Sample records for vaccines dna vaccines

  1. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  2. DNA Vaccines for Prostate Cancer

    PubMed Central

    Zahm, Christopher D.; Colluru, Viswa Teja; McNeel, Douglas G.

    2017-01-01

    DNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation. Studies into the mechanism of action of DNA vaccines in terms of antigen-presenting cell types able to directly present or cross-present DNA-encoded antigens, and the activation of innate immune responses due to DNA itself, have suggested opportunities to increase the immunogenicity of these vaccines. In addition, studies into the mechanisms of tumor resistance to anti-tumor vaccination have suggested combination approaches that can increase the antitumor effect of DNA vaccines. This review focuses on these mechanisms of action and mechanisms of resistance using DNA vaccines, and how this information is being used to improve the anti-tumor effect of DNA vaccines. These approaches are then specifically discussed in the context of human prostate cancer, a disease for which DNA vaccines have been and continue to be explored as treatments. PMID:28185916

  3. DNA vaccines: roles against diseases

    PubMed Central

    Khan, Kishwar Hayat

    2013-01-01

    Vaccination is the most successful application of immunological principles to human health. Vaccine efficacy needs to be reviewed from time to time and its safety is an overriding consideration. DNA vaccines offer simple yet effective means of inducing broad-based immunity. These vaccines work by allowing the expression of the microbial antigen inside host cells that take up the plasmid. These vaccines function by generating the desired antigen inside the cells, with the advantage that this may facilitate presentation through the major histocompatibility complex. This review article is based on a literature survey and it describes the working and designing strategies of DNA vaccines. Advantages and disadvantages for this type of vaccines have also been explained, together with applications of DNA vaccines. DNA vaccines against cancer, tuberculosis, Edwardsiella tarda, HIV, anthrax, influenza, malaria, dengue, typhoid and other diseases were explored. PMID:24432284

  4. The Web-Based DNA Vaccine Database DNAVaxDB and Its Usage for Rational DNA Vaccine Design.

    PubMed

    Racz, Rebecca; He, Yongqun

    2016-01-01

    A DNA vaccine is a vaccine that uses a mammalian expression vector to express one or more protein antigens and is administered in vivo to induce an adaptive immune response. Since the 1990s, a significant amount of research has been performed on DNA vaccines and the mechanisms behind them. To meet the needs of the DNA vaccine research community, we created DNAVaxDB ( http://www.violinet.org/dnavaxdb ), the first Web-based database and analysis resource of experimentally verified DNA vaccines. All the data in DNAVaxDB, which includes plasmids, antigens, vaccines, and sources, is manually curated and experimentally verified. This chapter goes over the detail of DNAVaxDB system and shows how the DNA vaccine database, combined with the Vaxign vaccine design tool, can be used for rational design of a DNA vaccine against a pathogen, such as Mycobacterium bovis.

  5. DNA vaccines in veterinary use

    PubMed Central

    Redding, Laurel; Werner, David B

    2015-01-01

    DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available. PMID:19722897

  6. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    PubMed

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  7. The future of human DNA vaccines

    PubMed Central

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-01-01

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including “epigenetics” and “omics” approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans PMID:22981627

  8. The future of human DNA vaccines.

    PubMed

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Biotechnology and DNA vaccines for aquatic animals

    USGS Publications Warehouse

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  10. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    PubMed

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Self-Assembly DNA Polyplex Vaccine inside Dissolving Microneedles for High-Potency Intradermal Vaccination.

    PubMed

    Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei

    2017-01-01

    The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries.

  12. DNA-launched live-attenuated vaccines for biodefense applications

    PubMed Central

    Pushko, Peter; Lukashevich, Igor S.; Weaver, Scott C.; Tretyakova, Irina

    2016-01-01

    Summary A novel vaccine platform uses DNA immunization to launch live-attenuated virus vaccines in vivo. This technology has been applied for vaccine development against positive-strand RNA viruses with global public health impact including alphaviruses and flaviviruses. The DNA-launched vaccine represents the recombinant plasmid that encodes the full-length genomic RNA of live-attenuated virus downstream from a eukaryotic promoter. When administered in vivo, the genomic RNA of live-attenuated virus is transcribed. The RNA initiates limited replication of a genetically defined, live-attenuated vaccine virus in the tissues of the vaccine recipient, thereby inducing a protective immune response. This platform combines the strengths of reverse genetics, DNA immunization and the advantages of live-attenuated vaccines, resulting in a reduced chance of genetic reversions, increased safety, and improved immunization. With this vaccine technology, the field of DNA vaccines is expanded from those that express subunit antigens to include a novel type of DNA vaccines that launch live-attenuated viruses. PMID:27055100

  13. Bringing DNA vaccines closer to commercial use.

    PubMed

    Carvalho, Joana A; Prazeres, Duarte M F; Monteiro, Gabriel A

    2009-10-01

    Progress in the application of DNA vaccines as an immunization protocol is evident from the increasing number of such vaccines under evaluation in clinical trials and by the recent approval of several DNA vaccine products for veterinary applications. DNA vaccine technology offers important therapeutic and commercial advantages compared with conventional approaches, including the opportunity to target pathogens characterized by significant genetic diversity using a safe immunization platform, and the ability to use a simple, rapid and well-characterized production method. However, further optimization of DNA vaccine technology through the use of improved constructs, delivery systems and immunization protocols is necessary to clinically achieve the promising results that have been demonstrated in preclinical models.

  14. Polymer multilayer tattooing for enhanced DNA vaccination

    PubMed Central

    DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2014-01-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628

  15. Polymer multilayer tattooing for enhanced DNA vaccination

    NASA Astrophysics Data System (ADS)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  16. Strategies and hurdles using DNA vaccines to fish

    PubMed Central

    2014-01-01

    DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen – and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish. PMID:24552235

  17. DNA Vaccination Against Metastatic Breast Cancer

    DTIC Science & Technology

    2002-07-01

    Although DNA vaccines have shown effectiveness in clinical trials , it is essential to demonstrate pre- clinical effectiveness for anti-tumor DNA vaccines...been shown to induce strong anti-tumor immunity in mice (3). Although gene vaccines have shown effectiveness in clinical trials for infectious...stronger justification for a clinical trial . REFERENCES: 1. Fornier, M., P. Munster, and A. D. Seidman. 1999. Update on the management of advanced breast

  18. DNA vaccines against viral diseases of farmed fish.

    PubMed

    Evensen, Øystein; Leong, Jo-Ann C

    2013-12-01

    Immunization by an antigen-encoding DNA was approved for commercial sale in Canada against a Novirhabdovirus infection in fish. DNA vaccines have been particularly successful against the Novirhabdoviruses while there are reports on the efficacy against viral pathogens like infectious pancreatic necrosis virus, infectious salmon anemia virus, and lymphocystis disease virus and these are inferior to what has been attained for the novirhabdoviruses. Most recently, DNA vaccination of Penaeus monodon against white spot syndrome virus was reported. Research efforts are now focused on the development of more effective vectors for DNA vaccines, improvement of vaccine efficacy against various viral diseases of fish for which there is currently no vaccines available and provision of co-expression of viral antigen and immunomodulatory compounds. Scientists are also in the process of developing new delivery methods. While a DNA vaccine has been approved for commercial use in farmed salmon in Canada, it is foreseen that it is still a long way to go before a DNA vaccine is approved for use in farmed fish in Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Smallpox DNA Vaccine Protects Nonhuman Primates Against Lethal Monkeypox

    DTIC Science & Technology

    2004-05-01

    skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting of four...administered to the skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting...vaccine to protect rhesus macaques from severe monkeypox. MATERIALS AND METHODS Viruses and cells. The VACV Connaught vaccine strain (derived from the New

  20. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus.

    PubMed

    Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C

    2006-11-30

    Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.

  1. DNA Vaccines - A Modern Gimmick or a Boon to Vaccinology?

    PubMed

    Manickan, Elanchezhiyan; Karem, Kevin L; Rouse, Barry T

    2017-01-01

    The reports in 1993 that naked DNA encoding viral genes conferred protective immunity came as a surprise to most vaccinologists. This review analyses the expanding number of examples where plasmid DNA induces immune responses. Issues such as the type of immunity induced, mechanisms of immune protection, and how DNA vaccines compare with other approaches are emphasized. Additional issues discussed include the likely means by which DNA vaccines induce CTL, how the potency and type of immunity induced can be modified, and whether DNA vaccines represent a practical means of manipulating unwanted immune response occurring during immunoinflammatory diseases. It seems doubtful if DNA vaccines will replace currently effective vaccines, but they may prove useful for prophylactic use against some agents that at present lack an effective vaccine. DNA vaccines promise to be valuable to manipulate the immune response in situations where responses to agents are inappropriate or ineffective.

  2. Future Approaches to DNA Vaccination Against Hemorrhagic Fever Viruses.

    PubMed

    Suschak, John J; Schmaljohn, Connie S

    2018-01-01

    To date, there is no protective vaccine for Ebola virus infection. Safety concerns have prevented the use of live-attenuated vaccines, and forced researchers to examine new vaccine formulations. DNA vaccination is an attractive method for inducing protective immunity to a variety of pathogens, but the low immunogenicity seen in larger animals and humans has hindered its usage. Various approaches have been used to improve the immunogenicity of DNA vaccines, but the most successful, and widespread, is electroporation. Of increasing interest is the use of molecular adjuvants to produce immunomodulatory signals that can both amplify and direct the immune response. When combined, these approaches have the possibility to push DNA vaccination into the forefront of medicine.

  3. Assuring the quality, safety, and efficacy of DNA vaccines.

    PubMed

    Robertson, J S; Griffiths, E

    2001-02-01

    Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes as the development of a novel vaccine could be problematic owing to the starting material often being developed in a research laboratory under ill-defined conditions. This paper examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations that must be addressed during preclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinees chromosomes, and the potential for the formation of anti-DNA antibodies.

  4. Assuring the quality, safety, and efficacy of DNA vaccines.

    PubMed

    Robertson, James S; Griffiths, Elwyn

    2006-01-01

    Scientists in academia whose research is aimed at the development of a novel vaccine or approach to vaccination may not always be fully aware of the regulatory process by which a candidate vaccine becomes a licensed product. It is useful for such scientists to be aware of these processes, as the development of a novel vaccine could be problematic as a result of the starting material often being developed in a research laboratory under ill-defined conditions. This chapter examines the regulatory process with respect to the development of a DNA vaccine. DNA vaccines present unusual safety considerations which must be addressed during nonclinical safety studies, including adverse immunopathology, genotoxicity through integration into a vaccinee's chromosomes and the potential for the formation of anti-DNA antibodies.

  5. DNAVaxDB: the first web-based DNA vaccine database and its data analysis

    PubMed Central

    2014-01-01

    Since the first DNA vaccine studies were done in the 1990s, thousands more studies have followed. Here we report the development and analysis of DNAVaxDB (http://www.violinet.org/dnavaxdb), the first publically available web-based DNA vaccine database that curates, stores, and analyzes experimentally verified DNA vaccines, DNA vaccine plasmid vectors, and protective antigens used in DNA vaccines. All data in DNAVaxDB are annotated from reliable resources, particularly peer-reviewed articles. Among over 140 DNA vaccine plasmids, some plasmids were more frequently used in one type of pathogen than others; for example, pCMVi-UB for G- bacterial DNA vaccines, and pCAGGS for viral DNA vaccines. Presently, over 400 DNA vaccines containing over 370 protective antigens from over 90 infectious and non-infectious diseases have been curated in DNAVaxDB. While extracellular and bacterial cell surface proteins and adhesin proteins were frequently used for DNA vaccine development, the majority of protective antigens used in Chlamydophila DNA vaccines are localized to the inner portion of the cell. The DNA vaccine priming, other vaccine boosting vaccination regimen has been widely used to induce protection against infection of different pathogens such as HIV. Parasitic and cancer DNA vaccines were also systematically analyzed. User-friendly web query and visualization interfaces are available in DNAVaxDB for interactive data search. To support data exchange, the information of DNA vaccines, plasmids, and protective antigens is stored in the Vaccine Ontology (VO). DNAVaxDB is targeted to become a timely and vital source of DNA vaccines and related data and facilitate advanced DNA vaccine research and development. PMID:25104313

  6. Construction and analysis of experimental DNA vaccines against megalocytivirus.

    PubMed

    Zhang, Min; Hu, Yong-Hua; Xiao, Zhi-Zhong; Sun, Yun; Sun, Li

    2012-11-01

    Iridoviruses are large double-stranded DNA viruses with icosahedral capsid. The Iridoviridae family contains five genera, one of which is Megalocytivirus. Megalocytivirus has emerged in recent years as an important pathogen to a wide range of marine and freshwater fish. In this study, we aimed at developing effective genetic vaccines against megalocytivirus affecting farmed fish in China. For this purpose, we constructed seven DNA vaccines based on seven genes of rock bream iridovirus isolate 1 from China (RBIV-C1), a megalocytivirus with a host range that includes Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The protective potentials of these vaccines were examined in a turbot model. The results showed that after vaccination via intramuscular injection, the vaccine plasmids were distributed in spleen, kidney, muscle, and liver, and transcription of the vaccine genes and production of the vaccine proteins were detected in these tissues. Following challenge with a lethal-dose of RBIV-C1, fish vaccinated with four of the seven DNA vaccines exhibited significantly higher levels of survival compared to control fish. Of these four protective DNA vaccines, pCN86, which is a plasmid that expresses an 86-residue viral protein, induced the highest protection. Immunological analysis showed that pCN86 was able to (i) stimulate the respiratory burst of head kidney macrophages at 14 d, 21 d, and 28 d post-vaccination, (ii) upregulate the expression of immune relevant genes involved in innate and adaptive immunity, and (iii) induce production of serum antibodies that, when incubated with RBIV-C1 before infection, significantly reduced viral loads in kidney and spleen following viral infection of turbot. Taken together, these results indicate that pCN86 is an effective DNA vaccine that may be used in the control of megalocytivirus-associated diseases in aquaculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques.

    PubMed

    Livingston, Brian D; Little, Stephen F; Luxembourg, Alain; Ellefsen, Barry; Hannaman, Drew

    2010-01-22

    DNA vaccination is a promising immunization strategy that could be applied in the development of vaccines for a variety of prophylactic and therapeutic indications. Utilizing anthrax protective antigen as a model antigen, we demonstrate that electroporation mediated delivery enhanced the immunogenicity of DNA vaccines in nonhuman primates over 100-fold as compared to conventional intramuscular injection. Two administrations of a DNA vaccine with electroporation elicited anthrax toxin neutralizing antibody responses in 100% of rhesus macaques. Toxin neutralizing antibodies were sustained for the nearly 1-year study duration and were correlated with protection against subsequent lethal Bacillus anthracis spore challenge. Collectively, electroporation mediated DNA vaccination conferred protection comparable to that observed following vaccination with an FDA approved anthrax vaccine.

  8. Protective effect of a polyvalent influenza DNA vaccine in pigs.

    PubMed

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe; Trebbien, Ramona; Williams, James A; Vidal, Enric; Vergara-Alert, Júlia; Foz, David Solanes; Darji, Ayub; Sisteré-Oró, Marta; Segalés, Joaquim; Nielsen, Jens; Fomsgaard, Anders

    2018-01-01

    Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle-free delivery method, we have recently demonstrated a polyvalent influenza DNA vaccine that induces a broad immune response, including both humoral and cellular immunity. To investigate the protection of our polyvalent influenza DNA vaccine approach in a pig challenge study. By intradermal needle-free delivery to the skin, we immunized pigs with two different doses (500μg and 800μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated. Two weeks following immunization, the pigs were challenged with the 2009 pandemic H1N1 virus. When challenged with 2009 pandemic H1N1, 0/5 vaccinated pigs (800μg DNA) became infected whereas 5/5 unvaccinated control pigs were infected. The pigs vaccinated with the low dose (500μg DNA) were only partially protected. The DNA vaccine elicited binding-, hemagglutination inhibitory (HI) - as well as cross-reactive neutralizing antibody activity and neuraminidase inhibiting antibodies in the immunized pigs, in a dose-dependent manner. The present data, together with the previously demonstrated immunogenicity of our influenza DNA vaccine, indicate that naked DNA vaccine technology provides a strong approach for the development of improved pig vaccines, applying realistic low doses of DNA and a convenient delivery method for mass vaccination. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives

    PubMed Central

    Xu, Yingying; Yuen, Pak-Wai; Lam, Jenny Ka-Wing

    2014-01-01

    Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents. PMID:25014738

  10. Potentiation of an anthrax DNA vaccine with electroporation.

    PubMed

    Luxembourg, A; Hannaman, D; Nolan, E; Ellefsen, B; Nakamura, G; Chau, L; Tellez, O; Little, S; Bernard, R

    2008-09-19

    DNA vaccines are a promising method of immunization against biothreats and emerging infections because they are relatively easy to design, manufacture, store and distribute. However, immunization with DNA vaccines using conventional delivery methods often fails to induce consistent, robust immune responses, especially in species larger than the mouse. Intramuscular (i.m.) delivery of a plasmid encoding anthrax toxin protective antigen (PA) using electroporation (EP), a potent DNA delivery method, rapidly induced anti-PA IgG and toxin neutralizing antibodies within 2 weeks following a single immunization in multiple experimental species. The delivery procedure is particularly dose efficient and thus favorable for achieving target levels of response following vaccine administration in humans. These results suggest that EP may be a valuable platform technology for the delivery of DNA vaccines against anthrax and other biothreat agents.

  11. Immunogenicity of an HPV-16 L2 DNA vaccine

    PubMed Central

    Hitzeroth, Inga I.; Passmore, Jo-Ann S.; Shephard, Enid; Stewart, Debbie; Müller, Martin; Williamson, Anna-Lise; Rybicki, Edward P.; Kast, W. Martin

    2009-01-01

    The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunised with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralising antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. PMID:19559114

  12. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    PubMed

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  13. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.

    2008-05-10

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-{gamma} enzyme-linked immunospot responses of low magnitude were observed after immunizationmore » with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus.« less

  14. Pulmonary delivery of respiratory syncytial virus DNA vaccines using macroaggregated albumin particles.

    PubMed

    Harcourt, Jennifer L; Anderson, Larry J; Sullender, Wayne; Tripp, Ralph A

    2004-06-02

    At present there is no safe and effective vaccine for respiratory syncytial virus (RSV). DNA vaccines encoding RSV surface glycoproteins are one option being examined. Current methods to deliver DNA vaccines generally require repeated high dose intramuscular or intradermal administration for effectiveness. In this study, we examine the efficacy of pulmonary DNA vaccination using low dose DNA vaccines encoding the RSV F glycoprotein conjugated to macroaggregated albumin (MAA-F). Single vaccination of BALB/c mice with 1 microg MAA-F was ineffective, however mice boosted with an additional 1 microg MAA-F, or vaccinated a single time with 10 microg MAA-F, developed substantially improved immunity associated with reduced viral titers, increased anti-F antibody responses, and enhanced Th1 and Th2 intracellular cytokine responses. This study shows that MAA may be a useful carrier for RSV DNA vaccines.

  15. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at themore » E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.« less

  16. The Role of Particle-Mediated DNA Vaccines in Biodefense Preparedness

    DTIC Science & Technology

    2005-06-17

    vaccines in biodefense preparedness Hansi J. Deana,T, Joel Haynesa, Connie Schmaljohnb aPowderJect Vaccines , Inc. 8551 Research Way, Middleton, WI 53562...accepted 25 January 2005 Available online 12 April 2005Abstract Particle-mediated epidermal delivery (PMED) of DNA vaccines is based on the acceleration...recent years, data have accumulated on the utility of PMED for delivery of DNA vaccines against a number of viral pathogens, including filoviruses

  17. Oral Vaccination with a DNA Vaccine Encoding Capsid Protein of Duck Tembusu Virus Induces Protection Immunity

    PubMed Central

    Shen, Haoyue; Jia, Renyong; Wang, Mingshu; Chen, Shun; Zhu, Dekang; Liu, Mafeng; Zhao, Xinxin; Yang, Qiao; Wu, Ying; Liu, Yunya; Zhang, Ling; Yin, Zhongqiong; Jing, Bo

    2018-01-01

    The emergence of duck tembusu virus (DTMUV), a new member of the Flavivirus genus, has caused great economical loss in the poultry industry in China. Since the outbreak and spread of DTMUV is hard to control in a clinical setting, an efficient and low-cost oral delivery DNA vaccine SL7207 (pVAX1-C) based on the capsid protein of DTMUV was developed and evaluated in this study. The antigen capsid protein was expressed from the DNA vaccine SL7207 (pVAX1-C), both in vitro and in vivo. The humoral and cellular immune responses in vivo were observed after oral immunization with the SL7207 (pVAX1-C) DNA vaccine. High titers of the specific antibody against the capsid protein and the neutralizing antibody against the DTMUV virus were both detected after inoculation. The ducks were efficiently protected from lethal DTMUV exposure by the SL7207 (pVAX1-C) vaccine in this experiment. Taken together, we demonstrated that the capsid protein of DTMUV possesses a strong immunogenicity against the DTMUV infection. Moreover, an oral delivery of the DNA vaccine SL7207 (pVAX1-C) utilizing Salmonella SL7207 was an efficient way to protect the ducks against DTMUV infection and provides an economic and fast vaccine delivery strategy for a large scale clinical use. PMID:29642401

  18. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control.

    PubMed

    Kumar, A; Samant, M

    2016-05-01

    The visceral leishmaniasis (VL) caused by Leishmania donovani parasite severely affects large populations in tropical and subtropical regions of the world. The arsenal of drugs available is limited, and resistance is common in clinical field isolates. Therefore, vaccines could be an important alternative for prevention against VL. Recently, some investigators advocated the protective efficacy of DNA vaccines, which induces the T cell-based immunity against VL. The vaccine antigens are selected as conserved in various Leishmania species and provide a viable strategy for DNA vaccine development. Our understanding for DNA vaccine development against VL is not enough and much technological advancement is required. Improved formulations and methods of delivery are required, which increase the uptake of DNA vaccine by cells; optimization of vaccine vectors/encoded antigens to augment and direct the host immune response in VL. Despite the many genes identified as vaccine candidates, the disappointing potency of the DNA vaccines in VL underscores the challenges encountered in the efforts to translate efficacy in preclinical models into clinical realities. This review will provide a brief background of DNA vaccines including the insights gained about the design, strategy, safety issues, varied candidates, progress and challenges that play a role in their ability against VL. © 2016 John Wiley & Sons Ltd.

