and inexpensive are a desirable alternative. In this study, we engineered chimeric fusion proteins in which the trimeric fiber knob domain lacking the triple β-spiral motif in the fiber shaft region was genetically fused to trimeric coiled coils, such as those of the engineered form of the GCN4 leucine zipper peptide or chicken cartilage matrix protein (CMP). The fusion proteins were expressed predominantly as soluble trimeric proteins in Escherichia coli at levels of 15-80mg/L of bacterial culture. The single immunization of chickens with the purified fusion proteins, at a dose equivalent to 10μg of the knob moiety, elicited serum antibodies with high hemagglutination inhibition (HI) activities, similar to those induced by an inactivated EDS vaccine. A dose-response analysis indicated that a single immunization with as little as 1μg of the knob moiety of the CMP-knob fusion protein was as effective as the inactivated vaccine in inducing antibodies with HI activity. The immunization of laying hens had no apparent adverse effects on egg production and effectively prevented clinical symptoms of EDS when the chickens were challenged with pathogenic EDS virus. This study demonstrates that the knob domain lacking the shaft sequence but fused to a trimeric coiled coil is a promising candidate subunit vaccine for the prophylaxis of EDS in chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Duration of Intestinal Immunity After an Inactivated Poliovirus Vaccine Booster Dose in Children Immunized With Oral Vaccine: A Randomized Controlled Trial.

    PubMed

    John, Jacob; Giri, Sidhartha; Karthikeyan, Arun S; Lata, Dipti; Jeyapaul, Shalini; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Mani, Mohanraj; Hanusha, Janardhanan; Raman, Uma; Moses, Prabhakar D; Abraham, Asha; Bahl, Sunil; Bandyopadhyay, Ananda S; Ahmad, Mohammad; Grassly, Nicholas C; Kang, Gagandeep

    2017-02-15

    In 2014, 2 studies showed that inactivated poliovirus vaccine (IPV) boosts intestinal immunity in children previously immunized with oral poliovirus vaccine (OPV). As a result, IPV was introduced in mass campaigns to help achieve polio eradication. We conducted an open-label, randomized, controlled trial to assess the duration of the boost in intestinal immunity following a dose of IPV given to OPV-immunized children. Nine hundred healthy children in Vellore, India, aged 1-4 years were randomized (1:1:1) to receive IPV at 5 months (arm A), at enrollment (arm B), or no vaccine (arm C). The primary outcome was poliovirus shedding in stool 7 days after bivalent OPV challenge at 11 months. For children in arms A, B, and C, 284 (94.7%), 297 (99.0%), and 296 (98.7%), respectively, were eligible for primary per-protocol analysis. Poliovirus shedding 7 days after challenge was less prevalent in arms A and B compared with C (24.6%, 25.6%, and 36.4%, respectively; risk ratio 0.68 [95% confidence interval: 0.53-0.87] for A versus C, and 0.70 [0.55-0.90] for B versus C). Protection against poliovirus remained elevated 6 and 11 months after an IPV boost, although at a lower level than reported at 1 month. CTRI/2014/09/004979. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  14. Thermal Inactivation of Bacillus anthracis Spores Using Rapid Resistive Heating

    DTIC Science & Technology

    2016-03-24

    thermal inactivation research. However, the research conducted to support this thesis utilizes the B.a. Sterne strain which is used in livestock vaccines...methodology conducted for this research including hard surface recovery, thermal inactivation of Bacillus anthracis spores, and the rapid resistive heating...to 500°C range but again, many of the thermal inactivation studies were conducted in the 350 to 2000°C range. Sample plots will be discussed in

  15. Randomized comparative study of the serum antihemagglutinin and antineuraminidase antibody responses to six licensed trivalent influenza vaccines.

    PubMed

    Couch, Robert B; Atmar, Robert L; Keitel, Wendy A; Quarles, John M; Wells, Janet; Arden, Nancy; Niño, Diane

    2012-12-17

    Serum antibody to the hemagglutinin (HA) surface protein of influenza virus induced by influenza vaccination is a correlate of protection against influenza. The neuraminidase (NA) protein is also on the surface of the virus; antibody to it has been shown to impair virus release from infected cells and to reduce the intensity of influenza infections in animal models and in humans challenged with infectious virus. Recently we have shown that NA inhibiting antibody can independently contribute to immunity to naturally-occurring influenza immunity in the presence of antibody to the HA. The present study was conducted to evaluate induction of antibody to the NA and the HA by commercially available influenza vaccines. Healthy young adults were vaccinated with one of five commercially available trivalent inactivated vaccines or live influenza vaccine. Frequencies of serum antibody and fold geometric mean titer (GMT) increases four weeks later were measured to each of the three vaccine viruses (A/H1N1, A/H3N2, B) in hemagglutination-inhibition (HAI) and neutralization (neut) assays. Frequency and fold GMT increase in neuraminidase-inhibition (NI) antibody titers were measured to the influenza A viruses (A/H1N1, A/H3N2). No significant reactogenicity occurred among the vaccinated subjects. The Fluvirin inactivated vaccine induced more anti-HA antibody responses and a higher fold GMT increase than the other inactivated vaccines but there were no major differences in response frequencies or fold GMT increase among the inactivated vaccines. Both the frequency of antibody increase and fold GMT increase were significantly lower for live vaccine than for any inactivated vaccine in HAI and neut assays for all three vaccine viruses. Afluria inactivated vaccine induced more N1 antibody and Fluarix induced more N2 antibody than the other vaccines but all inactivated vaccines induced serum NI antibody. The live vaccine failed to elicit any NI responses for the N2 NA of A/H3N2 virus

  16. Characterization and inhibition of a cholecystokinin-inactivating serine peptidase.

    PubMed

    Rose, C; Vargas, F; Facchinetti, P; Bourgeat, P; Bambal, R B; Bishop, P B; Chan, S M; Moore, A N; Ganellin, C R; Schwartz, J C

    1996-04-04

    A cholecystokinin (CCK)-inactivating peptidase was purified and identified as a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10), a cytosolic subtilisin-like peptidase of previously unknown functions. The peptidase was found in neurons responding to cholecystokinin, as well as in non-neuronal cells. Butabindide, a potent and specific inhibitor, was designed and shown to protect endogenous cholecystokinin from inactivation and to display pro-satiating effects mediated by the CCKA receptor.

  17. CpG oligodeoxynucleotides are a potent adjuvant for an inactivated polio vaccine produced from Sabin strains of poliovirus.

    PubMed

    Yang, Chunting; Shi, Huiying; Zhou, Jun; Liang, Yanwen; Xu, Honglin

    2009-11-05

    Poliovirus transmission is controlled globally through world-wide use of a live attenuated oral polio vaccine (OPV). However, the imminence of global poliovirus eradication calls for a switch to the inactivated polio vaccine (IPV). Given the limited manufacturing capacity and high cost of IPV, this switch is unlikely in most developing and undeveloped countries. Adjuvantation is an effective strategy for antigen sparing. In this study, we evaluated the adjuvanticity of CpG oligodeoxynucleotides (CpG-ODN) for an experimental IPV produced from Sabin strains of poliovirus. Our results showed that CpG-ODN, alone or in combination with alum, can significantly enhance both the humoral and cellular immune responses to IPV in mice, and, consequently, the antigen dose could be reduced substantially. Therefore, our study suggests that the global use of IPV could be facilitated by using CpG-ODN or other feasible adjuvants.

  18. Effects of dietary L-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine.

    PubMed

    Chen, Shuai; Liu, Shuping; Zhang, Fengmei; Ren, Wenkai; Li, Nengzhang; Yin, Jie; Duan, Jielin; Peng, Yuanyi; Liu, Gang; Yin, Yulong; Wu, Guoyao

    2014-10-01

    Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.

  19. Inactivated simian immunodeficiency virus vaccine failed to protect rhesus macaques from intravenous or genital mucosal infection but delayed disease in intravenously exposed animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutjipto, S.; Pedersen, N.C.; Miller, C.J.

    1990-05-01

    Eight rhesus macaques were immunized four times over a period of 8 months with a psoralen-UV-light-inactivated whole simian immunodeficiency virus vaccine adjuvanted with threonyl muramyl dipeptide. Eight unvaccinated control animals received adjuvant alone. Only the vaccinated animals made antibodies before challenge exposure to the viral core and envelope as determined by Western blotting (immunoblotting) and virus-neutralizing antibodies. Ten days after the final immunization, one-half of the vaccinated and nonvaccinated monkeys were challenged exposed intravenously (i.v.) and one-half were challenge exposed via the genital mucosa with virulent simian immunodeficiency virus. All of the nonvaccinated control monkeys became persistently infected. In spitemore » of preexisting neutralizing antibodies and an anamnestic antibody response, all of the immunized monkeys also became persistently infected. However, there was evidence that the clinical course in immunized i.v. infected animals was delayed. All four mock-vaccinated i.v. challenge-exposed animals died with disease from 3 to 9 months postchallenge. In contrast, only one of four vaccinated i.v. challenge-exposed monkeys had died by 11 months postchallenge.« less

  20. Switch from oral to inactivated poliovirus vaccine in Yogyakarta Province, Indonesia: summary of coverage, immunity, and environmental surveillance.

    PubMed

    Wahjuhono, Gendro; Revolusiana; Widhiastuti, Dyah; Sundoro, Julitasari; Mardani, Tri; Ratih, Woro Umi; Sutomo, Retno; Safitri, Ida; Sampurno, Ondri Dwi; Rana, Bardan; Roivainen, Merja; Kahn, Anna-Lea; Mach, Ondrej; Pallansch, Mark A; Sutter, Roland W

    2014-11-01

    Inactivated poliovirus vaccine (IPV) is rarely used in tropical developing countries. To generate additional scientific information, especially on the possible emergence of vaccine-derived polioviruses (VDPVs) in an IPV-only environment, we initiated an IPV introduction project in Yogyakarta, an Indonesian province. In this report, we present the coverage, immunity, and VDPV surveillance results. In Yogyakarta, we established environmental surveillance starting in 2004; and conducted routine immunization coverage and seroprevalence surveys before and after a September 2007 switch from oral poliovirus vaccine (OPV) to IPV, using standard coverage and serosurvey methods. Rates and types of polioviruses found in sewage samples were analyzed, and all poliovirus isolates after the switch were sequenced. Vaccination coverage (>95%) and immunity (approximately 100%) did not change substantially before and after the IPV switch. No VDPVs were detected. Before the switch, 58% of environmental samples contained Sabin poliovirus; starting 6 weeks after the switch, Sabin polioviruses were rarely isolated, and if they were, genetic sequencing suggested recent introductions. This project demonstrated that under almost ideal conditions (good hygiene, maintenance of universally high IPV coverage, and corresponding high immunity against polioviruses), no emergence and circulation of VDPV could be detected in a tropical developing country setting. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Specificities of Human CD4+ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction

    PubMed Central

    Schwaiger, Julia; Aberle, Judith H.; Stiasny, Karin; Knapp, Bernhard; Schreiner, Wolfgang; Fae, Ingrid; Fischer, Gottfried; Scheinost, Ondrej; Chmelik, Vaclav

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4+ T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4+ T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4+ T cell epitopes. IMPORTANCE Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and

  2. International reference preparations of typhoid vaccine

    PubMed Central

    Melikova, E. N.; Lesnjak, S. V.

    1967-01-01

    International collaborative laboratory studies on the International Reference Preparations of Typhoid Vaccine have so far failed to provide data on which international units for these vaccines can be based. Further assays carried out using the active mouse protection test, with immunization by the subcutaneous, intraperitoneal or intravenous route, confirmed the findings by some workers that the International Reference Preparation of Typhoid Vaccine (Acetone-Inactivated) (vaccine K) was more effective than the International Reference Preparation of Typhoid Vaccine (Heat-Phenol-Inactivated) (vaccine L), and indicated that intraperitoneal immunization was the most promising method. Vaccine K, together with the material extracted by the acetone in the preparation of the vaccine, had a significantly lower effectiveness (at the 5% probability level) only when intraperitoneal immunization was used. The reasons for the differences found between the various vaccines and routes of immunization are discussed at length. It is suggested that challenge with a strain of Salmonella moscow instead of the strain of Salm. typhi used until now gives a true infection and forms the basis of a reliable method for the potency assay of typhoid vaccines. PMID:5301738

  3. Assessment of an optimized manufacturing process for inactivated quadrivalent influenza vaccine: a phase III, randomized, double-blind, safety and immunogenicity study in children and adults.

    PubMed

    Claeys, Carine; Drame, Mamadou; García-Sicilia, José; Zaman, Khalequ; Carmona, Alfonso; Tran, Phu My; Miranda, Mariano; Martinón-Torres, Federico; Thollot, Franck; Horn, Michael; Schwarz, Tino F; Behre, Ulrich; Merino, José M; Sadowska-Krawczenko, Iwona; Szymański, Henryk; Schu, Peter; Neumeier, Elisabeth; Li, Ping; Jain, Varsha K; Innis, Bruce L

    2018-04-18

    GSK has modified the licensed monovalent bulk manufacturing process for its split-virion inactivated quadrivalent influenza vaccine (IIV4) to harmonize the process among different strains, resulting in an increased number of finished vaccine doses, while compensating for the change from inactivated trivalent influenza vaccine (IIV3) to IIV4. To confirm the manufacturing changes do not alter the profile of the vaccine, a clinical trial was conducted to compare IIV4 made by the currently licensed process with a vaccine made by the new (investigational) process (IIV4-I). The main objectives were to compare the reactogenicity and safety of IIV4-I versus IIV4 in all age groups, and to demonstrate the non-inferiority of the hemagglutination-inhibition (HI) antibody responses based on the geometric mean titer ratio of IIV4-I versus IIV4 in children. The Phase III, randomized, double-blind, multinational study included three cohorts: adults (18-49 years; N = 120), children (3-17 years; N = 821), and infants (6-35 months; N = 940). Eligible subjects in each cohort were randomized 1:1 to receive IIV4-I or IIV4. Both vaccines contained 15 μg of hemagglutinin antigen for each of the four seasonal virus strains. Adults and vaccine-primed children received one dose of vaccine, and vaccine-unprimed children received two doses of vaccine 28 days apart. All children aged ≥9 years were considered to be vaccine-primed and received one dose of vaccine. The primary immunogenicity objective of the study was met in demonstrating immunogenic non-inferiority of IIV4-I versus IIV4 in children. The IIV4-I was immunogenic against all four vaccine strains in each age cohort. The reactogenicity and safety profile of IIV4-I was similar to IIV4 in each age cohort, and there was no increase in the relative risk of fever (≥38 °C) with IIV4-I versus IIV4 within the 7-day post-vaccination period in infants (1.06; 95% Confidence Interval: 0.75, 1.50; p = 0.786). The study

  4. [The role of Sabin inactivated poliovirus vaccine in the final phase of global polio eradication].

    PubMed

    Dong, S Z; Zhu, W B

    2016-12-06

    Global polio eradication has entered its final phase, but still faces enormous challenges. The Polio Eradication and Endgame Strategic Plan (2013-2018) set the target for making the world polio-free by 2018. Meanwhile, the World Heath Organization Global Action Plan (GAP Ⅲ) recommended that polioviruses be stored under strict conditions after eradication of the wild poliovirus. At least one dose of inactivated poliovirus vaccine (IPV) would be required for each newborn baby in the world to ensure successful completion of the final strategy and GAP Ⅲ. The Sabin IPV has a high production safety and low production cost, compared with the wild-virus IPV and, therefore, can play an important role in the final stage of global polio eradication.

  5. Reactogenicity and immunogenicity of inactivated poliovirus vaccine produced from Sabin strains: a phase I Trial in healthy adults in Cuba.

    PubMed

    Resik, Sonia; Tejeda, Alina; Fonseca, Magilé; Alemañi, Nilda; Diaz, Manuel; Martinez, Yenisleidys; Garcia, Gloria; Okayasu, Hiromasa; Burton, Anthony; Bakker, Wilfried A M; Verdijk, Pauline; Sutter, Roland W

    2014-09-22

    To ensure that developing countries have the option to produce inactivated poliovirus vaccine (IPV), the Global Polio Eradication Initiative has promoted the development of an IPV using Sabin poliovirus strains (Sabin IPV). This trial assessed the reactogenicity and immunogenicity of Sabin IPV and adjuvanted Sabin IPV in healthy adults in Cuba. This is a randomized, controlled phase I trial, enrolling 60 healthy (previously vaccinated) male human volunteers, aged 19-23 years to receive one dose of either Sabin IPV (20:32:64 DU/dose), adjuvanted Sabin IPV (10:16:32 DU/dose), or conventional Salk IPV (40:8:32 DU/dose). The primary endpoint for reactogenicity relied on monitoring of adverse events. The secondary endpoint measured boosting immune responses (i.e. seroconversion or 4-fold rise) of poliovirus antibody, assessed by neutralization assays. Sixty subjects fulfilled the study requirements. No serious adverse events reported were attributed to trial interventions during the 6-month follow-up period. Twenty-eight days after vaccination, boosting immune responses against poliovirus types 1-3 were between 90% and 100% in all vaccination groups. There was a more than 6-fold increase in median antibody titers between pre- and post-vaccination titers in all vaccination groups. Both Sabin IPV and adjuvanted Sabin IPV were well tolerated and immunogenic against all poliovirus serotypes. This result suggests that the aluminum adjuvant may allow a 50% (or higher) dose reduction. Copyright © 2014. Published by Elsevier Ltd.

  6. A booster dose of an inactivated enterovirus 71 vaccine in chinese young children: a randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Shenyu, Wang; Jingxin, Li; Zhenglun, Liang; Xiuling, Li; Qunying, Mao; Fanyue, Meng; Hua, Wang; Yuntao, Zhang; Fan, Gao; Qinghua, Chen; Yuemei, Hu; Xin, Yao; Huijie, Guo; Fengcai, Zhu

    2014-10-01

    A significant waning of enterovirus 71 (EV71) antibody titer after priming immunization with an inactivated EV71 vaccine implied the potential need for a booster dose. In this randomized, double-blind, placebo-controlled clinical trial, we recruited participants who had received at least 1 dose of priming EV71 vaccine in an early phase 2 clinical trial that was conducted in healthy infants and children aged 6-35 months. All participants were grouped according to the priming EV71 vaccine formulations (160 U, 320 U, and 640 U with adjuvant and 640 U without adjuvant) and then randomly assigned (ratio, 2:1) to receive a booster dose of vaccine or placebo within each formulation group. The primary end point was the geometric mean titer 28 days after the booster dose. A total of 773 participants were enrolled. Significantly greater immunological responses were induced by the booster shot of all 4 formulations of EV71 vaccine, compared with that induced by placebo (P < .0001). The frequencies of adverse reactions were similar between vaccine and placebo groups within each formulation group. A booster dose of EV71 vaccine 1 year after the priming EV71 immunization shows excellent immunogenicity and good safety profile. Clinical Trials Registration: NCT01734408. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Immunologic evaluation of 10 different adjuvants for use in vaccines for chickens against highly pathogenic avian influenza virus.

