Sample records for vaccine strategy based

  1. Typhoid fever vaccination strategies.

    PubMed

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control. Copyright © 2015. Published by

  2. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    PubMed

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  3. Plant-based anti-HIV-1 strategies: vaccine molecules and antiviral approaches.

    PubMed

    Scotti, Nunzia; Buonaguro, Luigi; Tornesello, Maria Lina; Cardi, Teodoro; Buonaguro, Franco Maria

    2010-08-01

    The introduction of highly active antiretroviral therapy has drastically changed HIV infection from an acute, very deadly, to a chronic, long-lasting, mild disease. However, this requires continuous care management, which is difficult to implement worldwide, especially in developing countries. Sky-rocketing costs of HIV-positive subjects and the limited success of preventive recommendations mean that a vaccine is urgently needed, which could be the only effective strategy for the real control of the AIDS pandemic. To be effective, vaccination will need to be accessible, affordable and directed against multiple antigens. Plant-based vaccines, which are easy to produce and administer, and require no cold chain for their heat stability are, in principle, suited to such a strategy. More recently, it has been shown that even highly immunogenic, enveloped plant-based vaccines can be produced at a competitive and more efficient rate than conventional strategies. The high variability of HIV epitopes and the need to stimulate both humoral neutralizing antibodies and cellular immunity suggest the importance of using the plant system: it offers a wide range of possible strategies, from single-epitope to multicomponent vaccines, modulators of the immune response (adjuvants) and preventive molecules (microbicides), either alone or in association with plant-derived monoclonal antibodies, besides the potential use of the latter as therapeutic agents. Furthermore, plant-based anti-HIV strategies can be administered not only parenterally but also by the more convenient and safer oral route, which is a more suitable approach for possible mass vaccination.

  4. Vaccine strategies: Optimising outcomes.

    PubMed

    Hardt, Karin; Bonanni, Paolo; King, Susan; Santos, Jose Ignacio; El-Hodhod, Mostafa; Zimet, Gregory D; Preiss, Scott

    2016-12-20

    Successful immunisation programmes generally result from high vaccine effectiveness and adequate uptake of vaccines. In the development of new vaccination strategies, the structure and strength of the local healthcare system is a key consideration. In high income countries, existing infrastructures are usually used, while in less developed countries, the capacity for introducing new vaccines may need to be strengthened, particularly for vaccines administered beyond early childhood, such as the measles or human papillomavirus (HPV) vaccine. Reliable immunisation service funding is another important factor and low income countries often need external supplementary sources of finance. Many regions also obtain support in generating an evidence base for vaccination via initiatives created by organisations including World Health Organization (WHO), the Pan American Health Organization (PAHO), the Agence de Médecine Préventive and the Sabin Vaccine Institute. Strong monitoring and surveillance mechanisms are also required. An example is the efficient and low-cost approaches for measuring the impact of the hepatitis B control initiative and evaluating achievement of goals that have been established in the WHO Western Pacific region. A review of implementation strategies reveals differing degrees of success. For example, in the Americas, PAHO advanced a measles-mumps-rubella vaccine strategy, targeting different population groups in mass, catch-up and follow-up vaccination campaigns. This has had much success but coverage data from some parts of the region suggest that children are still not receiving all appropriate vaccines, highlighting problems with local service infrastructures. Stark differences in coverage levels are also observed among high income countries, as is the case with HPV vaccine implementation in the USA versus the UK and Australia, reflecting differences in delivery settings. Experience and research have shown which vaccine strategies work well and the

  5. Anthrax vaccination strategies

    PubMed Central

    Cybulski, Robert J.; Sanz, Patrick; O'Brien, Alison D.

    2009-01-01

    The biological attack conducted through the U.S. postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain U.S. Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine's reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies. PMID:19729034

  6. Vaccines and immunization strategies for dengue prevention

    PubMed Central

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  7. Marker vaccine strategies and candidate CSFV marker vaccines.

    PubMed

    Dong, Xiao-Nan; Chen, Ying-Hua

    2007-01-04

    Classical swine fever (CSF) is an economically important highly contagious disease of swine worldwide. Classical swine fever virus (CSFV) is its etiological agent, and the only natural hosts are domestic pigs and wild boars. Although field CSFV strains vary in the virulence, they all result in serious losses in pig industry. Highly virulent field strains generally cause acute disease and high mortality; moderately virulent field strains raise subacute or chronic infections; postnatal infection by low virulent field strains produces subclinical infection and mortality in the new-born piglets. CSFV can cross the placental barrier, and this transplacental transmission usually results in mortality of fetuses and birth of congenitally infected pigs with a late-onset disease and death. Two main strategies to control CSF epidemic are systematic prophylactic vaccination with live attenuated vaccines (such as C-strain) and non-vaccination stamping-out policy. But neither of them is satisfying enough. Marker vaccine and companion serological diagnostic test is thought to be a promising strategy for future control and eradication of CSF. During the past 15 years, various candidate marker vaccines were constructed and evaluated in the animal experiments, including recombinant chimeric vaccines, recombinant deletion vaccines, DNA vaccines, subunit vaccines and peptide vaccines. Among them, two subunit vaccines entered the large scale marker vaccine trial of EU in 1999. Although they failed to fulfil all the demands of the Scientific Veterinary Committee, they successfully induced solid immunity against CSFV in the vaccinated pigs. It can be expected that new potent marker vaccines might be commercially available and used in systematic prophylactic vaccination campaign or emergency vaccination in the next 15 years. Here, we summarized current strategies and candidate CSFV marker vaccines. These strategies and methods are also helpful for the development of new

  8. Optimal H1N1 vaccination strategies based on self-interest versus group interest.

    PubMed

    Shim, Eunha; Meyers, Lauren Ancel; Galvani, Alison P

    2011-02-25

    Influenza vaccination is vital for reducing H1N1 infection-mediated morbidity and mortality. To reduce transmission and achieve herd immunity during the initial 2009-2010 pandemic season, the US Centers for Disease Control and Prevention (CDC) recommended that initial priority for H1N1 vaccines be given to individuals under age 25, as these individuals are more likely to spread influenza than older adults. However, due to significant delay in vaccine delivery for the H1N1 influenza pandemic, a large fraction of population was exposed to the H1N1 virus and thereby obtained immunity prior to the wide availability of vaccines. This exposure affects the spread of the disease and needs to be considered when prioritizing vaccine distribution. To determine optimal H1N1 vaccine distributions based on individual self-interest versus population interest, we constructed a game theoretical age-structured model of influenza transmission and considered the impact of delayed vaccination. Our results indicate that if individuals decide to vaccinate according to self-interest, the resulting optimal vaccination strategy would prioritize adults of age 25 to 49 followed by either preschool-age children before the pandemic peak or older adults (age 50-64) at the pandemic peak. In contrast, the vaccine allocation strategy that is optimal for the population as a whole would prioritize individuals of ages 5 to 64 to curb a growing pandemic regardless of the timing of the vaccination program. Our results indicate that for a delayed vaccine distribution, the priorities that are optimal at a population level do not align with those that are optimal according to individual self-interest. Moreover, the discordance between the optimal vaccine distributions based on individual self-interest and those based on population interest is even more pronounced when vaccine availability is delayed. To determine optimal vaccine allocation for pandemic influenza, public health agencies need to consider

  9. Dengue vaccine development: strategies and challenges.

    PubMed

    Ramakrishnan, Lakshmy; Pillai, Madhavan Radhakrishna; Nair, Radhakrishnan R

    2015-03-01

    Infection with dengue virus may result in dengue fever or a more severe outcome, such as dengue hemorrhagic syndrome/shock. Dengue virus infection poses a threat to endemic regions for four reasons: the presence of four serotypes, each with the ability to cause a similar disease outcome, including fatality; difficulties related to vector control; the lack of specific treatment; and the nonavailability of a suitable vaccine. Vaccine development is considered challenging due to the severity of the disease observed in individuals who have acquired dengue-specific immunity, either passively or actively. Therefore, the presence of vaccine-induced immunity against a particular serotype may prime an individual to severe disease on exposure to dengue virus. Vaccine development strategies include live attenuated vaccines, chimeric, DNA-based, subunit, and inactivated vaccines. Each of the candidates is in various stages of preclinical and clinical development. Issues pertaining to selection pressures, viral interaction, and safety still need to be evaluated in order to induce a complete protective immune response against all four serotypes. This review highlights the various strategies that have been employed in vaccine development, and identifies the obstacles to producing a safe and effective vaccine.

  10. Rational design of gene-based vaccines.

    PubMed

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Economic analysis of pandemic influenza vaccination strategies in Singapore.

    PubMed

    Lee, Vernon J; Tok, Mei Yin; Chow, Vincent T; Phua, Kai Hong; Ooi, Eng Eong; Tambyah, Paul A; Chen, Mark I

    2009-09-22

    All influenza pandemic plans advocate pandemic vaccination. However, few studies have evaluated the cost-effectiveness of different vaccination strategies. This paper compares the economic outcomes of vaccination compared with treatment with antiviral agents alone, in Singapore. We analyzed the economic outcomes of pandemic vaccination (immediate vaccination and vaccine stockpiling) compared with treatment-only in Singapore using a decision-based model to perform cost-benefit and cost-effectiveness analyses. We also explored the annual insurance premium (willingness to pay) depending on the perceived risk of the next pandemic occurring. The treatment-only strategy resulted in 690 deaths, 13,950 hospitalization days, and economic cost of USD$497 million. For immediate vaccination, at vaccine effectiveness of >55%, vaccination was cost-beneficial over treatment-only. Vaccine stockpiling is not cost-effective in most scenarios even with 100% vaccine effectiveness. The annual insurance premium was highest with immediate vaccination, and was lower with increased duration to the next pandemic. The premium was also higher with higher vaccine effectiveness, attack rates, and case-fatality rates. Stockpiling with case-fatality rates of 0.4-0.6% would be cost-beneficial if vaccine effectiveness was >80%; while at case-fatality of >5% stockpiling would be cost-beneficial even if vaccine effectiveness was 20%. High-risk sub-groups warrant higher premiums than low-risk sub-groups. The actual pandemic vaccine effectiveness and lead time is unknown. Vaccine strategy should be based on perception of severity. Immediate vaccination is most cost-effective, but requires vaccines to be available when required. Vaccine stockpiling as insurance against worst-case scenarios is also cost-effective. Research and development is therefore critical to develop and stockpile cheap, readily available effective vaccines.

  12. Vaccination strategies for future influenza pandemics: a severity-based cost effectiveness analysis

    PubMed Central

    2013-01-01

    Background A critical issue in planning pandemic influenza mitigation strategies is the delay between the arrival of the pandemic in a community and the availability of an effective vaccine. The likely scenario, born out in the 2009 pandemic, is that a newly emerged influenza pandemic will have spread to most parts of the world before a vaccine matched to the pandemic strain is produced. For a severe pandemic, additional rapidly activated intervention measures will be required if high mortality rates are to be avoided. Methods A simulation modelling study was conducted to examine the effectiveness and cost effectiveness of plausible combinations of social distancing, antiviral and vaccination interventions, assuming a delay of 6-months between arrival of an influenza pandemic and first availability of a vaccine. Three different pandemic scenarios were examined; mild, moderate and extreme, based on estimates of transmissibility and pathogenicity of the 2009, 1957 and 1918 influenza pandemics respectively. A range of different durations of social distancing were examined, and the sensitivity of the results to variation in the vaccination delay, ranging from 2 to 6 months, was analysed. Results Vaccination-only strategies were not cost effective for any pandemic scenario, saving few lives and incurring substantial vaccination costs. Vaccination coupled with long duration social distancing, antiviral treatment and antiviral prophylaxis was cost effective for moderate pandemics and extreme pandemics, where it saved lives while simultaneously reducing the total pandemic cost. Combined social distancing and antiviral interventions without vaccination were significantly less effective, since without vaccination a resurgence in case numbers occurred as soon as social distancing interventions were relaxed. When social distancing interventions were continued until at least the start of the vaccination campaign, attack rates and total costs were significantly lower, and

  13. Vaccination strategies for future influenza pandemics: a severity-based cost effectiveness analysis.

    PubMed

    Kelso, Joel K; Halder, Nilimesh; Milne, George J

    2013-02-11

    A critical issue in planning pandemic influenza mitigation strategies is the delay between the arrival of the pandemic in a community and the availability of an effective vaccine. The likely scenario, born out in the 2009 pandemic, is that a newly emerged influenza pandemic will have spread to most parts of the world before a vaccine matched to the pandemic strain is produced. For a severe pandemic, additional rapidly activated intervention measures will be required if high mortality rates are to be avoided. A simulation modelling study was conducted to examine the effectiveness and cost effectiveness of plausible combinations of social distancing, antiviral and vaccination interventions, assuming a delay of 6-months between arrival of an influenza pandemic and first availability of a vaccine. Three different pandemic scenarios were examined; mild, moderate and extreme, based on estimates of transmissibility and pathogenicity of the 2009, 1957 and 1918 influenza pandemics respectively. A range of different durations of social distancing were examined, and the sensitivity of the results to variation in the vaccination delay, ranging from 2 to 6 months, was analysed. Vaccination-only strategies were not cost effective for any pandemic scenario, saving few lives and incurring substantial vaccination costs. Vaccination coupled with long duration social distancing, antiviral treatment and antiviral prophylaxis was cost effective for moderate pandemics and extreme pandemics, where it saved lives while simultaneously reducing the total pandemic cost. Combined social distancing and antiviral interventions without vaccination were significantly less effective, since without vaccination a resurgence in case numbers occurred as soon as social distancing interventions were relaxed. When social distancing interventions were continued until at least the start of the vaccination campaign, attack rates and total costs were significantly lower, and increased rates of vaccination

  14. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination

    PubMed Central

    Nochi, Tomonori; Takagi, Hidenori; Yuki, Yoshikazu; Yang, Lijun; Masumura, Takehiro; Mejima, Mio; Nakanishi, Ushio; Matsumura, Akiko; Uozumi, Akihiro; Hiroi, Takachika; Morita, Shigeto; Tanaka, Kunisuke; Takaiwa, Fumio; Kiyono, Hiroshi

    2007-01-01

    Capable of inducing antigen-specific immune responses in both systemic and mucosal compartments without the use of syringe and needle, mucosal vaccination is considered ideal for the global control of infectious diseases. In this study, we developed a rice-based oral vaccine expressing cholera toxin B subunit (CTB) under the control of the endosperm-specific expression promoter 2.3-kb glutelin GluB-1 with codon usage optimization for expression in rice seed. An average of 30 μg of CTB per seed was stored in the protein bodies, which are storage organelles in rice. When mucosally fed, rice seeds expressing CTB were taken up by the M cells covering the Peyer's patches and induced CTB-specific serum IgG and mucosal IgA antibodies with neutralizing activity. When expressed in rice, CTB was protected from pepsin digestion in vitro. Rice-expressed CTB also remained stable and thus maintained immunogenicity at room temperature for >1.5 years, meaning that antigen-specific mucosal immune responses were induced at much lower doses than were necessary with purified recombinant CTB. Because they require neither refrigeration (cold-chain management) nor a needle, these rice-based mucosal vaccines offer a highly practical and cost-effective strategy for orally vaccinating large populations against mucosal infections, including those that may result from an act of bioterrorism. PMID:17573530

  15. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    ERIC Educational Resources Information Center

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  16. [Benefit-risk assessment of vaccination strategies].

    PubMed

    Hanslik, Thomas; Boëlle, Pierre Yves

    2007-04-01

    This article summarises the various stages of the risk/benefit assessment of vaccination strategies. Establishing the awaited effectiveness of a vaccination strategy supposes to have an epidemiologic description of the disease to be prevented. The effectiveness of the vaccine strategy will be thus expressed in numbers of cases, hospitalizations or deaths avoided. The effectiveness can be direct, expressed as the reduction of the incidence of the infectious disease in the vaccinated subjects compared to unvaccinated subjects. It can also be indirect, the unvaccinated persons being protected by the suspension in circulation of the pathogenic agent, consecutive to the implementation of the vaccination campaign. The risks of vaccination related to the adverse effects detected during the clinical trials preceding marketing are well quantified, but other risks can occur after marketing: e.g., serious and unexpected adverse effects detected by vaccinovigilance systems, or risk of increase in the age of cases if the vaccination coverage is insufficient. The medico-economic evaluation forms a part of the risks/benefit assessment, by positioning the vaccine strategy comparatively with other interventions for health. Epidemiologic and vaccinovigilance informations must be updated very regularly, which underlines the need for having an operational and reliable real time monitoring system to accompany the vaccination strategies. Lastly, in the context of uncertainty which often accompanies the risks/benefit assessments, it is important that an adapted communication towards the public and the doctors is planned.

  17. [Economic evaluation on different two-dose-vaccination-strategies related to Measles, Mumps and Rubella Combined Attenuated Live Vaccine].

    PubMed

    He, H Q; Zhang, B; Yan, R; Li, Q; Fu, J; Tang, X W; Zhou, Y; Deng, X; Xie, S Y

    2016-08-10

    To evaluate the economic effect of Measles, Mumps and Rubella Combined Attenuated Live Vaccine (MMR) under different two-dose vaccination programs. A hypothetical birth cohort of 750 000 infants over their lifetime, was followed up from birth through death in Zhejiang province. The current MMR vaccination strategie would include three different ones: 1) Childlern were vaccinated with Measles-Rubella Combined Attenuated Live Vaccine and MMR, respectively at the age of 8 months and 18 months. 2) Children receive MMR at 8 months and 18 months, 3) Strategy 1 plus an additional vaccination of MMR at 4 years of age. Incremental cost-effectiveness ratio (ICER), incremental cost-benefit ratio (ICBR) and incremental net benefit (INB) were applied to calculate the health economic difference for Strategy 2 and Strategy 3 as compared to Strategy 1. Univariate sensitivity analysis was used to assess the robustness of results with main parameters, including the rate of immunization coverage, effectiveness of the vaccines, incidence and burdens of the related diseases, cost of vaccines and the vaccination program itself. ICER, ICBR and INB for Strategy 2 and Strategy 3 appeared as 2 012.51∶1 RMB Yuan per case and 4 238.72∶1 RMB Yuan per case, 1∶3.14 and 1∶1.58, 21 277 800 RMB Yuan and 9 276 500 RMB Yuan, respectively. Only slight changes (<20%) were found under the univariate sensitivity analysis, with varied values on main parameters. Based on the current national immunization program, infants vaccinated with MMR at 8 months of age, generated more health economic effects than the Strategy 3.

  18. Sex-based biology and the rational design of influenza vaccination strategies.

    PubMed

    Klein, Sabra L; Pekosz, Andrew

    2014-07-15

    Biological (ie, sex) differences as well as cultural (ie, gender) norms influence the acceptance and efficacy of vaccines for males and females. These differences are often overlooked in the design and implementation of vaccination strategies. Using seasonal and pandemic influenza vaccines, we document profound differences between the sexes in the acceptance, correlates of protection, and adverse reactions following vaccination in both young and older adults. Females develop higher antibody responses, experience more adverse reactions to influenza vaccines, and show greater vaccine efficacy than males. Despite greater vaccine efficacy in females, both young and older females are often less likely to accept influenza vaccines than their male counterparts. Identification of the biological mechanisms, including the hormones and genes, that underlie differential responses to vaccination is necessary. We propose that vaccines should be matched to an individual's biological sex, which could involve systematically tailoring diverse types of FDA-approved influenza vaccines separately for males and females. One goal for vaccines designed to protect against influenza and even other infectious diseases should be to increase the correlates of protection in males and reduce adverse reactions in females in an effort to increase acceptance and vaccine-induced protection in both sexes. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Cost-Effectiveness Analysis of Hepatitis B Vaccination Strategies to Prevent Perinatal Transmission in North Korea: Selective Vaccination vs. Universal Vaccination.

    PubMed

    Lee, Donghoon; Park, Sang Min

    2016-01-01

    To tackle the high prevalence of Hepatitis B virus (HBV) infection in North Korea, it is essential that birth doses of HBV vaccines should be administered within 24 hours of birth. As the country fails to provide a Timely Birth Dose (TBD) of HBV vaccine, the efforts of reducing the high prevalence of HBV have been significantly hampered. To examine the cost-effectiveness of vaccination strategies to prevent perinatal transmission of HBV in North Korea, we established a decision tree with a Markov model consisting of selective, universal, and the country's current vaccination program against HBV. The cost-effectiveness analysis was performed from societal and payer's perspectives and evaluated by Disability Adjusted Life Year (DALY). The results suggest that introducing the universal vaccination would prevent 1,866 cases of perinatal infections per 100,000 of the birth cohort of 2013. Furthermore, 900 cases of perinatal infections per 100,000 could be additionally averted if switching to the selective vaccination. The current vaccination is a dominated strategy both from the societal and payer's perspective. The Incremental Cost-Effectiveness Ratio (ICER) between universal and selective vaccination is $267 from the societal perspective and is reported as $273 from the payer's perspective. Based on the assumption that the 2012 Gross Domestic Product (GDP) per capita in North Korea, $582.6 was set for cost-effectiveness criteria, the result of this study indicates that selective vaccination may be a highly cost-effective strategy compared to universal vaccination.

  20. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia ( Niloticus oreochromis ) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  1. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  2. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus.

    PubMed

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-18

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate's protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development.

  3. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus

    PubMed Central

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-01

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate’s protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development. PMID:26777545

  4. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs.

    PubMed

    Touihri, Leila; Ahmed, Sami Belhaj; Chtourou, Yacine; Daoud, Rahma; Bahloul, Chokri

    2012-12-27

    During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an "Internal Ribosome Entry Site" (IRES) domain. The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient in the design of multivalent

  5. Optimal vaccination strategies and rational behaviour in seasonal epidemics.

    PubMed

    Doutor, Paulo; Rodrigues, Paula; Soares, Maria do Céu; Chalub, Fabio A C C

    2016-12-01

    We consider a SIRS model with time dependent transmission rate. We assume time dependent vaccination which confers the same immunity as natural infection. We study two types of vaccination strategies: (i) optimal vaccination, in the sense that it minimizes the effort of vaccination in the set of vaccination strategies for which, for any sufficiently small perturbation of the disease free state, the number of infectious individuals is monotonically decreasing; (ii) Nash-equilibria strategies where all individuals simultaneously minimize the joint risk of vaccination versus the risk of the disease. The former case corresponds to an optimal solution for mandatory vaccinations, while the second corresponds to the equilibrium to be expected if vaccination is fully voluntary. We are able to show the existence of both optimal and Nash strategies in a general setting. In general, these strategies will not be functions but Radon measures. For specific forms of the transmission rate, we provide explicit formulas for the optimal and the Nash vaccination strategies.

  6. Neonatal Vaccination: Challenges and Intervention Strategies.

    PubMed

    Morris, Matthew C; Surendran, Naveen

    2016-01-01

    While vaccines have been tremendously successful in reducing the incidence of serious infectious diseases, newborns remain particularly vulnerable in the first few months of their life to life-threatening infections. A number of challenges exist to neonatal vaccination. However, recent advances in the understanding of neonatal immunology offer insights to overcome many of those challenges. This review will present an overview of the features of neonatal immunity which make vaccination difficult, survey the mechanisms of action of available vaccine adjuvants with respect to the unique features of neonatal immunity, and propose a possible mechanism contributing to the inability of neonates to generate protective immune responses to vaccines. We surveyed recent published findings on the challenges to neonatal vaccination and possible intervention strategies including the use of novel vaccine adjuvants to develop efficacious neonatal vaccines. Challenges in the vaccination of neonates include interference from maternal antibody and excessive skewing towards Th2 immunity, which can be counteracted by the use of proper adjuvants. Synergistic stimulation of multiple Toll-like receptors by incorporating well-defined agonist-adjuvant combinations to vaccines is a promising strategy to ensure a protective vaccine response in neonates. © 2016 S. Karger AG, Basel.

  7. Cost-Effectiveness Analysis of Hepatitis B Vaccination Strategies to Prevent Perinatal Transmission in North Korea: Selective Vaccination vs. Universal Vaccination

    PubMed Central

    Lee, Donghoon; Park, Sang Min

    2016-01-01

    Background To tackle the high prevalence of Hepatitis B virus (HBV) infection in North Korea, it is essential that birth doses of HBV vaccines should be administered within 24 hours of birth. As the country fails to provide a Timely Birth Dose (TBD) of HBV vaccine, the efforts of reducing the high prevalence of HBV have been significantly hampered. Methods To examine the cost-effectiveness of vaccination strategies to prevent perinatal transmission of HBV in North Korea, we established a decision tree with a Markov model consisting of selective, universal, and the country’s current vaccination program against HBV. The cost-effectiveness analysis was performed from societal and payer’s perspectives and evaluated by Disability Adjusted Life Year (DALY). Results The results suggest that introducing the universal vaccination would prevent 1,866 cases of perinatal infections per 100,000 of the birth cohort of 2013. Furthermore, 900 cases of perinatal infections per 100,000 could be additionally averted if switching to the selective vaccination. The current vaccination is a dominated strategy both from the societal and payer’s perspective. The Incremental Cost-Effectiveness Ratio (ICER) between universal and selective vaccination is $267 from the societal perspective and is reported as $273 from the payer’s perspective. Conclusion Based on the assumption that the 2012 Gross Domestic Product (GDP) per capita in North Korea, $582.6 was set for cost-effectiveness criteria, the result of this study indicates that selective vaccination may be a highly cost-effective strategy compared to universal vaccination. PMID:27802340

  8. Optimization model of vaccination strategy for dengue transmission

    NASA Astrophysics Data System (ADS)

    Widayani, H.; Kallista, M.; Nuraini, N.; Sari, M. Y.

    2014-02-01

    Dengue fever is emerging tropical and subtropical disease caused by dengue virus infection. The vaccination should be done as a prevention of epidemic in population. The host-vector model are modified with consider a vaccination factor to prevent the occurrence of epidemic dengue in a population. An optimal vaccination strategy using non-linear objective function was proposed. The genetic algorithm programming techniques are combined with fourth-order Runge-Kutta method to construct the optimal vaccination. In this paper, the appropriate vaccination strategy by using the optimal minimum cost function which can reduce the number of epidemic was analyzed. The numerical simulation for some specific cases of vaccination strategy is shown.

  9. Impact of Coverage-Dependent Marginal Costs on Optimal HPV Vaccination Strategies

    PubMed Central

    Ryser, Marc D.; McGoff, Kevin; Herzog, David P.; Sivakoff, David J.; Myers, Evan R.

    2015-01-01

    The effectiveness of vaccinating males against the human papillomavirus (HPV) remains a controversial subject. Many existing studies conclude that increasing female coverage is more effective than diverting resources into male vaccination. Recently, several empirical studies on HPV immunization have been published, providing evidence of the fact that marginal vaccination costs increase with coverage. In this study, we use a stochastic agent-based modeling framework to revisit the male vaccination debate in light of these new findings. Within this framework, we assess the impact of coverage-dependent marginal costs of vaccine distribution on optimal immunization strategies against HPV. Focusing on the two scenarios of ongoing and new vaccination programs, we analyze different resource allocation policies and their effects on overall disease burden. Our results suggest that if the costs associated with vaccinating males are relatively close to those associated with vaccinating females, then coverage-dependent, increasing marginal costs may favor vaccination strategies that entail immunization of both genders. In particular, this study emphasizes the necessity for further empirical research on the nature of coverage-dependent vaccination costs. PMID:25979280

  10. [Immunization strategy of hepatitis B vaccine among adults in China: evidence based-medicine and consideration].

    PubMed

    Xu, A Q; Zhang, L

    2016-06-01

    With the effective control of hepatitis B infection among children, the adults especial the young ones become the main population for new hepatitis B virus infection. Now the adults receive hepatitis B vaccination voluntarily and at their own expense in China and the coverage is low. The high immunogenicity of hepatitis B vaccine has been proven among healthy adults. Although the safety of hepatitis B vaccination has been documented among high-risk population such as HIV-infected people, injecting drug users and patients with chronic hepatitis disease, their antibody seroconversion rate after hepatitis B vaccination is lower than the healthy adults. Hepatitis B vaccination is recommended to population at high risk officially in many countries and some effects have been achieved. It is urgent to improve the strategy of hepatitis B vaccination among adults to fasten the control of hepatitis B in China, along with the researches about the long-term efficacy of hepatitis B vaccine among adults, the immunogenicity of hepatitis B vaccination among high-risk adults and the economical evaluation about different adult immunization strategy of hepatitis B.

  11. Evaluation of human papilloma virus (HPV) vaccination strategies and vaccination coverage in adolescent girls worldwide.

    PubMed

    Owsianka, Barbara; Gańczak, Maria

    2015-01-01

    An analysis of HPV vaccination strategies and vaccination coverage in adolescent girls worldwide for the last eight years with regard to potential improvement of vaccination coverage rates in Poland. Literature search, covering the period 2006-2014, was performed using Medline. Comparative analysis of HPV vaccination strategies and coverage between Poland and other countries worldwide was conducted. In the last eight years, a number of countries introduced HPV vaccination for adolescent girls to their national immunization programmes. Vaccination strategies differ, consequently affecting vaccination coverage, ranging from several percent to more than 90%. Usually, there are also disparities at national level. The highest HPV vaccination coverage rates are observed in countries where vaccines are administered in school settings and funded from the national budget. Poland is one of the eight EU countries where HPV vaccination has not been introduced to mandatory immunization programme and where paid vaccination is only provided in primary health care settings. HPV vaccination coverage in adolescent girls is estimated at 7.5-10%. Disparities in HPV vaccination coverage rates in adolescent girls worldwide may be due to different strategies of vaccination implementation between countries. Having compared to other countries, the low HPV vaccination coverage in Polish adolescent girls may result from the lack of funding at national level and the fact that vaccines are administered in a primary health care setting. A multidimensional approach, involving the engagement of primary health care and school personnel as well as financial assistance of government at national and local level and the implementation of media campaigns, particularly in regions with high incidence of cervical cancer, could result in an increase of HPV vaccination coverage rates in Poland.

  12. A model-based economic analysis of pre-pandemic influenza vaccination cost-effectiveness

    PubMed Central

    2014-01-01

    Background A vaccine matched to a newly emerged pandemic influenza virus would require a production time of at least 6 months with current proven techniques, and so could only be used reactively after the peak of the pandemic. A pre-pandemic vaccine, although probably having lower efficacy, could be produced and used pre-emptively. While several previous studies have investigated the cost effectiveness of pre-emptive vaccination strategies, they have not been directly compared to realistic reactive vaccination strategies. Methods An individual-based simulation model of ~30,000 people was used to examine a pre-emptive vaccination strategy, assuming vaccination conducted prior to a pandemic using a low-efficacy vaccine. A reactive vaccination strategy, assuming a 6-month delay between pandemic emergence and availability of a high-efficacy vaccine, was also modelled. Social distancing and antiviral interventions were examined in combination with these alternative vaccination strategies. Moderate and severe pandemics were examined, based on estimates of transmissibility and clinical severity of the 1957 and 1918 pandemics respectively, and the cost effectiveness of each strategy was evaluated. Results Provided that a pre-pandemic vaccine achieved at least 30% efficacy, pre-emptive vaccination strategies were found to be more cost effective when compared to reactive vaccination strategies. Reactive vaccination coupled with sustained social distancing and antiviral interventions was found to be as effective at saving lives as pre-emptive vaccination coupled with limited duration social distancing and antiviral use, with both strategies saving approximately 420 life-years per 10,000 population for a moderate pandemic with a basic reproduction number of 1.9 and case fatality rate of 0.25%. Reactive vaccination was however more costly due to larger productivity losses incurred by sustained social distancing, costing $8 million per 10,000 population ($19,074/LYS) versus $6

  13. A model-based economic analysis of pre-pandemic influenza vaccination cost-effectiveness.

    PubMed

    Halder, Nilimesh; Kelso, Joel K; Milne, George J

    2014-05-16

    A vaccine matched to a newly emerged pandemic influenza virus would require a production time of at least 6 months with current proven techniques, and so could only be used reactively after the peak of the pandemic. A pre-pandemic vaccine, although probably having lower efficacy, could be produced and used pre-emptively. While several previous studies have investigated the cost effectiveness of pre-emptive vaccination strategies, they have not been directly compared to realistic reactive vaccination strategies. An individual-based simulation model of ~30,000 people was used to examine a pre-emptive vaccination strategy, assuming vaccination conducted prior to a pandemic using a low-efficacy vaccine. A reactive vaccination strategy, assuming a 6-month delay between pandemic emergence and availability of a high-efficacy vaccine, was also modelled. Social distancing and antiviral interventions were examined in combination with these alternative vaccination strategies. Moderate and severe pandemics were examined, based on estimates of transmissibility and clinical severity of the 1957 and 1918 pandemics respectively, and the cost effectiveness of each strategy was evaluated. Provided that a pre-pandemic vaccine achieved at least 30% efficacy, pre-emptive vaccination strategies were found to be more cost effective when compared to reactive vaccination strategies. Reactive vaccination coupled with sustained social distancing and antiviral interventions was found to be as effective at saving lives as pre-emptive vaccination coupled with limited duration social distancing and antiviral use, with both strategies saving approximately 420 life-years per 10,000 population for a moderate pandemic with a basic reproduction number of 1.9 and case fatality rate of 0.25%. Reactive vaccination was however more costly due to larger productivity losses incurred by sustained social distancing, costing $8 million per 10,000 population ($19,074/LYS) versus $6.8 million per 10

  14. Carbohydrate-based vaccine adjuvants - discovery and development.

    PubMed

    Hu, Jing; Qiu, Liying; Wang, Xiaoli; Zou, Xiaopeng; Lu, Mengji; Yin, Jian

    2015-10-01

    The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.

  15. Strategy for distribution of influenza vaccine to high-risk groups and children.

    PubMed

    Longini, Ira M; Halloran, M Elizabeth

    2005-02-15

    Despite evidence that vaccinating schoolchildren against influenza is effective in limiting community-level transmission, the United States has had a long-standing government strategy of recommending that vaccine be concentrated primarily in high-risk groups and distributed to those people who keep the health system and social infrastructure operating. Because of this year's influenza vaccine shortage, a plan was enacted to distribute the limited vaccine stock to these groups first. This vaccination strategy, based on direct protection of those most at risk, has not been very effective in reducing influenza morbidity and mortality. Although it is too late to make changes this year, the current influenza vaccine crisis affords the opportunity to examine an alternative for future years. The alternative plan, supported by mathematical models and influenza field studies, would be to concentrate vaccine in schoolchildren, the population group most responsible for transmission, while also covering the reachable high-risk groups, who would also receive considerable indirect protection. In conjunction with a plan to ensure an adequate vaccine supply, this alternative influenza vaccination strategy would help control interpandemic influenza and be instrumental in preparing for pandemic influenza. The effectiveness of the alternative plan could be assessed through nationwide community studies.

  16. Vaccination strategies for SIR vector-transmitted diseases.

    PubMed

    Cruz-Pacheco, Gustavo; Esteva, Lourdes; Vargas, Cristobal

    2014-08-01

    Vector-borne diseases are one of the major public health problems in the world with the fastest spreading rate. Control measures have been focused on vector control, with poor results in most cases. Vaccines should help to reduce the diseases incidence, but vaccination strategies should also be defined. In this work, we propose a vector-transmitted SIR disease model with age-structured population subject to a vaccination program. We find an expression for the age-dependent basic reproductive number R(0), and we show that the disease-free equilibrium is locally stable for R(0) ≤ 1, and a unique endemic equilibrium exists for R(0) > 1. We apply the theoretical results to public data to evaluate vaccination strategies, immunization levels, and optimal age of vaccination for dengue disease.

  17. Parental regret regarding children's vaccines-The correlation between anticipated regret, altruism, coping strategies and attitudes toward vaccines.

    PubMed

    Hamama-Raz, Yaira; Ginossar-David, Eyal; Ben-Ezra, Menachem

    2016-01-01

    Parental hesitancy for recommended childhood vaccines is a growing public health concern influenced by various factors. This study aimed to explore regret regarding parental decisions to vaccinate their children via possible correlations between anticipated regret, altruism, coping strategies, and parents' attitudes toward the vaccination of their children. The study was conducted during 2014 in Israel. Data were collected via snowballing methodology (i.e., Internet forums, Facebook and e- mails). 314 parents of children ages 0-6 years participated in the study. Questionnaires were distributed and completed on-line including attitudes toward vaccines, altruism, coping strategies, regret and anticipated regret. Pearson analysis revealed a moderate negative association between attitudes toward vaccinations and regret. In addition, weak but significant positive associations emerged between anticipated regret and regret as well as between gender and regret. Performing hierarchical regression analysis revealed contribution of 35.9 % to the explained variance of regret suggesting that coping strategy of instrumental support, attitudes toward vaccinations and anticipated regret are linked significantly to regret. Parental attitudes toward vaccines and anticipated regret have a salient role when deciding whether or not to vaccinate children and contribute to the prediction of regret regarding vaccination. In order to increase parental consent to vaccination of their children, it is important to minimize possible regret through the strength of the recommendation and/or knowledge base about risk/benefit (perceived, heuristic) of vaccines that might influence parental attitudes and lessen their anticipated regret. N/A. This is not a clinical trial and thus does not require registration. Ethics approval was received from Ariel University School of Social Work Ethics committee (18/02/14). This was an attitude survey. The Ariel University School of Social Work Ethics committee

  18. Evaluating vaccination strategies to control foot-and-mouth disease: a model comparison study.

    PubMed

    Roche, S E; Garner, M G; Sanson, R L; Cook, C; Birch, C; Backer, J A; Dube, C; Patyk, K A; Stevenson, M A; Yu, Z D; Rawdon, T G; Gauntlett, F

    2015-04-01

    Simulation models can offer valuable insights into the effectiveness of different control strategies and act as important decision support tools when comparing and evaluating outbreak scenarios and control strategies. An international modelling study was performed to compare a range of vaccination strategies in the control of foot-and-mouth disease (FMD). Modelling groups from five countries (Australia, New Zealand, USA, UK, The Netherlands) participated in the study. Vaccination is increasingly being recognized as a potentially important tool in the control of FMD, although there is considerable uncertainty as to how and when it should be used. We sought to compare model outputs and assess the effectiveness of different vaccination strategies in the control of FMD. Using a standardized outbreak scenario based on data from an FMD exercise in the UK in 2010, the study showed general agreement between respective models in terms of the effectiveness of vaccination. Under the scenario assumptions, all models demonstrated that vaccination with 'stamping-out' of infected premises led to a significant reduction in predicted epidemic size and duration compared to the 'stamping-out' strategy alone. For all models there were advantages in vaccinating cattle-only rather than all species, using 3-km vaccination rings immediately around infected premises, and starting vaccination earlier in the control programme. This study has shown that certain vaccination strategies are robust even to substantial differences in model configurations. This result should increase end-user confidence in conclusions drawn from model outputs. These results can be used to support and develop effective policies for FMD control.

  19. Pricing strategies for combination pediatric vaccines based on the lowest overall cost formulary.

    PubMed

    Behzad, Banafsheh; Jacobson, Sheldon H; Sewell, Edward C

    2012-10-01

    This paper analyzes pricing strategies for US pediatric combination vaccines by comparing the lowest overall cost formularies (i.e., formularies that have the lowest overall cost). Three pharmaceutical companies compete pairwise over the sale of monovalent and combination vaccines. Particular emphasis is placed on examining the price of Sanofi Pasteur's DTaP-IPV/HIb under different conditions. The main contribution of the paper is to provide the lowest overall cost formularies for different prices of DTaP-IPV/HIb and other Sanofi Pasteur vaccines. The resulting analysis shows that DTaP-IPV/HIb could have been more competitively priced compared with the combination vaccine DTaP-HepB-IPV, for federal contract prices in 2009, 2010 and 2011. This study also proposes the lowest overall cost formularies when shortages of monovalent vaccines occur.

  20. The cost-effectiveness of alternative vaccination strategies for polyvalent meningococcal vaccines in Burkina Faso: A transmission dynamic modeling study.

    PubMed

    Yaesoubi, Reza; Trotter, Caroline; Colijn, Caroline; Yaesoubi, Maziar; Colombini, Anaïs; Resch, Stephen; Kristiansen, Paul A; LaForce, F Marc; Cohen, Ted

    2018-01-01

    The introduction of a conjugate vaccine for serogroup A Neisseria meningitidis has dramatically reduced disease in the African meningitis belt. In this context, important questions remain about the performance of different vaccine policies that target remaining serogroups. Here, we estimate the health impact and cost associated with several alternative vaccination policies in Burkina Faso. We developed and calibrated a mathematical model of meningococcal transmission to project the disability-adjusted life years (DALYs) averted and costs associated with the current Base policy (serogroup A conjugate vaccination at 9 months, as part of the Expanded Program on Immunization [EPI], plus district-specific reactive vaccination campaigns using polyvalent meningococcal polysaccharide [PMP] vaccine in response to outbreaks) and three alternative policies: (1) Base Prime: novel polyvalent meningococcal conjugate (PMC) vaccine replaces the serogroup A conjugate in EPI and is also used in reactive campaigns; (2) Prevention 1: PMC used in EPI and in a nationwide catch-up campaign for 1-18-year-olds; and (3) Prevention 2: Prevention 1, except the nationwide campaign includes individuals up to 29 years old. Over a 30-year simulation period, Prevention 2 would avert 78% of the meningococcal cases (95% prediction interval: 63%-90%) expected under the Base policy if serogroup A is not replaced by remaining serogroups after elimination, and would avert 87% (77%-93%) of meningococcal cases if complete strain replacement occurs. Compared to the Base policy and at the PMC vaccine price of US$4 per dose, strategies that use PMC vaccine (i.e., Base Prime and Preventions 1 and 2) are expected to be cost saving if strain replacement occurs, and would cost US$51 (-US$236, US$490), US$188 (-US$97, US$626), and US$246 (-US$53, US$703) per DALY averted, respectively, if strain replacement does not occur. An important potential limitation of our study is the simplifying assumption that all

  1. New Kids on the Block: RNA-Based Influenza Virus Vaccines.

    PubMed

    Scorza, Francesco Berlanda; Pardi, Norbert

    2018-04-01

    RNA-based immunization strategies have emerged as promising alternatives to conventional vaccine approaches. A substantial body of published work demonstrates that RNA vaccines can elicit potent, protective immune responses against various pathogens. Consonant with its huge impact on public health, influenza virus is one of the best studied targets of RNA vaccine research. Currently licensed influenza vaccines show variable levels of protection against seasonal influenza virus strains but are inadequate against drifted and pandemic viruses. In recent years, several types of RNA vaccines demonstrated efficacy against influenza virus infections in preclinical models. Additionally, comparative studies demonstrated the superiority of some RNA vaccines over the currently used inactivated influenza virus vaccines in animal models. Based on these promising preclinical results, clinical trials have been initiated and should provide valuable information about the translatability of the impressive preclinical data to humans. This review briefly describes RNA-based vaccination strategies, summarizes published preclinical and clinical data, highlights the roadblocks that need to be overcome for clinical applications, discusses the landscape of industrial development, and shares the authors' personal perspectives about the future of RNA-based influenza virus vaccines.

  2. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    PubMed

    Yu, Zhiwen; Liu, Jiming; Wang, Xiaowei; Zhu, Xianjun; Wang, Daxing; Han, Guoqiang

    2016-01-01

    To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered) model, named the hybrid SEIR-V model (HSEIR-V), which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk) for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  3. DIVA--a vaccination strategy enabling the detection of field exposure to avian influenza.

    PubMed

    Capua, I; Cattoli, G; Marangon, S

    2004-01-01

    The present paper reports on the development, validation and field application of a control strategy for avian influenza infections in poultry. The "DIVA" (Differentiating Infected from Vaccinated Animals) strategy is based on the use of an inactivated oil emulsion vaccine containing the same haemagglutinin (H) subtype as the challenge virus, but a different neuraminidase (N). The possibility of using the heterologous N subtype, to differentiate between vaccinated and naturally infected birds, was investigated through the development of an "ad hoc" serological test based on the detection of specific anti-N antibodies. This test is based on an indirect fluorescent antibody assay, using as an antigen a baculovirus expressing recombinant N proteins. The vaccination strategy has been tested in the laboratory and shown to be efficacious both against challenge with highly pathogenic AI viruses and with low pathogenicity AI viruses, ensuring clinical protection, reduction of duration and titre of shedding. In addition, vaccination resulted in an increased resistance to infection. The companion diagnostic tests directed to the detection of anti-N1 and anti-N3 antibodies have been validated in the laboratory and using field samples. The serological assay showed an "almost perfect agreement" (Kappa value) with the HI test, with relative sensitivity and specificity values of 98.1 and 95.7, respectively. The results of the present investigation suggest that the "DIVA" control strategy may represent a tool to support the eradication of avian influenza infections in poultry.

  4. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    PubMed

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model

    PubMed Central

    Yu, Zhiwen; Liu, Jiming; Wang, Xiaowei; Zhu, Xianjun; Wang, Daxing; Han, Guoqiang

    2016-01-01

    To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible—exposed—infectious šC recovered) model, named the hybrid SEIR-V model (HSEIR-V), which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk) for controlling the spread of viral infections. Based on data from the 2009–2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics. PMID:27233015

  6. [Pertussis in fully vaccinated infants and children. Are new vaccination strategies required?].

    PubMed

    Moraga-Llop, Fernando A; Mendoza-Palomar, Natàlia; Muntaner-Alonso, Antoni; Codina-Grau, Gemma; Fàbregas-Martori, Anna; Campins-Martí, Magda

    2014-04-01

    To analyse the vaccination status of children diagnosed with pertussis and to compare the clinical manifestations of fully vaccinated with unvaccinated, or incompletely-vaccinated, children. The clinical histories and vaccination cards of patients under 16years of age seen in the Emergency Room of the University Hospital Vall d'Hebron, Barcelona (Spain), for pertussis confirmed by a microbiological study were reviewed. The study period lasted from January 1, 2009 to December 31, 2011. Two hundred and twelve cases were studied: 35 in 2009, 28 in 2010 and 149 in 2011. RT-PCR was positive in 210 patients, and 73 had a positive culture. Infants under 6months of age account for 36.8% of all cases. Forty-four patients (21.5%) were not vaccinated. Forty-four (21.5%) children were between 2 and 5months of age and had received 1-2vaccine doses. One hundred and seventeen (57%) children were fully vaccinated; 76.9% (90cases) had received the last dose less than 4years ago. When clinical manifestations of the fully vaccinated patients were compared with those of the non-vaccinated or incompletely-vaccinated children, only cyanosis was found with a higher frequency in the latter group (P<.001). The age-adjusted probability of hospitalisation was significantly associated with non-vaccination (P=.001). The case mortality rate among inpatients was 1.3%. The number of pertussis cases seen in our centre has risen significantly in the last year. More than half (57%) of the patients were fully vaccinated, and 76.9% had received the last dose in the previous 4years. Other vaccination strategies, such as vaccination of adolescents, adults, and pregnant women, as well as a cocoon strategy are required to protect infants under 6months of age. More effective vaccines need to be developed. Copyright © 2012 Elsevier España, S.L. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. Development of an intradermal DNA vaccine delivery strategy to achieve single-dose immunity against respiratory syncytial virus.

    PubMed

    Smith, Trevor R F; Schultheis, Katherine; Morrow, Matthew P; Kraynyak, Kimberly A; McCoy, Jay R; Yim, Kevin C; Muthumani, Karuppiah; Humeau, Laurent; Weiner, David B; Sardesai, Niranjan Y; Broderick, Kate E

    2017-05-15

    Respiratory syncytial virus (RSV) is a massive medical burden in infants, children and the elderly worldwide, and an effective, safe RSV vaccine remains an unmet need. Here we assess a novel vaccination strategy based on the intradermal delivery of a SynCon® DNA-based vaccine encoding engineered RSV-F antigen using a surface electroporation device (SEP) to target epidermal cells, in clinically relevant experimental models. We demonstrate the ability of this strategy to elicit robust immune responses. Importantly we demonstrate complete resistance to pulmonary infection at a single low dose of vaccine in the cotton rat RSV/A challenge model. In contrast to the formalin-inactivated RSV (FI-RSV) vaccine, there was no enhanced lung inflammation upon virus challenge after DNA vaccination. In summary the data presented outline the pre-clinical development of a highly efficacious, tolerable and safe non-replicating vaccine delivery strategy. Copyright © 2017. Published by Elsevier Ltd.

  8. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases

    PubMed Central

    Skeate, Joseph G.; Woodham, Andrew W.; Einstein, Mark H.; Da Silva, Diane M.; Kast, W. Martin

    2016-01-01

    ABSTRACT Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed. PMID:26835746

  9. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases.

    PubMed

    Skeate, Joseph G; Woodham, Andrew W; Einstein, Mark H; Da Silva, Diane M; Kast, W Martin

    2016-06-02

    Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed.

  10. Particle-based vaccines for HIV-1 infection.

    PubMed

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  11. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    PubMed Central

    Schaible, Ulrich E.; Linnemann, Lara; Redinger, Natalja; Patin, Emmanuel C.; Dallenga, Tobias

    2017-01-01

    The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines. PMID:29312298

  12. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity.

    PubMed

    Schaible, Ulrich E; Linnemann, Lara; Redinger, Natalja; Patin, Emmanuel C; Dallenga, Tobias

    2017-01-01

    The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  13. Killed whole-HIV vaccine; employing a well established strategy for antiviral vaccines.

    PubMed

    Kang, C Yong; Gao, Yong

    2017-09-12

    The development of an efficient prophylactic HIV vaccine has been one of the major challenges in infectious disease research during the last three decades. Here, we present a mini review on strategies employed for the development of HIV vaccines with an emphasis on a well-established vaccine technology, the killed whole-virus vaccine approach. Recently, we reported an evaluation of the safety and the immunogenicity of a genetically modified and killed whole-HIV-1 vaccine designated as SAV001 [1]. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence of the Env signal peptide with that of honeybee melittin to produce an avirulent and replication efficient HIV-1. This genetically modified virus (gmHIV-1 NL4-3 ) was propagated in a human T cell line followed by virus purification and inactivation by aldrithiol-2 and γ-irradiation. We found that SAV001 was well tolerated with no serious adverse events. HIV-1 NL4-3 -specific polymerase chain reaction showed no evidence of vaccine virus replication in participants receiving SAV001 and in human T cells infected in vitro. Furthermore, SAV001 with an adjuvant significantly increased the antibody response to HIV-1 structural proteins. Moreover, antibodies in the plasma from these vaccinations neutralized tier I and tier II of HIV-1 B, A, and D subtypes. These results indicated that the killed whole-HIV vaccine is safe and may trigger appropriate immune responses to prevent HIV infection. Utilization of this killed whole-HIV vaccine strategy may pave the way to develop an effective HIV vaccine.

  14. The projected effectiveness of Clostridium difficile vaccination as part of an integrated infection control strategy.

    PubMed

    van Kleef, Esther; Deeny, Sarah R; Jit, Mark; Cookson, Barry; Goldenberg, Simon D; Edmunds, W John; Robotham, Julie V

    2016-11-04

    Early clinical trials of a Clostridium difficile toxoid vaccine show efficacy in preventing C. difficile infection (CDI). The optimal patient group to target for vaccination programmes remains unexplored. This study performed a model-based evaluation of the effectiveness of different CDI vaccination strategies, within the context of existing infection prevention and control strategies such as antimicrobial stewardship. An individual-based transmission model of CDI in a high-risk hospital setting was developed. The model incorporated data on patient movements between the hospital, and catchment populations from the community and long-term care facilities (LTCF), using English national and local level data for model-parameterisation. We evaluated vaccination of: (1) discharged patients who had an CDI-occurrence in the ward; (2) LTCF-residents; (3) Planned elective surgical admissions and (4) All three strategies combined. Without vaccination, 10.9 [Interquartile range: 10.0-11.8] patients per 1000 ward admissions developed CDI, of which 31% were ward-acquired. Immunising all three patient groups resulted in a 43% [42-44], reduction of ward-onset CDI on average. Among the strategies restricting vaccination to one target group, vaccinating elective surgical patients proved most effective (35% [34-36] reduction), but least efficient, requiring 146 [133-162] courses to prevent one ICU-onset case. Immunising LTCF residents was most efficient, requiring just 13 [11-16] courses to prevent one case, but considering this only comprised a small group of our hospital population, it only reduced ICU-onset CDI by 9% [8-11]. Vaccination proved most efficient when ward-based transmission rates and antimicrobial consumption were high. Strategy success depends on the interaction between hospital and catchment populations, and importantly, consideration of importations of CDI from outside the hospital which we found to substantially impact hospital dynamics. Vaccination may be most

  15. Novel vaccine strategies against emerging viruses

    PubMed Central

    García-Sastre, Adolfo; Mena, Ignacio

    2013-01-01

    One of the main public health concerns of emerging viruses is their potential introduction into and sustained circulation among populations of immunologically naïve, susceptible hosts. The induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Conventional approaches to develop vaccines against emerging pathogens have significant limitations: lack of experimental tools for several emerging viruses of concern, poor immunogenicity, safety issues, or lack of cross-protection against antigenic variants. The unpredictability of the emergence of future virus threats demands the capability to rapidly develop safe, effective vaccines. We describe some recent advances in new vaccine strategies that are being explored as alternatives to classical attenuated and inactivated vaccines, and provide examples of potential novel vaccines for emerging viruses. These approaches might be applied to the control of many other emerging pathogens. PMID:23477832

  16. Misinformation lingers in memory: Failure of three pro-vaccination strategies.

    PubMed

    Pluviano, Sara; Watt, Caroline; Della Sala, Sergio

    2017-01-01

    People's inability to update their memories in light of corrective information may have important public health consequences, as in the case of vaccination choice. In the present study, we compare three potentially effective strategies in vaccine promotion: one contrasting myths vs. facts, one employing fact and icon boxes, and one showing images of non-vaccinated sick children. Beliefs in the autism/vaccines link and in vaccines side effects, along with intention to vaccinate a future child, were evaluated both immediately after the correction intervention and after a 7-day delay to reveal possible backfire effects. Results show that existing strategies to correct vaccine misinformation are ineffective and often backfire, resulting in the unintended opposite effect, reinforcing ill-founded beliefs about vaccination and reducing intentions to vaccinate. The implications for research on vaccines misinformation and recommendations for progress are discussed.

  17. Misinformation lingers in memory: Failure of three pro-vaccination strategies

    PubMed Central

    Pluviano, Sara

    2017-01-01

    People’s inability to update their memories in light of corrective information may have important public health consequences, as in the case of vaccination choice. In the present study, we compare three potentially effective strategies in vaccine promotion: one contrasting myths vs. facts, one employing fact and icon boxes, and one showing images of non-vaccinated sick children. Beliefs in the autism/vaccines link and in vaccines side effects, along with intention to vaccinate a future child, were evaluated both immediately after the correction intervention and after a 7-day delay to reveal possible backfire effects. Results show that existing strategies to correct vaccine misinformation are ineffective and often backfire, resulting in the unintended opposite effect, reinforcing ill-founded beliefs about vaccination and reducing intentions to vaccinate. The implications for research on vaccines misinformation and recommendations for progress are discussed. PMID:28749996

  18. Mechanisms of Cross-protection by Influenza Virus M2-based Vaccines.

    PubMed

    Lee, Yu-Na; Kim, Min-Chul; Lee, Young-Tae; Kim, Yu-Jin; Kang, Sang-Moo

    2015-10-01

    Current influenza virus vaccines are based on strain-specific surface glycoprotein hemagglutinin (HA) antigens and effective only when the predicted vaccine strains and circulating viruses are well-matched. The current strategy of influenza vaccination does not prevent the pandemic outbreaks and protection efficacy is reduced or ineffective if mutant strains emerge. It is of high priority to develop effective vaccines and vaccination strategies conferring a broad range of cross protection. The extracellular domain of M2 (M2e) is highly conserved among human influenza A viruses and has been utilized to develop new vaccines inducing cross protection against different subtypes of influenza A virus. However, immune mechanisms of cross protection by M2e-based vaccines still remain to be fully elucidated. Here, we review immune correlates and mechanisms conferring cross protection by M2e-based vaccines. Molecular and cellular immune components that are known to be involved in M2 immune-mediated protection include antibodies, B cells, T cells, alveolar macrophages, Fc receptors, complements, and natural killer cells. Better understanding of protective mechanisms by immune responses induced by M2e vaccination will help facilitate development of broadly cross protective vaccines against influenza A virus.

  19. Rabies control in rural Africa: Evaluating strategies for effective domestic dog vaccination

    PubMed Central

    Kaare, M.; Lembo, T.; Hampson, K.; Ernest, E.; Estes, A.; Mentzel, C.; Cleaveland, S.

    2012-01-01

    Effective vaccination campaigns need to reach a sufficient percentage of the population to eliminate disease and prevent future outbreaks, which for rabies is predicted to be 70%, at a cost that is economically and logistically sustainable. Domestic dog rabies has been increasing across most of sub-Saharan Africa indicating that dog vaccination programmes to date have been inadequate. We compare the effectiveness of a variety of dog vaccination strategies in terms of their cost and coverage in different community settings in rural Tanzania. Central-point (CP) vaccination was extremely effective in agro-pastoralist communities achieving a high coverage (>80%) at a low cost (vaccination was costly (>US$5/dog) and inadequate (<20% coverage); combined approaches using CP and either house-to-house vaccination or trained community-based animal health workers were most effective with coverage exceeding 70%, although costs were still high (>US$6 and >US$4/dog, respectively). No single vaccination strategy is likely to be effective in all populations and therefore alternative approaches must be deployed under different settings. CP vaccination is cost-effective and efficient for the majority of dog populations in rural Tanzania and potentially elsewhere in sub-Saharan Africa, whereas a combination strategy is necessary in remote pastoralist communities. These results suggest that rabies control is logistically feasible across most of the developing world and that the annual costs of effective vaccination campaigns in Tanzania are likely to be affordable. PMID:18848595

  20. Experiences of operational costs of HPV vaccine delivery strategies in Gavi-supported demonstration projects

    PubMed Central

    Holroyd, Taylor; Nanda, Shreya; Bloem, Paul; Griffiths, Ulla K.; Sidibe, Anissa; Hutubessy, Raymond C. W.

    2017-01-01

    From 2012 to 2016, Gavi, the Vaccine Alliance, provided support for countries to conduct small-scale demonstration projects for the introduction of the human papillomavirus vaccine, with the aim of determining which human papillomavirus vaccine delivery strategies might be effective and sustainable upon national scale-up. This study reports on the operational costs and cost determinants of different vaccination delivery strategies within these projects across twelve countries using a standardized micro-costing tool. The World Health Organization Cervical Cancer Prevention and Control Costing Tool was used to collect costing data, which were then aggregated and analyzed to assess the costs and cost determinants of vaccination. Across the one-year demonstration projects, the average economic and financial costs per dose amounted to US$19.98 (standard deviation ±12.5) and US$8.74 (standard deviation ±5.8), respectively. The greatest activities representing the greatest share of financial costs were social mobilization at approximately 30% (range, 6–67%) and service delivery at about 25% (range, 3–46%). Districts implemented varying combinations of school-based, facility-based, or outreach delivery strategies and experienced wide variation in vaccine coverage, drop-out rates, and service delivery costs, including transportation costs and per diems. Size of target population, number of students per school, and average length of time to reach an outreach post influenced cost per dose. Although the operational costs from demonstration projects are much higher than those of other routine vaccine immunization programs, findings from our analysis suggest that HPV vaccination operational costs will decrease substantially for national introduction. Vaccination costs may be decreased further by annual vaccination, high initial investment in social mobilization, or introducing/strengthening school health programs. Our analysis shows that drivers of cost are dependent on

  1. Experiences of operational costs of HPV vaccine delivery strategies in Gavi-supported demonstration projects.

    PubMed

    Botwright, Siobhan; Holroyd, Taylor; Nanda, Shreya; Bloem, Paul; Griffiths, Ulla K; Sidibe, Anissa; Hutubessy, Raymond C W

    2017-01-01

    From 2012 to 2016, Gavi, the Vaccine Alliance, provided support for countries to conduct small-scale demonstration projects for the introduction of the human papillomavirus vaccine, with the aim of determining which human papillomavirus vaccine delivery strategies might be effective and sustainable upon national scale-up. This study reports on the operational costs and cost determinants of different vaccination delivery strategies within these projects across twelve countries using a standardized micro-costing tool. The World Health Organization Cervical Cancer Prevention and Control Costing Tool was used to collect costing data, which were then aggregated and analyzed to assess the costs and cost determinants of vaccination. Across the one-year demonstration projects, the average economic and financial costs per dose amounted to US$19.98 (standard deviation ±12.5) and US$8.74 (standard deviation ±5.8), respectively. The greatest activities representing the greatest share of financial costs were social mobilization at approximately 30% (range, 6-67%) and service delivery at about 25% (range, 3-46%). Districts implemented varying combinations of school-based, facility-based, or outreach delivery strategies and experienced wide variation in vaccine coverage, drop-out rates, and service delivery costs, including transportation costs and per diems. Size of target population, number of students per school, and average length of time to reach an outreach post influenced cost per dose. Although the operational costs from demonstration projects are much higher than those of other routine vaccine immunization programs, findings from our analysis suggest that HPV vaccination operational costs will decrease substantially for national introduction. Vaccination costs may be decreased further by annual vaccination, high initial investment in social mobilization, or introducing/strengthening school health programs. Our analysis shows that drivers of cost are dependent on

  2. Using quality improvement methods to increase use of pain prevention strategies for childhood vaccination.

    PubMed

    Schurman, Jennifer Verrill; Deacy, Amanda D; Johnson, Rebecca J; Parker, Jolynn; Williams, Kristi; Wallace, Dustin; Connelly, Mark; Anson, Lynn; Mroczka, Kevin

    2017-02-08

    To increase evidence-based pain prevention strategy use during routine vaccinations in a pediatric primary care clinic using quality improvement methodology. Specific intervention strategies ( i.e ., comfort positioning, nonnutritive sucking and sucrose analgesia, distraction) were identified, selected and introduced in three waves, using a Plan-Do-Study-Act framework. System-wide change was measured from baseline to post-intervention by: (1) percent of vaccination visits during which an evidence-based pain prevention strategy was reported as being used; and (2) caregiver satisfaction ratings following the visit. Additionally, self-reported staff and caregiver attitudes and beliefs about pain prevention were measured at baseline and 1-year post-intervention to assess for possible long-term cultural shifts. Significant improvements were noted post-intervention. Use of at least one pain prevention strategy was documented at 99% of patient visits and 94% of caregivers were satisfied or very satisfied with the pain prevention care received. Parents/caregivers reported greater satisfaction with the specific pain prevention strategy used [ t (143) = 2.50, P ≤ 0.05], as well as greater agreement that the pain prevention strategies used helped their children's pain [ t (180) = 2.17, P ≤ 0.05] and that they would be willing to use the same strategy again in the future [ t (179) = 3.26, P ≤ 0.001] as compared to baseline. Staff and caregivers also demonstrated a shift in attitudes from baseline to 1-year post-intervention. Specifically, staff reported greater agreement that the pain felt from vaccinations can result in harmful effects [2.47 vs 3.10; t (70) = -2.11, P ≤ 0.05], less agreement that pain from vaccinations is "just part of the process" [3.94 vs 3.23; t (70) = 2.61, P ≤ 0.05], and less agreement that parents expect their children to experience pain during vaccinations [4.81 vs 4.38; t (69) = 2.24, P ≤ 0.05]. Parents/caregivers reported more favorable

  3. Formative research and development of an evidence-based communication strategy: the introduction of Vi typhoid fever vaccine among school-aged children in Karachi, Pakistan.

    PubMed

    Pach, Alfred; Tabbusam, Ghurnata; Khan, M Imran; Suhag, Zamir; Hussain, Imtiaz; Hussain, Ejaz; Mumtaz, Uzma; Haq, Inam Ul; Tahir, Rehman; Mirani, Amjad; Yousafzai, Aisha; Sahastrabuddhe, Sushant; Ochiai, R Leon; Soofi, Sajid; Clemens, John D; Favorov, Michael O; Bhutta, Zulfiqar A

    2013-01-01

    The authors conducted formative research (a) to identify stakeholders' concerns related to typhoid fever and the need for disease information and (b) to develop a communication strategy to inform stakeholders and address their concerns and motivate for support of a school-based vaccination program in Pakistan. Data were collected during interactive and semi-structured focus group discussions and interviews, followed by a qualitative analysis and multidisciplinary consultative process to identify an effective social mobilization strategy comprised of relevant media channels and messages. The authors conducted 14 focus group discussions with the parents of school-aged children and their teachers, and 13 individual interviews with school, religious, and political leaders. Parents thought that typhoid fever was a dangerous disease, but were unsure of their children's risk. They were interested in vaccination and were comfortable with a school-based vaccination if conducted under the supervision of trained and qualified staff. Teachers and leaders needed information on typhoid fever, the vaccine, procedures, and sponsors of the vaccination program. Meetings were considered the best form of information dissemination, followed by printed materials and mass media. This study shows how qualitative research findings can be translated into an effective social mobilization and communication approach. The findings of the research indicated the importance of increasing awareness of typhoid fever and the benefits of vaccination against the disease. Identification and dissemination of relevant, community-based disease and vaccination information will increase demand and use of vaccination.

  4. Financial evaluation of different vaccination strategies for controlling the bluetongue virus serotype 8 epidemic in The Netherlands in 2008.

    PubMed

    Velthuis, Annet G J; Mourits, Monique C M; Saatkamp, Helmut W; de Koeijer, Aline A; Elbers, Armin R W

    2011-05-04

    Bluetongue (BT) is a vector-borne disease of ruminants caused by bluetongue virus that is transmitted by biting midges (Culicoides spp.). In 2006, the introduction of BTV serotype 8 (BTV-8) caused a severe epidemic in Western and Central Europe. The principal effective veterinary measure in response to BT was believed to be vaccination accompanied by other measures such as movement restrictions and surveillance. As the number of vaccine doses available at the start of the vaccination campaign was rather uncertain, the Dutch Ministry of Agriculture, Nature and Food Quality and the Dutch agricultural industry wanted to evaluate several different vaccination strategies. This study aimed to rank eight vaccination strategies based on their efficiency (i.e. net costs in relation to prevented losses or benefits) for controlling the bluetongue virus serotype 8 epidemic in 2008. An economic model was developed that included the Dutch professional cattle, sheep and goat sectors together with the hobby farms. Strategies were evaluated based on the least cost - highest benefit frontier, the benefit-cost ratio and the total net returns. Strategy F, where all adult sheep at professional farms in The Netherlands would be vaccinated was very efficient at lowest costs, whereas strategy D, where additional to all adult sheep at professional farms also all adult cattle in the four Northern provinces would be vaccinated, was also very efficient but at a little higher costs. Strategy C, where all adult sheep and cattle at professional farms in the whole of The Netherlands would be vaccinated was also efficient but again at higher costs. This study demonstrates that a financial analysis differentiates between vaccination strategies and indicates important decision rules based on efficiency.

  5. [Strategies to improve influenza vaccination coverage in Primary Health Care].