  19. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch.

    PubMed

    Yang, Hung-Wei; Ye, Ling; Guo, Xin Dong; Yang, Chinglai; Compans, Richard W; Prausnitz, Mark R

    2017-01-01

    Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Overview of recent DNA vaccine development for fish

    USGS Publications Warehouse

    Kurath, G.; ,

    2005-01-01

    Since the first description of DNA vaccines for fish in 1996, numerous studies of genetic immunisation against the rhabdovirus pathogens infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) have established their potential as both highly efficacious biologicals and useful basic research tools. Single small doses of rhabdovirus DNA constructs provide extremely strong protection against severe viral challenge under a variety of conditions. DNA vaccines for several other important fish viruses, bacteria, and parasites are under investigation, but they have not yet shown high efficacy. Therefore, current research is focussed on mechanistic studies to understand the basis of protection, and on improvement of the nucleic acid vaccine applications against a wider range of fish pathogens.

  1. Coxiella burnetii DNA in goat milk after vaccination with Coxevac(®).

    PubMed

    Hermans, Mirjam H A; Huijsmans, C Ronald J J; Schellekens, Jeroen J A; Savelkoul, Paul H M; Wever, Peter C

    2011-03-24

    Q fever is a zoonotic disease caused by Coxiella burnetii, a species of bacteria that is distributed globally. A large Q fever epidemic is currently spreading throughout the Netherlands with more than 3500 human cases notified from 2007 to 2009. Governmental measures to prevent further spread of the disease imposed in December 2009 included vaccination of all dairy goats and sheep and, in parallel, bulk tank milk testing to identify contaminated goat and sheep farms. When bulk tank milk was found to contain C. burnetii DNA, pregnant ruminants were culled. An important, but unsolved issue in this policy was whether vaccine-derived C. burnetii DNA is excreted in milk after vaccination. Using real time PCR and single nucleotide polymorphism (SNP) genotyping techniques, we show here that within hours and up to 9 days after vaccination with Coxevac(®), vaccine-derived C. burnetii DNA can be detected in the milk of dairy goats. This is the first report describing DNAlactia of vaccine-derived DNA after vaccination with a completely inactivated vaccine. This finding had implications for the Dutch policy to combat the Q fever epidemic. A 2-week interval was introduced between vaccination and bulk tank milk testing to identify infected farms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Field testing of Schistosoma japonicum DNA vaccines in cattle in China.

    PubMed

    Shi, Fuhui; Zhang, Yaobi; Lin, Jiaojiao; Zuo, Xin; Shen, Wei; Cai, Yiumin; Ye, Ping; Bickle, Quentin D; Taylor, Martin G

    2002-11-01

    Vaccines are needed to reduce the zoonotic reservoir of Schistosoma japonicum infection in bovines in China. We have developed two experimental DNA vaccines and have already shown these to be capable of inducing partial protection in water buffalo naturally exposed to the risk of S. japonicum infection in the field. We now report a similar field trial in cattle, the other major bovine reservoir host species in China. Groups of cattle were vaccinated with the VRSj28 vaccine or the VRSj23 vaccine, or, to test whether protection could be enhanced by combination vaccination, with both these DNA vaccines together. After vaccination, the cattle were exposed to natural infection in the field for a period of 54 days. Worm and egg counts carried out at the end of the experiment showed that each of the vaccine groups showed partial resistance, and that combined vaccination was not more effective than vaccination with the individual plasmids.

  3. Positive immunomodulatory effects of heterologous DNA vaccine- modified live vaccine, prime-boost immunization, against the highly-pathogenic PRRSV infection.

    PubMed

    Sirisereewan, Chaitawat; Nedumpun, Teerawut; Kesdangsakonwut, Sawang; Woonwong, Yonlayong; Kedkovid, Roongtham; Arunorat, Jirapat; Thanawongnuwech, Roongroje; Suradhat, Sanipa

    2017-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) infection is one of the most important swine pathogens, and causes a major economic impact worldwide. Recently, a new variant type 2 PRRSV, highly pathogenic PRRSV (HP-PRRSV) has emerged and continued to circulate in Southeast Asia region. Currently, commercially available PRRSV vaccines, modified live PRRS vaccines (MLV) are not able to provide complete protection against HP-PRRSV and been reported to induce negative immunomodulatory effects. Interestingly, a novel DNA vaccine was developed and successfully used to improve PRRSV-specific immune responses following MLV vaccination. To investigate the efficacy of a heterologous DNA-MLV prime-boost immunization against the HP-PRRSV infection, an experimental vaccinated-challenged study was conducted. Two-week-old, PRRSV-seronegative, crossbred pigs (5-8 pigs/group) were allocated into 5 groups. At day -14 (D-14), the treatment group (DNA-MLV) was immunized with a DNA vaccine encoding PRRSV-truncated nucleocapsid protein (pORF7t), followed by a commercial modified live type 2 PRRS vaccine (MLV) at D0. The other groups included the group that received PBS at D-14 followed by MLV at D0 (MLV), pORF7t at D-14 (DNA), PBS at D0 (PBS) and the negative control group. At D42, all groups, except the negative control group, were challenged with HP-PRRSV (strain 10PL1). The results demonstrated that pigs that received MLV, regardless of the DNA priming, exhibited less clinical signs and faster viral clearance. Following HP-PRRSV challenge, the DNA-MLV group exhibited improved PRRSV-specific immunity, as observed by increased neutralizing antibody titers and PRRSV-specific IFN-γ production, and reduced IL-10 and PRRSV-specific Treg productions. However, neither the prime-boost immunization nor the MLV was able to induce complete clinical protection against HP-PRRSV infection. In conclusion, improved immunological responses, but not clinical protection, were achieved by

  4. DNA Vaccination Against Metastatic Breast Cancer

    DTIC Science & Technology

    2001-07-01

    cells. Although DNA vaccines have shown effectiveness in clinical trials , it is essential to demonstrate pre- clinical effectiveness for anti-tumor... clinical trials for infectious diseases (4), it is essential to (5-7)demonstrate pre- clinical effectiveness for anti-tumor vaccines before clinical testing...Program Clinical Translational Research (CTR) award to perform a Phase I clinical trial of ELVIS2-neu. Our preliminary application was selected for

  5. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth

    NASA Astrophysics Data System (ADS)

    Holmgren, Lars; Ambrosino, Elena; Birot, Olivier; Tullus, Carl; Veitonmäki, Niina; Levchenko, Tetyana; Carlson, Lena-Maria; Musiani, Piero; Iezzi, Manuela; Curcio, Claudia; Forni, Guido; Cavallo, Federica; Kiessling, Rolf

    2006-06-01

    Endogenous angiogenesis inhibitors have shown promise in preclinical trials, but clinical use has been hindered by low half-life in circulation and high production costs. Here, we describe a strategy that targets the angiostatin receptor angiomotin (Amot) by DNA vaccination. The vaccination procedure generated antibodies that detected Amot on the endothelial cell surface. Purified Ig bound to the endothelial cell membrane and inhibited endothelial cell migration. In vivo, DNA vaccination blocked angiogenesis in the matrigel plug assay and prevented growth of transplanted tumors for up to 150 days. We further demonstrate that a combination of DNA vaccines encoding Amot and the extracellular and transmembrane domains of the human EGF receptor 2 (Her-2)/neu oncogene inhibited breast cancer progression and impaired tumor vascularization in Her-2/neu transgenic mice. No toxicity or impairment of normal blood vessels could be detected. This work shows that DNA vaccination targeting Amot may be used to mimic the effect of angiostatin. cancer vaccines | neoplasia | neovascularization | breast cancer | angiostatin

  6. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways

    PubMed Central

    Leitner, Wolfgang W.; Hwang, Leroy N.; Deveer, Michael J.; Zhou, Aimin; Silverman, Robert H.; Williams, Bryan R.G.; Dubensky, Thomas W.; Ying, Han; Restifo, Nicholas P.

    2006-01-01

    Cancer vaccines targeting ‘self’ antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of protein kinase R. Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2′,5′-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA. PMID:12496961

  7. The effect of bovine IFN-alpha on the immune response in guinea pigs vaccinated with DNA vaccine of foot-and-mouth disease virus.

    PubMed

    Guo, Hui-Chen; Liu, Zai-Xin; Sun, Shi-Qi; Leng, Qing-Wen; Li, Dong; Liu, Xiang-Tao; Xie, Qing-Ge

    2004-10-01

    In this study, we constructed recombinant plasmid pcDNA3.1/P12X3C3D including P1, 2A, 3C, 3D and part of 2B gene of FMDV and pcDNA3.1/IFN containing the gene encoding bovine IFN-alpha. We inoculated the DNA vaccine pcDNA3.1/P12X3C3D with or without pcDNA3.1/IFN to evaluate the efficiency of this DNA vaccine and the immunogenicity of DNA vaccine enhanced by the co-delivery with pcDNA3.1/IFN. After two times of vaccination with DNA vaccine, all of guinea pigs were challenged with 103 ID50 FMDV type O. Anti-FMDV antibody levels were detected by ELISA and T lymphocyte proliferation response was tested by MTT assay. The result shows that guinea pigs inoculated by pcDNA3.1/P12X3C3D alone or with pcDNA3.1/IFN generated specific antibodies and induced an FMDV-specific T lymphocyte proliferation response. FMDV challenge tests showed that one in four guinea pigs immunized by pcDNA3.1/P12X3C3D with pcDNA3.1/IFN was protected from the FMDV serotype O infection. This result indicated that the efficiency of the DNA vaccine was enhanced by co-delivery with pcDNA3.1/IFN. However, the protection rate was considerably lower than that immunized with conventional FMD vaccine.

  8. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform.

    PubMed

    Kong, Wei; Brovold, Matthew; Koeneman, Brian A; Clark-Curtiss, Josephine; Curtiss, Roy

    2012-11-20

    We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases.

  9. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform

    PubMed Central

    Kong, Wei; Brovold, Matthew; Koeneman, Brian A.; Clark-Curtiss, Josephine; Curtiss, Roy

    2012-01-01

    We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases. PMID:23129620

  10. [Experimental study on the chitosan-DNA vaccines against campylobacter jejuni invasion].

    PubMed

    Zheng, Hui; Cai, Fang-cheng; Zhong, Min; Deng, Bing; Li, Xin; Zhang, Xiao-ping

    2007-09-01

    The immunogenicity and protective efficacy of an experimental Campylobacter jejuni (C. jejuni) chitosan-DNA vaccines were evaluated in mice. The chitosan-DNA vaccines were prepared by embedding pcDNA3.1(+)-cadF and pcDNA3.1(+)-peblA with chitosan respectively. BALB/c mice were intranasally immunized in a four-dose primary series (7 d intervals) at doses of 60 microg chitosan-DNA vaccines each time. The comparative immunogenicities of nine formulations were assessed on the basis of the generation of antigen-specific antibodies in serum and intestinal secretions. Mice were attacked repeatedly through intragastric administration of C. jejuni HS:19 at the 8th week after the immunization and protective efficacy was determined by detecting the degrees of protection afforded against C. jejuni invaded. The mice immunized with chitosan-DNA vaccines have generated high levels of IgA and IgG from the sera and IgA from the intestinal secretions and the P/N value went up to 20.58, 30.13 and 6.87 respectively. Meanwhile, the expression of intestinal SIgA increased correspondingly. Moreover the chitosan-DNA vaccines induced strongest level of protection in BALB/c mice against challenge with C. jejuni HS:19 strain and the protective efficacies was 93.70. The results of this study indicate that the chitosan-DNA vaccines could induce significant protective immunity against C. jejuni challenge in the mice model.

  11. Unlocking Barriers to DNA Vaccine Immunogenicity: A Cross-Species Analysis of Cytosolic DNA Sensing in Skeletal Muscle Myocytes

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0505 TITLE: Unlocking Barriers to DNA Vaccine Immunogenicity: A Cross-Species Analysis of Cytosolic DNA Sensing in...REPORT TYPE Annual 3. DATES COVERED 10 Sept 2015 – 9 Sept 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Unlocking Barriers to DNA Vaccine ...Annual Report submitted 04/10/2016. 14. ABSTRACT DNA vaccine technology holds great promise as a platform for developing vaccines against both

  12. Intra-muscular and oral vaccination using a Koi Herpesvirus ORF25 DNA vaccine does not confer protection in common carp (Cyprinus carpio L.).

    PubMed

    Embregts, Carmen W E; Tadmor-Levi, Roni; Veselý, Tomáš; Pokorová, Dagmar; David, Lior; Wiegertjes, Geert F; Forlenza, Maria

    2018-03-19

    Koi Herpes Virus (KHV or Cyprinid Herpesvirus 3, CyHV-3) is among the most threatening pathogens affecting common carp production as well as the highly valuable ornamental koi carp. To date, no effective commercial vaccine is available for worldwide use. A previous study reported that three intramuscular injections with an ORF25-based DNA vaccine, led to the generation of neutralizing antibodies and conferred significant protection against an intraperitoneal challenge with KHV. In the present study, we set out to optimize an ORF25-based DNA vaccination protocol that required fewer injections and would confer protection upon a challenge that better resembled the natural route of infection. To this end, ORF25 was cloned in pcDNA3 either as a soluble protein or as a full-length transmembrane GFP-fusion protein. We tested our ORF25-based DNA vaccines in multiple vaccination trials using different doses, vaccination routes (i.m. injection and oral gavage) and challenge methods (bath and cohabitation). Furthermore, we analysed local and systemic responses to the i.m. injected DNA vaccine through histological and RT-qPCR analysis. We observed a strong protection when fish received three injections of either of the two DNA vaccines. However, this protection was observed only after bath challenge and not after cohabitation challenge. Furthermore, protection was insufficient when fish received one injection only, or received the plasmid orally. The importance of choosing a challenge model that best reflects the natural route of infection and the possibility to include additional antigens in future DNA vaccination strategies against KHV will be discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel.

    PubMed

    Bansal, Amit; Wu, Xianfu; Olson, Victoria; D'Souza, Martin J

    2018-07-10

    Plasmid DNA (pDNA) vaccines have the potential for protection against a wide range of diseases including rabies but are rapid in degradation and poor in uptake by antigen-presenting cells. To overcome the limitations, we fabricated a pDNA nanoparticulate vaccine. The negatively charged pDNA was adsorbed onto the surface of cationic PLGA (poly (d, l-lactide-co-glycolide))-chitosan nanoparticles and were used as a delivery vehicle. To create a hydrogel for sustainable vaccine release, we dispersed the pDNA nanoparticles in poloxamer 407 gel which is liquid at 4 °C and turns into soft gels at 37 °C, providing ease of administration and preventing burst release of pDNA. Complete immobilization of pDNA to cationic nanoparticles was achieved at a pDNA to nanoparticles ratio (P/N) of 1/50. Cellular uptake of nanoparticles was both time and concentration dependent and followed a saturation kinetics with V max of 11.389 µg/mL h and K m of 139.48 µg/mL. The in vitro release studies showed the nanoparticulate vaccine has a sustained release for up to 24 days. In summary, pDNA PLGA-chitosan nanoparticles were non-cytotoxic, their buffering capacity and cell uptake were enhanced, and sustained the release of pDNA. We expect our pDNA vaccine's potency will be greatly improved in the animal studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A DNA vaccine against yellow fever virus: development and evaluation.

    PubMed

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  15. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    PubMed Central

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  16. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    PubMed

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  17. Trial watch: Naked and vectored DNA-based anticancer vaccines

    PubMed Central

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-01-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm. PMID:26155408

  18. DNA vaccine encoding Haemonchus contortus actin induces partial protection in goats.

    PubMed

    Yan, Ruofeng; Wang, Jingjing; Xu, Lixin; Song, Xiaokai; Li, Xiangrui

    2014-10-01

    Actin is a globular multi-functional protein that forms microfilaments, and participates in many important cellular processes. Previous study found that Haemonchus contortus actin could be recognized by the serum of goats infected with the homology parasite. This indicated that H. contortus actin could be a potential candidate for vaccine. In this study, DNA vaccine encoding H. contortus actin was tested for protection against experimental H. contortus infections in goats. Fifteen goats were allocated into three trial groups. The animals of Actin group were vaccinated with the DNA vaccine on day 0 and 14, and challenged with 5000 infective H. contortus third stage larval (L3) on day 28. An unvaccinated positive control group was challenged with L3 at the same time. An unvaccinated negative control group was not challenged with L3. The results showed that DNA vaccine were transcribed at local injection sites and expressed in vivo post immunizations respectively. For goats in Actin vaccinated group, higher levels of serum IgG, serum IgA and mucosal IgA were produced, the percentages of CD4(+) T lymphocytes, CD8(+) T lymphocytes and B lymphocytes and the concentrations of TGF-β were increased significantly (P<0.05). Following L3 challenge, the mean eggs per gram feces (EPG) and worm burdens of Actin group were reduced by 34.4% and 33.1%, respectively. This study suggest that recombinant H. contortus Actin DNA vaccine induced partial immune response and has protective potential against goat haemonchosis.

  19. [Experimental study on TCRbeta idiotypic antigenic determinants DNA vaccine to induce anti-lymphoma antibodies].

    PubMed

    Zhang, Yeping; Zhu, Ping; Shi, Yongjin; Liu, Jihua; Pu, Dingfang; Cao, Xianghong; Zhu, Qiang; Wang, Yijia; Ma, Mingxin; Yu, Jiren

    2002-02-01

    To investigate the anti-human CEM lymphoma cell activities induced by TCR idiotypic DNA vaccine containing different antigen determinants in BALB/c mice. The specific rearranged gene fragment encoding TCRVbeta region of CEM cell line was obtained by RT-PCR technique. The PCR product was cloned into eukaryocytic expression vector pcDNA3, which was used as DNA vaccine and template for PCR amplifying different antigen determinant. Gene fragments encoding different antigen determinant were amplified and cloned into pcDNA3, separately. The experimental mice were immunized by intramuscular injection of the DNA vaccines. The specific anti-idiotype antibodies were detected by indirect immunofluorescence assay. TCRbetaV of CEM cell line contains five antigen determinants. Specific anti-idiotype antibody was detected in all of the six mice immunized with DNA vaccine containing all the five determinants (the highest titer was 1:480). Although the antibody could also be detected in four of the six mice immunized with DNA vaccine containing four of the five antigen determinants, the antibody titer was lower (the highest titer was 1:80). DNA vaccine containing two of the five determinants could not induce the specific antibody. The idiotypic DNA vaccine containing the whole TCRbetaV five antigen determinants could induce the specific anti-lymphoma idiotypic antibody in BALB/c mice.

  20. Transcriptome Profiles Associated to VHSV Infection or DNA Vaccination in Turbot (Scophthalmus maximus)

    PubMed Central

    Pereiro, Patricia; Dios, Sonia; Boltaña, Sebastián; Coll, Julio; Estepa, Amparo; Mackenzie, Simon; Novoa, Beatriz; Figueras, Antonio

    2014-01-01

    DNA vaccines encoding the viral G glycoprotein show the most successful protection capability against fish rhabdoviruses. Nowadays, the molecular mechanisms underlying the protective response remain still poorly understood. With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV) in turbot (Scophthalmus maximus) we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4) and DNA vaccine (pMCV1.4-G860) intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points. Genes implicated in the Toll-like receptor signalling pathway, IFN inducible/regulatory proteins, numerous sequences implicated in apoptosis and cytotoxic pathways, MHC class I antigens, as well as complement and coagulation cascades among others were analyzed in the different experimental groups. Fish receiving the pMCV1.4-G860 vaccine showed transcriptomic patterns very different to the ones observed in pMCV1.4-injected turbot after 72 h. On the other hand, VHSV challenge in vaccinated and non-vaccinated turbot induced a highly different response at the transcriptome level, indicating a very relevant role of the acquired immunity in vaccinated fish able to alter the typical innate immune response profile observed in non-vaccinated individuals. This exhaustive transcriptome study will serve as a complete overview for a better understanding of the crosstalk between the innate and adaptive immune response in fish after viral infection/vaccination. Moreover, it provides interesting clues about molecules with a potential

  1. Immunotherapy with an HIV-DNA Vaccine in Children and Adults

    PubMed Central

    Palma, Paolo; Gudmundsdotter, Lindvi; Finocchi, Andrea; Eriksson, Lars E.; Mora, Nadia; Santilli, Veronica; Aquilani, Angela; Manno, Emma C.; Zangari, Paola; Romiti, Maria Luisa; Montesano, Carla; Grifoni, Alba; Brave, Andreas; Ljungberg, Karl; Blomberg, Pontus; Bernardi, Stefania; Sandström, Eric; Hejdeman, Bo; Rossi, Paolo; Wahren, Britta

    2014-01-01

    Therapeutic HIV immunization is intended to induce new HIV-specific cellular immune responses and to reduce viral load, possibly permitting extended periods without antiretroviral drugs. A multigene, multi-subtype A, B, C HIV-DNA vaccine (HIVIS) has been used in clinical trials in both children and adults with the aim of improving and broadening the infected individuals’ immune responses. Despite the different country locations, different regimens and the necessary variations in assays performed, this is, to our knowledge, the first attempt to compare children’s and adults’ responses to a particular HIV vaccine. Ten vertically HIV-infected children aged 4–16 years were immunized during antiretroviral therapy (ART). Another ten children were blindly recruited as controls. Both groups continued their antiretroviral treatment during and after vaccinations. Twelve chronically HIV-infected adults were vaccinated, followed by repeated structured therapy interruptions (STI) of their antiretroviral treatment. The adult group included four controls, receiving placebo vaccinations. The HIV-DNA vaccine was generally well tolerated, and no serious adverse events were registered in any group. In the HIV-infected children, an increased specific immune response to Gag and RT proteins was detected by antigen-specific lymphoproliferation. Moreover, the frequency of HIV-specific CD8+ T-cell lymphocytes releasing perforin was significantly higher in the vaccinees than the controls. In the HIV-infected adults, increased CD8+ T-cell responses to Gag, RT and viral protease peptides were detected. No augmentation of HIV-specific lymphoproliferative responses were detected in adults after vaccination. In conclusion, the HIV-DNA vaccine can elicit new HIV-specific cellular immune responses, particularly to Gag antigens, in both HIV-infected children and adults. Vaccinated children mounted transient new HIV-specific immune responses, including both CD4+ T-cell lymphoproliferation

  2. Pilot study of p62 DNA vaccine in dogs with mammary tumors.

    PubMed

    Gabai, Vladimir; Venanzi, Franco M; Bagashova, Elena; Rud, Oksana; Mariotti, Francesca; Vullo, Cecilia; Catone, Giuseppe; Sherman, Michael Y; Concetti, Antonio; Chursov, Andrey; Latanova, Anastasia; Shcherbinina, Vita; Shifrin, Victor; Shneider, Alexander

    2014-12-30

    Our previous data demonstrated profound anti-tumor and anti-metastatic effects of p62 (sqstm1) DNA vaccine in rodents with various types of transplantable tumors. Testing anti-cancer medicine in dogs as an intermediary step of translational research program provides two major benefits. First, clinical data collected in target animals is required for FDA/USDA approval as a veterinary anti-cancer drug or vaccine. It is noteworthy that the veterinary community is in need of novel medicine for the prevention and treatment of canine and feline cancers. The second more important benefit of testing anti-cancer vaccines in dogs is that spontaneous tumors in dogs may provide invaluable information for human trials. Here, we evaluated the effect(s) of p62 DNA vaccine on mammary tumors of dogs. We found that p62 DNA vaccine administered i.m. decreased or stabilized growth of locally advanced lesions in absence of its overall toxic effects. The observed antitumor activity was associated with lymphocyte infiltration and tumor encapsulation via fibrotic reaction. This data justifies both human clinical trials and veterinary application of p62 DNA vaccine.