    PubMed

    Lone, Nazir Ahmed; Spackman, Erica; Kapczynski, Darrell

    2017-06-08

    Avian influenza viruses (AIV) are a threat to poultry production worldwide. Vaccination is utilized as a component of control programs for both high pathogenicity (HP) and low pathogenicity (LP) AIV. Over 95% of all AIV vaccine used in poultry are inactivated, adjuvanted products. To identify the best formulations for chickens, vaccines were prepared with beta-propiolactone (BPL) inactivated A/British Columbia/314514-1/2004 H7N3 LP AIV using ten commercially available or experimental adjuvants. Each vaccine formulation was evaluated for immunogenicity in chickens. Challenge studies with an antigenically homologous strain of HPAIV were conducted to compare protection against mortality and measure reductions in virus levels in oral swabs. The four best adjuvants from the studies with BPL inactivated antigen were selected and tested identically, but with vaccines prepared from formalin inactivated virus. Mineral and vegetable oil based adjuvants generally induced the highest antibody titers with 100% seroconversion by 3weeks post vaccination. Chitosan induced positive antibody titers in 100% of the chickens, but the titers were significantly lower than those of most of the oil based adjuvants. Antibody levels from calcium phosphate and alginate adjuvanted groups were similar to those of non-adjuvanted virus. All groups that received adjuvanted vaccines induced similar levels of protection against mortality (0-20%) except the groups vaccinated with calcium phosphate adjuvanted vaccines, where mortality was similar (70%) to groups that received non-adjuvanted inactivated virus or no vaccine (60-100% mortality). Virus shedding in oral swabs was variable among the treatment groups. Formalin inactivated vaccine induced similar antibody titers and protection against challenge compared to BPL inactivated vaccine groups. These studies support the use of oil adjuvanted vaccines for use in the poultry industry for control for AIV. Published by Elsevier Ltd.

  8. Comparative Efficacy of Feline Leukemia Virus (FeLV) Inactivated Whole-Virus Vaccine and Canarypox Virus-Vectored Vaccine during Virulent FeLV Challenge and Immunosuppression.

    PubMed

    Patel, M; Carritt, K; Lane, J; Jayappa, H; Stahl, M; Bourgeois, M

    2015-07-01

    Four vaccines for feline leukemia virus (FeLV) are available in the United States. This study's purpose was to compare the efficacy of Nobivac feline 2-FeLV (an inactivated, adjuvanted whole-virus vaccine) and PureVax recombinant FeLV (a live, canarypox virus-vectored vaccine) following FeLV challenge. Cats were vaccinated at 9 and 12 weeks with Nobivac feline 2-FeLV (group A, n = 11) or PureVax recombinant FeLV (group B, n = 10). Group C (n = 11) comprised unvaccinated controls. At 3 months postvaccination, cats were immunosuppressed and challenged with FeLV-A/61E. The outcomes measured were persistent antigenemia at 12 weeks postchallenge (PC) and proviral DNA and viral RNA at 3 to 9 weeks PC. Persistent antigenemia was observed in 0 of 11 cats in group A, 5 of 10 cats in group B, and 10 of 11 cats in group C. Group A was significantly protected compared to those in groups B (P < 0.013) and C (P < 0.0001). No difference was found between groups B and C (P > 0.063). The preventable fraction was 100% for group A and 45% for group B. At 9 weeks PC, proviral DNA and viral RNA were detected 1 of 11 cats in group A, 6 of 10 cats in group B, and 9 of 11 cats in group C. Nucleic acid loads were significantly lower in group A than in group C (P < 0.01). Group A had significantly lower proviral DNA loads than group B at weeks 6 to 9 (P < 0.02). The viral RNA loads were significantly lower in group A than in group B at weeks 7 to 9 (P < 0.01). The results demonstrate that Nobivac feline 2-FeLV-vaccinated cats were fully protected against persistent antigenemia and had significantly smaller amounts of proviral DNA and plasma viral RNA loads than PureVax recombinant FeLV-vaccinated cats and unvaccinated controls. Copyright © 2015, Patel et al.

  9. Granuloma formation and suspected neuropathic pain in a domestic pigeon (Columba livia) secondary to an oil-based, inactivated Newcastle disease vaccine administered for protection against pigeon paramyxovirus-1.

    PubMed

    Cowan, M L; Monks, D J; Raidal, S R

    2014-05-01

    A domestic pigeon developed a sterile granuloma following vaccination with an oil-adjuvant, inactivated La Sota strain of Newcastle disease. The aim of vaccination was to provide protection against pigeon paramyxovirus-1 (PPMV-1), a disease previously considered exotic to Australia. Granuloma formation is considered a rare complication of vaccination against PPMV-1 in pigeons. Clinical signs consistent with neuropathic pain became apparent during the extensive management of the granuloma, which included surgical removal of foreign material, control of the pain and inflammation and protection against antimicrobial contamination. PPMV-1 is now considered endemic in Australia and protecting pigeons with vaccination is important. Until a product is registered for use, vaccination remains off-label and the risk of adverse reaction, including sterile granuloma, must be considered. © 2014 Australian Veterinary Association.

  10. Concomitant administration of diphtheria, tetanus, acellular pertussis and inactivated poliovirus vaccine derived from Sabin strains (DTaP-sIPV) with pentavalent rotavirus vaccine in Japanese infants.

    PubMed

    Tanaka, Yoshiyuki; Yokokawa, Ruriko; Rong, Han Shi; Kishino, Hiroyuki; Stek, Jon E; Nelson, Margaret; Lawrence, Jody

    2017-06-03

    Rotavirus is the leading cause of severe acute gastroenteritis in infants and young children. Most children are infected with rotavirus, and the health and economic burdens of rotavirus gastroenteritis on healthcare systems and families are considerable. In 2012 pentavalent rotavirus vaccine (RV5) and diphtheria, tetanus, acellular pertussis and inactivated poliovirus vaccine derived from Sabin strains (DTaP-sIPV) were licensed in Japan. We examined the immunogenicity and safety of DTaP-sIPV when administrated concomitantly with RV5 in Japanese infants. A total of 192 infants 6 to 11 weeks of age randomized to Group 1 (N = 96) received DTaP-sIPV and RV5 concomitantly, and Group 2 (N = 96) received DTaP-sIPV and RV5 separately. Antibody titer to diphtheria toxin, pertussis antigens (PT and FHA), tetanus toxin, and poliovirus type 1, 2, and 3 were measured at 4 to 6 weeks following 3-doses of DTaP-sIPV. Seroprotection rates for all components of DTaP-sIPV were 100% in both groups, and the geometric mean titers for DTaP-sIPV in Group 1 were comparable to Group 2. Incidence of systemic AEs (including diarrhea, vomiting, fever, and nasopharyngitis) were lower in Group 1 than in Group 2. All vaccine-related AEs were mild or moderate in intensity. There were no vaccine-related serious AEs, no deaths, and no cases of intussusception during the study. Concomitant administration of DTaP-sIPV and RV5 induced satisfactory immune responses to DTaP-sIPV and acceptable safety profile. The administration of DTaP-sIPV given concomitantly with RV5 is expected to facilitate compliance with the vaccination schedule and improve vaccine coverage in Japanese infants.

  11. Stimulation of mucosal immune response following oral administration of enterotoxigenic Escherichia coli fimbriae (CFA/I) entrapped in liposomes in conjunction with inactivated whole-cell Vibrio cholerae vaccine.

    PubMed

    Dima, V F; Ionescu, M D; Palade, R; Balotescu, C; Becheanu, G; Dima, S V

    2001-01-01

    In this study, we have searched for an effective mucosal vaccine. An oral enterotoxigenic E. coli vaccine containing colonization factor antigen (CFA/I) associated with inactivated whole-cell V. cholerae vaccine (WCV) has been tested for safety and immunogenicity in animals. Five groups of animals were used. The results showed the following: (a) vaccine containing CFA/I antigen entrapped in liposomes and associated with WCV (batch C) had increased titers of specific antibodies to CFA/I antigen in 15 to 18 (83.3%) animals; (b) specific Peyer's patches (PP), lymph nodes (LN) and spleen (SPL) lymphocytes proliferation was detected following in vitro restimulation with CFA/I antigen or WCV. This response gradually increased to the highest value by the 35th postimmunization day. Moreover, lower PP, LN and spleen (SPL) proliferation was observed in rabbits receiving soluble CFA/I antigen (S-CFA/I) or free liposomes (F-L) alone; (c) adhesion of E. coli H10407 strain labelled with 3H-leucine in immunized and control animals revealed the following local effects: (i) protection of rabbit intestinal mucosa against virulent E. coli cells; (ii) inhibition of adhesion of ETEC bacteria to intestinal mucosa and (iii) significantly faster release of E. coli H 10407 strain labelled with 3H-leucine from the intestinal tract of immunized animals. The histopathological and electron microscope findings confirmed the above results. The experimental results point out an efficient protection against infection with E. coli strains (ETEC), after mucosal vaccination with CFA/I antigen entrapped in liposomes associated with inactivated whole-cell Vibrio cholerae as immunological adjuvant.

  12. Safety and immunogenicity of a fully liquid vaccine containing five-component pertussis-diphtheria-tetanus-inactivated poliomyelitis-Haemophilus influenzae type b conjugate vaccines administered at two, four, six and 18 months of age

    PubMed Central

    Gold, Ronald; Barreto, Luis; Ferro, Santiago; Thippawong, John; Guasparini, Roland; Meekison, William; Russell, Margaret; Mills, Elaine; Harrison, Dana; Lavigne, Pierre

    2007-01-01

    OBJECTIVE The safety, immunogenicity and lot consistency of a fully liquid, five-component acellular pertussis combination vaccine, comprised of diphteria, tetanus and acellular pertussis, inactivated polio vaccine, Haemophilus influenzae type b (DTaP-IPV-Hib [Pediacel, sanofi pasteur, Canada]) were assessed and compared with that of Hib vaccine reconstituted with the five-component acellular pertussis combination vaccine (DTaP-IPV//Hib, Pentacel [sanofi pasteur, Canada]). METHODS Infants were recruited at vaccine study centres in Montreal, Quebec; Simon Fraser Health Region, British Columbia, and southern Alberta after the protocol had been approved by the relevant institutional ethics committees. Written informed consent was obtained from the parents or guardians of all subjects. At two months of age, the infants were randomly assigned to receive one of three consecutive production lots of DTaP-IPV-Hib by intramuscular injection. Reactions to vaccinations were assessed by parental observation and through telephone interviews conducted by study nurses. Blood samples were obtained at two, six, seven, 18 and 19 months of age for measurement of antibodies to vaccine antigens. RESULTS: Most injection site and systemic reactions were mild or moderate, and of brief duration. All infants were protected against tetanus, diphtheria and all three polio serotypes after both primary and booster vaccinations. Antibody responses to pertussis antigens were similar to those observed in Swedish infants, in whom the five-component vaccine was shown to be 85% effective. Proportions of infants with antipolyribosylribitol phosphate antibody of 0.15 μg/mL or greater and 1.0 μg/mL or greater, were 97.9% and 88.9%, respectively, following primary immunization, and 100% and 99% following booster vaccination. Safety and immunogenicity results with both reconstituted and fully liquid combination vaccines were comparable. CONCLUSIONS The fully liquid combination vaccine was comparable in

  13. Serological response of guinea pigs to oily and aqueous inactivated vaccines containing a Brazilian isolate of the Bovine Viral Diarrhea Virus (BVDV).

    PubMed

    Jordão, Ricardo Spacagna; Ribeiro, Cláudia Pestana; Pituco, Edviges Maristela; Okuda, Líria Hiromi; Del Fava, Cláudia; Stefano, Eliana de; Filho, Moacir Marchiori; Mehnert, Dolores Ursula

    2011-10-01

    Bovine Viral Diarrhea Virus (BVDV) is widespread in cattle in Brazil and research shows its large antigenic variability. Available vaccines are produced with virus strains isolated in other countries and may not be effective. In this study, inactivated vaccines containing the Brazilian BVDV-Ib IBSP11 isolate were developed and tested on 6 groups of 10 guinea pigs (Cavia porcellus). Animals in groups A and C received an aqueous vaccine (aluminum hydroxide); B and D groups received an oily vaccine (Montanide ISA50); Group E positive-control animals were given an imported commercial vaccine with BVDV-Ia Singer; Group F animals were sham vaccinated (negative control). Groups A, B and E received two doses, and Groups C and D, three, every 21 days. Twelve blood samples were taken, at 21-day intervals over 231 days, and evaluated for antibody titer through virus-neutralization (VN), using a homologous strain (IBSP11), and a heterologous strain (BVDV-Ia NADL). Most animals, 42 days following the first dose, seroconverted to both strains and, after the second dose, there was a significant increase of titers in all groups. The oily formulation induced greater response after the third administration. This increase was not observed with the aqueous vaccines, regardless of the virus used in the VN. Antibody decline was more rapid in animals that received aqueous vaccines. The results showed the importance of studying the influence of endemic strains of commercial vaccines, to improve the efficacy of BVD vaccination. Use of the endemic strain in vaccine formulation presented promising results, as well as the use of guinea pigs as a laboratory model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. [Effect of 2-phenoxyethanol on potency of Sabin inactivated poliomyelitis vaccine and its safety].

    PubMed

    Bian, Chuan-xiu; Jiang, Shu-de; Yang, Jian-yong; Sun, Ming-bo; Xie, Ming-xue; Zhang, Xin-wen; Liao, Guo-yang; Li, Wei-dong

    2007-03-01

    To investigate the effect of 2-phenoxyethanol on potency of Sabin inactivated poliomyelitis vaccine (IPV). Sabin IPV samples containing 5 mg or 7 mg 2-phenoxyethanol each dosage respectively were placed separately at 4 degrees C, 37 degrees C for 2 days and 7 days. D-antigen contents were tested with ELISA method. Then neutralizing antibodies in mice and guinea pigs were detected. The safety experiment was performed according to unusual toxicity test of China requirement for biological product. After addition of 2-phenoxyethanol, the I, II, and III D-antigen contents of Sabin IPV did not change. The antibody levels in mice and guinea pigs were not different between experimental group and control group. Animals were safe during observation period. 2-Phenoxyethanol had no effect on potency and safety of Sabin IPV. It can be used as antiseptic for Sabin IPV.

  15. Validation of γ-radiation and ultraviolet as a new inactivators for foot and mouth disease virus in comparison with the traditional methods

    PubMed Central

    Mahdy, Safy El din; Hassanin, Amr Ismail; Gamal El-Din, Wael Mossad; Ibrahim, Ehab El-Sayed; Fakhry, Hiam Mohamed

    2015-01-01

    Aim: The present work deals with different methods for foot and mouth disease virus (FMDV) inactivation for serotypes O/pan Asia, A/Iran05, and SAT-2/2012 by heat, gamma radiation, and ultraviolet (UV) in comparison with the traditional methods and their effects on the antigenicity of viruses for production of inactivated vaccines. Materials and Methods: FMDV types O/pan Asia, A/Iran05, and SAT-2/2012 were propagated in baby hamster kidney 21 (BHK21) and titrated then divided into five parts; the first part inactivated with heat, the second part inactivated with gamma radiation, the third part inactivated with UV light, the fourth part inactivated with binary ethylamine, and the last part inactivated with combination of binary ethylamine and formaldehyde (BEI+FA). Evaluate the method of inactivation via inoculation in BHK21, inoculation in suckling baby mice and complement fixation test then formulate vaccine using different methods of inactivation then applying the quality control tests to evaluate each formulated vaccine. Results: The effect of heat, gamma radiation, and UV on the ability of replication of FMDV “O/pan Asia, A/Iran05, and SAT-2/2012” was determined through BHK cell line passage. Each of the 9 virus aliquots titer 108 TCID50 (3 for each strain) were exposed to 37, 57, and 77°C for 15, 30, and 45 min. Similarly, another 15 aliquots (5 for each strain) contain 1 mm depth of the exposed samples in petri-dish was exposed to UV light (252.7 nm wavelength: One foot distance) for 15, 30, 45, 60, and 65 min. Different doses of gamma radiation (10, 20, 25, 30, 35, 40, 45, 50, 55, and 60 KGy) were applied in a dose rate 0.551 Gy/s for each strain and repeated 6 times for each dose. FMDV (O/pan Asia, A/Iran05, and SAT-2/2012) were inactivated when exposed to heat ≥57°C for 15 min. The UV inactivation of FMDV (O/pan Asia and SAT-2) was obtained within 60 min and 65 min for type A/Iran05. The ideal dose for inactivation of FMDV (O/pan Asia, A/Iran05

  16. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs.

    PubMed

    Thomas, Milton; Wang, Zhao; Sreenivasan, Chithra C; Hause, Ben M; Gourapura J Renukaradhya; Li, Feng; Francis, David H; Kaushik, Radhey S; Khatri, Mahesh

    2015-01-15

    Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Cost-effectiveness of high-dose versus standard-dose inactivated influenza vaccine in adults aged 65 years and older: an economic evaluation of data from a randomised controlled trial.

    PubMed

    Chit, Ayman; Becker, Debbie L; DiazGranados, Carlos A; Maschio, Michael; Yau, Eddy; Drummond, Michael

    2015-12-01

    Adults aged 65 years and older account for most seasonal influenza-related hospital admissions and deaths. Findings from the randomised controlled FIM12 study showed that high-dose inactivated influenza vaccine is more effective than standard-dose vaccine for prevention of laboratory-confirmed influenza in this age group. We aimed to assess the economic impact of high-dose versus standard-dose influenza vaccine in participants in the FIM12 study population. The FIM12 study was a head-to-head randomised controlled trial in which 31,989 participants aged 65 years and older were randomly assigned (1:1) to receive either high-dose or standard-dose trivalent inactivated influenza vaccine over two influenza seasons (2011-12 and 2012-13). Data for health-care resource consumption obtained in the FIM12 study were summarised across vaccine groups. Unit costs obtained from standard US cost sources were applied to each resource item, including to the vaccines (high dose US$31·82, standard dose $12·04). Clinical illness data were mapped to existing quality-of-life data. The time horizon was one influenza season; however, quality-adjusted life-years (QALYs) lost due to death during the study were calculated over a lifetime. We calculated incremental cost-effectiveness ratios (ICERs) for high-dose versus standard-dose vaccine and used QALYs as an outcome in the cost-utility analysis. We undertook a probabilistic sensitivity analysis using bootstrapping to explore the effect of statistical uncertainty on the study results. Mean per-participant medical costs were lower in the high-dose vaccine group ($1376·72 [SD 6857·59]) than in the standard-dose group ($1492·64 [7447·14]; difference -$115·92 [95% CI -264·18 to 35·48]). Mean societal costs were likewise lower in the high-dose versus the standard-dose group ($1506·48 [SD 7305·19] vs $1634·50 [7952·99]; difference -$128·02 [95% CI -286·89 to 33·30]). Hospital admissions contributed 95% of the total health

  18. Combined use of inactivated and oral poliovirus vaccines in refugee camps and surrounding communities - Kenya, December 2013.

    PubMed

    Sheikh, Mohamed A; Makokha, Frederick; Hussein, Abdullahi M; Mohamed, Gedi; Mach, Ondrej; Humayun, Kabir; Okiror, Samuel; Abrar, Leila; Nasibov, Orkhan; Burton, John; Unshur, Ahmed; Wannemuehler, Kathleen; Estivariz, Concepcion F

    2014-03-21

    Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988, circulation of indigenous wild poliovirus (WPV) has continued without interruption in only three countries: Afghanistan, Nigeria, and Pakistan. During April-December 2013, a polio outbreak caused by WPV type 1 (WPV1) of Nigerian origin resulted in 217 cases in or near the Horn of Africa, including 194 cases in Somalia, 14 cases in Kenya, and nine cases in Ethiopia (all cases were reported as of March 10, 2014). During December 14-18, 2013, Kenya conducted the first-ever campaign providing inactivated poliovirus vaccine (IPV) together with oral poliovirus vaccine (OPV) as part of its outbreak response. The campaign targeted 126,000 children aged ≤59 months who resided in Somali refugee camps and surrounding communities near the Kenya-Somalia border, where most WPV1 cases had been reported, with the aim of increasing population immunity levels to ensure interruption of any residual WPV transmission and prevent spread from potential new importations. A campaign evaluation and vaccination coverage survey demonstrated that combined administration of IPV and OPV in a mass campaign is feasible and can achieve coverage >90%, although combined IPV and OPV campaigns come at a higher cost than OPV-only campaigns and require particular attention to vaccinator training and supervision. Future operational studies could assess the impact on population immunity and the cost-effectiveness of combined IPV and OPV campaigns to accelerate interruption of poliovirus transmission during polio outbreaks and in certain areas in which WPV circulation is endemic.