    PubMed

    Antón, F; Richart, M J; Serrano, S; Martínez, A M; Pruteanu, D F

    2016-04-01

    Vaccination coverage reached in adults is insufficient, and there is a real need for new strategies. To compare strategies for improving influenza vaccination coverage in persons older than 64 years. New strategies were introduced in our health care centre during 2013-2014 influenza vaccination campaign, which included vaccinating patients in homes for the aged as well as in the health care centre. A comparison was made on vaccination coverage over the last 4 years in 3 practices of our health care centre: P1, the general physician vaccinated patients older than 64 that came to the practice; P2, the general physician systematically insisted in vaccination in elderly patients, strongly advising to book appointments, and P3, the general physician did not insist. These practices looked after P1: 278; P2: 320; P3: 294 patients older than 64 years. Overall/P1/P2/P3 coverages in 2010: 51.2/51.4/55/46.9% (P=NS), in 2011: 52.4/52.9/53.8/50.3% (P=NS), in 2012: 51.9/52.5/55.3/47.6% (P=NS), and in 2013: 63.5/79.1/59.7/52.7 (P=.000, P1 versus P2 and P3; P=NS between P2 and P3). Comparing the coverages in 2012-2013 within each practice P1 (P=.000); P2 (P=.045); P3 (P=.018). In P2 and P3 all vaccinations were given by the nurses as previously scheduled. In P3, 55% of the vaccinations were given by the nurses, 24.1% by the GP, 9.7% rejected vaccination, and the remainder did not come to the practice during the vaccination period (October 2013-February 2014). The strategy of vaccinating in the homes for the aged improved the vaccination coverage by 5% in each practice. The strategy of "I've got you here, I jab you here" in P1 improved the vaccination coverage by 22%. Copyright © 2014 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Health economic evaluation of vaccination strategies for the prevention of herpes zoster and postherpetic neuralgia in Germany.

    PubMed

    Ultsch, Bernhard; Weidemann, Felix; Reinhold, Thomas; Siedler, Anette; Krause, Gérard; Wichmann, Ole

    2013-09-26

    Herpes zoster (HZ) is a self-limiting painful skin rash affecting mostly individuals from 50 years of age. The main complication is postherpetic neuralgia (PHN), a long-lasting pain after rash has resolved. A HZ-vaccine has recently been licensed in Europe for individuals older than 50 years. To support an informed decision-making for a potential vaccination recommendation, we conducted a health economic evaluation to identify the most cost-effective vaccination strategy. We developed a static Markov-cohort model, which compared a vaccine-scenario with no vaccination. The cohort entering the model was 50 years of age, vaccinated at age 60, and stayed over life-time in the model. Transition probabilities were based on HZ/PHN-epidemiology and demographic data from Germany, as well as vaccine efficacy (VE) data from clinical trials. Costs for vaccination and HZ/PHN-treatment (in Euros; 2010), as well as outcomes were discounted equally with 3% p.a. We accounted results from both, payer and societal perspective. We calculated benefit-cost-ratio (BCR), number-needed-to-vaccinate (NNV), and incremental cost-effectiveness ratios (ICERs) for costs per HZ-case avoided, per PHN-case avoided, and per quality-adjusted life-year (QALY) gained. Different target age-groups were compared to identify the most cost-effective vaccination strategy. Base-case-analysis as well as structural, descriptive-, and probabilistic-sensitivity-analyses (DSA, PSA) were performed. When vaccinating 20% of a cohort of 1 million 50 year old individuals at the age of 60 years, approximately 20,000 HZ-cases will be avoided over life-time. The NNV to avoid one HZ (PHN)-case was 10 (144). However, with a BCR of 0.34 this vaccination-strategy did not save costs. The base-case-analysis yielded an ICER of 1,419 (20,809) Euros per avoided HZ (PHN)-case and 28,146 Euros per QALY gained. Vaccination at the age of 60 was identified in most (sensitivity) analyses to be the most cost-effective vaccination

  7. Health economic evaluation of vaccination strategies for the prevention of herpes zoster and postherpetic neuralgia in Germany

    PubMed Central

    2013-01-01

    Background Herpes zoster (HZ) is a self-limiting painful skin rash affecting mostly individuals from 50 years of age. The main complication is postherpetic neuralgia (PHN), a long-lasting pain after rash has resolved. A HZ-vaccine has recently been licensed in Europe for individuals older than 50 years. To support an informed decision-making for a potential vaccination recommendation, we conducted a health economic evaluation to identify the most cost-effective vaccination strategy. Methods We developed a static Markov-cohort model, which compared a vaccine-scenario with no vaccination. The cohort entering the model was 50 years of age, vaccinated at age 60, and stayed over life-time in the model. Transition probabilities were based on HZ/PHN-epidemiology and demographic data from Germany, as well as vaccine efficacy (VE) data from clinical trials. Costs for vaccination and HZ/PHN-treatment (in Euros; 2010), as well as outcomes were discounted equally with 3% p.a. We accounted results from both, payer and societal perspective. We calculated benefit-cost-ratio (BCR), number-needed-to-vaccinate (NNV), and incremental cost-effectiveness ratios (ICERs) for costs per HZ-case avoided, per PHN-case avoided, and per quality-adjusted life-year (QALY) gained. Different target age-groups were compared to identify the most cost-effective vaccination strategy. Base-case-analysis as well as structural, descriptive-, and probabilistic-sensitivity-analyses (DSA, PSA) were performed. Results When vaccinating 20% of a cohort of 1 million 50 year old individuals at the age of 60 years, approximately 20,000 HZ-cases will be avoided over life-time. The NNV to avoid one HZ (PHN)-case was 10 (144). However, with a BCR of 0.34 this vaccination-strategy did not save costs. The base-case-analysis yielded an ICER of 1,419 (20,809) Euros per avoided HZ (PHN)-case and 28,146 Euros per QALY gained. Vaccination at the age of 60 was identified in most (sensitivity) analyses to be the most cost

  8. Financial Evaluation of Different Vaccination Strategies for Controlling the Bluetongue Virus Serotype 8 Epidemic in the Netherlands in 2008

    PubMed Central

    Velthuis, Annet G. J.; Mourits, Monique C. M.; Saatkamp, Helmut W.; de Koeijer, Aline A.; Elbers, Armin R. W.

    2011-01-01

    Background Bluetongue (BT) is a vector-borne disease of ruminants caused by bluetongue virus that is transmitted by biting midges (Culicoides spp.). In 2006, the introduction of BTV serotype 8 (BTV-8) caused a severe epidemic in Western and Central Europe. The principal effective veterinary measure in response to BT was believed to be vaccination accompanied by other measures such as movement restrictions and surveillance. As the number of vaccine doses available at the start of the vaccination campaign was rather uncertain, the Dutch Ministry of Agriculture, Nature and Food Quality and the Dutch agricultural industry wanted to evaluate several different vaccination strategies. This study aimed to rank eight vaccination strategies based on their efficiency (i.e. net costs in relation to prevented losses or benefits) for controlling the bluetongue virus serotype 8 epidemic in 2008. Methodology/Principal Findings An economic model was developed that included the Dutch professional cattle, sheep and goat sectors together with the hobby farms. Strategies were evaluated based on the least cost - highest benefit frontier, the benefit-cost ratio and the total net returns. Strategy F, where all adult sheep at professional farms in the Netherlands would be vaccinated was very efficient at lowest costs, whereas strategy D, where additional to all adult sheep at professional farms also all adult cattle in the four Northern provinces would be vaccinated, was also very efficient but at a little higher costs. Strategy C, where all adult sheep and cattle at professional farms in the whole of the Netherlands would be vaccinated was also efficient but again at higher costs. Conclusions/Significance This study demonstrates that a financial analysis differentiates between vaccination strategies and indicates important decision rules based on efficiency. PMID:21573195

  9. [Economic evaluation of an infant immunization program in Mexico, based on 13-valent pneumococcal conjugated vaccines].

    PubMed

    Muciño-Ortega, Emilio; Mould-Quevedo, Joaquín Federico; Farkouh, Raymond; Strutton, David

    2011-01-01

    Vaccination is an effective intervention for reduce child morbidity and mortality associated to pneumococcus. The availability of new anti-pneumococcal vaccines makes it necessary to evaluate its potential impact on public health and costs related to their implementation. The aim of this study was to estimate the cost-effectiveness and cost-utility of immunization strategies based on pneumococcal conjugated vaccines (PCV's) currently available in Mexico from a third payer perspective. A decision tree model was developed to assess both, economic and health impact, of anti-pneumococcal vaccination in children <2 years (lifetime time horizon, discount rate: 5% annual). Comparators were: no-vaccination (reference) and strategies based on 7, 10 and 13-valent PCV's. Effectiveness measures were: child deaths avoided, life-years gained (LYG) and quality adjusted life years (QALY's) gained. Effectiveness, utility, local epidemiology and cost of treating pneumococcal diseases were extracted from published sources. Univariate sensitivity analysis were performed. Immunization dominates no-vaccination: strategy based on 13-valent vaccine prevented 16.205 deaths, gained 331.230 LY's and 332.006 QALY's and saved US$1.307/child vaccinated. Strategies based on 7 and 10-valent PCV's prevented 13.806 and 5.589 deaths, gained 282.193 and 114.251 LY's, 282.969 and 114.972 QALY's and saved US$1.084 and US$731/child vaccinated, respectively. These results were robust to variations in herd immunity and lower immunogenicity of 10-valent vaccine. In Mexico, immunization strategies based on 7, 10 and 13-valent PCV's would be cost-saving interventions, however, health outcomes and savings of the strategy based on 13-valent vaccine are greater than those estimated for 7 and 10-valent PCV's. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. A Novel Non-Replication-Competent Cytomegalovirus Capsid Mutant Vaccine Strategy Is Effective in Reducing Congenital Infection

    PubMed Central

    Choi, K. Yeon; Root, Matthew

    2016-01-01

    ABSTRACT Congenital cytomegalovirus (CMV) infection is a leading cause of mental retardation and deafness in newborns. The guinea pig is the only small animal model for congenital CMV infection. A novel CMV vaccine was investigated as an intervention strategy against congenital guinea pig cytomegalovirus (GPCMV) infection. In this disabled infectious single-cycle (DISC) vaccine strategy, a GPCMV mutant virus was used that lacked the ability to express an essential capsid gene (the UL85 homolog GP85) except when grown on a complementing cell line. In vaccinated animals, the GP85 mutant virus (GP85 DISC) induced an antibody response to important glycoprotein complexes considered neutralizing target antigens (gB, gH/gL/gO, and gM/gN). The vaccine also generated a T cell response to the pp65 homolog (GP83), determined via a newly established guinea pig gamma interferon enzyme-linked immunosorbent spot assay. In a congenital infection protection study, GP85 DISC-vaccinated animals and a nonvaccinated control group were challenged during pregnancy with wild-type GPCMV (105 PFU). The pregnant animals carried the pups to term, and viral loads in target organs of pups were analyzed. Based on live pup births in the vaccinated and control groups (94.1% versus 63.6%), the vaccine was successful in reducing mortality (P = 0.0002). Additionally, pups from the vaccinated group had reduced CMV transmission, with 23.5% infected target organs versus 75.9% in the control group. Overall, these preliminary studies indicate that a DISC CMV vaccine strategy has the ability to induce an immune response similar to that of natural virus infection but has the increased safety of a non-replication-competent virus, which makes this approach attractive as a CMV vaccine strategy. IMPORTANCE Congenital CMV infection is a leading cause of mental retardation and deafness in newborns. An effective vaccine against CMV remains an elusive goal despite over 50 years of CMV research. The guinea pig, with

  11. Cost-effectiveness and public health impact of alternative influenza vaccination strategies in high-risk adults.

    PubMed

    Raviotta, Jonathan M; Smith, Kenneth J; DePasse, Jay; Brown, Shawn T; Shim, Eunha; Nowalk, Mary Patricia; Wateska, Angela; France, Glenson S; Zimmerman, Richard K

    2017-10-09

    High-dose trivalent inactivated influenza vaccine (HD-IIV3) or recombinant trivalent influenza vaccine (RIV) may increase influenza vaccine effectiveness (VE) in adults with conditions that place them at high risk for influenza complications. This analysis models the public health impact and cost-effectiveness (CE) of these vaccines for 50-64year-olds. Markov model CE analysis compared 5 strategies in 50-64year-olds: no vaccination; only standard-dose IIV3 offered (SD-IIV3 only), only quadrivalent influenza vaccine offered (SD-IIV4 only); high-risk patients receiving HD-IIV3, others receiving SD-IIV3 (HD-IIV3 & SD-IIV3); and high-risk patients receiving HD-IIV3, others receiving SD-IIV4 (HD-IIV3 & SD-IIV4). In a secondary analysis, RIV replaced HD-IIV3. Parameters were obtained from U.S. databases, the medical literature and extrapolations from VE estimates. Effectiveness was measured as 3%/year discounted quality adjusted life year (QALY) losses avoided. The least expensive strategy was SD-IIV3 only, with total costs of $99.84/person. The SD-IIV4 only strategy cost an additional $0.91/person, or $37,700/QALY gained. The HD-IIV3 & SD-IIV4 strategy cost $1.06 more than SD-IIV4 only, or $71,500/QALY gained. No vaccination and HD-IIV3 & SD-IIV3 strategies were dominated. Results were sensitive to influenza incidence, vaccine cost, standard-dose VE in the entire population and high-dose VE in high-risk patients. The CE of RIV for high-risk patients was dependent on as yet unknown parameter values. Based on available data, using high-dose influenza vaccine or RIV in middle-aged, high-risk patients may be an economically favorable vaccination strategy with public health benefits. Clinical trials of these vaccines in this population may be warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dendritic cell-based vaccines for pancreatic cancer and melanoma.

    PubMed

    Mulé, James J

    2009-09-01

    Based on leads from our recent animal studies, we are embarking on a series of new clinical trials to evaluate potential improvements in dendritic cell (DC)-based vaccines for melanoma and pancreatic cancer. The first new strategy involves the use of a powerful chemokine (denoted secondary lymphoid tissue chemokine; SLC/CCL-21), which can both create functioning lymph node-like structures at sites of vaccination with tumor-loaded DCs and dramatically enhance vaccine efficacy in animal tumor models. Using this strategy, we are embarking on a clinical trial in melanoma patients with the intent to create functioning, ectopic, lymph node-like structures to enhance host antitumor immunity. The second strategy, in the setting of pancreatic cancer, involves a gene therapy and immunotherapy combination of a locally administered tumor necrosis factor-alpha gene vector followed by radiation (to induce tumor apoptosis/necrosis) and intratumorally administered monocyte-derived DCs (to uptake and present antigens from dying tumor cells to elicit potent, systemic, antitumor immunity).

  13. Antibody-based vaccine strategies against intracellular pathogens.

    PubMed

    Casadevall, Arturo

    2018-04-25

    Historically, antibody-mediated immunity was considered effective against toxins, extracellular pathogens and viruses, while control of intracellular pathogens was the domain of cellular immunity. However, numerous observations in recent decades have conclusively shown that antibody can protect against intracellular pathogens. This paradigmatic shift has tremendous implications for immunology and vaccine design. For immunology the observation that antibody can protect against intracellular pathogens has led to the discovery of new mechanisms of antibody action. For vaccine design the knowledge that humoral immunity can be effective in protection means that the knowledge acquired in more than a century of antibody studies can be applied to make new vaccines against this class of pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Strategies and hurdles using DNA vaccines to fish

    PubMed Central

    2014-01-01

    DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen – and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish. PMID:24552235

  15. HPV.edu study protocol: a cluster randomised controlled evaluation of education, decisional support and logistical strategies in school-based human papillomavirus (HPV) vaccination of adolescents.

    PubMed

    Skinner, S Rachel; Davies, Cristyn; Cooper, Spring; Stoney, Tanya; Marshall, Helen; Jones, Jane; Collins, Joanne; Hutton, Heidi; Parrella, Adriana; Zimet, Gregory; Regan, David G; Whyte, Patti; Brotherton, Julia M L; Richmond, Peter; McCaffrey, Kirsten; Garland, Suzanne M; Leask, Julie; Kang, Melissa; Braunack-Mayer, Annette; Kaldor, John; McGeechan, Kevin

    2015-09-15

    The National Human Papillomavirus (HPV) Vaccination Program in Australia commenced in 2007 for females and in 2013 for males, using the quadrivalent HPV vaccine (HPV 6,11,16,18). Thus far, we have demonstrated very substantial reductions in genital warts and in the prevalence of HPV among young Australian women, providing early evidence for the success of this public health initiative. Australia has a long history of school-based vaccination programs for adolescents, with comparatively high coverage. However, it is not clear what factors promote success in a school vaccination program. The HPV.edu study aims to examine: 1) student knowledge about HPV vaccination; 2) psycho-social outcomes and 3) vaccination uptake. HPV.edu is a cluster randomised trial of a complex intervention in schools aiming to recruit 40 schools with year-8 enrolments above 100 students (approximately 4400 students). The schools will be stratified by Government, Catholic, and Independent sectors and geographical location, with up to 20 schools recruited in each of two states, Western Australia (WA) and South Australia (SA), and randomly allocated to intervention or control (usual practice). Intervention schools will receive the complex intervention which includes an adolescent intervention (education and distraction); a decisional support tool for parents and adolescents and logistical strategies (consent form returns strategies, in-school mop-up vaccination and vaccination-day guidelines). Careful process evaluation including an embedded qualitative evaluation will be undertaken to explore in depth possible mechanisms for any observed effect of the intervention on primary and secondary outcomes. This study is the first to evaluate the relative effectiveness of various strategies to promote best practice in school-based vaccination against HPV. The study aims to improve vaccination-related psychosocial outcomes, including adolescent knowledge and attitudes, decision-making involvement, self

  16. Vaccine Development for Zika Virus-Timelines and Strategies.

    PubMed

    Durbin, Anna P

    2016-09-01

    Zika virus is a mosquito-borne Flavivirus that spread rapidly through South and Central America in 2015 to 2016. Microcephaly has been causally associated with Zika virus infection during pregnancy and the World Health Organization declared Zika virus as a Public Health Emergency of International Concern. To address this crisis, many groups have expressed their commitment to developing a Zika virus vaccine. Different strategies for Zika virus vaccine development are being considered including recombinant live attenuated vaccines, purified inactivated vaccines (PIVs), DNA vaccines, and viral vectored vaccines. Important to Zika virus vaccine development will be the target group chosen for vaccination and which end point(s) is chosen for efficacy determination. The first clinical trials of Zika virus vaccine candidates will begin in Q3/4 2016 but the pathway to licensure for a Zika virus vaccine is expected to take several years. Efforts are ongoing to accelerate Zika virus vaccine development and evaluation with the ultimate goal of reducing time to licensure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Contagious bovine pleuropneumonia vaccines and control strategies: recent data.

    PubMed

    Thiaucourt, F; Aboubakar, Y; Wesonga, H; Manso-Silvan, L; Blanchard, A

    2004-01-01

    Contagious bovine pleuropneumonia is one of the most threatening transboundary cattle disease in Africa. However, with the exception of Botswana, very few African countries were able to implement eradication strategies for this disease, after it had recently re-infected a number of countries. Previous experimental studies have shown that emergency vaccination campaigns, based on a single injection, were not inducing a sufficient protection level to prevent further spread of the disease. In addition, post-vaccinal reactions were sometimes reported in the field when using vaccine strain T1/44, leading cattle owners to refuse the vaccination. On the contrary, antibiotics are used quite often in the field but there are insufficient data to assess their efficacy properly. Therefore experimental studies were implemented: (i) to check if higher dosages of the vaccine would be able to induce higher protection rates and (ii) to elucidate the origin of the post-vaccinal reactions observed with T1/44 and (iii) to gain preliminary results on the efficacy of long-acting tetracycline. The first experiment included the use of three doses of vaccine strains T1/44 and T1sr: 10(7), 10(8) and 10(9) mycoplasmas per dose. T1/44 seemed to induce a higher protection (70%) than T1sr (60%). However, there was no observable dose effect for these vaccine strains. The second experiment was performed by injecting various MmmSC strains subcutaneously into susceptible cattle. One of these strains was an isolate obtained from a "Willems" reaction following a vaccination with T1/44. This isolate, called T1B, induced typical invading oedema at the injection site in a similar way to the pathogenic strain, whereas the original T1/44 vaccine strain did not. These findings indicate that the strain has reverted to virulence. Finally the antibiotic trials showed that long-acting tetracycline was able to reduce the losses due to the disease but could not prevent the persistence of viable MmmSC in treated

  18. Novel health economic evaluation of a vaccination strategy to prevent HPV-related diseases: the BEST study.

    PubMed

    Favato, Giampiero; Baio, Gianluca; Capone, Alessandro; Marcellusi, Andrea; Costa, Silvano; Garganese, Giorgia; Picardo, Mauro; Drummond, Mike; Jonsson, Bengt; Scambia, Giovanni; Zweifel, Peter; Mennini, Francesco S

    2012-12-01

    The development of human papillomavirus (HPV)-related diseases is not understood perfectly and uncertainties associated with commonly utilized probabilistic models must be considered. The study assessed the cost-effectiveness of a quadrivalent-based multicohort HPV vaccination strategy within a Bayesian framework. A full Bayesian multicohort Markov model was used, in which all unknown quantities were associated with suitable probability distributions reflecting the state of currently available knowledge. These distributions were informed by observed data or expert opinion. The model cycle lasted 1 year, whereas the follow-up time horizon was 90 years. Precancerous cervical lesions, cervical cancers, and anogenital warts were considered as outcomes. The base case scenario (2 cohorts of girls aged 12 and 15 y) and other multicohort vaccination strategies (additional cohorts aged 18 and 25 y) were cost-effective, with a discounted cost per quality-adjusted life-year gained that corresponded to €12,013, €13,232, and €15,890 for vaccination programs based on 2, 3, and 4 cohorts, respectively. With multicohort vaccination strategies, the reduction in the number of HPV-related events occurred earlier (range, 3.8-6.4 y) when compared with a single cohort. The analysis of the expected value of information showed that the results of the model were subject to limited uncertainty (cost per patient = €12.6). This methodological approach is designed to incorporate the uncertainty associated with HPV vaccination. Modeling the cost-effectiveness of a multicohort vaccination program with Bayesian statistics confirmed the value for money of quadrivalent-based HPV vaccination. The expected value of information gave the most appropriate and feasible representation of the true value of this program.

  19. A multi-country study of dengue vaccination strategies with Dengvaxia and a future vaccine candidate in three dengue-endemic countries: Vietnam, Thailand, and Colombia.

    PubMed

    Lee, Jung-Seok; Lourenço, José; Gupta, Sunetra; Farlow, Andrew

    2018-04-19

    The dengue vaccination era began when Dengvaxia (CYD-TDV) became available in 2016. In addition, several second-generation vaccine candidates are currently in phase 3 trials, suggesting that a broader availability of dengue vaccines may be possible in the near future. Advancing on the recent WHO-SAGE recommendations for the safe and effective use of CYD-TDV at the regional level on average, this study investigates the vaccination impacts and cost-effectiveness of CYD-TDV and of a hypothetical new vaccine candidate (NVC) in a country-specific manner for three endemic countries: Vietnam, Thailand, and Colombia. The vaccination impacts of CYD-TDV and NVC were derived by fitting the empirical seroprevalence rates of 9 year olds into an individual-based meta-population transmission model, previously used for the WHO-SAGE working group. The disability-adjusted life years were estimated by applying country-specific parametric values. The cost-effectiveness analyses of four intervention strategies in combination with routine and catch-up campaigns were compared for both vaccines to inform decision makers regarding the most suitable immunization program in each of the three countries. Both CYD-TDV and NVC could be cost-effective at the DALY threshold cost of $2000 depending upon vaccination costs. With CYD-TDV, targeting 9 year olds in routine vaccination programs and 10-29 year olds as a one-off catch-up campaign was the most cost-effective strategy in all three countries. With NVC, while the most cost-effective strategy was to vaccinate 9-29 and 9-18 year olds in Vietnam and Thailand respectively, vaccinating younger age cohorts between 1 and 5 years old in Colombia was more cost-effective than other strategies. Given that three countries will soon face decisions regarding whether and how to incorporate CYD-TDV or future dengue vaccines into their budget-constrained national immunization programs, the current study outcomes can be used to help decision makers

  20. Communication strategies to promote the uptake of childhood vaccination in Nigeria: a systematic map.

    PubMed

    Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2016-01-01

    Effective communication is a critical component in ensuring that children are fully vaccinated. Although numerous communication interventions have been proposed and implemented in various parts of Nigeria, the range of communication strategies used has not yet been mapped systematically. This study forms part of the 'Communicate to vaccinate' (COMMVAC) project, an initiative aimed at building research evidence for improving communication with parents and communities about childhood vaccinations in low- and middle-income countries. This study aims to: 1) identify the communication strategies used in two states in Nigeria; 2) map these strategies against the existing COMMVAC taxonomy, a global taxonomy of vaccination communication interventions; 3) create a specific Nigerian country map of interventions organised by purpose and target; and 4) analyse gaps between the COMMVAC taxonomy and the Nigerian map. We conducted the study in two Nigerian states: Bauchi State in Northern Nigeria and Cross River State in Southern Nigeria. We identified vaccination communication interventions through interviews carried out among purposively selected stakeholders in the health services and relevant agencies involved in vaccination information delivery; through observations and through relevant documents. We used the COMMVAC taxonomy to organise the interventions we identified based on the intended purpose of the communication and the group to which the intervention was targeted. The Nigerian map revealed that most of the communication strategies identified aimed to inform and educate and remind or recall. Few aimed to teach skills, enhance community ownership, and enable communication. We did not identify any intervention that aimed to provide support or facilitate decision-making. Many interventions had more than one purpose. The main targets for most interventions were caregivers and community members, with few interventions directed at health workers. Most interventions

  1. Particle based vaccine formulations for transcutaneous immunization.

    PubMed

    Mittal, Ankit; Raber, Anne S; Lehr, Claus-Michael; Hansen, Steffi

    2013-09-01

    Vaccine formulations on the basis of nano- (NP) or microparticles (MP) can solve issues with stabilization, controlled release, and poor immunogenicity of antigens. Likewise transcutaneous immunization (TCI) promises superior immunogenicity as well as the advantages of needle-free application compared with conventional intramuscular injections. Thus the combination of both strategies seems to be a very valuable approach. However, until now TCI using particle based vaccine formulations has made no impact on medical practice. One of the main difficulties is that NPs and MPs cannot penetrate the skin to an extent that would allow the application of the required dose of antigen. This is due to the formidable stratum corneum (SC) barrier, the limited amount of antigen in the formulation and often an insufficient immunogenicity. A multitude of strategies are currently under investigation to overcome these issues. We highlight selected methods presenting a spectrum of solutions ranging from transfollicular delivery, to devices disrupting the SC barrier and the combination of particle based vaccines with adjuvants discussing their advantages and shortcomings. Some of these are currently at an experimental state while others are already in clinical testing. All methods have been shown to be capable of transcutaneous antigen delivery.

  2. Bistability of Evolutionary Stable Vaccination Strategies in the Reinfection SIRI Model.

    PubMed

    Martins, José; Pinto, Alberto

    2017-04-01

    We use the reinfection SIRI epidemiological model to analyze the impact of education programs and vaccine scares on individuals decisions to vaccinate or not. The presence of the reinfection provokes the novelty of the existence of three Nash equilibria for the same level of the morbidity relative risk instead of a single Nash equilibrium as occurs in the SIR model studied by Bauch and Earn (PNAS 101:13391-13394, 2004). The existence of three Nash equilibria, with two of them being evolutionary stable, introduces two scenarios with relevant and opposite features for the same level of the morbidity relative risk: the low-vaccination scenario corresponding to the evolutionary stable vaccination strategy, where individuals will vaccinate with a low probability; and the high-vaccination scenario corresponding to the evolutionary stable vaccination strategy, where individuals will vaccinate with a high probability. We introduce the evolutionary vaccination dynamics for the SIRI model and we prove that it is bistable. The bistability of the evolutionary dynamics indicates that the damage provoked by false scares on the vaccination perceived morbidity risks can be much higher and much more persistent than in the SIR model. Furthermore, the vaccination education programs to be efficient they need to implement a mechanism to suddenly increase the vaccination coverage level.

  3. Cost-effectiveness of three different vaccination strategies against measles in Zambian children.

    PubMed

    Dayan, Gustavo H; Cairns, Lisa; Sangrujee, Nalinee; Mtonga, Anne; Nguyen, Van; Strebel, Peter

    2004-01-02

    The vaccination program in Zambia includes one dose of measles vaccine at 9 months of age. The objective of this study was to compare the cost-effectiveness of the current one-dose measles vaccination program with an immunization schedule in which a second dose is provided either through routine health services or through supplemental immunization activities (SIAs). We simulated the expected cost and impact of the vaccination strategies for an annual cohort of 400,000 children, assuming 80% vaccination coverage in both routine and SIAs and an analytic horizon of 15 years. A vaccination program which includes SIAs reaching children not previously vaccinated would prevent on additional 29,242 measles cases and 1462 deaths for each vaccinated birth cohort when compared with a one-dose program. Given the parameters established for this analysis, such a program would be cost-saving and the most cost-effective vaccination strategy for Zambia.

  4. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants

    PubMed Central

    Shen, Chen; Li, Jun; Zhang, Yi; Li, Yuce; Shen, Guanxin; Zhu, Jintao; Tao, Juan

    2017-01-01

    Vaccines have shown great success in treating and preventing tumors and infections, while adjuvants are always demanded to ensure potent immune responses. Polyethylenimine (PEI), as one of the well-studied cationic polymers, has been used as a transfection reagent for decades. However, increasing evidence has shown that PEI-based particles are also capable of acting as adjuvants. In this paper, we briefly review the physicochemical properties and the broad applications of PEI in different fields, and elaborate on the intracellular processes of PEI-based vaccines. In addition, we sum up the proof of their in vivo and clinical applications. We also highlight some mechanisms proposed for the intrinsic immunoactivation function of PEI, followed by the challenges and future perspectives of the applications of PEI in the vaccines, as well as some strategies to elicit the desirable immune responses. PMID:28814862

  5. Cost-benefit analysis of hospital based postpartum vaccination with combined tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine (Tdap).

    PubMed

    Ding, Yao; Yeh, Sylvia H; Mink, Chris Anna M; Zangwill, Kenneth M; Allred, Norma J; Hay, Joel W

    2013-05-24

    To assess the economic benefits associated with hospital-based postpartum Tdap (combined tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis) vaccination. A decision tree model was constructed to calculate the potential cost-benefit of this strategy from both a health care system and a societal perspective. Probabilities and costs were derived from published literature, data reported to Centers for Disease Control and Prevention, and recommendations from expert panels. The maternal vaccination protection period for infants was defined as 7 months, and 10 years of waning immunity following Tdap for birth mothers was estimated in the model. All cost estimates were inflated to year 2012 US dollars and discounted at a 3% annual discount rate. In the base case from a societal perspective, the expected costs per vaccinated and unvaccinated mother were estimated at $129.27 and $187.97, respectively, suggesting an expected net benefit of $58.70 per vaccinated mother. The overall societal benefits in the cohort of 3.6 million U.S. birth mothers ranged from $52.8-126.8 million, depending on the vaccination coverage level. If including direct medical costs only, the strategy would not generate net savings from a health care system perspective. Annual incidence of pertussis in birth mothers and Tdap efficacy exhibited substantial impact on the model as shown in one-way and two-way sensitivity analyses. Although postpartum Tdap vaccination is not cost-beneficial from a health care system perspective in the base case, this strategy is likely to generate net benefits from a societal perspective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effectiveness and Cost-Effectiveness of Expanded Antiviral Prophylaxis and Adjuvanted Vaccination Strategies for the Next Influenza Pandemic

    PubMed Central

    Khazeni, Nayer; Hutton, David W; Garber, Alan M; Owens, Douglas K

    2011-01-01

    Background The pandemic potential of the influenza A (H5N1) virus is among the greatest public health concerns of the 21st century. Objective To determine the effectiveness and cost-effectiveness of alternative pandemic mitigation and response strategies. Design Compartmental epidemic model in conjunction with a Markov model of disease progression. Data Sources Literature and expert opinion. Target Population Residents of a U.S. metropolitan city. Time Horizon Lifetime. Perspective Societal. Interventions One mitigation strategy used non-pharmaceutical interventions, vaccination, and antiviral pharmacotherapy in quantities similar to those available currently in the U.S. stockpile. The second and third strategies used expanded supplies of either antivirals (expanded antiviral prophylaxis strategy) or adjuvanted vaccine (expanded vaccination strategy) in addition to non-pharmaceutical interventions. Outcome Measures Infections and deaths averted, costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness. Results of Base Case Analysis The stockpiled strategy averted 44% of infections and deaths, gaining 258,342 QALYs at $8,907 per QALY gained relative to no intervention. Expanded antiviral prophylaxis delayed the pandemic, averting 48% of infections and deaths, and gaining 282,329 QALYs, with a less favorable cost-effectiveness ratio than adjuvanted vaccination. Adjuvanted vaccination was the most effective strategy and was cost-effective, averting 68% of infections and deaths, and gaining 404,030 QALYs at $10,844 per QALY gained relative to stockpiled strategy. Results of Sensitivity Analysis Over a wide range of assumptions, the incremental cost-effectiveness ratio of the expanded adjuvanted vaccination strategy was less than $50,000 per QALY gained. Limitations Large groups and frequent contacts may spread the virus more rapidly. The model is not designed to target interventions to specific groups. Conclusions Expanded adjuvanted vaccination

  7. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies.

    PubMed

    Kumru, Ozan S; Joshi, Sangeeta B; Smith, Dawn E; Middaugh, C Russell; Prusik, Ted; Volkin, David B

    2014-09-01

    Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. On the robust optimization to the uncertain vaccination strategy problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaerani, D., E-mail: d.chaerani@unpad.ac.id; Anggriani, N., E-mail: d.chaerani@unpad.ac.id; Firdaniza, E-mail: d.chaerani@unpad.ac.id

    2014-02-21

    In order to prevent an epidemic of infectious diseases, the vaccination coverage needs to be minimized and also the basic reproduction number needs to be maintained below 1. This means that as we get the vaccination coverage as minimum as possible, thus we need to prevent the epidemic to a small number of people who already get infected. In this paper, we discuss the case of vaccination strategy in term of minimizing vaccination coverage, when the basic reproduction number is assumed as an uncertain parameter that lies between 0 and 1. We refer to the linear optimization model for vaccinationmore » strategy that propose by Becker and Starrzak (see [2]). Assuming that there is parameter uncertainty involved, we can see Tanner et al (see [9]) who propose the optimal solution of the problem using stochastic programming. In this paper we discuss an alternative way of optimizing the uncertain vaccination strategy using Robust Optimization (see [3]). In this approach we assume that the parameter uncertainty lies within an ellipsoidal uncertainty set such that we can claim that the obtained result will be achieved in a polynomial time algorithm (as it is guaranteed by the RO methodology). The robust counterpart model is presented.« less

  9. Comparative effectiveness of different strategies of oral cholera vaccination in bangladesh: a modeling study.

    PubMed

    Dimitrov, Dobromir T; Troeger, Christopher; Halloran, M Elizabeth; Longini, Ira M; Chao, Dennis L

    2014-12-01

    Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies. We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years) and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1-14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies. We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions.

  10. The clinical and economic benefits of school-based quadrivalent HPV vaccination in Singapore.

    PubMed

    Tay, Sun Kuie; Hsu, Tun-Ying; Shcheprov, Andrei; Walia, Anuj; Kulkarni, Amit S

    2017-05-01

    To investigate the clinical and economic impacts of school-based administration of the quadrivalent HPV vaccine. A retrospective health-economic analysis was conducted using data collected in Singapore between 2004 and 2005. A dynamic transmission model was adapted for universal vaccination that provided 80% coverage among students aged 11-12 years. Strategy 1 involved only girls, with a 5-year catch-up vaccination to provide 50% coverage among those aged 13-17 years. Strategy 2 included both girls and boys with no catch-up vaccination. Outcomes included the predicted incidence of HPV-related disease over 100 years. Current coverage was assumed to be 5%. Strategy 1 would reduce cervical intraepithelial neoplasia grade 1 (CIN1) by 63.8%, cervical intraepithelial neoplasia grade 2-3 (CIN2-3) by 62.9%, cervical cancer by 50.9%, and genital warts by 78.0% (female individuals) and 73.6% (male individuals). Strategy 2 would reduce CIN1 by 64.0%, CIN2-3 by 63.1%, cervical cancer by 50.7%, and genital warts by 79.9% (female individuals) and 80.1% (male individuals). The incremental cost-effectiveness ratio was S$12 464 for strategy 1 and $27 837 for Strategy 2. These values decreased to $7477 and $22 574, respectively, if a two-dose regimen was adapted. School-based quadrivalent HPV vaccination offered clinical and economic benefits, and is cost-effective in Singapore. © 2017 International Federation of Gynecology and Obstetrics.

  11. The current state of therapeutic and T cell-based vaccines against human papillomaviruses

    PubMed Central

    Yang, Andrew; Farmer, Emily; Lin, John; Wu, T-C.; Hung, Chien-Fu

    2016-01-01

    Human papillomavirus (HPV) is known to be a necessary factor for many gynecologic malignancies and is also associated with a subset of head and neck malignancies. This knowledge has created the opportunity to control these HPV-associated cancers through vaccination. However, despite the availability of prophylactic HPV vaccines, HPV infections remain extremely common worldwide. In addition, while prophylactic HPV vaccines have been effective in preventing infection, they are ineffective at clearing pre-existing HPV infections. Thus, there is an urgent need for therapeutic and T cell-based vaccines to treat existing HPV infections and HPV-associated lesions and cancers. Unlike prophylactic vaccines, which generate neutralizing antibodies, therapeutic, and T cell-based vaccines enhance cell-mediated immunity against HPV antigens. Our review will cover various therapeutic and T cell-based vaccines in development for the treatment of HPV-associated diseases. Furthermore, we review the strategies to enhance the efficacy of therapeutic vaccines and the latest clinical trials on therapeutic and T cell-based HPV vaccines. PMID:27932207

  12. Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer.

    PubMed

    Ragde, Haakon; Cavanagh, William A; Tjoa, Benjamin A

    2004-12-01

    No effective treatment is currently available for metastatic prostate cancer. Dendritic cell (DC) based cancer vaccine research has emerged from the laboratories to human clinical trials. We describe progress in the development of DC based prostate cancer vaccine. The literature was reviewed for major contributions to a growing number of studies that demonstrate the potential of DC based immunotherapeutics for prostate cancer. Background topics relating to DC based immunotherapy theory and practice are also addressed. DCs have been recognized as the most efficient antigen presenting cells that have the capacity to initiate naive T cell response in vitro and in vivo. During their differentiation and maturation pathways, dendritic cells can efficiently capture, process and present antigens for T cell activation. These characteristics make DC an attractive choice as the cellular adjuvant for cancer vaccines. Advances in DC generation, loading, and maturation methodologies have made it possible to generate clinical grade vaccines for various human trials. More than 100 DC vaccine trials, including 7 studies of patients with advanced prostate cancer have been reported to date. These vaccines were generally well tolerated with no significant adverse toxicity reported. Clinical responders have been identified in these studies. The new prospects opened by DC based vaccines for prostate cancer are fascinating. When compared to conventional treatments, DC vaccinations have few side effects. Improvements in patient selection, vaccine delivery strategies, immune monitoring and vaccine manufacturing will be crucial in moving DC based prostate cancer vaccines closer to the clinics.

  13. 'It's a logistical nightmare!' Recommendations for optimising human papillomavirus school-based vaccination experience.

    PubMed

    Robbins, Spring Chenoa Cooper; Bernard, Diana; McCaffery, Kirsten; Skinner, S Rachel

    2010-09-01

    To date, no published studies examine procedural factors of the school-based human papillomavirus (HPV) vaccination program from the perspective of those involved. This study examines the factors that were perceived to impact optimal vaccination experience. Schools across Sydney were selected to reflect a range of vaccination coverage at the school level and different school types to ensure a range of experiences. Semi-structured focus groups were conducted with girls; and one-on-one interviews were undertaken with parents, teachers and nurses until saturation of data in all emergent themes was reached. Focus groups and interviews explored participants' experiences in school-based HPV vaccination. Transcripts were analysed, letting themes emerge. Themes related to participants' experience of the organisational, logistical and procedural aspects of the vaccination program and their perceptions of an optimal process were organised into two categories: (1) preparation for the vaccination program and (2) vaccination day strategies. In (1), themes emerged regarding commitment to the process from those involved, planning time and space for vaccinations, communication within and between agencies, and flexibility. In (2), themes included vaccinating the most anxious girls first, facilitating peer support, use of distraction techniques, minimising waiting time girls, and support staff. A range of views exists on what constitutes an optimal school-based program. Several findings were identified that should be considered in the development of guidelines for implementing school-based programs. Future research should evaluate how different approaches to acquiring parental consent, and the use of anxiety and fear reduction strategies impact experience and uptake in the school-based setting.

  14. [A cost-effectiveness analysis on universal infant rotavirus vaccination strategy in China].

    PubMed

    Sun, S L; Gao, Y Q; Yin, J; Zhuang, G H

    2016-02-01

    To evaluate the cost-effectiveness of current universal infant rotavirus vaccination strategy, in China. Through constructing decision tree-Markov model, we simulated rotavirus diarrhea associated cost and health outcome on those newborns in 2012 regarding different vaccination programs as: group with no vaccination, Rotavirus vaccination group and Rotateq vaccination group, respectively. We determined the optimal program, based on the comparison between incremental cost-effectiveness ratio (ICER) and China' s 2012 per capital gross domestic product (GDP). Compared with non-vaccination group, the Rotavirus vaccination and Rotateq vaccination groups had to pay 3 760 Yuan and 7 578 Yuan (both less than 2012 GDP per capital) to avert one disability adjusted life years (DALY) loss, respectively. RESULTS from sensitivity analysis indicated that both results were robust. Compared with Rotavirus vaccination program, the Rotateq vaccination program had to pay extra 81 068 Yuan (between 1 and 3 times GDP per capital) to avert one DALY loss. Data from the sensitivity analysis indicated that the result was not robust. From the perspective of health economics, both two-dose Rotarix vaccine and three-dose' s Rotateq vaccine programs were highly cost-effective, when compared to the non-vaccination program. It was appropriate to integrate rotavirus vaccine into the routine immunization program. Considering the large amount of extra cost that had to spend on Rotateq vaccination program, results from the sensitivity analysis showed that it was not robust. Rotateq vaccine required one more dose than the Rotarix vaccine, to be effective. However, it appeared more difficult to practice, suggesting that it was better to choose the Rotarix vaccine, at current stage.

  15. Strategy of topical vaccination with nanoparticles

    NASA Astrophysics Data System (ADS)

    Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen

    2009-03-01

    Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached ~70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.

  16. Strategy of topical vaccination with nanoparticles.

    PubMed

    Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen

    2009-01-01

    Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached approximately 70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.

  17. The introduction of new vaccines into developing countries. IV: Global Access Strategies.

    PubMed

    Mahoney, Richard T; Krattiger, Anatole; Clemens, John D; Curtiss, Roy

    2007-05-16

    This paper offers a framework for managing a comprehensive Global Access Strategy for new vaccines in developing countries. It is aimed at strengthening the ability of public-sector entities to reach their goals. The Bill and Melinda Gates Foundation and The Rockefeller Foundation have been leaders in stimulating the creation of new organizations - public/private product development partnerships (PDPs) - that seek to accelerate vaccine development and distribution to meet the health needs of the world's poor. Case studies of two of these PDPs - the Salmonella Anti-pneumococcal Vaccine Program and the Pediatric Dengue Vaccine Initiative - examine development of such strategies. Relying on the application of innovation theory, the strategy leads to the identification of six Components of Innovation which cover all aspects of the vaccine innovation process. Appropriately modified, the proposed framework can be applied to the development and introduction of other products in developing countries including drugs, and nutritional and agricultural products.

  18. Comparative Effectiveness of Different Strategies of Oral Cholera Vaccination in Bangladesh: A Modeling Study

    PubMed Central

    Dimitrov, Dobromir T.; Troeger, Christopher; Halloran, M. Elizabeth; Longini, Ira M.; Chao, Dennis L.

    2014-01-01

    Background Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies. Methods & Findings We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years) and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1–14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies. Conclusions We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions. PMID:25473851

  19. Communication strategies to promote the uptake of childhood vaccination in Nigeria: a systematic map

    PubMed Central

    Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2016-01-01

    Background Effective communication is a critical component in ensuring that children are fully vaccinated. Although numerous communication interventions have been proposed and implemented in various parts of Nigeria, the range of communication strategies used has not yet been mapped systematically. This study forms part of the ‘Communicate to vaccinate’ (COMMVAC) project, an initiative aimed at building research evidence for improving communication with parents and communities about childhood vaccinations in low- and middle-income countries. Objective This study aims to: 1) identify the communication strategies used in two states in Nigeria; 2) map these strategies against the existing COMMVAC taxonomy, a global taxonomy of vaccination communication interventions; 3) create a specific Nigerian country map of interventions organised by purpose and target; and 4) analyse gaps between the COMMVAC taxonomy and the Nigerian map. Design We conducted the study in two Nigerian states: Bauchi State in Northern Nigeria and Cross River State in Southern Nigeria. We identified vaccination communication interventions through interviews carried out among purposively selected stakeholders in the health services and relevant agencies involved in vaccination information delivery; through observations and through relevant documents. We used the COMMVAC taxonomy to organise the interventions we identified based on the intended purpose of the communication and the group to which the intervention was targeted. Results The Nigerian map revealed that most of the communication strategies identified aimed to inform and educate and remind or recall. Few aimed to teach skills, enhance community ownership, and enable communication. We did not identify any intervention that aimed to provide support or facilitate decision-making. Many interventions had more than one purpose. The main targets for most interventions were caregivers and community members, with few interventions directed at

  20. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming.

    PubMed

    Tanner, Matthew W; Sattenspiel, Lisa; Ntaimo, Lewis

    2008-10-01

    We present a stochastic programming framework for finding the optimal vaccination policy for controlling infectious disease epidemics under parameter uncertainty. Stochastic programming is a popular framework for including the effects of parameter uncertainty in a mathematical optimization model. The problem is initially formulated to find the minimum cost vaccination policy under a chance-constraint. The chance-constraint requires that the probability that R(*) vaccination reproduction number. We also show how to formulate the problem in two additional cases: (a) finding the optimal vaccination policy when vaccine supply is limited and (b) a cost-benefit scenario. The class of epidemic models for which this method can be used is described and we present an example formulation for which the resulting problem is a mixed-integer program. A short numerical example based on plausible parameter values and distributions is given to illustrate how including parameter uncertainty improves the robustness of the optimal strategy at the cost of higher coverage of the population. Results derived from a stochastic programming analysis can also help to guide decisions about how much effort and resources to focus on collecting data needed to provide better estimates of key parameters.

  1. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies

    PubMed Central

    Chin'ombe, Nyasha; Ruhanya, Vurayai

    2015-01-01

    More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa. PMID:26185576

  2. Mucosal vaccination--an old but still vital strategy.

    PubMed

    Długońska, Henryka; Grzybowski, Marcin

    2012-01-01

    The basic premise of vaccinology is to achieve strong protective immunity against defined infectious agents by a vaccine mimicking the effects of natural primary exposure to a pathogen. Because an exposure of humans and animals to microbes occurs mostly through mucosal surfaces, targeting the mucosa seems a rational and efficient vaccination strategy. Many experimental and clinical data confirmed that mucosal immunization offers many advantages over widely used in human and veterinary medicine subcutaneous or intramuscular immunization. In the present article selected aspects regarding mucosal vaccination are discussed. The structure and function of mucosa-associated lymphoid tissue (MALT), comprised of four main mucosal compartments forming a structural and functional unity as well as pivotal cellular MALT components (dendritic and M cells) were briefly characterized. Particular attention was focused on the mode of simple but efficacious delivery of vaccine antigens to mucosal surfaces. A few trials to generate potential mucosal vaccines against toxoplasmosis introduced by nasal or oral routes to experimental animals are also presented.

  3. Maternal vaccination as a Salmonella Typhimurium reduction strategy on pig farms.

    PubMed

    Smith, R P; Andres, V; Martelli, F; Gosling, B; Marco-Jimenez, F; Vaughan, K; Tchorzewska, M; Davies, R

    2018-01-01

    The control of Salmonella in pig production is necessary for public and animal health, and vaccination was evaluated as a strategy to decrease pig prevalence. The study examined the efficacy of a live Salmonella Typhimurium vaccine, administered to sows on eight commercial farrow-to-finish herds experiencing clinical salmonellosis or Salmonella carriage associated with S. Typhimurium or its monophasic variants. Results of longitudinal Salmonella sampling were compared against eight similarly selected and studied control farms. At the last visit (~14 months after the start of vaccination), when all finishing stock had been born to vaccinated sows, both faecal shedding and environmental prevalence of Salmonella substantially declined on the majority of vaccinated farms in comparison to the controls. A higher proportion of vaccine farms resolved clinical salmonellosis than controls. However, Salmonella counts in positive faeces samples were similar between nonvaccinated and vaccinated herds. The results suggest that maternal vaccination is a suitable option for a Salmonella Typhimurium reduction strategy in farrow-to-finish pig herds. Salmonella vaccines have the potential to reduce the prevalence of Salmonella in pigs and result in a reduction of human cases attributed to pork. © 2017 Crown copyright. Journal of Applied Microbiology © 2017 The Society for Applied Microbiology. This article is published with the permission of the Controller of HMSO and the Queen’s Printer for Scotland.

  4. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.

    PubMed

    Knerer, Gerhart; Currie, Christine S M; Brailsford, Sally C

    2015-06-01

    Dengue fever is a vector-borne disease prevalent in tropical and subtropical regions. It is an important public health problem with a considerable and often under-valued disease burden in terms of frequency, cost and quality-of-life. Recent literature reviews have documented the development of mathematical models of dengue fever both to identify important characteristics for future model development as well as to assess the impact of dengue control interventions. Such reviews highlight the importance of short-term cross-protection; antibody-dependent enhancement; and seasonality (in terms of both favourable and unfavourable conditions for mosquitoes). The compartmental model extends work by Bartley (2002) and combines the following factors: seasonality, age-structure, consecutive infection by all four serotypes, cross-protection and immune enhancement, as well as combined vector-host transmission. The model is used to represent dengue transmission dynamics using parameters appropriate for Thailand and to assess the potential impact of combined vector-control and vaccination strategies including routine and catch-up vaccination strategies on disease dynamics. When seasonality and temporary cross-protection between serotypes are included, the model is able to approximate the observed incidence of dengue fever in Thailand. We find vaccination to be the most effective single intervention, albeit with imperfect efficacy (30.2 %) and limited duration of protection. However, in combination, control interventions and vaccination exhibit a marked impact on dengue fever transmission. This study shows that an imperfect vaccine can be a useful weapon in reducing disease spread within the community, although it will be most effective when promoted as one of several strategies for combating dengue fever transmission.

  5. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    PubMed

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of

  6. Comparison of two vaccination strategies against hepatitis A and B in patients with chronic hepatitis C.

    PubMed

    Díez Redondo, M P; Almaraz, A; Jiménez Rodríguez-Vila, M; Santamaría, A; de Castro, J; Torrego, J C; Caro-Patón, A

    2009-04-01

    although the vaccination against hepatitis A (VAH) and hepatitis B (VBH) is recommended in patients with HCV, the most cost-effective strategy has not been established. Our objective was to compare the cost-effectiveness of universal strategy (vaccination all patients) with selective strategy (vaccination only patients against virus they lack immunity to) in patients with HCV. we compared the direct medical costs of the two vaccination strategies against both viruses in 313 patients with HC. Serological markers for HAV (anti-HAV) and HBV (HbsAg, anti HBs, anti HBc) were determined in the 313 patients and the costs of the vaccines and the blood tests necessary to determinate the immunity state in our care system were considered. the prevalence of anti-HAV was 81,2% and of anti-HBc was 24,6%. The prevalence of anti-HAV increases with age. HAV vaccination with universal strategy has a cost of 19.806,64 euro and with selective one of 9.899,62 euro. HBV vaccination with universal strategy rose to 18.780 euro and to 20.385,57 euro with selective one (employing anti-HBc). Costs were analysed in different groups of age and several hepatitis HBV risk factors. the selective vaccination strategy against HAV was most cost-effective in our patients with HCV. However, when the prevalence of the anti-HAV decreased to less than 20% universal strategy will be the best option. Difference of cost-effective between the two vaccination strategies against HBV was small, on behalf of universal one, so in groups with higher anti-HBc prevalence, like parenteral drugs users and tattoos, the selective strategy could be the best option.

  7. The current state of therapeutic and T cell-based vaccines against human papillomaviruses.

    PubMed

    Yang, Andrew; Farmer, Emily; Lin, John; Wu, T-C; Hung, Chien-Fu

    2017-03-02

    Human papillomavirus (HPV) is known to be a necessary factor for many gynecologic malignancies and is also associated with a subset of head and neck malignancies. This knowledge has created the opportunity to control these HPV-associated cancers through vaccination. However, despite the availability of prophylactic HPV vaccines, HPV infections remain extremely common worldwide. In addition, while prophylactic HPV vaccines have been effective in preventing infection, they are ineffective at clearing pre-existing HPV infections. Thus, there is an urgent need for therapeutic and T cell-based vaccines to treat existing HPV infections and HPV-associated lesions and cancers. Unlike prophylactic vaccines, which generate neutralizing antibodies, therapeutic, and T cell-based vaccines enhance cell-mediated immunity against HPV antigens. Our review will cover various therapeutic and T cell-based vaccines in development for the treatment of HPV-associated diseases. Furthermore, we review the strategies to enhance the efficacy of therapeutic vaccines and the latest clinical trials on therapeutic and T cell-based HPV vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. An Overview on the Field of Micro- and Nanotechnologies for Synthetic Peptide-Based Vaccines

    PubMed Central

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa Maria; Pedraz, José Luis

    2011-01-01

    The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity. PMID:21773041

  9. Plant-based vaccines against diarrheal diseases.

    PubMed

    Tacket, Carol O

    2007-01-01

    Every year 1.6 million deaths occur due to diarrhea related to unsafe water and inadequate sanitation-the vast majority in children under 5 years old. Safe and effective vaccines against enteric infections could contribute to control of these diseases. However, purification of protective antigens for inclusion in vaccines using traditional expression systems is expensive and unattractive to vaccine manufacturers who see the vaccine market as economically uninviting. Cost is one of the persistent barriers to deployment of new vaccines to populations that need them most urgently. Transgenic plant-derived vaccines offer a new strategy for development of safe, inexpensive vaccines against diarrheal diseases. In phase 1 clinical studies, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. This paper describes early clinical studies evaluating oral transgenic plant vaccines against enteric infections such as enterotoxigenic E. coli infection and norovirus.

  10. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    PubMed

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  11. Fast vaccine design and development based on correlates of protection (COPs)

    PubMed Central

    van Els, Cécile; Mjaaland, Siri; Næss, Lisbeth; Sarkadi, Julia; Gonczol, Eva; Smith Korsholm, Karen; Hansen, Jon; de Jonge, Jørgen; Kersten, Gideon; Warner, Jennifer; Semper, Amanda; Kruiswijk, Corine; Oftung, Fredrik

    2014-01-01

    New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections. PMID:25424803

  12. Novel transgenic rice-based vaccines.

    PubMed

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  13. Plant-Based Vaccines Against Diarrheal Diseases

    PubMed Central

    Tacket, Carol O.

    2007-01-01

    Every year 1.6 million deaths occur due to diarrhea related to unsafe water and inadequate sanitation—the vast majority in children under 5 years old. Safe and effective vaccines against enteric infections could contribute to control of these diseases. However, purification of protective antigens for inclusion in vaccines using traditional expression systems is expensive and unattractive to vaccine manufacturers who see the vaccine market as economically uninviting. Cost is one of the persistent barriers to deployment of new vaccines to populations that need them most urgently. Transgenic plant-derived vaccines offer a new strategy for development of safe, inexpensive vaccines against diarrheal diseases. In phase 1 clinical studies, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. This paper describes early clinical studies evaluating oral transgenic plant vaccines against enteric infections such as enterotoxigenic E. coli infection and norovirus. PMID:18528491

  14. A proposed national strategy for tuberculosis vaccine development.

    PubMed

    Ginsberg, A M

    2000-06-01

    The global tuberculosis epidemic causes approximately 5% of deaths worldwide. Despite recent concerted and largely successful tuberculosis control efforts, the incidence of tuberculosis in the United States remains 74-fold higher than the stated elimination goal of <1 case per million population by the year 2010. Current bacille Calmette-Guérin vaccines, although efficacious in preventing extrapulmonary tuberculosis in young children, have shown widely variable efficacy in preventing adult pulmonary tuberculosis, confound skin test screening, and are not recommended for use in the United States. The Advisory Council for Elimination of Tuberculosis recently stated that tuberculosis would not be eliminated from the United States without a more effective vaccine. Recent scientific advances have created unprecedented opportunity for tuberculosis vaccine development. Therefore, members of the broad tuberculosis research and control communities have recently created and proposed a national strategy, or blueprint, for tuberculosis vaccine development, which is presented here.

  15. A Population-Based Evaluation of a Publicly Funded, School-Based HPV Vaccine Program in British Columbia, Canada: Parental Factors Associated with HPV Vaccine Receipt

    PubMed Central

    Ogilvie, Gina; Anderson, Maureen; Marra, Fawziah; McNeil, Shelly; Pielak, Karen; Dawar, Meena; McIvor, Marilyn; Ehlen, Thomas; Dobson, Simon; Money, Deborah; Patrick, David M.; Naus, Monika

    2010-01-01

    daughter receive the HPV vaccine in a publicly funded school-based HPV vaccine program. By contrast, having a family with two parents, having three or more children, and having more education was associated with a decreased likelihood of having a daughter receive the HPV vaccine. Conclusions This study is, to our knowledge, one of the first population-based assessments of factors associated with HPV vaccine uptake in a publicly funded school-based program worldwide. Policy makers need to consider that even with the removal of financial and health care barriers, parents, who are key decision makers in the uptake of this vaccine, are still hesitant to have their daughters receive the HPV vaccine, and strategies to ensure optimal HPV vaccine uptake need to be employed. Please see later in the article for the Editors' Summary PMID:20454567

  16. Impact of Targeted Tuberculosis Vaccination Among a Mining Population in South Africa: A Model-Based Study.

    PubMed

    Shrestha, Sourya; Chihota, Violet; White, Richard G; Grant, Alison D; Churchyard, Gavin J; Dowdy, David W

    2017-12-15

    Optimizing the use of new tools, such as vaccines, may play a crucial role in reaching global targets for tuberculosis (TB) control. Some of the most promising candidate vaccines target adults, although high-coverage mass vaccinations may be logistically more challenging among this population than among children. Vaccine-delivery strategies that target high-risk groups or settings might yield proportionally greater impact than do those that target the general population. We developed an individual-based TB transmission model representing a hypothetical population consisting of people who worked in South African gold mines or lived in associated labor-sending communities. We simulated the implementation of a postinfection adult vaccine with 60% efficacy and a mean effect duration of 10 years. We then compared the impact of a mine-targeted vaccination strategy, in which miners were vaccinated while in the mines, with that of a community-targeted strategy, in which random individuals within the labor-sending communities were vaccinated. Mine-targeted vaccination averted an estimated 0.37 TB cases per vaccine dose compared with 0.25 for community-targeted vaccination, for a relative efficacy of 1.46 (95% range, 1.13-1.91). The added benefit of mine-targeted vaccination primarily reflected the disproportionate demographic burden of TB among the population of adult males as a whole. As novel vaccines for TB are developed, venue-based vaccine delivery that targets high-risk demographic groups may improve both vaccine feasibility and the impact on transmission. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis.

    PubMed

    Oliveira, Carolina R; Rezende, Cíntia M F; Silva, Marina R; Pêgo, Ana Paula; Borges, Olga; Goes, Alfredo M

    2012-01-01

    Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.

  18. Educating on professional habits: attitudes of medical students towards diverse strategies for promoting influenza vaccination and factors associated with the intention to get vaccinated

    PubMed Central

    2013-01-01

    Background Influenza vaccination coverage in medical students is usually low. Unlike health care workers, there is little information on the attitudes to and predictors of vaccination among medical students, and their attitudes towards institutional strategies for improving rates are unknown. Methods This cross-sectional study evaluated the effect of three influenza vaccination promotional strategies (Web page, video and tri-fold brochure) on medical students’ intention to get vaccinated and associated factors. A total of 538 medical students were asked to answer an anonymous questionnaire assessing the intention to get vaccinated after exposure to any of the promotional strategies. Sociodemographic data collected included: sex, age, university year, influenza risk group and cohabiting with member of a risk group. Results Four hundred twenty-one students answered the questionnaire, of whom 312 (74.1%) were female, 113 (26.8%) had done clinical rotations, and 111 (26.6%) reported intention to get the flu shot. Logistic regression showed the web group had a greater intention to get vaccinated than the reference group (OR: 2.42 95% CI: 1.16-5.03). Having done clinical rotations (OR: 2.55 95% CI: 1.36-4.38) and having received the shot in previous flu seasons (OR: 13.69 95% CI: 7.86-23.96) were independently associated with the intention to get vaccinated. Conclusion Given that previous vaccination is a factor associated with the intention to get vaccinated, education on vaccination of health care workers should begin while they are students, thereby potentiating the habit. In addition, the intention to get vaccinated was greater during the clinical phase of the university career, suggesting this is a good time to introduce promotion strategies. Online promotional campaigns, such as a thematic Web to promote vaccination of health workers, could improve the intention to get vaccinated. PMID:23866902

  19. Rational design of vaccine targets and strategies for HIV: a crossroad of statistical physics, biology, and medicine.

    PubMed

    Chakraborty, Arup K; Barton, John P

    2017-03-01

    Vaccination has saved more lives than any other medical procedure. Pathogens have now evolved that have not succumbed to vaccination using the empirical paradigms pioneered by Pasteur and Jenner. Vaccine design strategies that are based on a mechanistic understanding of the pertinent immunology and virology are required to confront and eliminate these scourges. In this perspective, we describe just a few examples of work aimed to achieve this goal by bringing together approaches from statistical physics with biology and clinical research.

  20. Rational design of vaccine targets and strategies for HIV: a crossroad of statistical physics, biology, and medicine

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup K.; Barton, John P.

    2017-03-01

    Vaccination has saved more lives than any other medical procedure. Pathogens have now evolved that have not succumbed to vaccination using the empirical paradigms pioneered by Pasteur and Jenner. Vaccine design strategies that are based on a mechanistic understanding of the pertinent immunology and virology are required to confront and eliminate these scourges. In this perspective, we describe just a few examples of work aimed to achieve this goal by bringing together approaches from statistical physics with biology and clinical research.

  1. Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals.

    PubMed

    Mo, Annie X; Agosti, Jan M; Walson, Judd L; Hall, B Fenton; Gordon, Lance

    2014-01-01

    In March 2013, the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation co-sponsored a meeting entitled "Schistosomiasis Elimination Strategy and Potential Role of a Vaccine in Achieving Global Health Goals" to discuss the potential role of schistosomiasis vaccines and other tools in the context of schistosomiasis control and elimination strategies. It was concluded that although schistosomiasis elimination in some focal areas may be achievable through current mass drug administration programs, global control and elimination will face several significant scientific and operational challenges, and will require an integrated approach with other, additional interventions. These challenges include vector (snail) control; environmental modification; water, sanitation, and hygiene; and other future innovative tools such as vaccines. Defining a clear product development plan that reflects a vaccine strategy as complementary to the existing control programs to combat different forms of schistosomiasis will be important to develop a vaccine effectively.

  2. Dengue Fever: Causes, Complications, and Vaccine Strategies

    PubMed Central

    Khanna, Ira

    2016-01-01

    Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals. PMID:27525287

  3. Future vaccination strategies against tuberculosis: thinking outside the box.

    PubMed

    Kaufmann, Stefan H E

    2010-10-29

    With almost a dozen vaccine candidates in clinical trials, tuberculosis (TB) research and development is finally reaping the first fruits of its labors. Vaccine candidates in clinical trials may prevent TB disease reactivation by efficiently containing the pathogen Mycobacterium tuberculosis (Mtb). Future research should target vaccines that achieve sterile eradication of Mtb or even prevent stable infection. These are ambitious goals that can be reached only by highly cooperative engagement of basic immunologists, vaccinologists, and clinical researchers--or in other words, by translation from basic immunology to vaccine research and development, as well as reverse translation of insights from clinical trials back to hypothesis-driven research in the basic laboratory. Here, we review current and future strategies toward the rational design of novel vaccines against TB, as well as the progress made thus far, and the hurdles that need to be overcome in the near and distant future. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. The Five Immune Forces Impacting DNA-Based Cancer Immunotherapeutic Strategy

    PubMed Central

    Amara, Suneetha; Tiriveedhi, Venkataswarup

    2017-01-01

    DNA-based vaccine strategy is increasingly realized as a viable cancer treatment approach. Strategies to enhance immunogenicity utilizing tumor associated antigens have been investigated in several pre-clinical and clinical studies. The promising outcomes of these studies have suggested that DNA-based vaccines induce potent T-cell effector responses and at the same time cause only minimal side-effects to cancer patients. However, the immune evasive tumor microenvironment is still an important hindrance to a long-term vaccine success. Several options are currently under various stages of study to overcome immune inhibitory effect in tumor microenvironment. Some of these approaches include, but are not limited to, identification of neoantigens, mutanome studies, designing fusion plasmids, vaccine adjuvant modifications, and co-treatment with immune-checkpoint inhibitors. In this review, we follow a Porter’s analysis analogy, otherwise commonly used in business models, to analyze various immune-forces that determine the potential success and sustainable positive outcomes following DNA vaccination using non-viral tumor associated antigens in treatment against cancer. PMID:28304339

  5. Specific T cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant.

    PubMed

    Neto, Lázaro Moreira Marques; Zufelato, Nicholas; de Sousa-Júnior, Ailton Antônio; Trentini, Monalisa Martins; da Costa, Adeliane Castro; Bakuzis, Andris Figueiroa; Kipnis, André; JunqueiraKipnis, Ana Paula

    2018-06-18

    Metal-based nanoparticles (NPs) stimulate innate immunity; however, they have never been demonstrated to be capable of aiding the generation of specific cellular immune responses. Therefore, our objective was to evaluate whether iron oxide-based NPs have adjuvant properties in generating cellular Th1, Th17 and TCD8 (Tc1) immune responses. For this purpose, a fusion protein (CMX) composed of Mycobacterium tuberculosis antigens was used as a subunit vaccine. Citrate-coated MnFe 2 O 4 NPs were synthesized by co-precipitation and evaluated by transmission electron microscopy. The vaccine was formulated by homogenizing NPs with the recombinant protein, and protein corona formation was determined by dynamic light scattering and field-emission scanning electron microscopy. The vaccine was evaluated for the best immunization route and strategy using subcutaneous and intranasal routes with 21-day intervals between immunizations. When administered subcutaneously, the vaccine generated specific CD4 + IFN-γ + (Th1) and CD8 + IFN-γ + responses. Intranasal vaccination induced specific Th1, Th17 (CD4 + IL-17 + ) and Tc1 responses, mainly in the lungs. Finally, a mixed vaccination strategy (2 subcutaneous injections followed by one intranasal vaccination) induced a Th1 (in the spleen and lungs) and splenic Tc1 response but was not capable of inducing a Th17 response in the lungs. This study shows for the first time a subunit vaccine with iron oxide based NPs as an adjuvant that generated cellular immune responses (Th1, Th17 and TCD8), thereby exhibiting good adjuvant qualities. Additionally, the immune response generated by the subcutaneous administration of the vaccine diminished the bacterial load of Mtb challenged animals, showing the potential for further improvement as a vaccine against tuberculosis.