  3. DyNAVacS: an integrative tool for optimized DNA vaccine design.

    PubMed

    Harish, Nagarajan; Gupta, Rekha; Agarwal, Parul; Scaria, Vinod; Pillai, Beena

    2006-07-01

    DNA vaccines have slowly emerged as keystones in preventive immunology due to their versatility in inducing both cell-mediated as well as humoral immune responses. The design of an efficient DNA vaccine, involves choice of a suitable expression vector, ensuring optimal expression by codon optimization, engineering CpG motifs for enhancing immune responses and providing additional sequence signals for efficient translation. DyNAVacS is a web-based tool created for rapid and easy design of DNA vaccines. It follows a step-wise design flow, which guides the user through the various sequential steps in the design of the vaccine. Further, it allows restriction enzyme mapping, design of primers spanning user specified sequences and provides information regarding the vectors currently used for generation of DNA vaccines. The web version uses Apache HTTP server. The interface was written in HTML and utilizes the Common Gateway Interface scripts written in PERL for functionality. DyNAVacS is an integrated tool consisting of user-friendly programs, which require minimal information from the user. The software is available free of cost, as a web based application at URL: http://miracle.igib.res.in/dynavac/.

  4. Immunotherapy against visceral leishmaniasis with the nucleoside hydrolase-DNA vaccine of Leishmania donovani.

    PubMed

    Gamboa-León, R; Paraguai de Souza, E; Borja-Cabrera, G P; Santos, F N; Myashiro, L M; Pinheiro, R O; Dumonteil, E; Palatnik-de-Sousa, C B

    2006-05-29

    The nucleoside hydrolase (NH36) of Leishmania (L.) donovani is a vital enzyme which releases purines or pyrimidines of foreign DNA to be used in the synthesis of parasite DNA. As a bivalent DNA vaccine, the VR1012-NH36 was immunoprotective against visceral and cutaneous murine leishmaniasis. In this work we tested the immunotherapy against Leishmania (L.) chagasi infection, using two doses of 100 or 20 microg VR1012-NH36 vaccine (i.m. route), and, as a possible immunomodulator, aqueous garlic extract (8 mg/kg/day by the i.p. route), which was effective in immunotherapy of cutaneous murine leishmaniasis. Liver parasitic load was significantly reduced following treatment with 100 microg (91%) and 20 microg (77%) of the DNA vaccine, and by 20 microg DNA vaccine and garlic extract (76%) (p=0.023). Survival was 33% for saline controls, 100% for the 100 microg vaccine, and 83 and 67% for the 20 microg vaccine with and without garlic extract addition, respectively. Garlic treatment alone did not reduce parasite load (p>0.05), but increased survival (100%). The NH36-DNA vaccine was highly effective as a new tool for the therapy and control of visceral leishmaniasis, while the mild protective effect of garlic might be related to an unspecific enhancement of IFN-gamma secretion.

  5. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    PubMed

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  6. DNA vaccination for prostate cancer, from preclinical to clinical trials - where we stand?

    PubMed Central

    2012-01-01

    Development of various vaccines for prostate cancer (PCa) is becoming an active research area. PCa vaccines are perceived to have less toxicity compared with the available cytotoxic agents. While various immune-based strategies can elicit anti-tumour responses, DNA vaccines present increased efficacy, inducing both humoural and cellular immunity. This immune activation has been proven effective in animal models and initial clinical trials are encouraging. However, to validate the role of DNA vaccination in currently available PCa management paradigms, strong clinical evidence is still lacking. This article provides an overview of the basic principles of DNA vaccines and aims to provide a summary of preclinical and clinical trials outlining the benefits of this immunotherapy in the management of PCa. PMID:23046944

  7. A DNA vaccine against dolphin morbillivirus is immunogenic in bottlenose dolphins.

    PubMed

    Vaughan, Kerrie; Del Crew, Jason; Hermanson, Gary; Wloch, Mary K; Riffenburgh, Robert H; Smith, Cynthia R; Van Bonn, William G

    2007-12-15

    The immunization of exotic species presents considerable challenges. Nevertheless, for facilities like zoos, animal parks, government facilities and non-profit conservation groups, the protection of valuable and endangered species from infectious disease is a growing concern. The rationale for immunization in these species parallels that for human and companion animals; to decrease the incidence of disease. The U.S. Navy Marine Mammal Program, in collaboration with industry and academic partners, has developed and evaluated a DNA vaccine targeting a marine viral pathogen - dolphin morbillivirus (DMV). The DMV vaccine consists of the fusion (F) and hemagglutinin (H) genes of DMV. Vaccine constructs (pVR-DMV-F and pVR-DMV-H) were evaluated for expression in vitro and then for immunogenicity in mice. Injection protocols were designed for application in Atlantic bottlenose dolphins (Tursiops truncatus) to balance vaccine effectiveness with clinical utility. Six dolphins were inoculated, four animals received both pDMV-F and pDMV-H and two animals received a mock vaccine (vector alone). All animals received an inoculation week 0, followed by two booster injections weeks 8 and 14. Vaccine-specific immune responses were documented in all four vaccinated animals. To our knowledge, this is the first report of pathogen-specific immunogenicity to a DNA vaccine in an aquatic mammal species.

  8. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies.

    PubMed

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Pertoldi, Cino; Blixenkrone-Møller, Merete

    2015-03-10

    Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Development of novel vaccines using DNA shuffling and screening strategies.

    PubMed

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  10. DNA Vaccine for West Nile Virus Infection in Fish Crows (Corvus ossifragus)

    DTIC Science & Technology

    2003-09-01

    SUBJECT TERMS west Nile virus, vaccine , efficacy , crows 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 5 19a...A DNA vaccine for West Nile virus (WNV) was evaluat- ed to determine whether its use could protect fish crows (Corvus ossifragus) from fatal WNV...infection. Captured adult crows were given 0.5 mg of the DNA vaccine either orally or by intramuscular (IM) inoculation; control crows were inoculated or

  11. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficientmore » in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.« less

  12. An Interleukin 12 Adjuvanted Herpes Simplex Virus 2 DNA Vaccine Is More Protective Than a Glycoprotein D Subunit Vaccine in a High-Dose Murine Challenge Model.

    PubMed

    Bagley, Kenneth C; Schwartz, Jennifer A; Andersen, Hanne; Eldridge, John H; Xu, Rong; Ota-Setlik, Ayuko; Geltz, Joshua J; Halford, William P; Fouts, Timothy R

    2017-04-01

    Vaccination is a proven intervention against human viral diseases; however, success against Herpes Simplex Virus 2 (HSV-2) remains elusive. Most HSV-2 vaccines tested in humans to date contained just one or two immunogens, such as the virion attachment receptor glycoprotein D (gD) and/or the envelope fusion protein, glycoprotein B (gB). At least three factors may have contributed to the failures of subunit-based HSV-2 vaccines. First, immune responses directed against one or two viral antigens may lack sufficient antigenic breadth for efficacy. Second, the antibody responses elicited by these vaccines may have lacked necessary Fc-mediated effector functions. Third, these subunit vaccines may not have generated necessary protective cellular immune responses. We hypothesized that a polyvalent combination of HSV-2 antigens expressed from a DNA vaccine with an adjuvant that polarizes immune responses toward a T helper 1 (Th1) phenotype would compose a more effective vaccine. We demonstrate that delivery of DNA expressing full-length HSV-2 glycoprotein immunogens by electroporation with the adjuvant interleukin 12 (IL-12) generates substantially greater protection against a high-dose HSV-2 vaginal challenge than a recombinant gD subunit vaccine adjuvanted with alum and monophosphoryl lipid A (MPL). Our results further show that DNA vaccines targeting optimal combinations of surface glycoproteins provide better protection than gD alone and provide similar survival benefits and disease symptom reductions compared with a potent live attenuated HSV-2 0ΔNLS vaccine, but that mice vaccinated with HSV-2 0ΔNLS clear the virus much faster. Together, our data indicate that adjuvanted multivalent DNA vaccines hold promise for an effective HSV-2 vaccine, but that further improvements may be required.

  13. Vaccines against Botulism.

    PubMed

    Sundeen, Grace; Barbieri, Joseph T

    2017-09-02

    Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin.

  14. Vaccines against Botulism

    PubMed Central

    Sundeen, Grace; Barbieri, Joseph T.

    2017-01-01

    Botulinum neurotoxins (BoNT) cause the flaccid paralysis of botulism by inhibiting the release of acetylcholine from motor neurons. There are seven serotypes of BoNT (A-G), with limited therapies, and no FDA approved vaccine for botulism. An investigational formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was used to vaccinate people who are at high risk of contracting botulism. However, this formalin-inactivated penta-serotype-BoNT/A-E toxoid vaccine was losing potency and was discontinued. This article reviews the different vaccines being developed to replace the discontinued toxoid vaccine. These vaccines include DNA-based, viral vector-based, and recombinant protein-based vaccines. DNA-based vaccines include plasmids or viral vectors containing the gene encoding one of the BoNT heavy chain receptor binding domains (HC). Viral vectors reviewed are adenovirus, influenza virus, rabies virus, Semliki Forest virus, and Venezuelan Equine Encephalitis virus. Among the potential recombinant protein vaccines reviewed are HC, light chain-heavy chain translocation domain, and chemically or genetically inactivated holotoxin. PMID:28869493

  15. Construction and Nonclinical Testing of a Puumala Virus Synthetic M Gene-Based DNA Vaccine

    DTIC Science & Technology

    2012-12-12

    immunogenic hantavirus M gene-based DNA vaccines against the HFRS hantaviruses , we ini- tiated preclinical testing of these vaccines, delivered using a...Testing of a Puumala Virus Synthetic M Gene-Based DNA Vaccine 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT...Vaccination with pWRG/ PUU-M(s2) protected hamsters against infection with PUUV but not against infection by related HFRS-associated hantaviruses

  16. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus

    USGS Publications Warehouse

    Emmenegger, E.J.; Kurath, G.

    2008-01-01

    The emergence of spring viremia of carp virus (SVCV) in the United States constitutes a potentially serious alien pathogen threat to susceptible fish stocks in North America. A DNA vaccine with an SVCV glycoprotein (G) gene from a North American isolate was constructed. In order to test the vaccine a challenge model utilizing a specific pathogen-free domestic koi stock and a cold water stress treatment was also developed. We have conducted four trial studies demonstrating that the pSGnc DNA vaccine provided protection in vaccinated fish against challenge at low, moderate, and high virus doses of the homologous virus. The protection was significant (p < 0.05) as compared to fish receiving a mock vaccine construct containing a luciferase reporter gene and to non-vaccinated controls in fish ranging in age from 3 to 14 months. In all trials, the SVCV-G DNA immunized fish were challenged 28-days post-vaccination (546 degree-days) and experienced low mortalities varying from 10 to 50% with relative percent survivals ranging from 50 to 88%. The non-vaccinated controls and mock construct vaccinated fish encountered high cumulative percent mortalities ranging from 70 to 100%. This is the first report of a SVCV DNA vaccine being tested successfully in koi. These experiments prove that the SVCV DNA (pSGnc) vaccine can elicit specific reproducible protection and validates its potential use as a prophylactic vaccine in koi and other vulnerable North American fish stocks.

  17. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity.

    PubMed

    Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo

    2004-01-26

    Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.

  18. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model

    PubMed Central

    Cervantes-Villagrana, Alberto R.; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2018-01-01

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0–89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. PMID:23196205

  19. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    PubMed

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague.

    PubMed

    Albrecht, Mark T; Livingston, Brian D; Pesce, John T; Bell, Matt G; Hannaman, Drew; Keane-Myers, Andrea M

    2012-07-06

    Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System. Immunization with the individual pDNA vaccines elicited higher levels of antigen-specific IgG than when used in combination. DNA vaccine effectiveness was proven, the pVAX-PA titers were toxin neutralizing and fully protective against a lethal B. anthracis spore challenge when administered alone or co-formulated with the plague pDNA vaccines. LcrV and F1 pVAX vaccines against plague were synergistic, resulting in 100% survival, but less protective individually and when co-formulated with pVAX-PA. These DNA vaccine responses were Th1/Th2 balanced with high levels of IFN-γ and IL-4 in splenocyte recall assays, contrary to complimentary protein Alum vaccinations displaying a Th2 bias with increased IL-4 and low levels of IFN-γ. These results demonstrate the feasibility of electroporation to deliver and maintain the overall efficacy of an anthrax-plague DNA vaccine cocktail whose individual components have qualitative immunological differences when combined. Published by Elsevier Ltd.

  1. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza

    PubMed Central

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne

    2017-01-01

    ABSTRACT Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  2. Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice.

    PubMed

    Duperret, Elizabeth K; Trautz, Aspen; Ammons, Dylan; Perales-Puchalt, Alfredo; Wise, Megan C; Yan, Jian; Reed, Charles; Weiner, David B

    2018-03-01

    Purpose: Fibroblast activation protein (FAP) is overexpressed in cancer-associated fibroblasts and is an interesting target for cancer immune therapy, with prior studies indicating a potential to affect the tumor stroma. Our aim was to extend this earlier work through the development of a novel FAP immunogen with improved capacity to break tolerance for use in combination with tumor antigen vaccines. Experimental Design: We used a synthetic consensus (SynCon) sequence approach to provide MHC class II help to support breaking of tolerance. We evaluated immune responses and antitumor activity of this novel FAP vaccine in preclinical studies, and correlated these findings to patient data. Results: This SynCon FAP DNA vaccine was capable of breaking tolerance and inducing both CD8 + and CD4 + immune responses. In genetically diverse, outbred mice, the SynCon FAP DNA vaccine was superior at breaking tolerance compared with a native mouse FAP immunogen. In several tumor models, the SynCon FAP DNA vaccine synergized with other tumor antigen-specific DNA vaccines to enhance antitumor immunity. Evaluation of the tumor microenvironment showed increased CD8 + T-cell infiltration and a decreased macrophage infiltration driven by FAP immunization. We extended this to patient data from The Cancer Genome Atlas, where we find high FAP expression correlates with high macrophage and low CD8 + T-cell infiltration. Conclusions: These results suggest that immune therapy targeting tumor antigens in combination with a microconsensus FAP vaccine provides two-fisted punch-inducing responses that target both the tumor microenvironment and tumor cells directly. Clin Cancer Res; 24(5); 1190-201. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination.

    PubMed

    Boyer, J D; Ugen, K E; Wang, B; Agadjanyan, M; Gilbert, L; Bagarazzi, M L; Chattergoon, M; Frost, P; Javadian, A; Williams, W V; Refaeli, Y; Ciccarelli, R B; McCallus, D; Coney, L; Weiner, D B

    1997-05-01

    Novel approaches for the generation of more effective vaccines for HIV-1 are of significant importance. In this report we analyze the immunogenicity and efficacy of an HIV-1 DNA vaccine encoding env, rev and gag/pol in a chimpanzee model system. The immunized animals developed specific cellular and humoral immune responses. Animals were challenged with a heterologous chimpanzee titered stock of HIV-1 SF2 virus and followed for 48 weeks after challenge. Polymerase chain reaction coupled with reverse transcription (RT-PCR) results indicated infection in the control animal, whereas those animals vaccinated with the DNA constructs were protected from the establishment of infection. These studies serve as an important benchmark for the use of DNA vaccine technology for the production of protective immune responses.

  4. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis.

    PubMed

    Silveira, Marcelle Moura; Conceição, Fabricio Rochedo; Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Da Cunha, Carlos Eduardo Pouey; Conrad, Neida Lucia; Oliveira, Patrícia Diaz de; Hartwig, Daiane Drawanz; De Leon, Priscila Marques Moura; Moreira, Ângela Nunes

    2017-02-01

    Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-β were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (P<0.05). In addition, there was a significant increase in the expression of the IL-10 in mice immunized with pTARGET/ligBrep and fed with Saccharomyces boulardii. The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.

  5. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    PubMed

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-08

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  6. [Immune response induced by HIV DNA vaccine combined with recombinant adeno-associated virus].

    PubMed

    Liu, Yan-zheng; Zhou, Ling; Wang, Qi; Ye, Shu-qing; Li, Hong-xia; Zeng, Yi

    2004-09-01

    HIV-1 DNA vaccine and recombinant adeno-associated virus (rAAV) expressing gagV3 gene of HIV-1 subtype B were constructed and BALB/c mice were immunized by vaccination regimen consisting of consecutive priming with DNA vaccine and boosting with rAAV vaccine; the CTL and antibody response were detected and compared with those induced by DNA vaccine or rAAV vaccine separately. HIV-1 subtype B gagV3 gene was inserted into the polyclonal site of plasmid pCI-neo, DNA vaccine pCI-gagV3 was thereby constructed; pCI-gagV3 was transfected into p815 cells, G-418-resistant cells were obtained through screening transfected cells with G418, the expression of HIV-1 antigen in G-418-resistant cells was detected by EIA; BALB/c mice were immunized with pCI-gagV3 and the immune response was tested; BALB/c mouse immunized with pCI-gagV3 and combined with rAAV expressing the same gagV3 genes were tested for antibody level in sera by EIA method and cytotoxicity response by LDH method. pCI-gagV3 could express HIV-1 gene in p815 cells; pCI-gagV3 could induce HIV-1 specific humoral and cell-mediated immune response in BALB/c mice. The HIV-1 specific antibody level was 1/20; when the ratio of effector cells: target cells was 50:1, the average specific cytotoxicity was 41.7%; there was no evident increase in the antibody level induced by pCI-gagV3 combined with rAAV, but there was increase in CTL response, the average specific cytotoxicity was 61.3% when effector cells: target cells ratio was 50:1. HIV-1 specific cytotoxicity in BALB/c mice can be increased by immunization of BALB/c mice with DNA vaccine combined with rAAV vaccine.

  7. Duck Enteritis Virus Glycoprotein D and B DNA Vaccines Induce Immune Responses and Immunoprotection in Pekin Ducks

    PubMed Central

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks. PMID:24736466

  8. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    PubMed

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  9. Protective efficacy of a Treponema pallidum Gpd DNA vaccine vectored by chitosan nanoparticles and fused with interleukin-2.

    PubMed

    Zhao, Feijun; Wang, Shiping; Zhang, Xiaohong; Gu, Weiming; Yu, Jian; Liu, Shuangquan; Zeng, Tiebing; Zhang, Yuejun; Wu, Yimou

    2012-02-01

    In the present study, immunomodulatory responses of a DNA vaccine constructed by fusing Treponema pallidum (Tp) glycerophosphodiester phosphodiesterase (Gpd) to interleukin-2 (IL-2) and using chitosan (CS) nanoparticles as vectors were investigated. New Zealand white rabbits were immunized by intramuscular inoculation of control DNAs, Tp Gpd DNA vaccine, or Gpd-IL-2 fusion DNA vaccine, which were vectored by CS nanoparticles. Levels of the anti-Gpd antibodies and levels of IL-2 and interferon-γ in rabbits were increased upon inoculation of Gpd-IL-2 fusion DNA vaccine, when compared with the inoculation with Gpd DNA vaccine, with CS vectoring increasing the effects. The Gpd-IL-2 fusion DNA vaccine efficiently enhanced the antigen-specific lymphocyte proliferative response. When the rabbits were challenged intradermally with 10(5) Tp (Nichols) spirochetes, the Gpd-IL-2 fusion DNA vaccine conferred better protection than the Gpd DNA vaccine (P < 0.05), as characterized by lower detectable amounts of dark field positive lesions (17.5%), lower ulcerative lesion scores (15%), and faster recovery. Individuals treated with the Tp Gpd-IL-2 fusion DNA vaccine vectored by CS nanoparticles had the lowest amounts of dark field positive lesions (10%) and ulcerations (5%) observed and the fastest recovery (42 days). These results indicate that the Gpd-IL-2 fusion DNA vaccine vectored by CS nanoparticles can efficiently induce Th1-dominant immune responses, improve protective efficacy against Tp spirochete infection, and effectively attenuate development of syphilitic lesions.