  19. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  20. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, William S.; Thomas, Steven R.; Nieves, Rafael A.; Himmel, Michael E.

    1994-01-01

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C.sub.1, and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81.degree. C. at pH's from about 2 to about 9, and at a inactivation temperature of about 100.degree. C. at pH's from about 2 to about 9.

  1. Thermostable purified endoglucanase II from Acidothermus cellulolyticus ATCC

    DOEpatents

    Adney, W.S.; Thomas, S.R.; Nieves, R.A.; Himmel, M.E.

    1994-11-22

    A purified low molecular weight endoglucanase II from Acidothermus cellulolyticus (ATCC 43068) is disclosed. The endoglucanase is water soluble, possesses both C[sub 1], and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 81 C at pH's from about 2 to about 9, and at a inactivation temperature of about 100 C at pH's from about 2 to about 9. 9 figs.

  2. Development of a Vaccine Incorporating Killed Virus of Canine Origin for the Prevention of Canine Parvovirus Infection

    PubMed Central

    Povey, C.

    1982-01-01

    A parvovirus of canine origin, cultured in a feline kidney cell line, was inactivated with formalin. Three pilot serials were produced and three forms of finished vaccine (nonadjuvanted, single adjuvanted and double adjuvanted) were tested in vaccination and challenge trials. A comparison was also made with two inactivated feline panleukopenia virus vaccines, one of which has official approval for use in dogs. The inactivated canine vaccine in nonadjuvanted, adjuvanted or double adjuvanted form was immunogenic in 20 of 20 vaccinated dogs. The double adjuvanted vaccine is selected as the one of choice on the basis of best and most persistent seriological response. PMID:7039811

  3. Factors affecting the stability of viral vaccines.

    PubMed

    Peetermans, J

    1996-01-01

    The stability of viral vaccines is determined by the rate of loss of "integrity" of the viral antigen during storage. For live vaccines, such as measles, mumps, rubella, canine distemper, stability is equivalent to the preservation of the infectious titres. For inactivated and subunit vaccines, the preservation of the antigenic structure and the correct steric presentation of the relevant epitopes are the parameters which determine their stability. In general, the following factors may have a negative effect on stability: temperature, pH outside the physiological limits, organic solvents, repeated freezing and thawing, some antiseptics and inactivating agents, and light. However their negative effect is in most cases specific for the individual viruses. Approaches to stabilisation of most vaccines are based on the elimination or neutralisation of the negative factors. Practical examples for the most relevant existing vaccines are described.

  4. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    PubMed

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg

  5. Advances in the vaccination of the elderly against influenza: role of a high-dose vaccine.

    PubMed

    Sullivan, Seth J; Jacobson, Robert; Poland, Gregory A

    2010-10-01

    On 23 December 2009, the US FDA approved Fluzone® High Dose, a high-dose formulation of the trivalent inactivated influenza vaccine, for prevention of influenza in people 65 years of age and older. As it was approved via an accelerated process designed to allow expeditious availability of safe and effective products with promise to treat or prevent serious or life-threatening diseases, the manufacturer is required to conduct further studies to demonstrate effectiveness. Although these studies are underway, a recently completed randomized, controlled trial demonstrated that this vaccine, containing four-times more hemagglutinin than standard-dose inactivated influenza vaccines, can produce an enhanced immunologic response in subjects of 65 years of age and older, while maintaining a favorable safety profile. This article introduces the vaccine, presents currently available safety and immunogenicity data, discusses current recommendations for use, and proposes what we can expect in the coming years.

  6. Safety and immunogenicity of inactivated poliovirus vaccine made from Sabin strains: a phase II, randomized, positive-controlled trial.

    PubMed

    Liao, Guoyang; Li, Rongcheng; Li, Changgui; Sun, Mingbo; Li, Yanping; Chu, Jiayou; Jiang, Shude; Li, Qihan

    2012-01-15

    The production of Sabin inactivated poliovirus vaccine (IPV) can reduce biosafety requirements in the posteradication/post-oral poliovirus vaccine (OPV) era. We conducted a phase II, randomized, positive-controlled trial to assess the safety and immunogenicity of Sabin IPV. The test groups (A, B, and C) received 3 doses of high, middle, and low D antigen (D Ag) of Sabin IPV at ages 2, 3, and 4 months, respectively. Infants in 2 control groups, group D and group E, received 3 doses of trivalent OPV and conventional IPV (cIPV), respectively, on the same schedule as that of groups A, B, and C. Serum samples were collected before and 30 days after the administration of the third dose. In total, 500 infants were randomly assigned to 5 groups, and 449 infants completed the vaccine series. No serious adverse events were associated with vaccinations. After 3 doses, the seroconversion rates in groups A, B, C, D, and E were 100%, 97.8%, 96.6%, 100%, and 90.1%, respectively, for type 1 poliovirus; 97.7%, 95.7%, 78.7%, 100%, and 90.1%, respectively, for type 2; and 98.8%, 98.9%, 93.3%, 100%, and 97.8%, respectively, for type 3. Sabin IPV has good safety characteristics. The seroconversion rates for type 1 poliovirus (most appropriate concentration, 15 D Ag units [DU]), type 2 (32 DU), and type 3 (45 DU) Sabin IPV were similar to those of the OPV and cIPV control groups. NCT01056705.

  7. Foot-and-mouth disease vaccination induces cross-reactive IFN-γ responses in cattle that are dependent on the integrity of the 140S particles.

    PubMed

    Bucafusco, Danilo; Di Giacomo, Sebastián; Pega, Juan; Schammas, Juan Manuel; Cardoso, Nancy; Capozzo, Alejandra Victoria; Perez-Filgueira, Mariano

    2015-02-01

    Interferon-γ (IFN-γ) recall responses against foot-and-mouth disease virus (FMDV) in FMD vaccinated cattle are utilized to study T-lymphocyte immunity against this virus. Here, a recall IFN-γ assay based on a commercial ELISA was set up using 308 samples from naïve and vaccinated cattle. The assay was used to study cross-reactive responses between different FMDV vaccine strains. Blood samples from cattle immunized with monovalent vaccines containing A24/Cruzeiro/Brazil/55, A/Argentina/2001 or O1/Campos/Brazil/58 strains were tested using purified-inactivated FMDV from homologous and heterologous strains. A24/Cruzeiro was the most efficient IFN-γ inducer in all vaccinated animals, both when included in the vaccine or as stimulating antigen. We demonstrate that this was mainly due to the structural stability of the whole viral particle. These results show that IFN-γ production relies on the presence of 140S particles that can maintain their integrity along the incubation process in vitro, and throughout the vaccine's shelf-life, when used in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A specific inactivator of mammalian C'4 isolated from nurse shark (Ginglymostoma cirratum) serum.

    PubMed

    Jensen, J A

    1969-08-01

    A material which specifically inactivates mammalian C'4 was isolated from low ionic strength precipitates of nurse shark serum. The C'4 inactivator was not detected in whole serum. The conditions of its generation and its immunoelectrophoretic behavior seem to indicate that it is an enzymatically formed cleavage product of a precursor contained in whole shark serum. The inactivator was partially purified and characterized. It had an S-value of 3.3 (sucrose gradient) which was in agreement with its retardation on gel filtration, was stable between pH 5.0 and 10.0, had a half-life of 5 min at 56 degrees C, pH 7.5, was inactivated by trypsin and was nontoxic. Its powerful anticomplementary activity in vitro and in vivo was solely due to the rapid inactivation of C'4; no other complement components were affected. No cofactor requirement was observed for the equally rapid inactivation of highly purified human and guinea pig C'4. The kinetics of C'4 inactivation and TAME hydrolysis, the greater anodic mobility of inactivated human C'4, and the influence of temperature on the rate of inactivation suggest that the inactivator is an enzyme and C'4 its substrate. This conclusion was supported by the more recent detection of a split product of C'4. Intravenous administration of the C'4 inactivator could prevent lethal Forssman shock and suppress the Arthus reaction in guinea pigs; it prolonged significantly the rejection time of renal xenografts but had no detectable effect on passive cutaneous anaphylaxis. Anaphylatoxin could be generated in C'4 depleted guinea pig serum with the cobra venom factor, but not with immune precipitates. The possible relationship between C'1 esterase and the C'4 inactivator is discussed on the basis of similarities and dissimilarities.

  9. Response of feral cats to vaccination at the time of neutering.

    PubMed

    Fischer, Sarah M; Quest, Cassie M; Dubovi, Edward J; Davis, Rolan D; Tucker, Sylvia J; Friary, John A; Crawford, P Cynda; Ricke, Teri A; Levy, Julie K

    2007-01-01

    To determine whether administration of inactivated virus or modified-live virus (MLV) vaccines to feral cats at the time of neutering induces protective serum antiviral antibody titers. Prospective study. 61 feral cats included in a trap-neuter-return program in Florida. Each cat received vaccines against feline panleukopenia virus (FPV), feline herpes virus (FHV), feline calicivirus (FCV), FeLV, and rabies virus (RV). Immediately on completion of surgery, vaccines that contained inactivated RV and FeLV antigens and either MLV or inactivated FPV, FHV, and FCV antigens were administered. Titers of antiviral antibodies (except those against FeLV) were assessed in serum samples obtained immediately prior to surgery and approximately 10 weeks later. Prior to vaccination, some of the cats had protective serum antibody titers against FPV (33%), FHV (21%), FCV (64%), and RV (3%). Following vaccination, the overall proportion of cats with protective serum antiviral antibody titers increased (FPV [90%], FHV [56%], FCV [93%], and RV [98%]). With the exception of the FHV vaccine, there were no differences in the proportions of cats protected with inactivated virus versus MLV vaccines. Results suggest that exposure to FPV, FHV, and FCV is common among feral cats and that a high proportion of cats are susceptible to RV infection. Feral cats appeared to have an excellent immune response following vaccination at the time of neutering. Incorporation of vaccination into trap-neuter-return programs is likely to protect the health of individual cats and possibly reduce the disease burden in the community.

  10. Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults.

    PubMed

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Oberste, M Steven; Boog, Claire J; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2013-11-12

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle income countries in the context of the Global Polio Eradication Initiative. Safety and immunogenicity of the Sabin-IPV was evaluated in a double-blind, randomized, controlled, phase I 'proof-of-concept' trial. Healthy male adults received a single intramuscular injection with Sabin-IPV, Sabin-IPV adjuvanted with aluminum hydroxide or conventional IPV. Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after vaccination. No vaccine-related serious adverse events were observed, and all local and systemic reactions were mild or moderate and transient. In all subjects, an increase in antibody titer for all types of poliovirus (both Sabin and wild strains) was observed 28 days after vaccination. Sabin-IPV and Sabin-IPV adjuvanted with aluminum hydroxide administered as a booster dose were equally immunogenic and safe as conventional IPV. EudraCTnr: 2010-024581-22, NCT01708720. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    PubMed

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  12. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens

    PubMed Central

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping

    2017-01-01

    ABSTRACT The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that

  13. Induction of long term mucosal immunological memory in humans by an oral inactivated multivalent enterotoxigenic Escherichia coli vaccine.

    PubMed

    Lundgren, Anna; Jertborn, Marianne; Svennerholm, Ann-Mari

    2016-06-08

    We have evaluated the capacity of an oral multivalent enterotoxigenic Escherichia coli (ETEC) vaccine (MEV) to induce mucosal immunological memory. MEV consists of four inactivated E. coli strains over-expressing the major colonization factors (CFs) CFA/I, CS3, CS5 and CS6 and the LTB-related toxoid LCTBA. Memory responses were analyzed by comparing the magnitudes and kinetics of intestine-derived antibody-secreting cell responses to a single dose of MEV in three groups of adult Swedish volunteers (n=16-19 subjects per group) in a Phase I trial: non-immunized controls (I) and subjects who in a previous Phase I trial 13-23 months earlier had received two biweekly doses of MEV (II) or MEV+double mutant LT (dmLT) adjuvant (III). Responses against CFs and LTB were analyzed in antibodies in lymphocyte secretions (ALS) of blood mononuclear cells collected before (day 0) and 4/5 and 7 days after immunization. Specific circulating memory B cells present at the time of the single dose vaccination were also studied to determine if such cells may reflect mucosal memory. Considerably higher and significantly more frequent IgA ALS responses against all CFs and LTB were induced by the single vaccine dose in the previously immunized than in non-immunized volunteers. Furthermore, peak IgA ALS responses against all antigens were observed on days 4/5 in most of the previously immunized subjects whereas only a few previously non-vaccinated individuals responded before day 7. Priming with adjuvant did not influence memory responses. Circulating vaccine specific IgA memory B cells were not detected, whereas anti-toxin IgG memory B cells were identified 13-23 months after priming vaccination. We conclude that MEV induces functional mucosal immunological memory which remains at least 1-2 years. Furthermore, our results support that analysis of antibody-secreting cell responses after booster vaccination may be a useful approach to evaluate longstanding mucosal immunological memory in

  14. Needle-free jet injector intradermal delivery of fractional dose inactivated poliovirus vaccine: Association between injection quality and immunogenicity.

    PubMed

    Resik, Sonia; Tejeda, Alina; Mach, Ondrej; Sein, Carolyn; Molodecky, Natalie; Jarrahian, Courtney; Saganic, Laura; Zehrung, Darin; Fonseca, Magile; Diaz, Manuel; Alemany, Nilda; Garcia, Gloria; Hung, Lai Heng; Martinez, Yenisleydis; Sutter, Roland W

    2015-10-26

    The World Health Organization recommends that as part of the polio end-game strategy a dose of inactivated poliovirus vaccine (IPV) be introduced by the end of 2015 in all countries currently using only oral poliovirus vaccine (OPV). Administration of fractional dose (1/5 of full dose) IPV (fIPV) by intradermal (ID) injection may reduce costs, but its conventional administration is with Bacillus Calmette-Guerin (BCG) needle and syringe (NS), which is time consuming and technically challenging. We compared injection quality achieved with BCG NS and three needle-free jet injectors and assessed ergonomic features of the injectors. Children between 12 and 20 months of age who had previously received OPV were enrolled in the Camaguey, Cuba study. Subjects received a single fIPV dose administered intradermally with BCG NS or one of three needle-free injector devices: Bioject Biojector 2000® (B2000), Bioject ID Pen® (ID Pen), or PharmaJet Tropis® (Tropis). We measured bleb diameter and vaccine loss as indicators of ID injection quality, with desirable injection quality defined as bleb diameter ≥5mm and vaccine loss <10%. We surveyed vaccinators to evaluate ergonomic features of the injectors. We further assessed the injection quality indicators as predictors of immune response, measured by increase in poliovirus neutralizing antibodies in blood between day 0 (pre-IPV) and 21 (post-vaccination). Delivery by BCG NS and Tropis resulted in the highest proportion of subjects with desirable injection quality; health workers ranked Biojector2000 and Tropis highest for ergonomic features. We observed that vaccine loss and desirable injection quality were associated with an immune response for poliovirus type 2 (P=0.02, P=0.01, respectively). Our study demonstrated the feasibility of fIPV delivery using needle-free injector devices with high acceptability among health workers. We did not observe the indicators of injection quality to be uniformly associated with immune

  15. Vaccine recommendations for children and youth for the 2014/2015 influenza season.

    PubMed

    Moore, Dorothy L

    2014-10-01

    The Canadian Paediatric Society continues to encourage annual influenza vaccination for ALL children and youth ≥6 months of age. Recommendations from the National Advisory Committee on Immunization for the 2014/2015 influenza season include some important changes: Influenza vaccination is recommended for ALL individuals ≥6 months of age, with particular focus on those at high risk of influenza-related complications and their close contacts. Definitions of high-risk conditions and close contacts have not changed from those of 2013/2014.The preference for intranasal, live attenuated influenza vaccine (LAIV) over trivalent inactivated influenza vaccines for healthy children is restricted to individuals two to six years of age. There is insufficient evidence to recommend LAIV over trivalent inactivated influenza vaccines in older children or in children with chronic health conditions; either vaccine may be used unless there are specific contraindications.Quadrivalent influenza vaccines are expected to be available for the 2014/2015 season and may be used interchangeably with trivalent vaccines. They may offer improved protection.Trivalent or quadrivalent inactivated vaccines may be used in individuals with egg allergy; LAIV has not yet been evaluated in this population and is not recommended at this time.

  16. An electrochemiluminescence assay for analysis of rabies virus glycoprotein content in rabies vaccines

    PubMed Central

    Smith, Todd G.; Ellison, James A.; Ma, Xiaoyue; Kuzmina, Natalia; Carson, William C.; Rupprecht, Charles E.

    2015-01-01

    Vaccine potency testing is necessary to evaluate the immunogenicity of inactivated rabies virus (RABV) vaccine preparations before human or veterinary application. Currently, the NIH test is recommended by the WHO expert committee to evaluate RABV vaccine potency. However, numerous disadvantages are inherent concerning cost, number of animals and biosafety requirements. As such, several in vitro methods have been proposed for the evaluation of vaccines based on RABV glycoprotein (G) quality and quantity, which is expected to correlate with vaccine potency. In this study an antigen-capture electrochemiluminescent (ECL) assay was developed utilizing anti-RABV G monoclonal antibodies (MAb) to quantify RABV G. One MAb 2-21-14 was specific for a conformational epitope so that only immunogenic, natively-folded G was captured in the assay. A second MAb (62-80-6) that binds a linear epitope or MAb 2-21-14 was used for detection of RABV G. Vaccine efficacy was also assessed in vivo using pre-exposure vaccination of mice. Purified native RABV G induced a RABV neutralizing antibody (rVNA) response with a geometric mean titer of 4.2 IU/ml and protected 100% of immunized mice against RABV challenge, while an experimental vaccine with a lower quality and quantity of G induced a rVNA titer <0.05 IU/ml and protected <50% of immunized mice. These preliminary results support the hypothesis that in vivo immunogenicity may be predicted from the in vitro measurement of RABV G using an ECL assay. Based upon these results, the ECL assay may have utility in replacement of the NIH test. PMID:23742991

  17. Safety and reactogenicity of the combined diphtheria-tetanus-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b (DTPa-IPV/Hib) vaccine in healthy Vietnamese toddlers: An open-label, phase III study.

    PubMed

    Anh, Dang Duc; Van Der Meeren, Olivier; Karkada, Naveen; Assudani, Deepak; Yu, Ta-Wen; Han, Htay Htay

    2016-03-03

    The introduction of combination vaccines plays a significant role in increasing vaccine acceptance and widening vaccine coverage. Primary vaccination against diphtheria, tetanus, pertussis, poliomyelitis and Haemophilus influenza type b (Hib) diseases has been implemented in Vietnam. In this study we evaluated the safety and reactogenicity of combined diphtheria-tetanus-pertussis-inactivated polio (DTPa-IPV)/Hib vaccine when administered as a booster dose in 300 healthy Vietnamese children <2 years of age (mean age: 15.8 months). During the 4-day follow-up period, pain (31.7%) and redness (27.3%) were the most frequent solicited local symptoms. Pain (2%) was also the most frequent grade 3 local symptom. One subject reported 2 serious adverse events that were not causally related to the study vaccine. DTPa-IPV/Hib conjugate vaccine was well tolerated as a booster dose in healthy Vietnamese children aged <2 years.