  6. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    PubMed

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. © 2014 John Wiley & Sons Ltd.

  7. Vaccination in the county jail as a strategy to reach high risk adults during a community-based hepatitis A outbreak among methamphetamine drug users.

    PubMed

    Vong, Sirenda; Fiore, Anthony E; Haight, Daniel O; Li, Jinfeng; Borgsmiller, Nancy; Kuhnert, Wendi; Pinero, Frances; Boaz, Kathy; Badsgard, Tracy; Mancini, Carmela; Nainan, Omana V; Wiersma, Steven; Bell, Beth P

    2005-01-11

    Illicit drug use (IDU) is an important risk factor for hepatitis A, but implementing vaccination programs among drug users is difficult. During January 2001-July 2002, 403 hepatitis A cases were reported in Polk County, Florida; 48% were drug users and of these, 80% were recently in jail. To assess the county jail as a potential vaccination venue, we interviewed 280 inmates and conducted a serologic survey during July--August 2002. Of these, 227 (81%) reported a past IDU history. Previous HAV infection was found in 33%. In communities with illicit drug users at risk for hepatitis A and who are frequently jailed, vaccination programs in jails could be an important component of a community-based strategy to control hepatitis A outbreaks among illicit drug users.

  8. Measles in Morocco: epidemiological profile and impact of vaccination strategy.

    PubMed

    Cheikh, Amine; Ziani, Mouncif; Cheikh, Zakia; Barakat, Amina; El Menzhi, Omar; Braikat, Mohammed; Benomar, Ali; Cherrah, Yahya; El Hassani, Amine

    2015-02-01

    Measles continues to persist as one of the leading causes of infant mortality due to preventable diseases through vaccination. This study aims to highlight measles in Morocco, and to present the vaccination strategy implemented to control and eliminate the disease in this country. Throughout this study, and based on data from the Directorate of Epidemiology and Control of Diseases and those of the Directorate of Population, we present an overview on the epidemiological trends of measles from 1997 to 2012, while evoking the plans established by the Ministry of Health (MoH) for the control and elimination of this disease. The number of measles cases has decreased in Morocco between 1997 and 2012 (2574-720 reported cases per year) as a result of four important steps: first, increasing the routine vaccination coverage (73-94%); second, the introduction of the second dose of the combined vaccine against measles and rubella in schools (children aged 6 years) since 2003; third, the first catch-up campaign of vaccination in Morocco in 2008, for which coverage was highly satisfactory (96% and 100% for age groups 5-59 months and 5-14 years, respectively); and fourth, the organization of a mass vaccination campaign in 2013 that targeted children from aged 9 months to 19 years. The vaccination plan and the surveillance system executed in Morocco within the framework of the regional project implemented by the World Health Organization (WHO) to eliminate measles has given remarkable results regarding the reduction of measles cases and mortality due to this disease. According to the data from MoH and WHO, the number of reported and confirmed measles cases decreased drastically during 2014. However, these efforts are still unsatisfactory compared to the prospective of eliminating the disease by 2015.

  9. [Use the Markov-decision tree model to optimize vaccination strategies of hepatitis E among women aged 15 to 49].

    PubMed

    Chen, Z M; Ji, S B; Shi, X L; Zhao, Y Y; Zhang, X F; Jin, H

    2017-02-10

    Objective: To evaluate the cost-utility of different hepatitis E vaccination strategies in women aged 15 to 49. Methods: The Markov-decision tree model was constructed to evaluate the cost-utility of three hepatitis E virus vaccination strategies. Parameters of the models were estimated on the basis of published studies and experience of experts. Both methods on sensitivity and threshold analysis were used to evaluate the uncertainties of the model. Results: Compared with non-vaccination group, strategy on post-screening vaccination with rate as 100%, could save 0.10 quality-adjusted life years per capital in the women from the societal perspectives. After implementation of screening program and with the vaccination rate reaching 100%, the incremental cost utility ratio (ICUR) of vaccination appeared as 5 651.89 and 6 385.33 Yuan/QALY, respectively. Vaccination post to the implementation of a screening program, the result showed better benefit than the vaccination rate of 100%. Results from the sensitivity analysis showed that both the cost of hepatitis E vaccine and the inoculation compliance rate presented significant effects. If the cost were lower than 191.56 Yuan (RMB) or the inoculation compliance rate lower than 0.23, the vaccination rate of 100% strategy was better than the post-screening vaccination strategy, otherwise the post-screening vaccination strategy appeared the optimal strategy. Conclusion: Post-screening vaccination for women aged 15 to 49 from social perspectives seemed the optimal one but it had to depend on the change of vaccine cost and the rate of inoculation compliance.

  10. Possible global strategies for stopping polio vaccination and how they could be harmonized.

    PubMed

    Cochi, S L; Sutter, R W; Aylward, R B

    2001-01-01

    One of the challenges of the polio eradication initiative over the next few years will be the formulation of an optimal strategy for stopping poliovirus vaccination after global certification of polio eradication has been accomplished. This strategy must maximize the benefits and minimize the risks. A number of strategies are currently under consideration, including: (i) synchronized global discontinuation of use of oral poliovirus vaccine (OPV); (ii) regional or subregional coordinated OPV discontinuation; and (iii) moving from trivalent to bivalent or monovalent OPV. Other options include moving from OPV to global use of IPV for an interim period before cessation of IPV use (to eliminate circulation of vaccine-derived poliovirus, if necessary) or development of new OPV strains that are not transmissible. Each of these strategies is associated with specific advantages (financial benefits for OPV discontinuation) and disadvantages (cost of switch to IPV) and inherent uncertainties (risk of continued poliovirus circulation in certain populations or prolonged virus replication in immunodeficient persons). An ambitious research agenda addresses the remaining questions and issues. Nevertheless, several generalities are already clear. Unprecedented collaboration between countries, regions, and indeed the entire world will be required to implement a global OPV discontinuation strategy Regulatory approval will be needed for an interim bivalent OPV or for monovalent OPV in many countries. Manufacturers will need sufficient lead time to produce sufficient quantities of IPV Finally, the financial implications for any of these strategies need to be considered. Whatever strategy is followed it will be necessary to stockpile supplies of a poliovirus-containing vaccine (most probably all three types of monovalent OPV), and to develop contingency plans to respond should an outbreak of polio occur after stopping vaccination.

  11. Schistosomiasis Elimination Strategies and Potential Role of a Vaccine in Achieving Global Health Goals

    PubMed Central

    Mo, Annie X.; Agosti, Jan M.; Walson, Judd L.; Hall, B. Fenton; Gordon, Lance

    2014-01-01

    In March 2013, the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation co-sponsored a meeting entitled “Schistosomiasis Elimination Strategy and Potential Role of a Vaccine in Achieving Global Health Goals” to discuss the potential role of schistosomiasis vaccines and other tools in the context of schistosomiasis control and elimination strategies. It was concluded that although schistosomiasis elimination in some focal areas may be achievable through current mass drug administration programs, global control and elimination will face several significant scientific and operational challenges, and will require an integrated approach with other, additional interventions. These challenges include vector (snail) control; environmental modification; water, sanitation, and hygiene; and other future innovative tools such as vaccines. Defining a clear product development plan that reflects a vaccine strategy as complementary to the existing control programs to combat different forms of schistosomiasis will be important to develop a vaccine effectively. PMID:24402703

  12. Current and future vaccines and vaccination strategies against infectious laryngotracheitis (ILT) respiratory disease of poultry.

    PubMed

    García, Maricarmen

    2017-07-01

    Infectious laryngotracheitis (ILT) is an economically important respiratory disease of poultry that affects the industry worldwide. Vaccination is the principal tool in the control of the disease. Two types of vaccines, live attenuated and recombinant viral vector, are commercially available. The first generation of GaHV-1 vaccines available since the early 1960's are live viruses, attenuated by continuous passages in cell culture or embryos. These vaccines significantly reduce mortalities and, in particular, the chicken embryo origin (CEO) vaccines have shown to limit outbreaks of the disease. However, the CEO vaccines can regain virulence and become the source of outbreaks. Recombinant viral vector vaccines, the second generation of GaHV-1 vaccines, were first introduced in the early 2000's. These are Fowl Pox virus (FPV) and Herpes virus of turkeys (HVT) vectors expressing one or multiple GaHV-1 immunogenic proteins. Recombinant viral vector vaccines are considered a much safer alternative because they do not regain virulence. In the face of challenge, they improve bird performance and ameliorate clinical signs of the disease but fail to reduce shedding of the challenge virus increasing the likelihood of outbreaks. At the moment, several new strategies are being evaluated to improve both live attenuated and viral vector vaccines. Potential new live vaccines attenuated by deletion of genes associated with virulence or by selection of CEO viral subpopulations that do not exhibit increased virulence upon passages in birds are being evaluated. Also new vector alternatives to express GaHV-1 glycoproteins in Newcastle diseases virus (NDV) or in modified very virulent (vv) serotype I Marek's disease virus (MDV) were developed and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The cost-effectiveness of two strategies for vaccinating US veterans with hepatitis C virus infection against hepatitis A and hepatitis B viruses.

    PubMed

    Jakiche, Rita; Borrego, Matthew E; Raisch, Dennis W; Gupchup, Gireesh V; Pai, Manjunath A; Jakiche, Antoine

    2007-01-01

    Although hepatitis A and B vaccinations are recommended for patients with chronic hepatitis C virus (HCV), the ideal vaccination strategy has not been determined. Our objective was to model the cost-effectiveness of two strategies for vaccinating patients with HCV infection against hepatitis A (HAV) and hepatitis B (HBV) viruses. The strategies evaluated were: universal vaccination with the combined HAV and HBV vaccine, and selective vaccination based on immunity determined by blood testing. A decision tree model was constructed to compare the cost-effectiveness of the two vaccination strategies from the New Mexico Veterans Affairs Health Care System (NMVAHCS) perspective. A retrospective review of all HCV patients (2517 subjects) at the NMVAHCS was performed to extract prevalence of immunity to HAV and HBV, and prevalence of decompensated liver disease. Literature review was performed to obtain other probabilities for the model. Only direct medical costs were considered; the effectiveness measure was the number of patients immune to both HAV and HBV. Sensitivity analyses were performed to test robustness of the results to changes in input variables. All costs were in 2004 US dollars. The selective strategy was less costly but less effective, with a cost-effectiveness ratio of 105 dollars per patient immune to HAV and HBV. The universal strategy was more effective but more expensive with a cost-effectiveness ratio of 112 dollars per patient immune to HAV and HBV. Compared with the selective strategy, universal strategy was associated with an incremental cost-effectiveness (ICE) ratio of 154 dollars per additional patient immune to HAV and HBV. The universal strategy would become more cost-effective if 1) the cost of combined vaccine was reduced to less than 30.75 dollars (9.7% reduction), 2) the cost of HBV vaccine increased to greater than 34.50 dollars (25% increase), 3) the cost of blood tests for immunity increased to more than 25.25 dollars (23% increase), or

  14. Vaccination Strategies: a comparative study in an epidemic scenario

    NASA Astrophysics Data System (ADS)

    Prates, D. B.; Jardim, C. L. T. F.; Ferreira, L. A. F.; da Silva, J. M.; Kritz, M. V.

    2016-08-01

    Epidemics are an extremely important matter of study within the Mathematical Modeling area and can be widely found in the literature. Some epidemiological models use differential equations, which are very sensible to parameters, to represent and describe the diseases mathematically. For this work, a variation of the SIR model is discussed and applied to a certain epidemic scenario, wherein vaccination is introduced through two different strategies: constant vaccination and vaccination in pulses. Other epidemiological and population aspects are also considered, such as mortality/natality and infection rates. The analysis and results are performed through numerical solutions of the model and a special attention is given to the discussion generated by the paramenters variation.

  15. Nucleic acid-based vaccines targeting respiratory syncytial virus: Delivering the goods.

    PubMed

    Smith, Trevor R F; Schultheis, Katherine; Broderick, Kate E

    2017-11-02

    Respiratory syncytial virus (RSV) is a massive medical burden on a global scale. Infants, children and the elderly represent the vulnerable populations. Currently there is no approved vaccine to protect against the disease. Vaccine development has been hindered by several factors including vaccine enhanced disease (VED) associated with formalin-inactivated RSV vaccines, inability of target populations to raise protective immune responses after vaccination or natural viral infection, and a lack of consensus concerning the most appropriate virus-associated target antigen. However, with recent advances in the molecular understanding of the virus, and design of highly characterized vaccines with enhanced immunogenicity there is new belief a RSV vaccine is possible. One promising approach is nucleic acid-based vaccinology. Both DNA and mRNA RSV vaccines are showing promising results in clinically relevant animal models, supporting their transition into humans. Here we will discuss this strategy to target RSV, and the ongoing studies to advance the nucleic acid vaccine platform as a viable option to protect vulnerable populations from this important disease.

  16. Cost-Effectiveness and Public Health Effect of Influenza Vaccine Strategies for U.S. Elderly Adults.

    PubMed

    Raviotta, Jonathan M; Smith, Kenneth J; DePasse, Jay; Brown, Shawn T; Shim, Eunha; Nowalk, Mary Patricia; Zimmerman, Richard K

    2016-10-01

    To compare the cost-effectiveness of four influenza vaccines available in the United States for persons aged 65 and older: trivalent inactivated influenza vaccine (IIV3), quadrivalent inactivated influenza vaccine (IIV4), a more-expensive high-dose IIV3, and a newly approved adjuvanted IIV3. Cost-effectiveness analysis using a Markov model and sensitivity analyses. A hypothetical influenza vaccination season modeled according to possible U.S. influenza vaccination policies. Hypothetical cohort of individuals aged 65 and older in the United States. Cost-effectiveness and public health benefits of available influenza vaccination strategies in U.S. elderly adults. IIV3 cost $3,690 per quality-adjusted life year (QALY) gained, IIV4 cost $20,939 more than IIV3 per QALY gained, and high-dose IIV3 cost $31,214 more per QALY than IIV4. The model projected 83,775 fewer influenza cases and 980 fewer deaths with high-dose IIV3 than with the next most-effective vaccine: IIV4. In a probabilistic sensitivity analysis, high-dose IIV3 was the favored strategy if willingness to pay is $25,000 or more per QALY gained. Adjuvanted IIV3 cost-effectiveness depends on its price and effectiveness (neither yet determined in the United States) but could be favored if its relative effectiveness is 15% greater than that of IIV3. From economic and public health standpoints, high-dose IIV3 for adults aged 65 years and older is likely to be favored over the other vaccines, based on currently available data. The cost-effectiveness of adjuvanted IIV3 should be reviewed after its effectiveness has been compared with that of other vaccines and its U.S. price is established. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  17. Pertussis vaccination coverage among French parents of infants after 10years of cocoon strategy.

    PubMed

    Cohen, R; Gaudelus, J; Denis, F; Stahl, J-P; Chevaillier, O; Pujol, P; Martinot, A

    2016-06-01

    The cocoon strategy against pertussis has been recommended in France since 2004 to indirectly protect young infants who are not yet vaccinated. We aimed to measure vaccination coverage among French parents of infants. A representative sample of 300 mothers and 200 fathers of infants aged <12 months completed a self-administered online questionnaire. They all provided their own vaccination records. Overall, 87% of mothers believed vaccination against pertussis to be important; 83% reported being immunized against pertussis but their vaccination records showed that a third of them was wrong (34%). On the basis of our sample, the 2009-2014 vaccination coverage against pertussis among mothers increased from 22 to 61% (P<0.005); over the same period of time, vaccination coverage against diphtheria, tetanus, and polio remained stable (80%). Vaccination coverage against pertussis among fathers increased from 21 to 42% between 2010 and 2013 (P=0.009). In 2013, one couple out of four (26%) was adequately immunized against pertussis. The cocoon strategy was implemented 10years ago in France but vaccination coverage remains suboptimal among parents of young infants. Healthcare professionals must recommend vaccination against pertussis to young adults and check that their vaccination status is up to date. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi.

    PubMed

    Gomes-Solecki, Maria

    2014-01-01

    Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans.

  19. Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi

    PubMed Central

    Gomes-Solecki, Maria

    2014-01-01

    Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans. PMID:25309883

  20. Salmonella-based plague vaccines for bioterrorism.

    PubMed

    Calhoun, Leona Nicole; Kwon, Young-Min

    2006-04-01

    Yersinia pestis, the causative agent of plague, is an emerging threat as a means of bioterrorism. Accordingly, the Working Group on Civilian Biodefense, as well as the Centers for Disease Control and Prevention, has specified Y. pestis as a prime candidate for use in bioterrorism. As the threat of bioterrorism increases, so does the need for an effective vaccine against this potential agent. Experts agree that a stable, non-invasive vaccine would be necessary for the rapid large-scale immunization of a population following a bioterrorism attack. Thus far, live Salmonella-based oral vaccines show the most potential for this purpose. When delivered via a mucosal route, Salmonella-based plague vaccines show the ability to protect against the deadly pneumonic form of plague. Also, mass production, distribution, and administration are easier and less costly for attenuated Salmonella-based plague vaccines than for plague vaccines consisting of purified proteins. Most attenuated Salmonella-based plague vaccines have utilized a plasmid-based expression system to deliver plague antigen(s) to the mucosa. However, these systems are frequently associated with plasmid instability, an increased metabolic burden upon the vaccine strain, and highly undesirable antibiotic resistance genes. The future of Salmonella-based plague vaccines seems to lie in the use of chromosomally encoded plague antigens and the use of in vivo inducible promoters to drive their expression. This method of vaccine development has been proven to greatly increase the retention of foreign genes, and also eliminates the need for antibiotic resistance genes within Salmonella-based vaccines.

  1. Accelerating clinical development of HIV vaccine strategies: methodological challenges and considerations in constructing an optimised multi-arm phase I/II trial design.

    PubMed

    Richert, Laura; Doussau, Adélaïde; Lelièvre, Jean-Daniel; Arnold, Vincent; Rieux, Véronique; Bouakane, Amel; Lévy, Yves; Chêne, Geneviève; Thiébaut, Rodolphe

    2014-02-26

    Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in

  2. Sm-p80-Based Schistosomiasis Vaccine: Preparation for Human Clinical Trials.

    PubMed

    Siddiqui, Afzal A; Siddiqui, Sabrina Z

    2017-03-01

    Mass antiparasitic drug administration programs and other control strategies have made important contributions in reducing the global prevalence of helminths. Schistosomiasis, however, continues to spread to new geographic areas. The advent of a viable vaccine and its deployment, coupled with existing control efforts, is expected to make significant headway towards sustained schistosomiasis control. In 2016, Science ranked the schistosomiasis vaccine as one of the top 10 vaccines that needs to be urgently developed. A vaccine that is effective against geographically distinct forms of intestinal/hepatic and urinary disease is essential to make a meaningful impact in global reduction of the disease burden. In this opinion article, we focus on salient features of schistosomiasis vaccines in different phases of the clinical development pipeline and highlight the Sm-p80-based vaccine which is now being prepared for human clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Genome-based vaccine design: the promise for malaria and other infectious diseases.

    PubMed

    Doolan, Denise L; Apte, Simon H; Proietti, Carla

    2014-10-15

    Vaccines are one of the most effective interventions to improve public health, however, the generation of highly effective vaccines for many diseases has remained difficult. Three chronic diseases that characterise these difficulties include malaria, tuberculosis and HIV, and they alone account for half of the global infectious disease burden. The whole organism vaccine approach pioneered by Jenner in 1796 and refined by Pasteur in 1857 with the "isolate, inactivate and inject" paradigm has proved highly successful for many viral and bacterial pathogens causing acute disease but has failed with respect to malaria, tuberculosis and HIV as well as many other diseases. A significant advance of the past decade has been the elucidation of the genomes, proteomes and transcriptomes of many pathogens. This information provides the foundation for new 21st Century approaches to identify target antigens for the development of vaccines, drugs and diagnostic tests. Innovative genome-based vaccine strategies have shown potential for a number of challenging pathogens, including malaria. We advocate that genome-based rational vaccine design will overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued vaccine developers for many years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Comparison of Strategies and Incidence Thresholds for Vi Conjugate Vaccines Against Typhoid Fever: A Cost-effectiveness Modeling Study.

    PubMed

    Lo, Nathan C; Gupta, Ribhav; Stanaway, Jeffrey D; Garrett, Denise O; Bogoch, Isaac I; Luby, Stephen P; Andrews, Jason R

    2018-02-12

    Typhoid fever remains a major public health problem globally. While new Vi conjugate vaccines hold promise for averting disease, the optimal programmatic delivery remains unclear. We aimed to identify the strategies and associated epidemiologic conditions under which Vi conjugate vaccines would be cost-effective. We developed a dynamic, age-structured transmission and cost-effectiveness model that simulated multiple vaccination strategies with a typhoid Vi conjugate vaccine from a societal perspective. We simulated 10-year vaccination programs with (1) routine immunization of infants (aged <1 year) through the Expanded Program on Immunization (EPI) and (2) routine immunization of infants through the EPI plus a 1-time catch-up campaign in school-aged children (aged 5-14 years). In the base case analysis, we assumed a 0.5% case-fatality rate for all cases of clinically symptomatic typhoid fever and defined strategies as highly cost-effective by using the definition of a low-income country (defined as a country with a gross domestic product of $1045 per capita). We defined incidence as the true number of clinically symptomatic people in the population per year. Vi conjugate typhoid vaccines were highly cost-effective when administered by routine immunization activities through the EPI in settings with an annual incidence of >50 cases/100000 (95% uncertainty interval, 40-75 cases) and when administered through the EPI plus a catch-up campaign in settings with an annual incidence of >130 cases/100000 (95% uncertainty interval, 50-395 cases). The incidence threshold was sensitive to the typhoid-related case-fatality rate, carrier contribution to transmission, vaccine characteristics, and country-specific economic threshold for cost-effectiveness. Typhoid Vi conjugate vaccines would be highly cost-effective in low-income countries in settings of moderate typhoid incidence (50 cases/100000 annually). These results were sensitive to case-fatality rates, underscoring the

  5. Vaccines and vaccination strategies against human cutaneous leishmaniasis.

    PubMed

    Okwor, Ifeoma; Uzonna, Jude

    2009-05-01

    One might think that the development of a vaccine against cutaneous leishmaniasis would be relatively straightforward because the type of immune response required for protection is known and natural immunity occurs following recovery from primary infection. However, there is as yet no effective vaccine against the disease in humans. Although vaccination in murine studies has yielded promising results, these vaccines have failed miserably when tested in primates or humans. The reasons behind these failures are unknown and remain a major hurdle for vaccine design and development against cutaneous leishmaniasis. In contrast, recovery from natural, deliberate or experimental infections results in development of long-lasting immunity to re-infection. This so called infection-induced resistance is the strongest anti-Leishmania immunity known. Here, we briefly review the different approaches to vaccination against cutaneous leishmaniasis and argue that vaccines composed of genetically modified (attenuated) parasites, which induce immunity akin to infection-induced resistance, may provide best protection against cutaneous leishmaniasis in humans.

  6. How does public policy impact cervical screening and vaccination strategies?☆

    PubMed Central

    Herzog, Thomas J.; Huh, Warner K.; Einstein, Mark H.

    2011-01-01

    Objectives To examine the current approaches to cervical screening and points to consider for improving HPV vaccination acceptance and uptake in the US. Methods An expert forum was conducted September 12–13, 2008, by the Society of Gynecologic Oncologists including 56 experts in cervical cancer and titled “Future Strategies of Cervical Cancer Prevention: What Do We Need to Do Now to Prepare?”. Results Cervical cancer prevention has primarily relied on screening paradigms but vaccination against human papillomavirus (HPV), the cause of the disease, is a primary preventative measure that has been recommended by all cervical cancer screening stakeholders. Guidelines for vaccination are developed by national advisory groups, but successful implementation requires a supportive infrastructure and the cooperation of providers, clinicians, and patients. HPV vaccination has been available in the United States (US) since 2006 and screening practices have been updated to also include HPV genotyping. However, many clinicians fail to adhere to the guidelines for HPV testing (and HPV co-testing) as part of cervical cancer screening, and vaccination coverage has been poor among females aged 11 and 12, the group for which vaccination is recommended by all organizations. Conclusions The data reviewed and presented in this session of the “Future Strategies of Cervical Cancer Prevention. What Do We Need to do Now to Prepare?”. The Forum suggests that the policies influencing HPV vaccination and screening need to be reassessed at multiple levels in order to achieve more effective implementation and regular use. PMID:20932433

  7. Optimized oral cholera vaccine distribution strategies to minimize disease incidence: A mixed integer programming model and analysis of a Bangladesh scenario.

    PubMed

    Smalley, Hannah K; Keskinocak, Pinar; Swann, Julie; Hinman, Alan

    2015-11-17

    In addition to improved sanitation, hygiene, and better access to safe water, oral cholera vaccines can help to control the spread of cholera in the short term. However, there is currently no systematic method for determining the best allocation of oral cholera vaccines to minimize disease incidence in a population where the disease is endemic and resources are limited. We present a mathematical model for optimally allocating vaccines in a region under varying levels of demographic and incidence data availability. The model addresses the questions of where, when, and how many doses of vaccines to send. Considering vaccine efficacies (which may vary based on age and the number of years since vaccination), we analyze distribution strategies which allocate vaccines over multiple years. Results indicate that, given appropriate surveillance data, targeting age groups and regions with the highest disease incidence should be the first priority, followed by other groups primarily in order of disease incidence, as this approach is the most life-saving and cost-effective. A lack of detailed incidence data results in distribution strategies which are not cost-effective and can lead to thousands more deaths from the disease. The mathematical model allows for what-if analysis for various vaccine distribution strategies by providing the ability to easily vary parameters such as numbers and sizes of regions and age groups, risk levels, vaccine price, vaccine efficacy, production capacity and budget. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. An agent-based model for control strategies of Echinococcus granulosus.

    PubMed

    Huang, Liang; Huang, Yan; Wang, Qian; Xiao, Ning; Yi, Deyou; Yu, Wenjie; Qiu, Dongchuan

    2011-06-30

    Cystic echinococcosis is a widespread zoonosis, caused by Echinococcus granulosus. The definitive hosts are carnivores and the intermediate hosts are grazing animals. Because humans are often accidentally infected with the cystic stage of the parasite, a control program is being developed for Western China. Western Sichuan Province in China is a highly endemic area. In this study, we built an agent-based model (ABM) to simulate and assess possible control strategies. These included dog dosing, control of livestock slaughter, health education, vaccination of intermediate hosts, vaccination of definitive hosts, slow-released praziquantel injections for dogs, removing unproductive old livestock, dog population reduction. These strategies were examined singly and in various combinations. The results show that vaccination based control strategies and also combined control strategies (dog dosing, slaughter control, removing old livestock, dog population reduction) can achieve a higher efficiency and be more feasible. Although monthly dog dosing achieved the highest efficiency, it required a high frequency and reliability, which were not feasible or sustainable. The model also indicated that transmission would recover soon after the chosen control strategy was stopped, indicating the need to move from a successful attack phase to a sustainable consolidation phase. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    PubMed

    Mire, Chad E; Geisbert, Joan B; Marzi, Andrea; Agans, Krystle N; Feldmann, Heinz; Geisbert, Thomas W

    2013-01-01

    Ebola virus (EBOV) causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV) or Zaire ebolavirus (ZEBOV) challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV) using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV), or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine vectors employed

  10. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer.

    PubMed

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-14

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients.

  11. Hexavalent IPV-based combination vaccines for public-sector markets of low-resource countries

    PubMed Central

    Mahmood, Kutub; Pelkowski, Sonia; Atherly, Deborah; Sitrin, Robert; Donnelly, John J

    2013-01-01

    In anticipation of the successful eradication of wild polio virus, alternative vaccination strategies for public-sector markets of low-resource countries are extremely important, but are still under development. Following polio eradication, inactivated polio vaccine (IPV) would be the only polio vaccine available, and would be needed for early childhood immunization for several years, as maintenance of herd immunity will be important for sustaining polio eradication. Low-cost combination vaccines containing IPV could provide reliable and continuous immunization in the post-polio eradication period. Combination vaccines can potentially simplify complex pediatric routine immunization schedules, improve compliance, and reduce costs. Hexavalent vaccines containing Diphtheria (D), Tetanus (T), whole cell pertussis (wP), Hepatitis B (HBV), Haemophilus b (Hib) and the three IPV serotype antigens have been considered as the ultimate combination vaccine for routine immunization. This product review evaluates potential hexavalent vaccine candidates by composition, probable time to market, expected cost of goods, presentation, and technical feasibility and offers suggestions for development of low-cost hexavalent combination vaccines. Because there are significant technical challenges facing wP-based hexavalent vaccine development, this review also discusses other alternative approaches to hexavalent that could also ensure a timely and reliable supply of low-cost IPV based combination vaccines. PMID:23787559

  12. Hexavalent IPV-based combination vaccines for public-sector markets of low-resource countries.

    PubMed

    Mahmood, Kutub; Pelkowski, Sonia; Atherly, Deborah; Sitrin, Robert D; Donnelly, John J

    2013-09-01

    In anticipation of the successful eradication of wild polio virus, alternative vaccination strategies for public-sector markets of low-resource countries are extremely important, but are still under development. Following polio eradication, inactivated polio vaccine (IPV) would be the only polio vaccine available, and would be needed for early childhood immunization for several years, as maintenance of herd immunity will be important for sustaining polio eradication. Low-cost combination vaccines containing IPV could provide reliable and continuous immunization in the post-polio eradication period. Combination vaccines can potentially simplify complex pediatric routine immunization schedules, improve compliance, and reduce costs. Hexavalent vaccines containing Diphtheria (D), Tetanus (T), whole cell pertussis (wP), Hepatitis B (HBV), Haemophilus b (Hib) and the three IPV serotype antigens have been considered as the ultimate combination vaccine for routine immunization. This product review evaluates potential hexavalent vaccine candidates by composition, probable time to market, expected cost of goods, presentation, and technical feasibility and offers suggestions for development of low-cost hexavalent combination vaccines. Because there are significant technical challenges facing wP-based hexavalent vaccine development, this review also discusses other alternative approaches to hexavalent that could also ensure a timely and reliable supply of low-cost IPV based combination vaccines.

  13. Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies.

    PubMed

    Coughlin, Melissa M; Beck, Andrew S; Bankamp, Bettina; Rota, Paul A

    2017-01-19

    Measles is a highly contagious, vaccine preventable disease. Measles results in a systemic illness which causes profound immunosuppression often leading to severe complications. In 2010, the World Health Assembly declared that measles can and should be eradicated. Measles has been eliminated in the Region of the Americas, and the remaining five regions of the World Health Organization (WHO) have adopted measles elimination goals. Significant progress has been made through increased global coverage of first and second doses of measles-containing vaccine, leading to a decrease in global incidence of measles, and through improved case based surveillance supported by the WHO Global Measles and Rubella Laboratory Network. Improved vaccine delivery methods will likely play an important role in achieving measles elimination goals as these delivery methods circumvent many of the logistic issues associated with subcutaneous injection. This review highlights the status of global measles epidemiology, novel measles vaccination strategies, and describes the pathway toward measles elimination.

  14. Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies

    PubMed Central

    Coughlin, Melissa M.; Beck, Andrew S.; Bankamp, Bettina; Rota, Paul A.

    2017-01-01

    Measles is a highly contagious, vaccine preventable disease. Measles results in a systemic illness which causes profound immunosuppression often leading to severe complications. In 2010, the World Health Assembly declared that measles can and should be eradicated. Measles has been eliminated in the Region of the Americas, and the remaining five regions of the World Health Organization (WHO) have adopted measles elimination goals. Significant progress has been made through increased global coverage of first and second doses of measles-containing vaccine, leading to a decrease in global incidence of measles, and through improved case based surveillance supported by the WHO Global Measles and Rubella Laboratory Network. Improved vaccine delivery methods will likely play an important role in achieving measles elimination goals as these delivery methods circumvent many of the logistic issues associated with subcutaneous injection. This review highlights the status of global measles epidemiology, novel measles vaccination strategies, and describes the pathway toward measles elimination. PMID:28106841

  15. Modelling Vaccination Strategies against Rift Valley Fever in Livestock in Kenya.

    PubMed

    Gachohi, John M; Njenga, M Kariuki; Kitala, Philip; Bett, Bernard

    2016-12-01

    The impacts of vaccination on the transmission of Rift Valley fever virus (RVFV) have not been evaluated. We have developed a RVFV transmission model comprising two hosts-cattle as a separate host and sheep and goats as one combined host (herein after referred to as sheep)-and two vectors-Aedes species (spp) and Culex spp-and used it to predict the impacts of: (1) reactive vaccination implemented at various levels of coverage at pre-determined time points, (2) targeted vaccination involving either of the two host species, and (3) a periodic vaccination implemented biannually or annually before an outbreak. The model comprises coupled vector and host modules where the dynamics of vectors and hosts are described using a system of difference equations. Vector populations are structured into egg, larva, pupa and adult stages and the latter stage is further categorized into three infection categories: susceptible, exposed and infectious mosquitoes. The survival rates of the immature stages (egg, larva and pupa) are dependent on rainfall densities extracted from the Tropical Rainfall Measuring Mission (TRMM) for a Rift Valley fever (RVF) endemic site in Kenya over a period of 1827 days. The host populations are structured into four age classes comprising young, weaners, yearlings and adults and four infection categories including susceptible, exposed, infectious, and immune categories. The model reproduces the 2006/2007 RVF outbreak reported in empirical surveys in the target area and other seasonal transmission events that are perceived to occur during the wet seasons. Mass reactive vaccination strategies greatly reduce the potential for a major outbreak. The results also suggest that the effectiveness of vaccination can be enhanced by increasing the vaccination coverage, targeting vaccination on cattle given that this species plays a major role in the transmission of the virus, and using both periodic and reactive vaccination strategies. Reactive vaccination can be

  16. Clarification of vaccines: An overview of filter based technology trends and best practices.

    PubMed

    Besnard, Lise; Fabre, Virginie; Fettig, Michael; Gousseinov, Elina; Kawakami, Yasuhiro; Laroudie, Nicolas; Scanlan, Claire; Pattnaik, Priyabrata

    2016-01-01

    Vaccines are derived from a variety of sources including tissue extracts, bacterial cells, virus particles, recombinant mammalian, yeast and insect cell produced proteins and nucleic acids. The most common method of vaccine production is based on an initial fermentation process followed by purification. Production of vaccines is a complex process involving many different steps and processes. Selection of the appropriate purification method is critical to achieving desired purity of the final product. Clarification of vaccines is a critical step that strongly impacts product recovery and subsequent downstream purification. There are several technologies that can be applied for vaccine clarification. Selection of a harvesting method and equipment depends on the type of cells, product being harvested, and properties of the process fluids. These techniques include membrane filtration (microfiltration, tangential-flow filtration), centrifugation, and depth filtration (normal flow filtration). Historically vaccine harvest clarification was usually achieved by centrifugation followed by depth filtration. Recently membrane based technologies have gained prominence in vaccine clarification. The increasing use of single-use technologies in upstream processes necessitated a shift in harvest strategies. This review offers a comprehensive view on different membrane based technologies and their application in vaccine clarification, outlines the challenges involved and presents the current state of best practices in the clarification of vaccines. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Economic Evaluation of Screening Strategies Combined with HPV Vaccination of Preadolescent Girls for the Prevention of Cervical Cancer in Vientiane, Lao PDR.

    PubMed

    Chanthavilay, Phetsavanh; Reinharz, Daniel; Mayxay, Mayfong; Phongsavan, Keokedthong; Marsden, Donald E; Moore, Lynne; White, Lisa J

    2016-01-01

    Several approaches to reduce the incidence of invasive cervical cancers exist. The approach adopted should take into account contextual factors that influence the cost-effectiveness of the available options. To determine the cost-effectiveness of screening strategies combined with a vaccination program for 10-year old girls for cervical cancer prevention in Vientiane, Lao PDR. A population-based dynamic compartment model was constructed. The interventions consisted of a 10-year old girl vaccination program only, or this program combined with screening strategies, i.e., visual inspection with acetic acid (VIA), cytology-based screening, rapid human papillomavirus (HPV) DNA testing, or combined VIA and cytology testing. Simulations were run over 100 years. In base-case scenario analyses, we assumed a 70% vaccination coverage with lifelong protection and a 50% screening coverage. The outcome of interest was the incremental cost per Disability-Adjusted Life Year (DALY) averted. In base-case scenarios, compared to the next best strategy, the model predicted that VIA screening of women aged 30-65 years old every three years, combined with vaccination, was the most attractive option, costing 2 544 international dollars (I$) per DALY averted. Meanwhile, rapid HPV DNA testing was predicted to be more attractive than cytology-based screening or its combination with VIA. Among cytology-based screening options, combined VIA with conventional cytology testing was predicted to be the most attractive option. Multi-way sensitivity analyses did not change the results. Compared to rapid HPV DNA testing, VIA had a probability of cost-effectiveness of 73%. Compared to the vaccination only option, the probability that a program consisting of screening women every five years would be cost-effective was around 60% and 80% if the willingness-to-pay threshold is fixed at one and three GDP per capita, respectively. A VIA screening program in addition to a girl vaccination program was

  18. Farmers' perception of the role of veterinary surgeons in vaccination strategies on British dairy farms.

    PubMed

    Richens, I F; Hobson-West, P; Brennan, M L; Lowton, R; Kaler, J; Wapenaar, W

    2015-11-07

    There is limited research investigating the motivators and barriers to vaccinating dairy cattle. Veterinary surgeons have been identified as important sources of information for farmers making vaccination and disease control decisions, as well as being farmers' preferred vaccine suppliers. Vets' perception of their own role and communication style can be at odds with farmers' reported preferences. The objective of this study was to investigate how dairy farmers perceived the role of vets in implementing vaccination strategies on their farm. Semi-structured interviews were conducted with 24 dairy farmers from across Britain. The data were analysed using thematic analysis. Analysis revealed that farmers perceive vets to have an important role in facilitating decision-making in all aspects of vaccination, including the aspects of vaccine distribution and advice on implementation. This important role is acknowledged by farmers who have regular veterinary contact, but also farmers with solely emergency veterinary contact. Given this finding, future work should investigate the attitudes of vets towards vaccination and how they perceive their role. Combining this knowledge will enable optimisation of vaccination strategies on British dairy farms. British Veterinary Association.

  19. Budget-Impact Analysis of Alternative Herpes Zoster Vaccine Strategies: A U.S. HMO Perspective.

    PubMed

    Graham, Jonathan; Mauskopf, Josephine; Kawai, Kosuke; Johnson, Kelly D; Xu, Ruifeng; Acosta, Camilo J

    2016-07-01

    A herpes zoster vaccine has been approved by the FDA for use in prevention of herpes zoster in individuals who are aged 50 years or older. The Advisory Committee on Immunization Practices (ACIP) recommends vaccination only in individuals who are aged 60 years and older. To (a) estimate the overall budget and health impact of either the introduction of a new vaccination strategy (individuals over the age of 50 years vs. individuals over the age of 60 years) within a hypothetical health plan or simply an increase in coverage within the population aged 60 years and over and (b) discern what effect copayments and changes to copayments have on the health plan's budget. A decision-analytic economic model was developed to inform managed care decision makers of the potential effect on costs and outcomes associated with the use of the herpes zoster vaccine for prevention of herpes zoster (i.e., simple zoster or shingles). The model took a U.S. payer perspective. The number of eligible patients entering the model was estimated by considering the age distribution of the plan population and the percentage of patients contraindicated for vaccination (i.e., those who were immunocompromised or who had a history of anaphylactic/anaphylactoid reaction to gelatin, neomycin, or any other component of the vaccine). Eligible patients were vaccinated based on the projected uptake rates among the unvaccinated population in 2 possible vaccination scenarios: (1) a vaccination strategy in which only individuals over age 60 years can be vaccinated and (2) a vaccination strategy in which individuals over age 50 years can be vaccinated. Vaccination was assumed to reverse the age-related decline in immunity against zoster. The population vaccinated each year was estimated based on the uptake rates (percentage of the eligible unvaccinated that are vaccinated) required to reach a target annual coverage (percentage ever vaccinated). Patients could experience costs and outcomes related to

  20. Future of an “Asymptomatic” T-cell Epitope-Based Therapeutic Herpes Simplex Vaccine

    PubMed Central

    Dervillez, Xavier; Gottimukkala, Chetan; Kabbara, Khaled W.; Nguyen, Chelsea; Badakhshan, Tina; Kim, Sarah M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2012-01-01

    Summary Considering the limited success of the recent herpes clinical vaccine trial [1], new vaccine strategies are needed. Infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) in the majority of men and women are usually asymptomatic and results in lifelong viral latency in neurons of sensory ganglia (SG). However, in a minority of men and women HSV spontaneous reactivation can cause recurrent disease (i.e., symptomatic individuals). Our recent findings show that T cells from symptomatic and asymptomatic men and women (i.e. those with and without recurrences, respectively) recognize different herpes epitopes. This finding breaks new ground and opens new doors to assess a new vaccine strategy: mucosal immunization with HSV-1 & HSV-2 epitopes that induce strong in vitro CD4 and CD8 T cell responses from PBMC derived from asymptomatic men and women (designated here as “asymptomatic” protective epitopes”) could boost local and systemic “natural” protective immunity, induced by wild-type infection. Here we highlight the rationale and the future of our emerging “asymptomatic” T cell epitope-based mucosal vaccine strategy to decrease recurrent herpetic disease. PMID:22701511

  1. A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice.

    PubMed

    Tierney, Rob; Nakai, Toru; Parkins, Christopher J; Caposio, Patrizia; Fairweather, Neil F; Sesardic, Dorothea; Jarvis, Michael A

    2012-04-26

    The current commercially available vaccine used to prevent tetanus disease following infection with the anaerobic bacterium Clostridium tetani is safe and effective. However, tetanus remains a major source of mortality in developing countries. In 2008, neonatal tetanus was estimated to have caused >59,000 deaths, accounting for 1% of worldwide infant mortality, primarily in poorer nations. The cost of multiple vaccine doses administered by injection necessary to achieve protective levels of anti-tetanus toxoid antibodies is the primary reason for low vaccine coverage. Herein, we show that a novel vaccine strategy using a cytomegalovirus (CMV)-based vaccine platform induces protective levels of anti-tetanus antibodies that are durable (lasting >13 months) in mice following only a single dose. This study demonstrates the ability of a 'single-dose' CMV-based vaccine strategy to induce durable protection, and supports the potential for a tetanus vaccine based on CMV to impact the incidence of tetanus in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Cost Effectiveness of Influenza Vaccine for U.S. Children: Live Attenuated and Inactivated Influenza Vaccine.

    PubMed

    Shim, Eunha; Brown, Shawn T; DePasse, Jay; Nowalk, Mary Patricia; Raviotta, Jonathan M; Smith, Kenneth J; Zimmerman, Richard K

    2016-09-01

    Prior studies showed that live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in children aged 2-8 years, supporting the Centers for Disease Control and Prevention (CDC) recommendations in 2014 for preferential LAIV use in this age group. However, 2014-2015 U.S. effectiveness data indicated relatively poor effectiveness of both vaccines, leading CDC in 2015 to no longer prefer LAIV. An age-structured model of influenza transmission and vaccination was developed, which incorporated both direct and indirect protection induced by vaccination. Based on this model, the cost effectiveness of influenza vaccination strategies in children aged 2-8 years in the U.S. was estimated. The base case assumed a mixed vaccination strategy where 33.3% and 66.7% of vaccinated children aged 2-8 years receive LAIV and IIV, respectively. Analyses were performed in 2014-2015. Using published meta-analysis vaccine effectiveness data (83% LAIV and 64% IIV), exclusive LAIV use would be a cost-effective strategy when vaccinating children aged 2-8 years, whereas IIV would not be preferred. However, when 2014-2015 U.S. effectiveness data (0% LAIV and 15% IIV) were used, IIV was likely to be preferred. The cost effectiveness of influenza vaccination in children aged 2-8 years is highly dependent on vaccine effectiveness; the vaccine type with higher effectiveness is preferred. In general, exclusive IIV use is preferred over LAIV use, as long as vaccine effectiveness is higher for IIV than for LAIV. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  3. A game dynamic model for delayer strategies in vaccinating behaviour for pediatric infectious diseases.

    PubMed

    Bhattacharyya, Samit; Bauch, C T

    2010-12-07

    Several studies have found that some parents delay the age at which their children receive pediatric vaccines due to perception of higher vaccine risk at the recommended age of vaccination. This has been particularly apparently during the Measles-Mumps-Rubella scare in the United Kingdom. Under a voluntary vaccination policy, vaccine coverage in certain age groups is a potentially complex interplay between vaccinating behaviour, disease dynamics, and age-specific risk factors. Here, we construct an age-structured game dynamic model, where individuals decide whether to vaccinate according to imitation dynamics depending on age-dependent disease prevalence and perceived risk of vaccination. Individuals may be timely vaccinators, delayers, or non-vaccinators. The model exhibits multiple equilibria and a broad range of possible dynamics. For certain parameter regimes, the proportion of timely vaccinators and delayers oscillate in an anti-phase fashion in response to oscillations in infection prevalence. Under an exogenous change to the perceived risk of vaccination as might occur during a vaccine scare, the model can also capture an increase in delayer strategists similar in magnitude to that observed during the Measles-Mumps-Rubella vaccine scare in the United Kingdom. Our model also shows that number of delayers steadily increases with increasing severity of the scare, whereas it saturates to specific value with increases in duration of the scare. Finally, by comparing the model dynamics with and without the option of a delayer strategy, we show that adding a third delayer strategy can have a stabilizing effect on model dynamics. In an era where individual choice--rather than accessibility--is becoming an increasingly important determinant of vaccine uptake, more infectious disease models may need to use game theory or related techniques to determine vaccine uptake. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Increasing Coverage of Appropriate Vaccinations

    PubMed Central

    Jacob, Verughese; Chattopadhyay, Sajal K.; Hopkins, David P.; Morgan, Jennifer Murphy; Pitan, Adesola A.; Clymer, John

    2016-01-01

    Context Population-level coverage for immunization against many vaccine-preventable diseases remains below optimal rates in the U.S. The Community Preventive Services Task Force recently recommended several interventions to increase vaccination coverage based on systematic reviews of the evaluation literature. The present study provides the economic results from those reviews. Evidence acquisition A systematic review was conducted (search period, January 1980 through February 2012) to identify economic evaluations of 12 interventions recommended by the Task Force. Evidence was drawn from included studies; estimates were constructed for the population reach of each strategy, cost of implementation, and cost per additional vaccinated person because of the intervention. Analyses were conducted in 2014. Evidence synthesis Reminder systems, whether for clients or providers, were among the lowest-cost strategies to implement and the most cost effective in terms of additional people vaccinated. Strategies involving home visits and combination strategies in community settings were both costly and less cost effective. Strategies based in settings such as schools and managed care organizations that reached the target population achieved additional vaccinations in the middle range of cost effectiveness. Conclusions The interventions recommended by the Task Force differed in reach, cost, and cost effectiveness. This systematic review presents the economic information for 12 effective strategies to increase vaccination coverage that can guide implementers in their choice of interventions to fit their local needs, available resources, and budget. PMID:26847663

  5. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  6. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives.

    PubMed

    Sala, Francesco; Manuela Rigano, M; Barbante, Alessandra; Basso, Barbara; Walmsley, Amanda M; Castiglione, Stefano

    2003-01-30

    Stable integration of a gene into the plant nuclear or chloroplast genome can transform higher plants (e.g. tobacco, potato, tomato, banana) into bioreactors for the production of subunit vaccines for oral or parental administration. This can also be achieved by using recombinant plant viruses as transient expression vectors in infected plants. The use of plant-derived vaccines may overcome some of the major problems encountered with traditional vaccination against infectious diseases, autoimmune diseases and tumours. They also offer a convenient tool against the threat of bio-terrorism. State of the art, experimental strategies, safety and perspectives are discussed in this article.

  7. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities.

    PubMed

    Roohvand, Farzin; Kossari, Niloufar

    2012-04-01

    Developing a vaccine against HCV is an important medical and global priority. Unavailability and potential dangers associated with using attenuated HCV viral particles for vaccine preparation have resulted in the use of HCV genes and proteins formulated in novel vaccine modalities. In part one of this review, advances in basic knowledge for HCV vaccine design were provided. Herein, a detailed and correlated patents (searched by Espacenet) and literatures (searched by Pubmed) review on HCV vaccine formulations and modalities is provided, including: subunit, DNA, epitopic-peptide/polytopic, live vector- and whole yeast-based vaccines. Less-touched areas in vaccine studies such as mucosal, plant-based, and chimeric HBV/HCV vaccines are also discussed. Furthermore, results of preclinical/clinical studies on selected HCV vaccines as well as pros and cons of different strategies are reviewed. Finally, potential strategies for creation and/or improvement of HCV vaccine formulations are discussed. Promising outcomes of a few HCV vaccine modalities in phase I/II clinical trials predict the accessibility of at least partially effective vaccines to inhibit or treat the chronic state of HCV infection (specially in combination with standard antiviral therapy). ChronVac-C (plasmid DNA), TG4040 (MVA-based), and GI-5005 (whole yeast-based) might be the most obvious HCV vaccine candidates to be approved in the near future.

  8. Comparison of depopulation and S19-RB51 vaccination strategies for control of bovine brucellosis in high prevalence areas.

    PubMed

    Saez, J L; Sanz, C; Durán, M; García, P; Fernandez, F; Minguez, O; Carbajo, L; Mardones, F; Perez, A; Gonzalez, S; Dominguez, L; Alvarez, J

    2014-06-21

    RB51 vaccination can minimise the diagnostic problems associated with S19 vaccination of adult cattle, but its use for bovine brucellosis (BB) control remains controversial. Here, the evolution of BB prevalence in five high prevalence areas in Spain subjected to different control measures is described: herd depopulation of infected herds (I-III) or mass vaccination with RB51 and S19-RB51 vaccination of replacement heifers (IV-V). Annual data from the eradication campaigns were analysed at the special incidence area (SIA) level and the time to obtain herd prevalence levels of <1 per cent ('controlled status') was obtained at the local veterinary unit (LVU) level and compared using Cox's proportional hazard model. A higher annual rate of decrease in herd prevalence was observed in the SIAs subjected to vaccination (46.9%, 95% CI 43.5% to 50.0%) compared with those managed using stamping out (14.9%, 95% CI 9.6% to 19.9%). No significant differences in the time to achieve controlled status were observed between the stamping-out and vaccination strategies used at the LVU level, with median times of 60 (stamping-out LVUs) and 63 (vaccination LVUs) months. These results suggest that RB51 mass vaccination, in combination with the S19-RB51 vaccination of replacement heifers and strict implementation of other eradication measures, may provide results at least comparable with those resulting from a herd depopulation based strategy. British Veterinary Association.

  9. Storytelling in the context of vaccine refusal: a strategy to improve communication and immunisation.

    PubMed

    Cawkwell, Philip B; Oshinsky, David

    2016-03-01

    The December 2014 outbreak of measles in California impacted over 100 children and served as a reminder that this disease still plagues the USA, even 50 years following the first licensed vaccine. Refusal of vaccination is a complicated and multifaceted issue, one that clearly demands a closer look by paediatricians and public health officials alike. While medical doctors and scientists are trained to practice 'evidence-based medicine', and studies of vaccine safety and efficacy speak the language of statistics, there is reason to believe that this is not the most effective strategy for communicating with all groups of parents. Herein, we consider other methods such as narrative practices that employ stories and appeal more directly to parents. We also examine how doctors are trained to disseminate information and whether there are reasonable supplementary methods that could be used to improve vaccine communication and ultimately immunisation rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Nanoparticle based tailoring of adjuvant function: the role in vaccine development.

    PubMed

    Prashant, Chandravilas Keshvan; Kumar, Manoj; Dinda, Amit Kumar

    2014-09-01

    Vaccination is one of the most powerful therapeutic tools for prevention and management of various infective and non-infective diseases including malignancy. Mass vaccination is a great strategy for eradicating major infectious diseases throughout the world like small pox. Application of nanotechnology for antigen delivery is a unique area of research and development which can change the vaccination strategy and policy in future. Nanocarriers can enhance antigen presentation including modulation of antigen processing pathways according to the specific need. The current review explores the pros and cons of application of different nanomaterials for antigen presentation and vaccine development.

  11. Emergency response vaccines--a challenge for the public sector and the vaccine industry.

    PubMed

    Milstien, Julie; Lambert, Scott

    2002-11-22

    In partnership with industry, WHO has developed a number of strategies to facilitate access to vaccines recommended for use in national immunization programs. These strategies have been necessitated by the increasing fragility of vaccine supply for developing markets. The potential global spread of epidemic disease has made it imperative to expand these efforts. A new concept is proposed, that of essential vaccines, defined as "vaccines of public health importance that should be accessible to all people at risk". Essential vaccines will include emergency response vaccines that have become important due to resurgent outbreaks, threatening global pandemics, and situations where a global emergency immunization response may be needed. While some of the approaches already developed will be applicable to emergency response vaccines, other novel approaches requiring public sector intervention will be necessary. Procurement, financing and allocation of these emergency response vaccines, if left to governments or private individuals based on ability to pay, will threaten equitable access. The challenge will be to ensure development of and equitable access to these vaccines while not threatening the already fragile supply of other essential vaccines.

  12. Exosomes Enter Vaccine Development: Strategies Meeting Global Challenges of Emerging Infections.

    PubMed

    Jungbauer, Alois

    2018-04-01

    New approaches for vaccination must be developed in order to meet the grand challenges for emerging infectious diseases. Exosomes now enter vaccine development and these are strategies are meeting these global challenges, as demonstrated by Anticoli et al., in this issue of Biotechnology Journal. Using exosome vaccines has been now been demonstrated in vivo for several viruses such as Ebola Virus VP24, VP40, and NP, Influenza Virus NP, Crimean-Congo Hemorrhagic Fever NP, West Nile Virus NS3, and Hepatitis C Virus NS3. Now this technology must be tested in clinics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pharmacy management of vaccines.

    PubMed

    Cannon, H Eric

    2007-09-01

    Although standard vaccines have traditionally been granted full coverage in managed care, the recent introduction of several novel vaccine products has necessitated the revision of pharmacy management strategies throughout the nation. To review pharmacy management strategies for a number of emerging vaccines, with unique plan perspectives from SelectHealth, an Intermountain Healthcare company serving approximately 500,000 members in Utah. Because several recently introduced vaccines target previously unaddressed diseases and carry higher costs than traditional vaccines, several plans have adapted a novel approach to manage vaccine coverage on an individual product basis. At SelectHealth, recently introduced vaccines for rotavirus, respiratory syncytial virus (RSV), herpes zoster, and human papillomavirus (HPV) have required special attention in terms of pharmacy management. After carefully weighing acquisition and administration costs, anticipated uptake and use, direct and indirect health care costs averted, and quality of life issues, plan leadership decided to cover many of the new vaccines (i.e., rotavirus, RSV, and herpes zoster) under a nonstandard vaccination benefit. However, because substantial cost savings and high use of the quadrivalent HPV vaccine was anticipated within SelectHealth, the plan decided to fully cover the product. Although they complicate traditional pharmacy management, novel vaccines provide clinical benefit that managed care organizations cannot ignore. One universal strategy will not suffice in managing all the different vaccines entering the market, and a tailored approach should be employed based on the individual characteristics and use of each product.

  14. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    PubMed Central

    Sridhar, Saranya; Brokstad, Karl A.; Cox, Rebecca J.

    2015-01-01

    Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection. PMID:26343192

  15. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    PubMed

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  16. Persistent parasites and immunologic memory in cutaneous leishmaniasis: implications for vaccine designs and vaccination strategies.

    PubMed

    Okwor, Ifeoma; Uzonna, Jude

    2008-01-01

    Despite a plethora of publications on the murine model of cutaneous leishmaniasis and their contribution to our understanding of the factors that regulate the development of CD4+ T cell immunity in vivo, there is still no effective vaccine against the human disease. While recovery from natural or experimental infection with Leishmania major, the causative agent of human cutaneous leishmaniasis, results in persistence of parasites at the primary infection site and the development of long-lasting immunity to reinfection, vaccination with killed parasites or recombinant proteins induces only short-term protection. The reasons for the difference in protective immunity following recovery from live infection and vaccination with heat-killed parasites are not known. This may in part be related to persistence of live parasites following healing of primary cutaneous lesions, because complete clearance of parasites leads to rapid loss of infection-induced immunity. Recent reports indicate that in addition to persistent parasites, IL-10-producing natural regulatory T cells may also play critical roles in the maintenance and loss of infection-induced immunity. This review focuses on current understanding of the factors that regulate the development, maintenance and loss of anti-Leishmania memory responses and highlights the role of persistent parasites and regulatory T cells in this process. Understanding these factors is crucial for designing effective vaccines and vaccination strategies against cutaneous leishmaniasis.

  17. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5

  18. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV.

    PubMed

    de Goede, A L; Vulto, A G; Osterhaus, A D M E; Gruters, R A

    2015-05-01

    HIV infection leads to a gradual loss CD4(+) T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive lifelong adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore, there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies. Copyright © 2014. Published by Elsevier Masson SAS.

  19. Economic Evaluation of Screening Strategies Combined with HPV Vaccination of Preadolescent Girls for the Prevention of Cervical Cancer in Vientiane, Lao PDR

    PubMed Central

    2016-01-01

    Background Several approaches to reduce the incidence of invasive cervical cancers exist. The approach adopted should take into account contextual factors that influence the cost-effectiveness of the available options. Objective To determine the cost-effectiveness of screening strategies combined with a vaccination program for 10-year old girls for cervical cancer prevention in Vientiane, Lao PDR. Methods A population-based dynamic compartment model was constructed. The interventions consisted of a 10-year old girl vaccination program only, or this program combined with screening strategies, i.e., visual inspection with acetic acid (VIA), cytology-based screening, rapid human papillomavirus (HPV) DNA testing, or combined VIA and cytology testing. Simulations were run over 100 years. In base-case scenario analyses, we assumed a 70% vaccination coverage with lifelong protection and a 50% screening coverage. The outcome of interest was the incremental cost per Disability-Adjusted Life Year (DALY) averted. Results In base-case scenarios, compared to the next best strategy, the model predicted that VIA screening of women aged 30–65 years old every three years, combined with vaccination, was the most attractive option, costing 2 544 international dollars (I$) per DALY averted. Meanwhile, rapid HPV DNA testing was predicted to be more attractive than cytology-based screening or its combination with VIA. Among cytology-based screening options, combined VIA with conventional cytology testing was predicted to be the most attractive option. Multi-way sensitivity analyses did not change the results. Compared to rapid HPV DNA testing, VIA had a probability of cost-effectiveness of 73%. Compared to the vaccination only option, the probability that a program consisting of screening women every five years would be cost-effective was around 60% and 80% if the willingness-to-pay threshold is fixed at one and three GDP per capita, respectively. Conclusions A VIA screening program

  20. Strategies toward vaccines against Burkholderia mallei and Burkholderia pseudomallei.

    PubMed

    Bondi, Sara K; Goldberg, Joanna B

    2008-11-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative, rod-shaped bacteria, and are the causative agents of the diseases glanders and melioidosis, respectively. These bacteria have been recognized as important pathogens for over 100 years, yet a relative dearth of available information exists regarding their virulence determinants and immunopathology. Infection with either of these bacteria presents with nonspecific symptoms and can be either acute or chronic, impeding rapid diagnosis. The lack of a vaccine for either bacterium also makes them potential candidates for bioweaponization. Together with their high rate of infectivity via aerosols and resistance to many common antibiotics, both bacteria have been classified as category B priority pathogens by the US NIH and US CDC, which has spurred a dramatic increase in interest in these microorganisms. Attempts have been made to develop vaccines for these infections, which would not only benefit military personnel, a group most likely to be targeted in an intentional release, but also individuals who may come in contact with glanders-infected animals or live in areas where melioidosis is endemic. This review highlights some recent attempts of vaccine development for these infections and the strategies used to improve the efficacy of vaccine approaches.

  1. Human papillomavirus vaccine delivery strategies that achieved high coverage in low- and middle-income countries.

    PubMed

    LaMontagne, D Scott; Barge, Sandhya; Le, Nga Thi; Mugisha, Emmanuel; Penny, Mary E; Gandhi, Sanjay; Janmohamed, Amynah; Kumakech, Edward; Mosqueira, N Rocio; Nguyen, Nghi Quy; Paul, Proma; Tang, Yuxiao; Minh, Tran Hung; Uttekar, Bella Patel; Jumaan, Aisha O

    2011-11-01

    To assess human papillomavirus (HPV) vaccination coverage after demonstration projects conducted in India, Peru, Uganda and Viet Nam by PATH and national governments and to explore the reasons for vaccine acceptance or refusal. Vaccines were delivered through schools or health centres or in combination with other health interventions, and either monthly or through campaigns at fixed time points. Using a two-stage cluster sample design, the authors selected households in demonstration project areas and interviewed over 7000 parents or guardians of adolescent girls to assess coverage and acceptability. They defined full vaccination as the receipt of all three vaccine doses and used an open-ended question to explore acceptability. Vaccination coverage in school-based programmes was 82.6% (95% confidence interval, CI: 79.3-85.6) in Peru, 88.9% (95% CI: 84.7-92.4) in 2009 in Uganda and 96.1% (95% CI: 93.0-97.8) in 2009 in Viet Nam. In India, a campaign approach achieved 77.2% (95% CI: 72.4-81.6) to 87.8% (95% CI: 84.3-91.3) coverage, whereas monthly delivery achieved 68.4% (95% CI: 63.4-73.4) to 83.3% (95% CI: 79.3-87.3) coverage. More than two thirds of respondents gave as reasons for accepting the HPV vaccine that: (i) it protects against cervical cancer; (ii) it prevents disease, or (iii) vaccines are good. Refusal was more often driven by programmatic considerations (e.g. school absenteeism) than by opposition to the vaccine. High coverage with HPV vaccine among young adolescent girls was achieved through various delivery strategies in the developing countries studied. Reinforcing positive motivators for vaccine acceptance is likely to facilitate uptake.

  2. Vector-based genetically modified vaccines: Exploiting Jenner's legacy.

    PubMed

    Ramezanpour, Bahar; Haan, Ingrid; Osterhaus, Ab; Claassen, Eric

    2016-12-07

    The global vaccine market is diverse while facing a plethora of novel developments. Genetic modification (GM) techniques facilitate the design of 'smarter' vaccines. For many of the major infectious diseases of humans, like AIDS and malaria, but also for most human neoplastic disorders, still no vaccines are available. It may be speculated that novel GM technologies will significantly contribute to their development. While a promising number of studies is conducted on GM vaccines and GM vaccine technologies, the contribution of GM technology to newly introduced vaccines on the market is disappointingly limited. In this study, the field of vector-based GM vaccines is explored. Data on currently available, actually applied, and newly developed vectors is retrieved from various sources, synthesised and analysed, in order to provide an overview on the use of vector-based technology in the field of GM vaccine development. While still there are only two vector-based vaccines on the human vaccine market, there is ample activity in the fields of patenting, preclinical research, and different stages of clinical research. Results of this study revealed that vector-based vaccines comprise a significant part of all GM vaccines in the pipeline. This study further highlights that poxviruses and adenoviruses are among the most prominent vectors in GM vaccine development. After the approval of the first vectored human vaccine, based on a flavivirus vector, vaccine vector technology, especially based on poxviruses and adenoviruses, holds great promise for future vaccine development. It may lead to cheaper methods for the production of safe vaccines against diseases for which no or less perfect vaccines exist today, thus catering for an unmet medical need. After the introduction of Jenner's vaccinia virus as the first vaccine more than two centuries ago, which eventually led to the recent eradication of smallpox, this and other viruses may now be the basis for constructing vectors

  3. New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy.

    PubMed

    Schulze, Kai; Ebensen, Thomas; Riese, Peggy; Prochnow, Blair; Lehr, Claus-Michael; Guzmán, Carlos A

    2016-01-01

    The young twenty-first century has already brought several medical advances, such as a functional artificial human liver created from stem cells, improved antiviral (e.g., against HIV) and cancer (e.g., against breast cancer) therapies, interventions controlling cardiovascular diseases, and development of new and optimized vaccines (e.g., HPV vaccine). However, despite this substantial progress and the achievements of the last century, humans still suffer considerably from diseases, especially from infectious diseases. Thus, almost one-fourth of all deaths worldwide are caused directly or indirectly by infectious agents. Although vaccination has led to the control of many diseases, including smallpox, diphtheria, and tetanus, emerging diseases are still not completely contained. Furthermore, pathogens such as Bordetella pertussis undergo alterations making adaptation of the respective vaccine necessary. Moreover, insufficient implementation of vaccination campaigns leads to re-emergence of diseases which were believed to be already under control (e.g., poliomyelitis). Therefore, novel vaccination strategies need to be developed in order to meet the current challenges including lack of compliance, safety issues, and logistic constraints. In this context, mucosal and transdermal approaches constitute promising noninvasive vaccination strategies able to match these demands.

  4. Live attenuated pre-erythrocytic malaria vaccines.

    PubMed

    Keitany, Gladys J; Vignali, Marissa; Wang, Ruobing

    2014-01-01

    Although recent control measures have significantly reduced malaria cases and deaths in many endemic areas, an effective vaccine will be essential to eradicate this parasitic disease. Malaria vaccine strategies developed to date focus on different phases of the parasite's complex life cycle in the human host and mosquito vector, and include both subunit-based and whole-parasite vaccines. This review focuses on the 3 live-attenuated malaria vaccination strategies that have been tested in humans to date, and discusses their progress, challenges and the immune correlates of protection that have been identified.

  5. Vaccination Against Tuberculosis With Whole-Cell Mycobacterial Vaccines.

    PubMed

    Scriba, Thomas J; Kaufmann, Stefan H E; Henri Lambert, Paul; Sanicas, Melvin; Martin, Carlos; Neyrolles, Olivier

    2016-09-01

    Live attenuated and killed whole-cell vaccines (WCVs) offer promising vaccination strategies against tuberculosis. A number of WCV candidates, based on recombinant bacillus Calmette-Guerin (BCG), attenuated Mycobacterium tuberculosis, or related mycobacterial species are in various stages of preclinical or clinical development. In this review, we discuss the vaccine candidates and key factors shaping the development pathway for live and killed WCVs and provide an update on progress. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Cost-effectiveness analyses of hepatitis A vaccine: a systematic review to explore the effect of methodological quality on the economic attractiveness of vaccination strategies.

    PubMed

    Anonychuk, Andrea M; Tricco, Andrea C; Bauch, Chris T; Pham, Ba'; Gilca, Vladimir; Duval, Bernard; John-Baptiste, Ava; Woo, Gloria; Krahn, Murray

    2008-01-01

    Hepatitis A vaccines have been available for more than a decade. Because the burden of hepatitis A virus has fallen in developed countries, the appropriate role of vaccination programmes, especially universal vaccination strategies, remains unclear. Cost-effectiveness analysis is a useful method of relating the costs of vaccination to its benefits, and may inform policy. This article systematically reviews the evidence on the cost effectiveness of hepatitis A vaccination in varying populations, and explores the effects of methodological quality and key modelling issues on the cost-effectiveness ratios.Cost-effectiveness/cost-utility studies of hepatitis A vaccine were identified via a series of literature searches (MEDLINE, EMBASE, HSTAR and SSCI). Citations and full-text articles were reviewed independently by two reviewers. Reference searching, author searches and expert consultation ensured literature saturation. Incremental cost-effectiveness ratios (ICERs) were abstracted for base-case analyses, converted to $US, year 2005 values, and categorised to reflect various levels of cost effectiveness. Quality of reporting, methodological issues and key modelling issues were assessed using frameworks published in the literature.Thirty-one cost-effectiveness studies (including 12 cost-utility analyses) were included from full-text article review (n = 58) and citation screening (n = 570). These studies evaluated universal mass vaccination (n = 14), targeted vaccination (n = 17) and vaccination of susceptibles (i.e. individuals initially screened for antibody and, if susceptible, vaccinated) [n = 13]. For universal vaccination, 50% of the ICERs were <$US20 000 per QALY or life-year gained. Analyses evaluating vaccination in children, particularly in high incidence areas, produced the most attractive ICERs. For targeted vaccination, cost effectiveness was highly dependent on the risk of infection.Incidence, vaccine cost and discount rate were the most influential

  7. [From new vaccine to new target: revisiting influenza vaccination].