  10. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. LAMP-1-chimeric DNA vaccines enhance the antibody response in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Rondón-Barragán, Iang; Nozaki, Reiko; Hirono, Ikuo; Kondo, Hidehiro

    2017-08-01

    DNA vaccination is one method to protect farmed fish from viral and bacterial diseases. Chimeric antigens encoded by DNA vaccines have been shown to increase the resistance to viral diseases. Here, we sequenced the gene encoding lysosome-associated membrane protein-1 from Japanese flounder, Paralichthys olivaceus, (JfLAMP-1) and assessed its use in a chimeric DNA vaccine fused with the major capsule protein (MCP) from red seabream iridovirus (RSIV). JfLAMP-1 cDNA has a length of 1248 bp encoding 415 aa, which contains transmembrane and cytoplasmic domains. JfLAMP-1 is constitutively expressed in several tissues and its expression in spleen was upregulated following injection of formalin-killed cells (FKC) of Edwardsiella tarda. Immunofluorescence analysis showed that JfLAMP-1 is distributed in the small and large granules in the cytoplasm and groups close to the nucleus. The DNA encoding the luminal domain of JfLAMP-1 was replaced with the gene for the RSIV MCP, and the construct was cloned in an expression vector (pCIneo). Fish vaccinated with pCLAMP-MCP had significantly higher antibody levels than fish vaccinated with pCIneo vector harboring the MCP gene (p < 0.05) at day 30 post-vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An endogenous immune adjuvant released by necrotic cells for enhancement of DNA vaccine potency.

    PubMed

    Dorostkar, Rohollah; Bamdad, Taravat; Parsania, Masoud; Pouriayevali, Hassan

    2012-12-01

    Improving vaccine potency in the induction of a strong cell-mediated cytotoxicity can enhance the efficacy of vaccines. Necrotic cells and the supernatant of necrotic tumor cells are attractive adjuvants, on account of their ability to recruit antigen-presenting cells to the site of antigen synthesis as well as its ability to stimulate the maturation of dendritic cells. To evaluate the utility of supernatant of necrotic tumor cells as a DNA vaccine adjuvant in a murine model. The supernatant of EL4 necrotic cells was co-administered with a DNA vaccine expressing the glycoprotein B of Herpes simplex virus-1 as an antigen model under the control of Cytomegalovirus promoter. C57BL/6 mice were vaccinated three times at two weeks intervals with glycoprotein B DNA vaccine and supernatant of necrotic EL4 cells. Five days after the last immunization, cell cytotoxicity, IFN-γ and IL-4 were evaluated. The obtained data showed that the production of IFN-γ from the splenocytes after antigenic stimulation in the presence of the supernatant of necrotic EL4 cells was significantly higher than the other groups (p<0.002). The flow cytometry results showed a significant increase in the apoptosis/necrosis of EL4 cells in the mice immunized with DNA vaccine and supernatant of necrotic EL4 cells comparing to the other groups (p<0.001). The supernatant of necrotic cells contains adjuvant properties that can be considered as a candidate for tumor vaccination.

  13. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  14. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    PubMed

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  15. Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons.

    PubMed

    Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay

    2013-06-28

    Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Nanogram quantities of a DNA vaccine protect rainbow trout fry against heterologous strains of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Corbeil, S.; LaPatra, S.E.; Anderson, E.D.; Kurath, G.

    2000-01-01

    The efficacy of a DNA vaccine containing the glycoprotein gene of infectious hematopoietic necrosis virus (IHNV), a rhabdovirus affecting trout and salmon, was investigated. The minimal dose of vaccine required, the protection against heterologous strains, and the titers of neutralizing antibodies produced were used to evaluate the potential of the vaccine as a control pharmaceutical. Results indicated that a single dose of as little as 1–10 ng of vaccine protected rainbow trout fry against waterborne challenge by IHNV. An optimal dose of 100 ng per fish was selected to assure strong protection under various conditions. Neutralizing antibody titers were detected in fish vaccinated with concentrations of DNA ranging from 5 to 0.01 μg. Furthermore, the DNA vaccine protected fish against a broad range of viral strains from different geographic locations, including isolates from France and Japan, suggesting that the vaccine could be used worldwide. A single dose of this DNA vaccine induced protection in fish at a lower dose than is usually reported in mammalian DNA vaccine studies.

  17. Preferential Targeting of Conserved Gag Regions after Vaccination with a Heterologous DNA Prime-Modified Vaccinia Virus Ankara Boost HIV-1 Vaccine Regimen.

    PubMed

    Bauer, Asli; Podola, Lilli; Mann, Philipp; Missanga, Marco; Haule, Antelmo; Sudi, Lwitiho; Nilsson, Charlotta; Kaluwa, Bahati; Lueer, Cornelia; Mwakatima, Maria; Munseri, Patricia J; Maboko, Leonard; Robb, Merlin L; Tovanabutra, Sodsai; Kijak, Gustavo; Marovich, Mary; McCormack, Sheena; Joseph, Sarah; Lyamuya, Eligius; Wahren, Britta; Sandström, Eric; Biberfeld, Gunnel; Hoelscher, Michael; Bakari, Muhammad; Kroidl, Arne; Geldmacher, Christof

    2017-09-15

    Prime-boost vaccination strategies against HIV-1 often include multiple variants for a given immunogen for better coverage of the extensive viral diversity. To study the immunologic effects of this approach, we characterized breadth, phenotype, function, and specificity of Gag-specific T cells induced by a DNA-prime modified vaccinia virus Ankara (MVA)-boost vaccination strategy, which uses mismatched Gag immunogens in the TamoVac 01 phase IIa trial. Healthy Tanzanian volunteers received three injections of the DNA-SMI vaccine encoding a subtype B and AB-recombinant Gag p37 and two vaccinations with MVA-CMDR encoding subtype A Gag p55 Gag-specific T-cell responses were studied in 42 vaccinees using fresh peripheral blood mononuclear cells. After the first MVA-CMDR boost, vaccine-induced gamma interferon-positive (IFN-γ + ) Gag-specific T-cell responses were dominated by CD4 + T cells ( P < 0.001 compared to CD8 + T cells) that coexpressed interleukin-2 (IL-2) (66.4%) and/or tumor necrosis factor alpha (TNF-α) (63.7%). A median of 3 antigenic regions were targeted with a higher-magnitude median response to Gag p24 regions, more conserved between prime and boost, compared to those of regions within Gag p15 (not primed) and Gag p17 (less conserved; P < 0.0001 for both). Four regions within Gag p24 each were targeted by 45% to 74% of vaccinees upon restimulation with DNA-SMI-Gag matched peptides. The response rate to individual antigenic regions correlated with the sequence homology between the MVA- and DNA Gag-encoded immunogens ( P = 0.04, r 2 = 0.47). In summary, after the first MVA-CMDR boost, the sequence-mismatched DNA-prime MVA-boost vaccine strategy induced a Gag-specific T-cell response that was dominated by polyfunctional CD4 + T cells and that targeted multiple antigenic regions within the conserved Gag p24 protein. IMPORTANCE Genetic diversity is a major challenge for the design of vaccines against variable viruses. While including multiple variants for a

  18. Ubiquitin-Fused and/or Multiple Early Genes from Cottontail Rabbit Papillomavirus as DNA Vaccines

    PubMed Central

    Leachman, Sancy A.; Shylankevich, Mark; Slade, Martin D.; Levine, Dana; K. Sundaram, Ranjini; Xiao, Wei; Bryan, Marianne; Zelterman, Daniel; Tiegelaar, Robert E.; Brandsma, Janet L.

    2002-01-01

    Human papillomavirus (HPV) vaccines have the potential to prevent cervical cancer by preventing HPV infection or treating premalignant disease. We previously showed that DNA vaccination with the cottontail rabbit papillomavirus (CRPV) E6 gene induced partial protection against CRPV challenge and that the vaccine's effects were greatly enhanced by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF). In the present study, two additional strategies for augmenting the clinical efficacy of CRPV E6 vaccination were evaluated. The first was to fuse a ubiquitin monomer to the CRPV E6 protein to enhance antigen processing and presentation through the major histocompatibility complex class I pathway. Rabbits vaccinated with the wild-type E6 gene plus GM-CSF or with the ubiquitin-fused E6 gene formed significantly fewer papillomas than the controls. The papillomas also required a longer time to appear and grew more slowly. Finally, a significant proportion of the papillomas subsequently regressed. The ubiquitin-fused E6 vaccine was significantly more effective than the wild-type E6 vaccine plus GM-CSF priming. The second strategy was to vaccinate with multiple CRPV early genes to increase the breadth of the CRPV-specific response. DNA vaccines encoding the wild-type CRPV E1-E2, E6, or E7 protein were tested alone and in all possible combinations. All vaccines and combinations suppressed papilloma formation, slowed papilloma growth, and stimulated subsequent papilloma regression. Finally, the two strategies were merged and a combination DNA vaccine containing ubiquitin-fused versions of the CRPV E1, E2, and E7 genes was tested. This last vaccine prevented papilloma formation at all challenge sites in all rabbits, demonstrating complete protection. PMID:12097575

  19. Distribution and expression in vitro and in vivo of DNA vaccine against lymphocystis disease virus in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zheng, Fengrong; Sun, Xiuqin; Liu, Hongzhan; Wu, Xingan; Zhong, Nan; Wang, Bo; Zhou, Guodong

    2010-01-01

    Lymphocystis disease, caused by the lymphocystis disease virus (LCDV), is a significant worldwide problem in fish industry causing substantial economic losses. In this study, we aimed to develop the DNA vaccine against LCDV, using DNA vaccination technology. We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate. The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line. The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also analyzed in tissues of the vaccinated Japanese flounder by PCR, RT-PCR and fluorescent microscopy. Results from PCR analysis indicated that the vaccine-containing plasmids were distributed in injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver, 6 and 25 days after vaccination. The vaccine plasmids disappeared 100 d post-vaccination. Fluorescent microscopy revealed green fluorescence in the injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver of fish 48 h post-vaccination, green fluorescence did not appear in the control treated tissue. Green fluorescence became weak at 60 days post-vaccination. RT-PCR analysis indicated that the mcp gene was expressed in all tested tissues of vaccinated fish 6-50 days post-vaccination. These results demonstrate that the antigen encoded by the DNA vaccine is distributed and expressed in all of the tissues analyzed in the vaccinated fish. The antigen would therefore potentially initiate a specific immune response. the plasmid DNA was injected into Japanese flounder ( Paralichthys olivaceus) intramuscularly and antibodies against LCDV were evaluated. The results indicate that the plasmid encoded DNA vaccine could induce an immune response to LCDV and would therefore offer immune protection against LCD. Further studies are required for the development and application of this promising DNA vaccine.

  20. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    PubMed Central

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  1. [Development of current smallpox vaccines].

    PubMed

    Maksiutov, R A; Gavrilova, E V; Shchelkunov, S N

    2011-01-01

    The review gives data on the history of smallpox vaccination and shows the high topicality of designing the current safe vaccines against orthopoxviruses. Four generations of live smallpox, protein subunit, and DNA vaccines are considered. Analysis of the data published leads to the conclusion that it is promising to use the up-to-date generations of safe smallpox subunit or DNA vaccines for mass primary immunization with possible further revaccination with classical live vaccine.

  2. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    PubMed

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised. © 2014 EVJ Ltd.

  3. Immunogenicity and clinical protection against equine influenza by gene-based DNA vaccination of ponies

    PubMed Central

    Ault, Alida; Zajac, Alyse M.; Kong, Wing-Pui; Gorres, J. Patrick; Royals, Michael; Wei, Chih-Jen; Bao, Saran; Yang, Zhi-yong; Reedy, Stephanie E.; Sturgill, Tracy L.; Page, Allen E.; Donofrio-Newman, Jennifer; Adams, Amanda A.; Balasuriya, Udeni B.R.; Horohov, David W.; Chambers, Thomas M.; Nabel, Gary J.; Rao, Srinivas S.

    2012-01-01

    Equine influenza A (H3N8) virus is a leading cause of infectious respiratory disease in horses causing widespread morbidity and economic losses. As with influenza in other species, equine influenza strains continuously mutate, requiring constant re-evaluation of current vaccines and development of new vaccines. Current inactivated (killed) vaccines, while efficacious, only offer limited protection against multiple strains and require frequent boosts. Ongoing research into new vaccine technologies, including gene-based vaccines, aims to increase the neutralization potency, breadth, and duration of protective immunity of new or existing vaccines. In these hypothesis-generating experiments, we demonstrate that a DNA vaccine expressing the hemagglutinin protein of equine H3N8 influenza virus generates homologous and heterologous immune responses, and protects against clinical disease and viral replication following homologous H3N8 infection in horses. Furthermore, we demonstrate that a needle-free delivery device is as efficient and effective as conventional parenteral injection using a needle and syringe. The observed trends in this study drive the hypothesis that DNA vaccines offer a safe, effective, and promising alternative approach for veterinary vaccines against influenza, and applicable to combat equine influenza. PMID:22449425

  4. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models

    PubMed Central

    Fitzpatrick, Collin J.; Suschak, John J.; Richards, Michelle J.; Badger, Catherine V.; Six, Carolyn M.; Martin, Jacqueline D.; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W.; Schmaljohn, Connie S.

    2017-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV. PMID:28922426

  5. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models.

    PubMed

    Garrison, Aura R; Shoemaker, Charles J; Golden, Joseph W; Fitzpatrick, Collin J; Suschak, John J; Richards, Michelle J; Badger, Catherine V; Six, Carolyn M; Martin, Jacqueline D; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W; Schmaljohn, Connie S

    2017-09-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.

  6. A novel Sin Nombre virus DNA vaccine and its inclusion in a candidate pan-hantavirus vaccine against hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS).

    PubMed

    Hooper, Jay W; Josleyn, Matthew; Ballantyne, John; Brocato, Rebecca

    2013-09-13

    Sin Nombre virus (SNV; family Bunyaviridae, genus Hantavirus) causes a hemorrhagic fever known as hantavirus pulmonary syndrome (HPS) in North America. There have been approximately 200 fatal cases of HPS in the United States since 1993, predominantly in healthy working-age males (case fatality rate 35%). There are no FDA-approved vaccines or drugs to prevent or treat HPS. Previously, we reported that hantavirus vaccines based on the full-length M gene segment of Andes virus (ANDV) for HPS in South America, and Hantaan virus (HTNV) and Puumala virus (PUUV) for hemorrhagic fever with renal syndrome (HFRS) in Eurasia, all elicited high-titer neutralizing antibodies in animal models. HFRS is more prevalent than HPS (>20,000 cases per year) but less pathogenic (case fatality rate 1-15%). Here, we report the construction and testing of a SNV full-length M gene-based DNA vaccine to prevent HPS. Rabbits vaccinated with the SNV DNA vaccine by muscle electroporation (mEP) developed high titers of neutralizing antibodies. Furthermore, hamsters vaccinated three times with the SNV DNA vaccine using a gene gun were completely protected against SNV infection. This is the first vaccine of any kind that specifically elicits high-titer neutralizing antibodies against SNV. To test the possibility of producing a pan-hantavirus vaccine, rabbits were vaccinated by mEP with an HPS mix (ANDV and SNV plasmids), or HFRS mix (HTNV and PUUV plasmids), or HPS/HFRS mix (all four plasmids). The HPS mix and HFRS mix elicited neutralizing antibodies predominantly against ANDV/SNV and HTNV/PUUV, respectively. Furthermore, the HPS/HFRS mix elicited neutralizing antibodies against all four viruses. These findings demonstrate a pan-hantavirus vaccine using a mixed-plasmid DNA vaccine approach is feasible and warrants further development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Development of porcine circovirus 2 (PCV2) open reading frame 2 DNA vaccine with different adjuvants and comparison with commercial PCV2 subunit vaccine in an experimental challenge.

    PubMed

    Park, Changhoon; Jeong, Jiwoon; Choi, Kyuhyung; Park, Su-Jin; Kang, Ikjae; Chae, Chanhee

    2017-07-01

    The objective of this study was to compare the protection against challenge with porcine circovirus 2 (PCV2) induced by an experimental vaccine based on open reading frame (ORF) 2 of PCV2 DNA plus an adjuvant (aluminum hydroxide, cobalt oxide, or liposome) and a commercial PCV2 subunit vaccine. A total of 35 colostrum-fed, cross-bred, conventional piglets were randomly divided into 7 groups. The commercial vaccine was more efficacious against PCV2 challenge than the 4 experimental vaccines according to immunologic, virologic, and pathological outcomes. The pigs inoculated with the experimental vaccine containing the liposome adjuvant had significantly higher levels ( P < 0.05) of neutralizing antibodies and interferon-γ-secreting cells, and significantly lower levels ( P < 0.05) of PCV2 viremia than the pigs inoculated with the other experimental vaccines. The pigs inoculated with the experimental vaccines containing either the liposome adjuvant or the cobalt oxide adjuvant had significantly lower lymphoid lesion scores ( P < 0.05) than the pigs in the group inoculated with the PCV2 DNA vaccine dissolved in phosphate-buffered saline. Liposome proved to be a potent adjuvant that efficiently enhanced both humoral and cellular immune responses induced by the PCV2 DNA vaccine.

  8. Development of porcine circovirus 2 (PCV2) open reading frame 2 DNA vaccine with different adjuvants and comparison with commercial PCV2 subunit vaccine in an experimental challenge

    PubMed Central

    Park, Changhoon; Jeong, Jiwoon; Choi, Kyuhyung; Park, Su-Jin; Kang, Ikjae; Chae, Chanhee

    2017-01-01

    The objective of this study was to compare the protection against challenge with porcine circovirus 2 (PCV2) induced by an experimental vaccine based on open reading frame (ORF) 2 of PCV2 DNA plus an adjuvant (aluminum hydroxide, cobalt oxide, or liposome) and a commercial PCV2 subunit vaccine. A total of 35 colostrum-fed, cross-bred, conventional piglets were randomly divided into 7 groups. The commercial vaccine was more efficacious against PCV2 challenge than the 4 experimental vaccines according to immunologic, virologic, and pathological outcomes. The pigs inoculated with the experimental vaccine containing the liposome adjuvant had significantly higher levels (P < 0.05) of neutralizing antibodies and interferon-γ-secreting cells, and significantly lower levels (P < 0.05) of PCV2 viremia than the pigs inoculated with the other experimental vaccines. The pigs inoculated with the experimental vaccines containing either the liposome adjuvant or the cobalt oxide adjuvant had significantly lower lymphoid lesion scores (P < 0.05) than the pigs in the group inoculated with the PCV2 DNA vaccine dissolved in phosphate-buffered saline. Liposome proved to be a potent adjuvant that efficiently enhanced both humoral and cellular immune responses induced by the PCV2 DNA vaccine. PMID:28725106

  9. HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques

    PubMed Central

    Williams, Wilton B.; Saunders, Kevin O.; Seaton, Kelly E.; Wiehe, Kevin J.; Vandergrift, Nathan; Von Holle, Tarra A.; Trama, Ashley M.; Parks, Robert J.; Luo, Kan; Gurley, Thaddeus C.; Kepler, Thomas B.; Marshall, Dawn J.; Montefiori, David C.; Sutherland, Laura L.; Alam, Munir S.; Whitesides, John F.; Bowman, Cindy M.; Permar, Sallie R.; Graham, Barney S.; Mascola, John R.; Seed, Patrick C.; Van Rompay, Koen K. A.; Tomaras, Georgia D.; Moody, M. Anthony

    2017-01-01

    ABSTRACT Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response. IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41

  10. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    PubMed Central

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  11. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    PubMed

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  12. Marker vaccine strategies and candidate CSFV marker vaccines.

    PubMed

    Dong, Xiao-Nan; Chen, Ying-Hua

    2007-01-04

    Classical swine fever (CSF) is an economically important highly contagious disease of swine worldwide. Classical swine fever virus (CSFV) is its etiological agent, and the only natural hosts are domestic pigs and wild boars. Although field CSFV strains vary in the virulence, they all result in serious losses in pig industry. Highly virulent field strains generally cause acute disease and high mortality; moderately virulent field strains raise subacute or chronic infections; postnatal infection by low virulent field strains produces subclinical infection and mortality in the new-born piglets. CSFV can cross the placental barrier, and this transplacental transmission usually results in mortality of fetuses and birth of congenitally infected pigs with a late-onset disease and death. Two main strategies to control CSF epidemic are systematic prophylactic vaccination with live attenuated vaccines (such as C-strain) and non-vaccination stamping-out policy. But neither of them is satisfying enough. Marker vaccine and companion serological diagnostic test is thought to be a promising strategy for future control and eradication of CSF. During the past 15 years, various candidate marker vaccines were constructed and evaluated in the animal experiments, including recombinant chimeric vaccines, recombinant deletion vaccines, DNA vaccines, subunit vaccines and peptide vaccines. Among them, two subunit vaccines entered the large scale marker vaccine trial of EU in 1999. Although they failed to fulfil all the demands of the Scientific Veterinary Committee, they successfully induced solid immunity against CSFV in the vaccinated pigs. It can be expected that new potent marker vaccines might be commercially available and used in systematic prophylactic vaccination campaign or emergency vaccination in the next 15 years. Here, we summarized current strategies and candidate CSFV marker vaccines. These strategies and methods are also helpful for the development of new

  13. Induction of Strain-Transcending Immunity against Plasmodium chabaudi adami Malaria with a Multiepitope DNA Vaccine

    PubMed Central

    Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.

    2005-01-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504

  14. Retinaldehyde dehydrogenase 2 as a molecular adjuvant for enhancement of mucosal immunity during DNA vaccination.

    PubMed

    Holechek, Susan A; McAfee, Megan S; Nieves, Lizbeth M; Guzman, Vanessa P; Manhas, Kavita; Fouts, Timothy; Bagley, Kenneth; Blattman, Joseph N

    2016-11-04

    In order for vaccines to induce efficacious immune responses against mucosally transmitted pathogens, such as HIV-1, activated lymphocytes must efficiently migrate to and enter targeted mucosal sites. We have previously shown that all-trans retinoic acid (ATRA) can be used as a vaccine adjuvant to enhance mucosal CD8 + T cell responses during vaccination and improve protection against mucosal viral challenge. However, the ATRA formulation is incompatible with most recombinant vaccines, and the teratogenic potential of ATRA at high doses limits its usage in many clinical settings. We hypothesized that increasing in vivo production of retinoic acid (RA) during vaccination with a DNA vector expressing retinaldehyde dehydrogenase 2 (RALDH2), the rate-limiting enzyme in RA biosynthesis, could similarly provide enhanced programming of mucosal homing to T cell responses while avoiding teratogenic effects. Administration of a RALDH2- expressing plasmid during immunization with a HIVgag DNA vaccine resulted in increased systemic and mucosal CD8 + T cell numbers with an increase in both effector and central memory T cells. Moreover, mice that received RALDH2 plasmid during DNA vaccination were more resistant to intravaginal challenge with a recombinant vaccinia virus expressing the same HIVgag antigen (VACVgag). Thus, RALDH2 can be used as an alternative adjuvant to ATRA during DNA vaccination leading to an increase in both systemic and mucosal T cell immunity and better protection from viral infection at mucosal sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.