  18. Properties of a Purified Halophilic Malic Dehydrogenase

    PubMed Central

    Holmes, P. K.; Halvorson, H. Orin

    1965-01-01

    Holmes, P. K. (University of Illinois, Urbana), and H. Orin Halvorson. Properties of a purified halophilic malic dehydrogenase. J. Bacteriol. 90:316–326. 1965.—The malic dehydrogenase (MDH) from Halobacterium salinarium required high concentrations of monovalent ions for stability and activity. Studies of inactivation rates at different salt concentrations suggested that approximately 25% NaCl (w/v) is required to stabilize MDH. From 50 to 100% reactivation, depending on the salt concentration present during inactivation, could occur in 2.5 to 5 m NaCl or KCl. The optimal salt concentration for activity of MDH was a function of the pH, and ranged from 1 to 3 m NaCl or KCl. The effect of salt concentration on the pH-activity curves occurred chiefly below pH 7.0. Inactivation of MDH with heat or thiol reagents showed that the enzyme was more labile in the state induced by absence of salt. The activation of MDH by salts was attributed to a decreased rate of dissociation of MDH and reduced nicotinamide adenine dinucleotide (NADH2). The inactivation of the enzyme in the absence of salt could be largely prevented by the presence of NADH2. The S20.w of MDH decreased threefold at low salt concentrations. The enzyme was assumed to be in its native compact configuration only in the presence of a high concentration of salt. PMID:14329442

  19. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    PubMed

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Viral capsid mobility: a dynamic conduit for inactivation.

    PubMed

    Broo, K; Wei, J; Marshall, D; Brown, F; Smith, T J; Johnson, J E; Schneemann, A; Siuzdak, G

    2001-02-27

    Mass spectrometry and fluorescent probes have provided direct evidence that alkylating agents permeate the protein capsid of naked viruses and chemically inactivate the nucleic acid. N-acetyl-aziridine and a fluorescent alkylating agent, dansyl sulfonate aziridine, inactivated three different viruses, flock house virus, human rhinovirus-14, and foot and mouth disease virus. Mass spectral studies as well as fluorescent probes showed that alkylation of the genome was the mechanism of inactivation. Because particle integrity was not affected by selective alkylation (as shown by electron microscopy and sucrose gradient experiments), it was reasoned that the dynamic nature of the viral capsid acts as a conduit to the interior of the particle. Potential applications include fluorescent labeling for imaging viral genomes in living cells, the sterilization of blood products, vaccine development, and viral inactivation in vivo.

  1. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5

  2. An Inactivated Rabies Virus–Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models

    PubMed Central

    Johnson, Reed F.; Kurup, Drishya; Hagen, Katie R.; Fisher, Christine; Keshwara, Rohan; Papaneri, Amy; Perry, Donna L.; Cooper, Kurt; Jahrling, Peter B.; Wang, Jonathan T.; ter Meulen, Jan; Wirblich, Christoph; Schnell, Matthias J.

    2016-01-01

    The 2013–2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus–based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti–rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine. PMID:27456709

  3. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    PubMed

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of

  4. Febrile events including convulsions following the administration of four brands of 2010 and 2011 inactivated seasonal influenza vaccine in NZ infants and children: the importance of routine active safety surveillance.

    PubMed

    Petousis-Harris, Helen; Poole, Tracey; Turner, Nikki; Reynolds, Gary

    2012-07-13

    To evaluate and compare rates of febrile events, including febrile convulsion, following immunisation with four brands of inactivated 2010 and 2011 influenza vaccine in NZ infants and children. Retrospective telephone surveys of parents of infants and children who received at least one dose of the vaccines of interest. 184 NZ General Practices who received the vaccines of interest. Recipients of 4088 doses of trivalent inactivated vaccines Fluvax(®), Vaxigrip(®), Influvac(®) and Fluarix(®) and/or monovalent Celvapan. Vaccinees were identified via the electronic Practice Management System and contacted consecutively. Primary outcome was febrile convulsive seizure. Secondary outcomes were presence of fever plus other organ system specific symptoms. The parental response rate was 99%. Of 4088 doses given, 865 were Fluvax(®), 2571 Vaxigrip(®), 204 Influvac(®), 438 Fluarix(®) and 10 Celvapan. Three febrile convulsions followed Fluvax(®), a rate of 35 per 10,000 doses. No convulsions occurred following any dose of the other vaccines. There were nine febrile events that included rigors, all following Fluvax(®). Fever occurred significantly more frequently following administration of Fluvax(®) compared with the other brands of vaccines (p<0.0001) and Fluvax recipients were more likely to seek medical attention. Influvac(®) also had higher rates of febrile reactions (OR 0.54, 0.36-0.81) than the other two brands Vaxigrip(®) (OR 0.21, 0.16-0.27) and Fluarix(®) (OR 0.10, 0.05-0.20). After multivariable analysis vaccine, European ethnicity and second dose of vaccine were significantly associated with reporting of fever within 24h of vaccination. Influenza vaccines have different rates of reactogenicity in children which varies between ethnic groups. High rates of febrile convulsions and reactions in children receiving Fluvax(®) and to a lesser extent the higher fever rates in those receiving Influvac(®) compared with the other two brands of influenza vaccines

  5. Economic benefits for the family of inactivated subunit virosomal influenza vaccination of healthy children aged 3-14 years during the annual health examination in private paediatric offices.

    PubMed

    Salleras, L; Navas, E; Domínguez, A; Ibáñez, D; Prat, A; Garrido, P; Asenjo, M A; Torner, N

    2009-05-26

    Taking the results of a prospective cohort study by our group that evaluated the effectiveness of the inactivated subunit virosomal influenza vaccine (Inflexal V), Crucell-Berna) in the prevention of influenza-related diseases and the reduction of its negative economic consequences, the economic costs and benefits for the family of vaccinating a theoretical cohort of 1000 healthy children aged 3-14 years with no risk factors with one dose of vaccine during the yearly health examination were quantiified. The economic analysis was carried out from the family perspective and the time horizon of the study was established at 6 months. In the base case, the net present value was 21,551.62 euros (21.5 euros per vaccinated child), and the benefit-cost ratio was 2.15, meaning that 1.15 euros is saved per euro invested.

  6. Long-Term Immunogenicity of an Inactivated Split-Virion 2009 Pandemic Influenza A H1N1 Virus Vaccine with or without Aluminum Adjuvant in Mice

    PubMed Central

    Xu, Wenting; Zheng, Mei; Zhou, Feng

    2015-01-01

    In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD50]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice. PMID:25589552

  7. Comparative study of disinfectants for use in low-cost gravity driven household water purifiers.

    PubMed

    Patil, Rajshree A; Kausley, Shankar B; Balkunde, Pradeep L; Malhotra, Chetan P

    2013-09-01

    Point-of-use (POU) gravity-driven household water purifiers have been proven to be a simple, low-cost and effective intervention for reducing the impact of waterborne diseases in developing countries. The goal of this study was to compare commonly used water disinfectants for their feasibility of adoption in low-cost POU water purifiers. The potency of each candidate disinfectant was evaluated by conducting a batch disinfection study for estimating the concentration of disinfectant needed to inactivate a given concentration of the bacterial strain Escherichia coli ATCC 11229. Based on the concentration of disinfectant required, the size, weight and cost of a model purifier employing that disinfectant were estimated. Model purifiers based on different disinfectants were compared and disinfectants which resulted in the most safe, compact and inexpensive purifiers were identified. Purifiers based on bromine, tincture iodine, calcium hypochlorite and sodium dichloroisocyanurate were found to be most efficient, cost effective and compact with replacement parts costing US$3.60-6.00 for every 3,000 L of water purified and are thus expected to present the most attractive value proposition to end users.

  8. Vaccines: the fourth century.

    PubMed

    Plotkin, Stanley A

    2009-12-01

    Vaccine development, which began with Edward Jenner's observations in the late 18th century, has entered its 4th century. From its beginnings, with the use of whole organisms that had been weakened or inactivated, to the modern-day use of genetic engineering, it has taken advantage of the tools discovered in other branches of microbiology. Numerous successful vaccines are in use, but the list of diseases for which vaccines do not exist is long. However, the multiplicity of strategies now available, discussed in this article, portends even more successful development of vaccines.

  9. A randomized open-labeled study to demonstrate the non-inferiority of purified chick-embryo cell rabies vaccine administered in the Zagreb regimen (2-1-1) compared with the Essen regimen in Chinese adults.

    PubMed

    Ma, Jingchen; Wang, Hongchang; Li, Jun; Chang, Likuan; Xie, Yun; Liu, Zhonglin; Zhao, Yuliang; Malerczyk, Claudius; Claudius, Malerczyk

    2014-01-01

    The Zagreb regimen has been used for 20 years in various countries. In China, until 2010, the Zagreb schedule was only approved for purified chick embryo cell vaccine (PCECV) and purified Vero cell rabies vaccines (PVRV). In this phase III clinical trial, we aimed to demonstrate the safety and immunogenic non-inferiority of the Zagreb regimen compared with the Essen regimen in healthy adult Chinese immunized with PCECV (Rabipur®). The study enrolled 825 subjects aged 18 to 50 years; serum samples were collected on Days 0, 7, 14, 42, and at 13 months to assess rabies virus neutralizing antibody (RVNA) concentrations. Solicited and unsolicited local and systemic reactions were recorded for 6 days following the day of vaccination, and collected throughout the entire study period (Day 1 until Month 13). The Zagreb regimen was non-inferior to the Essen regimen with regard to RVNA concentrations after 7, 14, and 42 days, and 13 months of immunization. The non-inferiority of seroconversion was established at Days 14 and 42. The incidence of local and systemic reactions was similar between groups, and mostly of mild or moderate severity. Vaccine-related adverse events occurred more frequently in the Essen group than in the Zagreb group. Vaccination with PCECV under a 2-1-1 regimen is as safe and immunogenic as under the traditional 5-dose Essen regimen for rabies post-exposure prophylaxis, and is a more cost-effective option, has a more practical vaccination schedule, and can potentially increase compliance.

  10. A randomized open-labeled study to demonstrate the non-inferiority of purified chick-embryo cell rabies vaccine administered in the Zagreb regimen (2-1-1) compared with the Essen regimen in Chinese adults

    PubMed Central

    Ma, Jingchen; Wang, Hongchang; Li, Jun; Chang, Likuan; Xie, Yun; Liu, Zhonglin; Zhao, Yuliang; Claudius, Malerczyk

    2014-01-01

    The Zagreb regimen has been used for 20 years in various countries. In China, until 2010, the Zagreb schedule was only approved for purified chick embryo cell vaccine (PCECV) and purified Vero cell rabies vaccines (PVRV). In this phase III clinical trial, we aimed to demonstrate the safety and immunogenic non-inferiority of the Zagreb regimen compared with the Essen regimen in healthy adult Chinese immunized with PCECV (Rabipur®). The study enrolled 825 subjects aged 18 to 50 years; serum samples were collected on Days 0, 7, 14, 42, and at 13 months to assess rabies virus neutralizing antibody (RVNA) concentrations. Solicited and unsolicited local and systemic reactions were recorded for 6 days following the day of vaccination, and collected throughout the entire study period (Day 1 until Month 13). The Zagreb regimen was non-inferior to the Essen regimen with regard to RVNA concentrations after 7, 14, and 42 days, and 13 months of immunization. The non-inferiority of seroconversion was established at Days 14 and 42. The incidence of local and systemic reactions was similar between groups, and mostly of mild or moderate severity. Vaccine-related adverse events occurred more frequently in the Essen group than in the Zagreb group. Vaccination with PCECV under a 2-1-1 regimen is as safe and immunogenic as under the traditional 5-dose Essen regimen for rabies post-exposure prophylaxis, and is a more cost-effective option, has a more practical vaccination schedule, and can potentially increase compliance. PMID:25483635

  11. THE ANTIGENIC POTENCY OF EPIDEMIC INFLUENZA VIRUS FOLLOWING INACTIVATION BY ULTRAVIOLET RADIATION

    PubMed Central

    Salk, Jonas E.; Lavin, G. I.; Francis, Thomas

    1940-01-01

    A study of the antigenic potency of influenza virus inactivated by ultraviolet radiation has been made. Virus so inactivated is still capable of functioning as an immunizing agent when given to mice by the intraperitoneal route. In high concentrations inactivated virus appears to be nearly as effective as active virus but when quantitative comparisons of the immunity induced by different dilutions are made, it is seen that a hundredfold loss in immunizing capacity occurs during inactivation. Virus in suspensions prepared from the lungs of infected mice is inactivated more rapidly than virus in tissue culture medium. A standard for the comparison of vaccines of epidemic influenza virus is proposed. PMID:19871057

  12. Systematic Review of Mucosal Immunity Induced by Oral and Inactivated Poliovirus Vaccines against Virus Shedding following Oral Poliovirus Challenge

    PubMed Central

    Hird, Thomas R.; Grassly, Nicholas C.

    2012-01-01

    Inactivated poliovirus vaccine (IPV) may be used in mass vaccination campaigns during the final stages of polio eradication. It is also likely to be adopted by many countries following the coordinated global cessation of vaccination with oral poliovirus vaccine (OPV) after eradication. The success of IPV in the control of poliomyelitis outbreaks will depend on the degree of nasopharyngeal and intestinal mucosal immunity induced against poliovirus infection. We performed a systematic review of studies published through May 2011 that recorded the prevalence of poliovirus shedding in stool samples or nasopharyngeal secretions collected 5–30 days after a “challenge” dose of OPV. Studies were combined in a meta-analysis of the odds of shedding among children vaccinated according to IPV, OPV, and combination schedules. We identified 31 studies of shedding in stool and four in nasopharyngeal samples that met the inclusion criteria. Individuals vaccinated with OPV were protected against infection and shedding of poliovirus in stool samples collected after challenge compared with unvaccinated individuals (summary odds ratio [OR] for shedding 0.13 (95% confidence interval [CI] 0.08–0.24)). In contrast, IPV provided no protection against shedding compared with unvaccinated individuals (summary OR 0.81 [95% CI 0.59–1.11]) or when given in addition to OPV, compared with individuals given OPV alone (summary OR 1.14 [95% CI 0.82–1.58]). There were insufficient studies of nasopharyngeal shedding to draw a conclusion. IPV does not induce sufficient intestinal mucosal immunity to reduce the prevalence of fecal poliovirus shedding after challenge, although there was some evidence that it can reduce the quantity of virus shed. The impact of IPV on poliovirus transmission in countries where fecal-oral spread is common is unknown but is likely to be limited compared with OPV. PMID:22532797

  13. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game

    PubMed Central

    van der Sanden, Sabine M. G.; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C.; Brooks, Paula; O'Donnell, Jason; Jones, Les P.; Brown, Cedric; Tompkins, S. Mark; Karpilow, Jon; Tripp, Ralph A.

    2015-01-01

    ABSTRACT Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. IMPORTANCE Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines

  14. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game.

    PubMed

    van der Sanden, Sabine M G; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C; Brooks, Paula; O'Donnell, Jason; Jones, Les P; Brown, Cedric; Tompkins, S Mark; Oberste, M Steven; Karpilow, Jon; Tripp, Ralph A

    2016-02-15

    Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work

  15. A MOUSE TEST FOR MEASURING THE IMMUNIZING POTENCY OF ANTIRABIES VACCINES

    PubMed Central

    Webster, Leslie T.

    1939-01-01

    1. A quantitative practical mouse test is described for measuring the immunizing potency of antirabies vaccines. 2. Virulent virus, injected intraperitoneally as a vaccine, immunized mice within 10 days and for a period of at least 9 months. Demonstrable neutralizing antibodies accompanied this immunity. Virus given subcutaneously failed to immunize as effectively. The margin between immunizing and infecting dose of vaccine was small. 3. Commercial vaccines containing virulent virus prepared for the treatment of man gave results similar to those obtained with laboratory virus. 4. Commercial vaccines inactivated with phenol and prepared for the treatment of man in general failed to immunize mice. None contained virulent virus. The phenolized preparation from one commercial firm, however, as also the chloroformized preparation from another, immunized mice consistently when given intraperitoneally in quantities approximating 5 times that advocated per gm. of body weight in man. 5. Commercial canine vaccines inactivated with phenol proved non-virulent and failed to immunize mice. 6. Commercial canine vaccines inactivated with chloroform (Kelser) proved non-virulent but capable of immunizing mice provided a single intraperitoneal injection of 2 to 5 times that prescribed for dogs per gm. of body weight was given. 7. Chloroformized vaccines proved irritative to the peritoneum of mice. PMID:19870893

  16. Antibody response and maternal immunity upon boosting PRRSV-immune sows with experimental farm-specific and commercial PRRSV vaccines.

    PubMed

    Geldhof, Marc F; Van Breedam, Wander; De Jong, Ellen; Lopez Rodriguez, Alfonso; Karniychuk, Uladzimir U; Vanhee, Merijn; Van Doorsselaere, Jan; Maes, Dominiek; Nauwynck, Hans J

    2013-12-27

    The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in pigs of all ages. Despite the frequent use of vaccines to maintain PRRSV immunity in sows, little is known on how the currently used vaccines affect the immunity against currently circulating and genetically divergent PRRSV variants in PRRSV-immune sows, i.e. sows that have a pre-existing PRRSV-specific immunity due to previous infection with or vaccination against the virus. Therefore, this study aimed to assess the capacity of commercially available attenuated/inactivated PRRSV vaccines and autogenous inactivated PRRSV vaccines - prepared according to a previously optimized in-house protocol - to boost the antibody immunity against currently circulating PRRSV variants in PRRSV-immune sows. PRRSV isolates were obtained from 3 different swine herds experiencing PRRSV-related problems, despite regular vaccination of gilts and sows against the virus. In a first part of the study, the PRRSV-specific antibody response upon booster vaccination with commercial PRRSV vaccines and inactivated farm-specific PRRSV vaccines was evaluated in PRRSV-immune, non-pregnant replacement sows from the 3 herds. A boost in virus-neutralizing antibodies against the farm-specific isolate was observed in all sow groups vaccinated with the corresponding farm-specific inactivated vaccines. Use of the commercial attenuated EU type vaccine boosted neutralizing antibodies against the farm-specific isolate in sows derived from 2 farms, while use of the commercial attenuated NA type vaccine did not boost farm-specific virus-neutralizing antibodies in any of the sow groups. Interestingly, the commercial inactivated EU type vaccine boosted farm-specific virus-neutralizing antibodies in sows from 1 farm. In the second part of the study, a field trial was performed at one of the farms to evaluate the booster effect of an inactivated farm-specific vaccine and a commercial

  17. Nanoparticle-detained toxins for safe and effective vaccination

    NASA Astrophysics Data System (ADS)

    Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Zhang, Liangfang

    2013-12-01

    Toxoid vaccines--vaccines based on inactivated bacterial toxins--are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing toxin virulence remains a major challenge and presents a trade-off between efficacy and safety in toxoid development. Here, we show a nanoparticle-based toxin-detainment strategy that safely delivers non-disrupted pore-forming toxins for immune processing. Using erythrocyte membrane-coated nanoparticles and staphylococcal α-haemolysin, we demonstrate effective virulence neutralization via spontaneous particle entrapment. Compared with vaccination with heat-denatured toxin, mice vaccinated with the nanoparticle-detained toxin showed superior protective immunity against toxin-mediated adverse effects. We find that the non-disruptive detoxification approach benefited the immunogenicity and efficacy of toxoid vaccines. We anticipate that this study will open new possibilities in the preparation of antitoxin vaccines against the many virulence factors that threaten public health.

  18. Protection to homologous and heterologous challenge in pigs immunized with vaccine against foot-and-mouth disease type O caused an epidemic in East Asia during 2010/2011.