    PubMed

    Gérard, M

    2011-09-01

    Annual vaccination is since many years the corner stone of Influenza control strategy. Because conventional vaccine are needle-based, are less immunogenic in old people and induce only systemic IgG production, intranasal and intradermal vaccines that are recently or will be soon available in Belgium will offer distinct advantages. Intradermal vaccination is on the Belgian market since 2010. A stronger immune response that allows an antigen sparing strategy is elicited because antigens are delivered near the dermal dendritic cells. Local side effects are more pronounced than after intramuscular injection. The needle-free intranasal vaccine that has been approved for use in people less than 18 years old by the EMEA in October 2010 induces also a mucosal IgA response. Improved clinical results than with intramuscular vaccine has been documented in several studies in children. Several conditions are contraindication to nasal vaccination because of patterns of side effects and because the vaccine is an live-attenuated vaccine. Pregnant women has become a top priority for Influenza vaccination in the recommendations of the High Council of Health in Belgium since the 2009 H1N1 pandemic. Several studies has since then documented the increased risk for Influenza-related morbidity in pregnant women especially during the third trimester and independently of the presence of other comorbidities. Reduced incidence of documented Influenza and of Influenza-related hospitalizations are observed in the new born of vaccinated women until 6 months of age. Availability of new vaccines for Influenza and better knowledge of the benefit of vaccination in target populations are important tools to optimize vaccine coverage of the population.

  8. Ontology-Based Vaccine Adverse Event Representation and Analysis.

    PubMed

    Xie, Jiangan; He, Yongqun

    2017-01-01

    Vaccine is the one of the greatest inventions of modern medicine that has contributed most to the relief of human misery and the exciting increase in life expectancy. In 1796, an English country physician, Edward Jenner, discovered that inoculating mankind with cowpox can protect them from smallpox (Riedel S, Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University. Medical Center) 18(1):21, 2005). Based on the vaccination worldwide, we finally succeeded in the eradication of smallpox in 1977 (Henderson, Vaccine 29:D7-D9, 2011). Other disabling and lethal diseases, like poliomyelitis and measles, are targeted for eradication (Bonanni, Vaccine 17:S120-S125, 1999).Although vaccine development and administration are tremendously successful and cost-effective practices to human health, no vaccine is 100% safe for everyone because each person reacts to vaccinations differently given different genetic background and health conditions. Although all licensed vaccines are generally safe for the majority of people, vaccinees may still suffer adverse events (AEs) in reaction to various vaccines, some of which can be serious or even fatal (Haber et al., Drug Saf 32(4):309-323, 2009). Hence, the double-edged sword of vaccination remains a concern.To support integrative AE data collection and analysis, it is critical to adopt an AE normalization strategy. In the past decades, different controlled terminologies, including the Medical Dictionary for Regulatory Activities (MedDRA) (Brown EG, Wood L, Wood S, et al., Drug Saf 20(2):109-117, 1999), the Common Terminology Criteria for Adverse Events (CTCAE) (NCI, The Common Terminology Criteria for Adverse Events (CTCAE). Available from: http://evs.nci.nih.gov/ftp1/CTCAE/About.html . Access on 7 Oct 2015), and the World Health Organization (WHO) Adverse Reactions Terminology (WHO-ART) (WHO, The WHO Adverse Reaction Terminology - WHO-ART. Available from: https://www.umc-products.com/graphics/28010.pdf

  9. Evolving T-cell vaccine strategies for HIV, the virus with a thousand faces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette

    HIV's rapid global spread and the human suffering it has left in its wake have made AIDS a global heath priority for the 25 years since its discovery. Yet its capacity to rapidly evolve has made combating this virus a tremendous challenge. The obstacles to creating an effective HIV vaccine are formidable, but there are advances in the field on many fronts, in terms of novel vectors, adjuvants, and antigen design strategies. SIV live attenuated vaccine models are able to confer protection against heterologous challenge, and this continues to provide opportunities to explore the biological underpinnings of a protective effectmore » (9). More indirect, but equally important, is new understanding regarding the biology of acute infection (43), the role of immune response in long-term non-progression (6,62, 81), and defining characteristics of broadly neutralizing antibodies (4). In this review we will focus on summarizing strategies directed towards a single issue, that of contending with HIV variation in terms of designing aT-cell vaccine. The strategies that prove most effective in this area can ultimately be combined with the best strategies under development in other areas, with the hope of ultimately converging on a viable vaccine candidate. Only two large HIV vaccine efficacy trials have been completed and both have failed to prevent infection or confer a benefit to infected individual (23,34), but there is ample reason to continue our efforts. A historic breakthrough came in 1996, when it was realized that although the virus could escape from a single antiretroviral (ARV) therapy, it could be thwarted by a combination of medications that simultaneously targeted different parts of the virus (HAART) (38). This revelation came after 15 years of research, thought, and clinical testing; to enable that vital progress the research and clinical communities had to first define and understand, then develop a strategy to counter, the remarkable evolutionary potential of

  10. Fowl adenovirus serotype 4: Epidemiology, pathogenesis, diagnostic detection, and vaccine strategies.

    PubMed

    Li, P H; Zheng, P P; Zhang, T F; Wen, G Y; Shao, H B; Luo, Q P

    2017-08-01

    Fowl adenovirus (FAdV) serotype-4 is highly pathogenic for chickens, especially for broilers aged 3 to 5 wk, and it has emerged as one of the foremost causes of economic losses to the poultry industry in the last 30 years. The liver is a major target organ of FAdV-4 infections, and virus-infected chickens usually show symptoms of hydropericardium syndrome. The virus is very contagious, and it is spread both vertically and horizontally. It can be isolated from infected liver homogenates and detected by several laboratory diagnostic methods (including an agar gel immunodiffusion test, indirect immunofluorescence assays, counterimmunoelectrophoresis, enzyme-linked immunosorbent assays, restriction endonuclease analyses, polymerase chain reaction (PCR), real-time PCR, and high-resolution melting-curve analyses). Although inactivated vaccines have been deployed widely to control the disease, attenuated live vaccines and subunit vaccines also have been developed, and they are more attractive vaccine candidates. This article provides a comprehensive review of FAdV-4, including its epidemiology, pathogenesis, diagnostic detection, and vaccine strategies. © 2017 Poultry Science Association Inc.

  11. Human papillomavirus vaccine delivery strategies that achieved high coverage in low- and middle-income countries

    PubMed Central

    Barge, Sandhya; Le, Nga Thi; Mugisha, Emmanuel; Penny, Mary E; Gandhi, Sanjay; Janmohamed, Amynah; Kumakech, Edward; Mosqueira, N Rocio; Nguyen, Nghi Quy; Paul, Proma; Tang, Yuxiao; Minh, Tran Hung; Uttekar, Bella Patel; Jumaan, Aisha O

    2011-01-01

    Abstract Objective To assess human papillomavirus (HPV) vaccination coverage after demonstration projects conducted in India, Peru, Uganda and Viet Nam by PATH and national governments and to explore the reasons for vaccine acceptance or refusal. Methods Vaccines were delivered through schools or health centres or in combination with other health interventions, and either monthly or through campaigns at fixed time points. Using a two-stage cluster sample design, the authors selected households in demonstration project areas and interviewed over 7000 parents or guardians of adolescent girls to assess coverage and acceptability. They defined full vaccination as the receipt of all three vaccine doses and used an open-ended question to explore acceptability. Findings Vaccination coverage in school-based programmes was 82.6% (95% confidence interval, CI: 79.3–85.6) in Peru, 88.9% (95% CI: 84.7–92.4) in 2009 in Uganda and 96.1% (95% CI: 93.0–97.8) in 2009 in Viet Nam. In India, a campaign approach achieved 77.2% (95% CI: 72.4–81.6) to 87.8% (95% CI: 84.3–91.3) coverage, whereas monthly delivery achieved 68.4% (95% CI: 63.4–73.4) to 83.3% (95% CI: 79.3–87.3) coverage. More than two thirds of respondents gave as reasons for accepting the HPV vaccine that: (i) it protects against cervical cancer; (ii) it prevents disease, or (iii) vaccines are good. Refusal was more often driven by programmatic considerations (e.g. school absenteeism) than by opposition to the vaccine. Conclusion High coverage with HPV vaccine among young adolescent girls was achieved through various delivery strategies in the developing countries studied. Reinforcing positive motivators for vaccine acceptance is likely to facilitate uptake. PMID:22084528

  12. Informing rubella vaccination strategies in East Java, Indonesia through transmission modelling.

    PubMed

    Wu, Yue; Wood, James; Khandaker, Gulam; Waddington, Claire; Snelling, Thomas

    2016-11-04

    An estimated 110,000 babies are born with congenital rubella syndrome (CRS) worldwide annually; a significant proportion of cases occur in Southeast Asia. Rubella vaccine programs have led to successful control of rubella and CRS, and even the elimination of disease in many countries. However, if vaccination is poorly implemented it might increase the number of women reaching childbearing age who remain susceptible to rubella and thereby paradoxically increase CRS. We used an age-structured transmission model to compare seven alternative vaccine strategies for their impact on reducing CRS disease burden in East Java, a setting which is yet to implement a rubella vaccine program. We also investigated the robustness of model predictions to variation in vaccine coverage and other key epidemiological factors. Without rubella vaccination, approximately 700 babies are estimated to be born with CRS in East Java every year at an incidence of 0.77 per 1000live births. This incidence could be reduced to 0.0045 per 1000 live births associated with 99.9% annual reduction in rubella infections after 20 years if the existing two doses of measles vaccine are substituted with two doses of measles plus rubella combination vaccine with the same coverage (87.8% of 9-month-old infants and 80% of 6-year-old children). By comparison a single dose of rubella vaccine will take longer to reduce the burden of rubella and CRS and will be less robust to lower vaccine coverage. While the findings of this study should be informative for settings similar to East Java, the conclusions are dependent on vaccine coverage which would need consideration before applying to all of Indonesia and elsewhere in Asia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Strategies to advance vaccine technologies for resource-poor settings.

    PubMed

    Kristensen, Debra; Chen, Dexiang

    2013-04-18

    New vaccine platform and delivery technologies that can have significant positive impacts on the effectiveness, acceptability, and safety of immunizations in developing countries are increasingly available. Although donor support for vaccine technology development is strong, the uptake of proven technologies by the vaccine industry and demand for them by purchasers continues to lag. This article explains the challenges and opportunities associated with accelerating the availability of innovative and beneficial vaccine technologies to meet critical needs in resource-poor settings over the next decade. Progress will require increased dialog between the public and private sectors around vaccine product attributes; establishment of specifications for vaccines that mirror programmatic needs; stronger encouragement of vaccine developers to consider novel technologies early in the product development process; broader facilitation of research and access to technologies through the formation of centers of excellence; the basing of vaccine purchase decisions on immunization systems costs rather than price per dose alone; possible subsidization of early technology adoption costs for vaccine producers that take on the risks of new technologies of importance to the public sector; and the provision of data to purchasers, better enabling them to make informed decisions that take into account the value of specific product attributes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Strategies to implement maternal vaccination: A comparison between standing orders for midwife delivery, a hospital based maternal immunisation service and primary care.

    PubMed

    Krishnaswamy, Sushena; Wallace, Euan M; Buttery, Jim; Giles, Michelle L

    2018-03-20

    Maternal vaccination is a safe and effective strategy to reduce maternal and neonatal morbidity and mortality from pertussis and influenza. However, despite recommendations for maternal vaccination since 2010, uptake remains suboptimal. Barriers to uptake have been studied widely and include lack of integration of vaccination into routine pregnancy care and access to vaccination services. Standing orders for administration of vaccines without the need for a physician review or prescription have been demonstrated to improve uptake as part of multi-model interventions to increase antenatal influenza and post-partum pertussis vaccination. Monash Health is a university-affiliated, public healthcare network in Melbourne, Australia providing maternity services across three hospitals. In this study we compared three different immunisation models - an immunisation nurse-led immunisation service, standing orders for midwife-administered pertussis vaccination within pregnancy care clinics, and delivery by general practitioners in primary care. Uptake of maternal pertussis vaccine was measured as recorded in the state-wide perinatal data collection tool. Uptake improved significantly at all three hospitals over the study period with the most significant change (39% to 91%, p < .001) noted at the hospital where standing orders were introduced. Our study highlights the diversity of immunisation service models available in maternity care settings. We demonstrated significant improvement in uptake of maternal pertussis vaccination with introduction of midwife-administered vaccination but each maternity service should consider the model best suited to their needs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Strategies toward vaccines against Burkholderia mallei and Burkholderia pseudomallei

    PubMed Central

    Bondi, Sara K; Goldberg, Joanna B

    2009-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative, rod-shaped bacteria, and are the causative agents of the diseases glanders and melioidosis, respectively. These bacteria have been recognized as important pathogens for over 100 years, yet a relative dearth of available information exists regarding their virulence determinants and immunopathology. Infection with either of these bacteria presents with nonspecific symptoms and can be either acute or chronic, impeding rapid diagnosis. The lack of a vaccine for either bacterium also makes them potential candidates for bioweaponization. Together with their high rate of infectivity via aerosols and resistance to many common antibiotics, both bacteria have been classified as category B priority pathogens by the US NIH and US CDC, which has spurred a dramatic increase in interest in these microorganisms. Attempts have been made to develop vaccines for these infections, which would not only benefit military personnel, a group most likely to be targeted in an intentional release, but also individuals who may come in contact with glanders-infected animals or live in areas where melioidosis is endemic. This review highlights some recent attempts of vaccine development for these infections and the strategies used to improve the efficacy of vaccine approaches. PMID:18980539

  16. Dendritic cell-targeting DNA-based mucosal adjuvants for the development of mucosal vaccines

    PubMed Central

    Kataoka, Kosuke; Fujihashi, Kohtaro

    2009-01-01

    In order to establish effective mucosal immunity against various mucosal pathogens, vaccines must be delivered via the mucosal route and contain effective adjuvant(s). Since mucosal adjuvants can simply mix with the antigen, it is relatively easy to adapt them for different types of vaccine development. Even in simple admixture vaccines, the adjuvant itself must be prepared without any complications. Thus, CpG oligodeoxynucleotides or plasmids encoding certain cDNA(s) would be potent mucosal adjuvant candidates when compared with other substances that can be used as mucosal adjuvants. The strategy of a DNA-based mucosal adjuvant facilitates the targeting of mucosal dendritic cells, and thus is an effective and safe approach. It would also provide great flexibility for the development of effective vaccines for various mucosal pathogens. PMID:19722892

  17. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development.

    PubMed

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format.

  18. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    PubMed Central

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format. PMID:22505817

  19. DNA vaccines: roles against diseases

    PubMed Central

    Khan, Kishwar Hayat

    2013-01-01

    Vaccination is the most successful application of immunological principles to human health. Vaccine efficacy needs to be reviewed from time to time and its safety is an overriding consideration. DNA vaccines offer simple yet effective means of inducing broad-based immunity. These vaccines work by allowing the expression of the microbial antigen inside host cells that take up the plasmid. These vaccines function by generating the desired antigen inside the cells, with the advantage that this may facilitate presentation through the major histocompatibility complex. This review article is based on a literature survey and it describes the working and designing strategies of DNA vaccines. Advantages and disadvantages for this type of vaccines have also been explained, together with applications of DNA vaccines. DNA vaccines against cancer, tuberculosis, Edwardsiella tarda, HIV, anthrax, influenza, malaria, dengue, typhoid and other diseases were explored. PMID:24432284

  20. Does cost-effectiveness of influenza vaccine choice vary across the U.S.? An agent-based modeling study.

    PubMed

    DePasse, Jay V; Nowalk, Mary Patricia; Smith, Kenneth J; Raviotta, Jonathan M; Shim, Eunha; Zimmerman, Richard K; Brown, Shawn T

    2017-07-13

    In a prior agent-based modeling study, offering a choice of influenza vaccine type was shown to be cost-effective when the simulated population represented the large, Washington DC metropolitan area. This study calculated the public health impact and cost-effectiveness of the same four strategies: No Choice, Pediatric Choice, Adult Choice, or Choice for Both Age Groups in five United States (U.S.) counties selected to represent extremes in population age distribution. The choice offered was either inactivated influenza vaccine delivered intramuscularly with a needle (IIV-IM) or an age-appropriate needle-sparing vaccine, specifically, the nasal spray (LAIV) or intradermal (IIV-ID) delivery system. Using agent-based modeling, individuals were simulated as they interacted with others, and influenza was tracked as it spread through each population. Influenza vaccination coverage derived from Centers for Disease Control and Prevention (CDC) data, was increased by 6.5% (range 3.25%-11.25%) to reflect the effects of vaccine choice. Assuming moderate influenza infectivity, the number of averted cases was highest for the Choice for Both Age Groups in all five counties despite differing demographic profiles. In a cost-effectiveness analysis, Choice for Both Age Groups was the dominant strategy. Sensitivity analyses varying influenza infectivity, costs, and degrees of vaccine coverage increase due to choice, supported the base case findings. Offering a choice to receive a needle-sparing influenza vaccine has the potential to significantly reduce influenza disease burden and to be cost saving. Consistent findings across diverse populations confirmed these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Assessing the cost-effectiveness of different measles vaccination strategies for children in the Democratic Republic of Congo.

    PubMed

    Doshi, Reena H; Eckhoff, Philip; Cheng, Alvan; Hoff, Nicole A; Mukadi, Patrick; Shidi, Calixte; Gerber, Sue; Wemakoy, Emile Okitolonda; Muyembe-Tafum, Jean-Jacques; Kominski, Gerald F; Rimoin, Anne W

    2017-10-27

    One of the goals of the Global Measles and Rubella Strategic Plan is the reduction in global measles mortality, with high measles vaccination coverage as one of its core components. While measles mortality has been reduced more than 79%, the disease remains a major cause of childhood vaccine preventable disease burden globally. Measles immunization requires a two-dose schedule and only countries with strong, stable immunization programs can rely on routine services to deliver the second dose. In the Democratic Republic of Congo (DRC), weak health infrastructure and lack of provision of the second dose of measles vaccine necessitates the use of supplementary immunization activities (SIAs) to administer the second dose. We modeled three vaccination strategies using an age-structured SIR (Susceptible-Infectious-Recovered) model to simulate natural measles dynamics along with the effect of immunization. We compared the cost-effectiveness of two different strategies for the second dose of Measles Containing Vaccine (MCV) to one dose of MCV through routine immunization services over a 15-year time period for a hypothetical birth cohort of 3 million children. Compared to strategy 1 (MCV1 only), strategy 2 (MCV2 by SIA) would prevent a total of 5,808,750 measles cases, 156,836 measles-related deaths and save U.S. $199 million. Compared to strategy 1, strategy 3 (MCV2 by RI) would prevent a total of 13,232,250 measles cases, 166,475 measles-related deaths and save U.S. $408 million. Vaccination recommendations should be tailored to each country, offering a framework where countries can adapt to local epidemiological and economical circumstances in the context of other health priorities. Our results reflect the synergistic effect of two doses of MCV and demonstrate that the most cost-effective approach to measles vaccination in DRC is to incorporate the second dose of MCV in the RI schedule provided that high enough coverage can be achieved. Published by Elsevier Ltd.

  2. First nations people's perspectives on barriers and supports for enhancing HPV vaccination: Foundations for sustainable, community-driven strategies.

    PubMed

    Henderson, R I; Shea-Budgell, M; Healy, C; Letendre, A; Bill, L; Healy, B; Bednarczyk, R A; Mrklas, K; Barnabe, C; Guichon, J; Bedingfield, N; MacDonald, S; Colquhoun, A; Glaze, S; Nash, T; Bell, C; Kellner, J; Richardson, R; Dixon, T; Starlight, J; Runner, G; Nelson, G

    2018-04-01

    In Canada, Indigenous people have higher human papillomavirus (HPV) infection rates, lower screening rates for cervical cancer, and higher rates of invasive cancer, leading to worse cervical cancer-related outcomes than observed in non-Indigenous Canadian women. Lingering harms from European colonization drive these health inequities and create public health challenges. Policy guidance is needed to optimize HPV vaccination rates and, thereby, decrease the burden of HPV-related illness, including high-morbidity surgical procedures and chemo-radiotherapy. The Enhancing HPV Vaccination In First Nations Populations in Alberta (EHVINA) project focuses on First Nations, a diverse subset of recognized Indigenous people in Canada, and seeks to increase HPV vaccination among girls and boys living in First Nation communities. Developing an effective strategy requires partnership with affected communities to better understand knowledge and perceptions about cancer, healthcare, and the HPV vaccine. A 2017 community gathering was convened to engage First Nations community members, health directors, and health services researchers in dialogue around unique barriers and supports to HPV vaccination in Alberta. Voices of community Elders, parents, health directors, and cancer survivors (n=24) are presented as qualitative evidence to help inform intervention design. Key findings from discussions indicate barriers to HPV vaccination include resource constraints and service infrastructure gaps, historical mistrust in healthcare systems, impacts of changing modes of communication, and community sensitivities regarding sexual health promotion. Supports were identified as strengthened inter-generational relationships in communities. Ongoing dialogue and co-development of community-based strategies to increase HPV vaccine uptake are required. The identification of possible barriers to HPV vaccination in a Canadian Indigenous population contributes to limited global literature on this

  3. The personal touch: strategies toward personalized vaccines and predicting immune responses to them

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Lambert, Nathaniel D.; Haralambieva, Iana H.; Poland, Gregory A.

    2014-01-01

    The impact of vaccines on public health and well-being has been profound. Smallpox has been eradicated, polio is nearing eradication, and multiple diseases have been eliminated from certain areas of the world. Unfortunately, we now face diseases such as: hepatitis C, malaria, or tuberculosis, as well as new and re-emerging pathogens for which lack effective vaccines. Empirical approaches to vaccine development have been successful in the past, but may not be up to the current infectious disease challenges facing us. New, directed approaches to vaccine design, development, and testing need to be developed. Ideally these approaches will capitalize on cutting-edge technologies, advanced analytical and modeling strategies, and up-to-date knowledge of both pathogen and host. These approaches will pay particular attention to the causes of inter-individual variation in vaccine response in order to develop new vaccines tailored to the unique needs of individuals and communities within the population. PMID:24702429

  4. [Anti-influenza vaccination in animals].

    PubMed

    Bublot, M

    2009-01-01

    Until recently, Influenza was considered as a veterinary problem in avian, swine and horse only. New influenza strains able to infect and cause a disease in dogs and cats emerged these last six years. The most widely used influenza veterinary vaccines are the inactivated adjuvanted vaccines which are based on whole or split virus. New technologies have allowed the development of new generation vaccines including modified-live and vector vaccines. Modified-live influenza vaccines are available for horses only but they are in development in other species. Vector vaccines are already in use in chickens (replicative fowlpox vector) and in horses (non-replicative canarypox vector). These vaccines induce a rapid cellular and humoral immunity. Experimental studies have also shown that these vector vaccines are protective in other domestic species. These vector vaccines are compatible with the "DIVA" strategy which consists in differentiating infected from vaccinated animals and which allows disease eradication. The successive use of vector and inactivated vaccines (heterologous "prime-boost") induces a superior protective immunity in domestic poultry and constitutes a promising strategy for the control of H5N1 infection.

  5. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network.

    PubMed

    Hur, Junguk; Xiang, Zuoshuang; Feldman, Eva L; He, Yongqun

    2011-08-26

    Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were identified. The asserted

  6. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    PubMed Central

    2011-01-01

    Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were

  7. Developing an effective breast cancer vaccine.

    PubMed

    Soliman, Hatem

    2010-07-01

    Harnessing the immune response in treating breast cancer would potentially offer a less toxic, more targeted approach to eradicating residual disease. Breast cancer vaccines are being developed to effectively train cytotoxic T cells to recognize and kill transformed cells while sparing normal ones. However, achieving this goal has been problematic due to the ability of established cancers to suppress and evade the immune response. A review of the literature on vaccines and breast cancer treatment was conducted, specifically addressing strategies currently available, as well as appropriate settings, paradigms for vaccine development and response monitoring, and challenges with immunosuppression. Multiple issues need to be addressed in order to optimize the benefits offered by breast cancer vaccines. Primary issues include the following: (1) cancer vaccines will likely work better in a minimal residual disease state, (2) clinical trial design for immunotherapy should incorporate recommendations from expert groups such as the Cancer Vaccine Working Group and use standardized immune response measurements, (3) the presently available cancer vaccine approaches, including dendritic cell-based, tumor-associated antigen peptide-based, and whole cell-based, have various pros and cons, (4) to date, no one approach has been shown to be superior to another, and (5) vaccines will need to be combined with immunoregulatory agents to overcome tumor-related immunosuppression. Combining a properly optimized cancer vaccine with novel immunomodulating agents that overcome tumor-related immunosuppression in a well-designed clinical trial offers the best hope for developing an effective breast cancer vaccine strategy.

  8. Jabs and barbs: ways to address misleading vaccination and immunisation information using currently available strategies.

    PubMed

    Wardle, Jon; Stewart, Cameron; Parker, Malcolm

    2013-09-01

    Misleading vaccination information undermines confidence in vaccination and may lead to reductions in the effectiveness of vaccination programs. A number of regulatory techniques can be employed to challenge the spread of false information, including health care complaints, therapeutic goods laws, consumer protection laws and professional discipline. This article examines three case studies involving the publication of anti-vaccination information by non-professionally aligned organisations, by non-registered health professionals, and by registered health professionals under the National Law. The article examines the effectiveness of different regulatory responses and makes suggestions for future strategies to deal with the publication of demonstrably false information regarding vaccination.

  9. The European Regulatory Environment of RNA-Based Vaccines.

    PubMed

    Hinz, Thomas; Kallen, Kajo; Britten, Cedrik M; Flamion, Bruno; Granzer, Ulrich; Hoos, Axel; Huber, Christoph; Khleif, Samir; Kreiter, Sebastian; Rammensee, Hans-Georg; Sahin, Ugur; Singh-Jasuja, Harpreet; Türeci, Özlem; Kalinke, Ulrich

    2017-01-01

    A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.

  10. Zika virus-like particle (VLP) based vaccine

    PubMed Central

    Boigard, Hélène; Alimova, Alexandra; Martin, George R.; Katz, Al; Gottlieb, Paul

    2017-01-01

    The newly emerged mosquito-borne Zika virus poses a major public challenge due to its ability to cause significant birth defects and neurological disorders. The impact of sexual transmission is unclear but raises further concerns about virus dissemination. No specific treatment or vaccine is currently available, thus the development of a safe and effective vaccine is paramount. Here we describe a novel strategy to assemble Zika virus-like particles (VLPs) by co-expressing the structural (CprME) and non-structural (NS2B/NS3) proteins, and demonstrate their effectiveness as vaccines. VLPs are produced in a suspension culture of mammalian cells and self-assembled into particles closely resembling Zika viruses as shown by electron microscopy studies. We tested various VLP vaccines and compared them to analogous compositions of an inactivated Zika virus (In-ZIKV) used as a reference. VLP immunizations elicited high titers of antibodies, as did the In-ZIKV controls. However, in mice the VLP vaccine stimulated significantly higher virus neutralizing antibody titers than comparable formulations of the In-ZIKV vaccine. The serum neutralizing activity elicited by the VLP vaccine was enhanced using a higher VLP dose and with the addition of an adjuvant, reaching neutralizing titers greater than those detected in the serum of a patient who recovered from a Zika infection in Brazil in 2015. Discrepancies in neutralization levels between the VLP vaccine and the In-ZIKV suggest that chemical inactivation has deleterious effects on neutralizing epitopes within the E protein. This along with the inability of a VLP vaccine to cause infection makes it a preferable candidate for vaccine development. PMID:28481898

  11. Strategies to increase influenza vaccination rates: outcomes of a nationwide cross-sectional survey of UK general practice

    PubMed Central

    Teare, M Dawn; Dexter, Matthew; Siriwardena, A Niroshan; Read, Robert C

    2012-01-01

    Objective To identify practice strategies associated with higher flu vaccination rates in primary care. Design Logistic regression analysis of data from a cross-sectional online questionnaire. Setting 795 general practices across England. Participants 569 practice managers, 335 nursing staff and 107 general practitioners. Primary outcome measures Flu vaccination rates achieved by each practice in different groups of at-risk patients. Results 7 independent factors associated with higher vaccine uptake were identified. Having a lead staff member for planning the flu campaign and producing a written report of practice performance predicted an 8% higher vaccination rate for at-risk patients aged <65 years (OR 1.37, 95% CI 1.10 to 1.71). These strategies, plus sending a personal invitation to all eligible patients and only stopping vaccination when Quality and Outcomes Framework targets are reached, predicted a 7% higher vaccination rate (OR 1.45, 95% CI 1.10 to 1.92) in patients aged ≥65 years. Using a lead member of staff for identifying eligible patients, with either a modified manufacturer's or in-house search programme for interrogating the practice IT system, independently predicted a 4% higher vaccination rate in patients aged ≥65 years (OR 1.22, 95% CI 1.06 to 1.41/OR 1.20, 95% CI 1.03 to 1.40). The provision of flu vaccine by midwives was associated with a 4% higher vaccination rate in pregnant women (OR 1.19, 95% CI 1.02 to 1.40). Conclusions Clear leadership, effective communication about performance and methods used to identify and contact eligible patients were independently associated with significantly higher rates of flu vaccination. Financial targets appear to incentivise practices to work harder to maximise seasonal influenza vaccine uptake. The strategies identified here could help primary care providers to substantially increase their seasonal flu vaccination rates towards or even above the Chief Medical Officer's targets. PMID:22581793

  12. Coadministration of the Campylobacter jejuni N-Glycan-Based Vaccine with Probiotics Improves Vaccine Performance in Broiler Chickens

    PubMed Central

    Perez-Muñoz, M. E.; Gouveia, G. J.; Wanford, J. J.; Lango-Scholey, L.; Panagos, C. G.; Srithayakumar, V.; Plastow, G. S.; Coros, C.; Bayliss, C. D.; Edison, A. S.; Walter, J.

    2017-01-01

    ABSTRACT Source attribution studies report that the consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimization of the vaccine for commercial broiler chickens has great potential to prevent the entry of the pathogen into the food chain. Here, we tested the same vaccination approach in broiler chickens and observed similar efficacies in pathogen load reduction, stimulation of the host IgY response, the lack of C. jejuni resistance development, uniformity in microbial gut composition, and the bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of Clostridiales cluster XIVa, Anaerosporobacter mobilis, that was significantly more abundant in responder birds. In broiler chickens, coadministration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody responses, and weight gain. To investigate whether the responder-nonresponder effect was due to the selection of a C. jejuni “supercolonizer mutant” with altered phase-variable genes, we analyzed all poly(G)-containing loci of the input strain compared to nonresponder colony isolates and found no evidence of phase state selection. However, untargeted nuclear magnetic resonance (NMR)-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels that is possibly linked to increased microbial diversity in this subgroup. The comprehensive methods used to examine the bimodality of the vaccine response provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy. IMPORTANCE Campylobacter jejuni is a common

  13. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  14. Virus-Like Particle, Liposome, and Polymeric Particle-Based Vaccines against HIV-1

    PubMed Central

    Gao, Yong; Wijewardhana, Chanuka; Mann, Jamie F. S.

    2018-01-01

    It is acknowledged that vaccines remain the best hope for eliminating the HIV-1 epidemic. However, the failure to produce effective vaccine immunogens and the inability of conventional delivery strategies to elicit the desired immune responses remains a central theme and has ultimately led to a significant roadblock in HIV vaccine development. Consequently, significant efforts have been applied to generate novel vaccine antigens and delivery agents, which mimic viral structures for optimal immune induction. Here, we review the latest developments that have occurred in the nanoparticle vaccine field, with special emphasis on strategies that are being utilized to attain highly immunogenic, systemic, and mucosal anti-HIV humoral and cellular immune responses. This includes the design of novel immunogens, the central role of antigen-presenting cells, delivery routes, and biodistribution of nanoparticles to lymph nodes. In particular, we will focus on virus-like-particle formulations and their preclinical uses within the HIV prophylactic vaccine setting. PMID:29541072

  15. Comparison of self-report influenza vaccination coverage with data from a population based computerized vaccination registry and factors associated with discordance.

    PubMed

    Jiménez-García, Rodrigo; Hernandez-Barrera, Valentín; Rodríguez-Rieiro, Cristina; Carrasco Garrido, Pilar; López de Andres, Ana; Jimenez-Trujillo, Isabel; Esteban-Vasallo, María D; Domínguez-Berjón, Maria Felicitas; de Miguel-Diez, Javier; Astray-Mochales, Jenaro

    2014-07-31

    We aim to compare influenza vaccination coverages obtained using two different methods; a population based computerized vaccination registry and self-reported influenza vaccination status as captured by a population survey. The study was conducted in the Autonomous Community of Madrid (ACM), Spain, and refers to the 2011/12 influenza vaccination campaign. Information on influenza vaccination status according to a computerized registry was extracted from the SISPAL database and crossed with the electronic clinical records in primary care (ECRPC). Self-reported vaccine uptake was obtained from subjects living in the ACM included in the 2011-12 Spanish National Health Survey (SNHS). Independent study variables included: age, sex, immigrant status and the presence of high risk chronic conditions. Vaccination coverages were calculated according to study variables. Crude and adjusted prevalence ratios were computed to assess concordance. The study population included 5,245,238 adults living in the ACM in year 2011 with an individual ECRPC and 1449 adult living the ACM and interviewed in the SNHS from October 2011 to June 2012. The weighted vaccination coverage for the study population according to self-reported data was 19.77% and 15.04% from computerized registries resulting in a crude prevalence ratio (cPR) of 1.31 (95% CI 1.20-1.44) so self-reported data significantly overestimated 31% the registry coverage. Self-reported coverages are always higher than registry based coverages when the study population is stratified by the study variables. Self-reported overestimation was higher among men than women, younger age groups, immigrants and those without chronic conditions. Both methods provide the most concordant estimations for the target population of the influenza vaccine. Self-report influenza vaccination uptake overestimates vaccination registries coverages. The validity of self-report seems to be negatively affected by socio-demographic variables and the absence of

  16. HIV-1 vaccine strategies utilizing viral vectors including antigen- displayed inoviral vectors.

    PubMed

    Hassapis, Kyriakos A; Kostrikis, Leondios G

    2013-12-01

    Antigen-presenting viral vectors have been extensively used as vehicles for the presentation of antigens to the immune system in numerous vaccine strategies. Particularly in HIV vaccine development efforts, two main viral vectors have been used as antigen carriers: (a) live attenuated vectors and (b) virus-like particles (VLPs); the former, although highly effective in animal studies, cannot be clinically tested in humans due to safety concerns and the latter have failed to induce broadly neutralizing anti-HIV antibodies. For more than two decades, Inoviruses (non-lytic bacterial phages) have also been utilized as antigen carriers in several vaccine studies. Inoviral vectors are important antigen-carriers in vaccine development due to their ability to present an antigen on their outer architecture in many copies and to their natural high immunogenicity. Numerous fundamental studies have been conducted, which have established the unique properties of antigen-displayed inoviral vectors in HIV vaccine efforts. The recent isolation of new, potent anti-HIV broadly neutralizing monoclonal antibodies provides a new momentum in this emerging technology.

  17. Hepatitis B Screening and Vaccination Strategies for Newly Arrived Adult Canadian Immigrants and Refugees: A Cost-Effectiveness Analysis

    PubMed Central

    Rossi, Carmine; Schwartzman, Kevin; Oxlade, Olivia; Klein, Marina B.; Greenaway, Chris

    2013-01-01

    Background Immigrants have increased mortality from hepatocellular carcinoma as compared to the host populations, primarily due to undetected chronic hepatitis B virus (HBV) infection. Despite this, there are no systematic programs in most immigrant-receiving countries to screen for chronic HBV infection and immigrants are not routinely offered HBV vaccination outside of the universal childhood vaccination program. Methods and findings A cost-effective analysis was performed to compare four HBV screening and vaccination strategies with no intervention in a hypothetical cohort of newly-arriving adult Canadian immigrants. The strategies considered were a) universal vaccination, b) screening for prior immunity and vaccination, c) chronic HBV screening and treatment, and d) combined screening for chronic HBV and prior immunity, treatment and vaccination. The analysis was performed from a societal perspective, using a Markov model. Seroprevalence estimates, annual transition probabilities, health-care costs (in Canadian dollars), and utilities were obtained from the published literature. Acute HBV infection, mortality from chronic HBV, quality-adjusted life years (QALYs), and costs were modeled over the lifetime of the cohort of immigrants. Costs and QALYs were discounted at a rate of 3% per year. Screening for chronic HBV infection, and offering treatment if indicated, was found to be the most cost-effective intervention and was estimated to cost $40,880 per additional QALY gained, relative to no intervention. This strategy was most cost-effective for immigrants < 55 years of age and would cost < $50,000 per additional QALY gained for immigrants from areas where HBV seroprevalence is ≥ 3%. Strategies that included HBV vaccination were either prohibitively expensive or dominated by the chronic HBV screening strategy. Conclusions Screening for chronic HBV infection from regions where most Canadian immigrants originate, except for Latin America and the Middle East, was

  18. Hepatitis B screening and vaccination strategies for newly arrived adult Canadian immigrants and refugees: a cost-effectiveness analysis.

    PubMed

    Rossi, Carmine; Schwartzman, Kevin; Oxlade, Olivia; Klein, Marina B; Greenaway, Chris

    2013-01-01

    Immigrants have increased mortality from hepatocellular carcinoma as compared to the host populations, primarily due to undetected chronic hepatitis B virus (HBV) infection. Despite this, there are no systematic programs in most immigrant-receiving countries to screen for chronic HBV infection and immigrants are not routinely offered HBV vaccination outside of the universal childhood vaccination program. A cost-effective analysis was performed to compare four HBV screening and vaccination strategies with no intervention in a hypothetical cohort of newly-arriving adult Canadian immigrants. The strategies considered were a) universal vaccination, b) screening for prior immunity and vaccination, c) chronic HBV screening and treatment, and d) combined screening for chronic HBV and prior immunity, treatment and vaccination. The analysis was performed from a societal perspective, using a Markov model. Seroprevalence estimates, annual transition probabilities, health-care costs (in Canadian dollars), and utilities were obtained from the published literature. Acute HBV infection, mortality from chronic HBV, quality-adjusted life years (QALYs), and costs were modeled over the lifetime of the cohort of immigrants. Costs and QALYs were discounted at a rate of 3% per year. Screening for chronic HBV infection, and offering treatment if indicated, was found to be the most cost-effective intervention and was estimated to cost $40,880 per additional QALY gained, relative to no intervention. This strategy was most cost-effective for immigrants < 55 years of age and would cost < $50,000 per additional QALY gained for immigrants from areas where HBV seroprevalence is ≥ 3%. Strategies that included HBV vaccination were either prohibitively expensive or dominated by the chronic HBV screening strategy. Screening for chronic HBV infection from regions where most Canadian immigrants originate, except for Latin America and the Middle East, was found to be reasonably cost-effective and

  19. [Approaches and problems in vaccine development against leishmaniasis].

    PubMed

    Allahverdiyev, Adil; Bağirova, Melahat; Cakir Koç, Rabia; Oztel, Olga Nehir; Elçıçek, Serhat; Ateş, Sezen Canım; Karaca, Tuğçe Deniz

    2010-01-01

    Leishmaniasis is a major public health problem of the world and Turkey. Recently there has been increasing interest in vaccine studies among strategies for control of leishmaniasis. Recently the increase of interest in vaccine studies among leishmaniasis control strategies makes the subject more up to date. So the aim of this review is to present information about recent vaccine studies, problems and new strategies for vaccine development studies. There are 3 generations of vaccine against leishmaniasis. First-generation vaccines are killed or live attenuated parasites; second-generation vaccines are recombinant or native antigens and live genetically modified parasites (knock out and suicidal cassettes), third generation vaccines are DNA vaccines. Also vector salivary proteins, dendritic cells and non-pathogenic L. tarentolae have been used as vaccine candidates. However there is still no effective vaccine against leishmaniasis. Since polymer conjugates considerably increase immunogenicity, polymer based vaccine studies have gained importance in recent years. However, there has not been such a study for an antileishmanial vaccine yet. LPG, surface antigen of Leishmania promastigotes, and polymer conjugates may be promising in antileishmanial vaccine studies so we are carrying out a TUBITAK Project on this subject which has been given the number, 1085170SBAG-4007.

  20. Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques.

    PubMed

    Livingston, Brian D; Little, Stephen F; Luxembourg, Alain; Ellefsen, Barry; Hannaman, Drew

    2010-01-22

    DNA vaccination is a promising immunization strategy that could be applied in the development of vaccines for a variety of prophylactic and therapeutic indications. Utilizing anthrax protective antigen as a model antigen, we demonstrate that electroporation mediated delivery enhanced the immunogenicity of DNA vaccines in nonhuman primates over 100-fold as compared to conventional intramuscular injection. Two administrations of a DNA vaccine with electroporation elicited anthrax toxin neutralizing antibody responses in 100% of rhesus macaques. Toxin neutralizing antibodies were sustained for the nearly 1-year study duration and were correlated with protection against subsequent lethal Bacillus anthracis spore challenge. Collectively, electroporation mediated DNA vaccination conferred protection comparable to that observed following vaccination with an FDA approved anthrax vaccine.

  1. Adenovirus-based genetic vaccines for biodefense.

    PubMed

    Boyer, Julie L; Kobinger, Gary; Wilson, James M; Crystal, Ronald G

    2005-02-01

    The robust host responses elicited against transgenes encoded by (E1-)(E3-) adenovirus (Ad) gene transfer vectors can be used to develop Ad-based vectors as platform technologies for vaccines against potential bioterror pathogens. This review focuses on pathogens of major concern as bioterror agents and why Ad vectors are ideal as anti-bioterror vaccine platforms, providing examples from our laboratories of using Ad vectors as vaccines against potential bioterror pathogens and how Ad vectors can be developed to enhance vaccine efficacy in the bioterror war.

  2. Cost-effectiveness of alternate strategies for childhood immunization against meningococcal disease with monovalent and quadrivalent conjugate vaccines in Canada.

    PubMed

    Delea, Thomas E; Weycker, Derek; Atwood, Mark; Neame, Dion; Alvarez, Fabián P; Forget, Evelyn; Langley, Joanne M; Chit, Ayman

    2017-01-01

    Public health programs to prevent invasive meningococcal disease (IMD) with monovalent serogroup C meningococcal conjugate vaccine (MCV-C) and quadrivalent meningococcal conjugate vaccines (MCV-4) in infancy and adolescence vary across Canadian provinces. This study evaluated the cost-effectiveness of various vaccination strategies against IMD using current and anticipated future pricing and recent epidemiology. A cohort model was developed to estimate the clinical burden and costs (CAN$2014) of IMD in the Canadian population over a 100-year time horizon for three strategies: (1) MCV-C in infants and adolescents (MCV-C/C); (2) MCV-C in infants and MCV-4 in adolescents (MCV-C/4); and (3) MCV-4 in infants (2 doses) and adolescents (MCV-4/4). The source for IMD incidence was Canadian surveillance data. The effectiveness of MCV-C was based on published literature. The effectiveness of MCV-4 against all vaccination regimens was assumed to be the same as for MCV-C regimens against serogroup C. Herd effects were estimated by calibration to estimates reported in prior analyses. Costs were from published sources. Vaccines prices were projected to decline over time reflecting historical procurement trends. Over the modeling horizon there are a projected 11,438 IMD cases and 1,195 IMD deaths with MCV-C/C; expected total costs are $597.5 million. MCV-C/4 is projected to reduce cases of IMD by 1,826 (16%) and IMD deaths by 161 (13%). Vaccination costs are increased by $32 million but direct and indirect IMD costs are projected to be reduced by $46 million. MCV-C/4 is therefore dominant vs. MCV-C/C in the base case. Cost-effectiveness of MCV-4/4 was $111,286 per QALY gained versus MCV-C/4 (2575/206 IMD cases/deaths prevented; incremental costs $68 million). If historical trends in Canadian vaccines prices continue, use of MCV-4 instead of MCV-C in adolescents may be cost-effective. From an economic perspective, switching to MCV-4 as the adolescent booster should be considered.

  3. The biography of the immune system and the control of cancer: from St Peregrine to contemporary vaccination strategies.

    PubMed

    Krone, Bernd; Kölmel, Klaus F; Grange, John M

    2014-08-16

    The historical basis and contemporary evidence for the use of immune strategies for prevention of malignancies are reviewed. Emphasis is focussed on the Febrile Infections and Melanoma (FEBIM) study on melanoma and on malignancies that seem to be related to an overexpression of human endogenous retrovirus K (HERV-K). It is claimed that, as a result of recent observational studies, measures for prevention of some malignancies such as melanoma and certain forms of leukaemia are already at hand: vaccination with Bacille Calmette-Guérin (BCG) of new-borns and vaccination with the yellow fever 17D (YFV) vaccine of adults. While the evidence of their benefit for prevention of malignancies requires substantiation, the observations that vaccinations with BCG and/or vaccinia early in life improved the outcome of patients after surgical therapy of melanoma are of practical relevance as the survival advantage conferred by prior vaccination is greater than any contemporary adjuvant therapy. The reviewed findings open a debate as to whether controlled vaccination studies should be conducted in patients and/or regions for whom/where they are needed most urgently. A study proposal is made and discussed. If protection is confirmed, the development of novel recombinant vaccines with wider ranges of protection based, most likely, on BCG, YFV or vaccinia, could be attempted.

  4. Bioreactor concepts for cell culture-based viral vaccine production.

    PubMed

    Gallo-Ramírez, Lilí Esmeralda; Nikolay, Alexander; Genzel, Yvonne; Reichl, Udo

    2015-01-01

    Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.

  5. Peptide Vaccines for Leishmaniasis.

    PubMed

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  6. Serogroup C Neisseria meningitidis invasive infection: analysis of the possible vaccination strategies for a mass campaign.

    PubMed

    Chiappini, Elena; Venturini, Elisabetta; Bonsignori, Francesca; Galli, Luisa; de Martino, Maurizio

    2010-11-01

    The serogroup C meningococcal conjugate vaccine is available since 1999. In the absence of randomized controlled trials that support a specific schedule, each country has adopted different vaccination programmes. Hereby, we analyse positive and negative aspects of the different vaccination strategies. While waiting for the introduction of other antimeningococcal vaccines, covering also for the Group B meningococci, further studies on effectiveness of an optimal schedule to be adopted in European countries are needed. © 2010 The Author(s)/Journal Compilation © 2010 Foundation Acta Paediatrica.

  7. A world without bacterial meningitis: how genomic epidemiology can inform vaccination strategy.

    PubMed

    Rodrigues, Charlene M C; Maiden, Martin C J

    2018-01-01

    Bacterial meningitis remains an important cause of global morbidity and mortality. Although effective vaccinations exist and are being increasingly used worldwide, bacterial diversity threatens their impact and the ultimate goal of eliminating the disease. Through genomic epidemiology, we can appreciate bacterial population structure and its consequences for transmission dynamics, virulence, antimicrobial resistance, and development of new vaccines. Here, we review what we have learned through genomic epidemiological studies, following the rapid implementation of whole genome sequencing that can help to optimise preventative strategies for bacterial meningitis.

  8. New vaccines against influenza virus

    PubMed Central

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  9. Barriers to and facilitators of child influenza vaccine - perspectives from parents, teens, marketing and healthcare professionals.

    PubMed

    Bhat-Schelbert, Kavitha; Lin, Chyongchiou Jeng; Matambanadzo, Annamore; Hannibal, Kristin; Nowalk, Mary Patricia; Zimmerman, Richard K

    2012-03-23

    The CDC recommends annual influenza vaccination for all children age 6 months and older, yet vaccination rates remain modest. Effective strategies to improve influenza vaccination for children are needed. Eight focus groups with 91 parents, teens, pediatric healthcare staff and providers, and immunization and marketing experts were conducted, audiotaped, transcribed verbatim, and coded based on grounded theory. Three themes emerged: barriers, facilitators, and strategies. Barriers included fear, misinformation, and mistrust, with exacerbation of these barriers attributed to media messages. Many considered influenza vaccination unnecessary and inconvenient, but would accept vaccination if recipients or other family members were considered high risk, if recommended by their doctor or another trusted person, or if offered or mandated by the school. Access to better information regarding influenza disease burden and vaccine safety and efficacy were notable facilitators, as were prevention of the inconvenience of missing work or important events, and if the child requests to receive the vaccine. Marketing strategies included incentives, jingles, videos, wearable items, strategically-located information sheets or posters, and promotion by informed counselors. Practice-based strategies included staff buy-in, standing orders protocols, vaccination clinics, and educational videos. Teen-specific strategies included message delivery through schools, texting, internet, and social networking sites. To improve influenza vaccination rates for children using practice-based interventions, participants suggested campaigns that provide better information regarding the vaccine, the disease and its implications, and convenient access to vaccination. Strategies targeting adolescents should use web-based social marketing technologies and campaigns based in schools. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity.

    PubMed

    Zhang, Rui; Kramer, Jake S; Smith, Josiah D; Allen, Brittany N; Leeper, Caitlin N; Li, Xiaolei; Morton, Logan D; Gallazzi, Fabio; Ulery, Bret D

    2018-06-01

    Current vaccine research has shifted from traditional vaccines (i.e., whole-killed or live-attenuated) to subunit vaccines (i.e., protein, peptide, or DNA) as the latter is much safer due to delivering only the bioactive components necessary to produce a desirable immune response. Unfortunately, subunit vaccines are very weak immunogens requiring delivery vehicles and the addition of immunostimulatory molecules termed adjuvants to convey protective immunity. An interesting type of delivery vehicle is peptide amphiphile micelles (PAMs), unique biomaterials where the vaccine is part of the nanomaterial itself. Due to the modularity of PAMs, they can be readily modified to deliver both vaccine antigens and adjuvants within a singular construct. Through the co-delivery of a model antigenic epitope (Ovalbumin 319-340 -OVA BT ) and a known molecular adjuvant (e.g., 2,3-dipalmitoyl-S-glyceryl cysteine-Pam 2 C), greater insight into the mechanisms by which PAMs can exert immunostimulatory effects was gained. It was found that specific combinations of antigen and adjuvant can significantly alter vaccine immunogenicity both in vitro and in vivo. These results inform fundamental design rules that can be leveraged to fabricate optimal PAM-based vaccine formulations for future disease-specific applications. Graphical Abstract.

  11. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    PubMed

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  12. Parasite Carbohydrate Vaccines.

    PubMed

    Jaurigue, Jonnel A; Seeberger, Peter H

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma , and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.

  13. Parasite Carbohydrate Vaccines

    PubMed Central

    Jaurigue, Jonnel A.; Seeberger, Peter H.

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases—malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development. PMID:28660174

  14. Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2

    PubMed Central

    Fraiberk, Martin; Hájková, Michaela; Krulová, Magdaléna; Kojzarová, Martina; Drda Morávková, Alena; Pšikal, Ivan

    2017-01-01

    The aim of this study was to develop a suitable vaccine antigen against porcine circovirus 2 (PCV2), the causative agent of post-weaning multi-systemic wasting syndrome, which causes significant economic losses in swine breeding. Chimeric antigens containing PCV2b Cap protein sequences based on the mouse polyomavirus (MPyV) nanostructures were developed. First, universal vectors for baculovirus-directed production of chimeric MPyV VLPs or pentamers of the major capsid protein, VP1, were designed for their exploitation as vaccines against other pathogens. Various strategies were employed based on: A) exposure of selected immunogenic epitopes on the surface of MPyV VLPs by insertion into a surface loop of the VP1 protein, B) insertion of foreign protein molecules inside the VLPs, or C) fusion of a foreign protein or its part with the C-terminus of VP1 protein, to form giant pentamers of a chimeric protein. We evaluated these strategies by developing a recombinant vaccine against porcine circovirus 2. All candidate vaccines induced the production of antibodies against the capsid protein of porcine circovirus after immunization of mice. The candidate vaccine, Var C, based on fusion of mouse polyomavirus and porcine circovirus capsid proteins, could induce the production of antibodies with the highest PCV2 neutralizing capacity. Its ability to induce the production of neutralization antibodies was verified after immunization of pigs. The advantage of this vaccine, apart from its efficient production in insect cells and easy purification, is that it represents a DIVA (differentiating infected from vaccinated animals) vaccine, which also induces an immune response against the mouse polyoma VP1 protein and is thus able to distinguish between vaccinated and naturally infected animals. PMID:28922413

  15. Impact of committed individuals on vaccination behavior

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Tao; Wu, Zhi-Xi; Zhang, Lianzhong

    2012-11-01

    We study how the presence of committed vaccinators, a small fraction of individuals who consistently hold the vaccinating strategy and are immune to influence, impact the vaccination dynamics in well-mixed and spatially structured populations. For this purpose, we develop an epidemiological game-theoretic model of a flu-like vaccination by integrating an epidemiological process into a simple agent-based model of adaptive learning, where individuals (except for those committed ones) use anecdotal evidence to estimate costs and benefits of vaccination. We show that the committed vaccinators, acting as “steadfast role models” in the populations, can efficiently avoid the clustering of susceptible individuals and stimulate other imitators to take vaccination, hence contributing to the promotion of vaccine uptake. We substantiate our findings by making comparative studies of our model on a full lattice and on a randomly diluted one. Our work is expected to provide valuable information for decision-making and design more effective disease-control strategy.

  16. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles.

    PubMed

    Doucet, Marika; El-Turabi, Aadil; Zabel, Franziska; Hunn, Benjamin H M; Bengoa-Vergniory, Nora; Cioroch, Milena; Ramm, Mauricio; Smith, Amy M; Gomes, Ariane Cruz; Cabral de Miranda, Gustavo; Wade-Martins, Richard; Bachmann, Martin F

    2017-01-01

    Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model.

  17. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles

    PubMed Central

    Zabel, Franziska; Hunn, Benjamin H.M.; Bengoa-Vergniory, Nora; Cioroch, Milena; Ramm, Mauricio; Smith, Amy M.; Gomes, Ariane Cruz; Cabral de Miranda, Gustavo; Wade-Martins, Richard; Bachmann, Martin F.

    2017-01-01

    Parkinson's disease (PD) is a progressive and currently incurable neurological disorder characterised by the loss of midbrain dopaminergic neurons and the accumulation of aggregated alpha-synuclein (a-syn). Oligomeric a-syn is proposed to play a central role in spreading protein aggregation in the brain with associated cellular toxicity contributing to a progressive neurological decline. For this reason, a-syn oligomers have attracted interest as therapeutic targets for neurodegenerative conditions such as PD and other alpha-synucleinopathies. In addition to strategies using small molecules, neutralisation of the toxic oligomers by antibodies represents an attractive and highly specific strategy for reducing disease progression. Emerging active immunisation approaches using vaccines are already being trialled to induce such antibodies. Here we propose a novel vaccine based on the RNA bacteriophage (Qbeta) virus-like particle conjugated with short peptides of human a-syn. High titres of antibodies were successfully and safely generated in wild-type and human a-syn over-expressing (SNCA-OVX) transgenic mice following vaccination. Antibodies from vaccine candidates targeting the C-terminal regions of a-syn were able to recognise Lewy bodies, the hallmark aggregates in human PD brains. Furthermore, antibodies specifically targeted oligomeric and aggregated a-syn as they exhibited 100 times greater affinity for oligomeric species over monomer a-syn proteins in solution. In the SNCA-OVX transgenic mice used, vaccination was, however, unable to confer significant changes to oligomeric a-syn bioburden. Similarly, there was no discernible effect of vaccine treatment on behavioural phenotype as compared to control groups. Thus, antibodies specific for oligomeric a-syn induced by vaccination were unable to treat symptoms of PD in this particular mouse model. PMID:28797124

  18. 6-O-Branched Oligo-β-glucan-Based Antifungal Glycoconjugate Vaccines.

    PubMed

    Liao, Guochao; Zhou, Zhifang; Liao, Jun; Zu, Luning; Wu, Qiuye; Guo, Zhongwu

    2016-02-12

    With the rapid growth in fungal infections and drug-resistant fungal strains, antifungal vaccines have become an especially attractive strategy to tackle this important health problem. β-Glucans, a class of extracellular carbohydrate antigens abundantly and consistently expressed on fungal cell surfaces, are intriguing epitopes for antifungal vaccine development. β-Glucans have a conserved β-1,3-glucan backbone with sporadic β-1,3- or β-1,6-linked short glucans as branches at the 6-O-positions, and the branches may play a critical role in their immunologic functions. To study the immunologic properties of branched β-glucans and develop β-glucan-based antifungal vaccines, three branched β-glucan oligosaccharides with 6-O-linked β-1,6-tetraglucose, β-1,3-diglucose, and β-1,3-tetraglucose branches on a β-1,3-nonaglucan backbone, which mimic the structural epitopes of natural β-glucans, were synthesized and coupled with keyhole limpet hemocyanin (KLH) to form novel synthetic conjugate vaccines. These glycoconjugates were proved to elicit strong IgG antibody responses in mice. It was also discovered that the number, size, and structure of branches linked to the β-glucan backbone had a significant impact on the immunologic property. Moreover, antibodies induced by the synthetic oligosaccharide-KLH conjugates were able to recognize and bind to natural β-glucans and fungal cells. Most importantly, these conjugates elicited effective protection against systemic Candida albicans infection in mice. Thus, branched oligo-β-glucans were identified as functional epitopes for antifungal vaccine design and the corresponding protein conjugates as promising antifungal vaccine candidates.

  19. Theory-based development of an implementation intervention to increase HPV vaccination in pediatric primary care practices.

    PubMed

    Garbutt, Jane M; Dodd, Sherry; Walling, Emily; Lee, Amanda A; Kulka, Katharine; Lobb, Rebecca

    2018-03-13

    The national guideline for use of the vaccine targeting oncogenic strains of the human papillomavirus (HPV) is an evidence-based practice that is poorly implemented in primary care. Recommendations include completion of the vaccine series before the 13th birthday for girls and boys, giving the first dose at the 11- to 12-year-old check-up visit, concurrent with other recommended vaccines. Interventions to increase implementation of this guideline have had little impact, and opportunities to prevent cancer continue to be missed. We used a theory-informed approach to develop a pragmatic intervention for use in primary care settings to increase implementation of the HPV vaccine guideline recommendation. Using a concurrent mixed methods design in 10 primary care practices, we applied the Consolidated Framework for Implementation Research (CFIR) to systematically investigate and characterize factors strongly influencing vaccine use. We then used the Behavior Change Wheel (BCW) and the Theoretical Domains Framework (TDF) to analyze provider behavior and identify behaviors to target for change and behavioral change strategies to include in the intervention. We identified facilitators and barriers to guideline use across the five CFIR domains: most distinguishing factors related to provider characteristics, their perception of the intervention, and their process to deliver the vaccine. Targeted behaviors were for the provider to recommend the HPV vaccine the same way and at the same time as the other adolescent vaccines, to answer parents' questions with confidence, and to implement a vaccine delivery system. To this end, the intervention targeted improving provider's capability (knowledge, communication skills) and motivation (action planning, belief about consequences, social influences) regarding implementing guideline recommendations, and increasing their opportunity to do so (vaccine delivery system). Behavior change strategies included providing information and

  20. Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    PubMed Central

    Haug, Markus; Brede, Gaute; Håkerud, Monika; Nedberg, Anne Grete; Gederaas, Odrun A.; Flo, Trude H.; Edwards, Victoria T.; Selbo, Pål K.; Høgset, Anders; Halaas, Øyvind

    2018-01-01

    Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses. PMID:29670624

  1. Using farmers' attitude and social pressures to design voluntary Bluetongue vaccination strategies.

    PubMed

    Sok, J; Hogeveen, H; Elbers, A R W; Oude Lansink, A G J M

    2016-10-01

    Understanding the context and drivers of farmers' decision-making is critical to designing successful voluntary disease control interventions. This study uses a questionnaire based on the Reasoned Action Approach framework to assess the determinants of farmers' intention to participate in a hypothetical reactive vaccination scheme against Bluetongue. Results suggest that farmers' attitude and social pressures best explained intention. A mix of policy instruments can be used in a complementary way to motivate voluntary vaccination based on the finding that participation is influenced by both internal and external motivation. Next to informational and incentive-based instruments, social pressures, which stem from different type of perceived norms, can spur farmers' vaccination behaviour and serve as catalysts in voluntary vaccination schemes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Vaccines of the future.

    PubMed

    Nossal, G J V

    2011-12-30

    Vaccines of the future can be divided into three broad groups, namely those of the near future (<10 years); the medium-term future (10-19 years); and the long-term future (20-50 years). For the near future, there is some "low hanging fruit" which is clearly on the horizon, such as a Vi-conjugate vaccine for typhoid or a protein-based vaccine for Neisseria meningitidis serogroup B. Just slightly more distant will be vaccines for shigellosis and a common protein vaccine for Streptococcus pneumoniae. Also in this group, but not as far advanced, will be a vaccine for Group A streptococcus. I place vaccines for the "big three", malaria, tuberculosis and HIV/AIDS in the medium term basket. The sporozoite malaria vaccine RTS-S is closest, but surely a definitive malaria vaccine will also require antigens from other stages of the life cycle. A tuberculosis vaccine will be either a re-engineered BCG; or a molecular vaccine with several protein antigens; or one based on prime-boost strategies. What will delay this is the high cost of clinical trials. For HIV/AIDS, the partial success of the Sanofi-Pasteur prime-boost vaccine has given some hope. I still place much faith in antibody-based vaccines and especially on mimotopes of the env transitional state assumed after initial CD4 binding. Monoclonal antibodies are also leading us in interesting directions. Longer term, the vaccine approach will be successful for autoimmune diseases, e.g. juvenile diabetes and coeliac disease. Cancer vaccines are also briefly surveyed. Adjunct issues needing to be addressed include more extensive combinations; alternate delivery systems; and more intelligently designed adjuvants based on knowledge of the innate immune system. Copyright © 2011. Published by Elsevier Ltd.

  3. Mandatory and recommended vaccination in the EU, Iceland and Norway: results of the VENICE 2010 survey on the ways of implementing national vaccination programmes.

    PubMed

    Haverkate, M; D'Ancona, F; Giambi, C; Johansen, K; Lopalco, P L; Cozza, V; Appelgren, E

    2012-05-31

    This report provides an updated overview of recommended and mandatory vaccinations in the European Union (EU), Iceland and Norway, considering the differences in vaccine programme implementation between countries. In 2010, the Vaccine European New Integrated Collaboration Effort (VENICE) network, conducted a survey among the VENICE project gatekeepers to learn more about how national vaccination programmes are implemented, whether recommended or mandatory. Information was collected from all 27 EU Member States, Iceland and Norway. In total 15 countries do not have any mandatory vaccinations; the remaining 14 have at least one mandatory vaccination included in their programme. Vaccination against polio is mandatory for both children and adults in 12 countries; diphtheria and tetanus vaccination in 11 countries and hepatitis B vaccination in 10 countries. For eight of the 15 vaccines considered, some countries have a mixed strategy of recommended and mandatory vaccinations. Mandatory vaccination may be considered as a way of improving compliance to vaccination programmes. However, compliance with many programmes in Europe is high, using only recommendations. More information about the diversity in vaccine offer at European level may help countries to adapt vaccination strategies based on the experience of other countries. However, any proposal on vaccine strategies should be developed taking into consideration the local context habits.

  4. Influenza vaccine strategies for solid organ transplant recipients.

    PubMed

    Hirzel, Cédric; Kumar, Deepali

    2018-05-15

    The aim of this study was to highlight recent evidence on important aspects of influenza vaccination in solid organ transplant recipients. Influenza vaccine is the most evaluated vaccine in transplant recipients. The immunogenicity of the vaccine is suboptimal after transplantation. Newer formulations such as inactivated unadjuvanted high-dose influenza vaccine and the administration of a booster dose within the same season have shown to increase response rates. Intradermal vaccination and adjuvanted vaccines did not show clear benefit over standard influenza vaccines. Recent studies in transplant recipients do not suggest a higher risk for allograft rejection, neither after vaccination with a standard influenza vaccine nor after the administration of nonstandard formulation (high-dose, adjuvanted vaccines), routes (intradermally) or a booster dose. Nevertheless, influenza vaccine coverage in transplant recipients is still unsatisfactory low, potentially due to misinterpretation of risks and benefits. Annual influenza vaccination is well tolerated and is an important part of long-term care of solid organ transplant recipients.

  5. Comparing the health and social protection effects of measles vaccination strategies in Ethiopia: An extended cost-effectiveness analysis.

    PubMed

    Driessen, Julia; Olson, Zachary D; Jamison, Dean T; Verguet, Stéphane

    2015-08-01

    Vaccination coverage rates often mask wide variation in access, uptake, and cost of providing vaccination. Financial incentives have been effective at creating demand for social services in a variety of settings. Using methods of extended cost-effectiveness analysis, we compare the health and economic implications of three different vaccine delivery strategies for measles vaccination in Ethiopia: i) routine immunization, ii) routine immunization with financial incentives, and iii) mass campaigns, known as supplemental immunization activities (SIAs). We examine annual birth cohorts of almost 3,000,000 births over a ten year period, exploring variation in these outcomes based on economic status to understand how various options may improve equity. SIAs naturally achieve higher levels of vaccine coverage, but at higher costs. Routine immunization combined with financial incentives bolsters demand among more economically vulnerable households. The relative appeal of routine immunization with financial incentives and SIAs will depend on the policy environment, including short-term financial limitations, time horizons, and the types of outcomes that are desired. While the impact of financial incentives has been more thoroughly studied in other policy arenas, such as education, consideration of this approach alongside standard vaccination models such as SIAs is timely given the dialog around measles eradication. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Comparing control strategies against foot-and-mouth disease: will vaccination be cost-effective in Denmark?

    PubMed

    Boklund, A; Halasa, T; Christiansen, L E; Enøe, C

    2013-09-01

    Recent outbreaks of foot-and-mouth disease (FMD) in Europe have highlighted the need for assessment of control strategies to optimise control of the spread of FMD. Our objectives were to assess the epidemiological and financial impact of simulated FMD outbreaks in Denmark and the effect of using ring depopulation or emergency vaccination to control these outbreaks. Two stochastic simulation models (InterSpreadPlus (ISP) and the modified Davis Animal Disease Simulation model (DTU-DADS)) were used to simulate the spread of FMD in Denmark using different control strategies. Each epidemic was initiated in one herd (index herd), and a total of 5000 index herds were used. Four types of control measures were investigated: (1) a basic scenario including depopulation of detected herds, 3 km protection and 10 km surveillance zones, movement tracing and a three-day national standstill, (2) the basic scenario plus depopulation in ring zones around detected herds (Depop), (3) the basic scenario plus protective vaccination within ring zones around detected herds, and (4) the basic scenario plus protective vaccination within ring zones around detected herds. Disease spread was simulated through direct animal movements, medium-risk contacts (veterinarians, artificial inseminators or milk controllers), low-risk contacts (animal feed and rendering trucks, technicians or visitors), market contacts, abattoir trucks, milk tanks, or local spread. The two simulation models showed different results in terms of the estimated numbers. However, the tendencies in terms of recommendations of strategies were similar for both models. Comparison of the different control strategies showed that, from an epidemiological point of view, protective vaccination would be preferable if the epidemic started in a cattle herd in an area with a high density of cattle, whereas if the epidemic started in an area with a low density of cattle or in other species, protective vaccination or depopulation would have

  7. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost

    PubMed Central

    Xiao, Yuhong; Aldaz-Carroll, Lydia; Ortiz, Alexandra M.; Whitbeck, J. Charles; Alexander, Edward; Lou, Huan; Davis, J. Heather L.; Braciale, Thomas J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Isaacs, Stuart N.