    PubMed

    Chen, Zhong-Yuan; Lei, Xiao-Ying; Zhang, Qi-Ya

    2012-06-15

    Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever.

    PubMed

    Cashman, Kathleen A; Wilkinson, Eric R; Shaia, Carl I; Facemire, Paul R; Bell, Todd M; Bearss, Jeremy J; Shamblin, Joshua D; Wollen, Suzanne E; Broderick, Kate E; Sardesai, Niranjan Y; Schmaljohn, Connie S

    2017-12-02

    Lassa virus (LASV) is an ambisense RNA virus in the Arenaviridae family and is the etiological agent of Lassa fever, a severe hemorrhagic disease endemic to West and Central Africa. 1,2 There are no US Food and Drug Administration (FDA)-licensed vaccines available to prevent Lassa fever. 1,2 in our previous studies, we developed a gene-optimized DNA vaccine that encodes the glycoprotein precursor gene of LASV (Josiah strain) and demonstrated that 3 vaccinations accompanied by dermal electroporation protected guinea pigs from LASV-associated illness and death. Here, we describe an initial efficacy experiment in cynomolgus macaque nonhuman primates (NHPs) in which we followed an identical 3-dose vaccine schedule that was successful in guinea pigs, and a follow-on experiment in which we used an accelerated vaccination strategy consisting of 2 administrations, spaced 4 weeks apart. In both studies, all of the LASV DNA-vaccinated NHPs survived challenge and none of them had measureable, sustained viremia or displayed weight loss or other disease signs post-exposure. Three of 10 mock-vaccinates survived exposure to LASV, but all of them became acutely ill post-exposure and remained chronically ill to the study end point (45 d post-exposure). Two of the 3 survivors experienced sensorineural hearing loss (described elsewhere). These results clearly demonstrate that the LASV DNA vaccine combined with dermal electroporation is a highly effective candidate for eventual use in humans.

  17. Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunization

    USGS Publications Warehouse

    Corbeil, Serge; Kurath, Gael; LaPatra, Scott E.

    2000-01-01

    The DNA vaccine, pIHNVw-G, contains the gene for the glycoprotein (G) of the rhabdovirus infectious hematopoietic necrosis virus (IHNV), a major pathogen of salmon and trout. The relative efficacy of various routes of immunisation with pIHNVw-G was evaluated using 1.8 g rainbow trout fry vaccinated via intramuscular injection, scarification of the skin, intraperitoneal injection, intrabuccal administration, cutaneous particle bombardment using a gene gun, or immersion in water containing DNA vaccine-coated beads. Twenty-seven days after vaccination neutralising antibody titres were determined, and 2 days later groups of vaccinated and control unvaccinated fish were subjected to an IHNV immersion challenge. Results of the virus challenge showed that the intramuscular injection and the gene gun immunisation induced protective immunity in fry, while intraperitoneal injection provided partial protection. Neutralising antibodies were not detected in sera of vaccinated fish regardless of the route of immunisation used, suggesting that cell mediated immunity may be at least partially responsible for the observed protection.

  18. Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes.

    PubMed

    Tőke, E R; Lőrincz, O; Csiszovszki, Z; Somogyi, E; Felföldi, G; Molnár, L; Szipőcs, R; Kolonics, A; Malissen, B; Lori, F; Trocio, J; Bakare, N; Horkay, F; Romani, N; Tripp, C H; Stoitzner, P; Lisziewicz, J

    2014-06-01

    There is no clinically available cancer immunotherapy that exploits Langerhans cells (LCs), the epidermal precursors of dendritic cells (DCs) that are the natural agent of antigen delivery. We developed a DNA formulation with a polymer and obtained synthetic 'pathogen-like' nanoparticles that preferentially targeted LCs in epidermal cultures. These nanoparticles applied topically under a patch-elicited robust immune responses in human subjects. To demonstrate the mechanism of action of this novel vaccination strategy in live animals, we assembled a high-resolution two-photon laser scanning-microscope. Nanoparticles applied on the native skin poorly penetrated and poorly induced LC motility. The combination of nanoparticle administration and skin treatment was essential both for efficient loading the vaccine into the epidermis and for potent activation of the LCs to migrate into the lymph nodes. LCs in the epidermis picked up nanoparticles and accumulated them in the nuclear region demonstrating an effective nuclear DNA delivery in vivo. Tissue distribution studies revealed that the majority of the DNA was targeted to the lymph nodes. Preclinical toxicity of the LC-targeting DNA vaccine was limited to mild and transient local erythema caused by the skin treatment. This novel, clinically proven LC-targeting DNA vaccine platform technology broadens the options on DC-targeting vaccines to generate therapeutic immunity against cancer.

  19. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap

    PubMed Central

    Mayer, Kenneth H.; Elizaga, Marnie L.; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C.; Sato, Alicia; Gu, Niya; Tomaras, Georgia D.; Tucker, Timothy; Barnett, Susan W.; Mkhize, Nonhlanhla N.; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-01-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 109 PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4+ T-cell and CD8+ T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4+ T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4+ T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.) PMID:27098021

  20. A effective DNA vaccine against diverse genotype J infectious hematopoietic necrosis virus strains prevalent in China

    USGS Publications Warehouse

    Xu, Liming; Zhao, Jingzhuang; Liu, Miao; Kurath, Gael; Ren, Guangming; LaPatra, Scott E.; Yin, Jiasheng; Liu, Hongbai; Feng, Jian; Lu, Tongyan

    2017-01-01

    Infectious hematopoietic necrosis virus (IHNV) is the most important pathogen threatening the aquaculture of salmonid fish in China. In this study, a DNA vaccine, designated pIHNch-G, was constructed with the glycoprotein (G) gene of a Chinese IHNV isolate SD-12 (also called Sn1203) of genotype J. The minimal dose of vaccine required, the expression of the Mx-1 gene in the muscle (vaccine delivery site) and anterior kidney, and the titers of the neutralizing antibodies produced were used to evaluate the vaccine efficacy. To assess the potential utility of the vaccine in controlling IHNV throughout China, the cross protective efficacy of the vaccine was determined by challenging fish with a broad range of IHNV strains from different geographic locations in China. A single 100 ng dose of the vaccine conferred almost full protection to rainbow trout fry (3 g) against waterborne or intraperitoneal injection challenge with IHNV strain SD-12 as early as 4 days post-vaccination (d.p.v.), and significant protection was still observed at 180 d.p.v. Intragenogroup challenges showed that the DNA vaccine provided similar protection to the fish against all the Chinese IHNV isolates tested, suggesting that the vaccine can be widely used in China. Mx-1 gene expression was significantly upregulated in the muscle tissue (vaccine delivery site) and anterior kidney in the vaccinated rainbow trout at both 4 and 7 d.p.v. Similar levels of neutralizing antibodies were determined with each of the Chinese IHNV strains at 60 and 180 d.p.v. This DNA vaccine should play an important role in the control of IHN in China.

  1. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice.

    PubMed

    Sylla, Seydou; Cong, Yan-Long; Sun, Yi-Xue; Yang, Gui-Lian; Ding, Xue-Mei; Yang, Zhan-Qing; Zhou, Yu-Long; Yang, Minnan; Wang, Chun-Feng; Ding, Zhuang

    2014-07-01

    Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  2. Evaluation of a Novel Non-Penetrating Electrode for Use in DNA Vaccination

    PubMed Central

    Donate, Amy; Coppola, Domenico; Cruz, Yolmari; Heller, Richard

    2011-01-01

    Current progress in the development of vaccines has decreased the incidence of fatal and non-fatal infections and increased longevity. However, new technologies need to be developed to combat an emerging generation of infectious diseases. DNA vaccination has been demonstrated to have great potential for use with a wide variety of diseases. Alone, this technology does not generate a significant immune response for vaccination, but combined with delivery by electroporation (EP), can enhance plasmid expression and immunity. Most EP systems, while effective, can be invasive and painful making them less desirable for use in vaccination. Our lab recently developed a non-invasive electrode known as the multi-electrode array (MEA), which lies flat on the surface of the skin without penetrating the tissue. In this study we evaluated the MEA for its use in DNA vaccination using Hepatitis B virus as the infectious model. We utilized the guinea pig model because their skin is similar in thickness and morphology to humans. The plasmid encoding Hepatitis B surface antigen (HBsAg) was delivered intradermally with the MEA to guinea pig skin. The results show increased protein expression resulting from plasmid delivery using the MEA as compared to injection alone. Within 48 hours of treatment, there was an influx of cellular infiltrate in experimental groups. Humoral responses were also increased significantly in both duration and intensity as compared to injection only groups. While this electrode requires further study, our results suggest that the MEA has potential for use in electrically mediated intradermal DNA vaccination. PMID:21559474

  3. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes

    PubMed Central

    Rosada, Rogério S; Torre, Lucimara Gaziola de la; Frantz, Fabiani G; Trombone, Ana PF; Zárate-Bladés, Carlos R; Fonseca, Denise M; Souza, Patrícia RM; Brandão, Izaíra T; Masson, Ana P; Soares, Édson G; Ramos, Simone G; Faccioli, Lúcia H; Silva, Célio L; Santana, Maria HA; Coelho-Castelo, Arlete AM

    2008-01-01

    Background The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. Results We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 μg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-γ and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 μg). Conclusion Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease. PMID

  4. Dendritic cell-targeting DNA-based mucosal adjuvants for the development of mucosal vaccines

    PubMed Central

    Kataoka, Kosuke; Fujihashi, Kohtaro

    2009-01-01

    In order to establish effective mucosal immunity against various mucosal pathogens, vaccines must be delivered via the mucosal route and contain effective adjuvant(s). Since mucosal adjuvants can simply mix with the antigen, it is relatively easy to adapt them for different types of vaccine development. Even in simple admixture vaccines, the adjuvant itself must be prepared without any complications. Thus, CpG oligodeoxynucleotides or plasmids encoding certain cDNA(s) would be potent mucosal adjuvant candidates when compared with other substances that can be used as mucosal adjuvants. The strategy of a DNA-based mucosal adjuvant facilitates the targeting of mucosal dendritic cells, and thus is an effective and safe approach. It would also provide great flexibility for the development of effective vaccines for various mucosal pathogens. PMID:19722892

  5. Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine.

    PubMed

    Knudsen, Maria L; Mbewe-Mvula, Alice; Rosario, Maximillian; Johansson, Daniel X; Kakoulidou, Maria; Bridgeman, Anne; Reyes-Sandoval, Arturo; Nicosia, Alfredo; Ljungberg, Karl; Hanke, Tomás; Liljeström, Peter

    2012-04-01

    Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.

  6. Construction and immune effect of Haemophilus parasuis DNA vaccine encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mice.

    PubMed

    Fu, Shulin; Zhang, Minmin; Ou, Jiwen; Liu, Huazhen; Tan, Chen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng

    2012-11-06

    Haemophilus parasuis, the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. The development of a vaccine against H. parasuis has been impeded due to the lack of induction of reliable cross-serotype protection. In this study the gapA gene that encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be present and highly conserved in various serotypes of H. parasuis and we constructed a novel DNA vaccine encoding GAPDH (pCgap) to evaluate the immune response and protective efficacy against infection with H. parasuis MD0322 serovar 4 or SH0165 serovar 5 in mice. A significant antibody response against GAPDH was generated following pCgap intramuscular immunization; moreover, antibodies to the pCgap DNA vaccine were bactericidal, suggesting that it was expressed in vivo. The gapA transcript was detected in muscle, liver, spleen, and kidney of the mice seven days post-vaccination. The IgG subclass (IgG1 and IgG2a) analysis indicated that the DNA vaccine induced both Th1 and Th2 immune responses, but the IgG1 response was greater than the IgG2a response. Moreover, the groups vaccinated with the pCgap vaccine exhibited 83.3% and 50% protective efficacy against the H. parasuis MD0322 serovar 4 or SH0165 serovar 5 challenges, respectively. The pCgap DNA vaccine provided significantly greater protective efficacy compared to the negative control groups or blank control groups (P<0.05 for both). Taken together, these findings indicate that the pCgap DNA vaccine provides a novel strategy against infection of H. parasuis and offer insight concerning the underlying immune mechanisms of a bacterial DNA vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine - Preliminary Report.

    PubMed

    Tebas, Pablo; Roberts, Christine C; Muthumani, Kar; Reuschel, Emma L; Kudchodkar, Sagar B; Zaidi, Faraz I; White, Scott; Khan, Amir S; Racine, Trina; Choi, Hyeree; Boyer, Jean; Park, Young K; Trottier, Sylvie; Remigio, Celine; Krieger, Diane; Spruill, Susan E; Bagarazzi, Mark; Kobinger, Gary P; Weiner, David B; Maslow, Joel N

    2017-10-04

    Background Although Zika virus (ZIKV) infection is typically self-limiting, other associated complications such as congenital birth defects and the Guillain-Barré syndrome are well described. There are no approved vaccines against ZIKV infection. Methods In this phase 1, open-label clinical trial, we evaluated the safety and immunogenicity of a synthetic, consensus DNA vaccine (GLS-5700) encoding the ZIKV premembrane and envelope proteins in two groups of 20 participants each. The participants received either 1 mg or 2 mg of vaccine intradermally, with each injection followed by electroporation (the use of a pulsed electric field to introduce the DNA sequence into cells) at baseline, 4 weeks, and 12 weeks. Results The median age of the participants was 38 years, and 60% were women; 78% were white, and 22% black; in addition, 30% were Hispanic. At the interim analysis at 14 weeks (i.e., after the third dose of vaccine), no serious adverse events were reported. Local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants. After the third dose of vaccine, binding antibodies (as measured on enzyme-linked immunosorbent assay) were detected in all the participants, with geometric mean titers of 1642 and 2871 in recipients of 1 mg and 2 mg of vaccine, respectively. Neutralizing antibodies developed in 62% of the samples on Vero-cell assay. On neuronal-cell assay, there was 90% inhibition of ZIKV infection in 70% of the serum samples and 50% inhibition in 95% of the samples. The intraperitoneal injection of postvaccination serum protected 103 of 112 IFNAR knockout mice (bred with deletion of genes encoding interferon-α and interferon-β receptors) (92%) that were challenged with a lethal dose of ZIKV-PR209 strain; none of the mice receiving baseline serum survived the challenge. Survival was independent of the neutralization titer. Conclusions In this phase 1, open-label clinical

  8. Vaccine-induced HIV seropositivity/reactivity in noninfected HIV vaccine recipients.

    PubMed

    Cooper, Cristine J; Metch, Barbara; Dragavon, Joan; Coombs, Robert W; Baden, Lindsey R

    2010-07-21

    Induction of protective anti-human immunodeficiency virus (HIV) immune responses is the goal of an HIV vaccine. However, this may cause a reactive result in routine HIV testing in the absence of HIV infection. To evaluate the frequency of vaccine-induced seropositivity/reactivity (VISP) in HIV vaccine trial participants. Three common US Food and Drug Administration-approved enzyme immunoassay (EIA) HIV antibody kits were used to determine VISP, and a routine diagnostic HIV algorithm was used to evaluate VISP frequency in healthy, HIV-seronegative adults who completed phase 1 (n = 25) and phase 2a (n = 2) vaccine trials conducted from 2000-2010 in the United States, South America, Thailand, and Africa. Vaccine-induced seropositivity/reactivity, defined as reactive on 1 or more EIA tests and either Western blot-negative or Western blot-indeterminate/atypical positive (profile consistent with vaccine product) and HIV-1-negative by nucleic acid testing. Among 2176 participants free of HIV infection who received a vaccine product, 908 (41.7%; 95% confidence interval [CI], 39.6%-43.8%) had VISP, but the occurrence of VISP varied substantially across different HIV vaccine product types: 399 of 460 (86.7%; 95% CI, 83.3%-89.7%) adenovirus 5 product recipients, 295 of 552 (53.4%; 95% CI, 49.2%-57.7%) recipients of poxvirus alone or as a boost, and 35 of 555 (6.3%; 95% CI, 4.4%-8.7%) of DNA-alone product recipients developed VISP. Overall, the highest proportion of VISP (891/2176 tested [40.9%]) occurred with the HIV 1/2 (rDNA) EIA kit compared with the rLAV EIA (150/700 tested [21.4%]), HIV-1 Plus O Microelisa System (193/1309 tested [14.7%]), and HIV 1/2 Peptide and HIV 1/2 Plus O (189/2150 tested [8.8%]) kits. Only 17 of the 908 participants (1.9%) with VISP tested nonreactive using the HIV 1/2 (rDNA) kit. All recipients of a glycoprotein 140 vaccine (n = 70) had VISP, with 94.3% testing reactive with all 3 EIA kits tested. Among 901 participants with VISP and a Western

  9. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    PubMed

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. © 2014 John Wiley & Sons Ltd.

  10. DNA vaccination protects mice against Zika virus-induced damage to the testes

    PubMed Central

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  11. DNA and RNA-based vaccines: principles, progress and prospects

    PubMed Central

    Leitner, Wolfgang W.; Ying, Han; Restifo, Nicholas P.

    2007-01-01

    DNA vaccines were introduced less than a decade ago but have already been applied to a wide range of infectious and malignant diseases. Here we review the current understanding of the mechanisms underlying the activities of these new vaccines. We focus on recent strategies designed to enhance their function including the use of immunostimulatory (CpG) sequences, dendritic cells (DC), co-stimulatory molecules and cytokine- and chemokine-adjuvants. Although genetic vaccines have been significantly improved, they may not be sufficiently immunogenic for the therapeutic vaccination of patients with infectious diseases or cancer in clinical trials. One promising approach aimed at dramatically increasing the immunogenicity of genetic vaccines involves making them ‘self-replicating’. This can be accomplished by using a gene encoding RNA replicase, a polyprotein derived from alphaviruses, such as Sindbis virus. Replicase-containing RNA vectors are significantly more immunogenic than conventional plasmids, immunizing mice at doses as low as 0.1 μg of nucleic acid injected once intramuscularly. Cells transfected with ‘self-replicating’ vectors briefly produce large amounts of antigen before undergoing apoptotic death. This death is a likely result of requisite double-stranded (ds) RNA intermediates, which also have been shown to super-activate DC. Thus, the enhanced immunogenicity of ‘self-replicating’ genetic vaccines may be a result of the production of pro-inflammatory dsRNA, which mimics an RNA-virus infection of host cells. PMID:10580187

  12. Immune protection duration and efficacy stability of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 against coccidiosis.

    PubMed

    Song, Xiaokai; Zhao, Xiaofang; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui

    2017-04-01

    In our previous study, an effective DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 was constructed. In the present study, the immunization dose of the DNA vaccine pVAX1.0-TA4-IL-2 was further optimized. With the optimized dose, the dynamics of antibodies induced by the DNA vaccine was determined using indirect ELISA. To evaluate the immune protection duration of the DNA vaccine, two-week-old chickens were intramuscularly immunized twice and the induced efficacy was evaluated by challenging with E. tenella at 5, 9, 13, 17 and 21weeks post the last immunization (PLI) separately. To evaluate the efficacy stability of the DNA vaccine, two-week-old chickens were immunized with 3 batches of the DNA vaccine, and the induced efficacy was evaluated by challenging with E. tenella. The results showed that the optimal dose was 25μg. The induced antibody level persisted until 10weeks PPI. For the challenge time of 5 and 9weeks PLI, the immunization resulted in ACIs of 182.28 and 162.23 beyond 160, showing effective protection. However, for the challenge time of 13, 17 and 21weeks PLI, the immunization resulted in ACIs below 160 which means poor protection. Therefore, the immune protection duration of the DNA vaccination was at least 9weeks PLI. DNA immunization with three batches DNA vaccine resulted in ACIs of 187.52, 191.57 and 185.22, which demonstrated that efficacies of the three batches DNA vaccine were effective and stable. Overall, our results indicate that DNA vaccine pVAX1.0-TA4-IL-2 has the potential to be developed as effective vaccine against coccidiosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Japanese encephalitis vaccines: current vaccines and future prospects.

    PubMed

    Monath, T P

    2002-01-01

    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.

  14. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    PubMed

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p < 0.05) following the immunization and after challenging with Leishmania major. Interleukin 4 values were decreased in all immunized groups, but only in DNA vaccine cocktail and single-gene vaccination with pc-LACK there were statistical differences with control groups (p > 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  15. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.

    PubMed

    Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J

    2014-06-01

    The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.

  16. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon.

    PubMed

    Garver, Kyle A; LaPatra, Scott E; Kurath, Gael

    2005-04-06

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.

  17. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon

    USGS Publications Warehouse

    Garver, K.A.; LaPatra, S.E.; Kurath, G.

    2005-01-01

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 ??g doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish. ?? Inter-Research 2005.

  18. Plasmid DNA vaccination using skin electroporation promotes poly-functional CD4 T-cell responses.

    PubMed

    Bråve, Andreas; Nyström, Sanna; Roos, Anna-Karin; Applequist, Steven E

    2011-03-01

    Plasmid DNA vaccination using skin electroporation (EP) is a promising method able to elicit robust humoral and CD8(+) T-cell immune responses while limiting invasiveness of delivery. However, there is still only limited data available on the induction of CD4(+) T-cell immunity using this method. Here, we compare the ability of homologous prime/boost DNA vaccinations by skin EP and intramuscular (i.m.) injection to elicit immune responses by cytokine enzyme-linked immunosorbent spot (ELISPOT) assay, as well as study the complexity of CD4(+) T-cell responses to the human immunodeficiency virus antigen Gag, using multiparamater flow cytometry. We find that DNA vaccinations by skin EP and i.m. injection are capable of eliciting both single- and poly-functional vaccine-specific CD4(+) T cells. However, although DNA delivered by skin EP was administered at a five-fold lower dose it elicited significant increases in the magnitude of multiple-cytokine producers compared with i.m. immunization suggesting that the skin EP could provide greater poly-functional T-cell help, a feature associated with successful immune defense against infectious agents.