    PubMed

    Park, Jeong-Nam; Lee, Seo-Yong; Chu, Jia-Qi; Lee, Yeo-Joo; Kim, Rae-Hyung; Lee, Kwang-Nyeong; Kim, Su-Mi; Tark, Dong-Seob; Kim, Byounghan; Park, Jong-Hyeon

    2014-04-01

    Foot-and-mouth disease (FMD) is a highly contagious infectious disease, and the use of vaccines is known to be effective for its prevention. In 2010/2011, there was an epidemic of the South East Asia (SEA) topotype in East Asian countries. We adapted the SEA topotype virus isolated in November 2010 in Korea in cells to analyze the characteristics of the virus and evaluate its possibility as a vaccine. After cell culture adaptation, the FMD virus particle 146S was purified to develop an inactivated oil vaccine for SEA or other topotypes. To measure its immunogenicity, pigs were inoculated with the experimental vaccine at different concentrations of the antigen. The results indicated that the groups immunized with at least 7.5 μg antigen were protected from homologous challenge. The immunized pigs were also protected against heterologous virus (ME-SA topotype) challenge. The genetic variations between the two field isolates and the adapted vaccine strains were identified in six amino acids by complete genome sequencing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [History of vaccination: from empiricism towards recombinant vaccines].

    PubMed

    Guérin, N

    2007-01-01

    Two hundreds years after the discovery of the smallpox vaccine, immunization remains one of the most powerful tools of preventive medicine. Immunization was born with Jenner, then Pasteur and expanded during the 19th and 20th century. It started with the empirical observation of cross-immunity between two diseases, cowpox and smallpox. It became a real science, with pathogen isolation, culture and attenuation or inactivation, to prepare a vaccine. Together with clinical and biological efficacy studies and adverse events assessments, it constructed the concept of "vaccinology". Protein conjugation of polyosidic vaccines has made possible early immunisation of infants. Nowadays, recombinant, reassortant, or virus-like particles technologies open the road for new vaccines. Ongoing research opens the way for the development of new vaccines that will help to control transmittable diseases for which we are lacking antimicrobial agents.

  20. Adjuvanticity of a CTLA-4 3' UTR complementary oligonucleotide for emulsion formulated recombinant subunit and inactivated vaccines.

    PubMed

    Li, Xin; Yang, Lei; Zhao, Peiyan; Yao, Yun; Lu, Fangjie; Tu, Liqun; Liu, Jiwei; Li, Zhiqin; Yu, Yongli; Wang, Liying

    2017-04-25

    Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is recognized as a critical inhibitory regulator of T-cell proliferation and activation, opposing the action of CD28-mediated co-stimulation. Interfering or blocking CTLA-4 can result in continuous T-cell activation required for the full immune response to pathogenic microbes and vaccines. To test if nucleic acid-based CTLA-4 inhibitors could be developed into a novel adjuvant, we designed two oligonucleotides, CMD-1 and CMD-2, with the sequences complementary to the conserve regions identical between human and mouse CTLA-4 mRNA 3' untranslated region (3' UTR), and tested their in vitro effects on CTLA-4 production and their adjuvanticity for vaccines in mice. We found that CMD-1 inhibited the antigen-induced CTLA-4 up-regulation on the CD4 + T cells by interfering its mRNA expression, maintained higher levels of CD80 and CD86 on the CD11c + cells and promoted the recalled proliferation of the CD4 + T cells and CD19 + B cells, and that the CMD-1 enhanced the antibody response against recombinant PCV2b capsid protein or inactivated foot-and-mouth disease virus in both ICR and BALB/c mice. These data suggest that the CMD-1 could be used as a novel vaccine adjuvant capable of inhibiting inhibitory signals rather than inducing stimulatory signals of immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparison of the Immunogenicity of Various Booster Doses of Inactivated Polio Vaccine Delivered Intradermally Versus Intramuscularly to HIV-Infected Adults

    PubMed Central

    Troy, Stephanie B.; Kouiavskaia, Diana; Siik, Julia; Kochba, Efrat; Beydoun, Hind; Mirochnitchenko, Olga; Levin, Yotam; Khardori, Nancy; Chumakov, Konstantin; Maldonado, Yvonne

    2015-01-01

    Background. Inactivated polio vaccine (IPV) is necessary for global polio eradication because oral polio vaccine can rarely cause poliomyelitis as it mutates and may fail to provide adequate immunity in immunocompromised populations. However, IPV is unaffordable for many developing countries. Intradermal IPV shows promise as a means to decrease the effective dose and cost of IPV, but prior studies, all using 20% of the standard dose used in intramuscular IPV, resulted in inferior antibody titers. Methods. We randomly assigned 231 adults with well-controlled human immunodeficiency virus infection at a ratio of 2:2:2:1 to receive 40% of the standard dose of IPV intradermally, 20% of the standard dose intradermally, the full standard dose intramuscularly, or 40% of the standard dose intramuscularly. Intradermal vaccination was done using the NanoPass MicronJet600 microneedle device. Results. Baseline immunity was 87%, 90%, and 66% against poliovirus serotypes 1, 2, and 3, respectively. After vaccination, antibody titers increased a median of 64-fold. Vaccine response to 40% of the standard dose administered intradermally was comparable to that of the standard dose of IPV administered intramuscularly and resulted in higher (although not significantly) antibody titers. Intradermal administration had higher a incidence of local side effects (redness and itching) but a similar incidence of systemic side effects and was preferred by study participants over intramuscular administration. Conclusions. A 60% reduction in the standard IPV dose without reduction in antibody titers is possible through intradermal administration. PMID:25567841

  3. Fetal protection against continual exposure to bovine viral diarrhea virus following administration of a vaccine containing an inactivated bovine viral diarrhea virus fraction to cattle.

    PubMed

    Grooms, Daniel L; Bolin, Steven R; Coe, Paul H; Borges, Rafael J; Coutu, Christopher E

    2007-12-01

    To evaluate the efficacy of a commercially available killed bovine viral diarrhea virus (BVDV) vaccine to protect against fetal infection in pregnant cattle continually exposed to cattle persistently infected with the BVDV. 60 crossbred beef heifers and 4 cows persistently infected with BVDV. Beef heifers were allocated to 2 groups. One group was vaccinated twice (21-day interval between the initial and booster vaccinations) with a commercially available vaccine against BVDV, and the other group served as nonvaccinated control cattle. Estrus was induced, and the heifers were bred. Pregnancy was confirmed by transrectal palpation. Four cows persistently infected with BVDV were housed with 30 pregnant heifers (15 each from the vaccinated and nonvaccinated groups) from day 52 to 150 of gestation. Fetuses were then harvested by cesarean section and tested for evidence of BVDV infection. 1 control heifer aborted after introduction of the persistently infected cows. Bovine viral diarrhea virus was isolated from 14 of 14 fetuses obtained via cesarean section from control heifers but from only 4 of 15 fetuses obtained via cesarean section from vaccinated heifers; these proportions differed significantly. A commercially available multivalent vaccine containing an inactivated BVDV fraction significantly reduced the risk of fetal infection with BVDV in heifers continually exposed to cattle persistently infected with BVDV. However, not all vaccinated cattle were protected, which emphasizes the need for biosecurity measures and elimination of cattle persistently infected with BVDV in addition to vaccination within a herd.

  4. Long lasting immunity in chickens induced by a single shot of influenza vaccine prepared from inactivated non-pathogenic H5N1 virus particles against challenge with a highly pathogenic avian influenza virus.

    PubMed

    Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Sakamoto, Ryuichi; Takikawa, Noriyasu; Lin, Zhifeng; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi

    2009-08-20

    An influenza vaccine was prepared from inactivated whole particles of the non-pathogenic strain A/duck/Hokkaido/Vac-1/04 (H5N1) virus using an oil adjuvant containing anhydromannitol-octadecenoate-ether (AMOE). The vaccine was injected intramuscularly into five 4-week-old chickens, and 138 weeks after vaccination, they were challenged intranasally with 100 times 50% chicken lethal dose of the highly pathogenic avian influenza (HPAI) virus A/chicken/Yamaguchi/7/04 (H5N1). All 5 chickens survived without exhibiting clinical signs of influenza, although 2 days post-challenge, 3 vaccinated chickens shed limited titres of viruses in laryngopharyngeal swabs.

  5. Modulation of systemic and mucosal immunity against an inactivated vaccine of Newcastle disease virus by oral co-administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interleukin-18 and interferon-α

    PubMed Central

    RAHMAN, Md. Masudur; UYANGAA, Erdenebelig; HAN, Young Woo; HUR, Jin; PARK, Sang-Youel; LEE, John Hwa; KIM, Koanhoi; EO, Seong Kug

    2014-01-01

    Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to limitations in the efficacy against currently circulating ND viruses, existing vaccination strategies require improvements, and incorporating immunomodulatory cytokines with existing vaccines might be a novel approach. Here, we investigated the systemic and mucosal immunomodulatory properties of oral co-administration of chicken interleukin-18 (chIL-18) and chicken interferon-α (chIFN-α) using attenuated Salmonella enterica serovar Typhimurium on an inactivated ND vaccine. Our results demonstrate that oral administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α provided enhanced systemic and mucosal immune responses, as determined by serum hemagglutination inhibition antibody and NDV Ag-specific IgG as well as NDV Ag-specific IgA in lung and duodenal lavages of chickens immunized with inactivated ND vaccine via the intramuscular or intranasal route. Notably, combined oral administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α significantly enhanced systemic and mucosal immunity in ND-vaccinated chickens, compared to single administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α. In addition, oral co-administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α provided enhanced NDV Ag-specific proliferation of peripheral blood mononuclear cells and Th1-biased cell-mediated immunity, compared to single administration of either construct. Therefore, our results provide valuable insight into the modulation of systemic and mucosal immunity by incorporation of immunomodulatory chIL-18 and chIFN-α using Salmonella vaccines into existing ND vaccines. PMID:25502364

  6. Vaccines today, vaccines tomorrow: a perspective.

    PubMed

    Loucq, Christian

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts.

  7. Protective effects of vaccines against experimental salmonellosis in racing pigeons.

    PubMed

    Uyttebroek, E; Devriese, L A; Gevaert, D; Ducatelle, R; Nelis, J; Haesebrouck, F

    1991-02-16

    Five inactivated and one attenuated vaccine produced for the prevention of salmonellosis in pigeons were compared in an experimental challenge model. The birds were vaccinated according to the recommendations of the manufacturers and they were infected by gavage with a Salmonella typhimurium (var copenhagen) pigeon strain. The challenged control animals showed severe weight loss, excessive water intake over a prolonged period, and excreted large numbers of salmonellae. None of the vaccines fully protected the pigeons, and only an inactivated oil adjuvant vaccine was able to reduce the severity of the clinical signs significantly. Mortality was low and tended to increase with the severity of the clinical signs. These results do not justify the preventive use of salmonella vaccination in pigeons. Nevertheless, the oil adjuvant vaccine may help in the effective cleaning of lofts after an outbreak of salmonellosis.

  8. Immunogenicity and Safety of a Trivalent Inactivated Influenza Vaccine in Children 6 Months to 17 Years of Age, Previously Vaccinated with an AS03-Adjuvanted A(H1N1)Pdm09 Vaccine: Two Open-label, Randomized Trials.

    PubMed

    Vesikari, Timo; Richardus, Jan Hendrik; Berglund, Johan; Korhonen, Tiina; Flodmark, Carl-Erik; Lindstrand, Ann; Silfverdal, Sven Arne; Bambure, Vinod; Caplanusi, Adrian; Dieussaert, Ilse; Roy-Ghanta, Sumita; Vaughn, David W

    2015-07-01

    During the influenza pandemic 2009-2010, an AS03-adjuvanted A(H1N1)pdm09 vaccine was used extensively in children 6 months of age and older, and during the 2010-2011 influenza season, the A(H1N1)pdm09 strain was included in the seasonal trivalent inactivated influenza vaccine (TIV) without adjuvant. We evaluated the immunogenicity and safety of TIV in children previously vaccinated with the AS03-adjuvanted A(H1N1)pdm09 vaccine. Healthy children were randomized (1:1) to receive TIV or a control vaccine. Children were aged 6 months to 9 years (n = 154) and adolescents 10-17 years (n = 77) when they received AS03-adjuvanted A(H1N1)pdm09 vaccine at least 6 months before study enrolment. Hemagglutination inhibition (HI) and neutralizing antibody responses against the A(H1N1)pdm09 strain were evaluated before (day 0) and at day 28 and month 6 after study vaccination. Reactogenicity was assessed during the 7 day postvaccination period, and safety was assessed for 6 months. At day 0, >93.9% of all children had HI titers ≥1:40 for the A(H1N1)pdm09 strain, which increased to 100% at both day 28 and month 6 in the TIV group. Between days 0 and 28, HI antibody geometric mean titers against A(H1N1)pdm09 increased by 9-fold and 4-fold in children 6 months to 9 years of age and 10-17 years of age, respectively. AS03-adjuvanted A(H1N1)pdm09 vaccine-induced robust immune responses in children that persisted into the next season, yet were still boosted by TIV containing A(H1N1)pdm09. The reactogenicity and safety profile of TIV did not appear compromised by prior receipt of AS03-adjuvanted A(H1N1)pdm09 vaccine.

  9. Influenza Vaccine Effectiveness in the United States during the 2015-2016 Season.

    PubMed

    Jackson, Michael L; Chung, Jessie R; Jackson, Lisa A; Phillips, C Hallie; Benoit, Joyce; Monto, Arnold S; Martin, Emily T; Belongia, Edward A; McLean, Huong Q; Gaglani, Manjusha; Murthy, Kempapura; Zimmerman, Richard; Nowalk, Mary P; Fry, Alicia M; Flannery, Brendan

    2017-08-10

    The A(H1N1)pdm09 virus strain used in the live attenuated influenza vaccine was changed for the 2015-2016 influenza season because of its lack of effectiveness in young children in 2013-2014. The Influenza Vaccine Effectiveness Network evaluated the effect of this change as part of its estimates of influenza vaccine effectiveness in 2015-2016. We enrolled patients 6 months of age or older who presented with acute respiratory illness at ambulatory care clinics in geographically diverse U.S. sites. Using a test-negative design, we estimated vaccine effectiveness as (1-OR)×100, in which OR is the odds ratio for testing positive for influenza virus among vaccinated versus unvaccinated participants. Separate estimates were calculated for the inactivated vaccines and the live attenuated vaccine. Among 6879 eligible participants, 1309 (19%) tested positive for influenza virus, predominantly for A(H1N1)pdm09 (11%) and influenza B (7%). The effectiveness of the influenza vaccine against any influenza illness was 48% (95% confidence interval [CI], 41 to 55; P<0.001). Among children 2 to 17 years of age, the inactivated influenza vaccine was 60% effective (95% CI, 47 to 70; P<0.001), and the live attenuated vaccine was not observed to be effective (vaccine effectiveness, 5%; 95% CI, -47 to 39; P=0.80). Vaccine effectiveness against A(H1N1)pdm09 among children was 63% (95% CI, 45 to 75; P<0.001) for the inactivated vaccine, as compared with -19% (95% CI, -113 to 33; P=0.55) for the live attenuated vaccine. Influenza vaccines reduced the risk of influenza illness in 2015-2016. However, the live attenuated vaccine was found to be ineffective among children in a year with substantial inactivated vaccine effectiveness. Because the 2016-2017 A(H1N1)pdm09 strain used in the live attenuated vaccine was unchanged from 2015-2016, the Advisory Committee on Immunization Practices made an interim recommendation not to use the live attenuated influenza vaccine for the 2016-2017 influenza

  10. Newer Vaccines against Mosquito-borne Diseases.

    PubMed

    Aggarwal, Anju; Garg, Neha

    2018-02-01

    Mosquitos are responsible for a number of protozoal and viral diseases. Malaria, dengue, Japanese encephalitis (JE) and chikungunya epidemics occur commonly all over the world, leading to marked mortality and morbidity in children. Zika, Yellow fever and West Nile fever are others requiring prevention. Environmental control and mosquito bite prevention are useful in decreasing the burden of disease but vaccination has been found to be most cost-effective and is the need of the hour. RTS,S/AS01 vaccine is the first malaria vaccine being licensed for use against P. falciparum malaria. Dengvaxia (CYD-TDV) against dengue was licensed first in Mexico in 2015. A Vero-cell derived, inactivated and alum-adjuvanted JE vaccine based on the SA14-14-2 strain was approved in 2009 in North America, Australia and various European countries. It can be used from 2 mo of age. In India, immunization is carried out in endemic regions at 1 y of age. Another inactivated Vero-cell culture derived Kolar strain, 821564XY, JE vaccine is being used in India. Candidate vaccines against dengue, chikungunya and West Nile fever are been discussed. A continued research and development of new vaccines are required for controlling these mosquito-borne diseases.

  11. Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, Michael E.; Adney, William S.; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068). The cellulase is water soluble, possesses both C.sub.1 and C.sub.x types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83.degree. C. at pH's from about 2 to about 9, and in inactivation temperature of about 110.degree. C. at pH's from about 2 to about 9.

  12. Thermostable purified endoglucanase from Acidothermus cellulolyticus ATCC 43068

    DOEpatents

    Himmel, M.E.; Adney, W.S.; Tucker, M.P.; Grohmann, K.

    1994-01-04

    A purified low molecular weight cellulase endoglucanase I having a molecular weight of between about 57,420 to about 74,580 daltons from Acidothermus cellulolyticus (ATCC 43068) is presented. The cellulase is water soluble, possesses both C[sub 1] and C[sub x] types of enzyme activity, a high degree of stability toward heat, and exhibits optimum temperature activity at about 83 C at pH's from about 2 to about 9, and in inactivation temperature of about 110 C at pH's from about 2 to about 9. 7 figures.

  13. Immunogenicity and Safety of the New Inactivated Quadrivalent Influenza Vaccine Vaxigrip Tetra: Preliminary Results in Children ≥6 Months and Older Adults

    PubMed Central

    Montomoli, Emanuele; Torelli, Alessandro; Gianchecchi, Elena

    2018-01-01

    Since the mid-1980s, two lineages of influenza B viruses have been distinguished. These can co-circulate, limiting the protection provided by inactivated trivalent influenza vaccines (TIVs). This has prompted efforts to formulate quadrivalent influenza vaccines (QIVs), to enhance protection against circulating influenza B viruses. This review describes the results obtained from seven phase III clinical trials evaluating the immunogenicity, safety, and lot-to-lot consistency of a new quadrivalent split-virion influenza vaccine (Vaxigrip Tetra®) formulated by adding a second B strain to the already licensed TIV. Since Vaxigrip Tetra was developed by means of a manufacturing process strictly related to that used for TIV, the data on the safety profile of TIV are considered supportive of that of Vaxigrip Tetra. The safety and immunogenicity of Vaxigrip Tetra were similar to those of the corresponding licensed TIV. Moreover, the new vaccine elicits a superior immune response towards the additional strain, without affecting immunogenicity towards the other three strains. Vaxigrip Tetra is well tolerated, has aroused no safety concerns, and is recommended for the active immunization of individuals aged ≥6 months. In addition, preliminary data confirm its immunogenicity and safety even in children aged 6–35 months and its immunogenicity in older subjects (aged 66–80 years). PMID:29518013

  14. Developments in rabies vaccines.

    PubMed

    Hicks, D J; Fooks, A R; Johnson, N

    2012-09-01

    The development of vaccines that prevent rabies has a long and distinguished history, with the earliest preceding modern understanding of viruses and the mechanisms of immune protection against disease. The correct application of inactivated tissue culture-derived vaccines is highly effective at preventing the development of rabies, and very few failures are recorded. Furthermore, oral and parenteral vaccination is possible for wildlife, companion animals and livestock, again using inactivated tissue culture-derived virus. However, rabies remains endemic in many regions of the world and causes thousands of human deaths annually. There also remain no means of prophylaxis for rabies once the virus enters the central nervous system (CNS). One reason for this is the poor immune response within the CNS to infection with rabies virus (RABV). New approaches to vaccination using modified rabies viruses that express components of the innate immune system are being applied to this problem. Preliminary reports suggest that direct inoculation of such viruses could trigger an effective anti-viral response and prevent a fatal outcome from RABV infection. © 2012 Crown copyright. Clinical and Experimental Immunology © 2012 British Society for Immunology.