    2007-01-01

    The heightened concern about the intentional release of variola virus has led to the need to develop safer smallpox vaccines. While subunit vaccine strategies are safer than live virus vaccines, subunit vaccines have been hampered by the need for multiple boosts to confer optimal protection. Here we developed a protein-based subunit vaccine strategy that provides rapid protection in mouse models of orthopoxvirus infections after a prime and single boost. Mice vaccinated with vaccinia virus envelope proteins from the mature virus (MV) and extracellular virus (EV) adjuvanted with CpG-ODN and alum were protected from lethal intranasal challenge with vaccinia virus and the mouse-specific ectromelia virus. Organs from mice vaccinated with three proteins (A33, B5 and L1) and then sacrificed after challenge contained significantly lower titers of virus when compared to control groups of mice that were not vaccinated or that received sub-optimal formulations of the vaccine. Sera from groups of mice obtained prior to challenge had neutralizing activity against the MV and also inhibited comet formation indicating anti-EV activity. Long-term partial protection was also seen in mice challenged with vaccinia virus 6 months after initial vaccinations. Thus, this work represents a step toward the development of a practical subunit smallpox vaccine. PMID:17098336

  8. Evaluating Vaccination Strategies for Zika Virus in the Americas.

    PubMed

    Durham, David P; Fitzpatrick, Meagan C; Ndeffo-Mbah, Martial L; Parpia, Alyssa S; Michael, Nelson L; Galvani, Alison P

    2018-05-01

    Mosquito-borne and sexually transmitted Zika virus has become widespread across Central and South America and the Caribbean. Many Zika vaccine candidates are under active development. To quantify the effect of Zika vaccine prioritization of females aged 9 to 49 years, followed by males aged 9 to 49 years, on incidence of prenatal Zika infections. A compartmental model of Zika transmission between mosquitoes and humans was developed and calibrated to empirical estimates of country-specific mosquito density. Mosquitoes were stratified into susceptible, exposed, and infected groups; humans were stratified into susceptible, exposed, infected, recovered, and vaccinated groups. Age-specific fertility rates, Zika sexual transmission, and country-specific demographics were incorporated. 34 countries and territories in the Americas with documented Zika outbreaks. Males and females aged 9 to 49 years. Age- and sex-targeted immunization using a Zika vaccine with 75% efficacy. Annual prenatal Zika infections. For a base-case vaccine efficacy of 75% and vaccination coverage of 90%, immunizing females aged 9 to 49 years (the World Health Organization target population) would reduce the incidence of prenatal infections by at least 94%, depending on the country-specific Zika attack rate. In regions where an outbreak is not expected for at least 10 years, vaccination of women aged 15 to 29 years is more efficient than that of women aged 30 years or older. Population-level modeling may not capture all local and neighborhood-level heterogeneity in mosquito abundance or Zika incidence. A Zika vaccine of moderate to high efficacy may virtually eliminate prenatal infections through a combination of direct protection and transmission reduction. Efficiency of age-specific targeting of Zika vaccination depends on the timing of future outbreaks. National Institutes of Health.

  9. Emerging human papillomavirus vaccines

    PubMed Central

    Ma, Barbara; Maraj, Bharat; Tran, Nam Phuong; Knoff, Jayne; Chen, Alexander; Alvarez, Ronald D; Hung, Chien-Fu; Wu, T.-C.

    2013-01-01

    Introduction Identification of human papillomavirus (HPV) as the etiologic factor of cervical, anogenital, and a subset of head and neck cancers has stimulated the development of preventive and therapeutic HPV vaccines to control HPV-associated malignancies. Excitement has been generated by the commercialization of two preventive L1-based vaccines, which use HPV virus-like particles (VLPs) to generate capsid-specific neutralizing antibodies. However, factors such as high cost and requirement for cold chain have prevented widespread implementation where they are needed most. Areas covered Next generation preventive HPV vaccine candidates have focused on cost-effective stable alternatives and generating broader protection via targeting multivalent L1 VLPs, L2 capsid protein, and chimeric L1/L2 VLPs. Therapeutic HPV vaccine candidates have focused on enhancing T cell-mediated killing of HPV-transformed tumor cells, which constitutively express HPV-encoded proteins, E6 and E7. Several therapeutic HPV vaccines are in clinical trials. Expert opinion Although progress is being made, cost remains an issue inhibiting the use of preventive HPV vaccines in countries that carry the majority of the cervical cancer burden. In addition, progression of therapeutic HPV vaccines through clinical trials may require combination strategies employing different therapeutic modalities. As research in the development of HPV vaccines continues, we may generate effective strategies to control HPV-associated malignancies. PMID:23163511

  10. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    PubMed

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p < 0.05) in the immune response levels were observed between probiotics expressing the COE-DCpep fusion protein and COE antigen alone, suggesting better immune efficiency of the probiotics vaccine expressing the DC-targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  11. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice.

    PubMed

    Magnusson, Sofia E; Altenburg, Arwen F; Bengtsson, Karin Lövgren; Bosman, Fons; de Vries, Rory D; Rimmelzwaan, Guus F; Stertman, Linda

    2018-04-01

    Influenza viruses continuously circulate in the human population and escape recognition by virus neutralizing antibodies induced by prior infection or vaccination through accumulation of mutations in the surface proteins hemagglutinin (HA) and neuraminidase (NA). Various strategies to develop a vaccine that provides broad protection against different influenza A viruses are under investigation, including use of recombinant (r) viral vectors and adjuvants. The replication-deficient modified vaccinia virus Ankara (MVA) is a promising vaccine vector that efficiently induces B and T cell responses specific for the antigen of interest. It is assumed that live vaccine vectors do not require an adjuvant to be immunogenic as the vector already mediates recruitment and activation of immune cells. To address this topic, BALB/c mice were vaccinated with either protein- or rMVA-based HA influenza vaccines, formulated with or without the saponin-based Matrix-M™ adjuvant. Co-formulation with Matrix-M significantly increased HA vaccine immunogenicity, resulting in antigen-specific humoral and cellular immune responses comparable to those induced by unadjuvanted rMVA-HA. Of special interest, rMVA-HA immunogenicity was also enhanced by addition of Matrix-M, demonstrated by enhanced HA inhibition antibody titres and cellular immune responses. Matrix-M added to either protein- or rMVA-based HA vaccines mediated recruitment and activation of antigen-presenting cells and lymphocytes to the draining lymph node 24 and 48 h post-vaccination. Taken together, these results suggest that adjuvants can be used not only with protein-based vaccines but also in combination with rMVA to increase vaccine immunogenicity, which may be a step forward to generate new and more effective influenza vaccines.

  12. Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination.

    PubMed

    Ahmad, Muhammad Dure; Usman, Muhammad; Khan, Adnan; Imran, Mudassar

    2016-07-13

    The 2014 Ebola epidemic is the largest in history, affecting multiple countries in West Africa. Some isolated cases were also observed in other regions of the world. In this paper, we introduce a deterministic SEIR type model with additional hospitalization, quarantine and vaccination components in order to understand the disease dynamics. Optimal control strategies, both in the case of hospitalization (with and without quarantine) and vaccination are used to predict the possible future outcome in terms of resource utilization for disease control and the effectiveness of vaccination on sick populations. Further, with the help of uncertainty and sensitivity analysis we also have identified the most sensitive parameters which effectively contribute to change the disease dynamics. We have performed mathematical analysis with numerical simulations and optimal control strategies on Ebola virus models. We used dynamical system tools with numerical simulations and optimal control strategies on our Ebola virus models. The original model, which allowed transmission of Ebola virus via human contact, was extended to include imperfect vaccination and quarantine. After the qualitative analysis of all three forms of Ebola model, numerical techniques, using MATLAB as a platform, were formulated and analyzed in detail. Our simulation results support the claims made in the qualitative section. Our model incorporates an important component of individuals with high risk level with exposure to disease, such as front line health care workers, family members of EVD patients and Individuals involved in burial of deceased EVD patients, rather than the general population in the affected areas. Our analysis suggests that in order for R 0 (i.e., the basic reproduction number) to be less than one, which is the basic requirement for the disease elimination, the transmission rate of isolated individuals should be less than one-fourth of that for non-isolated ones. Our analysis also predicts, we

  13. Home-based child vaccination records--a reflection on form.

    PubMed

    Brown, David W; Gacic-Dobo, Marta; Young, Stacy L

    2014-04-01

    Home-based child vaccination records play an important role in documenting immunization services received by children. We report some of the results of a review of home-based vaccination records from 55 countries. In doing so, we categorize records into three groups (vaccination only cards, vaccination plus cards, child health books) and describe differences in characteristics related to the quality of data recorded on immunization. Moreover, we highlight areas of potential concern and areas in need of further research and investigation to improve our understanding of the home-based vaccination record form related to improved data quality from immunization service delivery. Copyright © 2014. Published by Elsevier Ltd.

  14. Tricomponent Immunopotentiating System as a Novel Molecular Design Strategy for Malaria Vaccine Development ▿

    PubMed Central

    Miyata, Takeshi; Harakuni, Tetsuya; Tsuboi, Takafumi; Sattabongkot, Jetsumon; Ikehara, Ayumu; Tachibana, Mayumi; Torii, Motomi; Matsuzaki, Goro; Arakawa, Takeshi

    2011-01-01

    The creation of subunit vaccines to prevent malaria infection has been hampered by the intrinsically weak immunogenicity of the recombinant antigens. We have developed a novel strategy to increase immune responses by creating genetic fusion proteins to target specific antigen-presenting cells (APCs). The fusion complex was composed of three physically linked molecular entities: (i) a vaccine antigen, (ii) a multimeric α-helical coiled-coil core, and (iii) an APC-targeting ligand linked to the core via a flexible linker. The vaccine efficacy of the tricomponent complex was evaluated using an ookinete surface protein of Plasmodium vivax, Pvs25, and merozoite surface protein-1 of Plasmodium yoelii. Immunization of mice with the tricomponent complex induced a robust antibody response and conferred substantial levels of P. vivax transmission blockade as evaluated by a membrane feed assay, as well as protection from lethal P. yoelii infection. The observed effect was strongly dependent on the presence of all three components physically integrated as a fusion complex. This system, designated the tricomponent immunopotentiating system (TIPS), onto which any recombinant protein antigens or nonproteinaceous substances could be loaded, may be a promising strategy for devising subunit vaccines or adjuvants against various infectious diseases, including malaria. PMID:21807905

  15. Human Papillomavirus Vaccine Uptake in Adolescent Boys: An Evidence Review.

    PubMed

    Voss, Danielle S; Wofford, Linda G

    2016-10-01

    Despite evidence-based guidelines recommending routine vaccination against human papillomavirus (HPV) for adolescent boys, ages 11-12 years, vaccine uptake among this population remains low. To examine reasons for low HPV quadrivalent vaccine uptake and methods available to increase vaccine uptake among adolescent males, ages 11-12 years. Of 341 identified studies, 30 were included from three databases. The 30 studies were grouped into six categories: population-specific, problem-specific, educational interventions, theory-specific, political implications, and foundational guidelines and Websites. Among eight studies, low vaccine uptake was attributed to lack of parental, adolescent, and physician knowledge of HPV4 vaccine availability and recommendations. HPV4 vaccine educational interventions for parents and adolescents were the most effective for promoting vaccine uptake. Theory applications and gain-framed messages were shown to be effective for assessing HPV vaccine attitudes and perceptions. Political implication studies reveal the need for political and financial measures to encourage HPV vaccine acceptability among the population. To promote HPV vaccine uptake among adolescent males, providers must remain current with HPV vaccine recommendations and offer parental and adolescent HPV education focusing on benefits of vaccine acceptance and risks of vaccine refusal. The results of this review inform our understanding of effective educational strategies to positively impact HPV vaccine uptake in adolescent males. Based on this review, clinicians can employ several evidence-based educational strategies to facilitate HPV vaccine uptake. © 2016 Sigma Theta Tau International.

  16. Particle-based platforms for malaria vaccines.

    PubMed

    Wu, Yimin; Narum, David L; Fleury, Sylvain; Jennings, Gary; Yadava, Anjali

    2015-12-22

    Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. [Pertussis: Where do we stand 10years after the introduction of cocooning vaccination strategy in France?

    PubMed

    Beaufils, E; Dommergues, M-A; Gaillat, J; Guiso, N; Knezovic-Daniel, N; Pinquier, D; Riethmuller, D

    2016-10-01

    The goals of this article are to review the pertussis cocooning strategy, which has been recommended in France since 2004 to protect infants not yet vaccinated from becoming infected by vaccinating their immediate entourage, and to present room for improvement. The analysis of the literature between 2004 and 2015 shows that pertussis vaccine coverage in new parents is lower than 50% and that attempts that have already been implemented to increase it are effective. Pertussis vaccine coverage improvement requires all health actors to collaborate and be trained in informing and motivating parents to get vaccinated before, during and after pregnancy (the parents then will act as relays to their relatives); generalization in maternity wards of systematic checking of the vaccination card; extension to the midwives of the right to prescribe and administer pertussis vaccine to spouses; vaccination facilitation in maternity wards with the support of health organizations. Exchange and sharing of experiences between health care professionals are essential. Pregnancy is the ideal period to promote pertussis vaccination. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. A history of adolescent school based vaccination in Australia.

    PubMed

    Ward, Kirsten; Quinn, Helen; Menzies, Robert; McIntyre, Peter

    2013-06-30

    As adolescents have become an increasingly prominent target group for vaccination, school-based vaccination has emerged as an efficient and effective method of delivering nationally recommended vaccines to this often hard to reach group. School-based delivery of vaccines has occurred in Australia for over 80 years and has demonstrated advantages over primary care delivery for this part of the population. In the last decade school-based vaccination programs have become routine practice across all Australian states and territories. Using existing records and the recollection of experts we have compiled a history of school-based vaccination in Australia, primarily focusing on adolescents. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General's Department, Robert Garran Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca.

  19. Recent advances in microparticle and nanoparticle delivery vehicles for mucosal vaccination.

    PubMed

    McNeela, E A; Lavelle, E C

    2012-01-01

    The great potential of mucosal vaccination is widely accepted but progress in the clinical development of subunit mucosal vaccines has been disappointing. Of the available approaches, the use of polymer-based microparticles is attractive because these delivery vehicles can be specifically tailored for vaccines and they offer the potential for integration of adjuvant. Here we address recent developments in the use of particulates as mucosal vaccines and the potential of novel targeting strategies, formulation approaches and adjuvant combinations to enhance the efficacy of particle-based mucosal vaccines. This review discusses the current status of mucosal vaccines based on particles and highlights several of the strategies that are currently under investigation for improving their immunogenicity. These include enhancing the stability of formulations in the luminal environment, increasing uptake by specifically targeting particles to mucosal inductive sites, and augmenting immunogenicity through co-formulation with immunostimulatory agents.

  20. Parents’ perceptions of provider communication regarding adolescent vaccines

    PubMed Central

    Dempsey, Amanda F.; Pyrzanowski, Jennifer; Lockhart, Steven; Campagna, Elizabeth; Barnard, Juliana; O'Leary, Sean T.

    2016-01-01

    ABSTRACT Strong provider recommendations for adolescent vaccines are critical for achieving high vaccination levels.  However, little is known about parents’ preferred provider communication strategies for adolescent vaccines in general, and for human papillomavirus (HPV) vaccines specifically. We performed a cross-sectional survey of 800 parents of 9-14 year olds in April 2014 to assess current adolescent vaccine communication practices by providers, parents’ preferred HPV vaccine-specific communication strategies, and the association of these two outcomes with experiential, attitudinal and demographic characteristics.  Among the 356 parents in the study (response rate 48%), HPV vaccines were reported as less likely to have been “very strongly” recommended by their adolescent’s provider (39%) than other adolescent-targeted vaccines (45%-59%, <0.05 for all comparisons).  Receiving a very strong recommendation for HPV vaccines was associated with a higher likelihood of vaccine receipt (71% versus 39%, p<0.001), or among those not yet vaccinated, increased likelihood of positive vaccination intentions (82% vs. 60%, p = 0.015).  Nearly all parents (87%) reported that, if available, they would use a website providing personalized HPV vaccine-related materials before their adolescent’s next check-up, and other technology-based communications were also endorsed by the majority of parents.   From these data we conclude that parents received weaker recommendations for HPV vaccines than other adolescent vaccines, and that most parents want additional HPV vaccine-related materials, preferably delivered using a variety of technology-based modalities which is not their providers’ current practice. PMID:27078515

  1. Cost-Effectiveness of Adolescent Pertussis Vaccination for The Netherlands: Using an Individual-Based Dynamic Model

    PubMed Central

    de Vries, Robin; Kretzschmar, Mirjam; Schellekens, Joop F. P.; Versteegh, Florens G. A.; Westra, Tjalke A.; Roord, John J.; Postma, Maarten J.

    2010-01-01

    Background Despite widespread immunization programs, a clear increase in pertussis incidence is apparent in many developed countries during the last decades. Consequently, additional immunization strategies are considered to reduce the burden of disease. The aim of this study is to design an individual-based stochastic dynamic framework to model pertussis transmission in the population in order to predict the epidemiologic and economic consequences of the implementation of universal booster vaccination programs. Using this framework, we estimate the cost-effectiveness of universal adolescent pertussis booster vaccination at the age of 12 years in the Netherlands. Methods/Principal Findings We designed a discrete event simulation (DES) model to predict the epidemiological and economic consequences of implementing universal adolescent booster vaccination. We used national age-specific notification data over the period 1996–2000—corrected for underreporting—to calibrate the model assuming a steady state situation. Subsequently, booster vaccination was introduced. Input parameters of the model were derived from literature, national data sources (e.g. costing data, incidence and hospitalization data) and expert opinions. As there is no consensus on the duration of immunity acquired by natural infection, we considered two scenarios for this duration of protection (i.e. 8 and 15 years). In both scenarios, total pertussis incidence decreased as a result of adolescent vaccination. From a societal perspective, the cost-effectiveness was estimated at €4418/QALY (range: 3205–6364 € per QALY) and €6371/QALY (range: 4139–9549 € per QALY) for the 8- and 15-year protection scenarios, respectively. Sensitivity analyses revealed that the outcomes are most sensitive to the quality of life weights used for pertussis disease. Conclusions/Significance To our knowledge we designed the first individual-based dynamic framework to model pertussis transmission in the

  2. Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies.

    PubMed

    Sabo, Tamar; Kronman, Chanoch; Mazor, Ohad

    2016-01-01

    Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.

  3. Status of vaccine research and development of vaccines for GBS.

    PubMed

    Heath, Paul T

    2016-06-03

    Streptococcus agalactiae (group B streptococcus (GBS)) is the leading cause of neonatal sepsis and meningitis in many countries. Intrapartum antibiotic strategies have reduced the incidence of early-onset neonatal GBS in a number of countries but have had no impact on late onset GBS infection (LOD). In low/middle income settings, the disease burden remains uncertain although in several countries of Southern Africa appears comparable to or higher than that of high-income countries. As disease may be rapidly fulminating cases can be missed before appropriate samples are obtained and this may lead to underestimation of the true burden. Given the rapid onset and progression within hours of birth as well as the deficiencies in IAP strategies and absence of a solution for preventing LOD, it is clear that administration of a suitable vaccine in pregnancy could provide a better solution in all settings; it should also be cost effective. The current leading vaccine candidates are CPS-protein conjugate vaccines but protein-based vaccines are also in development and one has recently commenced clinical trials. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  4. Application of pharmacogenomics to vaccines

    PubMed Central

    Poland, Gregory A; Ovsyannikova, Inna G; Jacobson, Robert M

    2009-01-01

    The field of pharmacogenomics and pharmacogenetics provides a promising science base for vaccine research and development. A broad range of phenotype/genotype data combined with high-throughput genetic sequencing and bioinformatics are increasingly being integrated into this emerging field of vaccinomics. This paper discusses the hypothesis of the ‘immune response gene network’ and genetic (and bioinformatic) strategies to study associations between immune response gene polymorphisms and variations in humoral and cellular immune responses to prophylactic viral vaccines, such as measles–mumps–rubella, influenza, HIV, hepatitis B and smallpox. Immunogenetic studies reveal promising new vaccine targets by providing a better understanding of the mechanisms by which gene polymorphisms may influence innate and adaptive immune responses to vaccines, including vaccine failure and vaccine-associated adverse events. Additional benefits from vaccinomic studies include the development of personalized vaccines, the development of novel vaccines and the development of novel vaccine adjuvants. PMID:19450131

  5. Strategies in the development of vaccines to prevent infections with group A streptococcus

    PubMed Central

    Good, Michael F; Batzloff, Michael; Pandey, Manisha

    2013-01-01

    There has long been interest and demand for the development of a vaccine to prevent infections caused by the Gram-positive organism group A streptococcus. Despite numerous efforts utilizing advanced approaches such as genomics, proteomics and bio-informatics, there is currently no vaccine. Here we review various strategies employed to achieve this goal. We also discuss the approach that we have pursued, a non-host reactive, conformationally constrained minimal B cell epitope from within the C-repeat region of M-protein, and the potential limitations in moving forward. PMID:23863455

  6. New Strategies Toward Edible Vaccines: An Overview.

    PubMed

    Aryamvally, Anjali; Gunasekaran, Vignesh; Narenthiran, Keerthana Ragavi; Pasupathi, Rathinasabapathi

    2016-04-11

    With the ever growing population, advancements in edible vaccines and related technologies have seen a rise in popularity. Antigenic peptides incorporated into an edible part of a plant can be administered raw as a vaccine. While conventional vaccines have improved the quality of life by drastically reducing the onset of diseases, edible vaccines are able to perform the same with greater accessibility and at an affordable price. Low cost of production, ease of storage, transportation and administration are some of the many reasons behind the push for the development of edible vaccines. This article aims at giving an overview of the different plant systems used to produce vaccines in various experiments, as well as the merits and demerits of using that particular expression system. Further, the article elaborates on the problems faced in the production of edible vaccines and the measures adopted to surpass them. The major obstacle in the process is attaining a sufficiently large concentration of foreign antigen in the plant system. The article discusses various plant expression systems like banana, rice, alfalfa, mushroom, potato, tomato, pea, tobacco, and maize. When these were reviewed, it was found that the inability to produce the desired antigen concentration was one of the primary reasons why edible vaccines sometimes fail to generate the desired level of immune response in the recipient. We conclude with a promising solution to the problem by incorporating nano-technological advancements to the already existing protocols for edible vaccine development.

  7. Implementation research: reactive mass vaccination with single-dose oral cholera vaccine, Zambia.

    PubMed

    Poncin, Marc; Zulu, Gideon; Voute, Caroline; Ferreras, Eva; Muleya, Clara Mbwili; Malama, Kennedy; Pezzoli, Lorenzo; Mufunda, Jacob; Robert, Hugues; Uzzeni, Florent; Luquero, Francisco J; Chizema, Elizabeth; Ciglenecki, Iza

    2018-02-01

    To describe the implementation and feasibility of an innovative mass vaccination strategy - based on single-dose oral cholera vaccine - to curb a cholera epidemic in a large urban setting. In April 2016, in the early stages of a cholera outbreak in Lusaka, Zambia, the health ministry collaborated with Médecins Sans Frontières and the World Health Organization in organizing a mass vaccination campaign, based on single-dose oral cholera vaccine. Over a period of 17 days, partners mobilized 1700 health ministry staff and community volunteers for community sensitization, social mobilization and vaccination activities in 10 townships. On each day, doses of vaccine were delivered to vaccination sites and administrative coverage was estimated. Overall, vaccination teams administered 424 100 doses of vaccine to an estimated target population of 578 043, resulting in an estimated administrative coverage of 73.4%. After the campaign, few cholera cases were reported and there was no evidence of the disease spreading within the vaccinated areas. The total cost of the campaign - 2.31 United States dollars (US$) per dose - included the relatively low cost of local delivery - US$ 0.41 per dose. We found that an early and large-scale targeted reactive campaign using a single-dose oral vaccine, organized in response to a cholera epidemic within a large city, to be feasible and appeared effective. While cholera vaccines remain in short supply, the maximization of the number of vaccines in response to a cholera epidemic, by the use of just one dose per member of an at-risk community, should be considered.

  8. Cost-effectiveness of conjugate meningococcal vaccination strategies in the United States.

    PubMed

    Shepard, Colin W; Ortega-Sanchez, Ismael R; Scott, R Douglas; Rosenstein, Nancy E

    2005-05-01

    The US Food and Drug Administration approved a meningococcal conjugate A/C/Y/W-135 vaccine (MCV-4) for use in persons aged 11 to 55 years in January, 2005; licensure for use in younger age groups is expected in 2 to 4 years. To evaluate and compare the projected health and economic impact of MCV-4 vaccination of US adolescents, toddlers, and infants. Cost-effectiveness analysis from a societal perspective based on data from Active Bacterial Core Surveillance (ABCs) and other published and unpublished sources. Sensitivity analyses in which key input measures were varied over plausible ranges were performed. A hypothetical 2003 US population cohort of children 11 years of age and a 2003 US birth cohort. Hypothetical routine vaccination of adolescents (1 dose at 11 years of age), toddlers (1 dose at 1 year of age), and infants (3 doses at 2, 4, and 6 months of age). Each vaccination scenario was compared with a "no-vaccination" scenario. Meningococcal cases and deaths prevented, cost per case prevented, cost per life-year saved, and cost per quality-adjusted life-year saved. Routine MCV-4 vaccination of US adolescents (11 years of age) would prevent 270 meningococcal cases and 36 deaths in the vaccinated cohort over 22 years, a decrease of 46% in the expected burden of disease. Before program costs are counted, adolescent vaccination would reduce direct disease costs by $18 million and decrease productivity losses by $50 million. At a cost per vaccination (average public-private price per dose plus administration fees) of $82.50, adolescent vaccination would cost society $633000 per meningococcal case prevented and $121000 per life-year saved. Key variables influencing results were disease incidence, case-fatality ratio, and cost per vaccination. The cost-effectiveness of toddler vaccination is essentially equivalent to adolescent vaccination, whereas infant vaccination would be much less cost-effective. Routine MCV-4 vaccination of US children would reduce the burden

  9. Zika virus, vaccines, and antiviral strategies.

    PubMed

    Masmejan, Sophie; Baud, David; Musso, Didier; Panchaud, Alice

    2018-06-28

    Zika virus (ZIKV) recently emerged as a global public health emergency of international concern. ZIKV is responsible for severe neurological complications in adults and infection during pregnancy and can lead to congenital Zika syndrome. There is no licensed vaccine or drug to prevent or treat ZIKV infection. Areas covered: The aim of this article is to provide an overview and update of the progress of research on anti-ZIKV vaccine and medications until the end of 2017, with a special emphasis on drugs that can be used during pregnancy. Expert commentary: Development of new vaccines and drugs is challenging and several points particular to ZIKV infections augment this difficulty: (1) Cross-reactions between ZIKV and other flaviviruses, the impact of ZIKV vaccination on subsequent flavivirus infections, and vice-versa, is unknown, (2) Drugs against ZIKV should be safe in pregnant women, and (3) Evaluation of the efficacy of vaccine and drugs against ZIKV in clinical trials phase II-IV will be complicated due to the decline of ZIKV circulation.

  10. Hookworm vaccines.

    PubMed

    Diemert, David J; Bethony, Jeffrey M; Hotez, Peter J

    2008-01-15

    Hookworm infection caused by the soil-transmitted nematodes Necator americanus and Ancylostoma duodenale is one of the most common parasitic infections worldwide. Although not directly responsible for substantial mortality, it causes significant morbidity in the form of chronic anemia and protein malnutrition. Current global control efforts based on periodic mass anthelmintic administration are unsustainable, and new control strategies must be developed. This review describes progress in the development of vaccines against hookworm infection, including the preclinical and initial clinical testing of the N. americanus Ancylostoma Secreted Protein-2 Hookworm Vaccine. Plans call for eventual development of a vaccine that will combine at least 2 hookworm antigens--one targeting the larval stage of the life cycle and another targeting the adult worm living in the gastrointestinal tract.

  11. Midwives' influenza vaccine uptake and their views on vaccination of pregnant women.

    PubMed

    Ishola, D A; Permalloo, N; Cordery, R J; Anderson, S R

    2013-12-01

    Pregnant women in England are now offered seasonal influenza vaccine. Midwives could be influential in promoting this, but specific information on their views on the policy and their role in its implementation is lacking. London midwives were surveyed for their views on the new policy and their own vaccine uptake, using an anonymously self-completed semi-structured online survey via a convenience sampling approach. In total, 266 midwives responded. Sixty-nine percent agreed with the policy of vaccinating all pregnant women. Seventy-six percent agreed that midwives should routinely advise pregnant women on vaccination, but only 25% felt adequately prepared for this role. Just 28% wished to be vaccinators, due to concerns about increased workload and inadequate training. Forty-three percent received seasonal influenza vaccine themselves. Major reasons for non-uptake were doubts about vaccine necessity (34%), safety (25%) and effectiveness (10%); and poor arrangements for vaccination (11%). Suggested strategies for improving their own uptake included better access to evidence of effectiveness (67%) and improved work-based vaccination (45%). London midwives support influenza vaccination of pregnant women, but are more willing to give advice on, than to administer, the vaccine. Midwives' own influenza vaccine uptake could improve with more information and easier access to vaccination in their workplace.

  12. An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide tetrasaccharide Hep2Kdo2

    NASA Astrophysics Data System (ADS)

    Kong, Lingbing; Vijayakrishnan, Balakumar; Kowarik, Michael; Park, Jin; Zakharova, Alexandra N.; Neiwert, Larissa; Faridmoayer, Amirreza; Davis, Benjamin G.

    2016-03-01

    Certain non-mammalian cell wall sugars are conserved across a variety of pathogenic bacteria. This conservation of structure, combined with their structural differences when compared with mammalian sugars, make them potentially powerful epitopes for immunization. Here, we report the synthesis of a glycoconjugate that displays the so-called ‘inner core’ sugars of Gram-negative bacterial cell walls. We also describe an antibacterial vaccination strategy based on immunization with the glycoconjugate and the subsequent administration of an inhibitor that uncovers the corresponding epitope in pathogenic bacteria. The core tetrasaccharide, Hep2Kdo2, a common motif in bacterial lipopolysaccharides, was synthesized and attached via a chain linker to a diphtheria toxin mutant carrier protein. This glycoconjugate generated titres of antibodies towards the inner core tetrasaccharide of the lipopolysaccharide, which were capable of binding the cell-surface sugars of bacterial pathogenic strains including Neisseria meningitidis, Pseudomonas aeruginosa and Escherichia coli. Exposure of bacterial lipopolysaccharide in in vitro experiments, using an inhibitor of capsular polysaccharide transport, enabled potent bacterial killing with antiserum.

  13. Influenza vaccine response profiles are affected by vaccine preparation and preexisting immunity, but not HIV infection.

    PubMed

    Berger, Christoph T; Greiff, Victor; Mehling, Matthias; Fritz, Stefanie; Meier, Marc A; Hoenger, Gideon; Conen, Anna; Recher, Mike; Battegay, Manuel; Reddy, Sai T; Hess, Christoph

    2015-01-01

    Vaccines dramatically reduce infection-related morbidity and mortality. Determining factors that modulate the host response is key to rational vaccine design and demands unsupervised analysis. To longitudinally resolve influenza-specific humoral immune response dynamics we constructed vaccine response profiles of influenza A- and B-specific IgM and IgG levels from 42 healthy and 31 HIV infected influenza-vaccinated individuals. Pre-vaccination antibody levels and levels at 3 predefined time points after vaccination were included in each profile. We performed hierarchical clustering on these profiles to study the extent to which HIV infection associated immune dysfunction, adaptive immune factors (pre-existing influenza-specific antibodies, T cell responses), an innate immune factor (Mannose Binding Lectin, MBL), demographic characteristics (gender, age), or the vaccine preparation (split vs. virosomal) impacted the immune response to influenza vaccination. Hierarchical clustering associated vaccine preparation and pre-existing IgG levels with the profiles of healthy individuals. In contrast to previous in vitro and animal data, MBL levels had no impact on the adaptive vaccine response. Importantly, while HIV infected subjects with low CD4 T cell counts showed a reduced magnitude of their vaccine response, their response profiles were indistinguishable from those of healthy controls, suggesting quantitative but not qualitative deficits. Unsupervised profile-based analysis ranks factors impacting the vaccine-response by relative importance, with substantial implications for comparing, designing and improving vaccine preparations and strategies. Profile similarity between HIV infected and HIV negative individuals suggests merely quantitative differences in the vaccine response in these individuals, offering a rationale for boosting strategies in the HIV infected population.

  14. Perceptions and experiences of childhood vaccination communication strategies among caregivers and health workers in Nigeria: A qualitative study.

    PubMed

    Oku, Afiong; Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Owoaje, Eme; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2017-01-01

    Effective vaccination communication with parents is critical in efforts to overcome barriers to childhood vaccination, tackle vaccine hesitancy and improve vaccination coverage. Health workers should be able to provide information to parents and other caregivers and support them in reaching decisions about vaccinating their children. Limited information exists regarding the perceptions of caregivers and health workers on the vaccination communication strategies employed in Nigeria. This study, which forms part of the 'Communicate to vaccinate' (COMMVAC) project, aims to explore the perceptions and experiences of caregivers and health workers in Nigeria on vaccination communication strategies implemented in their settings. We conducted the study in two States: Bauchi in Northern Nigeria and Cross River in the south. We carried out observations (n = 40), in-depth interviews (n = 14) and focus group discussions (FGDs) (n = 12) amongst 14 purposively selected health workers, two community leaders and 84 caregivers in the two states. We transcribed data verbatim and analysed the data using a framework analysis approach. Caregivers were informed about vaccination activities through three main sources: health facilities (during health education sessions conducted at antenatal or immunization clinics); media outlets; and announcements (in churches/mosques, communities and markets). Caregivers reported that the information received was very useful. Their preferred sources of information included phone text messages, town announcers, media and church/mosque announcements. Some caregivers perceived the clinic environment, long waiting times and health worker attitudes as barriers to receiving vaccination information.When delivering communication interventions, health workers described issues tied to poor communication skills; poor motivation; and attitudes of community members, including vaccine resistance. Communication about vaccination involves more than the message but is

  15. New strategies to improve the efficacy of colorectal cancer vaccines: from bench to bedside.

    PubMed

    Mocellin, Simone

    2006-12-01

    By exploiting a naturally occurring defense system, anticancer vaccination embodies an ideal non-toxic treatment capable of evoking tumor-specific immune responses that can ultimately recognize and kill colorectal cancer (CRC) cells. Despite the enormous theoretical potential of active specific immunotherapy, no vaccination regimen has achieved sufficient therapeutic efficacy necessary for clinical implementation. Nevertheless, several immunological advances have opened new avenues of research to decipher the biological code governing tumor immune responsiveness, and this is leading to the design of potentially more effective immunotherapeutic protocols. This review briefly summarizes the principles behind anti-CRC vaccination and describes the most promising immunological strategies that have been developed, which are expected to renew interest in this molecularly targeted anticancer approach.

  16. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines.

    PubMed

    Davtyan, Hayk; Bacon, Andrew; Petrushina, Irina; Zagorski, Karen; Cribbs, David H; Ghochikyan, Anahit; Agadjanyan, Michael G

    2014-01-01

    Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials.

  17. Dynamics of vaccination strategies via projected dynamical systems.

    PubMed

    Cojocaru, Monica-Gabriela; Bauch, Chris T; Johnston, Matthew D

    2007-07-01

    Previous game theoretical analyses of vaccinating behaviour have underscored the strategic interaction between individuals attempting to maximise their health states, in situations where an individual's health state depends upon the vaccination decisions of others due to the presence of herd immunity. Here, we extend such analyses by applying the theories of variational inequalities (VI) and projected dynamical systems (PDS) to vaccination games. A PDS provides a dynamics that gives the conditions for existence, uniqueness and stability properties of Nash equilibria. In this paper, it is used to analyse the dynamics of vaccinating behaviour in a population consisting of distinct social groups, where each group has different perceptions of vaccine and disease risks. In particular, we study populations with two groups, where the size of one group is strictly larger than the size of the other group (a majority/minority population). We find that a population with a vaccine-inclined majority group and a vaccine-averse minority group exhibits higher average vaccine coverage than the corresponding homogeneous population, when the vaccine is perceived as being risky relative to the disease. Our model also reproduces a feature of real populations: In certain parameter regimes, it is possible to have a majority group adopting high vaccination rates and simultaneously a vaccine-averse minority group adopting low vaccination rates. Moreover, we find that minority groups will tend to exhibit more extreme changes in vaccinating behaviour for a given change in risk perception, in comparison to majority groups. These results emphasise the important role played by social heterogeneity in vaccination behaviour, while also highlighting the valuable role that can be played by PDS and VI in mathematical epidemiology.

  18. A retrospective and prospective look at strategies to increase adolescent HPV vaccine uptake in the United States.

    PubMed

    Head, Katharine J; Biederman, Erika; Sturm, Lynne A; Zimet, Gregory D

    2018-01-23

    The HPV vaccine debuted more than ten years ago in the United States and many strategies have been evaluated to increase HPV vaccination rates, which include not only improving current vaccination behaviors but also sustaining these behaviors. Researchers and practitioners from a variety of backgrounds have engaged in this work, which has included efforts directed at public health and government policies, health education and health promotion programs, and clinical and patient-provider approaches, as well as work aimed to respond to and combat anti-HPV vaccination movements in society. Using a previously developed conceptual model to organize and summarize each of these areas, this paper also highlights the need for future HPV vaccine promotion work to adopt a multi-level and, when possible, integrated approach in order to maximize impact on vaccination rates.

  19. Progress towards development of an HIV vaccine: report of the AIDS Vaccine 2009 Conference.

    PubMed

    Ross, Anna Laura; Bråve, Andreas; Scarlatti, Gabriella; Manrique, Amapola; Buonaguro, Luigi

    2010-05-01

    The search for an HIV/AIDS vaccine is steadily moving ahead, generating and validating new concepts in terms of novel vectors for antigen delivery and presentation, new vaccine and adjuvant strategies, alternative approaches to design HIV-1 antigens for eliciting protective cross-neutralising antibodies, and identification of key mechanisms in HIV infection and modulation of the immune system. All these different perspectives are contributing to the unprecedented challenge of developing a protective HIV-1 vaccine. The high scientific value of this massive effort is its great impact on vaccinology as a whole, providing invaluable scientific information for the current and future development of new preventive vaccine as well as therapeutic knowledge-based infectious-disease and cancer vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Multi-faceted Approach to Vaccine Development Against Escherichia coli O157:H7

    DTIC Science & Technology

    2006-03-15

    36 Intimin as a vaccine candidate .................................................................................. 39 Transgenic Plant -based...41 Transgenic Plant -based Vaccines Unique advantages of plant vaccines Transgenic plants have been engineered to produce recombinant...strategies. Foremost, the vaccine can be delivered by ingestion of the edible part of the transgenic plant . The plant cell wall acts as a capsule that

  1. Vaccinating women previously exposed to human papillomavirus: a cost-effectiveness analysis of the bivalent vaccine.

    PubMed

    Turner, Hugo C; Baussano, Iacopo; Garnett, Geoff P

    2013-01-01

    Recent trials have indicated that women with prior exposure to Human papillomavirus (HPV) subtypes 16/18 receive protection against reinfection from the HPV vaccines. However, many of the original models investigating the cost effectiveness of different vaccination strategies for the protection of cervical cancer assumed, based on the trial results at that time, that these women received no protection. We developed a deterministic, dynamic transmission model that incorporates the vaccine-induced protection of women with prior exposure to HPV. The model was used to estimate the cost effectiveness of progressively extending a vaccination programme using the bivalent vaccine to older age groups both with and without protection of women with prior exposure. We did this under a range of assumptions on the level of natural immunity. Our modelling projections indicate that including the protection of women with prior HPV exposure can have a profound effect on the cost effectiveness of vaccinating adults. The impact of this protection is inversely related to the level of natural immunity. Our results indicate that adult vaccination strategies should potentially be reassessed, and that it is important to include the protection of non-naive women previously infected with HPV in future studies. Furthermore, they also highlight the need for a more thorough investigation of this protection.

  2. Cost-effectiveness analysis of influenza and pneumococcal vaccination for Hong Kong elderly in long-term care facilities.

    PubMed

    You, J H S; Wong, W C W; Ip, M; Lee, N L S; Ho, S C

    2009-11-01

    To compare cost and quality-adjusted life-years (QALYs) gained by influenza vaccination with or without pneumococcal vaccination in the elderly living in long-term care facilities (LTCFs). Cost-effectiveness analysis based on Markov modelling over 5 years, from a Hong Kong public health provider's perspective, on a hypothetical cohort of LTCF residents aged > or = 65 years. Benefit-cost ratio (BCR) and net present value (NPV) of two vaccination strategies versus no vaccination were estimated. The cost and QALYs gained by two vaccination strategies were compared by Student's t-test in probabilistic sensitivity analysis (10,000 Monte Carlo simulations). Both vaccination strategies had high BCRs and NPVs (6.39 and US$334 for influenza vaccination; 5.10 and US$332 for influenza plus pneumococcal vaccination). In base case analysis, the two vaccination strategies were expected to cost less and gain higher QALYs than no vaccination. In probabilistic sensitivity analysis, the cost of combined vaccination and influenza vaccination was significantly lower (p<0.001) than the cost of no vaccination. Both vaccination strategies gained significantly higher (p<0.001) QALYs than no vaccination. The QALYs gained by combined vaccination were significantly higher (p = 0.030) than those gained by influenza vaccination alone. The total cost of combined vaccination was significantly lower (p = 0.011) than that of influenza vaccination. Influenza vaccination with or without pneumococcal vaccination appears to be less costly with higher QALYs gained than no vaccination, over a 5-year period, for elderly people living in LTCFs from the perspective of a Hong Kong public health organisation. Combined vaccination was more likely to gain higher QALYs with lower total cost than influenza vaccination alone.

  3. [Invasive meningococcal disease in the Czech Republic - analysis of the epidemiological situation and vaccination strategy recommendations].

    PubMed

    Křížová, Pavla; Vacková, Zuzana; Musílek, Martin; Kozáková, Jana

    2013-12-01

    Analysis of invasive meningococcal disease (IMD) surveillance data including molecular epidemio-logy data. Vaccination strategy recommendations based on the current epidemiological situation of IMD in the Czech Republic and availability of meningococcal vaccines. IMD surveillance data are compiled by the National Reference Laboratory for Meningococcal Disease (NRL) from routinely reported data and NRL data after clearing out duplicate data. Neisseria meningitidis (N.m.) isolates referred to the NRL are confirmed and characterized in detail according to internationally validated methods. The current epidemiological situation of IMD is relatively favourable - the incidence rates have been below 1/100,000 population for several years, but show a slightly upward trend over more than 40-year period (1970-2012). A return to the typical prevalence of serogroup B accounting for up to 75% of cases has recently been shown. In this context, the upward trend in IMD caused by serogroup Y associated with a high case fatality rate in the Czech Republic cannot be overseen or even underestimated. The hypervirulent clonal complex cc11 characteristic of N.m.C:2a:P1.2,5 prevailed in this country between 1993 and 2004, but decreased in the following years and currently, hypervirulent clonal complexes characteristic of N.m.B (cc18, cc32, cc41/44, and cc269) are the most common in the Czech Republic. The average overall case fatality rate in the Czech Republic is 10%, but varies between causative serogroups: the highest case fatality rate has been caused by serogroup Y (16.7% ), followed by serogroup C (12.3%), and serogroup W135 (11.7%), while serogroup B only accounts for a case fatality rate of 7.8%. In the age group under one year, the incidence of IMD caused by serogroup B remains three to five times as high as in the age groups 1-4 years and 15-19 years throughout the surveillance period. The highest numbers of IMD cases caused by serogroup B have been reported in 3-7-month

  4. Vaccines for viral diseases with dermatologic manifestations.

    PubMed

    Brentjens, Mathijs H; Yeung-Yue, Kimberly A; Lee, Patricia C; Tyring, Stephen K

    2003-04-01

    Vaccines against infectious diseases have been available since the 1800s, when an immunization strategy against smallpox developed by Jenner gained wide acceptance. Until recently, the only vaccination strategies available involved the use of protein-based, whole killed, and attenuated live virus vaccines. These strategies have led to the development of effective vaccines against a variety of diseases with primary or prominent cutaneous manifestations. Effective and safe vaccines now used worldwide include those directed against measles and rubella (now commonly used together with a mumps vaccine as the trivalent MMR), chickenpox, and hepatitis B. The eradication of naturally occurring smallpox remains one of the greatest successes in the history of modern medicine, but stockpiles of live smallpox exist in the United States and Russia. Renewed interest in the smallpox vaccine reflects concerns about a possible bioterrorist threat using this virus. Yellow fever is a hemorrhagic virus endemic to tropical areas of South America and Africa. An effective vaccine for this virus has existed since 1937, and it is used widely in endemic areas of South America, and to a lesser extent in Africa. This vaccine is recommended once every 10 years for people who are traveling to endemic areas. Advances in immunology have led to a greater understanding of immune system function in viral diseases. Progress in genetics and molecular biology has allowed researchers to design vaccines with novel mechanisms of action (eg, DNA, vector, and VLP vaccines). Vaccines have also been designed to specifically target particular viral components, allowing for stimulation of various arms of the immune system as desired. Ongoing research shows promise in prophylactic and therapeutic vaccination for viral infections with cutaneous manifestations. Further studies are necessary before vaccines for HSV, HPV, and HIV become commercially available.

  5. Latest development on RNA-based drugs and vaccines.

    PubMed

    Lundstrom, Kenneth

    2018-06-01

    Drugs and vaccines based on mRNA and RNA viruses show great potential and direct translation in the cytoplasm eliminates chromosomal integration. Limitations are associated with delivery and stability issues related to RNA degradation. Clinical trials on RNA-based drugs have been conducted in various disease areas. Likewise, RNA-based vaccines for viral infections and various cancers have been subjected to preclinical and clinical studies. RNA delivery and stability improvements include RNA structure modifications, targeting dendritic cells and employing self-amplifying RNA. Single-stranded RNA viruses possess self-amplifying RNA, which can provide extreme RNA replication in the cytoplasm to support RNA-based drug and vaccine development. Although oligonucleotide-based approaches have demonstrated potential, the focus here is on mRNA- and RNA virus-based methods.

  6. Architectural Insight into Inovirus-Associated Vectors (IAVs) and Development of IAV-Based Vaccines Inducing Humoral and Cellular Responses: Implications in HIV-1 Vaccines

    PubMed Central

    Hassapis, Kyriakos A.; Stylianou, Dora C.; Kostrikis, Leondios G.

    2014-01-01

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1. PMID:25525909

  7. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines.

    PubMed

    Hassapis, Kyriakos A; Stylianou, Dora C; Kostrikis, Leondios G

    2014-12-17

    Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.

  8. The impact of assumptions regarding vaccine-induced immunity on the public health and cost-effectiveness of hepatitis A vaccination: Is one dose sufficient?

    PubMed

    Curran, Desmond; de Ridder, Marc; Van Effelterre, Thierry

    2016-11-01

    Hepatitis A vaccination stimulates memory cells to produce an anamnestic response. In this study, we used a mathematical model to examine how long-term immune memory might convey additional protection against clinical/icteric infections. Dynamic and decision models were used to estimate the expected number of cases, and the costs and quality-adjusted life-years (QALYs), respectively. Several scenarios were explored by assuming: (1) varying duration of vaccine-induced immune memory, (2) and/or varying levels of vaccine-induced immune memory protection (IMP), (3) and/or varying levels of infectiousness in vaccinated individuals with IMP. The base case analysis assumed a time horizon of 25 y (2012 - 2036), with additional analyses over 50 and 75 y. The analyses were conducted in the Mexican public health system perspective. In the base case that assumed no vaccine-induced IMP, the 2-dose hepatitis A vaccination strategy was cost-effective compared with the 1-dose strategy over the 3 time horizons. However, it was not cost-effective if we assumed additional IMP durations of at least 10 y in the 25-y horizon. In the 50- and 75-y horizons, the 2-dose strategy was always cost-effective, except when 100% reduction in the probability of icteric Infections, 75% reduction in infectiousness, and mean durations of IMP of at least 50 y were assumed. This analysis indicates that routine vaccination of toddlers against hepatitis A virus would be cost-effective in Mexico using a single-dose vaccination strategy. However, the cost-effectiveness of a second dose depends on the assumptions of additional protection by IMP and the time horizon over which the analysis is performed.

  9. Human Papillomavirus Vaccine as an Anti-cancer Vaccine: Collaborative Efforts to Promote HPV Vaccine in the National Comprehensive Cancer Control Program

    PubMed Central

    Townsend, Julie S.; Steele, C. Brooke; Hayes, Nikki; Bhatt, Achal; Moore, Angela R.

    2018-01-01

    Background Widespread use of the HPV vaccine has the potential to reduce incidence from HPV-associated cancers. However, vaccine uptake among adolescents remains well below the Healthy People 2020 targets. The Centers for Disease Control and Prevention (CDC)’s National Comprehensive Cancer Control Program awardees (NCCCP) are well positioned to work with immunization programs to increase vaccine uptake. Methods CDC’s chronic disease management information system was queried for objectives and activities associated with HPV vaccine that were reported by NCCCP awardees from 2013 – 2016 as part of program reporting requirements. A content analysis was conducted on the query results to categorize interventions according to strategies outlined in The Guide to Community Preventive Services and the 2014 President’s Cancer Panel report. Results Sixty-two percent of NCCCP awardees had planned or implemented at least one activity since 2013 to address low HPV vaccination coverage in their jurisdictions. Most NCCCP awardees (86%) reported community education activities, while 65% reported activities associated with provider education. Systems-based strategies such as client reminders or provider assessment and feedback were each reported by less than 25% of NCCCP awardees. Conclusion Many NCCCP awardees report planning or implementing activities to address low HPV vaccination coverage, often in conjunction with state immunization programs. NCCCP awardees can play a role in increasing HPV vaccination coverage through their cancer prevention and control expertise and access to partners in the health care community. PMID:28263672

  10. Vaccinating in disease-free regions: a vaccine model with application to yellow fever.

    PubMed

    Codeço, Claudia T; Luz, Paula M; Coelho, Flavio; Galvani, Alison P; Struchiner, Claudio

    2007-12-22

    Concerns regarding natural or induced emergence of infectious diseases have raised a debate on the pros and cons of pre-emptive vaccination of populations under uncertain risk. In the absence of immediate risk, ethical issues arise because even smaller risks associated with the vaccine are greater than the immediate disease risk (which is zero). The model proposed here seeks to formalize the vaccination decision process looking from the perspective of the susceptible individual, and results are shown in the context of the emergence of urban yellow fever in Brazil. The model decomposes the individual's choice about vaccinating or not into uncertain components. The choice is modelled as a function of (i) the risk of a vaccine adverse event, (ii) the risk of an outbreak and (iii) the probability of receiving the vaccine or escaping serious disease given an outbreak. Additionally, we explore how this decision varies as a function of mass vaccination strategies of varying efficiency. If disease is considered possible but unlikely (risk of outbreak less than 0.1), delay vaccination is a good strategy if a reasonably efficient campaign is expected. The advantage of waiting increases as the rate of transmission is reduced (low R0) suggesting that vector control programmes and emergency vaccination preparedness work together to favour this strategy. The opposing strategy, vaccinating pre-emptively, is favoured if the probability of yellow fever urbanization is high or if expected R0 is high and emergency action is expected to be slow. In summary, our model highlights the nonlinear dependence of an individual's best strategy on the preparedness of a response to a yellow fever outbreak or other emergent infectious disease.

  11. Implementation research: reactive mass vaccination with single-dose oral cholera vaccine, Zambia

    PubMed Central

    Zulu, Gideon; Voute, Caroline; Ferreras, Eva; Muleya, Clara Mbwili; Malama, Kennedy; Pezzoli, Lorenzo; Mufunda, Jacob; Robert, Hugues; Uzzeni, Florent; Luquero, Francisco J; Chizema, Elizabeth; Ciglenecki, Iza

    2018-01-01

    Abstract Objective To describe the implementation and feasibility of an innovative mass vaccination strategybased on single-dose oral cholera vaccine – to curb a cholera epidemic in a large urban setting. Method In April 2016, in the early stages of a cholera outbreak in Lusaka, Zambia, the health ministry collaborated with Médecins Sans Frontières and the World Health Organization in organizing a mass vaccination campaign, based on single-dose oral cholera vaccine. Over a period of 17 days, partners mobilized 1700 health ministry staff and community volunteers for community sensitization, social mobilization and vaccination activities in 10 townships. On each day, doses of vaccine were delivered to vaccination sites and administrative coverage was estimated. Findings Overall, vaccination teams administered 424 100 doses of vaccine to an estimated target population of 578 043, resulting in an estimated administrative coverage of 73.4%. After the campaign, few cholera cases were reported and there was no evidence of the disease spreading within the vaccinated areas. The total cost of the campaign – 2.31 United States dollars (US$) per dose – included the relatively low cost of local delivery – US$ 0.41 per dose. Conclusion We found that an early and large-scale targeted reactive campaign using a single-dose oral vaccine, organized in response to a cholera epidemic within a large city, to be feasible and appeared effective. While cholera vaccines remain in short supply, the maximization of the number of vaccines in response to a cholera epidemic, by the use of just one dose per member of an at-risk community, should be considered. PMID:29403111

  12. Strategies to induce broadly protective antibody responses to viral glycoproteins.

    PubMed

    Krammer, F

    2017-05-01

    Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.

  13. Blood-stage malaria vaccines: post-genome strategies for the identification of novel vaccine candidates.

    PubMed

    Ntege, Edward H; Takashima, Eizo; Morita, Masayuki; Nagaoka, Hikaru; Ishino, Tomoko; Tsuboi, Takafumi

    2017-08-01

    An efficacious malaria vaccine is necessary to advance the current control measures towards malaria elimination. To-date, only RTS,S/AS01, a leading pre-erythrocytic stage vaccine completed phase 3 trials, but with an efficacy of 28-36% in children, and 18-26% in infants, that waned over time. Blood-stage malaria vaccines protect against disease, and are considered effective targets for the logical design of next generation vaccines to improve the RTS,S field efficacy. Therefore, novel blood-stage vaccine candidate discovery efforts are critical, albeit with several challenges including, high polymorphisms in vaccine antigens, poor understanding of targets of naturally protective immunity, and difficulties in the expression of high AT-rich plasmodial proteins. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects of malaria vaccine research and development. We focused on post-genome vaccine candidate discovery, malaria vaccine development, sequence diversity, pre-clinical and clinical trials. Expert commentary: Post-genome high-throughput technologies using wheat germ cell-free protein synthesis technology and immuno-profiling with sera from malaria patients with clearly defined outcomes are highlighted to overcome current challenges of malaria vaccine candidate discovery.

  14. Cost-effectiveness of HPV vaccination in the prevention of cervical cancer in Malaysia.

    PubMed

    Ezat, Wan Puteh Sharifa; Aljunid, Syed

    2010-01-01

    Cervical cancers (CC) demonstrate the second highest incidence of female cancers in Malaysia. The costs of chronic management have a high impact on nation's health cost and patient's quality of life that can be avoided by better screening and HPV vaccination. Respondents were interviewed from six public Gynecology-Oncology hospitals. Methods include experts' panel discussions to estimate treatment costs by severity and direct interviews with respondents using costing and SF-36 quality of life (QOL) questionnaires. Three options were compared i.e. screening via Pap smear; quadrivalent HPV Vaccination and combined strategy (screening plus vaccination). Scenario based sensitivity analysis using screening population coverage (40-80%) and costs of vaccine (RM 300-400/dose) were calculated. 502 cervical pre invasive and invasive cervical cancer (ICC) patients participated in the study. Mean age was 53.3 +/- 11.2 years, educated till secondary level (39.4%), Malays (44.2%) and married for 27.73 +/- 12.1 years. Life expectancy gained from vaccination is 13.04 years and average Quality Adjusted Life Years saved (QALYs) is 24.4 in vaccinated vs 6.29 in unvaccinated. Cost/QALYs for Pap smear at base case is RM 1,214.96/QALYs and RM 1,100.01 at increased screening coverage; for HPV Vaccination base case is at RM 35,346.79 and RM 46,530.08 when vaccination price is higher. In combined strategy, base case is RM 11,289.58; RM 7,712.74 at best case and RM 14,590.37 at worst case scenario. Incremental cost-effectiveness ratio (ICER) showed that screening at 70% coverage or higher is highly cost effective at RM 946.74 per QALYs saved and this is followed by combined strategy at RM 35,346.67 per QALYs saved. Vaccination increase life expectancy with better QOL of women when cancer can be avoided. Cost effective strategies will include increasing the Pap smear coverage to 70% or higher. Since feasibility and long term screening adherence is doubtful among Malaysian women, vaccination

  15. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Min; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001; College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AALmore » and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.« less

  16. Exploiting virus-like particles as innovative vaccines against emerging viral infections.

    PubMed

    Jeong, Hotcherl; Seong, Baik Lin

    2017-03-01

    Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.

  17. Assessing the effectiveness of a community-based sensitization strategy in creating awareness about HPV, cervical cancer and HPV vaccine among parents in North West Cameroon.

    PubMed

    Wamai, Richard G; Ayissi, Claudine Akono; Oduwo, Geofrey O; Perlman, Stacey; Welty, Edith; Manga, Simon; Ogembo, Javier Gordon

    2012-10-01

    In 2010, the Cameroon Baptist Convention Health Services (CBCHS) received a donation of HPV vaccine (Gardasil®) to immunize girls of ages 9-13 years in the North West Region of Cameroon. We evaluated the effectiveness of the CBCHS campaign program in sensitizing parents/guardians to encourage HPV vaccine uptake, identified factors that influence parents' decisions to vaccinate girls, and examined the uptake of cervical cancer screening among mothers. We conducted a cross-sectional survey in four healthcare facilities run by CBCHS, churches and other social settings. A total of 350 questionnaires were distributed and 317 were used for the analysis. There were high levels of awareness about cervical cancer, HPV and HPV vaccine. 75.5% understood HPV is sexually transmitted and 90.3% were aware of the use of vaccine as a preventive measure. Effectiveness of the vaccine (31.8%) and side effects/safety (18.4%) were the major barriers for parents to vaccinate their daughters. Bivariate analysis further revealed that the level of education (p = 0.0006), income level (p = 0.0044) and perceived risks (p = 0.0044) are additional factors influencing parents' decisions to vaccinate girls. 35.3% of women had sought a cervical cancer screening, significantly higher than the general estimated rate of screening (<10%) in other parts of Cameroon and sub-Saharan Africa. These results support the viability of a community-tailored sensitization strategy to increase awareness among the targeted audience of parents/guardians, who are critical decision-makers for vaccine delivery to children.

  18. National Vaccine Policy: ethical equity issues.

    PubMed

    Jayakrishnan, T

    2013-01-01

    The ministry of health and family welfare published the national vaccination policy in April 2011. The policy document drew severe criticism from several public health experts. A review of the print and web-based literature on the national vaccine policy was done and the issues of ethics and equity involved in introducing new vaccines under the Universal Immunisation Programme (UIP) were studied. The average coverage of the UIP vaccines at the national level is below 50%. Despite this, the policy document did not state any concrete strategy for increasing the coverage. The main stumbling block for evidence-based vaccine policy in India is the lack of reliable epidemiological data, which makes it difficult for the National Technical Advisory Group on Immunisation to offer sound technical advice to the government. No attempts have been made to prioritise diseases or the selection of vaccines. The policy suggests the introduction of the following vaccines in the UIP: Haemophilus influenzae type b, pneumococcal vaccine, rotavirus vaccines and human papillomavirus (HPV). This selection is on the grounds of the vaccines' availability, not on the basis of epidemiological evidence or proven cost-effectiveness. This is a critical review of the current vaccination policy and the move to include the rotavirus and HPV vaccines in the UIP.

  19. Estimating the cost-effectiveness profile of a universal vaccination programme with a nine-valent HPV vaccine in Austria.

    PubMed

    Boiron, L; Joura, E; Largeron, N; Prager, B; Uhart, M

    2016-04-16

    HPV is a major cancer-causing factor in both sexes in the cervix, vulva, vagina, anus, penis, oropharynx as well as the causal factor in other diseases such as genital warts and recurrent respiratory papillomatis. In the context of the arrival of a nonavalent HPV vaccine (6/11/16/18/31/33/45/52/58), this analysis aims to estimate the public health impact and the incremental cost-effectiveness of a universal (girls and boys) vaccination program with a nonavalent HPV vaccine as compared to the current universal vaccination program with a quadrivalent HPV vaccine (6/11/16/18), in Austria. A dynamic transmission model including a wide range of health and cost outcomes related to cervical, anal, vulvar, vaginal diseases and genital warts was calibrated to Austrian epidemiological data. The clinical impact due to the 5 new types was included for cervical and anal diseases outcomes only. In the base case, a two-dose schedule, lifelong vaccine type-specific protection and a vaccination coverage rate of 60% and 40% for girls and boys respectively for the 9-year old cohorts were assumed. A cost-effectiveness threshold of €30,000/QALY-gained was considered. Universal vaccination with the nonavalent vaccine was shown to reduce the incidence of HPV16/18/31/33/45/52/58 -related cervical cancer by 92%, the related CIN2/3 cases by 96% and anal cancer by 83% and 76% respectively in females and males after 100 years, relative to 75%, 76%, 80% and 74% with the quadrivalent vaccine, respectively. Furthermore, the nonavalent vaccine was projected to prevent an additional 14,893 cases of CIN2/3 and 2544 cases of cervical cancer, over 100 years. Depending on the vaccine price, the strategy was shown to be from cost-saving to cost-effective. The present evaluation showed that vaccinating 60% of girls and 40% of boys aged 9 in Austria with a 9-valent vaccine will substantially reduce the incidence of cervical cancer, CIN and anal cancer compared to the existing strategy. The vaccination

  20. Refining the approach to vaccines against influenza A viruses with pandemic potential

    PubMed Central

    Czako, Rita; Subbarao, Kanta

    2015-01-01

    Vaccination is the most effective strategy for prevention and control of influenza. Timely production and deployment of seasonal influenza vaccines is based on an understanding of the epidemiology of influenza and on global disease and virologic surveillance. Experience with seasonal influenza vaccines guided the initial development of pandemic influenza vaccines. A large investment in pandemic influenza vaccines in the last decade has resulted in much progress and a body of information that can now be applied to refine the established paradigm. Critical and complementary considerations for pandemic influenza vaccines include improved assessment of the pandemic potential of animal influenza viruses, proactive development and deployment of pandemic influenza vaccines, and application of novel platforms and strategies for vaccine production and administration. PMID:26587050

  1. Strategies and actions of multi-purpose health communication on vaccine preventable infectious diseases in order to increase vaccination coverage in the population: The ESCULAPIO project

    PubMed Central

    Bonanni, Paolo; Lauri, Sara; Tiscione, Emilia; Levi, Miriam; Prato, Rosa; Fortunato, Francesca; Martinelli, Domenico; Gasparini, Roberto; Panatto, Donatella; Amicizia, Daniela; Coppola, Rosa Cristina; Vitale, Francesco; Iannazzo, Stefania

    2017-01-01

    ABSTRACT The ESCULAPIO Project aims at increasing awareness on vaccine preventable infectious diseases (VPID) and vaccinations in different target populations and to spread the culture of prevention. Information/training interventions on VPID have been developed and health promotion activities for the general population, students and their parents, teachers and health care workers (HCWs) were set up. In Tuscany, educational courses on VPID in high schools were organized and students were stimulated to prepare informative materials on VPID for lower grade school pupils. In Liguria, an educational card game (named ‘Vaccine at the Fair’) was presented to children of primary schools. Stands in shopping centers were used in Palermo to distribute the regional vaccination schedule and gadgets, also providing indications on reliable websites where to find correct information on vaccinations. A music video played by health care workers (HCWs) was created and used in the University Hospital of Cagliari to promote the anti-flu vaccination campaign in HCWs. In Apulia, meetings with the general population were organized to collect controversial issues about vaccinations and a national call center was launched to create a direct line from the general population to experts in vaccines and vaccination strategies. In Veneto, meetings in the birth centers and home visits for subjects refusing vaccination have been organized. All activities are useful and effective tools to increase knowledge about VPID and confidence in vaccination, which are crucial aspects in order to increase vaccine uptake. The project was funded by the Italian Ministry of Health, Center for Disease Prevention and Control (CCM) in 2013. PMID:28215120

  2. Strategies and actions of multi-purpose health communication on vaccine preventable infectious diseases in order to increase vaccination coverage in the population: The ESCULAPIO project.

    PubMed

    Bechini, Angela; Bonanni, Paolo; Lauri, Sara; Tiscione, Emilia; Levi, Miriam; Prato, Rosa; Fortunato, Francesca; Martinelli, Domenico; Gasparini, Roberto; Panatto, Donatella; Amicizia, Daniela; Coppola, Rosa Cristina; Pellizzari, Barbara; Tabacchi, Garden; Costantino, Claudio; Vitale, Francesco; Iannazzo, Stefania; Boccalini, Sara

    2017-02-01

    The ESCULAPIO Project aims at increasing awareness on vaccine preventable infectious diseases (VPID) and vaccinations in different target populations and to spread the culture of prevention. Information/training interventions on VPID have been developed and health promotion activities for the general population, students and their parents, teachers and health care workers (HCWs) were set up. In Tuscany, educational courses on VPID in high schools were organized and students were stimulated to prepare informative materials on VPID for lower grade school pupils. In Liguria, an educational card game (named 'Vaccine at the Fair') was presented to children of primary schools. Stands in shopping centers were used in Palermo to distribute the regional vaccination schedule and gadgets, also providing indications on reliable websites where to find correct information on vaccinations. A music video played by health care workers (HCWs) was created and used in the University Hospital of Cagliari to promote the anti-flu vaccination campaign in HCWs. In Apulia, meetings with the general population were organized to collect controversial issues about vaccinations and a national call center was launched to create a direct line from the general population to experts in vaccines and vaccination strategies. In Veneto, meetings in the birth centers and home visits for subjects refusing vaccination have been organized. All activities are useful and effective tools to increase knowledge about VPID and confidence in vaccination, which are crucial aspects in order to increase vaccine uptake. The project was funded by the Italian Ministry of Health, Center for Disease Prevention and Control (CCM) in 2013.