  19. Virus-Like Particle Secretion and Genotype-Dependent Immunogenicity of Dengue Virus Serotype 2 DNA Vaccine

    PubMed Central

    Galula, Jedhan U.; Shen, Wen-Fan; Chuang, Shih-Te

    2014-01-01

    ABSTRACT Dengue virus (DENV), composed of four distinct serotypes, is the most important and rapidly emerging arthropod-borne pathogen and imposes substantial economic and public health burdens. We constructed candidate vaccines containing the DNA of five of the genotypes of dengue virus serotype 2 (DENV-2) and evaluated the immunogenicity, the neutralizing (Nt) activity of the elicited antibodies, and the protective efficacy elicited in mice immunized with the vaccine candidates. We observed a significant correlation between the level of in vitro virus-like particle secretion, the elicited antibody response, and the protective efficacy of the vaccines containing the DNA of the different DENV genotypes in immunized mice. However, higher total IgG antibody levels did not always translate into higher Nt antibodies against homologous and heterologous viruses. We also found that, in contrast to previous reports, more than 50% of total IgG targeted ectodomain III (EDIII) of the E protein, and a substantial fraction of this population was interdomain highly neutralizing flavivirus subgroup-cross-reactive antibodies, such as monoclonal antibody 1B7-5. In addition, the lack of a critical epitope(s) in the Sylvatic genotype virus recognized by interdomain antibodies could be the major cause of the poor protection of mice vaccinated with the Asian 1 genotype vaccine (pVD2-Asian 1) from lethal challenge with virus of the Sylvatic genotype. In conclusion, although the pVD2-Asian 1 vaccine was immunogenic, elicited sufficient titers of Nt antibodies against all DENV-2 genotypes, and provided 100% protection against challenge with virus of the homologous Asian 1 genotype and virus of the heterologous Cosmopolitan genotype, it is critical to monitor the potential emergence of Sylvatic genotype viruses, since vaccine candidates under development may not protect vaccinated humans from these viruses. IMPORTANCE Five genotype-specific dengue virus serotype 2 (DENV-2) DNA vaccine

  20. Use of Staby® technology for development and production of DNA vaccines free of antibiotic resistance gene

    PubMed Central

    Reschner, Anca; Scohy, Sophie; Vandermeulen, Gaëlle; Daukandt, Marc; Jacques, Céline; Michel, Benjamin; Nauwynck, Hans; Xhonneux, Florence; Préat, Véronique; Vanderplasschen, Alain; Szpirer, Cédric

    2013-01-01

    The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby® technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby® technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1). PMID:24051431

  1. Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene.

    PubMed

    Reschner, Anca; Scohy, Sophie; Vandermeulen, Gaëlle; Daukandt, Marc; Jacques, Céline; Michel, Benjamin; Nauwynck, Hans; Xhonneux, Florence; Préat, Véronique; Vanderplasschen, Alain; Szpirer, Cédric

    2013-10-01

    The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).

  2. PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization.

    PubMed

    Rekoske, Brian T; Smith, Heath A; Olson, Brian M; Maricque, Brett B; McNeel, Douglas G

    2015-08-01

    DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8(+) T cells in non-tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8(+) T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8(+) T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date. ©2015 American Association for Cancer Research.

  3. Enhanced contraception of canine zona pellucida 3 DNA vaccine via targeting DEC-205 in mice.

    PubMed

    Wang, Ying; Zhang, Beibei; Li, Jinyao; Aipire, Adila; Li, Yijie; Zhang, Fuchun

    2018-06-01

    Zona pellucida 3 (ZP3) is a potential antigen for the development of contraceptive vaccines to control animal population. In this study, we designed a canine ZP3 (CZP3) DNA vaccine through targeting DEC-205 (named as pcD-scFv-CZP3c) and investigated its contraceptive effect in mice. Female BALB/c mice were intramuscularly immunized 3 times at 2 weeks intervals. After immunization, humoral and cellular immune responses were detected by ELISA and flow cytometry. The results showed that pcD-CZP3 and pcD-scFv-CZP3c induced CZP3-specific antibody (Ab) responses both in serum and vaginal secretions compared to pcDNA3.1. Additionally, compared to pcD-CZP3, pcD-scFv-CZP3c increased the levels of CZP3-specific Abs after a third immunization. Abs induced by these two DNA vaccines could bind with mice and dogs oocytes. Moreover, pcD-scFv-CZP3c enhanced the activation of CD4 + T cells characterized by the increased frequencies of CD4 + CD44 + T cells. Finally, the contraceptive effect was evaluated in the immunized mice. These two DNA vaccines significantly decreased a mean litter size of mice compared to pcDNA3.1, but pcD-scFv-CZP3c group showed the smallest mean litter size. The mean litter size of pcD-scFv-CZP3 were 3.2 ± 0.742 and 4.6 ± 1.118 in two mating tests, which were significantly lower than pcDNA3.1(P < 0.001 and P < 0.05). Our results suggest that the CZP3 DNA vaccine targeted with DEC-205 may be a potential strategy for developing a contraceptive DNA vaccine. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. DNA vaccination elicits protective immune responses against pandemic and classic swine influenza viruses in pigs.

    PubMed

    Gorres, J Patrick; Lager, Kelly M; Kong, Wing-Pui; Royals, Michael; Todd, John-Paul; Vincent, Amy L; Wei, Chih-Jen; Loving, Crystal L; Zanella, Eraldo L; Janke, Bruce; Kehrli, Marcus E; Nabel, Gary J; Rao, Srinivas S

    2011-11-01

    Swine influenza is a highly contagious viral infection in pigs that significantly impacts the pork industry due to weight loss and secondary infections. There is also the potential of a significant threat to public health, as was seen in 2009 when the pandemic H1N1 influenza virus strain emerged from reassortment events among avian, swine, and human influenza viruses within pigs. As classic and pandemic H1N1 strains now circulate in swine, an effective vaccine may be the best strategy to protect the pork industry and public health. Current inactivated-virus vaccines available for swine influenza protect only against viral strains closely related to the vaccine strain, and egg-based production of these vaccines is insufficient to respond to large outbreaks. DNA vaccines are a promising alternative since they can potentially induce broad-based protection with more efficient production methods. In this study we evaluated the potentials of monovalent and trivalent DNA vaccine constructs to (i) elicit both humoral and gamma interferon (IFN-γ) responses and (ii) protect pigs against viral shedding and lung disease after challenge with pandemic H1N1 or classic swine H1N1 influenza virus. We also compared the efficiency of a needle-free vaccine delivery method to that of a conventional needle/syringe injection. We report that DNA vaccination elicits robust serum antibody and cellular responses after three immunizations and confers significant protection against influenza virus challenge. Needle-free delivery elicited improved antibody responses with the same efficiency as conventional injection and should be considered for development as a practical alternative for vaccine administration.

  5. Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency.

    PubMed

    Garrod, Tamsin; Grubor-Bauk, Branka; Yu, Stanley; Gargett, Tessa; Gowans, Eric J

    2014-01-01

    In humans, DNA vaccines have failed to demonstrate the equivalent levels of immunogenicity that were shown in smaller animals. Previous studies have encoded adjuvants, predominantly cytokines, within these vaccines in an attempt to increase antigen-specific immune responses. However, these strategies have lacked breadth of innate immune activation and have led to disappointing results in clinical trials. Damage associated molecular patterns (DAMPs) have been identified as pattern recognition receptor (PRR) agonists. DAMPs can bind to a wide range of PRRs on dendritic cells (DCs) and thus our studies have aimed to utilize this characteristic to act as an adjuvant in a DNA vaccine approach. Specifically, HSP70 has been identified as a DAMP, but has been limited by its lack of accessibility to PRRs in and on DCs. Here, we discuss the promising results achieved with the inclusion of membrane-bound or secreted HSP70 into a DNA vaccine encoding HIV gag as the model immunogen.

  6. Cross reactivity of serum antibody responses elicited by DNA vaccines expressing HA antigens from H1N1 subtype influenza vaccines in the past 30 years.

    PubMed

    Almansour, Iman; Chen, Huaiqing; Wang, Shixia; Lu, Shan

    2013-10-01

    In the past three decades, ten H1 subtype influenza vaccines have been recommended for global seasonal flu vaccination. Some of them were used only for one year before being replaced by another H1 flu vaccine while others may be used for up to seven years. While the selection of a new seasonal flu vaccine was based on the escape of a new emerging virus that was not effectively protected by the existing flu formulation, there is limited information on the magnitude and breadth of cross reactivity among H1 subtype virus circulation over a long period. In the current study, HA-expressing DNA vaccines were constructed to express individual HA antigens from H1 subtype vaccines used in the past 30 y. Rabbits naïve to HA antibody responses were immunized with these HA DNA vaccines and the cross reactivity of these sera against HA antigen and related H1 viruses in the same period was studied. Our data indicate that the level of cross reactivity was different for different viral isolates and the key mutations responsible for the cross reactivity may involve only a limited number of residues. Our results provide useful information for the development of improved seasonal vaccines than can achieve broad protection against viruses within the same H1 subtype.

  7. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    PubMed

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  8. Technical Transformation of Biodefense Vaccines

    PubMed Central

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  9. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, andmore » infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. - Highlights: • Combined RSV FFG VLP vaccine is effective in inducing F specific responses. • FFG VLP vaccine confers RSV neutralizing activity and viral control in cotton rats. • Cotton rats with RSV FFG VLP vaccination do not show vaccine-enhanced disease. • Cotton rats with FFG VLP vaccine induce F specific antibody secreting cell responses. • Cotton rats with FFG VLP do not induce lung cellular infiltrates and Th2 cytokine.« less

  10. HIV-DNA priming alters T-cell responses to HIV-adenovirus vaccine even when responses to DNA are undetectable1

    PubMed Central

    De Rosa, Stephen C.; Thomas, Evan P.; Bui, John; Huang, Yunda; deCamp, Allan; Morgan, Cecilia; Kalams, Spyros; Tomaras, Georgia D.; Akondy, Rama; Ahmed, Rafi; Lau, Chuen-Yen; Graham, Barney S.; Nabel, Gary J.; McElrath, M. Juliana

    2011-01-01

    Many candidate HIV vaccines are designed to primarily elicit T-cell responses. Although repeated immunization with the same vaccine boosts antibody responses, the benefit for T-cell responses is ill-defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T-cell responses, but increases gp140 antibody responses ten-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8+ T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4+ and CD8+ T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts, and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination. PMID:21844392

  11. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus.

    PubMed

    Spik, Kristin; Shurtleff, Amy; McElroy, Anita K; Guttieri, Mary C; Hooper, Jay W; SchmalJohn, Connie

    2006-05-22

    DNA vaccines for Rift Valley fever virus (RVFV), Crimean Congo hemorrhagic fever virus (CCHFV), tick-borne encephalitis virus (TBEV), and Hantaan virus (HTNV), were tested in mice alone or in various combinations. The bunyavirus vaccines (RVFV, CCHFV, and HTNV) expressed Gn and Gc genes, and the flavivirus vaccine (TBEV) expressed the preM and E genes. All vaccines were delivered by gene gun. The TBEV DNA vaccine and the RVFV DNA vaccine elicited similar levels of antibodies and protected mice from challenge when delivered alone or in combination with other DNAs. Although in general, the HTNV and CCHFV DNA vaccines were not very immunogenic in mice, there were no major differences in performance when given alone or in combination with the other vaccines.

  12. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  13. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study.

    PubMed

    Sarbu, Luminita; Kitchell, Barbara E; Bergman, Philip J

    2017-02-01

    Objectives A xenogeneic human tyrosinase DNA vaccine was developed for treatment of dogs with oral malignant melanoma (Oncept; Merial). No studies have evaluated the safety or efficacy of this vaccine in cats. The purpose of this study was to evaluate the safety of the canine melanoma vaccine in cats diagnosed with melanoma. Methods Medical records were reviewed from cats diagnosed with malignant melanoma and treated with the canine melanoma DNA vaccine (Oncept). Data regarding signalment, melanoma location, treatments received, vaccine adverse effects and cause of death were collected. Results A total of 114 melanoma vaccines were administered to 24 cats. Seven cats (11.4%) had clinical adverse effects from a total of 13 vaccines classified as grade 1 or 2 based on the Veterinary Cooperative Oncology Group's common terminology criteria for adverse events v1.1. These included pain on vaccine administration, brief muscle fasciculation, transient inappetence, depression, nausea and mild increase in pigmentation at the injection site. Nineteen cats were deceased at study close. The most common cause of death was melanoma (14 cats). Hematological and biochemical changes were observed in six cats, five of which had concurrent disease or treatments that likely caused or greatly contributed to the laboratory abnormalities found. Therefore, these adverse events were considered unlikely to be caused by the melanoma vaccine. One cat had transient grade 1 hypoalbuminemia, which was possibly caused by the vaccination but not thoroughly evaluated. Conclusions and relevance The canine melanoma DNA vaccine can be safely administered to cats, with minimal risk of adverse effects.

  14. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  15. Vaginal DNA vaccination against infectious diseases transmitted through the vagina.

    PubMed

    Kanazawa, Takanori; Takashima, Yuuki; Okada, Hiroaki

    2012-06-01

    There is an urgent need for the development of vaccines against genital virus infections that are transmitted through heterosexual intercourse, including the HIV and HPV. In general, the surface of female genital mucosa, including vaginal mucosa, is the most common site of initiation of these infections. Thus, it is becoming clear that successful vaccines must induce both cellular and humoral immune responses in both the local genital tract and systemically. We believe that a strong vaginal immune response could be obtained by inducing strong gene expression of antigen-coding DNA in the local targeted tissue. In order to improve transfection efficiency in the vagina, it is important that methods allowing breakthrough of the various barriers, such as the epithelial layer, cellular and nuclear membrane, are developed. Therefore, systems providing less invasive and more effective delivery into the subepithelial layer are required. In this review, we will introduce our studies into efficient vaginal DNA vaccination methods, focusing on the effects of the menstrual cycle, utilization of the combination of functional peptides, and use of a needle-free injector.

  16. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles

    PubMed Central

    Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun

    2016-01-01

    Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles. PMID:27170532

  17. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Rong, Guangyu; Hao, Yan; Yu, Lu; Kang, Hong; Wang, Xin; Wang, Xiaohua; Jin, Zheng; Ren, Zhiyu; Li, Zejun

    2016-05-01

    Newcastle disease caused by ND virus (NDV) is a highly contagious disease of birds. Vaccine for effective protection of poultry animals from NDV infection is urgently needed. Mucosal immunity plays a very important role in the antiviral immune response. In this study, a NDV F gene-containing DNA vaccine encapsulated in Ag@SiO2 hollow nanoparticles (pFDNA-Ag@SiO2-NPs) with an average diameter of 500 nm were prepared to assess the mucosal immune response. These nanoparticles exhibited low cytotoxicity and did not destroy the bioactivity of plasmid DNA, which could be expressed in vitro. The plasmid DNA was sustainably released after an initial burst release. In vivo immunization showed that the intranasal immunization of chickens with pFDNA-Ag@SiO2-NPs induced high titers of serum antibody, significantly promoted lymphocyte proliferation and induced higher expression levels of IL-2 and IFN-γ in a dose-dependent manner. These results indicated that the Ag@SiO2 hollow nanoparticles could serve as an efficient and safe delivery carrier for NDV DNA vaccine to induce mucosal immunity. This study has provided promising results for the further development of mucosal vaccines encapsulated in inorganic nanoparticles.

  18. DNA-MVA-protein vaccination of rhesus macaques induces HIV-specific immunity in mucosal-associated lymph nodes and functional antibodies.

    PubMed

    Chege, Gerald K; Burgers, Wendy A; Müller, Tracey L; Gray, Clive M; Shephard, Enid G; Barnett, Susan W; Ferrari, Guido; Montefiori, David; Williamson, Carolyn; Williamson, Anna-Lise

    2017-02-07

    Successful future HIV vaccines are expected to generate an effective cellular and humoral response against the virus in both the peripheral blood and mucosal compartments. We previously reported the development of DNA-C and MVA-C vaccines based on HIV-1 subtype C and demonstrated their immunogenicity when given in a DNA prime-MVA boost combination in a nonhuman primate model. In the current study, rhesus macaques previously vaccinated with a DNA-C and MVA-C vaccine regimen were re-vaccinated 3.5years later with MVA-C followed by a protein vaccine based on HIV-1 subtype C envelope formulated with MF59 adjuvant (gp140Env/MF59), and finally a concurrent boost with both vaccines. A single MVA-C re-vaccination elicited T cell responses in all animals similar to previous peak responses, with 4/7 demonstrating responses >1000 SFU/10 6 PBMC. In contrast to an Env/MF59-only vaccine, concurrent boosting with MVA-C and Env/MF59 induced HIV-specific cellular responses in multiple mucosal associated lymph nodes in 6/7 animals, with high magnitude responses in some animals. Both vaccine regimens induced high titer Env-specific antibodies with ADCC activity, as well as neutralization of Tier 1 viruses and modest Tier 2 neutralization. These data demonstrate the feasibility of inducing HIV-specific immunity in the blood and mucosal sites of viral entry by means of DNA and poxvirus-vectored vaccines, in combination with a HIV envelope-based protein vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    PubMed

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  20. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination

    USGS Publications Warehouse

    LaPatra, S.E.; Corbeil, S.; Jones, G.R.; Shewmaker, W.D.; Lorenzen, N.; Anderson, E.D.; Kurath, G.

    2001-01-01

    A DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was shown to provide significant protection as soon as 4 d after intramuscular vaccination in 2 g rainbow trout (Oncorhynchus mykiss) held at 15??C. Nearly complete protection was also observed at later time points (7, 14, and 28 d) using a standardized waterborne challenge model. In a test of the specificity of this early protection, immunization of rainbow trout with a DNA vaccine against another fish rhabdovirus, viral hemorrhagic septicemia virus, provided a significant level of cross-protection against IHNV challenge for a transient period of time, whereas a rabies virus DNA vaccine was not protective. This indication of distinct early and late protective mechanisms was not dependent on DNA vaccine doses from 0.1 to 2.5 ??g. ?? 2001 Elsevier Science Ltd.

  1. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2.

    PubMed

    Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K

    2007-05-16

    A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.

  2. Cluster Intradermal DNA Vaccination Rapidly Induces E7-specific CD8+ T Cell Immune Responses Leading to Therapeutic Antitumor Effects

    PubMed Central

    Peng, Shiwen; Trimble, Cornelia; Alvarez, Ronald D.; Huh, Warner K.; Lin, Zhenhua; Monie, Archana; Hung, Chien-Fu; Wu, T.-C.

    2010-01-01

    Intradermal administration of DNA vaccines via a gene gun represents a feasible strategy to deliver DNA directly into the professional antigen-presenting cells (APCs) in the skin. This helps to facilitate the enhancement of DNA vaccine potency via strategies that modify the properties of APCs. We have previously demonstrated that DNA vaccines encoding human papillomavirus type 16 (HPV-16) E7 antigen linked to calreticulin (CRT) are capable of enhancing the E7-specific CD8+ T cell immune responses and antitumor effects against E7-expressing tumors. It has also been shown that cluster (short-interval) DNA vaccination regimen generates potent immune responses in a minimal timeframe. Thus, in the current study we hypothesize that the cluster intradermal CRT/E7 DNA vaccination will generate significant antigen-specific CD8+ T cell infiltrates in E7-expressing tumors in tumor-bearing mice, leading to an increase in apoptotic tumor cell death. We found that cluster intradermal CRT/E7 DNA vaccination is capable of rapidly generating a significant number of E7-specific CD8+ T cells, resulting in significant therapeutic antitumor effects in vaccinated mice. We also observed that cluster intradermal CRT/E7 DNA vaccination in the presence of tumor generates significantly higher E7-specific CD8+ T cell immune responses in the systemic circulation as well as in the tumors. In addition, this vaccination regimen also led to significantly lower levels of CD4+Foxp3+ T regulatory cells and myeloid suppressor cells compared to vaccination with CRT DNA in peripheral blood and in tumor infiltrating lymphocytes, resulting in an increase in apoptotic tumor cell death. Thus, our study has significant potential for future clinical translation. PMID:18401437

  3. A novel DNA vaccine for reduction of PRRSV-induced negative immunomodulatory effects: A proof of concept.

    PubMed

    Suradhat, Sanipa; Wongyanin, Piya; Kesdangsakonwut, Sawang; Teankum, Komkrich; Lumyai, Mongkol; Triyarach, Sittikorn; Thanawongnuwech, Roongroje

    2015-07-31

    Viral-induced interleukin (IL)-10 and regulatory T lymphocytes (Tregs) are believed to play a major role in shaping the immunological and clinical outcomes following Porcine Reproductive and Respiratory Syndrome virus (PRRSV) infection. Recently, it has been shown that PRRSV nucleocapsid (N) protein can induce IL-10 production which is essential for induction of PRRSV-specific Tregs. We hypothesized that immunity to N protein should reduce PRRSV-induced negative immunomodulatory effects which will be essential for establishing proper anti-PRRSV immunity in infected pigs. To investigate the immunomodulatory effects of DNA vaccine encoding a linearized, truncated form of PRRSV-N protein (pORF7t) which was designed to preferentially induce cell-mediated immunity against PRRSV N protein. Immunomodulatory effects of the novel DNA vaccine were investigated in an experimental vaccinated-challenged model. In addition, long-term immunomodulatory effects of the DNA vaccine were investigated in vaccinated pigs kept at the PRRSV-positive environment until the end of the fattening period. Pigs were vaccinated either prior to or following natural PRRSV infection. The results indicated that pORF7t could modulate the anti-PRRSV immune responses and promote the control of viral replication in the vaccinated-challenged pigs. Immunized pigs exhibited increased numbers of PRRSV-specific activated CD4(+)CD25(+) lymphocytes, reduced numbers of PRRSV-specific Tregs, and rapid viral clearance following infection. In a long-term study, regardless of the time of vaccination, DNA vaccine could modulate the host immune responses, resulted in enhanced PRRSV-specific IFN-γ producing cells, and reduced numbers of PRRSV-specific Tregs, without evidence of enhanced antibody responses. No vaccine adverse reaction was observed throughout the study. This study revealed the novel concept that PRRSV-specific immunity can be modulated by induction of cell-mediated immunity against the nucleocapsid

  4. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    PubMed

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  5. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts

    PubMed Central

    Tseng, Chih◻Wen; Trimble, Cornelia; Zeng, Qi; Monie, Archana; Alvarez, Ronald D.; Huh, Warner K.; Hoory, Talia; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T.-C.