  15. TolC plays a crucial role in immune protection conferred by Edwardsiella tarda whole-cell vaccines.

    PubMed

    Wang, Chao; Peng, Bo; Li, Hui; Peng, Xuan-Xian

    2016-07-12

    Although vaccines developed from live organisms have better efficacy than those developed from dead organisms, the mechanisms underlying this differential efficacy remain unexplored. In this study, we combined sub-immunoproteomics with immune challenge to investigate the action of the outer membrane proteome in the immune protection conferred by four Edwardsiella tarda whole-cell vaccines prepared via different treatments and to identify protective immunogens that play a key role in this immune protection. Thirteen spots representing five outer membrane proteins and one cytoplasmic protein were identified, and it was found that their abundance was altered in relation with the immune protective abilities of the four vaccines. Among these proteins, TolC and OmpA were found to be the key immunogens conferring the first and second highest degrees of protection, respectively. TolC was detected in the two effective vaccines (live and inactivated-30-F). The total antiserum and anti-OmpA titers were higher for the two effective vaccines than for the two ineffective vaccines (inactivated-80-F and inactivated-100). Further evidence demonstrated that the live and inactivated-30-F vaccines demonstrated stronger abilities to induce CD8+ and CD4+ T cell differentiation than the other two evaluated vaccines. Our results indicate that the outer membrane proteome changes dramatically following different treatments, which contributes to the effectiveness of whole-cell vaccines.

  16. Safety and immunogenicity of a seasonal trivalent inactivated split influenza vaccine: a phase I randomized clinical trial in healthy Serbian adults

    PubMed Central

    Stevanovic, Goran; Lavadinovic, Lidija; Filipovic Vignjevic, Svetlana; Holt, Renée; Ilic, Katarina; Berlanda Scorza, Francesco; Sparrow, Erin; Stoiljkovic, Vera; Torelli, Guido; Madenwald, Tamra; Socquet, Muriel; Barac, Aleksandra; Ilieva-Borisova, Yordanka; Pelemis, Mijomir; Flores, Jorge

    2018-01-01

    ABSTRACT This study was a phase I double-blind, randomized, placebo-controlled trial to evaluate the safety and immunogenicity of a Serbian-produced seasonal trivalent split, inactivated influenza vaccine in healthy adults. The vaccine was manufactured in eggs by the Torlak Institute of Virology, Vaccines and Sera, Belgrade, Serbia and contained A/H1N1, A/H3N2 and B viruses. The clinical trial took place at the Clinical Center of Serbia in Belgrade. Sixty healthy volunteers, aged 18–45 years, were enrolled in the trial. On the day of immunization, volunteers were randomly assigned to receive either a single dose of the trivalent seasonal influenza vaccine (15 μg of hemagglutinin per strain) or placebo (phosphate-buffered saline). Subjects were monitored for adverse events through a clinical history and physical examination, and blood was taken for testing at screening and on day 8 to assess vaccine safety. Serum samples obtained before and 21 days after immunization were tested for influenza antibody titers using hemagglutination-inhibition (HAI) and microneutralization (MN) tests. No serious adverse events were reported. Pain and tenderness at the injection site were the most commonly reported symptoms in both vaccine and placebo groups. Overall, serum HAI responses of fourfold or greater magnitude were observed to H1, H3, and B antigen in 80%, 75%, and 70% of subjects, respectively. Seroprotection rates as measured by HAI were also high (100%, 100% and 86.67%, respectively, for H1, H3 and B). Thus, Torlak's seasonal trivalent influenza vaccine was not associated with adverse events, was well-tolerated and immunogenic. It should be further evaluated in clinical trials to provide sufficient safety and immunogenicity data for licensing in Serbia. PMID:29239682

  17. Alternative Inactivated Poliovirus Vaccines Adjuvanted with Quillaja brasiliensis or Quil-A Saponins Are Equally Effective in Inducing Specific Immune Responses

    PubMed Central

    de Costa, Fernanda; Yendo, Anna Carolina A.; Cibulski, Samuel P.; Fleck, Juliane D.; Roehe, Paulo M.; Spilki, Fernando R.; Gosmann, Grace; Fett-Neto, Arthur G.

    2014-01-01

    Inactivated polio vaccines (IPV) have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV). An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE) and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control), Quil-A (50 µg), AE (400 µg) or QB-90 (50 µg). Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A. PMID:25148077

  18. Time to Change Dosing of Inactivated Quadrivalent Influenza Vaccine in Young Children: Evidence From a Phase III, Randomized, Controlled Trial

    PubMed Central

    Jain, Varsha K.; Domachowske, Joseph B.; Wang, Long; Ofori-Anyinam, Opokua; Rodríguez-Weber, Miguel A.; Leonardi, Michael L.; Klein, Nicola P.; Schlichter, Gary; Jeanfreau, Robert; Haney, Byron L.; Chu, Laurence; Harris, Jo-Ann S.; Sarpong, Kwabena O.; Micucio, Amanda C.; Soni, Jyoti; Chandrasekaran, Vijayalakshmi; Li, Ping

    2017-01-01

    Abstract Background. Children under 3 years of age may benefit from a double-dose of inactivated quadrivalent influenza vaccine (IIV4) instead of the standard-dose. Methods. We compared the only United States-licensed standard-dose IIV4 (0.25 mL, 7.5 µg hemagglutinin per influenza strain) versus double-dose IIV4 manufactured by a different process (0.5 mL, 15 µg per strain) in a phase III, randomized, observer-blind trial in children 6–35 months of age (NCT02242643). The primary objective was to demonstrate immunogenic noninferiority of the double-dose for all vaccine strains 28 days after last vaccination. Immunogenic superiority of the double-dose was evaluated post hoc. Immunogenicity was assessed in the per-protocol cohort (N = 2041), and safety was assessed in the intent-to-treat cohort (N = 2424). Results. Immunogenic noninferiority of double-dose versus standard-dose IIV4 was demonstrated in terms of geometric mean titer (GMT) ratio and seroconversion rate difference. Superior immunogenicity against both vaccine B strains was observed with double-dose IIV4 in children 6–17 months of age (GMT ratio = 1.89, 95% confidence interval [CI] = 1.64–2.17, B/Yamagata; GMT ratio = 2.13, 95% CI = 1.82–2.50, B/Victoria) and in unprimed children of any age (GMT ratio = 1.85, 95% CI = 1.59–2.13, B/Yamagata; GMT ratio = 2.04, 95% CI = 1.79–2.33, B/Victoria). Safety and reactogenicity, including fever, were similar despite the higher antigen content and volume of the double-dose IIV4. There were no attributable serious adverse events. Conclusions. Double-dose IIV4 may improve protection against influenza B in some young children and simplifies annual influenza vaccination by allowing the same vaccine dose to be used for all eligible children and adults. PMID:28062552

  19. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species

    PubMed Central

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Background: Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Material & Methods: Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Results: Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Conclusion: Cross

  20. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species.

    PubMed

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Cross-neutralizing activities partly correlate with the

  1. Oral Administration of Electron-Beam Inactivated Rhodococcus equi Failed to Protect Foals against Intrabronchial Infection with Live, Virulent R. equi

    PubMed Central

    Rocha, Joana N.; Cohen, Noah D.; Bordin, Angela I.; Brake, Courtney N.; Giguère, Steeve; Coleman, Michelle C.; Alaniz, Robert C.; Lawhon, Sara D.; Mwangi, Waithaka; Pillai, Suresh D.

    2016-01-01

    There is currently no licensed vaccine that protects foals against Rhodococcus equi–induced pneumonia. Oral administration of live, virulent R. equi to neonatal foals has been demonstrated to protect against subsequent intrabronchial challenge with virulent R. equi. Electron beam (eBeam)-inactivated R. equi are structurally intact and have been demonstrated to be immunogenic when administered orally to neonatal foals. Thus, we investigated whether eBeam inactivated R. equi could protect foals against developing pneumonia after experimental infection with live, virulent R. equi. Foals (n = 8) were vaccinated by gavaging with eBeam-inactivated R. equi at ages 2, 7, and 14 days, or gavaged with equal volume of saline solution (n = 4), and subsequently infected intrabronchially with live, virulent R. equi at age 21 days. The proportion of vaccinated foals that developed pneumonia following challenge was similar among the vaccinated (7/8; 88%) and unvaccinated foals (3/4; 75%). This vaccination regimen did not appear to be strongly immunogenic in foals. Alternative dosing regimens or routes of administration need further investigation and may prove to be immunogenic and protective. PMID:26828865

  2. Immune responses to in ovo vaccine formulations containing inactivated fowl adenovirus 8b with poly[di(sodium carboxylatoethylphenoxy)]phosphazene (PCEP) and avian beta defensin as adjuvants in chickens.

    PubMed

    Sarfraz, Mishal; Suleman, Muhammed; Tikoo, Suresh K; Wheler, Colette; Potter, Andrew A; Gerdts, Volker; Dar, Arshud

    2017-02-07

    Inclusion body hepatitis (IBH) is one of the major viral infections causing substantial economic loss to the global poultry industry. The disease is characterized by a sudden onset of mortality (2-30%) and high morbidity (60-70%). IBH is caused by a number of serotypes of fowl adenovirus with substantially low levels of serotype cross protection. Thus far, there is no effective and safe vaccine commercially available in the North America for the control of IBH in chickens. Poly[di(sodium carboxylatoethylphenoxy)]phosphazene (PCEP) is a high molecular weight, biodegradable water soluble polymer that has been well characterized as a safe and effective adjuvant for a number of experimental veterinary vaccines. Similarly, host defence peptides, including β-defensins, have also been shown to exhibit strong adjuvant potential. In this study, we evaluated the adjuvant activity of PCEP and avian beta defensin (ABD) in a vaccine formulation containing inactivated fowl adenovirus (FAdV) serotype 8b administered in ovo. Our data showed that a combination of PCEP and inactivated virus is capable of inducing a robust and long lasting antibody response. Moreover, significant enhancement of IFN-γ, IFN-α, IL-12(p40) and IL-6 gene expression under the influence of PCEP suggests that as an in ovo adjuvant PCEP has the ability to activate a substantial balanced immune response in chickens. To our knowledge, these are the first studies in which PCEP and ABD have been characterized as adjuvants for the development of an in ovo poultry vaccine. It is expected that these preliminary studies will be helpful in the development of safer and more effective in ovo vaccine against IBH and other infectious diseases affecting chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The challenge of changing the inactivated poliomyelitis vaccine in Latin America: declaration of the Latin American Society of Pediatric Infectious Diseases (SLIPE).

    PubMed

    Falleiros-Arlant, Luiza Helena; Avila-Agüero, María Luisa; Brea del Castillo, José; Mariño, Cristina

    2014-10-01

    Even though we have already covered 99% of the path to eradicate poliomyelitis from the world, this disease is still causing paralysis in children. Its eradication means not only the end of wild poliovirus circulation, but vaccine-derived poliovirus circulation as well. Taking into account different factors such as: current epidemiological data, adverse events of the attenuated oral poliomyelitis vaccine (OPV), the availability of an injectable inactivated vaccine (IPV) without the potential of causing the severe adverse events of the oral vaccine (OPV), the efficacy and effectiveness of the IPV in several countries of the world where it has been used for several years, the rationale of changing the vaccination schedule in different Latin American countries; the Latin American Society of Pediatric Infectious Diseases (SLIPE) announces its recommendation of switching to IPV in Latin America, by this Declaration, with an Action Plan for 2014-2015 period as regards vaccination against polio policies in Latin America. 1. The optimal proposed schedule consists of four IPV doses (three doses in the primary schedule plus a booster dose), whether IPV is combined or not with other indicated vaccines in the immunization program of the country. During the OPV to IPV transition phase, an alternative schedule is acceptable; 2. Countries should set optimal strategies in order to maintain and improve vaccination coverage, and implement a nominal immunization registry; 3. Improving the Epidemiological Surveillance of Acute Flaccid Paralysis (AFP) and setting up an environmental surveillance program; 4. Setting up strategies for introducing IPV in National Immunization Programs, such as communicating properly with the population, among others; 5. Bringing scientific societies closer to decision makers; 6. Ensuring optimal supply and prices for IPV introduction; 7. Training vaccination teams; 8. Enhancing the distribution and storing logistics of vaccines. In addition to the

  4. A Caprine Herpesvirus 1 Vaccine Adjuvanted with MF59™ Protects against Vaginal Infection and Interferes with the Establishment of Latency in Goats

    PubMed Central

    Marinaro, Mariarosaria; Rezza, Giovanni; Del Giudice, Giuseppe; Colao, Valeriana; Tarsitano, Elvira; Camero, Michele; Losurdo, Michele; Buonavoglia, Canio; Tempesta, Maria

    2012-01-01

    The immunogenicity and the efficacy of a beta-propiolactone-inactivated caprine herpesvirus 1 (CpHV-1) vaccine adjuvanted with MF59™ were tested in goats. Following two subcutaneous immunizations, goats developed high titers of CpHV-1-specific serum and vaginal IgG and high serum virus neutralization (VN) titers. Peripheral blood mononuclear cells (PBMC) stimulated in vitro with inactivated CpHV-1 produced high levels of soluble IFN-gamma and exhibited high frequencies of IFN-gamma producing cells while soluble IL-4 was undetectable. On the other hand, control goats receiving the inactivated CpHV-1 vaccine without adjuvant produced only low serum antibody responses. A vaginal challenge with virulent CpHV-1 was performed in all vaccinated goats and in naïve goats to assess the efficacy of the two vaccines. Vaginal disease was not detected in goats vaccinated with inactivated CpHV-1 plus MF59™ and these animals had undetectable levels of infectious challenge virus in their vaginal washes. Goats vaccinated with inactivated CpHV-1 in the absence of adjuvant exhibited a less severe disease when compared to naïve goats but shed titers of challenge virus that were similar to those of naïve goats. Detection and quantitation of latent CpHV-1 DNA in sacral ganglia in challenged goats revealed that the inactivated CpHV-1 plus MF59™ vaccine was able to significantly reduce the latent viral load when compared either to the naïve goats or to the goats vaccinated with inactivated CpHV-1 in the absence of adjuvant. Thus, a vaccine composed of inactivated CpHV-1 plus MF59™ as adjuvant was strongly immunogenic and induced effective immunity against vaginal CpHV-1 infection in goats. PMID:22511971

  5. Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV.

    PubMed

    Bakker, Wilfried A M; Thomassen, Yvonne E; van't Oever, Aart G; Westdijk, Janny; van Oijen, Monique G C T; Sundermann, Lars C; van't Veld, Peter; Sleeman, Eelco; van Nimwegen, Fred W; Hamidi, Ahd; Kersten, Gideon F A; van den Heuvel, Nico; Hendriks, Jan T; van der Pol, Leo A

    2011-09-22

    Industrial-scale inactivated polio vaccine (IPV) production dates back to the 1960s when at the Rijks Instituut voor de Volksgezondheid (RIV) in Bilthoven a process was developed based on micro-carrier technology and primary monkey kidney cells. This technology was freely shared with several pharmaceutical companies and institutes worldwide. In this contribution, the history of one of the first cell-culture based large-scale biological production processes is summarized. Also, recent developments and the anticipated upcoming shift from regular IPV to Sabin-IPV are presented. Responding to a call by the World Health Organization (WHO) for new polio vaccines, the development of Sabin-IPV was continued, after demonstrating proof of principle in the 1990s, at the Netherlands Vaccine Institute (NVI). Development of Sabin-IPV plays an important role in the WHO polio eradication strategy as biocontainment will be critical in the post-OPV cessation period. The use of attenuated Sabin strains instead of wild-type Salk polio strains will provide additional safety during vaccine production. Initially, the Sabin-IPV production process will be based on the scale-down model of the current, and well-established, Salk-IPV process. In parallel to clinical trial material production, process development, optimization and formulation research is being carried out to further optimize the process and reduce cost per dose. Also, results will be shown from large-scale (to prepare for future technology transfer) generation of Master- and Working virus seedlots, and clinical trial material (for phase I studies) production. Finally, the planned technology transfer to vaccine manufacturers in low and middle-income countries is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Comparison of the Immunogenicity of Various Booster Doses of Inactivated Polio Vaccine Delivered Intradermally Versus Intramuscularly to HIV-Infected Adults.

    PubMed

    Troy, Stephanie B; Kouiavskaia, Diana; Siik, Julia; Kochba, Efrat; Beydoun, Hind; Mirochnitchenko, Olga; Levin, Yotam; Khardori, Nancy; Chumakov, Konstantin; Maldonado, Yvonne

    2015-06-15

    Inactivated polio vaccine (IPV) is necessary for global polio eradication because oral polio vaccine can rarely cause poliomyelitis as it mutates and may fail to provide adequate immunity in immunocompromised populations. However, IPV is unaffordable for many developing countries. Intradermal IPV shows promise as a means to decrease the effective dose and cost of IPV, but prior studies, all using 20% of the standard dose used in intramuscular IPV, resulted in inferior antibody titers. We randomly assigned 231 adults with well-controlled human immunodeficiency virus infection at a ratio of 2:2:2:1 to receive 40% of the standard dose of IPV intradermally, 20% of the standard dose intradermally, the full standard dose intramuscularly, or 40% of the standard dose intramuscularly. Intradermal vaccination was done using the NanoPass MicronJet600 microneedle device. Baseline immunity was 87%, 90%, and 66% against poliovirus serotypes 1, 2, and 3, respectively. After vaccination, antibody titers increased a median of 64-fold. Vaccine response to 40% of the standard dose administered intradermally was comparable to that of the standard dose of IPV administered intramuscularly and resulted in higher (although not significantly) antibody titers. Intradermal administration had higher a incidence of local side effects (redness and itching) but a similar incidence of systemic side effects and was preferred by study participants over intramuscular administration. A 60% reduction in the standard IPV dose without reduction in antibody titers is possible through intradermal administration. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Mass immunization with inactivated polio vaccine in conflict zones--Experience from Borno and Yobe States, North-Eastern Nigeria.

    PubMed

    Shuaibu, Faisal M; Birukila, Gerida; Usman, Samuel; Mohammed, Ado; Galway, Michael; Corkum, Melissa; Damisa, Eunice; Mkanda, Pascal; Mahoney, Frank; Wa Nganda, Gatei; Vertefeuille, John; Chavez, Anna; Meleh, Sule; Banda, Richard; Some, Almai; Mshelia, Hyelni; Umar, Al-Umra; Enemaku, Ogu; Etsano, Andrew

    2016-02-01

    The use of Inactivated Polio Vaccine (IPV) in routine immunization to replace Oral Polio Vaccine (OPV) is crucial in eradicating polio. In June 2014, Nigeria launched an IPV campaign in the conflict-affected states of Borno and Yobe, the largest ever implemented in Africa. We present the initiatives and lessons learned. The 8-day event involved two parallel campaigns. OPV target age was 0-59 months, while IPV targeted all children aged 14 weeks to 59 months. The Borno state primary health care agency set up temporary health camps for the exercise and treated minor ailments for all. The target population for the OPV campaign was 685,674 children in Borno and 113,774 in Yobe. The IPV target population for Borno was 608,964 and for Yobe 111,570. OPV coverage was 105.1 per cent for Borno and 103.3 per cent for Yobe. IPV coverage was 102.9 per cent for Borno and 99.1 per cent for Yobe. (Where we describe coverage as greater than 100 per cent, this reflects original underestimates of the target populations.) A successful campaign and IPV immunization is viable in conflict areas.