  3. The Web-Based DNA Vaccine Database DNAVaxDB and Its Usage for Rational DNA Vaccine Design.

    PubMed

    Racz, Rebecca; He, Yongqun

    2016-01-01

    A DNA vaccine is a vaccine that uses a mammalian expression vector to express one or more protein antigens and is administered in vivo to induce an adaptive immune response. Since the 1990s, a significant amount of research has been performed on DNA vaccines and the mechanisms behind them. To meet the needs of the DNA vaccine research community, we created DNAVaxDB ( http://www.violinet.org/dnavaxdb ), the first Web-based database and analysis resource of experimentally verified DNA vaccines. All the data in DNAVaxDB, which includes plasmids, antigens, vaccines, and sources, is manually curated and experimentally verified. This chapter goes over the detail of DNAVaxDB system and shows how the DNA vaccine database, combined with the Vaxign vaccine design tool, can be used for rational design of a DNA vaccine against a pathogen, such as Mycobacterium bovis.

  4. Understanding how different recruitment strategies impact parent engagement with an iPad-based intervention to provide personalized information about adolescent vaccines.

    PubMed

    Dempsey, Amanda F; Maertens, Julie; Beaty, Brenda L; O'Leary, Sean T

    2015-05-01

    Inadequate provider time for addressing parents' questions and concerns about adolescent vaccines is a barrier to vaccine utilization. We sought to determine how different recruitment strategies impact the degree of engagement with an intervention that provided this information via an iPad placed in a clinical setting. We provided to three pediatric practices in the Denver area the "Teen VaxScene" web site that generates individually customized information for parents about adolescent vaccines. Three recruitment strategies were assessed for their impact on parental use of the intervention as follows: passive recruitment using posters to advertise a "kiosk" version of the intervention; posters plus a $10 incentive for using the kiosk; and posters plus a $10 incentive plus decoupling the iPad from the kiosks to enable "roving." We assessed the engagement with the intervention at multiple levels including log in, consent, and completion of a baseline survey and viewing individually tailored web pages. Surveys were used to assess barriers to using the intervention. During the 14-month study period, 693 people had contact with the iPad, 199 consented, and 48 completed the survey to enable creation of tailored content; and 42 used the tailored site. Five times as many parents (n = 40) consented to participation during the 2 months when the intervention was "roving" than during the 10-month "passive" recruitment period. Engagement with the tailored material was low, with most users viewing only the "table of contents" pages. Utilizers and nonutilizers of the intervention had similar demographic characteristics. Enabling the iPad to "rove" in the clinic greatly increased the proportion of parents consenting to use the intervention. However, meaningful engagement with the material was low. Further research is needed to understand the most effective and time efficient ways to provide vaccine-related educational information to parents of adolescents. Copyright © 2015 Society

  5. Unique IL-13Rα2-based HIV-1 vaccine strategy to enhance mucosal immunity, CD8(+) T-cell avidity and protective immunity.

    PubMed

    Ranasinghe, C; Trivedi, S; Stambas, J; Jackson, R J

    2013-11-01

    We have established that mucosal immunization can generate high-avidity human immunodeficiency virus (HIV)-specific CD8(+) T cells compared with systemic immunization, and interleukin (IL)-13 is detrimental to the functional avidity of these T cells. We have now constructed two unique recombinant HIV-1 vaccines that co-express soluble or membrane-bound forms of the IL-13 receptor α2 (IL-13Rα2), which can "transiently" block IL-13 activity at the vaccination site causing wild-type animals to behave similar to an IL-13 KO animal. Following intranasal/intramuscular prime-boost immunization, these IL-13Rα2-adjuvanted vaccines have shown to induce (i) enhanced HIV-specific CD8(+) T cells with higher functional avidity, with broader cytokine/chemokine profiles and greater protective immunity using a surrogate mucosal HIV-1 challenge, and also (ii) excellent multifunctional mucosal CD8(+) T-cell responses, in the lung, genito-rectal nodes (GN), and Peyer's patch (PP). Data revealed that intranasal delivery of these IL-13Rα2-adjuvanted HIV vaccines recruited large numbers of unique antigen-presenting cell subsets to the lung mucosae, ultimately promoting the induction of high-avidity CD8(+) T cells. We believe our novel IL-13R cytokine trap vaccine strategy offers great promise for not only HIV-1, but also as a platform technology against range of chronic infections that require strong sustained high-avidity mucosal/systemic immunity for protection.

  6. [Legal Bases Of Vaccination In Ukraine].

    PubMed

    Terzi, Olena O

    2018-01-01

    Introduction: Despite the extraordinary progress made in the field of vaccination, a large number of children in the last decade, 24 million children, or nearly 20% of children born every year, do not receive a full plan for vaccination during their first year of life. The aim: The purpose of the article is to analyze the legal framework of vaccination in Ukraine, comparing the approach of the domestic legislator to the vaccination with foreign experience. Materials and methods: Methods of research are selected based on the goal of the study. In order to establish the objectivity and validity of scientific statements and conclusions, during the conducted research a complex of general scientific and special scientific methods was used, in particular such as: the formal legal method; comparative legal method; the method of forecasting and modeling; historical-legal method. Review: In countries with epidemics, a state of emergency can be established and quarantine measures and vaccination to exercise the right to collective health, which may limit the right to individual health by limiting the right to consent to vaccination. Conclusions: It is concluded that in world practice there is no single approach to the recognition of the right to vaccination, as a human right, or as a duty to preserve the epidemiological security of the state. It has been proved that infectious diseases evolve, change their form, the only effective means of preventing pandemics, which may question the existence of man as a biological species, is the vaccination system.

  7. M2e-Based Universal Influenza A Vaccines

    PubMed Central

    Deng, Lei; Cho, Ki Joon; Fiers, Walter; Saelens, Xavier

    2015-01-01

    The successful isolation of a human influenza virus in 1933 was soon followed by the first attempts to develop an influenza vaccine. Nowadays, vaccination is still the most effective method to prevent human influenza disease. However, licensed influenza vaccines offer protection against antigenically matching viruses, and the composition of these vaccines needs to be updated nearly every year. Vaccines that target conserved epitopes of influenza viruses would in principle not require such updating and would probably have a considerable positive impact on global human health in case of a pandemic outbreak. The extracellular domain of Matrix 2 (M2e) protein is an evolutionarily conserved region in influenza A viruses and a promising epitope for designing a universal influenza vaccine. Here we review the seminal and recent studies that focused on M2e as a vaccine antigen. We address the mechanism of action and the clinical development of M2e-vaccines. Finally, we try to foresee how M2e-based vaccines could be implemented clinically in the future. PMID:26344949

  8. Production of adenovirus vectors and their use as a delivery system for influenza vaccines

    PubMed Central

    Vemula, Sai V.; Mittal, Suresh K.

    2010-01-01

    IMPORTANCE OF THE FIELD With the emergence of highly pathogenic avian influenza H5N1 viruses that have crossed species barriers and are responsible for lethal infections in humans in many countries, there is an urgent need for the development of effective vaccines which can be produced in large quantities at a short notice and confer broad protection against these H5N1 variants. In order to meet the potential global vaccine demand in a pandemic scenario, new vaccine-production strategies must be explored in addition to the currently used egg-based technology for seasonal influenza. AREAS COVERED IN THIS REVIEW Adenovirus (Ad) based influenza vaccines represent an attractive alternative/supplement to the currently licensed egg-based influenza vaccines. Ad-based vaccines are relatively inexpensive to manufacture, and their production process does not require either chicken eggs or labor intensive and time-consuming processes necessitating enhanced biosafety facilities. Most importantly, in a pandemic situation, this vaccine strategy could offer a stockpiling option to reduce the response time before a strain-matched vaccine could be developed. WHAT THE READER WILL GAIN This review discusses Ad-vector technology and the current progress in the development of Ad-based influenza vaccines. TAKE HOME MESSAGE Ad vector-based influenza vaccines for pandemic preparedness are under development to meet the global vaccine demand. PMID:20822477

  9. Innovative vaccine delivery strategies in response to a cholera outbreak in the challenging context of Lake Chilwa. A rapid qualitative assessment.

    PubMed

    Heyerdahl, Leonard W; Ngwira, Bagrey; Demolis, Rachel; Nyirenda, Gabriel; Mwesawina, Maurice; Rafael, Florentina; Cavailler, Philippe; Bernard Le Gargasson, Jean; Mengel, Martin A; Gessner, Bradford D; Guillermet, Elise

    2017-11-07

    A reactive campaign using two doses of Shanchol Oral Cholera Vaccine (OCV) was implemented in 2016 in the Lake Chilwa Region (Malawi) targeting fish dependent communities. Three strategies for the second vaccine dose delivery (including delivery by a community leader and self-administration) were used to facilitate vaccine access. This assessment collected vaccine perceptions and opinions about the OCV campaign of 313 study participants, including: fishermen, fish traders, farmers, community leaders, and one health and one NGO officer. Socio-demographic surveys were conducted, In Depth Interviews and Focus Group Discussions were conducted before and during the campaign. Some fishermen perceived the traditional delivery strategy as reliable but less practical. Delivery by traditional leaders was acceptable for some participants while others worried about traditional leaders not being trained to deliver vaccines or beneficiaries taking doses on their own. A slight majority of beneficiaries considered the self-administration strategy practical while some beneficiaries worried about storing vials outside of the cold chain or losing vials. During the campaign, a majority of participants preferred receiving oral vaccines instead of injections given ease of intake and lack of pain. OCV was perceived as efficacious and safe. However, a lack of information on how sero-protection may be delayed and the degree of sero-protection led to loss of trust in vaccine potency among some participants who witnessed cholera cases among vaccinated individuals. OCV campaign implementation requires accompanying communication on protective levels, less than 100% vaccine efficacy, delays in onset of sero-protection, and out of cold chain storage. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A thermostable messenger RNA based vaccine against rabies.

    PubMed

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin

    2017-12-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  11. Strengthening vaccination policies in Latin America: an evidence-based approach.

    PubMed

    Tapia-Conyer, Roberto; Betancourt-Cravioto, Miguel; Saucedo-Martínez, Rodrigo; Motta-Murguía, Lourdes; Gallardo-Rincón, Héctor

    2013-08-20

    Despite many successes in the region, Latin American vaccination policies have significant shortcomings, and further work is needed to maintain progress and prepare for the introduction of newly available vaccines. In order to address the challenges facing Latin America, the Commission for the Future of Vaccines in Latin America (COFVAL) has made recommendations for strengthening evidence-based policy-making and reducing regional inequalities in immunisation. We have conducted a comprehensive literature review to assess the feasibility of these recommendations. Standardisation of performance indicators for disease burden, vaccine coverage, epidemiological surveillance and national health resourcing can ensure comparability of the data used to assess vaccination programmes, allowing deeper analysis of how best to provide services. Regional vaccination reference schemes, as used in Europe, can be used to develop best practice models for vaccine introduction and scheduling. Successful models exist for the continuous training of vaccination providers and decision-makers, with a new Latin American diploma aiming to contribute to the successful implementation of vaccination programmes. Permanent, independent vaccine advisory committees, based on the US Advisory Committee on Immunization Practices (ACIP), could facilitate the uptake of new vaccines and support evidence-based decision-making in the administration of national immunisation programmes. Innovative financing mechanisms for the purchase of new vaccines, such as advance market commitments and cost front-loading, have shown potential for improving vaccine coverage. A common regulatory framework for vaccine approval is needed to accelerate delivery and pool human, technological and scientific resources in the region. Finally, public-private partnerships between industry, government, academia and non-profit sectors could provide new investment to stimulate vaccine development in the region, reducing prices in the

  12. Mucosal Vaccine Development Based on Liposome Technology

    PubMed Central

    Norling, Karin; Bally, Marta; Höök, Fredrik

    2016-01-01

    Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination of mucosal adjuvants with the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines. PMID:28127567

  13. The impact of assumptions regarding vaccine-induced immunity on the public health and cost-effectiveness of hepatitis A vaccination: Is one dose sufficient?

    PubMed Central

    Curran, Desmond; de Ridder, Marc; Van Effelterre, Thierry

    2016-01-01

    ABSTRACT Hepatitis A vaccination stimulates memory cells to produce an anamnestic response. In this study, we used a mathematical model to examine how long-term immune memory might convey additional protection against clinical/icteric infections. Dynamic and decision models were used to estimate the expected number of cases, and the costs and quality-adjusted life-years (QALYs), respectively. Several scenarios were explored by assuming: (1) varying duration of vaccine-induced immune memory, (2) and/or varying levels of vaccine-induced immune memory protection (IMP), (3) and/or varying levels of infectiousness in vaccinated individuals with IMP. The base case analysis assumed a time horizon of 25 y (2012 – 2036), with additional analyses over 50 and 75 y. The analyses were conducted in the Mexican public health system perspective. In the base case that assumed no vaccine-induced IMP, the 2-dose hepatitis A vaccination strategy was cost-effective compared with the 1-dose strategy over the 3 time horizons. However, it was not cost-effective if we assumed additional IMP durations of at least 10 y in the 25-y horizon. In the 50- and 75-y horizons, the 2-dose strategy was always cost-effective, except when 100% reduction in the probability of icteric Infections, 75% reduction in infectiousness, and mean durations of IMP of at least 50 y were assumed. This analysis indicates that routine vaccination of toddlers against hepatitis A virus would be cost-effective in Mexico using a single-dose vaccination strategy. However, the cost-effectiveness of a second dose depends on the assumptions of additional protection by IMP and the time horizon over which the analysis is performed. PMID:27428611

  14. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    PubMed Central

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  15. Tuberculosis vaccines in clinical trials

    PubMed Central

    Rowland, Rosalind; McShane, Helen

    2011-01-01

    Effective prophylactic and/or therapeutic vaccination is a key strategy for controlling the global TB epidemic. The partial effectiveness of the existing TB vaccine, bacille Calmette–Guérin (BCG), suggests effective vaccination is possible and highlights the need for an improved vaccination strategy. Clinical trials are evaluating both modifications to the existing BCG immunization methods and also novel TB vaccines, designed to replace or boost BCG. Candidate vaccines in clinical development include live mycobacterial vaccines designed to replace BCG, subunit vaccines designed to boost BCG and therapeutic vaccines designed as an adjunct to chemotherapy. There is a great need for validated animal models, identification of immunological biomarkers of protection and field sites with the capacity for large-scale efficacy testing in order to develop and license a novel TB vaccine or regimen. PMID:21604985

  16. Efficacy of commercial vaccines against newly emerging avian influenza H5N8 virus in Egypt.

    PubMed

    Kandeil, Ahmed; Sabir, Jamal S M; Abdelaal, Ahmed; Mattar, Ehab H; El-Taweel, Ahmed N; Sabir, Mumdooh J; Khalil, Ahmed Aly; Webby, Richard; Kayali, Ghazi; Ali, Mohamed A

    2018-06-26

    The newly emerging, highly pathogenic avian influenza (HPAI) H5N8 virus of clade 2.3.4.4 was recently detected in wild birds and domestic poultry in Egypt in the 2016/2017 winter season. Vaccination based on commercial H5 vaccines is used as an essential control strategy in Egyptian poultry. Here, we studied the efficacy of the eight most common commercial H5 poultry vaccines in the Egyptian market and compared them with an experimental vaccine based on the Egyptian LPAI H5N8 virus that was prepared by using reverse genetics. The experimental vaccine and Re-5 commercial vaccine were able to completely protect chickens and significantly reduce virus shedding. Our results indicate that most of the commercial poultry H5 vaccines used in the present study were ineffective because the seed viruses in these vaccines are genetically distinct from the H5N8 viruses currently circulating in Egypt. Although some of the commercial vaccines protected chickens from mortality, they failed to prevent chickens from shedding the virus. Accordingly, we recommend updating and reinforcing the H5N8 prevention and control strategies in Egypt. The vaccination strategy should be reconsidered based on currently circulating viruses.

  17. Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery

    PubMed Central

    Petersen, Latrisha K; Huntimer, Lucas; Walz, Katharine; Ramer-Tait, Amanda; Wannemuehler, Michael J; Narasimhan, Balaji

    2013-01-01

    Several challenges are associated with current vaccine strategies, including repeated immunizations, poor patient compliance, and limited approved routes for delivery, which may hinder induction of protective immunity. Thus, there is a need for new vaccine adjuvants capable of multi-route administration and prolonged antigen release at the site of administration by providing a depot within tissue. In this work, we designed a combinatorial platform to investigate the in vivo distribution, depot effect, and localized persistence of polyanhydride nanoparticles as a function of nanoparticle chemistry and administration route. Our observations indicated that the route of administration differentially affected tissue residence times. All nanoparticles rapidly dispersed when delivered intranasally but provided a depot when administered parenterally. When amphiphilic and hydrophobic nanoparticles were administered intranasally, they persisted within lung tissue. These results provide insights into the chemistry- and route-dependent distribution and tissue-specific association of polyanhydride nanoparticle-based vaccine adjuvants. PMID:23818778

  18. Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery.

    PubMed

    Petersen, Latrisha K; Huntimer, Lucas; Walz, Katharine; Ramer-Tait, Amanda; Wannemuehler, Michael J; Narasimhan, Balaji

    2013-01-01

    Several challenges are associated with current vaccine strategies, including repeated immunizations, poor patient compliance, and limited approved routes for delivery, which may hinder induction of protective immunity. Thus, there is a need for new vaccine adjuvants capable of multi-route administration and prolonged antigen release at the site of administration by providing a depot within tissue. In this work, we designed a combinatorial platform to investigate the in vivo distribution, depot effect, and localized persistence of polyanhydride nanoparticles as a function of nanoparticle chemistry and administration route. Our observations indicated that the route of administration differentially affected tissue residence times. All nanoparticles rapidly dispersed when delivered intranasally but provided a depot when administered parenterally. When amphiphilic and hydrophobic nanoparticles were administered intranasally, they persisted within lung tissue. These results provide insights into the chemistry- and route-dependent distribution and tissue-specific association of polyanhydride nanoparticle-based vaccine adjuvants.

  19. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways

    PubMed Central

    Leitner, Wolfgang W.; Hwang, Leroy N.; Deveer, Michael J.; Zhou, Aimin; Silverman, Robert H.; Williams, Bryan R.G.; Dubensky, Thomas W.; Ying, Han; Restifo, Nicholas P.

    2006-01-01

    Cancer vaccines targeting ‘self’ antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of protein kinase R. Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2′,5′-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA. PMID:12496961

  20. Next-generation dengue vaccines: novel strategies currently under development.

    PubMed

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  1. Serum Cytokine Profiles Associated with Specific Adjuvants Used in a DNA Prime-Protein Boost Vaccination Strategy

    PubMed Central

    Buglione-Corbett, Rachel; Pouliot, Kimberly; Marty-Roix, Robyn; West, Kim; Wang, Shixia; Lien, Egil; Lu, Shan

    2013-01-01

    In recent years, heterologous prime-boost vaccines have been demonstrated to be an effective strategy for generating protective immunity, consisting of both humoral and cell-mediated immune responses against a variety of pathogens including HIV-1. Previous reports of preclinical and clinical studies have shown the enhanced immunogenicity of viral vector or DNA vaccination followed by heterologous protein boost, compared to using either prime or boost components alone. With such approaches, the selection of an adjuvant for inclusion in the protein boost component is expected to impact the immunogenicity and safety of a vaccine. In this study, we examined in a mouse model the serum cytokine and chemokine profiles for several candidate adjuvants: QS-21, Al(OH)3, monophosphoryl lipid A (MPLA) and ISCOMATRIX™ adjuvant, in the context of a previously tested pentavalent HIV-1 Env DNA prime-protein boost formulation, DP6-001. Our data revealed that the candidate adjuvants in the context of the DP6-001 formulation are characterized by unique serum cytokine and chemokine profiles. Such information will provide valuable guidance in the selection of an adjuvant for future AIDS vaccine development, with the ultimate goal of enhancing immunogenicity while minimizing reactogenicity associated with the use of an adjuvant. More significantly, results reported here will add to the knowledge on how to include an adjuvant in the context of a heterologous prime-protein boost vaccination strategy in general. PMID:24019983

  2. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines

    PubMed Central

    Ferreira, Marcos Roberto A.; Moreira, Gustavo Marçal S. G.; da Cunha, Carlos Eduardo P.; Mendonça, Marcelo; Salvarani, Felipe M.; Moreira, Ângela N.; Conceição, Fabricio R.

    2016-01-01

    Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A–E) according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals. PMID:27879630

  3. An effective strategy for influenza vaccination of healthcare workers in Australia: experience at a large health service without a mandatory policy.

    PubMed

    Heinrich-Morrison, Kristina; McLellan, Sue; McGinnes, Ursula; Carroll, Brendan; Watson, Kerrie; Bass, Pauline; Worth, Leon J; Cheng, Allen C

    2015-02-06

    Annual influenza vaccination of healthcare workers (HCWs) is recommended in Australia, but uptake in healthcare facilities has historically been low (approximately 50%). The objective of this study was to develop and implement a dedicated campaign to improve uptake of staff influenza annual vaccination at a large Australian health service. A quality improvement program was developed at Alfred Health, a tertiary metropolitan health service spanning 3 campuses. Pre-campaign evaluation was performed by questionnaire in 2013 to plan a multimodal vaccination strategy. Reasons for and against vaccination were captured. A campaign targeting clinical and non-clinical healthcare workers was then implemented between March 31 and July 31 2014. Proportional uptake of influenza vaccination was determined by campus and staff category. Pre-campaign questionnaire responses were received from 1328/6879 HCWs (response rate 20.4%), of which 76% were vaccinated. Common beliefs held by unvaccinated staff included vaccine ineffectiveness (37.1%), that vaccination makes staff unwell (21.0%), or that vaccination is not required because staff are at low risk for acquiring influenza (20.2%). In 2014, 6009/7480 (80.3%) staff were vaccinated, with significant improvement in uptake across all campuses and amongst nursing, medical and allied health staff categories from 2013 to 2014 (p < 0.0001). A non-mandatory multimodal strategy utilising social marketing and a customised staff database was successful in increasing influenza vaccination uptake by all staff categories. The sustainability of dedicated campaigns must be evaluated.

  4. The future of human DNA vaccines

    PubMed Central

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-01-01

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including “epigenetics” and “omics” approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans PMID:22981627

  5. The future of human DNA vaccines.

    PubMed

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Orally administered adenoviral-based vaccine induces respiratory mucosal memory and protection against RSV infection in cotton rats.

    PubMed

    Joyce, Christina; Scallan, Ciaran D; Mateo, Roberto; Belshe, Robert B; Tucker, Sean N; Moore, Anne C

    2018-06-09

    A vaccine against Respiratory Syncytial Virus (RSV) is a major unmet need to prevent the significant morbidity and mortality that it causes in society. In addition to efficacy, such a vaccine must not induce adverse events, as previously occurred with a formalin-inactivated vaccine (FI-RSV). In this study, the safety, immunogenicity and efficacy of a molecularly adjuvanted adenovirus serotype 5 based RSV vaccine encoding the fusion (F) protein (Ad-RSVF) is demonstrated in cotton rats. Protective immunity to RSV was induced by Ad-RSVF when administered by an oral route as well as by intranasal and intramuscular routes. Compared to FI-RSV, the Ad-RSVF vaccine induced significantly greater neutralizing antibody responses and protection against RSV infection. Significantly, oral or intranasal immunization each induced protective multi-functional effector and memory B cell responses in the respiratory tract. This study uniquely demonstrates the capacity of an orally administered adenovirus vaccine to induce protective immunity in the respiratory tract against RSV in a pre-clinical model and supports further clinical development of this oral Ad-RSVF vaccine strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Phage display as a promising approach for vaccine development.

    PubMed

    Aghebati-Maleki, Leili; Bakhshinejad, Babak; Baradaran, Behzad; Motallebnezhad, Morteza; Aghebati-Maleki, Ali; Nickho, Hamid; Yousefi, Mehdi; Majidi, Jafar

    2016-09-29

    Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.

  8. Perceptions and experiences of childhood vaccination communication strategies among caregivers and health workers in Nigeria: A qualitative study

    PubMed Central

    Oyo-Ita, Angela; Glenton, Claire; Fretheim, Atle; Ames, Heather; Muloliwa, Artur; Kaufman, Jessica; Hill, Sophie; Cliff, Julie; Cartier, Yuri; Owoaje, Eme; Bosch-Capblanch, Xavier; Rada, Gabriel; Lewin, Simon

    2017-01-01

    Background Effective vaccination communication with parents is critical in efforts to overcome barriers to childhood vaccination, tackle vaccine hesitancy and improve vaccination coverage. Health workers should be able to provide information to parents and other caregivers and support them in reaching decisions about vaccinating their children. Limited information exists regarding the perceptions of caregivers and health workers on the vaccination communication strategies employed in Nigeria. This study, which forms part of the ‘Communicate to vaccinate’ (COMMVAC) project, aims to explore the perceptions and experiences of caregivers and health workers in Nigeria on vaccination communication strategies implemented in their settings. Methodology We conducted the study in two States: Bauchi in Northern Nigeria and Cross River in the south. We carried out observations (n = 40), in-depth interviews (n = 14) and focus group discussions (FGDs) (n = 12) amongst 14 purposively selected health workers, two community leaders and 84 caregivers in the two states. We transcribed data verbatim and analysed the data using a framework analysis approach. Results Caregivers were informed about vaccination activities through three main sources: health facilities (during health education sessions conducted at antenatal or immunization clinics); media outlets; and announcements (in churches/mosques, communities and markets). Caregivers reported that the information received was very useful. Their preferred sources of information included phone text messages, town announcers, media and church/mosque announcements. Some caregivers perceived the clinic environment, long waiting times and health worker attitudes as barriers to receiving vaccination information.When delivering communication interventions, health workers described issues tied to poor communication skills; poor motivation; and attitudes of community members, including vaccine resistance. Conclusion Communication about

  9. Meta-analysis of vaccine effectiveness of mumps-containing vaccine under different immunization strategies in China.

    PubMed

    Wang, Huaqing; Hu, Yongmei; Zhang, Guomin; Zheng, Jingshan; Li, Li; An, Zhijie

    2014-08-20

    To evaluate vaccine effectiveness (VE) of mumps-containing vaccine (MuV) under different immunization strategies. We conducted Medline, Embase, China National Knowledge Internet (CNKI), and Wan Fang Database (WF) searches for Chinese and English language articles describing studies of mumps VE in a Chinese population. Evaluated articles were scored on quality using the Newcastle-Ottawa Scale. Meta-analysis was conducted using random effects models. Sensitivity analysis, subgroup analysis and meta-regression were conducted to explore heterogeneity. A total of 32 studies in 19 papers were included; 14 were case-control studies, and 18 were cohort studies. Half of the studies were of high quality; 41% were of moderate quality. The overall VE for mumps containing vaccine (either one dose or two doses) was 85% (95% CI 76-90%) for cohort studies and 88% (95% CI 82-92%) for case-control studies. Using random effects meta-regression we found significant differences in some study covariates; for instance, VE varied by population (VE=88% in day care versus 69% in pupil, p=0.008) and emergency versus routine immunization (VE=80% for routine immunization versus 95% for emergency immunization, p=0.041). However, these results must be interpreted with caution due to the low number of studies in subgroups, with the permutation test giving non-significant results that indicated that the results may be due to chance. MuV provides good protection from mumps infection. Further studies of mumps VE with larger sample sizes enabling subgroup analyses will be needed to confirm our findings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Therapeutic vaccines in HBV: lessons from HCV.

    PubMed

    Barnes, Eleanor

    2015-02-01

    Currently, millions of people infected with hepatitis B virus (HBV) are committed to decades of treatment with anti-viral therapy to control viral replication. However, new tools for immunotherapy that include both viral vectors and molecular checkpoint inhibitors are now available. This has led to a resurgence of interest in new strategies to develop immunotherapeutic strategies with the aim of inducing HBeAg seroconversion--an end-point that has been associated with a decrease in the rates of disease progression. Ultimately, a true cure will involve the elimination of covalently closed circular DNA which presents a greater challenge for immunotherapy. In this manuscript, I describe the development of immunotherapeutic strategies for HBV that are approaching or currently in clinical studies, and draw on observations of T cell function in natural infection supported by recent animal studies that may lead to additional rational vaccine strategies using checkpoint inhibitors. I also draw on our recent experience in developing potent vaccines for HCV prophylaxis based on simian adenoviral and MVA vectors used in prime-boost strategies in both healthy volunteers and HCV infected patients. I have shown that the induction of T cell immune responses is markedly attenuated when administered to people with persistent HCV viremia. These studies and recently published animal studies using the woodchuck model suggest that potent vaccines based on DNA or adenoviral vectored vaccination represent a rational way forward. However, combining these with drugs to suppress viral replication, alongside checkpoint inhibitors may be required to induce long-term immune control.

  11. [Occurrence of genotypes of porcine circovirus (PCV2) in pig farms using different vaccination strategies against PCV2].

    PubMed

    Eddicks, Matthias; Szikora, Florian; Walhöfer, Nils; Sauter Louis, Carola; Reese, Sven; Banholzer, Elisabeth; Reiner, Gerald; Sutter, Gerd; Ritzmann, Mathias; Fux, Robert

    2017-04-19

    Since 2004/2005 a worldwide shift of the detection rate of porcine circovirus (PCV) has been observed from PCV2a towards PCV2b. Currently commercially available vaccines are based on genotype PCV2a. The study was conducted as a pilot study to evaluate the occurrence of PCV2a and PCV2b in farms with different vaccination strategies against PCV2. For this purpose a total of 405 piglets originating from nine farms (three farms with sow vaccination [SI], piglet vaccination [FI] and no vaccination [NI] against PCV2, respectively) were enrolled and followed from day 3 of life until slaughter. Serum of the piglets was examined for PCV2-DNA by quantitative PCR, genotype differentiating duplex PCR, and after sequencing of the total genome, PCV2 isolates were phylogenetically assigned. The evaluation included the data from 383 animals. In eight farms PCV2 could be detected (1x PCV2a; 6x PCV2b; 1x PCV2a and PCV2b). PCV2b was found in SI-, NI- and FI-farms, whereas PCV2a was only detected in SI- and NI-farms. A proportion of 55.4% was PCV2-positive at least once during the entire study period (FI: 7.8%, SI: 65.4%, NI: 93.7%). Of these samples 4.7% were PCV2a-, 92.2% PCV2b- and 2.4% PCV2a- and PCV2b-positive. The mean content of PCV2-DNA in the serum of PCV2b positive animals was significantly higher than from PCV2a positive animals. PCV2 isolates were identified as PCV2b-1A (5/9 farms), PCV2b-1B (1/9 farms) und PCV2a-2D (2/9 farms). The increased detection rate of PCV2b in comparison to PCV2a could be confirmed. The present study gives hint that the vaccination of piglets using PCV2a-based vaccines may lead to a further shift of the detection rate from PCV2a to PCV2b. To assess the clinical relevance of this observation, extensive comparative studies should be taken into account, which also evaluate the efficacy of PCV2a-based vaccines in PCV2a- and PCV2b-positive farms.

  12. Progress in Developing Virus-like Particle Influenza Vaccines

    PubMed Central

    Quan, Fu-Shi; Lee, Young-Tae; Kim, Ki-Hye; Kim, Min-Chul; Kang, Sang-Moo

    2016-01-01

    Summary Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination. PMID:27058302

  13. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants.

    PubMed

    Lebel, Marie-Ève; Chartrand, Karine; Leclerc, Denis; Lamarre, Alain

    2015-08-05

    Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.

  14. Realistic decision-making processes in a vaccination game

    NASA Astrophysics Data System (ADS)

    Iwamura, Yoshiro; Tanimoto, Jun

    2018-03-01

    Previous studies of vaccination games have nearly always assumed a pairwise comparison between a focal and neighboring player for the strategy updating rule, which comes from numerous compiled studies on spatial versions of 2-player and 2-strategy (2 × 2) games such as the spatial prisoner's dilemma (SPD). We propose, in this study, new update rules because the human decision-making process of whether to commit to a vaccination is obviously influenced by a "sense of crisis" or "fear" urging him/her toward vaccination, otherwise they will likely be infected. The rule assumes that an agent evaluates whether getting a vaccination or trying to free ride should be attempted based on observations of whether neighboring non-vaccinators were able to successfully free ride during the previous time-step. Compared to the conventional updating rule (standard pairwise comparison assuming a Fermi function), the new rules generally realize higher vaccination coverage and smaller final epidemic sizes. One rule in particular shows very good performance with significantly smaller epidemic sizes despite comparable levels of vaccination coverage. This is because the specific update rule helps vaccinators spread widely in the domain, which effectively hampers the spread of epidemics.

  15. Strategies for continuous evaluation of the benefit-risk profile of HPV-16/18-AS04-adjuvanted vaccine.

    PubMed

    Angelo, Maria-Genalin; Taylor, Sylvia; Struyf, Frank; Tavares Da Silva, Fernanda; Arellano, Felix; David, Marie-Pierre; Dubin, Gary; Rosillon, Dominique; Baril, Laurence

    2014-11-01

    The HPV types 16/18-AS04-adjuvanted cervical cancer vaccine, Cervarix(®) (HPV-16/18-vaccine, GlaxoSmithKline, Belgium) was first approved in 2007 and is licensed in 134 countries for the prevention of persistent infection, premalignant cervical lesions and cervical cancer caused by oncogenic HPV. Benefit-risk status requires continual re-evaluation as vaccine uptake increases, as the epidemiology of the disease evolves and as new information becomes available. This paper provides an example of benefit-risk considerations and risk-management planning. Evaluation of the benefit-risk of HPV-16/18-vaccine post-licensure includes studies with a range of designs in many countries and in collaboration with national public agencies and regulatory authorities. The strategy to assess benefit versus risk will continue to evolve and adapt to the changing HPV-16/18-vaccine market.

  16. [Real-time monitoring of anti-influenza vaccination in the 65 and over population in France based on vaccine sales].

    PubMed

    Pivette, M; Auvigne, V; Guérin, P; Mueller, J E

    2017-04-01

    The aim of this study was to describe a tool based on vaccine sales to estimate vaccination coverage against seasonal influenza in near real-time in the French population aged 65 and over. Vaccine sales data available on sale-day +1 came from a stratified sample of 3004 pharmacies in metropolitan France. Vaccination coverage rates were estimated between 2009 and 2014 and compared with those obtained based on vaccination refund data from the general health insurance scheme. The seasonal vaccination coverage estimates were highly correlated with those obtained from refund data. They were also slightly higher, which can be explained by the inclusion of non-reimbursed vaccines and the consideration of all individuals aged 65 and over. We have developed an online tool that provides estimates of daily vaccination coverage during each vaccination campaign. The developed tool provides a reliable and near real-time estimation of vaccination coverage among people aged 65 and over. It can be used to evaluate and adjust public health messages. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. A cross sectional survey of attitudes, awareness and uptake of the parental pertussis booster vaccine as part of a cocooning strategy, Victoria, Australia

    PubMed Central

    2013-01-01

    Background The Victorian Government Department of Health funded a diphtheria, tetanus and acellular pertussis vaccine for parents of infants from June 2009 to June 2012 as part of a cocooning strategy for the control of pertussis. The aim of this study was to assess parents’ attitudes and awareness of the vaccination program, and to estimate vaccine uptake. Methods A cross-sectional survey of 253 families with a child born in the first quarter of 2010 residing within five metropolitan and four rural local government areas in Victoria was conducted. Univariate analyses were performed to describe the relationship between demographic variables, knowledge and awareness of the disease, the vaccine program and vaccine uptake. Multivariate analyses examining predictors for awareness of the vaccine program and for the uptake of vaccination were also conducted. Results One hundred and five families were surveyed (response rate 43%). Of these, 93% indicated that they had heard of ‘pertussis’ or ‘whooping cough’ and 75% of mothers and 69% of fathers were aware the pertussis vaccine was available and funded for new parents. Overall, 70% of mothers and 53% of fathers were vaccinated following their child’s birth, with metropolitan fathers less likely to be vaccinated as rural fathers (RR = 0.6, p = 0.002). Being a younger mother (p = 0.02) or father (p = 0.047), and being an Australian-born father (RR = 1.9, p = 0.03) were found to predict uptake of the vaccine in parents. Conclusion Parents indicated a reasonable level of knowledge of pertussis and a willingness to be vaccinated to protect their child. However, vaccine uptake estimates indicated further opportunity for program improvement. Future cocooning strategies would benefit from specifically targeting fathers and metropolitan maternity hospitals to increase vaccine uptake. Wider promotion of the availability of vaccine providers may increase uptake to maximise the success of cocooning

  18. Structure-based design of broadly protective group a streptococcal M protein-based vaccines.

    PubMed

    Dale, James B; Smeesters, Pierre R; Courtney, Harry S; Penfound, Thomas A; Hohn, Claudia M; Smith, Jeremy C; Baudry, Jerome Y

    2017-01-03

    A major obstacle to the development of broadly protective M protein-based group A streptococcal (GAS) vaccines is the variability within the N-terminal epitopes that evoke potent bactericidal antibodies. The concept of M type-specific protective immune responses has recently been challenged based on the observation that multivalent M protein vaccines elicited cross-reactive bactericidal antibodies against a number of non-vaccine M types of GAS. Additionally, a new "cluster-based" typing system of 175M proteins identified a limited number of clusters containing closely related M proteins. In the current study, we used the emm cluster typing system, in combination with computational structure-based peptide modeling, as a novel approach to the design of potentially broadly protective M protein-based vaccines. M protein sequences (AA 16-50) from the E4 cluster containing 17 emm types of GAS were analyzed using de novo 3-D structure prediction tools and the resulting structures subjected to chemical diversity analysis to identify sequences that were the most representative of the 3-D physicochemical properties of the M peptides in the cluster. Five peptides that spanned the range of physicochemical attributes of all 17 peptides were used to formulate synthetic and recombinant vaccines. Rabbit antisera were assayed for antibodies that cross-reacted with E4 peptides and whole bacteria by ELISA and for bactericidal activity against all E4GAS. The synthetic vaccine rabbit antisera reacted with all 17 E4M peptides and demonstrated bactericidal activity against 15/17 E4GAS. A recombinant hybrid vaccine containing the same E4 peptides also elicited antibodies that cross-reacted with all E4M peptides. Comprehensive studies using structure-based design may result in a broadly protective M peptide vaccine that will elicit cluster-specific and emm type-specific antibody responses against the majority of clinically relevant emm types of GAS. Copyright © 2016 Elsevier Ltd. All

  19. Impact and Cost-effectiveness of 3 Doses of 9-Valent Human Papillomavirus (HPV) Vaccine Among US Females Previously Vaccinated With 4-Valent HPV Vaccine.

    PubMed

    Chesson, Harrell W; Laprise, Jean-François; Brisson, Marc; Markowitz, Lauri E

    2016-06-01

    We estimated the potential impact and cost-effectiveness of providing 3-doses of nonavalent human papillomavirus (HPV) vaccine (9vHPV) to females aged 13-18 years who had previously completed a series of quadrivalent HPV vaccine (4vHPV), a strategy we refer to as "additional 9vHPV vaccination." We used 2 distinct models: (1) the simplified model, which is among the most basic of the published dynamic HPV models, and (2) the US HPV-ADVISE model, a complex, stochastic, individual-based transmission-dynamic model. When assuming no 4vHPV cross-protection, the incremental cost per quality-adjusted life-year (QALY) gained by additional 9vHPV vaccination was $146 200 in the simplified model and $108 200 in the US HPV-ADVISE model ($191 800 when assuming 4vHPV cross-protection). In 1-way sensitivity analyses in the scenario of no 4vHPV cross-protection, the simplified model results ranged from $70 300 to $182 000, and the US HPV-ADVISE model results ranged from $97 600 to $118 900. The average cost per QALY gained by additional 9vHPV vaccination exceeded $100 000 in both models. However, the results varied considerably in sensitivity and uncertainty analyses. Additional 9vHPV vaccination is likely not as efficient as many other potential HPV vaccination strategies, such as increasing primary 9vHPV vaccine coverage. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Logistical constraints lead to an intermediate optimum in outbreak response vaccination

    PubMed Central

    Shea, Katriona; Ferrari, Matthew

    2018-01-01

    Dynamic models in disease ecology have historically evaluated vaccination strategies under the assumption that they are implemented homogeneously in space and time. However, this approach fails to formally account for operational and logistical constraints inherent in the distribution of vaccination to the population at risk. Thus, feedback between the dynamic processes of vaccine distribution and transmission might be overlooked. Here, we present a spatially explicit, stochastic Susceptible-Infected-Recovered-Vaccinated model that highlights the density-dependence and spatial constraints of various diffusive strategies of vaccination during an outbreak. The model integrates an agent-based process of disease spread with a partial differential process of vaccination deployment. We characterize the vaccination response in terms of a diffusion rate that describes the distribution of vaccination to the population at risk from a central location. This generates an explicit trade-off between slow diffusion, which concentrates effort near the central location, and fast diffusion, which spreads a fixed vaccination effort thinly over a large area. We use stochastic simulation to identify the optimum vaccination diffusion rate as a function of population density, interaction scale, transmissibility, and vaccine intensity. Our results show that, conditional on a timely response, the optimal strategy for minimizing outbreak size is to distribute vaccination resource at an intermediate rate: fast enough to outpace the epidemic, but slow enough to achieve local herd immunity. If the response is delayed, however, the optimal strategy for minimizing outbreak size changes to a rapidly diffusive distribution of vaccination effort. The latter may also result in significantly larger outbreaks, thus suggesting a benefit of allocating resources to timely outbreak detection and response. PMID:29791432

  1. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  2. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Planning influenza vaccination programs: a cost benefit model

    PubMed Central

    2012-01-01

    Background Although annual influenza vaccination could decrease the significant economic and humanistic burden of influenza in the United States, immunization rates are below recommended levels, and concerns remain whether immunization programs can be cost beneficial. The research objective was to compare cost benefit of various immunization strategies from employer, employee, and societal perspectives. Methods An actuarial model was developed based on the published literature to estimate the costs and benefits of influenza immunization programs. Useful features of the model included customization by population age and risk-level, potential pandemic risk, and projection year. Various immunization strategies were modelled for an average U.S. population of 15,000 persons vaccinated in pharmacies or doctor’s office during the 2011/12 season. The primary outcome measure reported net cost savings per vaccinated (PV) from the perspective of various stakeholders. Results Given a typical U.S. population, an influenza immunization program will be cost beneficial for employers when more than 37% of individuals receive vaccine in non-traditional settings such as pharmacies. The baseline scenario, where 50% of persons would be vaccinated in non-traditional settings, estimated net savings of $6 PV. Programs that limited to pharmacy setting ($31 PV) or targeted persons with high-risk comorbidities ($83 PV) or seniors ($107 PV) were found to increase cost benefit. Sensitivity analysis confirmed the scenario-based findings. Conclusions Both universal and targeted vaccination programs can be cost beneficial. Proper planning with cost models can help employers and policy makers develop strategies to improve the impact of immunization programs. PMID:22835081

  4. Peptide/protein vaccine delivery system based on PLGA particles.

    PubMed

    Allahyari, Mojgan; Mohit, Elham

    2016-03-03

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.

  5. Peptide/protein vaccine delivery system based on PLGA particles

    PubMed Central

    Allahyari, Mojgan; Mohit, Elham

    2016-01-01

    abstract Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  6. Clinical and economic assessment of different general population strategies of pertussis vaccine booster regarding number of doses and age of application for reducing whooping cough disease burden: a systematic review.

    PubMed

    Rodríguez-Cobo, Iria; Chen, Yen-Fu; Olowokure, Babatunde; Litchfield, Ian

    2008-12-09

    Pertussis continues to be an important cause of morbidity and mortality in children too young to be fully protected despite high vaccination coverage. This has been attributed to waning immunity in older people, leading to the development of strategies to increase levels of immunity. A systematic review was conducted to assess the clinical and cost effectiveness of four population-based strategies for pertussis booster vaccination: single booster at 12-24 months old, single pre-school booster, single adolescent booster and multiple boosters in adulthood every 10 years. Electronic databases and Internet resources were searched to June 2006. Nine observational studies, four mathematical models and eight economic evaluations were included, evaluating four different strategies. Strong evidence to recommend any of these strategies was not found.

  7. Assessing the Effectiveness and Cost-Benefit of Test-and-Vaccinate Policy for Supplementary Vaccination against Rubella with Limited Doses

    PubMed Central

    Saito, Masaya M.; Kinoshita, Ryo

    2018-01-01

    Elevating herd immunity level against rubella is essential to prevent congenital rubella syndrome (CRS). Insufficient vaccination coverage left susceptible pockets among adults in Japan, and the outbreak of rubella from 2012 to 2013 resulted in 45 observed CRS cases. Given a limited stock of rubella-containing vaccine (RCV) available, the Japanese government recommended healthcare providers to prioritize vaccination to those confirmed with low level of immunity, or to those likely to transmit to pregnant women. Although a test-and-vaccinate policy could potentially help reduce the use of the limited stockpile of vaccines, by selectively elevating herd immunity, the cost of serological testing is generally high and comparable to the vaccine itself. Here, we aimed to examine whether random vaccination would be more cost-beneficial than the test-and-vaccinate strategy. A mathematical model was employed to evaluate the vaccination policy implemented in 2012–2013, quantifying the benefit-to-cost ratio to achieve herd immunity. The modelling exercise demonstrated that, while the test-and-vaccinate strategy can efficiently achieve herd immunity when stockpiles of RCV are limited, random vaccination would be a more cost-beneficial strategy. As long as the herd immunity acts as the goal of vaccination, our findings apply to future supplementary immunization strategy. PMID:29565821

  8. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response.

    PubMed

    Tzeng, Stephany Y; McHugh, Kevin J; Behrens, Adam M; Rose, Sviatlana; Sugarman, James L; Ferber, Shiran; Langer, Robert; Jaklenec, Ana

    2018-05-21

    Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule-based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. Copyright © 2018 the Author(s). Published by PNAS.

  9. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response

    PubMed Central

    Tzeng, Stephany Y.; McHugh, Kevin J.; Behrens, Adam M.; Rose, Sviatlana; Sugarman, James L.; Ferber, Shiran; Jaklenec, Ana

    2018-01-01

    Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule–based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. PMID:29784798

  10. DNA and RNA-based vaccines: principles, progress and prospects

    PubMed Central

    Leitner, Wolfgang W.; Ying, Han; Restifo, Nicholas P.

    2007-01-01

    DNA vaccines were introduced less than a decade ago but have already been applied to a wide range of infectious and malignant diseases. Here we review the current understanding of the mechanisms underlying the activities of these new vaccines. We focus on recent strategies designed to enhance their function including the use of immunostimulatory (CpG) sequences, dendritic cells (DC), co-stimulatory molecules and cytokine- and chemokine-adjuvants. Although genetic vaccines have been significantly improved, they may not be sufficiently immunogenic for the therapeutic vaccination of patients with infectious diseases or cancer in clinical trials. One promising approach aimed at dramatically increasing the immunogenicity of genetic vaccines involves making them ‘self-replicating’. This can be accomplished by using a gene encoding RNA replicase, a polyprotein derived from alphaviruses, such as Sindbis virus. Replicase-containing RNA vectors are significantly more immunogenic than conventional plasmids, immunizing mice at doses as low as 0.1 μg of nucleic acid injected once intramuscularly. Cells transfected with ‘self-replicating’ vectors briefly produce large amounts of antigen before undergoing apoptotic death. This death is a likely result of requisite double-stranded (ds) RNA intermediates, which also have been shown to super-activate DC. Thus, the enhanced immunogenicity of ‘self-replicating’ genetic vaccines may be a result of the production of pro-inflammatory dsRNA, which mimics an RNA-virus infection of host cells. PMID:10580187

  11. Characterization and Epitope Mapping of the Polyclonal Antibody Repertoire Elicited by Ricin Holotoxin-Based Vaccination

    PubMed Central

    Cohen, Ofer; Mechaly, Adva; Sabo, Tamar; Alcalay, Ron; Aloni-Grinstein, Ronit; Seliger, Nehama; Kronman, Chanoch

    2014-01-01

    Ricin, one of the most potent and lethal toxins known, is classified by the Centers for Disease Control and Prevention (CDC) as a select agent. Currently, there is no available antidote against ricin exposure, and the most promising therapy is based on neutralizing antibodies elicited by active vaccination or that are given passively. The aim of this study was to characterize the repertoire of anti-ricin antibodies generated in rabbits immunized with ricin toxoid. These anti-ricin antibodies exhibit an exceptionally high avidity (thiocyanate-based avidity index, 9 M) toward ricin and an apparent affinity of 1 nM. Utilizing a novel tissue culture-based assay that enables the determination of ricin activity within a short time period, we found that the anti-ricin antibodies also possess a very high neutralizing titer. In line with these findings, these antibodies conferred mice with full protection against pulmonary ricinosis when administered as a passive vaccination. Epitope mapping analysis using phage display random peptide libraries revealed that the polyclonal serum contains four immunodominant epitopes, three of which are located on the A subunit and one on the B subunit of ricin. Only two of the four epitopes were found to have a significant role in ricin neutralization. To the best of our knowledge, this is the first work that characterizes these immunological aspects of the polyclonal response to ricin holotoxin-based vaccination. These findings provide useful information and a possible strategy for the development and design of an improved ricin holotoxin-based vaccine. PMID:25209559

  12. Characterization and epitope mapping of the polyclonal antibody repertoire elicited by ricin holotoxin-based vaccination.

    PubMed

    Cohen, Ofer; Mechaly, Adva; Sabo, Tamar; Alcalay, Ron; Aloni-Grinstein, Ronit; Seliger, Nehama; Kronman, Chanoch; Mazor, Ohad

    2014-11-01

    Ricin, one of the most potent and lethal toxins known, is classified by the Centers for Disease Control and Prevention (CDC) as a select agent. Currently, there is no available antidote against ricin exposure, and the most promising therapy is based on neutralizing antibodies elicited by active vaccination or that are given passively. The aim of this study was to characterize the repertoire of anti-ricin antibodies generated in rabbits immunized with ricin toxoid. These anti-ricin antibodies exhibit an exceptionally high avidity (thiocyanate-based avidity index, 9 M) toward ricin and an apparent affinity of 1 nM. Utilizing a novel tissue culture-based assay that enables the determination of ricin activity within a short time period, we found that the anti-ricin antibodies also possess a very high neutralizing titer. In line with these findings, these antibodies conferred mice with full protection against pulmonary ricinosis when administered as a passive vaccination. Epitope mapping analysis using phage display random peptide libraries revealed that the polyclonal serum contains four immunodominant epitopes, three of which are located on the A subunit and one on the B subunit of ricin. Only two of the four epitopes were found to have a significant role in ricin neutralization. To the best of our knowledge, this is the first work that characterizes these immunological aspects of the polyclonal response to ricin holotoxin-based vaccination. These findings provide useful information and a possible strategy for the development and design of an improved ricin holotoxin-based vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Effective influenza vaccines for children

    PubMed Central

    Banzhoff, Angelika; Stoddard, Jeffrey J.

    2012-01-01

    Seasonal influenza causes clinical illness and hospitalization in all age groups; however, conventional inactivated vaccines have only limited efficacy in young children. MF59®, an oil-in-water emulsion adjuvant, has been used since the 1990s to enhance the immunogenicity of influenza vaccines in the elderly, a population with waning immune function due to immunosenescence.   Clinical trials now provide information to support a favorable immunogenicity and safety profile of MF59-adjuvanted influenza vaccine in young children. Published data indicate that Fluad®, a trivalent seasonal influenza vaccine with MF59, was immunogenic and well tolerated in young children, with a benefit/risk ratio that supports routine clinical use. A recent clinical trial also shows that Fluad provides high efficacy against PCR-confirmed influenza. Based on the results of clinical studies in children, the use of MF59-adjuvanted vaccine offers the potential to enhance efficacy and make vaccination a viable prevention and control strategy in this population. PMID:22327501

  14. Cost-effectiveness analysis of vaccinating children in Malawi with RTS,S vaccines in comparison with long-lasting insecticide-treated nets.

    PubMed

    Seo, Mikyung Kelly; Baker, Peter; Ngo, Karen Ngoc-Lan

    2014-02-24

    New RTS,S malaria vaccines may soon be licensed, yet its cost-effectiveness is unknown. Before the widespread introduction of RTS,S vaccines, cost-effectiveness studies are needed to help inform governments in resource-poor settings about how best to prioritize between the new vaccine and existing malaria interventions. A Markov model simulated malaria progression in a hypothetical Malawian birth cohort. Parameters were based on published data. Three strategies were compared: no intervention, vaccination at one year, and long-lasting, insecticide-treated nets (LLINs) at birth. Both health service and societal perspectives were explored. Health outcomes were measured in disability-adjusted life years (DALYs) averted and costed in 2012 US$. Incremental cost-effectiveness ratios (ICERs) were calculated and extensive sensitivity analyses were conducted. Three times GDP per capita ($1,095) per DALY averted was used for a cost-effectiveness threshold, whilst one times GDP ($365) was considered 'very cost-effective'. From a societal perspective the vaccine strategy was dominant. It averted 0.11 more DALYs than LLINs and 0.372 more DALYs than the no intervention strategy per person, while costing $10.04 less than LLINs and $59.74 less than no intervention. From a health service perspective the vaccine's ICER was $145.03 per DALY averted, and thus can be considered very cost-effective. The results were robust to changes in all variables except the vaccine and LLINs' duration of efficacy. Vaccines remained cost-effective even at the lowest assumed efficacy levels of 49.6% (mild malaria) and 14.2% (severe malaria), and the highest price of $15. However, from a societal perspective, if the vaccine duration efficacy was set below 2.69 years or the LLIN duration of efficacy was greater than 4.24 years then LLINs became the more cost-effective strategy. The results showed that vaccinating Malawian children with RTS,S vaccines was very cost-effective from both a societal and a

  15. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    PubMed

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  16. Microneedle-based vaccines

    PubMed Central

    Prausnitz, Mark R.; Mikszta, John A.; Cormier, Michel; Andrianov, Alexander K.

    2010-01-01

    The threat of pandemic influenza and other public health needs motivates development of better vaccine delivery systems. To address this need, microneedles have been developed as micron-scale needles fabricated using low-cost manufacturing methods that administer vaccine into the skin using a simple device that may be suitable for self-administration. Delivery using solid or hollow microneedles can be accomplished by (i) piercing the skin and then applying a vaccine formulation or patch onto the permeabilized skin, (ii) coating or encapsulating vaccine onto or within microneedles for rapid, or delayed, dissolution and release in the skin and (iii) injection into the skin using a modified syringe or pump. Extensive clinical experience with smallpox, TB and other vaccines has shown that vaccine delivery into the skin using conventional intradermal injection is generally safe and effective and often elicits the same immune responses at lower doses compared to intramuscular injection. Animal experiments using microneedles have shown similar benefits. Microneedles have been used to deliver whole, inactivated virus; trivalent split antigen vaccines; and DNA plasmid encoding the influenza hemagglutinin to rodents and found strong antibody responses. In addition, ChimeriVax™-JE against yellow fever was administered to non-human primates and generated protective levels of neutralizing antibodies more than seven times greater than subcutaneous delivery; DNA plasmid encoding hepatitis B surface antigen was administered to mice and generated antibody and T cell responses at least as strong as hypodermic injections; recombinant Protective Antigen of Baccilus anthracis was administered to rabbits and provided complete protection from lethal aerosol anthrax spore challenge at a lower dose than intramuscular injection; and DNA plasmid encoding four vaccinia virus genes administered to mice in combination with electroporation generated neutralizing antibodies that apparently

  17. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils.

    PubMed

    Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei

    2017-01-01

    Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori ( H. pylori ) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori , remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA 27-53 , UreA 183-203 , HpaA 132-141 , and HSP60 189-203 ), and also the epitope-rich regions of urease B subunit (UreB 158-251 and UreB 321-385 ) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori -infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB 158-172 , UreB 181-195 , UreB 211-225 , UreB 349-363 , HpaA 132-141 , and HSP60 189-203 ). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4 + T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori . These results indic ate

  18. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils

    PubMed Central

    Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei

    2017-01-01

    Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a

  19. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    PubMed

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  20. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    PubMed Central

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  1. Does Choice of Influenza Vaccine Type Change Disease Burden and Cost-Effectiveness in the United States? An Agent-Based Modeling Study.

    PubMed

    DePasse, Jay V; Smith, Kenneth J; Raviotta, Jonathan M; Shim, Eunha; Nowalk, Mary Patricia; Zimmerman, Richard K; Brown, Shawn T

    2017-05-01

    Offering a choice of influenza vaccine type may increase vaccine coverage and reduce disease burden, but it is more costly. This study calculated the public health impact and cost-effectiveness of 4 strategies: no choice, pediatric choice, adult choice, or choice for both age groups. Using agent-based modeling, individuals were simulated as they interacted with others, and influenza was tracked as it spread through a population in Washington, DC. Influenza vaccination coverage derived from data from the Centers for Disease Control and Prevention was increased by 6.5% (range, 3.25%-11.25%), reflecting changes due to vaccine choice. With moderate influenza infectivity, the number of cases averaged 1,117,285 for no choice, 1,083,126 for pediatric choice, 1,009,026 for adult choice, and 975,818 for choice for both age groups. Averted cases increased with increased coverage and were highest for the choice-for-both-age-groups strategy; adult choice also reduced cases in children. In cost-effectiveness analysis, choice for both age groups was dominant when choice increased vaccine coverage by ≥3.25%. Offering a choice of influenza vaccines, with reasonable resultant increases in coverage, decreased influenza cases by >100,000 with a favorable cost-effectiveness profile. Clinical trials testing the predictions made based on these simulation results and deliberation of policies and procedures to facilitate choice should be considered. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Cost-effectiveness of vaccination with a quadrivalent HPV vaccine in Germany using a dynamic transmission model

    PubMed Central

    2012-01-01

    Introduction Persistent infections with human papillomavirus (HPV) are a necessary cause of cervical cancer and are responsible for important morbidity in men and women. Since 2007, HPV vaccination has been recommended and funded for all girls aged 12 to 17 in Germany. A previously published cost-effectiveness analysis, using a static model, showed that a quadrivalent HPV vaccination programme for 12-year-old girls in Germany would be cost effective. Here we present the results from a dynamic transmission model that can be used to evaluate the impact and cost-effectiveness of different vaccination schemas. Methods We adapted a HPV dynamic transmission model, which has been used in other countries, to the German context. The model was used to compare a cervical cancer screening only strategy with a strategy of combining vaccination of females aged 12–17 years old and cervical cancer screening, based on the current recommendations in Germany. In addition, the impact of increasing vaccination coverage in this cohort of females aged 12–17 years old was evaluated in sensitivity analysis. Results The results from this analysis show that the current quadrivalent HPV vaccination programme of females ages 12 to 17 in Germany is cost-effective with an ICER of 5,525€/QALY (quality adjusted life year). The incremental cost-effectiveness ratio (ICER) increased to 10,293€/QALY when the vaccine effects on HPV6/11 diseases were excluded. At steady state, the model predicted that vaccinating girls aged 12 to 17 could reduce the number of HPV 6/11/16/18-related cervical cancers by 65% and genital warts among women and men by 70% and 48%, respectively. The impact on HPV-related disease incidence and costs avoided would occur relatively soon after initiating the vaccine programme, with much of the early impact being due to the prevention of HPV6/11-related genital warts. Conclusions These results show that the current quadrivalent HPV vaccination and cervical cancer screening

  3. Cost-effectiveness of vaccination with a quadrivalent HPV vaccine in Germany using a dynamic transmission model.

    PubMed

    Schobert, Deniz; Remy, Vanessa; Schoeffski, Oliver

    2012-09-25

    Persistent infections with human papillomavirus (HPV) are a necessary cause of cervical cancer and are responsible for important morbidity in men and women. Since 2007, HPV vaccination has been recommended and funded for all girls aged 12 to 17 in Germany. A previously published cost-effectiveness analysis, using a static model, showed that a quadrivalent HPV vaccination programme for 12-year-old girls in Germany would be cost effective. Here we present the results from a dynamic transmission model that can be used to evaluate the impact and cost-effectiveness of different vaccination schemas. We adapted a HPV dynamic transmission model, which has been used in other countries, to the German context. The model was used to compare a cervical cancer screening only strategy with a strategy of combining vaccination of females aged 12-17 years old and cervical cancer screening, based on the current recommendations in Germany. In addition, the impact of increasing vaccination coverage in this cohort of females aged 12-17 years old was evaluated in sensitivity analysis. The results from this analysis show that the current quadrivalent HPV vaccination programme of females ages 12 to 17 in Germany is cost-effective with an ICER of 5,525€/QALY (quality adjusted life year). The incremental cost-effectiveness ratio (ICER) increased to 10,293€/QALY when the vaccine effects on HPV6/11 diseases were excluded. At steady state, the model predicted that vaccinating girls aged 12 to 17 could reduce the number of HPV 6/11/16/18-related cervical cancers by 65% and genital warts among women and men by 70% and 48%, respectively. The impact on HPV-related disease incidence and costs avoided would occur relatively soon after initiating the vaccine programme, with much of the early impact being due to the prevention of HPV6/11-related genital warts. These results show that the current quadrivalent HPV vaccination and cervical cancer screening programmes in Germany will substantially

  4. Ontology-supported research on vaccine efficacy, safety and integrative biological networks.

    PubMed

    He, Yongqun

    2014-07-01

    While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.

  5. Vaccinating healthcare workers: Level of implementation, barriers and proposal for evidence-based policies in Turkey

    PubMed Central

    Tanriover, Mine Durusu; Altınel, Serdar; Unal, Serhat

    2017-01-01

    ABSTRACT The role of healthcare workers in life-long vaccination is very important in the means of 2 sided infection, rising patient awareness and being a role model for the patients. Numerous organizations publish guidelines for vaccination of HCWs, while healthcare facilities develop vaccination policies according to the accreditation standards. Nevertheless, vaccination rates among HCWs are far below targets. The obstacles to getting vaccinated or recommending vaccination may include rather universal factors such as the vaccine paradox, however in the case of HCWs, probably a different set of factors are included. The aims of this article are to gain an overview of vaccination strategies for HCWs, to assess the coverage rates of HCWs and make in-depth analyses of the potential barriers to vaccination and potential factors to motivate HCWs for vaccination in Turkey and to compare them with the global picture to improve implementation of policies concerning vaccination of HCWs. PMID:28059668

  6. Polyvalent vaccine approaches to combat HIV-1 diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette; Hraber, Peter Thomas; Wagh, Kshitij

    In this study, a key unresolved challenge for developing an effective HIV-1 vaccine is the discovery of strategies to elicit immune responses that are able to cross-protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV-1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine-elicited T-cell responses, which contribute to the control of HIV-1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novelmore » vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross-reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV-1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage-based design strategies to illustrate how such in-depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.« less

  7. Polyvalent vaccine approaches to combat HIV-1 diversity

    DOE PAGES

    Korber, Bette; Hraber, Peter Thomas; Wagh, Kshitij; ...

    2017-01-30

    In this study, a key unresolved challenge for developing an effective HIV-1 vaccine is the discovery of strategies to elicit immune responses that are able to cross-protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV-1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine-elicited T-cell responses, which contribute to the control of HIV-1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novelmore » vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross-reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV-1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage-based design strategies to illustrate how such in-depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.« less

  8. Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies.

    PubMed

    Ni, Ming; Hoffmann, Jean-Marc; Schmitt, Michael; Schmitt, Anita

    2016-09-01

    Dendritic cells (DCs) are the most professional antigen-presenting cells eliciting cellular and humoral immune responses against cancer cells by expressing these antigens on MHC class I/II complexes to T cells. Therefore, they have been employed in many clinical trials as cancer vaccines for patients with cancer. This review focuses on the use of DCs in leukemia patients expressing leukemia-associated antigens (LAAs). The contribution of both stimulating vs. tolerogenic DCs as well as of other factors to the milieu of anti-leukemia immune responses are discussed. Several DC vaccination strategies like leukemia lysate, proteins and peptides have been developed. Next generation DC vaccines comprise transduction of DCs with retroviral vectors encoding for LAAs, cytokines and costimulatory molecules as well as transfection of DCs with naked RNA encoding for LAAs. Published as well as ongoing clinical trials are reported and critically reviewed. Future results will demonstrate whether next-generation DCs are really superior to conventional pulsing with peptide, protein or tumor lysate. However, currently available methods based on nucleic acid transfection/transduction are tempting in terms of material production costs and time for clinical application according to good manufacturing practice (GMP).

  9. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  10. Vaccine approaches conferring cross-protection against influenza viruses

    PubMed Central

    Vemula, Sai V.; Sayedahmed, Ekramy E; Sambhara, Suryaprakash; Mittal, Suresh K.

    2018-01-01

    Introduction Annual vaccination is one of the most efficient and cost-effective strategies to prevent and control influenza epidemics. Most of currently available influenza vaccines are strong inducer of antibody responses against viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), but are poor inducers of cell-mediated immune responses against conserved internal proteins. Moreover, due to the high variability of viral surface proteins because of antigenic drift or antigenic shift, many of the currently licensed vaccines confer little or no protection against drift or shift variants. Areas covered Next generation influenza vaccines that can induce humoral immune responses to receptor-binding epitopes as well as broadly neutralizing conserved epitopes, and cell-mediated immune responses against highly conserved internal proteins would be effective against variant viruses as well as a novel pandemic influenza until circulating strain-specific vaccines become available. Here we discuss vaccine approaches that have potential to provide broad spectrum protection against influenza viruses. Expert opinion Based on current progress in defining cross-protective influenza immunity, it seems that the development of a universal influenza vaccine is feasible. It would revolutionize the strategy for influenza pandemic preparedness, and significantly impact the shelf-life and protection efficacy of seasonal influenza vaccines. PMID:28925296

  11. Use of an Sm-p80–Based Therapeutic Vaccine to Kill Established Adult Schistosome Parasites in Chronically Infected Baboons

    PubMed Central

    Karmakar, Souvik; Zhang, Weidong; Ahmad, Gul; Torben, Workineh; Alam, Mayeen U.; Le, Loc; Damian, Raymond T.; Wolf, Roman F.; White, Gary L.; Carey, David W.; Carter, Darrick; Reed, Steven G.; Siddiqui, Afzal A.

    2014-01-01

    No vaccines are available for human use for any parasitic infections, including the helminthic disease schistosomiasis. Sm-p80, the large subunit of Schistosoma mansoni calpain, is a leading antigen candidate for a schistosomiasis vaccine. Prophylactic and antifecundity efficacies of Sm-p80 have been tested using a variety of vaccine approaches in both rodent and nonhuman primate models. However, the therapeutic efficacy of a Sm-p80–based vaccine had not been determined. In this study, we evaluated the therapeutic efficacy of Sm-p80 by using 2 different strategies and 3 Sm-p80–based vaccine formulations in baboons. Vaccine formulations were able to decrease established adult worms by 10%–36%, reduce retention of eggs in tissues by 10%–57%, and decrease egg excretion in feces by 13%–33%, compared with control formulations. Marked differences were observed in B and T cell immune correlates between vaccinated and control animals. This is the first report of killing of established adult schistosome worms by a vaccine. In addition to distinct prophylactic efficacy of Sm-p80, this study adds to the evidence that Sm-p80 is a potentially important antigen with both substantial prophylactic and therapeutic efficacies. These data reinforce that Sm-p80 should be moved forward along the path toward human clinical trials. PMID:24436452

  12. Development of behaviour change communication strategy for a vaccination-linked malaria control tool in southern Tanzania.