    2008-01-01

    Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic anti-tumor effects and the highest frequency of E7-specific CD8+ T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8+ T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic anti-tumor effects. The clinical implications of the study are discussed. PMID:18815785

  6. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts.

    PubMed

    Tseng, Chih-Wen; Trimble, Cornelia; Zeng, Qi; Monie, Archana; Alvarez, Ronald D; Huh, Warner K; Hoory, Talia; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T-C

    2009-05-01

    Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic antitumor effects and the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic antitumor effects. The clinical implications of the study are discussed.

  7. Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT.

    PubMed

    Duperret, Elizabeth K; Wise, Megan C; Trautz, Aspen; Villarreal, Daniel O; Ferraro, Bernadette; Walters, Jewell; Yan, Jian; Khan, Amir; Masteller, Emma; Humeau, Laurent; Weiner, David B

    2018-02-07

    Immune checkpoint blockade antibodies are setting a new standard of care for cancer patients. It is therefore important to assess any new immune-based therapies in the context of immune checkpoint blockade. Here, we evaluate the impact of combining a synthetic consensus TERT DNA vaccine that has improved capacity to break tolerance with immune checkpoint inhibitors. We observed that blockade of CTLA-4 or, to a lesser extent, PD-1 synergized with TERT vaccine, generating more robust anti-tumor activity compared to checkpoint alone or vaccine alone. Despite this anti-tumor synergy, none of these immune checkpoint therapies showed improvement in TERT antigen-specific immune responses in tumor-bearing mice. αCTLA-4 therapy enhanced the frequency of T-bet + /CD44 + effector CD8 + T cells within the tumor and decreased the frequency of regulatory T cells within the tumor, but not in peripheral blood. CTLA-4 blockade synergized more than Treg depletion with TERT DNA vaccine, suggesting that the effect of CTLA-4 blockade is more likely due to the expansion of effector T cells in the tumor rather than a reduction in the frequency of Tregs. These results suggest that immune checkpoint inhibitors function to alter the immune regulatory environment to synergize with DNA vaccines, rather than boosting antigen-specific responses at the site of vaccination. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  8. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    PubMed

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  9. Development of an intradermal DNA vaccine delivery strategy to achieve single-dose immunity against respiratory syncytial virus.

    PubMed

    Smith, Trevor R F; Schultheis, Katherine; Morrow, Matthew P; Kraynyak, Kimberly A; McCoy, Jay R; Yim, Kevin C; Muthumani, Karuppiah; Humeau, Laurent; Weiner, David B; Sardesai, Niranjan Y; Broderick, Kate E

    2017-05-15

    Respiratory syncytial virus (RSV) is a massive medical burden in infants, children and the elderly worldwide, and an effective, safe RSV vaccine remains an unmet need. Here we assess a novel vaccination strategy based on the intradermal delivery of a SynCon® DNA-based vaccine encoding engineered RSV-F antigen using a surface electroporation device (SEP) to target epidermal cells, in clinically relevant experimental models. We demonstrate the ability of this strategy to elicit robust immune responses. Importantly we demonstrate complete resistance to pulmonary infection at a single low dose of vaccine in the cotton rat RSV/A challenge model. In contrast to the formalin-inactivated RSV (FI-RSV) vaccine, there was no enhanced lung inflammation upon virus challenge after DNA vaccination. In summary the data presented outline the pre-clinical development of a highly efficacious, tolerable and safe non-replicating vaccine delivery strategy. Copyright © 2017. Published by Elsevier Ltd.

  10. Introduction of translation stop condons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, Kyle A.; Conway, Carla M.; Kurath, Gael

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine.

  11. Testing the Efficacy of a Multi-Component DNA-Prime/DNA-Boost Vaccine against Trypanosoma cruzi Infection in Dogs

    PubMed Central

    Aparicio-Burgos, José E.; Ochoa-García, Laucel; Zepeda-Escobar, José Antonio; Gupta, Shivali; Dhiman, Monisha; Martínez, José Simón; de Oca-Jiménez, Roberto Montes; Arreola, Margarita Val; Barbabosa-Pliego, Alberto; Vázquez-Chagoyán, Juan C.; Garg, Nisha Jain

    2011-01-01

    Background Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States. Methods We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology. Results Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations. Conclusions Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease. PMID:21625470

  12. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout

    USGS Publications Warehouse

    Kurath, Gael; Garver, Kyle A.; Corbeil, Serge; Elliott, Diane G.; Anderson, Eric D.; LaPatra, Scott E.

    2006-01-01

    The DNA vaccine pIHNw-G encodes the glycoprotein of the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV). Vaccine performance in rainbow trout was measured 3, 6, 13, 24, and 25 months after vaccination. At three months all fish vaccinated with 0.1 μg pIHNw-G had detectable neutralizing antibody (NAb) and they were completely protected from lethal IHNV challenge with a relative percent survival (RPS) of 100% compared to control fish. Viral challenges at 6, 13, 24, and 25 months post-vaccination showed protection with RPS values of 47–69%, while NAb seroprevalence declined to undetectable levels. Passive transfer experiments with sera from fish after two years post-vaccination were inconsistent but significant protection was observed in some cases. The long-term duration of protection observed here defined a third temporal phase in the immune response to IHNV DNA vaccination, characterized by reduced but significant levels of protection, and decline or absence of detectable NAb titers. Examination of multiple tissues showed an absence of detectable long-term histopathological damage due to DNA vaccination.

  13. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    PubMed

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. © 2015 American Heart Association, Inc.

  14. Tuberculosis vaccine development: recent progress.

    PubMed

    Orme, I M; McMurray, D N; Belisle, J T

    2001-03-01

    Recent years have seen a renewed effort to develop new vaccines against tuberculosis. As a result, several promising avenues of research have developed, including the production of recombinant vaccines, auxotrophic vaccines, DNA vaccines and subunit vaccines. In this article we briefly review this work, as well as consider the pros and cons of the animal models needed to test these new vaccines. Screening to date has been carried out in mouse and guinea pig models, which have been used to obtain basic information such as the effect of the vaccine on bacterial load, and whether the vaccine can prevent or reduce lung pathology. The results to date lead us to be optimistic that new candidate vaccines could soon be considered for evaluation in clinical trials.

  15. pcDNA-IL-12 vaccination blocks eosinophilic inflammation but not airway hyperresponsiveness following murine Toxocara canis infection.

    PubMed

    Malheiro, Adriana; Aníbal, Fernanda F; Martins-Filho, Olindo Assis; Teixeira-Carvalho, Andréa; Perini, Adenir; Martins, Milton A; Medeiros, Alexandra I; Turato, Walter M; Acencio, Milene P M; Brandão, Izaíra T; Nomizo, Auro; Silva, Célio L; Faccioli, Lúcia H

    2008-01-17

    We have investigated the effect of pcDNA3-CpG and pcDNA-IL-12, delivered by intradermal gene gun administration, on the blood/lung eosinophilia, airway hyperresponsiveness as well as the immune response in a murine model of toxocariasis. Our results demonstrated that pcDNA-IL-12 but not pcDNA3-CpG vaccination led to a persistent lower blood/bronchoalveolar eosinophilia following Toxocara canis infection, as pcDNA3-CpG led only to an early transient blockage of eosinophil transmigration into bronchoalveolar fluid following T. canis infection. Prominent Type-1 immune response was pointed out as the hallmark of T. canis infection following pcDNA-IL-12 vaccination. Outstanding IFN-gamma/IL-4 ratio besides low levels of IgG1 with subsequent high IgG2a/IgG1 ratio further characterized a Type-1 polarized immunological profile in pcDNA-IL-12-vaccinated animals. Nevertheless, only pcDNA3-CpG was able to prevent airway hyperresponsiveness induced by T. canis infection. The persistent airway hyperresponsiveness observed in pcDNA-IL-12-vaccinated animals demonstrated that the airway constriction involved other immunological mediator than those blocked by pcDNA-IL-12. Together, these data indicated that pcDNA-IL-12 and pcDNA3-CpG vaccines have distinct therapeutic benefits regarding the eosinophilic inflammation/airway hyperresponsiveness triggered by T. canis infection, suggesting their possible use in further combined therapeutic interventions.

  16. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    PubMed

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    PubMed

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  18. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Min; Guangxi Center for Animal Disease Control and Prevention, Nanning 530001; College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AALmore » and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.« less

  19. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization.

    PubMed

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8+ T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8+ T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  20. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles.

    PubMed

    Ali, Ahlam A; McCrudden, Cian M; McCaffrey, Joanne; McBride, John W; Cole, Grace; Dunne, Nicholas J; Robson, Tracy; Kissenpfennig, Adrien; Donnelly, Ryan F; McCarthy, Helen O

    2017-04-01

    HPV subtypes (16, 18) are associated with the development of cervical cancer, with oncoproteins E6 and E7 responsible for pathogenesis. The goal of this study was to evaluate our 'smart system' technology platform for DNA vaccination against cervical cancer. The vaccination platform brings together two main components; a peptide RALA which condenses DNA into cationic nanoparticles (NPs), and a polymeric polyvinylpyrrolidone (PVP) microneedle (MN) patch for cutaneous delivery of the loaded NPs. RALA condensed E6/E7 DNA into NPs not exceeding 100nm in diameter, and afforded the DNA protection from degradation in PVP. Sera from mice vaccinated with MN/RALA-E6/E7 were richer in E6/E7-specific IgGs, displayed a greater T-cell-mediated TC-1 cytotoxicity and contained more IFN-γ than sera from mice that received NPs intramuscularly. More importantly, MN/RALA-E6/E7 delayed TC-1 tumor initiation in a prophylactic model, and slowed tumor growth in a therapeutic model of vaccination, and was more potent than intramuscular vaccination. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A novel "in-feed" delivery platform applied for oral DNA vaccination against IPNV enables high protection in Atlantic salmon (Salmon salar).

    PubMed

    Reyes, Miguel; Ramírez, Cesar; Ñancucheo, Ivan; Villegas, Ricardo; Schaffeld, Guillermo; Kriman, Luis; Gonzalez, Javier; Oyarzun, Patricio

    2017-01-23

    DNA vaccination has emerged as a promising tool against infectious diseases of farmed fish. Oral delivery allows stress-free administration that is ideal for mass immunization and of paramount importance for infectious pancreatic necrosis (IPN) and other viral disease that affect young salmonids and cause economic losses in aquaculture worldwide. We describe the development and in vivo assessment of an "in-feed" formulation strategy for oral immunization with liposomal DNA vaccines, by delivering a vaccine construct coding for an immunogenic region of the VP2 capsid protein. A challenge against IPNV was carried out to determine the vaccine efficacy, by comparing the mortality of pre-smolt Atlantic salmons immunized and non-immunized with the oral vaccine. The antibody response (ELISA) and hematological parameters after immunization were examined, as well as the vaccine effect on the growth and internal structures of fry salmons (histological analysis). The vaccine distribution in the experimental tank after oral administration was investigated by HPLC and PCR amplification. The oral vaccine induced detectable levels of VP2-specific antibodies and conferred significant protection following IPNV challenge, with relative percent survivals (RPS) of 58.2%, for single dose (1mg pDNA /kg fish ⋅d), and 66% for double dose (2mg pDNA /kg fish ⋅d). We further provide evidence in favour of the vaccine safety to fish and demonstrated absence of pDNA in the tank water, but presence of vaccine residues in faeces and unconsumed feed sediments (solid wastes). The delivery platform for liposomal DNA vaccination via feed was successfully proved against IPNV in Atlantic salmon, showing the oral vaccine to be immunogenic and safe for fish, and providing significant protection after oral administration. The "in-feed" technology for oral DNA vaccination holds potential to be applied against IPNV and other pathogens that currently threaten the aquaculture worldwide. Copyright © 2016

  2. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses.

  3. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges.

    PubMed

    Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2015-01-01

    Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.

  4. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    PubMed Central

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline; Karlsson, Ingrid; Krog, Jesper S; Williams, James A; Fomsgaard, Anders

    2015-01-01

    The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations, was compared with intradermal needle injection followed by electroporation. We report that when our DNA vaccine is expressed by the new vectors and delivered to the skin with the needle-free device in the rabbit model, it can elicit an antibody response with the same titers as a conventional vector with intradermal electroporation. The needle-free delivery is already in use for traditional protein vaccines in pigs but should be considered as a practical alternative for the mass administration of broadly protective influenza DNA vaccines. PMID:25746201

  5. Introduction of translation stop codons into the viral glycoprotein gene in a fish DNA vaccine eliminates induction of protective immunity

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Kurath, G.

    2006-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was mutated to introduce two stop codons to prevent glycoprotein translation while maintaining the plasmid DNA integrity and RNA transcription ability. The mutated plasmid vaccine, denoted pIHNw-G2stop, when injected intramuscularly into fish at high doses, lacked detectable glycoprotein expression in the injection site muscle, and did not provide protection against lethal virus challenge 7 days post-vaccination. These results suggest that the G-protein itself is required to stimulate the early protective antiviral response observed after vaccination with the nonmutated parental DNA vaccine. ?? Springer Science+Business Media, Inc. 2006.

  6. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs.

    PubMed

    Touihri, Leila; Ahmed, Sami Belhaj; Chtourou, Yacine; Daoud, Rahma; Bahloul, Chokri

    2012-12-27

    During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an "Internal Ribosome Entry Site" (IRES) domain. The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient in the design of multivalent

  7. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial.

    PubMed

    Smith, Larry R; Wloch, Mary K; Chaplin, Jennifer A; Gerber, Michele; Rolland, Alain P

    2013-09-25

    2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV) DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB) and phosphoprotein 65 (pp65) formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK) delivery system designed to enhance plasmid expression. The vaccine's planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV⁺) recipients of an allogeneic hematopoietic stem cell transplant (HCT). A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV⁺ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  8. Advances in hepatitis C virus vaccines, part two: advances in hepatitis C virus vaccine formulations and modalities.

    PubMed

    Roohvand, Farzin; Kossari, Niloufar

    2012-04-01

    Developing a vaccine against HCV is an important medical and global priority. Unavailability and potential dangers associated with using attenuated HCV viral particles for vaccine preparation have resulted in the use of HCV genes and proteins formulated in novel vaccine modalities. In part one of this review, advances in basic knowledge for HCV vaccine design were provided. Herein, a detailed and correlated patents (searched by Espacenet) and literatures (searched by Pubmed) review on HCV vaccine formulations and modalities is provided, including: subunit, DNA, epitopic-peptide/polytopic, live vector- and whole yeast-based vaccines. Less-touched areas in vaccine studies such as mucosal, plant-based, and chimeric HBV/HCV vaccines are also discussed. Furthermore, results of preclinical/clinical studies on selected HCV vaccines as well as pros and cons of different strategies are reviewed. Finally, potential strategies for creation and/or improvement of HCV vaccine formulations are discussed. Promising outcomes of a few HCV vaccine modalities in phase I/II clinical trials predict the accessibility of at least partially effective vaccines to inhibit or treat the chronic state of HCV infection (specially in combination with standard antiviral therapy). ChronVac-C (plasmid DNA), TG4040 (MVA-based), and GI-5005 (whole yeast-based) might be the most obvious HCV vaccine candidates to be approved in the near future.

  9. A Phase-1 Clinical Trial of a DNA Vaccine for Venezuelan Equine Encephalitis Delivered by Intramuscular or Intradermal Electroporation

    DTIC Science & Technology

    2016-05-25

    A Phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation Drew... vaccines against VEEV available in the United States. We developed a candidate DNA vaccine expressing the E3-E2-6K-E1 genes of VEEV (pWRG/VEEV) and...groups and were vaccinated with high and low doses of pWRG/VEE or a saline placebo by intramuscular (IM) or intradermal (ID) electroporation (EP

  10. Improvement of the Immunogenicity of Porcine Circovirus Type 2 DNA Vaccine by Recombinant ORF2 Gene and CpG Motifs.

    PubMed

    Li, Jun; Shi, Jian-Li; Wu, Xiao-Yan; Fu, Fang; Yu, Jiang; Yuan, Xiao-Yuan; Peng, Zhe; Cong, Xiao-Yan; Xu, Shao-Jian; Sun, Wen-Bo; Cheng, Kai-Hui; Du, Yi-Jun; Wu, Jia-Qiang; Wang, Jin-Bao; Huang, Bao-Hua

    2015-06-01

    Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity.

  11. Characterization of antibody responses to combinations of a dengue virus type 2 DNA vaccine and two dengue virus type 2 protein vaccines in rhesus macaques.

    PubMed

    Simmons, Monika; Porter, Kevin R; Hayes, Curtis G; Vaughn, David W; Putnak, Robert

    2006-10-01

    We evaluated three nonreplicating dengue virus type 2 (DENV-2) vaccines: (i) a DNA vaccine containing the prM-E gene region (D), (ii) a recombinant subunit protein vaccine containing the B domain (i.e., domain III) of the E protein as a fusion with the Escherichia coli maltose-binding protein (R), and (iii) a purified inactivated virus vaccine (P). Groups of four rhesus macaques each were primed once and boosted twice using seven different vaccination regimens. After primary vaccination, enzyme-linked immunosorbent assay (ELISA) antibody levels increased most rapidly for groups inoculated with the P and DP combination, and by 1 month after the second boost, ELISA titers were similar for all groups. The highest plaque reduction neutralization test (PRNT) titers were seen in those groups that received the DR/DR/DR combination (geometric mean titer [GMT], 510), the P/P/P vaccine (GMT, 345), the DP/DP/DP combination (GMT, 287), and the R/R/R vaccine (GMT, 200). The next highest titers were seen in animals that received the D/R/R vaccine (GMT, 186) and the D/P/P vaccine (GMT, 163). Animals that received the D/D/D vaccine had the lowest neutralizing antibody titer (GMT, 49). Both ELISA and PRNT titers declined at variable rates. The only significant protection from viremia was observed in the P-vaccinated animals (mean of 0.5 days), which also showed the highest antibody concentration, including antibodies to NS1, and highest antibody avidity at the time of challenge.

  12. Clinical development of Ebola vaccines

    PubMed Central

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  13. Evaluation of the persistence, integration, histopathology and environmental release of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2.

    PubMed

    Song, Xiaokai; Zhang, Zeyang; Liu, Chang; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui

    2016-10-15

    In a previous study, the construction of the Eimeria tenella DNA vaccine pVAX1.0-TA4-IL-2 which provides effective protection against coccidiosis was described and the immunization procedure was optimized. However, the persistence, integration, histopathology and environmental release of the DNA vaccine remain unknown. In this study, the persistence, integration and histopathology of the DNA vaccine pVAX1.0-TA4-IL-2 was evaluated in chickens in the following immunization studies: (1) single-dose immunization in one-day-old chickens; (2) repeat-dose immunization in chickens; and (3) single-high-dose immunization of three batches of plasmid in chickens. The persistence, integration, histopathology of the DNA vaccine was also evaluated in mice. At 1, 1.5, 2-4 months post immunization, blood, duodenum, heart, liver, spleen, kidneys and the immunized muscle tissue were collected from ten animals of each group. Persistence and integration were evaluated using PCR with a confirmed sensitivity of 30 plasmid copies. Hematoxylin and eosin stained sections were examined for the presence of inflammation or abnormalities that may result from vaccination. Water and fecal samples were also collected from the chicken enclosures to evaluate the potential for environmental release of the DNA vaccine. Testing various tissues by PCR confirmed that plasmid DNA persisted 1.5 months in blood, heart, liver and spleen, 2 months in kidneys and muscle of injected site. Furthermore, the vaccine did not integrate with the host genome. The histopathological examinations did not show obvious inflammation or pathological damage in any tissue of the immunized chickens. Similar results were observed in mice. Moreover, the DNA vaccine was not released into the surrounding environment. These results indicate that the DNA vaccine pVAX1.0-TA4-IL-2 has potential as safe vaccine against coccidiosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. MPT-51/CpG DNA vaccine protects mice against Mycobacterium tuberculosis.

    PubMed

    Silva, Bruna Daniella de Souza; da Silva, Ediane Batista; do Nascimento, Ivan Pereira; Dos Reis, Michelle Cristina Guerreiro; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2009-07-16

    Tuberculosis (TB) is a severe infectious disease that kills approximately two million people worldwide every year. Because BCG protection is variable and does not protects adults, there is a great need for a new vaccine against TB that does not represent a risk for immunocompromised patients and that is also capable of protecting adult individuals. MPT-51 is a protein found in the genome of mycobacteria and binds to the fibronectin of the extracellular matrix, which may have a role in host tissue attachment and virulence. In order to test the usefulness of MPT-51 as a subunit vaccine, BALB/c were vaccinated and challenged with Mycobacterium tuberculosis. The infection of BALB/c with M. tuberculosis increased the number of IFN-gamma(+) T lymphocytes specific to MPT-51 in the spleen and lungs. Inoculation with rMPT-51/FIA and with rMPT-51/CpG DNA in non-infected BALB/c increased the amounts of IFN-gamma(+) T lymphocytes. Inoculation with rMPT-51/FIA also induced a humoral response specific to MPT-51. CFU counts of lung tissues done 60 days after infection showed a reduction of about 2 log in the bacteria load in the group of animals inoculated with rMPT-51/CpG DNA. These results make MPT-51 a valuable component to be further evaluated in the development of other subunit vaccines.

  15. Experimental iron-inactivated Pasteurella multocida A: 1 vaccine adjuvanted with bacterial DNA is safe and protects chickens from fowl cholera.