  8. Development of a freeze-stable formulation for vaccines containing aluminum salt adjuvants.

    PubMed

    Braun, LaToya Jones; Tyagi, Anil; Perkins, Shalimar; Carpenter, John; Sylvester, David; Guy, Mark; Kristensen, Debra; Chen, Dexiang

    2009-01-01

    Vaccines containing aluminum salt adjuvants are prone to inactivation following exposure to freeze-thaw stress. Many are also prone to inactivation by heat. Thus, for maximum potency, these vaccines must be maintained at temperatures between 2 degrees C and 8 degrees C which requires the use of the cold chain. Nevertheless, the cold chain is not infallible. Vaccines are subject to freezing during both transport and storage, and frozen vaccines are discarded (under the best circumstances) or inadvertently administered despite potentially reduced potency. Here we describe an approach to minimize our reliance on the proper implementation of the cold chain to protect vaccines from freeze-thaw inactivation. By including PEG 300, propylene glycol, or glycerol in a hepatitis B vaccine, particle agglomeration, changes in the fluorescence emission spectrum--indicative of antigen tertiary structural changes--and losses of in vitro and in vivo indicators of potency were prevented following multiple exposures to -20 degrees C. The effect of propylene glycol was examined in more detail and revealed that even at concentrations too low to prevent freezing at -10 degrees C, -20 degrees C, and -80 degrees C, damage to the vaccine could be prevented. A pilot study using two commercially available diphtheria, tetanus toxoid, and acellular pertussis (DTaP) vaccines suggested that the same stabilizers might protect these vaccines from freeze-thaw agglomeration as well. It remains to be determined if preventing agglomeration of DTaP vaccines preserves their antigenic activity following freeze-thaw events.

  9. A comparative study on the immunogenicity, safety and tolerance of purified duck embryo vaccine (PDEV) manufactured in India (Vaxirab) and Switzerland (Lyssavac-N): a randomized simulated post-exposure study in healthy volunteers.

    PubMed

    Mahendra, Bangalore Jayakrishnappa; Madhusudana, Shampur Narayan; Ashwathnarayana, Doddabele Hanumanthaiah; Sampath, Gadey; datta, Soma Subhra; Sudarshan, Mysore Kalappa; Venkatesh, Gonibeedu Manjunatah; Muhamuda, Kader; Bilagumba, Gangaboraiah; Shamanna, Manjula

    2007-12-05

    Purified duck embryo vaccine (PDEV, Vaxirab) for rabies prophylaxis is now indigenously manufactured in India under technology transfer from Berna Biotech who made the original PDEV (Lyssavac). In the present study we have compared the two vaccines in terms of safety, immunogenicity and tolerance. The study was conducted in 220 adult healthy volunteers. It was observed that both vaccines produced neutralizing antibody titers (as determined by rapid fluorescent focus inhibition test, RFFIT) more than 0.5 IU/mL (minimum level for seroconversion) on all days tested but the titers on days 90 and 180 were significantly higher with Lyssavac. The adverse reactions produced were slightly more with Lysssavac but both vaccines were well tolerated. In conclusion, the indigenously produced PDEV (Vaxirab) was found to be equally safe and immunogenic as the original PDEV (Lyssavac) manufactured at Switzerland.

  10. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination

    PubMed Central

    Martin, Judith M.; Gross, F. Liaini; Jefferson, Stacie; Cole, Kelly Stefano; Archibald, Crystal Ann; Nowalk, Mary Patricia; Susick, Michael; Moehling, Krissy; Spencer, Sarah; Chung, Jessie R.; Flannery, Brendan; Zimmerman, Richard K.

    2016-01-01

    Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure. PMID:27558294

  11. Immunogenicity, safety and antibody persistence of a purified vero cell cultured rabies vaccine (Speeda) administered by the Zagreb regimen or Essen regimen in post-exposure subjects.

    PubMed

    Shi, Nianmin; Zhang, Yibin; Zheng, Huizhen; Zhu, Zhenggang; Wang, Dingming; Li, Sihai; Li, Yuhua; Yang, Liqing; Zhang, Junnan; Bai, Yunhua; Lu, Qiang; Zhang, Zheng; Luo, Fengji; Yu, Chun; Li, Li

    2017-06-03

    To compare the safety, immunogenicity and long-term effect of a purified vero cell cultured rabies vaccine in post-exposure subjects following 2 intramuscular regimens, Zagreb or Essen regimen. Serum samples were collected before vaccination and on days 7, 14, 42, 180 and 365 post vaccination. Solicited adverse events were recorded for 7 d following each vaccine dose, and unsolicited adverse events throughout the entire study period. This study was registered with ClinicalTrials.gov (NCT01821911 and NCT01827917). No serious adverse events were reported. Although Zagreb regimen had a higher incidence of adverse reactions than Essen regimen at the first and second injection, the incidence was similar at the third and fourth injection between these 2 groups as well. At day 42, 100% subjects developed adequate rabies virus neutralizing antibody concentrations (≥ 0.5IU/ml) for both regimens. At days 180 and 365, the antibody level decreased dramatically, however, the percentage of subjects with adequate antibody concentrations still remained high (above 75% and 50% respectively). None of confirmed rabies virus exposured subjects had rabies one year later, and percentage of subjects with adequate antibody concentrations reached 100% at days 14 and 42. Rabies post-exposure prophylaxis vaccination with PVRV following a Zagreb regimen had a similar safety, immunogenicity and long-term effect to the Essen regimen in China.

  12. Immunogenicity, safety and antibody persistence of a purified vero cell cultured rabies vaccine (Speeda) administered by the Zagreb regimen or Essen regimen in post-exposure subjects

    PubMed Central

    Shi, Nianmin; Zhang, Yibin; Zheng, Huizhen; Zhu, Zhenggang; Wang, Dingming; Li, Sihai; Li, Yuhua; Yang, Liqing; Zhang, Junnan; Bai, Yunhua; Lu, Qiang; Zhang, Zheng; Luo, Fengji; Yu, Chun; Li, Li

    2017-01-01

    ABSTRACT Aim: To compare the safety, immunogenicity and long-term effect of a purified vero cell cultured rabies vaccine in post-exposure subjects following 2 intramuscular regimens, Zagreb or Essen regimen. Methods: Serum samples were collected before vaccination and on days 7, 14, 42, 180 and 365 post vaccination. Solicited adverse events were recorded for 7 d following each vaccine dose, and unsolicited adverse events throughout the entire study period. This study was registered with ClinicalTrials.gov (NCT01821911 and NCT01827917). Results: No serious adverse events were reported. Although Zagreb regimen had a higher incidence of adverse reactions than Essen regimen at the first and second injection, the incidence was similar at the third and fourth injection between these 2 groups as well. At day 42, 100% subjects developed adequate rabies virus neutralizing antibody concentrations (≥ 0.5IU/ml) for both regimens. At days 180 and 365, the antibody level decreased dramatically, however, the percentage of subjects with adequate antibody concentrations still remained high (above 75% and 50% respectively). None of confirmed rabies virus exposured subjects had rabies one year later, and percentage of subjects with adequate antibody concentrations reached 100% at days 14 and 42. Conclusions: Rabies post-exposure prophylaxis vaccination with PVRV following a Zagreb regimen had a similar safety, immunogenicity and long-term effect to the Essen regimen in China. PMID:28121231

  13. [The effect of aluminum adjuvant and immunization schedule on immunogenicity of Sabin inactivated poliovirus vaccine].

    PubMed

    Wang, Fang; Zhang, Ming; Xie, Bing-Feng; Cao, Han; Tong, Shao-Yong; Wang, Jun-Rong; Yu, Xiao-Ping; Tang, Yang; Yang, Jing-Ran; Sun, Ming-Bo

    2013-04-01

    To study the effect of aluminume adjuvant and immunization schedule on immunogenicity of Sabin inactivated poliovirus vaccine. Four batches of Sabin IPV were produced by different concentrations of type 1, 2, and 3 poliovirus and administrated on three-dose schedule at 0, 1, 2 months and 0, 2, 4 months on rats. Serum samples were collected one month after each dose and neutralizing antibody titers against three types poliovirus were determined by micro-neutralization assay. The GMTs of neutralizing antibodies against three types poliovirus increased significantly and the seropositivity rates were 100% in all groups after 3 doses. There was no significant difference between two immunization schedules, and the 0, 2, 4 month schedule could induce higher level neutralizing antibody compared to the 0, 1, 2 month schedule. The groups with aluminum adjuvant could induce higher level neutralizing antibody compared to the groups without adjuvant. Aluminum djuvant and immunization schedule could improve the immunogenicity of Sabin IPV.

  14. Immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine in infants: a comparative, observer-blind, randomised, controlled trial.

    PubMed

    Sáez-Llorens, Xavier; Clemens, Ralf; Leroux-Roels, Geert; Jimeno, José; Clemens, Sue Ann Costa; Weldon, William C; Oberste, M Steven; Molina, Natanael; Bandyopadhyay, Ananda S

    2016-03-01

    Following the proposed worldwide switch from trivalent oral poliovirus vaccine (tOPV) to bivalent types 1 and 3 OPV (bOPV) in 2016, inactivated poliovirus vaccine (IPV) will be the only source of protection against poliovirus type 2. With most countries opting for one dose of IPV in routine immunisation schedules during this transition because of cost and manufacturing constraints, optimisation of protection against all poliovirus types will be a priority of the global eradication programme. We assessed the immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine (mIPV2HD) in infants. This observer-blind, comparative, randomised controlled trial was done in a single centre in Panama. We enrolled healthy infants who had not received any previous vaccination against poliovirus. Infants were randomly assigned (1:1) by computer-generated randomisation sequence to receive a single dose of either mIPV2HD or standard trivalent IPV given concurrently with a third dose of bOPV at 14 weeks of age. At 18 weeks, all infants were challenged with one dose of monovalent type 2 OPV (mOPV2). Primary endpoints were seroconversion and median antibody titres to type 2 poliovirus 4 weeks after vaccination with mIPV2HD or IPV; and safety (as determined by the proportion and nature of serious adverse events and important medical events for 8 weeks after vaccination). The primary immunogenicity analyses included all participants for whom a post-vaccination blood sample was available. All randomised participants were included in the safety analyses. This trial is registered with ClinicalTrials.gov, number NCT02111135. Between April 14 and May 9, 2014, 233 children were enrolled and randomly assigned to receive mIPV2HD (117 infants) or IPV (116 infants). 4 weeks after vaccination with mIPV2HD or IPV, seroconversion to poliovirus type 2 was recorded in 107 (93·0%, 95% CI 86·8-96·9) of 115 infants in the mIPV2HD group compared with 86 (74·8%, 65·8

  15. Vaccination of cattle against bovine viral diarrhea virus.

    PubMed

    Newcomer, Benjamin W; Chamorro, Manuel F; Walz, Paul H

    2017-07-01

    Bovine viral diarrhea virus (BVDV) is responsible for significant losses to the cattle industry. Currently, modified-live viral (MLV) and inactivated viral vaccines are available against BVDV, often in combination with other viral and bacterial antigens. Inactivated and MLV vaccines provide cattle producers and veterinarians safe and efficacious options for herd immunization to limit disease associated with BVDV infection. Vaccination of young cattle against BVDV is motivated by prevention of clinical disease and limiting viral spread to susceptible animals. For reproductive-age cattle, vaccination to prevent viremia and birth of persistently infected offspring is considered more important, while also more difficult to achieve than prevention of clinical disease. Recent advances have been made in the understanding of BVDV vaccine efficacy. In terms of preventing clinical disease, current BVDV vaccines have been demonstrated to have a rapid onset of immunity and MLV vaccines can be effectively utilized in calves possessing maternal immunity. For reproductive protection, more recent studies using multivalent MLV vaccines have demonstrated consistent fetal protection rates in the range of 85-100% in experimental studies. Proper timing and administration of BVDV vaccines can be utilized to maximize vaccine efficacy to provide an important contribution to reducing risks associated with BVDV infection. With improvements in vaccine formulations and increased understanding of the protective immune response following vaccination, control of BVDV through vaccination can be enhanced. Copyright © 2017. Published by Elsevier B.V.

  16. Vaccination of black-footed ferret (Mustela nigripes) x Siberian polecat (M. eversmanni) hybrids and domestic ferrets (M. putorius furo)against canine distemper.

    PubMed

    Williams, E S; Anderson, S L; Cavender, J; Lynn, C; List, K; Hearn, C; Appel, M J

    1996-07-01

    An inactivated canine distemper vaccine with adjuvant and a modified-live virus (MLV) vaccine were evaluated using black-footed ferret (Mustegla nigripes) x Siberian polecat (Mustela eversmanni) hybrids us surrogates for endangered black-footed ferrets. For comparative purposes, we also vaccinated domestic ferrets (Mustela putorius furo) with the MLV vaccine. Response to vaccination was measured by clinical observation, hematology, dynamics of serum virus neutralizing antibodies, and challenge with virulent canine distemper virus. No clinical signs attributable to the vaccines were observed. Transient leukopenia occurred in hybrid ferrets that received MLV vaccine and there was marked lymphopenia for approximately 52 days post-vaccination. Lymphopenia was present for approximately 21 days in domestic ferrets vaccinated with MLV vaccine. Neutralizing antibodies against canine distemper virus were detected 14 days post-vaccination in hybrids receiving MLV vaccine and most titers were > 1:1024 for the 791 days of the study. Antibody titers in hybrids vaccinated with the inactivated vaccine were significantly lower. All eight hybrid ferrets that received MLV vaccine survived challenge with virulent canine distemper virus without clinical disease. However, one of seven hybrids vaccinated with the inactivated vaccine developed canine distemper and was euthanized; two other hybrids became clinically ill but survived. The MLV vaccine may be useful in prevention of canine distemper in black-footed ferrets, but until additional studies of efficacy and safety are completed, use of the inactivated vaccine is appropriate.

  17. A Novel M2e Based Flu Vaccine Formulation for Dogs

    PubMed Central

    Leclerc, Denis; Rivest, Marie; Babin, Cindy; López-Macias, Constantino; Savard, Pierre

    2013-01-01

    Background The USA 2004 influenza virus outbreak H3N8 in dogs heralded the emergence of a new disease in this species. A new inactivated H3N8 vaccine was developed to control the spread of the disease but, as in humans and swine, it is anticipated that the virus will mutate shift and drift in the dog population. Therefore, there is a need for a vaccine that can trigger a broad protection to prevent the spread of the virus and the emergence of new strains. Methodology and Principal Findings The universal M2e peptide is identical in almost all the H3N8 influenza strains sequenced to date and known to infect dogs. This epitope is therefore a good choice for development of a vaccine to provide broad protection. Malva mosaic virus (MaMV) nanoparticles were chosen as a vaccine platform to improve the stability of the M2e peptide and increase its immunogenicity in animals. The addition of an adjuvant (OmpC) purified from Salmonella typhi membrane in the vaccine formulation increased the immune response directed to the M2e peptide significantly and enlarged the protection to include the heterosubtypic strain of influenza in a mouse model. An optimal vaccine formulation was also shown to be immunogenic in dogs. Conclusions and Significance The MaMV vaccine platform triggered an improved immune response directed towards the universal M2e peptide. The adjuvant OmpC increased the immune response to the M2e peptide and protection to a heterosubtypic influenza strain that harbors a different M2e peptide in a mouse model. Antibodies generated by the vaccine formulation showed cross-reactivity with M2e peptides derived from influenza strains H9N2, H5N1 and H1N1. The vaccine formulation shows a potential for commercialization of a new M2e based vaccine in dogs. PMID:24098576

  18. Influenza symptoms and their impact on elderly adults: randomised trial of AS03-adjuvanted or non-adjuvanted inactivated trivalent seasonal influenza vaccines

    PubMed Central

    van Essen, Gerrit A; Beran, Jiri; Devaster, Jeanne-Marie; Durand, Christelle; Duval, Xavier; Esen, Meral; Falsey, Ann R; Feldman, Gregory; Gervais, Pierre; Innis, Bruce L; Kovac, Martina; Launay, Odile; Leroux-Roels, Geert; McElhaney, Janet E; McNeil, Shelly; Oujaa, Mohammed; Richardus, Jan Hendrik; Ruiz-Palacios, Guillermo; Osborne, Richard H; Oostvogels, Lidia

    2014-01-01

    Background Patient-reported outcomes (PROs) are particularly relevant in influenza vaccine trials in the elderly where reduction in symptom severity could prevent illness-related functional impairment. Objectives To evaluate PROs in people aged ≥65 years receiving two different vaccines. Methods This was a phase III, randomised, observer-blind study (NCT00753272) of the AS03-adjuvanted inactivated trivalent split-virion influenza vaccine (AS03-TIV) versus non-adjuvanted vaccine (TIV). Using the FluiiQ questionnaire, symptom (systemic, respiratory, total) and life impact (activities, emotions, relationships) scores were computed as exploratory endpoints, with minimal important difference (MID) in influenza severity between vaccines considered post-hoc as >7%. Vaccine efficacy of AS03-TIV relative to TIV in severe influenza (hospitalisation, complication, most severe one-third of episodes based on the area under the curve for systemic symptom score) was calculated post-hoc. The main analyses (descriptive) were conducted in the according-to-protocol cohort (n = 280 AS03-TIV, n = 315 TIV) for influenza confirmed by culture or reverse transcriptase polymerase chain reaction. Results Mean systemic symptom, total symptom and impact on activities scores were lower with AS03-TIV versus TIV. Mean respiratory symptom, impact on emotions and impact on relationships scores were similar. Influenza tended to be less severe with AS03-TIV, but the MID was reached only for impact on activities (mean 9·0%). Relative vaccine efficacy in severe influenza was 29·38% (95% CI: 7·60–46·02). Conclusions AS03-TIV had advantages over TIV in impact on systemic symptoms and activities as measured by the FluiiQ in elderly people. Higher efficacy of AS03-TIV relative to TIV was shown for prevention of severe illness. PMID:24702710

  19. Production of EV71 vaccine candidates

    PubMed Central

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-01-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211–225 of VP1 formulated with Freund’s adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the

  20. Production of EV71 vaccine candidates.

    PubMed

    Chong, Pele; Hsieh, Shih-Yang; Liu, Chia-Chyi; Chou, Ai-Hsiang; Chang, Jui-Yuan; Wu, Suh-Chin; Liu, Shih-Jen; Chow, Yen-Hung; Su, Ih-Jen; Klein, Michel

    2012-12-01

    Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211-225 of VP1 formulated with Freund's adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most

  1. Viruses - from pathogens to vaccine carriers.

    PubMed

    Small, Juliana C; Ertl, Hildegund C J

    2011-10-01

    Vaccination is mankind's greatest public health success story. By now vaccines to many of the viruses that once caused fatal childhood diseases are routinely used throughout the world. Traditional methods of vaccine development through inactivation or attenuation of viruses have failed for some of the most deadly human pathogens, necessitating new approaches. Genetic modification of viruses not only allows for their attenuation but also for incorporation of sequences from other viruses, turning one pathogen into a vaccine carrier for another. Recombinant viruses have pros and cons as vaccine carriers, as discussed below using vectors based on adenovirus, herpesvirus, flavivirus, and rhabdovirus as examples.

  2. Intestinal Immune Responses to Type 2 Oral Polio Vaccine (OPV) Challenge in Infants Previously Immunized With Bivalent OPV and Either High-Dose or Standard Inactivated Polio Vaccine.

    PubMed

    Brickley, Elizabeth B; Strauch, Carolyn B; Wieland-Alter, Wendy F; Connor, Ruth I; Lin, Shu; Weiner, Joshua A; Ackerman, Margaret E; Arita, Minetaro; Oberste, M Steven; Weldon, William C; Sáez-Llorens, Xavier; Bandyopadhyay, Ananda S; Wright, Peter F

    2018-01-17

    The impact of inactivated polio vaccines (IPVs) on intestinal mucosal immune responses to live poliovirus is poorly understood. In a 2014 phase 2 clinical trial, Panamanian infants were immunized at 6, 10, and 14 weeks of age with bivalent oral polio vaccine (bOPV) and randomized to receive either a novel monovalent high-dose type 2-specific IPV (mIPV2HD) or a standard trivalent IPV at 14 weeks. Infants were challenged at 18 weeks with a monovalent type 2 oral polio vaccine (mOPV2). Infants' intestinal immune responses during the 3 weeks following challenge were investigated by measuring poliovirus type-specific neutralization and immunoglobulin (Ig) A, IgA1, IgA2, IgD, IgG, and IgM antibodies in stool samples. Despite mIPV2HD's 4-fold higher type 2 polio D-antigen content and heightened serum neutralization profile, mIPV2HD-immunized infants' intestinal immune responses to mOPV2 challenge were largely indistinguishable from those receiving standard IPV. Mucosal responses were tightly linked to evidence of active infection and, in the 79% of participants who shed virus, robust type 2-specific IgA responses and stool neutralization were observed by 2 weeks after challenge. Enhancing IPV-induced serum neutralization does not substantively improve intestinal mucosal immune responses or limit viral shedding on mOPV2 challenge. NCT02111135. © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America.