    PubMed

    Mushi, Adiel K; Schellenberg, Joanna; Mrisho, Mwifadhi; Manzi, Fatuma; Mbuya, Conrad; Mponda, Haji; Mshinda, Hassan; Tanner, Marcel; Alonso, Pedro; Pool, Robert; Schellenberg, David

    2008-09-29

    Intermittent preventive treatment of malaria in infants (IPTi) using sulphadoxine-pyrimethamine and linked to the expanded programme on immunization (EPI) is a promising strategy for malaria control in young children. As evidence grows on the efficacy of IPTi as public health strategy, information is needed so that this novel control tool can be put into practice promptly, once a policy recommendation is made to implement it. This paper describes the development of a behaviour change communication strategy to support implementation of IPTi by the routine health services in southern Tanzania, in the context of a five-year research programme evaluating the community effectiveness of IPTi. Mixed methods including a rapid qualitative assessment and quantitative health facility survey were used to investigate communities' and providers' knowledge and practices relating to malaria, EPI, sulphadoxine-pyrimethamine and existing health posters. Results were applied to develop an appropriate behaviour change communication strategy for IPTi involving personal communication between mothers and health staff, supported by a brand name and two posters. Malaria in young children was considered to be a nuisance because it causes sleepless nights. Vaccination services were well accepted and their use was considered the mother's responsibility. Babies were generally taken for vaccination despite complaints about fevers and swellings after the injections. Sulphadoxine-pyrimethamine was widely used for malaria treatment and intermittent preventive treatment of malaria in pregnancy, despite widespread rumours of adverse reactions based on hearsay and newspaper reports. Almost all health providers said that they or their spouse were ready to take SP in pregnancy (96%, 223/242). A brand name, key messages and images were developed and pre-tested as behaviour change communication materials. The posters contained public health messages, which explained the intervention itself, how and when

  13. Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications

    PubMed Central

    Testa, James S; Philip, Ramila

    2013-01-01

    Prophylactic and therapeutic vaccines against viral infections have advanced in recent years from attenuated live vaccines to subunit-based vaccines. An ideal prophylactic vaccine should mimic the natural immunity induced by an infection, in that it should generate long-lasting adaptive immunity. To complement subunit vaccines, which primarily target an antibody response, different methodologies are being investigated to develop vaccines capable of driving cellular immunity. T-cell epitope discovery is central to this concept. In this review, the significance of T-cell epitope-based vaccines for prophylactic and therapeutic applications is discussed. Additionally, methodologies for the discovery of T-cell epitopes, as well as recent developments in the clinical testing of these vaccines for various viral infections, are explained. PMID:23630544

  14. Cost-effectiveness analysis of vaccinating children in Malawi with RTS,S vaccines in comparison with long-lasting insecticide-treated nets

    PubMed Central

    2014-01-01

    Background New RTS,S malaria vaccines may soon be licensed, yet its cost-effectiveness is unknown. Before the widespread introduction of RTS,S vaccines, cost-effectiveness studies are needed to help inform governments in resource-poor settings about how best to prioritize between the new vaccine and existing malaria interventions. Methods A Markov model simulated malaria progression in a hypothetical Malawian birth cohort. Parameters were based on published data. Three strategies were compared: no intervention, vaccination at one year, and long-lasting, insecticide-treated nets (LLINs) at birth. Both health service and societal perspectives were explored. Health outcomes were measured in disability-adjusted life years (DALYs) averted and costed in 2012 US$. Incremental cost-effectiveness ratios (ICERs) were calculated and extensive sensitivity analyses were conducted. Three times GDP per capita ($1,095) per DALY averted was used for a cost-effectiveness threshold, whilst one times GDP ($365) was considered ‘very cost-effective’. Results From a societal perspective the vaccine strategy was dominant. It averted 0.11 more DALYs than LLINs and 0.372 more DALYs than the no intervention strategy per person, while costing $10.04 less than LLINs and $59.74 less than no intervention. From a health service perspective the vaccine’s ICER was $145.03 per DALY averted, and thus can be considered very cost-effective. The results were robust to changes in all variables except the vaccine and LLINs’ duration of efficacy. Vaccines remained cost-effective even at the lowest assumed efficacy levels of 49.6% (mild malaria) and 14.2% (severe malaria), and the highest price of $15. However, from a societal perspective, if the vaccine duration efficacy was set below 2.69 years or the LLIN duration of efficacy was greater than 4.24 years then LLINs became the more cost-effective strategy. Conclusion The results showed that vaccinating Malawian children with RTS,S vaccines was

  15. Cost-effectiveness of influenza vaccination of older adults in the ED setting.

    PubMed

    Patterson, Brian W; Khare, Rahul K; Courtney, D Mark; Lee, Todd A; Kyriacou, Demetrios N

    2012-09-01

    Adults older than 50 years are at greater risk for death and severe disability from influenza. Persons in this age group, however, are frequently not vaccinated, despite extensive efforts by physicians to provide this preventive measure in primary care settings. We performed this study to determine if influenza vaccination of older adults in the emergency department (ED) may be cost-effective. Using a probabilistic decision model with quasi-Markov modeling of a typical influenza season, we calculated costs and health outcomes for a hypothetical cohort of patients using parameters from the literature. Three ED-based intervention strategies were compared: (1) no vaccination offered, (2) vaccination offered to patients older than 65 years (limited strategy), and (3) vaccination offered to all patients who are 50 years and older (inclusive strategy). Outcomes were measured as costs, lives saved, and incremental costs per life saved. We performed deterministic and probabilistic sensitivity analyses. Vaccination of patients 50 years of age and older results in an incremental cost of $34,610 per life saved when compared with the no-vaccination strategy. Limiting vaccination to only those older than 65 years results in an incremental cost of $13,084 per life saved. Results were sensitive to changes in vaccine cost but were insensitive to changes in other model parameters. Vaccination of older adults against influenza in the ED setting is cost-effective, especially for those older than 65 years. Emergency departments may be an important setting for providing influenza vaccination to adults who may otherwise have remained unvaccinated. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Using hepatitis A and B vaccination as a paradigm for effective HIV vaccine delivery.

    PubMed

    Rhodes, Scott D; Yee, Leland J

    2007-06-01

    An understanding of vaccine acceptance and uptake is imperative for successful vaccination of populations that will be primary targets for vaccination after a vaccine against HIV is developed and ready for dissemination. Experiences with vaccination against vaccine-preventable hepatitis (VPH) among men who have sex with men (MSM) may offer key insights to inform future HIV vaccination strategies. The purpose of this analysis was to explore what is known currently about vaccination among MSM, using knowledge gained from vaccination against VPH, and to identify important considerations from these experiences that must be explored further as a vaccine against HIV is promoted among MSM. Because cultural and political differences make it difficult to extrapolate findings from studies in one country to another, we have focused our analyses on studies conducted in the USA. Through a qualitative systematic review of published reports, we identified eight studies that reported correlates of VPH among MSM in the USA. Six major domains of variables associated with vaccination against VPH were identified, including: demographics (e.g. younger age, higher educational attainment); increased vaccine knowledge; increased access to health care; provider recommendation; behaviours (e.g. same-sex behaviour, health-promoting and disease-preventing behaviours); and psychosocial factors (e.g. openness about one's sexual orientation, reduced barriers to being vaccinated, self-efficacy). Further research is needed to understand vaccination behaviour among MSM and to maximise acceptance and uptake after a vaccine exists. Experiences with VPH provide a real-world model on which to base preliminary assumptions about acceptance and uptake of a vaccine against HIV.

  17. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine.

    PubMed

    Kreutzfeld, Oriana; Müller, Katja; Matuschewski, Kai

    2017-01-01

    Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.

  18. From non school-based, co-payment to school-based, free Human Papillomavirus vaccination in Flanders (Belgium): a retrospective cohort study describing vaccination coverage, age-specific coverage and socio-economic inequalities.

    PubMed

    Lefevere, Eva; Theeten, Heidi; Hens, Niel; De Smet, Frank; Top, Geert; Van Damme, Pierre

    2015-09-22

    School-based, free HPV vaccination for girls in the first year of secondary school was introduced in Flanders (Belgium) in 2010. Before that, non school-based, co-payment vaccination for girls aged 12-18 was in place. We compared vaccination coverage, age-specific coverage and socio-economic inequalities in coverage - 3 important parameters contributing to the effectiveness of the vaccination programs - under both vaccination systems. We used retrospective administrative data from different sources. Our sample consisted of all female members of the National Alliance of Christian Mutualities born in 1995, 1996, 1998 or 1999 (N=66,664). For each vaccination system we described the cumulative proportion HPV vaccination initiation and completion over time. We used life table analysis to calculate age-specific rates of HPV vaccination initiation and completion. Analyses were done separately for higher income and low income groups. Under non school-based, co-payment vaccination the proportions HPV vaccination initiation and completion slowly rose over time. By age 17, the proportion HPV vaccination initiation/completion was 0.75 (95% CI 0.74-076)/0.66 (95% CI 0.65-0.67). The median age at vaccination initiation/completion was 14.4 years (95% CI 14.4-14.5)/15.4 years (95% CI 15.3-15.4). Socio-economic inequalities in coverage widened over time and with age. Under school-based, free vaccination rates of HPV vaccination initiation were substantially higher. By age 14,the proportion HPV vaccination initiation/completion was 0.90 (95% CI 0.90-0.90)/0.87 (95% CI 0.87-0.88). The median age at vaccination initiation/completion was 12.7 years (95% CI 12.7-12.7)/13.3 years (95% CI 13.3-13.3). Socio-economic inequalities in coverage and in age-specific coverage were substantially smaller. Copyright © 2015. Published by Elsevier Ltd.

  19. Next-Generation Vaccines Based on Bacille Calmette–Guérin

    PubMed Central

    Nieuwenhuizen, Natalie E.; Kaufmann, Stefan H. E.

    2018-01-01

    Tuberculosis (TB), caused by the intracellular bacterium Mycobacterium tuberculosis (Mtb), remains a major health threat. A live, attenuated mycobacterium known as Bacille Calmette–Guérin (BCG), derived from the causative agent of cattle TB, Mycobacterium bovis, has been in clinical use as a vaccine for 90 years. The current incidence of TB demonstrates that BCG fails to protect sufficiently against pulmonary TB, the major disease manifestation and source of dissemination. The protective efficacy of BCG is on average 50% but varies substantially with geographical location and is poorer in those with previous exposure to mycobacteria. BCG can also cause adverse reactions in immunocompromised individuals. However, BCG has contributed to reduced infant TB mortality by protecting against extrapulmonary TB. In addition, BCG has been associated with reduced general childhood mortality by stimulating immune responses. In order to improve the efficacy of BCG, two major strategies have been employed. The first involves the development of recombinant live mycobacterial vaccines with improved efficacy and safety. The second strategy is to boost BCG with subunit vaccines containing Mtb antigens. This article reviews recombinant BCG strains that have been tested against TB in animal models. This includes BCG strains that have been engineered to induce increased immune responses by the insertion of genes for Mtb antigens, mammalian cytokines, or host resistance factors, the insertion of bacterial toxin-derived adjuvants, and the manipulation of bacterial genes in order to increase antigen presentation and immune activation. Subunit vaccines for boosting BCG are also briefly discussed. PMID:29459859

  20. Novel use of a N2-specific enzyme-linked immunosorbent assay for differentiation of infected from vaccinated animals (DIVA)-based identification of avian influenza.

    PubMed

    Kwon, Ji-Sun; Kim, Min-Chul; Jeong, Ok-Mi; Kang, Hyun-Mi; Song, Chang-Seon; Kwon, Jun-Hun; Lee, Youn-Jeong

    2009-05-21

    Proper vaccination with validated companion differentiation of infected from vaccinated animals (DIVA) tests using a vaccine containing a heterologous neuraminidase to the field virus can be effective to control avian influenza (AI). However, indirect immunofluorescent assay, the only field validated DIVA test, has limitations to be set up as high throughput screening test and the assay requires subjective interpretation of the results. To apply the DIVA strategy to the Korean H9N2 low pathogenic AI (LPAI) vaccine program and overcome these limitations, we generated a reassortant H9N8 virus (rgH9N8) vaccine using plasmid-based reverse genetics and developed a novel N2-specific enzyme-linked immunosorbent assay (N2-ELISA). The rgH9N8 vaccine showed adequate immunogenicity and protection, and the optimized N2-ELISA showed that the sensitivity was 97.0% and specificity was 96.4% compared with a hemagglutination inhibition test. In vaccination-challenge experiments in specific pathogen-free chickens, the sera of chickens vaccinated with rgH9N8 vaccine and uninfected were negative by the N2-ELISA (S/P< or =0.4), whereas infected sera with H9N2 were positive (S/P>0.4). These results suggest that the rgH9N8 vaccine and the companion DIVA test, N2-ELISA, allow the utilization of the DIVA strategy for the control of H9N2 LPAI infections in Korea.

  1. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform.

    PubMed

    Kim, Mi-Young; Reljic, Rajko; Kilbourne, Jacquelyn; Ceballos-Olvera, Ivonne; Yang, Moon-Sik; Reyes-del Valle, Jorge; Mason, Hugh S

    2015-04-08

    Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Nanoparticle-detained toxins for safe and effective vaccination

    NASA Astrophysics Data System (ADS)

    Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Zhang, Liangfang

    2013-12-01

    Toxoid vaccines--vaccines based on inactivated bacterial toxins--are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing toxin virulence remains a major challenge and presents a trade-off between efficacy and safety in toxoid development. Here, we show a nanoparticle-based toxin-detainment strategy that safely delivers non-disrupted pore-forming toxins for immune processing. Using erythrocyte membrane-coated nanoparticles and staphylococcal α-haemolysin, we demonstrate effective virulence neutralization via spontaneous particle entrapment. Compared with vaccination with heat-denatured toxin, mice vaccinated with the nanoparticle-detained toxin showed superior protective immunity against toxin-mediated adverse effects. We find that the non-disruptive detoxification approach benefited the immunogenicity and efficacy of toxoid vaccines. We anticipate that this study will open new possibilities in the preparation of antitoxin vaccines against the many virulence factors that threaten public health.

  3. HSV-2 Vaccine: Current Status and Insight into Factors for Developing an Efficient Vaccine

    PubMed Central

    Zhu, Xiao-Peng; Muhammad, Zaka S.; Wang, Jian-Guang; Lin, Wu; Guo, Shi-Kun; Zhang, Wei

    2014-01-01

    Herpes simplex virus type 2 (HSV-2), a globally sexually transmitted virus, and also one of the main causes of genital ulcer diseases, increases susceptibility to HIV-1. Effective vaccines to prevent HSV-2 infection are not yet available, but are currently being developed. To facilitate this process, the latest progress in development of these vaccines is reviewed in this paper. A summary of the most promising HSV-2 vaccines tested in animals in the last five years is presented, including the main factors, and new ideas for developing an effective vaccine from animal experiments and human clinical trials. Experimental results indicate that future HSV-2 vaccines may depend on a strategy that targets mucosal immunity. Furthermore, estradiol, which increases the effectiveness of vaccines, may be considered as an adjuvant. Therefore, this review is expected to provide possible strategies for development of future HSV-2 vaccines. PMID:24469503

  4. Rotavirus vaccines

    PubMed Central

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children <5 years worldwide. Currently licensed rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  5. Virus-like particle (VLP)-based vaccines for pandemic influenza

    PubMed Central

    López-Macías, Constantino

    2012-01-01

    The influenza pandemic of 2009 demonstrated the inability of the established global capacity for egg-based vaccine production technology to provide sufficient vaccine for the population in a timely fashion. Several alternative technologies for developing influenza vaccines have been proposed, among which non-replicating virus-like particles (VLPs) represent an attractive option because of their safety and immunogenic characteristics. VLP vaccines against pandemic influenza have been developed in tobacco plant cells and in Sf9 insect cells infected with baculovirus that expresses protein genes from pandemic influenza strains. These technologies allow rapid and large-scale production of vaccines (3–12 weeks). The 2009 influenza outbreak provided an opportunity for clinical testing of a pandemic influenza VLP vaccine in the midst of the outbreak at its epicenter in Mexico. An influenza A(H1N1)2009 VLP pandemic vaccine (produced in insect cells) was tested in a phase II clinical trial involving 4,563 healthy adults. Results showed that the vaccine is safe and immunogenic despite high preexisting anti-A(H1N1)2009 antibody titers present in the population. The safety and immunogenicity profile presented by this pandemic VLP vaccine during the outbreak in Mexico suggests that VLP technology is a suitable alternative to current influenza vaccine technologies for producing pandemic and seasonal vaccines. PMID:22330956

  6. Effect of intermediate defense measures in voluntary vaccination games

    NASA Astrophysics Data System (ADS)

    Iwamura, Yoshiro; Tanimoto, Jun; Fukuda, Eriko

    2016-09-01

    We build a model to reproduce the decision-making process of getting a vaccination based on the evolutionary game theory dovetailed with the SIR model for epidemic spreading. Unlike the two extreme options of whether or not getting a vaccination leads to perfect immunity, we consider whether ‘intermediate defense measures’ including masking, gargling, and hand-washing lead to imperfect effects of preventing infection. We consider introducing not only a ‘third strategy’ as a discrete intermediate measure but also a continuous strategy space connecting the cases of getting and not getting a vaccination. Interestingly, our evolutionary analysis suggests that the introduction of intermediate measures makes no difference for the case of a 2-strategy system in which only either getting or not getting a vaccination is allowed, even does not ameliorate, or say, gets worse to prevent spreading a disease. This seems quite different from what was observed in 2-player and 2-strategy (2  ×  2) prisoner’s dilemma (PD) games with relatively stronger chicken-type dilemma than the stag-hunt one in which the introduction of middle-course strategies significantly enhances cooperation.

  7. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    PubMed

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Mycobacterium tuberculosis: approach to development of improved strategies for disease control through vaccination and immunodiagnosis.

    PubMed

    Mirlekar, B; Pathak, S; Pathade, G

    2013-01-01

    Tuberculosis is a major health problem throughout the world causing large number of deaths, more than that from any other single infectious disease. Estimates till date ascertain the fact that Tuberculosis (TB) is continuing to be the leading cause of death worldwide. The infection from single infectious agent Mycobacterium tuberculosis is killing about 3 million individuals every year and accounts for around 18.5% of all deaths in adults between the age group of 15 and 65. An average of 1.79 billion people, which constitutes roughly one-third of the world's population, is infected with the causative agent M. tuberculosis and is at risk of developing the disease. This situation highlights the relative shortcomings of the current treatment and diagnosis strategies for TB and the limited effectiveness of public health systems, particularly in resource-poor countries where the main TB burden lies. The timely identification of persons infected with Mycobacterium tuberculosis and rapid laboratory confirmation of tuberculosis are two key factors for the treatment and prevention of the disease. Novel molecular assays for diagnosis and drug susceptibility testing offer several potential advantages over the above methods including faster turnaround times, very sensitive and specific detection of nucleic acids, and minimal, or possibly no, prior culture. The need for new technologies for rapid diagnosis of tuberculosis is clear. Most studies of mycobacterial immunity attributes focus on proliferation of T cells, production of cytokines and cytolytic activity. A proper vaccine for tuberculosis can be developed by using a combination of antigens and adjuvants capable of inducing appropriate and long-lasting T cell immunity. Development of new vaccines against TB should include some important aspects learned from BCG use such as mucosal routes of immunization; revaccination of BCG immunized subjects, booster immunization and prime-boost strategy with wild-type BCG, and other

  9. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections.

    PubMed

    Geisbert, Thomas W; Feldmann, Heinz

    2011-11-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections.

  10. Recombinant Vesicular Stomatitis Virus–Based Vaccines Against Ebola and Marburg Virus Infections

    PubMed Central

    Feldmann, Heinz

    2011-01-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections. PMID:21987744

  11. An epidemiological model with vaccination strategies

    NASA Astrophysics Data System (ADS)

    Prates, Dérek B.; Silva, Jaqueline M.; Gomes, Jessica L.; Kritz, Maurício V.

    2016-06-01

    Mathematical models can be widely found in the literature describing epidemics. The epidemical models that use differential equations to represent mathematically such description are especially sensible to parameters. This work analyze a variation of the SIR model when applied to a epidemic scenario including several aspects, as constant vaccination, pulse vaccination, seasonality, cross-immunity factor, birth and dead rate. The analysis and results are performed through numerical solutions of the model and a special attention is given to the discussion generated by the paramenters variation.

  12. Influenza vaccination coverage estimates in the fee-for service Medicare beneficiary population 2006 - 2016: Using population-based administrative data to support a geographic based near real-time tool.

    PubMed

    Shen, Angela K; Warnock, Rob; Brereton, Stephaeno; McKean, Stephen; Wernecke, Michael; Chu, Steve; Kelman, Jeffrey A

    2018-04-11

    Older adults are at great risk of developing serious complications from seasonal influenza. We explore vaccination coverage estimates in the Medicare population through the use of administrative claims data and describe a tool designed to help shape outreach efforts and inform strategies to help raise influenza vaccination rates. This interactive mapping tool uses claims data to compare vaccination levels between geographic (i.e., state, county, zip code) and demographic (i.e., race, age) groups at different points in a season. Trends can also be compared across seasons. Utilization of this tool can assist key actors interested in prevention - medical groups, health plans, hospitals, and state and local public health authorities - in supporting strategies for reaching pools of unvaccinated beneficiaries where general national population estimates of coverage are less informative. Implementing evidence-based tools can be used to address persistent racial and ethnic disparities and prevent a substantial number of influenza cases and hospitalizations.

  13. A forecast of typhoid conjugate vaccine introduction and demand in typhoid endemic low- and middle-income countries to support vaccine introduction policy and decisions.

    PubMed

    Mogasale, Vittal; Ramani, Enusa; Park, Il Yeon; Lee, Jung Seok

    2017-09-02

    A Typhoid Conjugate Vaccine (TCV) is expected to acquire WHO prequalification soon, which will pave the way for its use in many low- and middle-income countries where typhoid fever is endemic. Thus it is critical to forecast future vaccine demand to ensure supply meets demand, and to facilitate vaccine policy and introduction planning. We forecasted introduction dates for countries based on specific criteria and estimated vaccine demand by year for defined vaccination strategies in 2 scenarios: rapid vaccine introduction and slow vaccine introduction. In the rapid introduction scenario, we forecasted 17 countries and India introducing TCV in the first 5 y of the vaccine's availability while in the slow introduction scenario we forecasted 4 countries and India introducing TCV in the same time period. If the vaccine is targeting infants in high-risk populations as a routine single dose, the vaccine demand peaks around 40 million doses per year under the rapid introduction scenario. Similarly, if the vaccine is targeting infants in the general population as a routine single dose, the vaccine demand increases to 160 million doses per year under the rapid introduction scenario. The demand forecast projected here is an upper bound estimate of vaccine demand, where actual demand depends on various factors such as country priorities, actual vaccine introduction, vaccination strategies, Gavi financing, costs, and overall product profile. Considering the potential role of TCV in typhoid control globally; manufacturers, policymakers, donors and financing bodies should work together to ensure vaccine access through sufficient production capacity, early WHO prequalification of the vaccine, continued Gavi financing and supportive policy.

  14. Towards a human oral vaccine for anthrax: the utility of a Salmonella Typhi Ty21a-based prime-boost immunization strategy.

    PubMed

    Baillie, Leslie W J; Rodriguez, Ana L; Moore, Stephen; Atkins, Helen S; Feng, Chiguang; Nataro, James P; Pasetti, Marcela F

    2008-11-11

    We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [Stokes MG, Titball RW, Neeson BN, et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun 2007;75(April (4)):1827-34]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax.

  15. Cost-Effectiveness of Mass Dog Vaccination Campaigns against Rabies in Flores Island, Indonesia.

    PubMed

    Wera, E; Mourits, M C M; Siko, M M; Hogeveen, H

    2017-12-01

    A dynamic deterministic simulation model was developed to determine the cost-effectiveness of different mass dog vaccination strategies against rabies in a dog population representative of a typical village on Flores Island. Cost-effectiveness was measured as public cost per averted dog-rabies case. Simulations started with the introduction of one infectious dog into a susceptible dog population of 399 dogs and subsequently ran for a period of 10 years. The base scenario represented a situation without any control intervention. Evaluated vaccination strategies were as follows: annual vaccination campaigns with short-acting vaccine (immunity duration of 52 weeks) (AV_52), annual campaigns with long-acting vaccine (immunity duration of 156 weeks) (AV_156), biannual campaigns with short-acting vaccine (BV_52) and once-in-2-years campaigns with long-acting vaccine (O2V_156). The effectiveness of the vaccination strategies was simulated for vaccination coverages of 50% and 70%. Cumulative results were reported for the 10-year simulation period. The base scenario resulted in three epidemic waves, with a total of 1274 dog-rabies cases. The public cost of applying AV_52 at a coverage of 50% was US$5342 for a village. This strategy was unfavourable compared to other strategies, as it was costly and ineffective in controlling the epidemic. The costs of AV_52 at a coverage of 70% and AV_156 at a coverage of 70% were, respectively, US$3646 and US$3716, equivalent to US$3.00 and US$3.17 per averted dog-rabies case. Increasing the coverage of AV_156 from 50% to 70% reduced the number of cases by 7% and reduced the cost by US$1452, resulting in a cost-effectiveness ratio of US$1.81 per averted dog-rabies case. This simulation model provides an effective tool to explore the public cost-effectiveness of mass dog vaccination strategies in Flores Island. Insights obtained from the simulation results are useful for animal health authorities to support decision-making in rabies

  16. Recent advances in the use of therapeutic cancer vaccines in genitourinary malignancies.

    PubMed

    Surolia, Ira; Gulley, James; Madan, Ravi A

    2014-12-01

    Despite a recent increase in US FDA-approved treatments, genitourinary malignancies remain a source of significant morbidity and mortality. One focus of research is the use of therapeutic cancer vaccines in these diseases, and a significant body of clinical trial experience now exists for refining vaccine strategies to enhance antitumor efficacy and develop immune-based combination regimens. In recent years, clinical data from multiple trials in genitourinary malignancies have enhanced our understanding of the potential for immunotherapy in these cancers. There are also emerging clinical strategies that combine cancer vaccines with chemotherapy, radiation, androgen-deprivation therapy and immune checkpoint inhibitors. This review is based on a search of relevant literature for data presented over the past 5 years from clinical trials of cancer vaccines in prostate, bladder and renal carcinomas. In the coming years, clinical trials informed by decades of preclinical data and emerging clinical data will help to define the role of immunotherapy in genitourinary malignancies. Combination strategies that capitalize on the immune properties of standard treatments will bring greater clinical benefits, and immune-based combinations will likely be moved to the neoadjuvant setting, where they may have optimal clinical impact.

  17. Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis

    DTIC Science & Technology

    2013-12-19

    Mexico and Central and South America [1]. Coccidioides is a dimorphic ascomycetous fungus with distinct saprobic and parasitic phases and is classified in...lethal spore inoculum. However, sterile immunity was not achieved and pulmonary tissue damage associated with a persistent host inflammatory response...observation will translate to humans. A recent vector-based vaccine against tuberculosis intended to protect by eliciting strong CMI failed in humans despite

  18. Influenza vaccines based on virus-like particles

    PubMed Central

    Kang, Sang-Moo; Song, Jae-Min; Quan, Fu-Shi; Compans, Richard W.

    2009-01-01

    The simultaneous expression of structural proteins of virus can produce virus-like particles (VLPs) by a self-assembly process in a viral life cycle even in the absence of genomic material. Taking an advantage of structural and morphological similarities of VLPs to native virions, VLPs have been suggested as a promising platform for new viral vaccines. In the light of a pandemic threat, influenza VLPs have been recently developed as a new generation of non-egg based cell culture-derived vaccine candidates against influenza infection. Animals vaccinated with VLPs containing hemagglutinin (HA) or HA and neuraminidase (NA) were protected from morbidity and mortality resulting from lethal influenza infections. Influenza VLPs serve as an excellent model system of an enveloped virus for understanding the properties of VLPs in inducing protective immunity. In this review, we briefly describe the characteristics of influenza VLPs assembled with a lipid bilayer containing glycoproteins, and summarize the current progress on influenza VLPs as an alternative vaccine candidate against seasonal as well as pandemic influenza viruses. In addition, the protective immune correlates induced by vaccination with influenza VLPs are discussed. PMID:19374929

  19. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  20. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  1. Vaccination versus treatment of influenza in working adults: a cost-effectiveness analysis.

    PubMed

    Rothberg, Michael B; Rose, David N

    2005-01-01

    To determine the cost-effectiveness of influenza vaccination, antiviral therapy, or no intervention for healthy working adults, accounting for annual variation in vaccine efficacy. We conducted a cost-effectiveness analysis based on published clinical trials of influenza vaccine and antiviral drugs, incorporating 10 years of surveillance data from the World Health Organization. We modeled influenza vaccination, treatment of influenza-like illness with antiviral drugs, or both, as compared with no intervention, targeting healthy working adults under age 50 years in the general community or workplace. Outcomes included costs, illness days, and quality-adjusted days gained. In the base case analysis, the majority of costs incurred for all strategies were related to lost productivity from influenza illness. The least expensive strategy varied from year to year. For the 10-year period, antiviral therapy without vaccination was associated with the lowest overall costs (234 US dollars per person per year). Annual vaccination cost was 239 US dollars per person, and was associated with 0.0409 quality-adjusted days saved, for a marginal cost-effectiveness ratio of 113 US dollars per quality-adjusted day gained or 41,000 US dollars per quality-adjusted life-year saved compared with antiviral therapy. No intervention was the most expensive and least effective option. In sensitivity analyses, lower vaccination costs, higher annual probabilities of influenza, and higher numbers of workdays lost to influenza made vaccination more cost-effective than treatment. If vaccination cost was less than 16 US dollars or time lost from work exceeded 2.4 days per episode of influenza, then vaccination was cost saving compared with all other strategies. Influenza vaccination for healthy working adults is reasonable economically, and under certain circumstances is cost saving. Antiviral therapy is consistently cost saving.

  2. Antibody-Based Preventive and Therapeutic Strategies Against HIV.

    PubMed

    Fabra-Garcia, Amanda; Beltran, Carolina; Sanchez-Merino, Victor; Yuste, Eloisa

    2016-01-01

    Over the years, numerous studies have been carried out demonstrating the role of antibodies in HIV control leading to the development of antibody-based therapeutic and prophylactic strategies. The objective of this review is to provide updated information on the role of antibodies in the prevention and control of HIV infection and the strategies against HIV that have been designed based on this information. Passive transfer of anti-HIV antibodies in animal models has proven the efficacy of certain antibodies in the prevention and treatment of infection. The capacity of antibodies to control the virus was first attributed to their neutralizing capacity. However, we now know that there are other Fc-mediated antibody activities associated with virus protection. When it comes to better understanding protection against HIV, we ought to pay particular attention to mucosal immune responses. The evidence accumulated so far indicates that an effective vaccine against HIV should generate both mucosal IgAs and systemic IgGs. Due to the problematic induction of protective anti-HIV antibodies, several groups have developed alternative approaches based on antibody delivery via gene therapy vectors. Experiments in animal models with these vectors have shown impressive protection levels and this strategy is now being clinically trialed. Taking into account all the information included in this review, it seems evident that anti-HIV-1 antibodies play an important role in virus control and prevention. This review aims to give an overview of the strategies used and the advances in antibody-based preventive and therapeutic strategies against HIV-1.

  3. The cost-effectiveness of male HPV vaccination in the United States.

    PubMed

    Chesson, Harrell W; Ekwueme, Donatus U; Saraiya, Mona; Dunne, Eileen F; Markowitz, Lauri E

    2011-10-26

    The objective of this study was to estimate the cost-effectiveness of adding human papillomavirus (HPV) vaccination of 12-year-old males to a female-only vaccination program for ages 12-26 years in the United States. We used a simplified model of HPV transmission to estimate the reduction in the health and economic burden of HPV-associated diseases in males and females as a result of HPV vaccination. Estimates of the incidence, cost-per-case, and quality-of-life impact of HPV-associated health outcomes were based on the literature. The HPV-associated outcomes included were: cervical intraepithelial neoplasia (CIN); genital warts; juvenile-onset recurrent respiratory papillomatosis (RRP); and cervical, vaginal, vulvar, anal, oropharyngeal, and penile cancers. The cost-effectiveness of male vaccination depended on vaccine coverage of females. When including all HPV-associated outcomes in the analysis, the incremental cost per quality-adjusted life year (QALY) gained by adding male vaccination to a female-only vaccination program was $23,600 in the lower female coverage scenario (20% coverage at age 12 years) and $184,300 in the higher female coverage scenario (75% coverage at age 12 years). The cost-effectiveness of male vaccination appeared less favorable when compared to a strategy of increased female vaccination coverage. For example, we found that increasing coverage of 12-year-old girls would be more cost-effective than adding male vaccination even if the increased female vaccination strategy incurred program costs of $350 per additional girl vaccinated. HPV vaccination of 12-year-old males might potentially be cost-effective, particularly if female HPV vaccination coverage is low and if all potential health benefits of HPV vaccination are included in the analysis. However, increasing female coverage could be a more efficient strategy than male vaccination for reducing the overall health burden of HPV in the population. Published by Elsevier Ltd.

  4. Clinical and economic impact of various strategies for varicella immunity screening and vaccination of health care personnel.

    PubMed

    Baracco, G J; Eisert, S; Saavedra, S; Hirsch, P; Marin, M; Ortega-Sanchez, I R

    2015-10-01

    Exposure to patients with varicella or herpes zoster causes considerable disruption to a health care facility's operations and has a significant health and economic impact. However, practices related to screening for immunity and immunization of health care personnel (HCP) for varicella vary widely. A decision tree model was built to evaluate the cost-effectiveness of 8 different strategies of screening and vaccinating HCP for varicella. The outcomes are presented as probability of acquiring varicella, economic impact of varicella per employee per year, and cost to prevent additional cases of varicella. Monte Carlo simulations and 1-way sensitivity analyses were performed to address the uncertainties inherent to the model. Alternative epidemiologic and technologic scenarios were also analyzed. Performing a clinical screening followed by serologic testing of HCP with negative history diminished the cost impact of varicella by >99% compared with not having a program. Vaccinating HCP with negative screen cost approximately $50,000 per case of varicella prevented at the current level of U.S. population immunity, but was projected to be cost-saving at 92% or lower immunity prevalence. Improving vaccine acceptance rates and using highly sensitive assays also optimize cost-effectiveness. Strategies relying on screening and vaccinating HCP for varicella on employment were shown to be cost-effective for health care facilities and are consistent with current national guidelines for varicella prevention. Published by Elsevier Inc.

  5. Leptin-based adjuvants: an innovative approach to improve vaccine response.

    PubMed

    White, Sarah J; Taylor, Matthew J; Hurt, Ryan T; Jensen, Michael D; Poland, Gregory A

    2013-03-25

    Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥30 kg/m(2)) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin's role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Leptin-based Adjuvants: An Innovative Approach to Improve Vaccine Response

    PubMed Central

    White, Sarah J.; Taylor, Matthew J.; Hurt, Ryan; Jensen, Michael D.; Poland, Gregory A.

    2013-01-01

    Leptin is a pleiotropic hormone with multiple direct and regulatory immune functions. Leptin deficiency or resistance hinders the immunologic, metabolic, and neuroendocrinologic processes necessary to thwart infections and their associated complications, and to possibly protect against infectious diseases following vaccination. Circulating leptin levels are proportional to body fat mass. High circulating leptin concentrations, as observed in obesity, are indicative of the development of leptin transport saturation/signaling desensitization. Leptin bridges nutritional status and immunity. Although its role in vaccine response is currently unknown, over-nutrition has been shown to suppress vaccine-induced immune responses. For instance, obesity (BMI ≥ 30 kg/m2) is associated with lower antigen-specific antibody titers following influenza, hepatitis B, and tetanus vaccinations. This suggests that obesity, and possibly saturable leptin levels, are contributing factors to poor vaccine immunogenicity. While leptin-based therapies have not been investigated as vaccine adjuvants thus far, leptin’s role in immunity suggests that application of these therapies is promising and worth investigation to enhance vaccine response in people with leptin signaling impairments. This review will examine the possibility of using leptin as a vaccine adjuvant by: briefly reviewing the distribution and signal transduction of leptin and its receptors; discussing the physiology of leptin with emphasis on its immune functions; reviewing the causes of attenuation of leptin signaling; and finally, providing plausible inferences for the innovative use of leptin-based pharmacotherapies as vaccine adjuvants. PMID:23370154

  7. Selective epidemic vaccination under the performant routing algorithms

    NASA Astrophysics Data System (ADS)

    Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.

    2018-04-01

    Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.

  8. Ontology-supported Research on Vaccine Efficacy, Safety, and Integrative Biological Networks

    PubMed Central

    He, Yongqun

    2016-01-01

    Summary While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including the Vaccine Ontology, Ontology of Adverse Events, and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network (“OneNet”) Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms. PMID:24909153

  9. Vaccine chronicle in Japan.

    PubMed

    Nakayama, Tetsuo

    2013-10-01

    The concept of immunization was started in Japan in 1849 when Jenner's cowpox vaccine seed was introduced, and the current immunization law was stipulated in 1948. There have been two turning points for amendments to the immunization law: the compensation remedy for vaccine-associated adverse events in 1976, and the concept of private vaccination in 1994. In 1992, the regional Court of Tokyo, not the Supreme Court, decided the governmental responsibility on vaccine-associated adverse events, which caused the stagnation of vaccine development. In 2010, many universal vaccines became available as the recommended vaccines, but several vaccines, including mumps, zoster, hepatitis B, and rota vaccines, are still voluntary vaccines, not universal routine applications. In this report, immunization strategies and vaccine development are reviewed for each vaccine item and future vaccine concerns are discussed.

  10. Diagnosing avian influenza infection in vaccinated populations by systems for differentiating infected from vaccinated animals (DIVA).

    PubMed

    Capua, I; Cattoli, G

    2007-01-01

    Vaccination against avian influenza is recommended as a tool to support control measures in countries affected by avian influenza. Vaccination is known to increase the resistance of susceptible birds to infection and also to reduce shedding; however, it does not always prevent infection. Vaccinated infected flocks can therefore be a source of infection and thus be responsible for the perpetuation of infection. To avoid the spread of infection in a vaccinated population, immunization strategies must allow differentiation of infected from vaccinated animals (DIVA), combined with an appropriate monitoring system. Vaccinated exposed flocks must be identified and managed by restriction policies that include controlled marketing and stamping-out. Several vaccines and diagnostic tests to detect infection in vaccinated populations are available, the tests having various properties and characteristics. In order to achieve eradication, the most appropriate DIVA vaccination strategy must be identified and an appropriate monitoring programme be designed, taking into account risk factors, the epidemiological situation and the socioeconomic implications of the policy.

  11. Human papillomavirus vaccination: what is the best choice? A comparison of 16 strategies by means of a decisional model.

    PubMed

    Gasparini, R; Amicizia, D; Manfredi, P; Ansaldi, F; Lucioni, C; Gallelli, G; Panatto, D

    2009-06-01

    Some European countries decided to include human papillomavirus (HPV) vaccines in national immunization schedules. In order to help decision makers choose the best vaccination policy for females, a decisional model has been developed. The study was performed from the National Health Service perspective. Several hypotheses of multi-cohort vaccination policies were compared. 'Potentially avoidable infections' were chosen as the outcome. The model envisioned a short-term scenario (2008-2011). The best policy was that of vaccinating 12-year-olds and, a year later, those aged 14-16 years; the most expensive strategy was that of vaccinating 12-year-old females and, after 1 year, vaccinating those aged 15, 18 and 25 years. The sensitivity analysis showed that coverage rate has a great effect on the cost of avoidable infections. The study offers stake-holders an important datum-point for the choice of the best HPV policy vaccination in the short term. Indeed, it could generate interesting savings for the National Health Service and a rapid HPV immunization of young girls.

  12. Communicating with parents about vaccination: a framework for health professionals.

    PubMed

    Leask, Julie; Kinnersley, Paul; Jackson, Cath; Cheater, Francine; Bedford, Helen; Rowles, Greg

    2012-09-21

    A critical factor shaping parental attitudes to vaccination is the parent's interactions with health professionals. An effective interaction can address the concerns of vaccine supportive parents and motivate a hesitant parent towards vaccine acceptance. Poor communication can contribute to rejection of vaccinations or dissatisfaction with care. We sought to provide a framework for health professionals when communicating with parents about vaccination. Literature review to identify a spectrum of parent attitudes or 'positions' on childhood vaccination with estimates of the proportion of each group based on population studies. Development of a framework related to each parental position with determination of key indicators, goals and strategies based on communication science, motivational interviewing and valid consent principles. Five distinct parental groups were identified: the 'unquestioning acceptor' (30-40%), the 'cautious acceptor' (25-35%); the 'hesitant' (20-30%); the 'late or selective vaccinator' (2-27%); and the 'refuser' of all vaccines (<2%). The goals of the encounter with each group will vary, depending on the parents' readiness to vaccinate. In all encounters, health professionals should build rapport, accept questions and concerns, and facilitate valid consent. For the hesitant, late or selective vaccinators, or refusers, strategies should include use of a guiding style and eliciting the parent's own motivations to vaccinate while, avoiding excessive persuasion and adversarial debates. It may be necessary to book another appointment or offer attendance at a specialised adverse events clinic. Good information resources should also be used. Health professionals have a central role in maintaining public trust in vaccination, including addressing parents' concerns. These recommendations are tailored to specific parental positions on vaccination and provide a structured approach to assist professionals. They advocate respectful interactions that aim to

  13. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines.

    PubMed

    Liljeqvist, S; Ståhl, S

    1999-07-30

    The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.

  14. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-07

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Strategies for new and improved vaccines against ticks and tick-borne diseases.

    PubMed

    de la Fuente, J; Kopáček, P; Lew-Tabor, A; Maritz-Olivier, C

    2016-12-01

    Ticks infest a variety of animal species and transmit pathogens causing disease in both humans and animals worldwide. Tick-host-pathogen interactions have evolved through dynamic processes that accommodated the genetic traits of the hosts, pathogens transmitted and the vector tick species that mediate their development and survival. New approaches for tick control are dependent on defining molecular interactions between hosts, ticks and pathogens to allow for discovery of key molecules that could be tested in vaccines or new generation therapeutics for intervention of tick-pathogen cycles. Currently, tick vaccines constitute an effective and environmentally sound approach for the control of ticks and the transmission of the associated tick-borne diseases. New candidate protective antigens will most likely be identified by focusing on proteins with relevant biological function in the feeding, reproduction, development, immune response, subversion of host immunity of the tick vector and/or molecules vital for pathogen infection and transmission. This review addresses different approaches and strategies used for the discovery of protective antigens, including focusing on relevant tick biological functions and proteins, reverse genetics, vaccinomics and tick protein evolution and interactomics. New and improved tick vaccines will most likely contain multiple antigens to control tick infestations and pathogen infection and transmission. © 2016 John Wiley & Sons Ltd.

  16. Cluster Randomized Trial of a Toolkit and Early Vaccine Delivery to Improve Childhood Influenza Vaccination Rates in Primary Care

    PubMed Central

    Zimmerman, Richard K.; Nowalk, Mary Patricia; Lin, Chyongchiou Jeng; Hannibal, Kristin; Moehling, Krissy K.; Huang, Hsin-Hui; Matambanadzo, Annamore; Troy, Judith; Allred, Norma J.; Gallik, Greg; Reis, Evelyn C.

    2014-01-01

    Purpose To increase childhood influenza vaccination rates using a toolkit and early vaccine delivery in a randomized cluster trial. Methods Twenty primary care practices treating children (range for n=536-8,183) were randomly assigned to Intervention and Control arms to test the effectiveness of an evidence-based practice improvement toolkit (4 Pillars Toolkit) and early vaccine supplies for use among disadvantaged children on influenza vaccination rates among children 6 months-18 years. Follow-up staff meetings and surveys were used to assess use and acceptability of the intervention strategies in the Intervention arm. Rates for the 2010-2011 and 2011-2012 influenza seasons were compared. Two-level generalized linear mixed modeling was used to evaluate outcomes. Results Overall increases in influenza vaccination rates were significantly greater in the Intervention arm (7.9 percentage points) compared with the Control arm (4.4 percentage points; P<0.034). These rate changes represent 4522 additional doses in the Intervention arm vs. 1,390 additional doses in the Control arm. This effect of the intervention was observed despite the fact that rates increased significantly in both arms - 8/10 Intervention (P<0.001) and 7/10 Control sites (P-values 0.04 to <0.001). Rates in two Intervention sites with pre-intervention vaccination rates >58% did not significantly increase. In regression analyses, a child's likelihood of being vaccinated was significantly higher with: younger age, white race (Odds ratio [OR]=1.29; 95% confidence interval [CI]=1.23-1.34), having commercial insurance (OR=1.30; 95%CI=1.25-1.35), higher pre-intervention practice vaccination rate (OR=1.25; 95%CI=1.16-1.34), and being in the Intervention arm (OR=1.23; 95%CI=1.01-1.50). Early delivery of influenza vaccine was rated by Intervention practices as an effective strategy for raising rates. Conclusions Implementation of a multi-strategy toolkit and early vaccine supplies can significantly improve

  17. Therapeutic vaccination to treat chronic infectious diseases

    PubMed Central

    Boukhebza, Houda; Bellon, Nadine; Limacher, Jean Marc; Inchauspé, Geneviève

    2012-01-01

    A famous milestone in the vaccine field has been the first successful vaccination against smallpox, in 1798, by Edward Jenner. Using the vaccinia cowpox virus, Jenner was able to protect vaccinees from variola or smallpox. The Modified Virus Ankara (MVA) poxvirus strain has been one of the vaccines subsequently developed to prevent smallpox infection and was selected by the US government in their Biodefense strategy. Progress in molecular biology and immunology associated with MVA infection has led to the development of MVA as vaccine platform, both in the field of preventive and therapeutic vaccines. This later class of therapeutics has witnessed growing interest that has translated into an increasing number of vaccine candidates reaching the clinics. Among those, MVA-based therapeutic vaccines have addressed four major chronic infections including viral hepatitis, AIDS, human papillomavirus-linked pathologies and tuberculosis. Clinical trials encompass phase 1 and 2 and have started to show significant results and promises. PMID:22894957

  18. European Vaccine Initiative: lessons from developing malaria vaccines.

    PubMed

    Geels, Mark J; Imoukhuede, Egeruan B; Imbault, Nathalie; van Schooten, Harry; McWade, Terry; Troye-Blomberg, Marita; Dobbelaer, Roland; Craig, Alister G; Leroy, Odile

    2011-12-01

    For over 10 years, the European Vaccine Initiative (EVI; European Malaria Vaccine Initiative until 2009) has contributed to the development of 24 malaria candidate vaccine antigens with 13 vaccine candidates being advanced into Phase I clinical trials, two of which have been transitioned for further clinical development in sub-Saharan Africa. Since its inception the EVI organization has operated as a funding agency, but with a clear service-oriented strategy. The scientific successes and difficulties encountered during these years and how these efforts have led to standardization and harmonization in vaccine development through large-scale European consortia are discussed. In the future, the EVI will remain instrumental in the pharmaceutical and clinical development of vaccines against 'diseases of poverty' with a continued focus on malaria. EVI will continue to focus on funding and managing preclinical evaluation up to Phase I/II clinical trials and strengthening the vaccine-development infrastructure in Europe, albeit with a global orientation.

  19. Plant-based oral vaccines against zoonotic and non-zoonotic diseases.

    PubMed

    Shahid, Naila; Daniell, Henry

    2016-11-01

    The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study.

    PubMed

    Khan, M A; Hossain, M U; Rakib-Uz-Zaman, S M; Morshed, M N

    2015-07-01

    Ebola viruses (EBOVs) have been identified as an emerging threat in recent year as it causes severe haemorrhagic fever in human. Epitope-based vaccine design for EBOVs remains a top priority because a mere progress has been made in this regard. Another reason is the lack of antiviral drug and licensed vaccine although there is a severe outbreak in Central Africa. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites using various immunoinformatics and docking simulation tools. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell was checked for the selected protein. The peptide region spanning 9 amino acids from 42 to 50 and the sequence TLASIGTAF were found as the most potential B and T cell epitopes, respectively. This peptide could interact with 12 HLAs and showed high population coverage up to 80.99%. Using molecular docking, the epitope was further appraised for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post-therapeutic strategy, docking study of predicted 3D structure identified suitable therapeutic inhibitor against targeted protein. However, this computational epitope-based peptide vaccine designing and target site prediction against EBOVs open up a new horizon which may be the prospective way in Ebola viruses research; the results require validation by in vitro and in vivo experiments. © 2015 John Wiley & Sons Ltd.

  1. Sustainable vaccine development: a vaccine manufacturer's perspective.

    PubMed

    Rappuoli, Rino; Hanon, Emmanuel

    2018-05-08

    Vaccination remains the most cost-effective public health intervention after clean water, and the benefits impressively outweigh the costs. The efforts needed to fulfill the steadily growing demands for next-generation and novel vaccines designed for emerging pathogens and new indications are only realizable in a sustainable business model. Vaccine development can be fast-tracked through strengthening international collaborations, and the continuous innovation of technologies to accelerate their design, development, and manufacturing. However, these processes should be supported by a balanced project portfolio, and by managing sustainable vaccine procurement strategies for different types of markets. Collectively this will allow a gradual shift to a more streamlined and profitable vaccine production, which can significantly contribute to the worldwide effort to shape global health. Copyright © 2018 GlaxoSmithKine Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  2. Accelerating Next Generation Vaccine Development for Global Disease Prevention

    PubMed Central

    Koff, Wayne C; Burton, Dennis R.; R.Johnson, Philip; Walker, Bruce D.; King, Charles R.; Nabel, Gary J.; Ahmed, Rafi; Bhan, Maharaj Kishan; Plotkin, Stanley A.

    2014-01-01

    Summary Vaccines are among the greatest successes in the history of public health. However, past strategies for vaccine development are unlikely to succeed in the future against major global diseases such as AIDS, TB, and malaria. For such diseases, the correlates of protection are poorly defined and the pathogens evade immune detection and/or exhibit extensive genetic variability. Recent advances have heralded in a new era of vaccine discovery. However, translation of these advances into vaccines remains impeded by lack of understanding of key vaccinology principles in humans. We review these advances towards vaccine discovery and suggest that for accelerating successful vaccine development, new human immunology-based clinical research initiatives be implemented with the goal of elucidating and more effectively inducing vaccine-induced protective immune responses. PMID:23723240

  3. Cost-effectiveness of novel vaccines for tuberculosis control: a decision analysis study

    PubMed Central

    2011-01-01

    Background The development of a successful new tuberculosis (TB) vaccine would circumvent many limitations of current diagnostic and treatment practices. However, vaccine development is complex and costly. We aimed to assess the potential cost effectiveness of novel vaccines for TB control in a sub-Saharan African country - Zambia - relative to the existing strategy of directly observed treatment, short course (DOTS) and current level of bacille Calmette-Guérin (BCG) vaccination coverage. Methods We conducted a decision analysis model-based simulation from the societal perspective, with a 3% discount rate and all costs expressed in 2007 US dollars. Health outcomes and costs were projected over a 30-year period, for persons born in Zambia (population 11,478,000 in 2005) in year 1. Initial development costs for single vaccination and prime-boost strategies were prorated to the Zambian share (0.398%) of global BCG vaccine coverage for newborns. Main outcome measures were TB-related morbidity, mortality, and costs over a range of potential scenarios for vaccine efficacy. Results Relative to the status quo strategy, a BCG replacement vaccine administered at birth, with 70% efficacy in preventing rapid progression to TB disease after initial infection, is estimated to avert 932 TB cases and 422 TB-related deaths (prevention of 199 cases/100,000 vaccinated, and 90 deaths/100,000 vaccinated). This would result in estimated net savings of $3.6 million over 30 years for 468,073 Zambians born in year 1 of the simulation. The addition of a booster at age 10 results in estimated savings of $5.6 million compared to the status quo, averting 1,863 TB cases and 1,011 TB-related deaths (prevention of 398 cases/100,000 vaccinated, and of 216 deaths/100,000 vaccinated). With vaccination at birth alone, net savings would be realized within 1 year, whereas the prime-boost strategy would require an additional 5 years to realize savings, reflecting a greater initial development cost

  4. Vaccine strategies against Babesia bovis based on prime-boost immunizations in mice with modified vaccinia Ankara vector and recombinant proteins.

    PubMed

    Jaramillo Ortiz, José Manuel; Del Médico Zajac, María Paula; Zanetti, Flavia Adriana; Molinari, María Paula; Gravisaco, María José; Calamante, Gabriela; Wilkowsky, Silvina Elizabeth

    2014-08-06

    In this study, a recombinant modified vaccinia virus Ankara vector expressing a chimeric multi-antigen was obtained and evaluated as a candidate vaccine in homologous and heterologous prime-boost immunizations with a recombinant protein cocktail. The chimeric multi-antigen comprises immunodominant B and T cell regions of three Babesia bovis proteins. Humoral and cellular immune responses were evaluated in mice to compare the immunogenicity induced by different immunization schemes. The best vaccination scheme was achieved with a prime of protein cocktail and a boost with the recombinant virus. This scheme induced high level of specific IgG antibodies and secreted IFN and a high degree of activation of IFNγ(+) CD4(+) and CD8(+) specific T cells. This is the first report in which a novel vaccine candidate was constructed based on a rationally designed multi-antigen and evaluated in a prime-boost regime, optimizing the immune response necessary for protection against bovine babesiosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Defensive applications of gene transfer technology in the face of bioterrorism: DNA-based vaccines and immune targeting.

    PubMed

    Ackley, Catherine J; Greene, Michael R; Lowrey, Christopher H

    2003-12-01

    Gene transfer involves the introduction of an engineered gene into a person's cells with the expectation that the protein expressed from the gene will produce a therapeutic benefit. Strategies based on this principle have led to the approval of > 600 clinical trials and enrollment of approximately 3500 subjects worldwide in attempts to treat diseases ranging from cancer to AIDS to cystic fibrosis. While gene therapy has met with limited success and still has many hurdles to overcome before it sees wide application, it may be useful as a defensive strategy against bioterrorism agents including infectious microbes and toxins. Although many defensive strategies are possible, immunological strategies are currently the most developed and are being actively applied to the development of strategies against several of the most virulent potential bio-weapons. While most of these strategies are not yet ready for human application, DNA-based vaccines appear to be among the most promising in the fight against bioterrorism.

  6. Avian influenza pandemic preparedness: developing prepandemic and pandemic vaccines against a moving target

    PubMed Central

    Singh, Neetu; Pandey, Aseem; Mittal, Suresh K.

    2010-01-01

    The unprecedented global spread of highly pathogenic avian H5N1 influenza viruses within the past ten years and their extreme lethality to poultry and humans has underscored their potential to cause an influenza pandemic. Combating the threat of an impending H5N1 influenza pandemic will require a combination of pharmaceutical and nonpharmaceutical intervention strategies. The emergence of the H1N1 pandemic in 2009 emphasised the unpredictable nature of a pandemic influenza. Undoubtedly, vaccines offer the most viable means to combat a pandemic threat. Current egg-based influenza vaccine manufacturing strategies are unlikely to be able to cater to the huge, rapid global demand because of the anticipated scarcity of embryonated eggs in an avian influenza pandemic and other factors associated with the vaccine production process. Therefore, alternative, egg-independent vaccine manufacturing strategies should be evaluated to supplement the traditional egg-derived influenza vaccine manufacturing. Furthermore, evaluation of dose-sparing strategies that offer protection with a reduced antigen dose will be critical for pandemic influenza preparedness. Development of new antiviral therapeutics and other, nonpharmaceutical intervention strategies will further supplement pandemic preparedness. This review highlights the current status of egg-dependent and egg-independent strategies against an avian influenza pandemic. PMID:20426889

  7. Communicating with parents about vaccination: a framework for health professionals

    PubMed Central

    2012-01-01

    Background A critical factor shaping parental attitudes to vaccination is the parent’s interactions with health professionals. An effective interaction can address the concerns of vaccine supportive parents and motivate a hesitant parent towards vaccine acceptance. Poor communication can contribute to rejection of vaccinations or dissatisfaction with care. We sought to provide a framework for health professionals when communicating with parents about vaccination. Methods Literature review to identify a spectrum of parent attitudes or ‘positions’ on childhood vaccination with estimates of the proportion of each group based on population studies. Development of a framework related to each parental position with determination of key indicators, goals and strategies based on communication science, motivational interviewing and valid consent principles. Results Five distinct parental groups were identified: the ‘unquestioning acceptor’ (30–40%), the ‘cautious acceptor’ (25–35%); the ‘hesitant’ (20–30%); the ‘late or selective vaccinator’ (2–27%); and the ‘refuser’ of all vaccines (<2%). The goals of the encounter with each group will vary, depending on the parents’ readiness to vaccinate. In all encounters, health professionals should build rapport, accept questions and concerns, and facilitate valid consent. For the hesitant, late or selective vaccinators, or refusers, strategies should include use of a guiding style and eliciting the parent’s own motivations to vaccinate while, avoiding excessive persuasion and adversarial debates. It may be necessary to book another appointment or offer attendance at a specialised adverse events clinic. Good information resources should also be used. Conclusions Health professionals have a central role in maintaining public trust in vaccination, including addressing parents’ concerns. These recommendations are tailored to specific parental positions on vaccination and provide a structured

  8. Tuberculosis vaccine development at a divide.

    PubMed

    Kaufmann, Stefan H E

    2014-05-01

    Tuberculosis (TB) remains a major health threat that will only be defeated by a combination of better drugs, diagnostics and vaccines. The only licensed TB vaccine, bacille Calmette-Guérin (BCG), protects against extrapulmonary TB in infants. Novel vaccine candidates that could protect against pulmonary TB either in TB naïve or in latent TB-infected healthy individuals have been developed and are currently being assessed in clinical trials. Subunit booster vaccines are either based on viral vectors expressing TB-specific antigens or on TB-protein antigens in adjuvants. Subunit vaccines are administered on top of BCG. Replacement vaccines for BCG are recombinant viable BCG or Mycobacterium tuberculosis. Several candidates are undergoing, or will soon start, phase IIb assessment for efficacy. The first vaccine candidate, MVA85A, to complete a phase IIb trial, unfortunately failed to show protection against TB in infants. Therapeutic vaccines composed of killed mycobacterial preparations target patients with complicated TB in adjunct to drug treatment. With increasing numbers of TB vaccine candidates in clinical trials, financial, regulatory and infrastructural issues arise, which would be best tackled by a global strategy. In addition, selection of the most promising vaccine candidates for further clinical development gains increasing importance.

  9. [Pharmacovigilance of vaccines].

    PubMed

    Autret-Leca, E; Bensouda-Grimaldi, L; Jonville-Béra, A P; Beau-Salinas, F

    2006-02-01

    Safety of vaccines must be excellent to make vaccine's strategy acceptable, since it usually has a deferred individual benefit but immediate adverse drug reactions (ADRs). Pharmacovigilance of vaccines after their marketing is crucial because, prior to its availability on the market, the size of clinical trials is insufficient to identify rare or deferred adverse effects. The Pharmacovigilance is based on "spontaneous reporting" of ADRs to the Pharmacovigilance Regional Centre (PVRC) which establishes a relationship between each drug taken by the patient and the ADRs occurrence (imputability). This method is crucial to generate alerts, but under-estimates the real frequency of ADRs (1 to 10% of severe ADRs are reported). Thus pharmacoepidemiology studies are necessary to confirm the alerts identified by spontaneous reporting. ADRs can be specific, related to the antigen of an attenuated alive virus vaccine (lymphocyte meningitis after anti-mumps vaccine) or non-specific, related to a component different from the antigen (aluminium hydroxide involved in the "macrophagic myofasciitis", allergic reactions to neomycin, latex, egg or gelatine). Importance of Pharmacovigilance of vaccines is illustrated. Data, especially case-control studies, about the relationship between multiple sclerosis and hepatitis B vaccine are summarised. Data about the relationship between Crohn's disease or autism and MMR vaccine are analysed. As vaccines are used in healthy people, their safety must be excellent to be accepted. To monitor them after their marketing is the unique way to detect rare ADRs. This surveillance is made through reporting of ADRs to the PVRC. However, an active and intensive surveillance of ADRs as the one set up from the marketing of Prevenar should be systematic.

  10. A forecast of typhoid conjugate vaccine introduction and demand in typhoid endemic low- and middle-income countries to support vaccine introduction policy and decisions

    PubMed Central

    Ramani, Enusa; Park, Il Yeon; Lee, Jung Seok

    2017-01-01

    ABSTRACT A Typhoid Conjugate Vaccine (TCV) is expected to acquire WHO prequalification soon, which will pave the way for its use in many low- and middle-income countries where typhoid fever is endemic. Thus it is critical to forecast future vaccine demand to ensure supply meets demand, and to facilitate vaccine policy and introduction planning. We forecasted introduction dates for countries based on specific criteria and estimated vaccine demand by year for defined vaccination strategies in 2 scenarios: rapid vaccine introduction and slow vaccine introduction. In the rapid introduction scenario, we forecasted 17 countries and India introducing TCV in the first 5 y of the vaccine's availability while in the slow introduction scenario we forecasted 4 countries and India introducing TCV in the same time period. If the vaccine is targeting infants in high-risk populations as a routine single dose, the vaccine demand peaks around 40 million doses per year under the rapid introduction scenario. Similarly, if the vaccine is targeting infants in the general population as a routine single dose, the vaccine demand increases to 160 million doses per year under the rapid introduction scenario. The demand forecast projected here is an upper bound estimate of vaccine demand, where actual demand depends on various factors such as country priorities, actual vaccine introduction, vaccination strategies, Gavi financing, costs, and overall product profile. Considering the potential role of TCV in typhoid control globally; manufacturers, policymakers, donors and financing bodies should work together to ensure vaccine access through sufficient production capacity, early WHO prequalification of the vaccine, continued Gavi financing and supportive policy. PMID:28604164

  11. Hand, foot and mouth disease (HFMD): emerging epidemiology and the need for a vaccine strategy.

    PubMed

    Aswathyraj, S; Arunkumar, G; Alidjinou, E K; Hober, D

    2016-10-01

    Hand, foot, and mouth disease (HFMD) is a contagious viral disease and mainly affects infants and young children. The main manifestations are fever, vesicular rashes on hand, feet and buttocks and ulcers in the oral mucosa. Usually, HFMD is self-limiting, but a small proportion of children may experience severe complications such as meningitis, encephalitis, acute flaccid paralysis and neurorespiratory syndrome. Historically, outbreaks of HFMD were mainly caused by two enteroviruses: the coxsackievirus A16 (CV-A16) and the enterovirus 71 (EV-A71). In the recent years, coxsackievirus A6 and coxsackievirus A10 have been widely associated with both sporadic cases and outbreaks of HFMD worldwide, particularly in India, South East Asia and Europe with an increased frequency of neurological complications as well as mortality. Currently, there is no pharmacological intervention or vaccine available for HFMD. A formalin-inactivated EV-A71 vaccine has completed clinical trial in several Asian countries. However, this vaccine cannot protect against other major emerging etiologies of HFMD such as CV-A16, CV-A6 and CV-A10. Therefore, the development of a globally representative multivalent HFMD vaccine could be the best strategy.

  12. Cost-effectiveness of different human papillomavirus vaccines in Singapore.

    PubMed

    Lee, Vernon J; Tay, Sun Kuie; Teoh, Yee Leong; Tok, Mei Yin

    2011-03-31

    Human papillomavirus (HPV) vaccines are widely available and there have been studies exploring their potential clinical impact and cost-effectiveness. However, few studies have compared the cost-effectiveness among the 2 main vaccines available - a bivalent vaccine against HPV 16/18, and a quadrivalent vaccine against 6/11/16/18. We explore the cost-effectiveness of these two HPV vaccines in tropical Singapore. We developed a Markov state-transition model to represent the natural history of cervical cancer to predict HPV infection, cancer incidence, mortality, and costs. Cytologic screening and treatment of different outcomes of HPV infection were incorporated. Vaccination was provided to a cohort of 12-year old females in Singapore, followed up until death. Based on available vaccines on the market, the bivalent vaccine had increased effectiveness against a wider range of HPV types, while the quadrivalent vaccine had effectiveness against genital warts. Incremental cost-effectiveness ratios (ICER) compared vaccination to no-vaccination, and between the two vaccines. Sensitivity analyses explored differences in vaccine effectiveness and uptake, and other key input parameters. For the no vaccination scenario, 229 cervical cancer cases occurred over the cohort's lifetime. The total discounted cost per individual due to HPV infection was SGD$275 with 28.54 discounted life-years. With 100% vaccine coverage, the quadrivalent vaccine reduced cancers by 176, and had an ICER of SGD$12,866 per life-year saved. For the bivalent vaccine, 197 cancers were prevented with an ICER of $12,827 per life-year saved. Comparing the bivalent to the quadrivalent vaccine, the ICER was $12,488 per life-year saved. However, the cost per QALY saved for the quadrivalent vaccine compared to no vaccine was $9,071, while it was $10,392 for the bivalent vaccine, with the quadrivalent vaccine dominating the bivalent vaccine due to the additional QALY effect from reduction in genital warts. The

  13. Wildlife population management: are contraceptive vaccines a feasible proposition?

    PubMed

    Gupta, Satish Kumar; Minhas, Vidisha

    2017-06-01

    To minimize human-animal conflicts for habitation and burden of zoonotic diseases, it is imperative to develop new strategies for wildlife population management. In this direction, contraceptive vaccines eliciting immune response against hormones/proteins critical for reproduction have emerged as one of the promising options. Contraceptive vaccines based on neutralization of gonadotropin releasing hormone (GnRH) have been used for inhibition of fertility in various species such as wild horses, white-tailed deer, pigs, cats, dogs etc. It has been used for immunocastration of male pigs to improve meat quality. However, additional safety studies of GnRH vaccine will be needed in light of presence of its receptor at extra-pituitary sites. Native porcine zona pellucida (PZP)-based contraceptive vaccines have shown their utility in the management of the population of both captive and free-ranging wild horses and white-tailed deer. Long-term use of the PZP-based contraceptive vaccines has also demonstrated their safety. Ideally single injection of the contraceptive vaccine should elicit long lasting immune response and desired contraceptive efficacy, which will require development of novel vaccine delivery platforms and more potent adjuvants.

  14. Molecular biology of Group A Streptococcus and its implications in vaccine strategies.

    PubMed

    Brahmadathan, N K

    2017-01-01

    Infections due to Streptococcus pyogenes and their complications are a problem of major concern in many countries, including India. Primary prophylaxis with benzathine penicillin is the key to control and prevent sequelae such as acute rheumatic fever and rheumatic heart disease (RF/RHD) or post-streptococcal glomerulonephritis (PSGN). Non-compliance to prophylaxis due to fear of injection and anaphylaxis is major issues in RF/RHD control in India and leads to continued high prevalence of infection and post-streptococcal sequelae. Differing reports on the efficacy of two weekly, three weekly or monthly injections raise questions on the actual dosages to be administered. Availability of more effective antibiotics with better dosages has replaced the use of penicillin; hence, companies are reluctant to manufacture penicillin preparations in India. It is in this context that a concept of a Group A streptococci vaccine is looked at and whether or not a globally designed vaccine will be useful in the Indian context. Modern molecular techniques and genomic analysis of S. pyogenes have identified many molecules as vaccine candidates among which the M-protein has attracted the most attention. High diversity of M (emm) types in endemic regions raises questions about the efficacy of such a vaccine. A recent 30-valent M-protein-based vaccine that elicits antibodies to homologous as well as non-vaccine M types looks promising. This review will discuss the genomics of S. pyogenes, the various candidate vaccine molecules and highlight their efficacy in the Indian context where control of post-streptococcal sequelae remains a challenge.

  15. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis

    PubMed Central

    Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus. PMID:27082428

  16. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    PubMed

    Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  17. Why, which, how, who, when? A personal view of smallpox vaccination for the 2000s.

    PubMed

    Mortimer, P P

    2004-06-01

    The uncertainty about the extent of proliferation of smallpox virus holdings since the early 1990s, and particularly whether terrorist groups or so-called rogue states might now hold the virus, confronts potential target countries with a continuing dilemma. An increasingly large majority of their populations have never been vaccinated, and those who have been vaccinated may have become susceptible to smallpox again. Yet recent attempts by the United States and other governments to persuade large numbers of key personnel and others to accept vaccination have at least partially failed and a different long-term strategy is needed. This strategy should be based on surveillance of rash illnesses, improved public education, more refined contingency planning and a new approach to smallpox vaccination. The last should if possible be based on cell-grown, less reactogenic vaccines, even though it may be some years before these can become available. Meanwhile this article examines other expedients including the use of existing lymph vaccines.

  18. A novel method to value real options in health care: the case of a multicohort human papillomavirus vaccination strategy.

    PubMed

    Favato, Giampiero; Baio, Gianluca; Capone, Alessandro; Marcellusi, Andrea; Saverio Mennini, Francesco

    2013-07-01

    A large number of economic evaluations have already confirmed the cost-effectiveness of different human papillomavirus (HPV) vaccination strategies. Standard analyses might not capture the full economic value of novel vaccination programs because the cost-effectiveness paradigm fails to take into account the value of active management. Management decisions can be seen as real options, a term used to refer to the application of option pricing theory to the valuation of investments in nonfinancial assets in which much of the value is attributable to flexibility and learning over time. The aim of this article was to discuss the potential advantages shown by using the payoff method in the valuation of the cost-effectiveness of competing HPV immunization programs. This was the first study, to the best of our knowledge, to use the payoff method to determine the real option values of 4 different HPV vaccination strategies targeting female subjects aged 12, 15, 18, and 25 years. The payoff method derives the real option value from the triangular payoff distribution of the project's net present value, which is treated as a triangular fuzzy number. To inform the real option model, cost-effectiveness data were derived from an empirically calibrated Bayesian model designed to assess the cost-effectiveness of a multicohort HPV vaccination strategy in the context of the current cervical cancer screening program in Italy. A net health benefit approach was used to calculate the expected fuzzy net present value for each of the 4 vaccination strategies evaluated. Costs per quality-adjusted life-year gained seemed to be related to the number of cohorts targeted: a single cohort of girls aged 12 years (€10,955 [95% CI, -1,021 to 28,212]) revealed the lowest cost among the 4 alternative strategies evaluated. The real option valuation challenged the cost-effectiveness dominance of a single cohort of 12-year-old girls. The simultaneous vaccination of 2 cohorts of girls aged 12 and 15

  19. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  20. Self-enforcing regional vaccination agreements

    PubMed Central

    Klepac, Petra; Grenfell, Bryan T.; Laxminarayan, Ramanan

    2016-01-01

    In a highly interconnected world, immunizing infections are a transboundary problem, and their control and elimination require international cooperation and coordination. In the absence of a global or regional body that can impose a universal vaccination strategy, each individual country sets its own strategy. Mobility of populations across borders can promote free-riding, because a country can benefit from the vaccination efforts of its neighbours, which can result in vaccination coverage lower than the global optimum. Here we explore whether voluntary coalitions that reward countries that join by cooperatively increasing vaccination coverage can solve this problem. We use dynamic epidemiological models embedded in a game-theoretic framework in order to identify conditions in which coalitions are self-enforcing and therefore stable, and thus successful at promoting a cooperative vaccination strategy. We find that countries can achieve significantly greater vaccination coverage at a lower cost by forming coalitions than when acting independently, provided a coalition has the tools to deter free-riding. Furthermore, when economically or epidemiologically asymmetric countries form coalitions, realized coverage is regionally more consistent than in the absence of coalitions. PMID:26790996

  1. Chimeric GII.4 norovirus virus-like-particle-based vaccines induce broadly blocking immune responses.

    PubMed

    Debbink, Kari; Lindesmith, Lisa C; Donaldson, Eric F; Swanstrom, Jesica; Baric, Ralph S

    2014-07-01

    There is currently no licensed vaccine for noroviruses, and development is hindered, in part, by an incomplete understanding of the host adaptive immune response to these highly heterogeneous viruses and rapid GII.4 norovirus molecular evolution. Emergence of a new predominant GII.4 norovirus strain occurs every 2 to 4 years. To address the problem of GII.4 antigenic variation, we tested the hypothesis that chimeric virus-like particle (VLP)-based vaccine platforms, which incorporate antigenic determinants from multiple strains into a single genetic background, will elicit a broader immune response against contemporary and emergent strains. Here, we compare the immune response generated by chimeric VLPs to that of parental strains and a multivalent VLP cocktail. Results demonstrate that chimeric VLPs induce a more broadly cross-blocking immune response than single parental VLPs and a similar response to a multivalent GII.4 VLP cocktail. Furthermore, we show that incorporating epitope site A alone from one strain into the background of another is sufficient to induce a blockade response against the strain donating epitope site A. This suggests a mechanism by which population-wide surveillance of mutations in a single epitope could be used to evaluate antigenic changes in order to identify potential emergent strains and quickly reformulate vaccines against future epidemic strains as they emerge in human populations. Noroviruses are gastrointestinal pathogens that infect an estimated 21 million people per year in the United States alone. GII.4 noroviruses account for >70% of all outbreaks, making them the most clinically important genotype. GII.4 noroviruses undergo a pattern of epochal evolution, resulting in the emergence of new strains with altered antigenicity over time, complicating vaccine design. This work is relevant to norovirus vaccine design as it demonstrates the potential for development of a chimeric VLP-based vaccine platform that may broaden the

  2. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy

    PubMed Central

    Jiang, Xi; Liu, Yang; Tan, Ming

    2017-01-01

    The success of the two rotavirus (RV) vaccines (Rotarix and RotaTeq) in many countries endorses a live attenuated vaccine approach against RVs. However, the lower efficacies of both vaccines in many low- and middle-income countries indicate a need to improve the current RV vaccines. The recent discovery that RVs recognize histo-blood group antigens (HBGAs) as potential receptors has significantly advanced our understanding of RV diversity, evolution and epidemiology, providing important new insights into the performances of current RV vaccines in different populations and emphasizing a P-type-based vaccine approach. New understanding of RV diversity and evolution also raises a fundamental question about the ‘Jennerian' approach, which needs to be addressed for future development of live attenuated RV vaccines. Alternative approaches to develop safer and more cost-effective subunit vaccines against RVs are also discussed. PMID:28400594

  3. ALA-PDT mediated DC vaccine for skin squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Wang, Xiuli; Chen, Wei R.

    2015-03-01

    Dendritic cell (DC) based vaccine has emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have only achieved limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secret INF-Υ and IL-12). ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumor in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing DC-based cancer vaccine, which could improve the clinical application of PDT- DC vaccines.

  4. Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.

    PubMed

    Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth

    2005-05-21

    In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.

  5. Assessment of vaccination coverage, vaccination scar rates, and smallpox scarring in five areas of West Africa.

    PubMed

    Henderson, R H; Davis, H; Eddins, D L; Foege, W H

    1973-01-01

    In 1966, nineteen countries of West and Central Africa began a regional smallpox eradication and measles control programme in cooperation with the World Health Organization. This paper summarizes sample survey data collected to assess the results of the programme in Northern Nigeria (Sokoto and Katsina Provinces), Western Nigeria, Niger, Dahomey, and Togo. These data indicate that the programme, which used mass vaccination campaigns based on a collecting-point strategy, was generally successful in reaching a high proportion of the population. Analysis of vaccination coverage and vaccination scar rates by age underlined the importance to the programme of newborn children who accumulate rapidly following the mass campaign. Of all persons without vaccination scars at the time of the surveys, 34.4% were under 5 years of age; in the absence of a maintenance programme, this figure would rise to 40% after 1 year.

  6. Intranasal cold-adapted influenza virus vaccine combined with inactivated influenza virus vaccines: an extra boost for the elderly?

    PubMed

    Targonski, Paul V; Poland, Gregory A

    2004-01-01

    Although influenza vaccine delivery strategies have improved coverage rates to unprecedented levels nationally among persons aged 65 years and older, influenza remains one of the greatest vaccine-preventable threats to public health among elderly in the US. A new, intranasal live attenuated influenza vaccine (LAIV) was recently approved by the US FDA for use in persons aged 5-49 years, which excludes the elderly population. Limitations of immune response to inactivated influenza vaccine (IAIV) and effectiveness of current influenza vaccination strategies among the elderly suggest that a combined approach using LAIV and/or the IAIV in various permutations might benefit this group. We explore characteristics of the LAIV, data regarding its utility in protecting against influenza in the elderly, and challenges and opportunities regarding potential combined inactivated/live attenuated vaccination strategies for the elderly. Although LAIV appears to hold promise either alone or in combination with IAIV, large well conducted randomised trials are necessary to define further the role of LAIV in preventing influenza morbidity and mortality among the elderly. We also suggest that innovative vaccine coverage strategies designed to optimise prevention and control of influenza and minimise viral transmission in the community must accompany, in parallel, the acquisition of clinical trials data to best combat morbidity and mortality from influenza.

  7. Genome-based approaches to develop vaccines against bacterial pathogens.

    PubMed

    Serruto, Davide; Serino, Laura; Masignani, Vega; Pizza, Mariagrazia

    2009-05-26

    Bacterial infectious diseases remain the single most important threat to health worldwide. Although conventional vaccinology approaches were successful in conferring protection against several diseases, they failed to provide efficacious solutions against many others. The advent of whole-genome sequencing changed the way to think about vaccine development, enabling the targeting of possible vaccine candidates starting from the genomic information of a single bacterial isolate, with a process named reverse vaccinology. As the genomic era progressed, reverse vaccinology has evolved with a pan-genome approach and multi-strain genome analysis became fundamental for the design of universal vaccines. This review describes the applications of genome-based approaches in the development of new vaccines against bacterial pathogens.

  8. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains.

    PubMed

    Verdijk, Pauline; Rots, Nynke Y; Bakker, Wilfried A M

    2011-05-01

    Following achievement of polio eradication, the routine use of all live-attenuated oral poliovirus vaccines should be discontinued. However, the costs per vaccine dose for the alternative inactivated poliovirus vaccine (IPV) are significantly higher and the current production capacity is not sufficient for worldwide distribution of the vaccine. In order to achieve cost-prize reduction and improve affordability, IPV production processes and dose-sparing strategies should be developed to facilitate local manufacture at a relatively lower cost. The use of attenuated Sabin instead of wild-type polio strains will provide additional safety during vaccine production and permits production in low-cost settings. Sabin-IPV is under development by several manufacturers. This article gives an overview of results from clinical trials with Sabin-IPV and discusses the requirements and challenges in the clinical development of this novel IPV.

  9. Therapeutic vaccines for leishmaniasis.

    PubMed

    Khamesipour, Ali

    2014-11-01

    Numerous therapeutic strategies are used to treat leishmaniasis. The treatment of cutaneous leishmaniasis (CL) is solely depends on antimonate derivatives with safety issues and questionable efficacy and there is no fully effective modality to treat CL caused by Leishmania tropica and Leishmania braziliensis. There is no prophylactic vaccine available against any form of leishmaniasis. Immunotherapy for CL has a long history; immunotherapy trials of first and second generation vaccines showed promising results. The current article briefly covers the prophylactic vaccines and explains different immunotherapy strategies that have been used to treat leishmaniasis. This paper does not include experimental vaccines and only lays emphasis on human trials and those vaccines which reached human trials. Immunotherapy is currently used to successfully treat several disorders; Low cost, limited side effects and no possibility to develop resistance make immunotherapy a valuable choice especially for infectious disease with chemotherapy problems. Efforts are needed to explore the immunological surrogate marker(s) of cure and protection in leishmaniasis and overcome the difficulties in standardization of crude Leishmania vaccines. One of the reasons for anti-leishmaniasis vaccine failure is lack of an appropriate adjuvant. So far, not enough attention has been paid to develop vaccines for immunotherapy of leishmaniasis.

  10. Cost-effectiveness analysis of influenza and pneumococcal vaccinations among elderly people in Japan.

    PubMed

    Cai, Li; Uchiyama, Hachiro; Yanagisawa, Shinichiro; Kamae, Isao

    2006-01-01

    During the periods of seasonal flu in 2003 and 2004, it was found that about 45 percent of elderly people in Japan had been inoculated with influenza vaccines. Comparatively, however, the proportion of inoculation with pneumococcal vaccine was only 0.1 percent. Taking into account such incongruent proportions, this study assesses health and economic benefits of vaccination strategies for both influenza and pneumonia particularly for the elderly population in Japan. To accomplish this objective, a cost-effectiveness analysis was conducted with the use of the Monte Carlo simulation based on the data from medical literature as well as from the public organizations, wherein three strategic patterns were delineated and compared (i) no vaccination (ii) influenza vaccine only, and (iii) combined influenza with pneumococcal vaccines. The cost for one year of life saved by each strategy was compared with the scenario of no vaccinations. It was found that for 100,000 elderly people over 65 years of age in Japan, the cost-effectiveness ratio of influenza-only vaccination was 516,332 Japanese yen per one year of life saved, while the combined vaccinations of influenza with pneumococcal was 459,874 Japanese yen for the same benefit. The incremental cost-effectiveness ratio of the strategies (iii) versus (ii) was 426,698 Japanese yen per one year of life saved for 100,000 people. Consequently it was indicated that the combined vaccinations would be more cost-effective than the vaccination for influenza only.

  11. Benefits and Effectiveness of Administering Pneumococcal Polysaccharide Vaccine With Seasonal Influenza Vaccine: An Approach for Policymakers

    PubMed Central

    Nanni, Angeline; Levine, Orin

    2012-01-01

    For the influenza pandemic of 2009–2010, countries responded to the direct threat of influenza but may have missed opportunities and strategies to limit secondary pneumococcal infections. Delivering both vaccines together can potentially increase pneumococcal polysaccharide vaccine (PPV23) immunization rates and prevent additional hospitalizations and mortality in the elderly and other high-risk groups. We used PubMed to review the literature on the concomitant use of PPV23 with seasonal influenza vaccines. Eight of 9 clinical studies found that a concomitant program conferred clinical benefits. The 2 studies that compared the cost-effectiveness of different strategies found concomitant immunization to be more cost-effective than either vaccine given alone. Policymakers should consider a stepwise strategy to reduce the burden of secondary pneumococcal infections during seasonal and pandemic influenza outbreaks. PMID:22397339

  12. Coverage, efficacy or dosing interval: which factor predominantly influences the impact of routine childhood vaccination for the prevention of varicella? A model-based study for Italy.

    PubMed

    Holl, Katsiaryna; Sauboin, Christophe; Amodio, Emanuele; Bonanni, Paolo; Gabutti, Giovanni

    2016-10-21

    Varicella is a highly infectious disease with a significant public health and economic burden, which can be prevented with childhood routine varicella vaccination. Vaccination strategies differ by country. Some factors are known to play an important role (number of doses, coverage, dosing interval, efficacy and catch-up programmes), however, their relative impact on the reduction of varicella in the population remains unclear. This paper aims to help policy makers prioritise the critical factors to achieve the most successful vaccination programme with the available budget. Scenarios assessed the impact of different vaccination strategies on reduction of varicella disease in the population. A dynamic transmission model was used and adapted to fit Italian demographics and population mixing patterns. Inputs included coverage, number of doses, dosing intervals, first-dose efficacy and availability of catch-up programmes, based on strategies currently used or likely to be used in different countries. The time horizon was 30 years. Both one- and two-dose routine varicella vaccination strategies prevented a comparable number of varicella cases with complications, but two-doses provided broader protection due to prevention of a higher number of milder varicella cases. A catch-up programme in susceptible adolescents aged 10-14 years old reduced varicella cases by 27-43 % in older children, which are often more severe than in younger children. Coverage, for all strategies, sustained at high levels achieved the largest reduction in varicella. In general, a 20 % increase in coverage resulted in a further 27-31 % reduction in varicella cases. When high coverage is reached, the impact of dosing interval and first-dose vaccine efficacy had a relatively lower impact on disease prevention in the population. Compared to the long (11 years) dosing interval, the short (5 months) and medium (5 years) interval schedules reduced varicella cases by a further 5-13 % and 2-5

  13. Technical Transformation of Biodefense Vaccines

    PubMed Central

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  14. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Oral Modeling of an Adenovirus-Based Quadrivalent Influenza Vaccine in Ferrets and Mice.

    PubMed

    Scallan, Ciaran D; Lindbloom, Jonathan D; Tucker, Sean N

    2016-06-01

    Oral vaccines delivered as tablets offer a number of advantages over traditional parenteral-based vaccines including the ease of delivery, lack of needles, no need for trained medical personnel, and the ability to formulate into temperature-stable tablets. We have been evaluating an oral vaccine platform based on recombinant adenoviral vectors for the purpose of creating a prophylactic vaccine to prevent influenza, and have demonstrated vaccine efficacy in animal models and substantial immunogenicity in humans. These studies have evaluated monovalent vaccines to date. To protect against the major circulating A and B influenza strains, a multivalent influenza vaccine will be required. In this study, the immunogenicity of orally delivered monovalent, bivalent, trivalent, and quadrivalent vaccines was tested in ferrets and mice. The various vaccine combinations were tested by blending monovalent recombinant adenovirus vaccines, each expressing hemagglutinin from a single strain. Human tablet delivery was modeled in animals by oral gavage in mice and by endoscopic delivery in ferrets. We demonstrated minimal interference between the various vaccine vectors when used in combination and that the oral quadrivalent vaccine compared favorably to an approved trivalent inactivated vaccine. The quadrivalent vaccine presented here produced immune responses that we predict should be capable of providing protection against multiple influenza strains, and the platform should have applications to other multivalent vaccines. Vaxart, Inc.

  16. Maternal vaccination: moving the science forward

    PubMed Central

    Faucette, Azure N.; Unger, Benjamin L.; Gonik, Bernard; Chen, Kang

    2015-01-01

    BACKGROUND Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infections contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the development and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the efficacy and safety in the pregnant women and the offspring. METHODS An outline was synthesized based on the current status and major gaps in the knowledge of maternal vaccination. A systematic literature search in PUBMED was undertaken using the key words in each section title of the outline to retrieve articles relevant to pregnancy. Articles cited were selected based on relevance and quality. On the basis of the reviewed information, a perspective on the future directions of maternal vaccination research was formulated. RESULTS Maternal vaccination can generate active immune protection in the mother and elicit systemic immunoglobulin G (IgG) and mucosal IgG, IgA and IgM responses to confer neonatal protection. The maternal immune system undergoes significant modulation during pregnancy, which influences responsiveness to vaccines. Significant gaps exist in our knowledge of the efficacy and safety of maternal vaccines, and no maternal vaccines against a large number of old and emerging pathogens are available. Public acceptance of maternal vaccination has been low. CONCLUSIONS To tackle the scientific challenges of maternal vaccination and to provide the public with informed vaccination choices, scientists and clinicians in different disciplines must work closely and have a mechanistic understanding of the systemic, reproductive and mammary mucosal immune responses to vaccines. The use of animal models should be

  17. A novel vaccination strategy mediating the induction of lung-resident memory CD8 T cells confers heterosubtypic immunity against future pandemic influenza virus

    PubMed Central

    Lee, Yu-Na; Lee, Young-Tae; Kim, Min-Chul; Gewirtz, Andrew T.; Kang, Sang-Moo

    2016-01-01

    The currently used vaccine strategy to combat influenza A virus (IAV) aims to provide highly specific immunity to circulating seasonal IAV strains. However, the outbreak of 2009 influenza pandemic highlights the danger in this strategy. Here, we tested the hypothesis that universal vaccination that offers broader but weaker protection would result in cross protective T-cell responses after primary IAV infection, which would subsequently provide protective immunity against future pandemic strains. Specifically, we used tandem repeat M2e epitopes on virus-like particles (M2e5x VLP) that induced heterosubtypic immunity by eliciting antibodies to a conserved M2e epitope. M2e5x VLP was found to be superior to strain-specific current split vaccine in conferring heterosubtypic cross protection and in equipping the host with cross-protective lung-resident nucleoprotein-specific memory CD8+ T cell responses to a subsequent secondary infection with a new pandemic potential strain. Immune correlates for subsequent heterosubtypic immunity by M2e5x VLP vaccination were found to be virus-specific CD8+ T cells secreting IFN-γ and expressing lung-resident memory phenotypic markers CD69+ and CD103+ as well as M2e antibodies. Hence, vaccination with M2e5x VLP may be developable as a new strategy to combat future pandemic outbreaks. PMID:26864033

  18. Novel Synthetic (Poly)Glycerolphosphate-Based Antistaphylococcal Conjugate Vaccine

    PubMed Central

    Chen, Quanyi; Dintaman, Jay; Lees, Andrew; Sen, Goutam; Schwartz, David; Shirtliff, Mark E.; Park, Saeyoung; Lee, Jean C.; Mond, James J.

    2013-01-01

    Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid is a major antigenic target of the humoral immune system during staphylococcal infections, we developed a synthetic method for producing glycerol phosphoramidites to create a covalent 10-mer of (poly)glycerolphosphate for potential use in a conjugate vaccine. We initially demonstrated that intact Staphylococcus aureus elicits murine CD4+ T cell-dependent (poly)glycerolphosphate-specific IgM and IgG responses in vivo. Naive mice immunized with a covalent conjugate of (poly)glycerolphosphate and tetanus toxoid in alum plus CpG-oligodeoxynucleotides produced high secondary titers of serum (poly)glycerolphosphate-specific IgG. Sera from immunized mice enhanced opsonophagocytic killing of live Staphylococcus aureus in vitro. Mice actively immunized with the (poly)glycerolphosphate conjugate vaccine showed rapid clearance of staphylococcal bacteremia in vivo relative to mice similarly immunized with an irrelevant conjugate vaccine. In contrast to purified, natural lipoteichoic acid, the (poly)glycerolphosphate conjugate vaccine itself exhibited no detectable inflammatory activity. These data suggest that a synthetic (poly)glycerolphosphate-based conjugate vaccine will contribute to active protection against extracellular Gram-positive pathogens expressing this highly conserved backbone structure in their membrane-associated lipoteichoic acid. PMID:23649092

  19. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever.

    PubMed

    Sun, Yuan; Li, Hong-Yu; Tian, Da-Yong; Han, Qiu-Ying; Zhang, Xin; Li, Na; Qiu, Hua-Ji

    2011-10-26

    Low efficacy of gene-based vaccines due to inefficient gene delivery and expression has been major bottleneck of their applications. Efforts have been made to improve the efficacy, such as gene gun and electroporation, but the strategies are difficult to put into practical use. In this study, we developed and evaluated an adenovirus-delivered, alphavirus replicon-vectored vaccine (chimeric vector-based vaccine) expressing the E2 gene of classical swine fever virus (CSFV) (rAdV-SFV-E2). Rabbits immunized with rAdV-SFV-E2 developed CSFV-specific antibodies as early as 9 days and as long as 189 days and completely protected from challenge with C-strain. Pigs immunized with rAdV-SFV-E2 (n=5) developed robust humoral and cell-mediated responses to CSFV and were completely protected from subsequent lethal CSFV infection clinically and virologically. The level of immunity and protection induced by rAdV-SFV-E2 was comparable to that provided by the currently used live attenuated vaccine, C-strain. In contrast, both the conventional alphavirus replicon-vectored vaccine pSFV1CS-E2 and conventional adenovirus-vectored vaccine rAdV-E2 provided incomplete protection. The chimeric vector-based vaccine represents the first gene-based vaccine that is able to confer sterile immunity and complete protection against CSFV. The new-concept vaccination strategy may also be valuable in vaccine development against other pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials

    PubMed Central

    Takeyama, Natsumi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-01-01

    It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials. PMID:26668752

  1. [Seasonal flu vaccination for older people: Evaluation of the adjuvanted vaccine. Positioning report].

    PubMed

    López Mongil, Rosa; López Trigo, José Antonio; Mariano Lázaro, Alberto; Mato Chaín, Gloria; Ramos Cordero, Primitivo; Salleras Sanmartí, Luis

    2017-11-01

    Flu is a major public health problem, particularly for older people, and creates an important clinical and economic burden. A high mortality rate was reported in Spain during the period 2015 to 2016; 3,101 serious cases were hospitalised with a confirmed diagnosis of flu, of which 11% died (352 cases). Furthermore, financial and health costs are greatly increased by the complications of flu; people aged over 65 years represent approximately 64% of the total costs. Seasonal flu vaccination is the fundamental strategy, as demonstrated by cost-benefit and cost-effectiveness studies. A priority objective is to improve the vaccine's immune response and the search for and inclusion of adjuvants and immunostimulants in vaccines is a major line of research. This positioning report evaluates vaccination for older people and the importance of the adjuvanted vaccine in the elderly in strengthening immunogenicity, by means of a critical review of the literature based on the best evidence available on its immunogenicity and effectiveness, and an economic assessment. Copyright © 2017 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Communication technologies to improve HPV vaccination initiation and completion: A systematic review.

    PubMed

    Francis, Diane B; Cates, Joan R; Wagner, Kyla P Garrett; Zola, Tracey; Fitter, Jenny E; Coyne-Beasley, Tamera

    2017-07-01

    This systematic review examines the effectiveness of communication technology interventions on HPV vaccination initiation and completion. A comprehensive search strategy was used to identify existing randomized controlled trials testing the impact of computer-, mobile- or internet-based interventions on receipt of any dose of the HPV vaccine. Twelve relevant studies were identified with a total of 38,945 participants. The interventions were delivered using several different methods, including electronic health record (i.e. recall/reminder) prompts, text messaging, automated phone calls, interactive computer videos, and email. Vaccine initiation and completion was greater for technology-based studies relative to their control conditions. There is evidence that interventions utilizing communication technologies as their sole or primary mode for HPV vaccination intervention delivery may increase vaccination coverage. Communication technologies hold much promise for the future of HPV vaccination efforts, especially initiatives in practice-based settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A public health and budget impact analysis of vaccinating the elderly and at-risk adults with the 23-valent pneumococcal polysaccharide vaccine or 13-valent pneumococcal conjugate vaccine in the UK.

    PubMed

    Jiang, Yiling; Gauthier, Aline; Keeping, Sam; Carroll, Stuart

    2014-12-01

    Since the introduction of the routine childhood immunization, a change in epidemiology of pneumococcal disease has been seen in both children and adults. This study aimed to quantify the public health and budget impact of pneumococcal vaccination of the elderly and those in at risk groups in the UK. The model was adapted from a previous population-based Markov model. At-risk adults and the elderly were assumed to receive PPV23 or PCV13 vaccination or no vaccination. Over the study period (2012-2016), PPV23 vaccination led to a reduction in the number of invasive pneumococcal disease cases in most scenarios. The net budget impact ranged between £15 and £39 million (vs no vaccination) or between -£116 and -£93 million (vs PCV13). PPV23 vaccination program remains the optimal strategy from public health and budgetary perspectives despite epidemiological changes. PCV13 is likely to impose a significant budget with limited health benefits.

  4. Microneedle-mediated vaccine delivery: Harnessing cutaneous immunobiology to improve efficacy

    PubMed Central

    Al-Zahrani, S; Zaric, M; McCrudden, C; Scott, C; Kissenpfennig, A; Donnelly, Ryan F.

    2014-01-01

    Introduction We describe the use of microneedle arrays for delivery to targets within the skin itself. Breaching the skin’s stratum corneum barrier raises the possibility of administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. Areas Covered Intradermal vaccine delivery, in particular, holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed and here we discuss each one in turn. We also describe the importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination. Expert Opinion Microneedle-mediated vaccine holds enormous potential for patient benefit. In order for microneedle vaccine strategies to fulfil their potential, however, the proportion of an immune response that is due to local action of delivered vaccines on skin antigen presenting cells and what is due to a systemic effect from vaccine reaching the systemic circulation must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried- and-tested needle-and-syringe based-approaches. PMID:22475249

  5. Whole organism blood stage vaccines against malaria.

    PubMed

    Stanisic, Danielle I; Good, Michael F

    2015-12-22

    Despite a century of research focused on the development and implementation of effective control strategies, infection with the malaria parasite continues to result in significant morbidity and mortality worldwide. An effective malaria vaccine is considered by many to be the definitive solution. Yet, after decades of research, we are still without a vaccine that is capable of inducing robust, long lasting protection in naturally exposed individuals. Extensive sub-unit vaccine development focused on the blood stage of the malaria parasite has thus far yielded disappointing results. There is now a renewed focus on whole parasite vaccine strategies, particularly as they may overcome some of the inherent weaknesses deemed to be associated with the sub-unit approach. This review discusses the whole parasite vaccine strategy focusing on the blood stage of the malaria parasite, with an emphasis on recent advances and challenges in the development of killed and live attenuated vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses.

    PubMed

    Bazhan, S I; Karpenko, L I; Ilyicheva, T N; Belavin, P A; Seregin, S V; Danilyuk, N K; Antonets, D V; Ilyichev, A A

    2010-04-01

    Advances in defining HIV-1 CD8+ T cell epitopes and understanding endogenous MHC class I antigen processing enable the rational design of polyepitope vaccines for eliciting broadly targeted CD8+ T cell responses to HIV-1. Here we describe the construction and comparison of experimental DNA vaccines consisting of ten selected HLA-A2 epitopes from the major HIV-1 antigens Env, Gag, Pol, Nef, and Vpr. The immunogenicity of designed gene constructs was assessed after double DNA prime, single vaccinia virus boost immunization of HLA-A2 transgenic mice. We compared a number of parameters including different strategies for fusing ubiquitin to the polyepitope and including spacer sequences between epitopes to optimize proteasome liberation and TAP transport. It was demonstrated that the vaccine construct that induced in vitro the largest number of [peptide-MHC class I] complexes was also the most immunogenic in the animal experiments. This most immunogenic vaccine construct contained the N-terminal ubiquitin for targeting the polyepitope to the proteasome and included both proteasome liberation and TAP transport optimized spacer sequences that flanked the epitopes within the polyepitope construct. The immunogenicity of determinants was strictly related to their affinities for HLA-A2. Our finding supports the concept of rational vaccine design based on detailed knowledge of antigen processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Severe post-vaccination reaction to 17D yellow fever vaccine in Nigeria.

    PubMed

    Oyelami, S A; Olaleye, O D; Oyejide, C O; Omilabu, S A; Fatunla, B A

    1994-01-01

    An unusual outbreak of post-vaccination reactions to 17D yellow fever vaccine occurred at Shaki, Nigeria, in May 1987. Twenty-five of the affected people were treated at the Baptist Hospital Shaki. The patients presented with rapidly progressing swelling of the left arm with associated fever and other constitutional symptoms few hours after inoculation with the vaccine. Some of the patients developed gangrene of the affected limb, five of them went into coma and died. Poor hygiene and improper handling of vaccine as well as contamination of vaccine from the source are possible causes. A review of vaccine delivery strategies especially at local community levels; sound training, supervision of vaccinators and health education are strongly recommended to prevent reoccurrence of similar reactions.

  8. Application of optical coherence tomography for assessment of transcutaneous vaccine delivery

    NASA Astrophysics Data System (ADS)

    Kamali, T.; Rattanapak, T.; Hook, S.; Meglinski, I.

    2012-03-01

    Immunization is one of the most efficient and cost-effective means for the prevention of diseases, but most vaccines have to be administered invasively. A novel strategy of inducing an immune response is topical application of vaccines to intact skin. Apart from being a non-invasive route of drug delivery, skin delivery also offers an advantageous mode of immunization due to the ability of skin immune cells to present antigens to the immune system. Topical vaccine penetration through the outermost layers of skin is based on the percutaneous diffusion of lipid-based nano-particles. In the current study we investigate the applicability of Optical Coherence Tomography for monitoring transcutaneous delivery of a peptide vaccine into the skin in vivo.

  9. Vaccine adverse event text mining system for extracting features from vaccine safety reports.

    PubMed

    Botsis, Taxiarchis; Buttolph, Thomas; Nguyen, Michael D; Winiecki, Scott; Woo, Emily Jane; Ball, Robert

    2012-01-01

    To develop and evaluate a text mining system for extracting key clinical features from vaccine adverse event reporting system (VAERS) narratives to aid in the automated review of adverse event reports. Based upon clinical significance to VAERS reviewing physicians, we defined the primary (diagnosis and cause of death) and secondary features (eg, symptoms) for extraction. We built a novel vaccine adverse event text mining (VaeTM) system based on a semantic text mining strategy. The performance of VaeTM was evaluated using a total of 300 VAERS reports in three sequential evaluations of 100 reports each. Moreover, we evaluated the VaeTM contribution to case classification; an information retrieval-based approach was used for the identification of anaphylaxis cases in a set of reports and was compared with two other methods: a dedicated text classifier and an online tool. The performance metrics of VaeTM were text mining metrics: recall, precision and F-measure. We also conducted a qualitative difference analysis and calculated sensitivity and specificity for classification of anaphylaxis cases based on the above three approaches. VaeTM performed best in extracting diagnosis, second level diagnosis, drug, vaccine, and lot number features (lenient F-measure in the third evaluation: 0.897, 0.817, 0.858, 0.874, and 0.914, respectively). In terms of case classification, high sensitivity was achieved (83.1%); this was equal and better compared to the text classifier (83.1%) and the online tool (40.7%), respectively. Our VaeTM implementation of a semantic text mining strategy shows promise in providing accurate and efficient extraction of key features from VAERS narratives.

  10. Vaccine Hesitancy.

    PubMed

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  11. Cost-effectiveness of routine varicella vaccination using the measles, mumps, rubella and varicella vaccine in France: an economic analysis based on a dynamic transmission model for varicella and herpes zoster.

    PubMed

    Littlewood, Kavi J; Ouwens, Mario J N M; Sauboin, Christophe; Tehard, Bertrand; Alain, Sophie; Denis, François

    2015-04-01

    Each year in France, varicella and zoster affect large numbers of children and adults, resulting in medical visits, hospitalizations for varicella- and zoster-related complications, and societal costs. Disease prevention by varicella vaccination is feasible, wherein a plausible option involves replacing the combined measles, mumps, and rubella (MMR) vaccine with the combined MMR and varicella (MMRV) vaccine. This study aimed to: (1) assess the cost-effectiveness of adding routine varicella vaccination through MMRV, using different vaccination strategies in France; and (2) address key uncertainties, such as the economic consequences of breakthrough varicella cases, the waning of vaccine-conferred protection, vaccination coverage, and indirect costs. Based on the outputs of a dynamic transmission model that used data on epidemiology and costs from France, a cost-effectiveness model was built. A conservative approach was taken regarding the impact of varicella vaccination on zoster incidence by assuming the validity of the hypothesis of an age-specific boosting of immunity against varicella. The model determined that routine MMRV vaccination is expected to be a cost-effective option, considering a cost-effectiveness threshold of €20,000 per quality-adjusted life-year saved; routine vaccination was cost-saving from the societal perspective. Results were driven by a large decrease in varicella incidence despite a temporary initial increase in the number of zoster cases due to the assumption of exogenous boosting. In the scenario analyses, despite moderate changes in assumptions about incidence and costs, varicella vaccination remained a cost-effective option for France. Routine vaccination with MMRV was associated with high gains in quality-adjusted life-years, substantial reduction in the occurrences of varicella- and zoster-related complications, and few deaths due to varicella. Routine MMRV vaccination is also expected to provide reductions in costs related to

  12. Cost-effectiveness of new-generation oral cholera vaccines: a multisite analysis.

    PubMed

    Jeuland, Marc; Cook, Joseph; Poulos, Christine; Clemens, John; Whittington, Dale

    2009-09-01

    We evaluated the cost-effectiveness of a low-cost cholera vaccine licensed and used in Vietnam, using recently collected data from four developing countries where cholera is endemic. Our analysis incorporated new findings on vaccine herd protective effects. Using data from Matlab, Bangladesh, Kolkata, India, North Jakarta, Indonesia, and Beira, Mozambique, we calculated the net public cost per disability-adjusted life year avoided for three immunization strategies: 1) school-based vaccination of children 5 to 14 years of age; 2) school-based vaccination of school children plus use of the schools to vaccinate children aged 1 to 4 years; and 3) community-based vaccination of persons aged 1 year and older. We determined cost-effectiveness when vaccine herd protection was or was not considered, and compared this with commonly accepted cutoffs of gross domestic product (GDP) per person to classify interventions as cost-effective or very-cost effective. Without including herd protective effects, deployment of this vaccine would be cost-effective only in school-based programs in Kolkata and Beira. In contrast, after considering vaccine herd protection, all three programs were judged very cost-effective in Kolkata and Beira. Because these cost-effectiveness calculations include herd protection, the results are dependent on assumed vaccination coverage rates. Ignoring the indirect effects of cholera vaccination has led to underestimation of the cost-effectiveness of vaccination programs with oral cholera vaccines. Once these effects are included, use of the oral killed whole cell vaccine in programs to control endemic cholera meets the per capita GDP criterion in several developing country settings.

  13. Vaccine hesitancy and healthcare providers.

    PubMed

    Paterson, Pauline; Meurice, François; Stanberry, Lawrence R; Glismann, Steffen; Rosenthal, Susan L; Larson, Heidi J

    2016-12-20

    While most people vaccinate according to the recommended schedule, this success is challenged by individuals and groups who delay or refuse vaccines. The aim of this article is to review studies on vaccine hesitancy among healthcare providers (HCPs), and the influences of their own vaccine confidence and vaccination behaviour on their vaccination recommendations to others. The search strategy was developed in Medline and then adapted across several multidisciplinary mainstream databases including Embase Classic & Embase, and PschInfo. All foreign language articles were included if the abstract was available in English. A total of 185 articles were included in the literature review. 66% studied the vaccine hesitancy among HCPs, 17% analysed concerns, attitudes and/or behaviour of HCPs towards vaccinating others, and 9% were about evaluating intervention(s). Overall, knowledge about particular vaccines, their efficacy and safety, helped to build HCPs own confidence in vaccines and their willingness to recommend vaccines to others. The importance of societal endorsement and support from colleagues was also reported. In the face of emerging vaccine hesitancy, HCPs still remain the most trusted advisor and influencer of vaccination decisions. The capacity and confidence of HCPs, though, are stretched as they are faced with time constraints, increased workload and limited resources, and often have inadequate information or training support to address parents' questions. Overall, HCPs need more support to manage the quickly evolving vaccine environment as well as changing public, especially those who are reluctant or refuse vaccination. Some recommended strategies included strengthening trust between HCPs, health authorities and policymakers, through more shared involvement in the establishment of vaccine recommendations. Copyright © 2016. Published by Elsevier Ltd.

  14. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control.

    PubMed

    Kumar, A; Samant, M

    2016-05-01

    The visceral leishmaniasis (VL) caused by Leishmania donovani parasite severely affects large populations in tropical and subtropical regions of the world. The arsenal of drugs available is limited, and resistance is common in clinical field isolates. Therefore, vaccines could be an important alternative for prevention against VL. Recently, some investigators advocated the protective efficacy of DNA vaccines, which induces the T cell-based immunity against VL. The vaccine antigens are selected as conserved in various Leishmania species and provide a viable strategy for DNA vaccine development. Our understanding for DNA vaccine development against VL is not enough and much technological advancement is required. Improved formulations and methods of delivery are required, which increase the uptake of DNA vaccine by cells; optimization of vaccine vectors/encoded antigens to augment and direct the host immune response in VL. Despite the many genes identified as vaccine candidates, the disappointing potency of the DNA vaccines in VL underscores the challenges encountered in the efforts to translate efficacy in preclinical models into clinical realities. This review will provide a brief background of DNA vaccines including the insights gained about the design, strategy, safety issues, varied candidates, progress and challenges that play a role in their ability against VL. © 2016 John Wiley & Sons Ltd.

  15. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    PubMed

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  16. Trial watch: Naked and vectored DNA-based anticancer vaccines

    PubMed Central

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm. PMID:26155408

  17. Herpes zoster vaccine: A health economic evaluation for Switzerland.

    PubMed

    Blank, Patricia R; Ademi, Zanfina; Lu, Xiaoyan; Szucs, Thomas D; Schwenkglenks, Matthias

    2017-07-03

    Herpes zoster (HZ) or "shingles" results from a reactivation of the varicella zoster virus (VZV) acquired during primary infection (chickenpox) and surviving in the dorsal root ganglia. In about 20% of cases, a complication occurs, known as post-herpetic neuralgia (PHN). A live attenuated vaccine against VZV is available for the prevention of HZ and subsequent PHN. The present study aims to update an earlier evaluation estimating the cost-effectiveness of the HZ vaccine from a Swiss third party payer perspective. It takes into account updated vaccine prices, a different age cohort, latest clinical data and burden of illness data. A Markov model was developed to simulate the lifetime consequences of vaccinating 15% of the Swiss population aged 65-79 y. Information from sentinel data, official statistics and published literature were used. Endpoints assessed were number of HZ and PHN cases, quality-adjusted life years (QALYs), costs of hospitalizations, consultations and prescriptions. Based on a vaccine price of CHF 162, the vaccination strategy accrued additional costs of CHF 17,720,087 and gained 594 QALYs. The incremental cost-effectiveness ratio (ICER) was CHF 29,814 per QALY gained. Sensitivity analyses showed that the results were most sensitive to epidemiological inputs, utility values, discount rates, duration of vaccine efficacy, and vaccine price. Probabilistic sensitivity analyses indicated a more than 99% chance that the ICER was below 40,000 CHF per QALY. Findings were in line with existing cost-effectiveness analyses of HZ vaccination. This updated study supports the value of an HZ vaccination strategy targeting the Swiss population aged 65-79 y.

  18. Strain Selection for Generation of O-Antigen-Based Glycoconjugate Vaccines against Invasive Nontyphoidal Salmonella Disease

    PubMed Central

    Saul, Allan; MacLennan, Calman A.; Micoli, Francesca; Rondini, Simona

    2015-01-01

    Nontyphoidal Salmonellae, principally S. Typhimurium and S. Enteritidis, are a major cause of invasive bloodstream infections in sub-Saharan Africa with no vaccine currently available. Conjugation of lipopolysaccharide O-antigen to a carrier protein constitutes a promising vaccination strategy. Here we describe a rational process to select the most appropriate isolates of Salmonella as source of O-antigen for developing a bivalent glycoconjugate vaccine. We screened a library of 30 S. Typhimurium and 21 S. Enteritidis in order to identify the most suitable strains for large scale O-antigen production and generation of conjugate vaccines. Initial screening was based on growth characteristics, safety profile of the isolates, O-antigen production, and O-antigen characteristics in terms of molecular size, O-acetylation and glucosylation level and position, as determined by phenol sulfuric assay, NMR, HPLC-SEC and HPAEC-PAD. Three animal isolates for each serovar were identified and used to synthesize candidate glycoconjugate vaccines, using CRM197 as carrier protein. The immunogenicity of these conjugates and the functional activity of the induced antibodies was investigated by ELISA, serum bactericidal assay and flow cytometry. S. Typhimurium O-antigen showed high structural diversity, including O-acetylation of rhamnose in a Malawian invasive strain generating a specific immunodominant epitope. S. Typhimurium conjugates provoked an anti-O-antigen response primarily against the O:5 determinant. O-antigen from S. Enteritidis was structurally more homogeneous than from S. Typhimurium, and no idiosyncratic antibody responses were detected for the S. Enteritidis conjugates. Of the three initially selected isolates, two S. Typhimurium (1418 and 2189) and two S. Enteritidis (502 and 618) strains generated glycoconjugates able to induce high specific antibody levels with high breadth of serovar-specific strain coverage, and were selected for use in vaccine production. The

  19. Vaccines and Immunization Practice.

    PubMed

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Herpes zoster vaccine effectiveness and manifestations of herpes zoster and associated pain by vaccination status.

    PubMed

    Marin, Mona; Yawn, Barbara P; Hales, Craig M; Wollan, Peter C; Bialek, Stephanie R; Zhang, John; Kurland, Marge J; Harpaz, Rafael

    2015-01-01

    Options for managing herpes zoster (HZ)-related pain and complications have limited effectiveness, making HZ prevention through vaccination an important strategy. Limited data are available on HZ vaccine effectiveness against confirmed HZ and manifestations of HZ among vaccinated persons. We conducted a matched case-control study to assess HZ vaccine effectiveness for prevention of HZ and other HZ-related outcomes and a cohort study of persons with HZ to compare HZ-related outcomes by vaccination status. Cases were identified through active surveillance among persons age ≥ 60 years with HZ onset and health-care encounters during 2010-2011 in Southeastern Minnesota. Controls were age- and sex-matched to cases. Data were collected by medical record review and from participants via interviews and daily pain diaries. 266 HZ case-patients and 362 matched controls were enrolled in the vaccine effectiveness studies and 303 case-patients in the cohort study of HZ characteristics by vaccination status. Vaccination was associated with 54% (95% CI:32%-69%) reduction in HZ incidence, 58% (95% CI:31%-75%) reduction in HZ prodromal symptoms, and 70% (95% CI:33%-87%) reduction in medically-attended prodrome. HZ vaccine was statistically significant effective at preventing postherpetic neuralgia (PHN) measured at 30 d after rash onset, 61% (95% CI: 22%-80%). Among persons who developed HZ, no differences were found by vaccination status in severity or duration of HZ pain after rash onset. In this population-based study, HZ vaccination was associated with >50% reduction in HZ, HZ prodrome, and medically-attended prodrome.

  1. Herpes zoster vaccine effectiveness and manifestations of herpes zoster and associated pain by vaccination status

    PubMed Central

    Marin, Mona; Yawn, Barbara P; Hales, Craig M; Wollan, Peter C; Bialek, Stephanie R; Zhang, John; Kurland, Marge J; Harpaz, Rafael

    2015-01-01

    Options for managing herpes zoster (HZ)-related pain and complications have limited effectiveness, making HZ prevention through vaccination an important strategy. Limited data are available on HZ vaccine effectiveness against confirmed HZ and manifestations of HZ among vaccinated persons. We conducted a matched case-control study to assess HZ vaccine effectiveness for prevention of HZ and other HZ-related outcomes and a cohort study of persons with HZ to compare HZ-related outcomes by vaccination status. Cases were identified through active surveillance among persons age ≥60 years with HZ onset and health-care encounters during 2010-2011 in Southeastern Minnesota. Controls were age- and sex-matched to cases. Data were collected by medical record review and from participants via interviews and daily pain diaries. 266 HZ case-patients and 362 matched controls were enrolled in the vaccine effectiveness studies and 303 case-patients in the cohort study of HZ characteristics by vaccination status. Vaccination was associated with 54% (95% CI:32%-69%) reduction in HZ incidence, 58% (95% CI:31%-75%) reduction in HZ prodromal symptoms, and 70% (95% CI:33%-87%) reduction in medically-attended prodrome. HZ vaccine was statistically significant effective at preventing postherpetic neuralgia (PHN) measured at 30 d after rash onset, 61% (95% CI: 22%-80%). Among persons who developed HZ, no differences were found by vaccination status in severity or duration of HZ pain after rash onset. In this population-based study, HZ vaccination was associated with >50% reduction in HZ, HZ prodrome, and medically-attended prodrome. PMID:25806911

  2. Comparative cost-effectiveness of HPV vaccines in the prevention of cervical cancer in Malaysia.

    PubMed

    Ezat, Sharifa W P; Aljunid, Syed

    2010-01-01

    Cervical cancer (CC) had the second highest incidence of female cancers in Malaysia in 2003-2006. Prevention is possible by both Pap smear screening and HPV vaccination with either the bivalent vaccine (BV) or the quadrivalent vaccine (QV). In the present study, cost effectiveness options were compared for three programs i.e. screening via Pap smear; modeling of HPV vaccination (QV and BV) and combined strategy (screening plus vaccination). A scenario based sensitivity analysis was conducted using screening population coverages (40-80%) and costs of vaccines (RM 100-200/dose) were calculated. This was an economic burden, cross sectional study in 2006-2009 of respondents interviewed from six public Gynecology-Oncology hospitals. Methods included expert panel discussions to estimate treatment costs of CC, genital warts and vulva/vagina cancers by severity and direct interviews with respondents using costing and SF-36 quality of life questionnaires. A total of 502 cervical cancer patients participated with a mean age at 53.3±11.2 years and a mean marriage length of 27.7±12.1 years, Malays accounting for 44.2%. Cost/quality adjusted life year (QALY) for Pap smear in the base case was RM 1,215 and RM 1,100 at increased screening coverage. With QV only, in base case it was RM 15,662 and RM 24,203 when the vaccination price was increased. With BV only, the respective figures were RM 1,359,057 and RM 2,530,018. For QV combined strategy cost/QALY in the base case it was RM 4,937, reducing to RM 3,395 in the best case and rising to RM 7,992 in the worst case scenario. With the BV combined strategy, these three cost/QALYs were RM 6,624, RM 4,033 and RM 10,543. Incremental cost-effectiveness ratio (ICER) showed that screening at 70% coverage or higher was highly cost effective at RM 946.74 per QALYs saved but this was preceded by best case combined strategy with QV at RM 515.29 per QALYs saved. QV is more cost effective than BV. The QV combined strategy had a higher CE than

  3. Investigating Stakeholder Attitudes and Opinions on School-Based Human Papillomavirus Vaccination Programs

    PubMed Central

    Nodulman, Jessica A.; Starling, Randall; Kong, Alberta S.; Buller, David B.; Wheeler, Cosette M.; Woodall, W. Gill

    2015-01-01

    BACKGROUND In several countries worldwide, school-based human papillomavirus (HPV) vaccination programs have been successful; however, little research has explored US stakeholders’ acceptance toward school-based HPV vaccination programs. METHODS A total of 13 focus groups and 12 key informant interviews (N = 117; 85% females; 66% racial/ethnic minority) were conducted with 5 groups of stakeholders: parents of adolescent girls, parents of adolescent boys, adolescent girls, middle school nurses, and middle school administrators throughout the 5 public health regions of New Mexico. RESULTS All groups of stakeholders lacked knowledge on HPV and HPV vaccines. Stakeholders were interested in—but apprehensive about—the benefits of HPV vaccination. Despite previous literature showing the benefits of using middle schools as an HPV vaccination site, stakeholders did not deem middle schools as a viable site for vaccination. Nurses reported that using the school as an HPV vaccination site had not occurred to them; parents and adolescents stated they were uncertain about using this type of program. School administrators indicated that they lacked implementation authority. CONCLUSIONS Our study uncovered barriers to using middle schools as a site of HPV vaccination. Resources should be directed toward increased support and education for middle school nurses who function as opinion leaders relevant to the uptake of HPV vaccination. PMID:25846308

  4. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses.

  5. Classical swine fever vaccines-State-of-the-art.

    PubMed

    Blome, Sandra; Moß, Claudia; Reimann, Ilona; König, Patricia; Beer, Martin

    2017-07-01

    Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    PubMed Central

    Naggar, Heba M. El; Madkour, Mohamed Sayed; Hussein, Hussein Ali

    2017-01-01

    Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND) and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2) based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles Montanide™ adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2) viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses. PMID:28344402

  7. Likelihood-based methods for evaluating principal surrogacy in augmented vaccine trials.

    PubMed

    Liu, Wei; Zhang, Bo; Zhang, Hui; Zhang, Zhiwei

    2017-04-01

    There is growing interest in assessing immune biomarkers, which are quick to measure and potentially predictive of long-term efficacy, as surrogate endpoints in randomized, placebo-controlled vaccine trials. This can be done under a principal stratification approach, with principal strata defined using a subject's potential immune responses to vaccine and placebo (the latter may be assumed to be zero). In this context, principal surrogacy refers to the extent to which vaccine efficacy varies across principal strata. Because a placebo recipient's potential immune response to vaccine is unobserved in a standard vaccine trial, augmented vaccine trials have been proposed to produce the information needed to evaluate principal surrogacy. This article reviews existing methods based on an estimated likelihood and a pseudo-score (PS) and proposes two new methods based on a semiparametric likelihood (SL) and a pseudo-likelihood (PL), for analyzing augmented vaccine trials. Unlike the PS method, the SL method does not require a model for missingness, which can be advantageous when immune response data are missing by happenstance. The SL method is shown to be asymptotically efficient, and it performs similarly to the PS and PL methods in simulation experiments. The PL method appears to have a computational advantage over the PS and SL methods.

  8. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases

    PubMed Central

    Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung

    2015-01-01

    Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits. PMID:25839217

  9. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases.

    PubMed

    Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung

    2015-01-01

    Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits.

  10. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines).

    PubMed

    Doroshenko, Alexander; Halperin, Scott A

    2009-06-01

    Annual influenza epidemics continue to have a considerable impact in both developed and developing countries. Vaccination remains the principal measure to prevent seasonal influenza and reduce associated morbidity and mortality. The WHO recommends using established mammalian cell culture lines as an alternative to egg-based substrates in the manufacture of influenza vaccine. In June 2007, the EMEA approved Optaflu, a Madin Darby canine kidney cell culture-derived influenza vaccine manufactured by Novartis Vaccines. This review examines the advantages and disadvantages of cell culture-based technology for influenza vaccine production, compares immunogenicity and safety data for Optaflu with that of currently marketed conventional egg-based influenza vaccines, and considers the prospects for wider use of cell culture-based influenza vaccines.

  11. Utilization of feline ELISPOT for mapping vaccine epitopes.

    PubMed

    Abbott, Jeffrey R; Pu, Ruiyu; Coleman, James K; Yamamoto, Janet K

    2012-01-01

    A commercial feline immunodeficiency virus (FIV) vaccine consisting of inactivated dual-subtype viruses was released in the USA in 2002 and released subsequently over the next 6 years in Canada, Australia, New Zealand, and Japan. Based on the genetic, morphologic, and biochemical similarities between FIV and human immunodeficiency virus-1 (HIV-1), FIV infection of domestic cats is being used as a small animal model of HIV/AIDS vaccine. Studies on prototype and commercial FIV vaccines provide new insights to the types of immunity and the vaccine epitopes required for an effective human HIV-1 vaccine. ELISPOT assays to detect cytokines, chemokines, and cytolytic mediators are widely used to measure the magnitude and the types of cellular immunity produced by vaccination. Moreover, such approach has identified regions on both HIV-1 and FIV proteins that induce robust antiviral cellular immunity in infected hosts. Using the same strategy, cats immunized with prototype and commercial FIV vaccines are being analyzed by feline interferon-γ and IL-2 ELISPOT systems to identify the vaccine epitope repertoire for prophylaxis.

  12. Combining Adoptive Cell Therapy with Cytomegalovirus-Based Vaccine Is Protective against Solid Skin Tumors.

    PubMed

    Grenier, Jeremy M; Yeung, Stephen T; Qiu, Zhijuan; Jellison, Evan R; Khanna, Kamal M

    2017-01-01

    Despite many years of research, cancer vaccines have largely been ineffective in the treatment of established cancers. Many barriers to immune-mediated destruction of malignant cells exist, and these likely limit the efficacy of cancer vaccines. In this study, we sought to enhance the efficacy of a cytomegalovirus (CMV)-based vaccine targeting melanoma by combining vaccination with other forms of immunotherapy. Adoptive cell therapy in humans and in animal models has been shown to be effective for tumor regression. Thus, in this study, we assessed whether CMV-based vaccines in combination with adoptively transferred antitumor T cells could provide greater antitumor protection than either therapy alone. Our results show that adoptive cell therapy greatly enhanced the antitumor effects of CMV-based vaccines targeting the foreign model antigen, OVA, or the melanoma differentiation antigen, gp100. Combination adoptive cell therapy and vaccination induced the upregulation of the inhibitory ligands, PD-L1, and Qa-1 b , on B16 tumor cells. This expression paralleled the infiltration of tumors by vaccine-stimulated T cells which also expressed high levels of the receptors PD-1 and NKG2A/C/E, suggesting a potential mechanism of tumor immune evasion. Surprisingly, therapeutic blockade of the PD-1/PD-L1 and NKG2A/Qa-1 b axes did not delay tumor growth following vaccination, suggesting that the presence of inhibitory ligands within malignant tissue may not be an effective biomarker for successful combination therapy with CMV-based vaccines. Overall, our studies show that therapeutic CMV-based vaccines in combination with adoptive T cell transfer alone are effective for tumor rejection.

  13. Combining Adoptive Cell Therapy with Cytomegalovirus-Based Vaccine Is Protective against Solid Skin Tumors

    PubMed Central

    Grenier, Jeremy M.; Yeung, Stephen T.; Qiu, Zhijuan; Jellison, Evan R.; Khanna, Kamal M.

    2018-01-01

    Despite many years of research, cancer vaccines have largely been ineffective in the treatment of established cancers. Many barriers to immune-mediated destruction of malignant cells exist, and these likely limit the efficacy of cancer vaccines. In this study, we sought to enhance the efficacy of a cytomegalovirus (CMV)-based vaccine targeting melanoma by combining vaccination with other forms of immunotherapy. Adoptive cell therapy in humans and in animal models has been shown to be effective for tumor regression. Thus, in this study, we assessed whether CMV-based vaccines in combination with adoptively transferred antitumor T cells could provide greater antitumor protection than either therapy alone. Our results show that adoptive cell therapy greatly enhanced the antitumor effects of CMV-based vaccines targeting the foreign model antigen, OVA, or the melanoma differentiation antigen, gp100. Combination adoptive cell therapy and vaccination induced the upregulation of the inhibitory ligands, PD-L1, and Qa-1b, on B16 tumor cells. This expression paralleled the infiltration of tumors by vaccine-stimulated T cells which also expressed high levels of the receptors PD-1 and NKG2A/C/E, suggesting a potential mechanism of tumor immune evasion. Surprisingly, therapeutic blockade of the PD-1/PD-L1 and NKG2A/Qa-1b axes did not delay tumor growth following vaccination, suggesting that the presence of inhibitory ligands within malignant tissue may not be an effective biomarker for successful combination therapy with CMV-based vaccines. Overall, our studies show that therapeutic CMV-based vaccines in combination with adoptive T cell transfer alone are effective for tumor rejection. PMID:29387061

  14. Vaccine-derived polioviruses.

    PubMed

    Agol, Vadim I

    2006-06-01

    The Sabin oral poliovaccine (OPV) is extremely efficacious and safe, despite its inherent genetic instability. While reversion to nearly wild-type phenotype regularly occurs soon after the onset of OPV reproduction in the gastro-intestinal tract of vaccine recipients or their contacts, this is usually not a big problem, provided the vaccine is used either for mass vaccination or in populations with a relatively high level of anti-polio immunity. However, if these conditions are not met, the vaccine viruses are likely to be converted into highly transmissible agents with a nearly wild-type level of neurovirulence. Moreover, OPV viruses may persist and evolve even in adequately immunized populations. The current strategy for the "endgame" of poliovirus eradication envisions cessation of OPV usage shortly after the last isolation of a wild poliovirus. If implemented, this strategy would result in rapid growth of non-immune human populations at the time when OPV derivatives would very likely be persisting. Therefore, the planned cessation of OPV vaccination is associated with a very high, and in the author's opinion, unacceptable risk of polio outbreaks caused by OPV derivatives. The only currently available tool to curb such outbreaks is OPV, which should have been used at a global scale. Safe discontinuation of OPV vaccination will be possible only after an efficient new vaccine or an anti-poliovirus drug is available. To achieve this goal, stimulation of poliovirus research and elimination of organizational and financial obstacles preventing it are needed.

  15. Therapeutic HPV vaccines.

    PubMed

    Hancock, Gemma; Hellner, Karin; Dorrell, Lucy

    2018-02-01

    High-risk human papillomavirus (HPV) infection is known to be a necessary factor for cervical and anogenital malignancies. Cervical cancers account for over a quarter of a million deaths annually. Despite the availability of prophylactic vaccines, HPV infections remain extremely common worldwide. Furthermore, these vaccines are ineffective at clearing pre-existing infections and associated preinvasive lesions. As cervical dysplasia can regress spontaneously, a therapeutic HPV vaccine that boosts host immunity could have a significant impact on the morbidity and mortality associated with HPV. Therapeutic vaccines differ from prophylactic vaccines in that they are aimed at generating cell-mediated immunity rather than neutralising antibodies. This review will cover various therapeutic vaccine strategies in development for the treatment of HPV-associated lesions and cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Story and science: how providers and parents can utilize storytelling to combat anti-vaccine misinformation.

    PubMed

    Shelby, Ashley; Ernst, Karen

    2013-08-01

    With little or no evidence-based information to back up claims of vaccine danger, anti-vaccine activists have relied on the power of storytelling to infect an entire generation of parents with fear of and doubt about vaccines. These parent accounts of perceived vaccine injury, coupled with Andrew Wakefield's fraudulent research study linking the MMR vaccine to autism, created a substantial amount of vaccine hesitancy in new parents, which manifests in both vaccine refusal and the adoption of delayed vaccine schedules. The tools used by the medical and public health communities to counteract the anti-vaccine movement include statistics, research, and other evidence-based information, often delivered verbally or in the form of the CDC's Vaccine Information Statements. This approach may not be effective enough on its own to convince vaccine-hesitant parents that vaccines are safe, effective, and crucial to their children's health. Utilizing some of the storytelling strategies used by the anti-vaccine movement, in addition to evidence-based vaccine information, could potentially offer providers, public health officials, and pro-vaccine parents an opportunity to mount a much stronger defense against anti-vaccine messaging.

  17. Multiple Vaccinations: Friend or Foe

    PubMed Central

    Church, Sarah E.; Jensen, Shawn M.; Twitty, Chris; Bahjat, Keith; Hu, Hong-Ming; Urba, Walter J.; Fox, Bernard A.

    2013-01-01

    Few immunotherapists would accept the concept of a single vaccination inducing a therapeutic anti-cancer immune response in a patient with advanced cancer. But what is the evidence to support the “more-is-better” approach of multiple vaccinations? Since we are unaware of trials comparing the effect of a single vaccine versus multiple vaccinations on patient outcome, we considered that an anti-cancer immune response might provide a surrogate measure of the effectiveness of vaccination strategies. Since few large trials include immunological monitoring, the majority of information is gleaned from smaller trials in which an evaluation of immune responses to vaccine or tumor, before and at one or more times following the first vaccine was performed. In some studies there is convincing evidence that repeated administration of a specific vaccine can augment the immune response to antigens contained in the vaccine. In other settings multiple vaccinations can significantly reduce the immune response to one or more targets. Results from three large adjuvant vaccine studies support the potential detrimental effect of multiple vaccinations as clinical outcomes in the control arms were significantly better than that for treatment groups. Recent research has provided insights into mechanisms that are likely responsible for the reduced responses in the studies noted above, but supporting evidence from clinical specimens is generally lacking. Interpretation of these results is further complicated by the possibility that the dominant immune response may evolve to recognize epitopes not present in the vaccine. Nonetheless, the FDA-approval of the first therapeutic cancer vaccine and recent developments from preclinical models and clinical trials provide a substantial basis for optimism and a critical evaluation of cancer vaccine strategies. PMID:21952289

  18. Epitope-based recombinant diagnostic antigen to distinguish natural infection from vaccination with hepatitis A virus vaccines.

    PubMed

    Su, Qiudong; Guo, Minzhuo; Jia, Zhiyuan; Qiu, Feng; Lu, Xuexin; Gao, Yan; Meng, Qingling; Tian, Ruiguang; Bi, Shengli; Yi, Yao

    2016-07-01

    Hepatitis A virus (HAV) infection can stimulate the production of antibodies to structural and non-structural proteins of the virus. However, vaccination with an inactivated or attenuated HAV vaccine produces antibodies mainly against structural proteins, whereas no or very limited antibodies are produced against the non-structural proteins. Current diagnostic assays to determine exposure to HAV, such as the Abbott HAV AB test, detect antibodies only to the structural proteins and so are not able to distinguish a natural infection from vaccination with an inactivated or attenuated virus. Here, we constructed a recombinant tandem multi-epitope diagnostic antigen (designated 'H1') based on the immune-dominant epitopes of the non-structural proteins of HAV to distinguish the two situations. H1 protein expressed in Escherichia coli and purified by affinity and anion exchange chromatography was applied in a double-antigen sandwich ELISA for the detection of anti-non-structural HAV proteins, which was confirmed to distinguish a natural infection from vaccination with an inactivated or attenuated HAV vaccine. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Impact of a website based educational program for increasing vaccination coverage among adolescents.

    PubMed

    Esposito, Susanna; Bianchini, Sonia; Tagliabue, Claudia; Umbrello, Giulia; Madini, Barbara; Di Pietro, Giada; Principi, Nicola

    2018-04-03

    Data regarding the use of technology to improve adolescent knowledge on vaccines are scarce. The main aim of this study was to evaluate whether different web-based educational programmes for adolescents might increase their vaccination coverage. Overall, 917 unvaccinated adolescents (389 males, 42.4%; mean age ± standard deviation, 14.0 ± 2.2 years) were randomized 1:1:1 into the following groups: no intervention (n = 334), website educational program only (n = 281), or website plus face to face lesson (n = 302) groups. The use of the website plus the lesson significantly increased the overall knowledge of various aspects of vaccine-preventable disease and reduced the fear of vaccines (p < 0.001). A significant increase in vaccination coverage was observed for tetanus, diphtheria, acellular pertussis and conjugated meningococcal ACYW vaccines in the 2 groups using the website (p < 0.001), and better results were observed in the group that had also received the lesson; in this last group, significant results were observed in the increase in vaccination coverage for meningococcal B vaccine (p < 0.001). Overall, the majority of the participants liked the experience of the website, although they considered it important to further discuss vaccines with parents, experts and teachers. This study is the first to evaluate website based education of adolescents while considering all of the vaccines recommended for this age group. Our results demonstrate the possibility of increasing vaccination coverage by using a website based educational program with tailored information. However, to be most effective, this program should be supplemented with face-to-face discussions of vaccines at school and at home. Thus, specific education should also include teachers and parents so that they will be prepared to discuss with adolescents what is true and false in the vaccination field.

  20. Human papillomavirus vaccine policy and delivery in Latin America and the Caribbean.

    PubMed

    Andrus, Jon Kim; Lewis, Merle J; Goldie, Sue J; García, Patricia J; Winkler, Jennifer L; Ruiz-Matus, Cuauhtémoc; de Quadros, Ciro A

    2008-08-19

    Cervical cancer caused by human papillomavirus (HPV) is a major preventable public health problem. Two vaccines are now available for primary prevention of HPV infection and their introduction offers new opportunities to enhance comprehensive cervical cancer prevention and control. Currently, HPV vaccine price is a significant barrier to rapid vaccine introduction and access. Therefore, making evidence-based decisions about whether and how to introduce HPV vaccine into the immunization schedule in the countries of Latin America and the Caribbean (LAC) requires a rigorous analysis of several factors. These include: estimates of disease burden, cost-effectiveness, operational feasibility of reaching a population of adolescent females and other key analyses that have been used in recent years to support the introduction of other vaccines, such as rotavirus and pneumococcal conjugate vaccines. Given the large number of public health priorities that are competing for limited public resources, developing and using a sound evidence base is of particular importance for vaccines, like HPV, which are currently available only at prices higher than other vaccines now in use. HPV vaccination provides the opportunity to dramatically improve women's health and partnerships must also be broad-based and effectively coordinated. This can be achieved by developing programs based on the lessons learned from vaccination strategies used to eliminate rubella and neonatal tetanus and for scaling up influenza vaccination in countries of LAC.