  3. Intestinal Immune Responses to Type 2 Oral Polio Vaccine (OPV) Challenge in Infants Previously Immunized With Bivalent OPV and Either High-Dose or Standard Inactivated Polio Vaccine

    PubMed Central

    Brickley, Elizabeth B; Strauch, Carolyn B; Wieland-Alter, Wendy F; Connor, Ruth I; Lin, Shu; Weiner, Joshua A; Ackerman, Margaret E; Arita, Minetaro; Oberste, M Steven; Weldon, William C; Sáez-Llorens, Xavier; Bandyopadhyay, Ananda S; Wright, Peter F

    2018-01-01

    Abstract Background The impact of inactivated polio vaccines (IPVs) on intestinal mucosal immune responses to live poliovirus is poorly understood. Methods In a 2014 phase 2 clinical trial, Panamanian infants were immunized at 6, 10, and 14 weeks of age with bivalent oral polio vaccine (bOPV) and randomized to receive either a novel monovalent high-dose type 2–specific IPV (mIPV2HD) or a standard trivalent IPV at 14 weeks. Infants were challenged at 18 weeks with a monovalent type 2 oral polio vaccine (mOPV2). Infants’ intestinal immune responses during the 3 weeks following challenge were investigated by measuring poliovirus type-specific neutralization and immunoglobulin (Ig) A, IgA1, IgA2, IgD, IgG, and IgM antibodies in stool samples. Results Despite mIPV2HD’s 4-fold higher type 2 polio D–antigen content and heightened serum neutralization profile, mIPV2HD-immunized infants’ intestinal immune responses to mOPV2 challenge were largely indistinguishable from those receiving standard IPV. Mucosal responses were tightly linked to evidence of active infection and, in the 79% of participants who shed virus, robust type 2–specific IgA responses and stool neutralization were observed by 2 weeks after challenge. Conclusions Enhancing IPV-induced serum neutralization does not substantively improve intestinal mucosal immune responses or limit viral shedding on mOPV2 challenge. Clinical Trials Registration NCT02111135. PMID:29304199

  4. Age at vaccination and timing of infection do not alter vaccine-associated enhanced respiratory disease in influenza A virus infected pigs

    USDA-ARS?s Scientific Manuscript database

    Whole inactivated virus (WIV) vaccines are widely used in the swine industry to reduce clinical disease against homologous influenza A virus (IAV) infection. In pigs experimentally challenged with antigenically distinct heterologous IAV of the same hemagglutinin subtype, WIV vaccinates have been sho...

  5. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines

    USDA-ARS?s Scientific Manuscript database

    Vaccines consisting of subunit or inactivated bacteria/virus and potent adjuvants are widely used to control and prevent infectious diseases. Because inactivated and subunit antigens are often less antigenic than live microbes, a growing need exists for the development of new and improved vaccine ad...

  6. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines.

    PubMed

    Tu, Liqing; Zhou, Pei; Li, Lutao; Li, Xiuzhen; Hu, Renjun; Jia, Kun; Sun, Lingshuang; Yuan, Ziguo; Li, Shoujun

    2017-11-17

    Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease.

  7. Reverse Genetics Approaches for the Development of Influenza Vaccines

    PubMed Central

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  8. HIV vaccines: new frontiers in vaccine development.

    PubMed

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  9. A Randomized Controlled Trial to Evaluate a Potential Hepatitis B Booster Vaccination Strategy Using Combined Hepatitis A and B Vaccine.

    PubMed

    Li, Fangjun; Hu, Yuansheng; Zhou, Youming; Chen, Lixin; Xia, Wei; Song, Yufei; Tan, Zhengliang; Gao, Lidong; Yang, Zhong; Zeng, Gang; Han, Xing; Li, Junhua; Li, Jing

    2017-05-01

    Booster doses could play a major role in no responders or low responders to primary hepatitis B (HB) vaccine. Planed time point for hepatitis A vaccination in China provides a good opportunity to carry out HB booster dose by using combined hepatitis A and B vaccine. A randomized, double-blinded clinical trial was conducted to compare the immunogenicity and safety of toddlers 18-24 months of age receiving 3 different vaccination regimens: 2 doses of inactivated hepatitis A vaccine (group 1), 1 dose of inactivated hepatitis A vaccine plus 1 dose of combined hepatitis A and B vaccine (group 2) or 2 doses of combined hepatitis A and B vaccine (group 3). All 3 groups showed 100% seroprotection for antihepatitis A virus antibody after vaccination. Seroprotection rate for anti-HB antibody before vaccination ranged from 79.5% to 92.9% in the 3 groups. After second inoculation, anti-HBs seroprotection increased from 92.9% to 100% in group 2 with postvaccination geometric mean concentration (GMC) of 2258.3 mIU/mL and from 79.5% to 98.9% in group 3 with postvaccination GMC of 2055.3 mIU/mL. The adverse events were not statistically different among groups (P = 0.345). Combined hepatitis A and B vaccine could stimulate high level of both antihepatitis A virus and anti-HBs antibodies and not increase adverse events, providing a new choice for HB booster.

  10. Clinical and serological response of wild dogs (Lycaon pictus) to vaccination against canine distemper, canine parvovirus infection and rabies.

    PubMed

    van Heerden, J; Bingham, J; van Vuuren, M; Burroughs, R E J; Stylianides, E

    2002-03-01

    Wild dogs Lycaon pictuis (n = 8) were vaccinated 4 times against canine distemper (n = 8) (initially with inactivated and subsequently with live attenuated strains of canine distemper) and canine parvovirus infection (n = 8) over a period of 360 days. Four of the wild dogs were also vaccinated 3 times against rabies using a live oral vaccine and 4 with an inactivated parenteral vaccine. Commercially-available canine distemper, canine parvovirus and parenteral rabies vaccines, intended for use in domestic dogs, were used. None of the vaccinated dogs showed any untoward clinical signs. The inactivated canine distemper vaccine did not result in seroconversion whereas the attenuated live vaccine resulted in seroconversion in all wild dogs. Presumably protective concentrations of antibodies to canine distemper virus were present in all wild dogs for at least 451 days. Canine parvovirus haemagglutination inhibition titres were present in all wild dogs prior to the administration of vaccine and protective concentrations persisted for at least 451 days. Vaccination against parvovirus infection resulted in a temporary increase in canine parvovirus haemagglutination inhibition titres in most dogs. Administration of both inactivated parenteral and live oral rabies vaccine initially resulted in seroconversion in 7 of 8 dogs. These titres, however, dropped to very low concentrations within 100 days. Booster administrations resulted in increased antibody concentrations in all dogs. It was concluded that the vaccines were safe to use in healthy subadult wild dogs and that a vaccination protocol in free-ranging wild dogs should at least incorporate booster vaccinations against rabies 3-6 months after the first inoculation.

  11. Update of inactivated equine influenza vaccine strain in Japan

    PubMed Central

    GAMOH, Koichiro; NAKAMURA, Shigeyuki

    2017-01-01

    Japan established a vaccine selection system, in which a committee evaluates veterinary influenza vaccines to determine if the vaccine should be updated. In 2013, it was concluded that the present equine influenza vaccine strains did not have to be updated, but clade 2 (Fc2) viruses of the Florida sublineage should be included. We collected three Fc2 viruses as candidates and conducted comparative tests. Results indicated that A/equine/Carlow/2011 (H3N8) is not suitable, because of its unstable antigenic characteristics. A comparison between A/equine/Richmond/1/2007 (H3N8) (Richmond/07) and A/equine/Yokohama/aq13/2010 (H3N8) (Yokohama/10) in eggs showed that they shared equal growth properties. Immunogenicity test in mice showed that Yokohama/10 induced higher HI antibody titers than Richmond/07. Therefore, we concluded that Yokohama/10 was the most suitable strain. PMID:28163276

  12. SINGLE- VERSUS DOUBLE-DOSE RABIES VACCINATION IN CAPTIVE AFRICAN WILD DOGS (LYCAON PICTUS).

    PubMed

    Connolly, Maren; Thomas, Patrick; Woodroffe, Rosie; Raphael, Bonnie L

    2015-12-01

    The immune responses of 35 captive African wild dogs (Lycaon pictus) to an inactivated rabies virus vaccine were evaluated. Seventeen animals received one 1-ml dose of inactivated rabies vaccine administered intramuscularly, while 18 received two 1-ml doses given simultaneously but at different injection sites. Sera were collected from all animals prior to vaccination and intermittently from a subset of animals between 3 and 49 mo postvaccination. Rabies neutralizing serum antibody titers were measured by rapid fluorescent focus inhibition testing. Within 3 mo postvaccination, all 28 animals that were tested within that time period had seroconverted. Overall, titers were significantly higher among animals given two doses of vaccine than among those given a single dose, although this difference was no longer significant by 15 mo postvaccination. Regardless of initial dose, a single administration of inactivated rabies virus vaccine resulted in long-term elevation of titers in the African wild dogs in this study. In the two individuals followed for greater than 36 mo, both (one from each group) maintained detectable titers.

  13. Avian influenza vaccines and vaccination in birds.

    PubMed

    Capua, Ilaria; Alexander, Dennis J

    2008-09-12

    Although the use of vaccines against avian influenza viruses in birds has been discouraged over the years, the unprecedented occurrence of outbreaks caused by avian influenza (AI) viruses in recent times has required review of this policy. A variety of products are now available on the market, ranging from inactivated conventional to live recombinant products. The general consensus on the use of vaccination is that if complying to GMP standards and properly administered, birds will be more resistant to field challenge and will exhibit reduced shedding levels in case of infection. However, viral circulation may still occur in a clinically healthy vaccinated population. This may result in an endemic situation and in the emergence of antigenic variants. In order to limit these risks, monitoring programmes enabling the detection of field exposure in vaccinated populations are recommended by international organisations and are essential to allow the continuation of international trade. Adequate management of a vaccination campaign, including monitoring, improved biosecurity and restriction is essential for the success of any control program for AI.

  14. The effectiveness of seasonal trivalent inactivated influenza vaccine in preventing laboratory confirmed influenza hospitalisations in Auckland, New Zealand in 2012.

    PubMed

    Turner, Nikki; Pierse, Nevil; Bissielo, Ange; Huang, Q Sue; Baker, Michael G; Widdowson, Marc-Alain; Kelly, Heath

    2014-06-17

    Few studies report the effectiveness of trivalent inactivated influenza vaccine (TIV) in preventing hospitalisation for influenza-confirmed respiratory infections. Using a prospective surveillance platform, this study reports the first such estimate from a well-defined ethnically diverse population in New Zealand (NZ). A case test-negative design was used to estimate propensity adjusted vaccine effectiveness. Patients with a severe acute respiratory infection (SARI), defined as a patient of any age requiring hospitalisation with a history of a fever or a measured temperature ≥38°C and cough and onset within the past 7 days, admitted to public hospitals in South and Central Auckland were eligible for inclusion in the study. Cases were SARI patients who tested positive for influenza, while non-cases (controls) were SARI patients who tested negative. Results were adjusted for the propensity to be vaccinated and the timing of the influenza season. The propensity and season adjusted vaccine effectiveness (VE) was estimated as 39% (95% CI 16;56). The VE point estimate against influenza A (H1N1) was lower than for influenza B or influenza A (H3N2) but confidence intervals were wide and overlapping. Estimated VE was 59% (95% CI 26;77) in patients aged 45-64 years but only 8% (-78;53) in those aged 65 years and above. Prospective surveillance for SARI has been successfully established in NZ. This study for the first year, the 2012 influenza season, has shown low to moderate protection by TIV against influenza positive hospitalisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The effectiveness of seasonal trivalent inactivated influenza vaccine in preventing laboratory confirmed influenza hospitalisations in Auckland, New Zealand in 2012

    PubMed Central

    Turner, Nikki; Pierse, Nevil; Bissielo, Ange; Huang, Q Sue; Baker, Michael; Widdowson, Marc-Alain; Kelly, Heath

    2015-01-01

    Background Few studies report the effectiveness of trivalent inactivated influenza vaccine (TIV) in preventing hospitalisation for influenza-confirmed respiratory infections. Using a prospective surveillance platform, this study reports the first such estimate from a well-defined ethnically diverse population in New Zealand (NZ). Methods A case test-negative study was used to estimate propensity adjusted vaccine effectiveness. Patients with a severe acute respiratory infection (SARI), defined as a patient of any age requiring hospitalization with a history of a fever or a measured temperature ≥38°C and cough and onset within the past 7 days, admitted to public hospitals in Central, South and East Auckland were eligible for inclusion in the study. Cases were SARI patients who tested positive for influenza, while non-cases (controls) were SARI patients who tested negative. Results were adjusted for the propensity to be vaccinated and the timing of the influenza season Results The propensity and season adjusted vaccine effectiveness (VE) was estimated as 37% (95% CI 18;51). The VE point estimate against influenza A (H1N1) was higher than for influenza B or influenza A (H3N2) but confidence intervals were wide and overlapping. Estimated VE was 51% (95% CI 28;67) in patients aged 18-64 years but only 6% (95% CI -51;42) in those aged 65 years and above. Conclusion Prospective surveillance for SARI has been successfully established in NZ . This study for the first year, the 2012 influenza season, has shown low to moderate protection by TIV against hospitalisation for laboratory-confirmed influenza. PMID:24768730

  16. Rotavirus epidemiology and vaccine demand: considering Bangladesh chapter through the book of global disease burden.

    PubMed

    Mahmud-Al-Rafat, Abdullah; Muktadir, Abdul; Muktadir, Hasneen; Karim, Mahbubul; Maheshwari, Arpan; Ahasan, Mohammad Mainul

    2018-02-01

    Rotavirus is the major cause of gastroenteritis in children throughout the world. Every year, a large number of children aged < 5 years die from rotavirus-related diarrhoeal diseases. Though these infections are vaccine-preventable, the vast majority of children in low-income countries suffer from the infection. The situation leads to severe economic loss and constitutes a major public health problem. We searched electronic databases including PubMed and Google scholar using the following words: "features of rotavirus," "epidemiology of rotavirus," "rotavirus serotypes," "rotavirus in Bangladesh," "disease burden of rotavirus," "rotavirus vaccine," "low efficacy of rotavirus vaccine," "inactivated rotavirus vaccine". Publications until July 2017 have been considered for this work. Currently, two live attenuated vaccines are available throughout the world. Many countries have included rotavirus vaccines in national immunization program to reduce the disease burden. However, due to low efficacy of the available vaccines, satisfactory outcome has not yet been achieved in developing countries such as Bangladesh. Poor economic, public health, treatment, and sanitation status of the low-income countries necessitate the need for the most effective rotavirus vaccines. Therefore, the present scenario demands the development of a highly effective rotavirus vaccine. In this regard, inactivated rotavirus vaccine concept holds much promise for reducing the current disease burden. Recent advancements in developing an inactivated rotavirus vaccine indicate a significant progress towards disease prophylaxis and control.

  17. An Inactivated Rabies Virus-Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models.

    PubMed

    Johnson, Reed F; Kurup, Drishya; Hagen, Katie R; Fisher, Christine; Keshwara, Rohan; Papaneri, Amy; Perry, Donna L; Cooper, Kurt; Jahrling, Peter B; Wang, Jonathan T; Ter Meulen, Jan; Wirblich, Christoph; Schnell, Matthias J

    2016-10-15

    The 2013-2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus-based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti-rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Formalin-Inactivated Coxiella burnetii Phase I Vaccine-Induced Protection Depends on B Cells To Produce Protective IgM and IgG

    PubMed Central

    Peng, Ying; Schoenlaub, Laura; Elliott, Alexandra; Mitchell, William; Zhang, Yan

    2013-01-01

    To further understand the mechanisms of formalin-inactivated Coxiella burnetii phase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+ T cell, or CD8+ T cell deficiency in mice significantly affects the ability of PIV to confer protection against a C. burnetii infection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+ T cell- or CD8+ T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+ T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+ T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibit C. burnetii infection in vivo, but only IgM from PIV-vaccinated CD4+ T cell-deficient mouse sera inhibited C. burnetii infection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection against C. burnetii infection. PMID:23545296

  19. Ultraviolet-C irradiation for inactivation of viruses in foetal bovine serum.

    PubMed

    Vaidya, Vivek; Dhere, Rajeev; Agnihotri, Snehal; Muley, Ravindra; Patil, Sanjay; Pawar, Amit

    2018-07-05

    Foetal Bovine Serum (FBS) and porcine trypsin are one of the essential raw materials used in the manufacturing of cell culture based viral vaccines. Being from animal origin, these raw materials can potentially contaminate the final product by known or unknown adventitious agents. The issue is more serious in case of live attenuated viral vaccines, where there is no inactivation step which can take care of such adventitious agents. It is essential to design production processes which can offer maximum viral clearance potential for animal origin products. Ultraviolet-C irradiation is known to inactivate various adventitious viral agents; however there are limited studies on ultraviolet inactivation of viruses in liquid media. We obtained a recently developed UVivatec ultraviolet-C (UV-C) irradiation based viral clearance system for evaluating its efficacy to inactivate selected model viruses. This system has a unique design with spiral path of liquid allowing maximum exposure to UV-C light of a short wavelength of 254 nm. Five live attenuated vaccine viruses and four other model viruses were spiked in tissue culture media and exposed to UV-C irradiation. The pre and post UV-C irradiation samples were analyzed for virus content to find out the extent of inactivation of various viruses. These experiments showed substantial log reduction for the majority of the viruses with few exceptions based on the characteristics of these viruses. Having known the effect of UV irradiation on protein structure, we also evaluated the post irradiation samples of culture media for growth promoting properties using one of the most fastidious human diploid cells (MRC-5). UV-C exposure did not show any notable impact on the nutritional properties of culture media. The use of an UV-C irradiation based system is considered to be promising approach to mitigate the risk of adventitious agents in cell culture media arising through animal derived products. Copyright © 2018 Elsevier Ltd. All

  20. Development of whole sporozoite malaria vaccines.

    PubMed

    Hollingdale, Michael R; Sedegah, Martha

    2017-01-01

    Despite recent advances, malaria remains a major health threat both to populations in endemic areas as well travelers, including military personnel, to these areas. Subunit vaccines have not yet achieved sufficient efficacy needed for use in any of these at risk populations. Areas covered: This review discusses the current status of various whole sporozoite vaccine approaches and is mainly focused on current clinical trials. Expert commentary: Nearly 100% efficacy was achieved by administering multiple bites of radiation-attenuated sporozoite (RAS) Plasmodium falciparum-infected mosquitoes; this is impractical for widespread use. Now, this high level efficacy has been reproduced using purified, metabolically active RAS (PfSPZ Sanaria® Vaccine), which is undergoing extensive clinical testing. Alternative whole sporozoite vaccines include immunization with fully infectious sporozoites under chloroquine prophylaxis (CPS) or as genetically-attenuated parasites (GAP). By also manufacturing purified infectious sporozoites, it is now possible to combine these with CPS and GAP, as well as perform challenge studies using controlled doses of sporozoites.