    PubMed

    Herath, Chitra; Kumar, Pankaj; Singh, Mithilesh; Kumar, Devender; Ramakrishnan, Saravanan; Goswami, Tapas Kumar; Singh, Ajit; Ram, G C

    2010-03-08

    Fowl cholera is a serious problem in large and small scale poultry production. The present study describes the development and testing of an inactivated whole-cell, low-cost, safe, and effective vaccine for fowl cholera based on a previous work (Vaccine 23:5590-5598). Pasteurella multocida A: 1 grown in the presence of low FeCl(3) concentrations, inactivated with higher concentrations of FeCl(3), and adjuvanted with bacterial DNA from P. multocida B: 2 containing immunostimulatory CpG motifs protect chickens with a lethal P. multocida A: 1 challenge. Chickens were immunized with two whole-cell inactivated vaccine doses at 4 weeks apart and challenged 4 weeks after booster immunization. Experimental vaccines were pure, easy injectable, and caused very little distress in chickens due to their aqueous consistency. Vaccines and bacterial DNA (bDNA) posed no safety problems when chickens were injected subcutaneously (s.c.) with a single, double, and overdose of these preparations. Immunized chickens produced systemic IgY antibodies (Ab) responses and vaccine adjuvanted with bDNA protected 100% chickens from lethal intrapertoneal (i.p.) P. multocida A: 1 challenge. This work suggests that use of bDNA as an adjuvant can improve the cost-effectiveness of inactivated veterinary vaccines for their use in developing countries. Our future studies will focus on safety and potency evaluation of experimental and current vaccines using bDNA as an adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Therapeutic cancer vaccines

    PubMed Central

    Melief, Cornelis J.M.; van Hall, Thorbald; Arens, Ramon; Ossendorp, Ferry; van der Burg, Sjoerd H.

    2015-01-01

    The clinical benefit of therapeutic cancer vaccines has been established. Whereas regression of lesions was shown for premalignant lesions caused by HPV, clinical benefit in cancer patients was mostly noted as prolonged survival. Suboptimal vaccine design and an immunosuppressive cancer microenvironment are the root causes of the lack of cancer eradication. Effective cancer vaccines deliver concentrated antigen to both HLA class I and II molecules of DCs, promoting both CD4 and CD8 T cell responses. Optimal vaccine platforms include DNA and RNA vaccines and synthetic long peptides. Antigens of choice include mutant sequences, selected cancer testis antigens, and viral antigens. Drugs or physical treatments can mitigate the immunosuppressive cancer microenvironment and include chemotherapeutics, radiation, indoleamine 2,3-dioxygenase (IDO) inhibitors, inhibitors of T cell checkpoints, agonists of selected TNF receptor family members, and inhibitors of undesirable cytokines. The specificity of therapeutic vaccination combined with such immunomodulation offers an attractive avenue for the development of future cancer therapies. PMID:26214521

  17. DNA and virus particle vaccination protects against acquisition and confers control of viremia upon heterologous simian immunodeficiency virus challenge.

    PubMed

    Patel, Vainav; Jalah, Rashmi; Kulkarni, Viraj; Valentin, Antonio; Rosati, Margherita; Alicea, Candido; von Gegerfelt, Agneta; Huang, Wensheng; Guan, Yongjun; Keele, Brandon F; Bess, Julian W; Piatak, Michael; Lifson, Jeffrey D; Williams, William T; Shen, Xiaoying; Tomaras, Georgia D; Amara, Rama R; Robinson, Harriet L; Johnson, Welkin; Broderick, Kate E; Sardesai, Niranjan Y; Venzon, David J; Hirsch, Vanessa M; Felber, Barbara K; Pavlakis, George N

    2013-02-19

    We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4(+) effector memory, and postchallenge CD8(+) transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.

  18. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations.

    PubMed Central

    Fynan, E F; Webster, R G; Fuller, D H; Haynes, J R; Santoro, J C; Robinson, H L

    1993-01-01

    Plasmid DNAs expressing influenza virus hemagglutinin glycoproteins have been tested for their ability to raise protective immunity against lethal influenza challenges of the same subtype. In trials using two inoculations of from 50 to 300 micrograms of purified DNA in saline, 67-95% of test mice and 25-63% of test chickens have been protected against a lethal influenza challenge. Parenteral routes of inoculation that achieved good protection included intramuscular and intravenous injections. Successful mucosal routes of vaccination included DNA drops administered to the nares or trachea. By far the most efficient DNA immunizations were achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis. In mice, 95% protection was achieved by two immunizations with beads loaded with as little as 0.4 micrograms of DNA. The breadth of routes supporting successful DNA immunizations, coupled with the very small amounts of DNA required for gene-gun immunizations, highlight the potential of this remarkably simple technique for the development of subunit vaccines. Images Fig. 1 PMID:8265577

  19. Conserved Elements Vaccine for HIV | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) developed a DNA vaccine using conserved elements of HIV-1 Gag, administered in a prime-boost vaccination protocol. Two of the HIV Gag CE DNA vectors have been tested in a rhesus macaque model. Priming with the Gag CE vaccine and boosting with full length Gag DNA showed increased immune responses when compared to vaccination with Gag alone. Researchers seek licensing and/or co-development research collaborations for development this DNA vaccine.

  20. Analysis of DNA-vaccinated fish reveals viral antigen in muscle, kidney, and thymus, and transient histopathologic changes

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Elliott, D.G.; Kurath, G.

    2005-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was used in a systematic study to analyze vaccine tissue distribution, persistence, expression patterns, and histopathologic effects. Vaccine plasmid pIHNw-G, containing the gene for the viral glycoprotein, was detected immediately after intramuscular injection in all tissues analyzed, including blood, but at later time points was found primarily in muscle tissue, where it persisted to 90 days. Glycoprotein expression was detected in muscle, kidney, and thymus tissues, with levels peaking at 14 days and becoming undetectable by 28 days. Histologic examination revealed no vaccine-specific pathologic changes at the standard effective dose of 0.1 ??g DNA per fish, but at a high dose of 50 ??g an increased inflammatory response was evident. Transient damage associated with needle injection was localized in muscle tissue, but by 90 days after vaccination no damage was detected in any tissue, indicating the vaccine to be safe and well tolerated. ?? Springer Science+Business Media, Inc. 2005.

  1. Protective efficacy of a Mycoplasma pneumoniae P1C DNA vaccine fused with the B subunit of Escherichia coli heat-labile enterotoxin.

    PubMed

    Zhu, Cuiming; Wang, Shiping; Hu, Shihai; Yu, Minjun; Zeng, Yanhua; You, Xiaoxing; Xiao, Jinhong; Wu, Yimou

    2012-06-01

    In the present study, we investigated the immunomodulatory responses of a DNA vaccine constructed by fusing Mycoplasma pneumoniae P1 protein carboxy terminal region (P1C) with the Escherichia coli heat-labile toxin B subunit (LTB). BALB/c mice were immunized by intranasal inoculation with control DNAs, the P1C DNA vaccine or the LTB-P1C fusion DNA vaccine. Levels of the anti-M. pneumoniae antibodies and levels of interferon-γ and IL-4 in mice were increased significantly upon inoculation of the LTB-P1C fusion DNA vaccine when compared with the inoculation with P1C DNA vaccine. The LTB-P1C fusion DNA vaccine efficiently enhanced the M. pneumoniae-specific IgA and IgG levels. The IgG2a/IgG1 ratio was significantly higher in bronchoalveolar lavages fluid and sera from mice fusion with LTB and P1C than mice receiving P1C alone. When the mice were challenged intranasally with 10(7) CFU M. pneumoniae strain (M129), the LTB-P1C fusion DNA vaccine conferred significantly better protection than P1C DNA vaccine (P < 0.05), as suggested by the results, such as less inflammation, lower histopathological score values, lower detectable number of M. pneumoniae strain, and lower mortality of challenging from 5 × 10(8) CFU M. pneumoniae. These results indicated that the LTB-P1C fusion DNA vaccine efficiently improved protective efficacy against M. pneumoniae infection and effectively attenuated development of M. pneumoniae in mice.

  2. Alum adjuvanted rabies DNA vaccine confers 80% protection against lethal 50 LD50 rabies challenge virus standard strain.

    PubMed

    Garg, Rajni; Kaur, Manpreet; Saxena, Ankur; Prasad, Rajendra; Bhatnagar, Rakesh

    2017-05-01

    Rabies is a serious concern world-wide. Despite availability of rabies vaccines for long; their efficacy, safety, availability and cost effectiveness has been a tremendous issue. This calls for improvement of rabies vaccination strategies. DNA vaccination has immense potential in this regard. The DNA vaccine pgp.LAMP-1 conferred 60% protection to BALB/c mice against 20 LD 50 rabies challenge virus standard (CVS) strain challenge. Upon supplementation with Emulsigen-D, the vaccine formulation conferred complete protection against lethal challenge. To assess the feasibility of this vaccine formulation for human use, it was tested along with other FDA approved adjuvants, namely, Alum, Immuvac, Montanide ISA720 VG. Enhanced immune response correlated with high IgG antibody titer, Th2 biased response with a high level of rabies virus neutralizing antibodies (RVNAs) and IgG1/IgG2a ratio >1, observed upon alum supplementation of the rabies DNA vaccine. The total IgG antibody titer was 2IU/ml and total RVNA titer was observed to be 4IU/ml which is eight times higher than the minimum protective titer recommended by WHO. Furthermore, it conferred 80% protection against challenge with 50 LD 50 of the rabies CVS strain, conducted in compliance with the potency test for rabies recommended by the National Institutes of Health (NIH), USA. Previously, we have established pre-clinical safety of this vaccine as per the guidelines of Schedule Y, FDA as well as The European Agency for evaluation of Medicinal Products. The vaccine showed no observable toxicity at the site of injection as well as at systemic level in Wistar rats when administered with 10X recommended dose. Therefore, supplementation of rabies DNA vaccine, pgp.LAMP-1 with alum would lead to development of a non-toxic, efficacious, stable and affordable vaccine that can be used to combat high numbers of fatal rabies infections tormenting developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp; Hijioka, Kuniaki

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV,more » with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.« less

  4. For t 2 DNA vaccine prevents Forcipomyia taiwana (biting midge) allergy in a mouse model.

    PubMed

    Lee, M-F; Song, P-P; Lin, T-M; Chiu, Y-T; Chen, Y-H

    2016-04-01

    Forcipomyia taiwana (biting midge) is the most prevalent allergenic biting insect in Taiwan, and 60% of the exposed subjects develop allergic reactions. Subjects with insect allergy frequently limit their outdoor activities to avoid the annoyingly intense itchy allergic reactions, leading to significant worsening of their quality of life. Allergen-specific immunotherapy is the only known therapy that provides long-term host immune tolerance to the allergen, but is time-consuming and cumbersome. This study tested whether the For t 2 DNA vaccine can prevent allergic symptoms in For t 2-sensitized mice. Two consecutive shots of For t 2 DNA vaccine were given to mice with a 7-day interval before sensitization with recombinant For t 2 proteins, using the two-step sensitization protocol reported previously. The For t 2 DNA vaccine at 50 μg prevented the production of For t 2-specific IgE (P < 0.05), as well as midge allergen-challenge-induced scratch bouts, midge allergen-induced IL-13 and IL-4 production from splenocytes, and inflammatory cell infiltrations in the lesions 48 h after intradermal challenge. This study is the first to demonstrate that DNA vaccine encoding midge allergen is effective in preventing allergic skin inflammation induced by biting midge. Immunotherapy using For t 2 DNA vaccine can protect mice from being sensitized by midge allergen and may be a promising treatment for biting midge allergy in the future. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The mechanisms of Ag85A DNA vaccine activates RNA sensors through new signal transduction.

    PubMed

    Zhai, Jingbo; Wang, Qiubo; Gao, Yunfeng; Zhang, Ran; Li, Shengjun; Wei, Bing; You, Yong; Sun, Xun; Lu, Changlong

    2018-06-01

    Low immunogenicity is one of the major problems limiting the clinical use for DNA vaccines, which makes it impossible to obtain a strong protective immune response after vaccination. In order to explore whether Ag85A DNA vaccine could mount more efficiently protective immune response through new RNA sensor and its signal transduction pathway of antigen presentation we designed and synthesized Ag85A gene fragment containing multiple points mutations and transfected the gene fragment into the dendritic cell line (DC2.4) by CRISPR/Cas9. Subsequently, we focused on the changes of RNA sensors RIG-I, Mda-5, and the downstream adaptors MAVS, IRF3, IRF7 and IFN-β. The results indicated the significant increases in the mRNA and protein expression of RNA sensors RIG-I, Mda-5 and related adaptors MAVS, IRF3, IRF7, and IFN-β in the mutant DC 2.4 cells. The flow cytometry results demonstrated that the expression of MHC II on the surface of DC 2.4 significantly increased when compared with that in control. Therefore, it is suggested that Ag85A mutant DNA could release immunogenic message through RNA sensors and related adaptors via non protein pathway. There is at least one RNA signal transduction pathway of Ag85A DNA in DC2.4 cell. The work provides a new mode of action for nucleic acid vaccine to improve immunogenicity and meaningful data for the better understanding of the mechanisms of DNA vaccine. Copyright © 2017. Published by Elsevier B.V.

  6. [Selected problems of manufacturing influenza vaccines].

    PubMed

    Augustynowicz, Ewa

    2010-01-01

    In the study chosen issues of manufacturing influenza vaccines running to increase effectiveness were performed. New concepts into development of process of safety and efficacy influenza vaccines are connected with use a new adjuvants, use of alternative routes of administration of vaccine, new structural virus subunits including DNA, new way of virus culture and use of live, attenuated vaccines.

  7. Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation

    PubMed Central

    Cole, Grace; McCaffrey, Joanne; Ali, Ahlam A.; McBride, John W.; McCrudden, Cian M.; Vincente-Perez, Eva M.; Donnelly, Ryan F.; McCarthy, Helen O.

    2017-01-01

    ABSTRACT DNA vaccination holds the potential to treat or prevent nearly any immunogenic disease, including cancer. To date, these vaccines have demonstrated limited immunogenicity in vivo due to the absence of a suitable delivery system which can protect DNA from degradation and improve transfection efficiencies in vivo. Recently, microneedles have been described as a novel physical delivery technology to enhance DNA vaccine immunogenicity. Of these devices, dissolvable microneedles promise a safe, pain-free delivery system which may simultaneously improve DNA stability within a solid matrix and increase DNA delivery compared to solid arrays. However, to date little work has directly compared the suitability of different dissolvable matrices for formulation of DNA-loaded microneedles. Therefore, the current study examined the ability of 4 polymers to formulate mechanically robust, functional DNA loaded dissolvable microneedles. Additionally, complexation of DNA to a cationic delivery peptide, RALA, prior to incorporation into the dissolvable matrix was explored as a means to improve transfection efficacies following release from the polymer matrix. Our data demonstrates that DNA is degraded following incorporation into PVP, but not PVA matrices. The complexation of DNA to RALA prior to incorporation into polymers resulted in higher recovery from dissolvable matrices, and increased transfection efficiencies in vitro. Additionally, RALA/DNA nanoparticles released from dissolvable PVA matrices demonstrated up to 10-fold higher transfection efficiencies than the corresponding complexes released from PVP matrices, indicating that PVA is a superior polymer for this microneedle application. PMID:27846370

  8. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs.

    PubMed

    Cashman, Kathleen A; Wilkinson, Eric R; Wollen, Suzanne E; Shamblin, Joshua D; Zelko, Justine M; Bearss, Jeremy J; Zeng, Xiankun; Broderick, Kate E; Schmaljohn, Connie S

    2017-12-02

    We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment.

  9. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs

    PubMed Central

    Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.

    2017-01-01

    ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337

  10. HIV vaccines: new frontiers in vaccine development.

    PubMed

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  11. Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines.

    PubMed

    Song, Xiaokai; Ren, Zhe; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-06-04

    Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Virus vaccines: principles and prospects.

    PubMed Central

    Melnick, J. L.

    1989-01-01

    The present status of vaccination for controlling viral diseases is reviewed, and the needs and directions for future investigations are discussed. A survey of viral vaccines now in use has shown that knowledge about the viral agents and about the hosts' responses to infection was essential for their development. The steps needed to demonstrate the efficacy and safety of a viral vaccine are summarized; the final requirement for a successful vaccine is that it be administered in proper dosage and potency to the target populations. After general remarks on the proper use of current vaccines there follows an overview of various developments in creating new vaccines, along with the predicted time-frames for their coming into general use. Topics considered include vaccines to be administered locally at the portal of entry, subunit vaccines, viruses attenuated by genetic manipulation, use of viral vectors, vaccines developed by means of recombinant DNA, synthetic peptides, and anti-idiotype vaccines, as well as new vaccines being developed by more conventional methods. PMID:2663217

  13. Universal influenza vaccines: Shifting to better vaccines.

    PubMed

    Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J

    2016-06-03

    Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  14. DNA vaccine-generated duck polyclonal antibodies as a postexposure prophylactic to prevent hantavirus pulmonary syndrome (HPS).

    PubMed

    Brocato, Rebecca; Josleyn, Matthew; Ballantyne, John; Vial, Pablo; Hooper, Jay W

    2012-01-01

    Andes virus (ANDV) is the predominant cause of hantavirus pulmonary syndrome (HPS) in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35-40%). Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP) from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos). The natural "despeciation" of the duck IgY (i.e., Fc removed) results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥ 5,000 neutralizing antibody units (NAU)/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT). Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This is the

  15. Cost-Effectiveness of Cervical Cancer Screening With Human Papillomavirus DNA Testing and HPV-16,18 Vaccination

    PubMed Central

    Goldhaber-Fiebert, Jeremy D.; Stout, Natasha K.; Salomon, Joshua A.; Kuntz, Karen M.; Goldie, Sue J.

    2011-01-01

    Background The availability of human papillomavirus (HPV) DNA testing and vaccination against HPV types 16 and 18 (HPV-16,18) motivates questions about the cost-effectiveness of cervical cancer prevention in the United States for unvaccinated older women and for girls eligible for vaccination. Methods An empirically calibrated model was used to assess the quality-adjusted life years (QALYs), lifetime costs, and incremental cost-effectiveness ratios (2004 US dollars per QALY) of screening, vaccination of preadolescent girls, and vaccination combined with screening. Screening varied by initiation age (18, 21, or 25 years), interval (every 1, 2, 3, or 5 years), and test (HPV DNA testing of cervical specimens or cytologic evaluation of cervical cells with a Pap test). Testing strategies included: 1) cytology followed by HPV DNA testing for equivocal cytologic results (cytology with HPV test triage); 2) HPV DNA testing followed by cytology for positive HPV DNA results (HPV test with cytology triage); and 3) combined HPV DNA testing and cytology. Strategies were permitted to switch once at age 25, 30, or 35 years. Results For unvaccinated women, triennial cytology with HPV test triage, beginning by age 21 years and switching to HPV testing with cytology triage at age 30 years, cost $78 000 per QALY compared with the next best strategy. For girls vaccinated before age 12 years, this same strategy, beginning at age 25 years and switching at age 35 years, cost $41 000 per QALY with screening every 5 years and $188 000 per QALY screening triennially, each compared with the next best strategy. These strategies were more effective and cost-effective than screening women of all ages with cytology alone or cytology with HPV triage annually or biennially. Conclusions For both vaccinated and unvaccinated women, age-based screening by use of HPV DNA testing as a triage test for equivocal results in younger women and as a primary screening test in older women is expected to be more

  16. Tolerogenic β2-glycoprotein I DNA vaccine and FK506 as an adjuvant attenuates experimental obstetric antiphospholipid syndrome.

    PubMed

    Chao, Ya-Hsuan; Chen, Der-Yuan; Lan, Joung-Liang; Tang, Kuo-Tung; Lin, Chi-Chien

    2018-01-01

    DNA vaccines have recently emerged as a therapeutic agent for treating autoimmune diseases, such as multiple sclerosis. Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by β2-glycoprotein I (β2-GPI)-targeting antiphospholipid antibodies (APAs) and vascular thrombosis or obstetrical complications. To examine the therapeutic potential of a β2-GPI DNA vaccine, we administered a vaccine mixed with FK506 as an adjuvant to a mouse model of obstetric APS. First, the pCMV3-β2-GPI DNA vaccine, which encodes the full-length human β2-GPI gene, was constructed. Then, we administered the β2-GPI DNA vaccine in 0.1 ml of saline, mixed with or without 100 μg of FK506, intramuscularly to the mice on days 28, 35 and 42. Blood titers of the anti-β2-GPI antibody, platelet counts, activated partial thromboplastin times (aPTTs), and the percentage of fetal loss were measured. We also stimulated murine splenic T cells ex vivo with β2-GPI and determined the T helper cell proportion and cytokine secretion. The administration of the β2-GPI DNA vaccine mixed with FK506 reduced the blood IgG anti-β2-GPI antibody titers and suppressed APS manifestations in mice. The combination also suppressed interferon-γ and interleukin (IL)-17A secretion but increased the Treg cell proportion and IL-10 secretion in murine splenic T cells following ex vivo stimulation with β2-GPI. Our results demonstrated the therapeutic efficacy of a β2-GPI DNA vaccine and FK506 as an adjuvant in a murine model of obstetric APS. Possible mechanisms include the inhibition of Th1 and Th17 responses and the up-regulation of Treg cells.

  17. Tolerogenic β2-glycoprotein I DNA vaccine and FK506 as an adjuvant attenuates experimental obstetric antiphospholipid syndrome

    PubMed Central

    Chen, Der-Yuan; Lan, Joung-Liang; Tang, Kuo-Tung; Lin, Chi-Chien

    2018-01-01

    DNA vaccines have recently emerged as a therapeutic agent for treating autoimmune diseases, such as multiple sclerosis. Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by β2-glycoprotein I (β2-GPI)-targeting antiphospholipid antibodies (APAs) and vascular thrombosis or obstetrical complications. To examine the therapeutic potential of a β2-GPI DNA vaccine, we administered a vaccine mixed with FK506 as an adjuvant to a mouse model of obstetric APS. First, the pCMV3-β2-GPI DNA vaccine, which encodes the full-length human β2-GPI gene, was constructed. Then, we administered the β2-GPI DNA vaccine in 0.1 ml of saline, mixed with or without 100 μg of FK506, intramuscularly to the mice on days 28, 35 and 42. Blood titers of the anti-β2-GPI antibody, platelet counts, activated partial thromboplastin times (aPTTs), and the percentage of fetal loss were measured. We also stimulated murine splenic T cells ex vivo with β2-GPI and determined the T helper cell proportion and cytokine secretion. The administration of the β2-GPI DNA vaccine mixed with FK506 reduced the blood IgG anti-β2-GPI antibody titers and suppressed APS manifestations in mice. The combination also suppressed interferon-γ and interleukin (IL)-17A secretion but increased the Treg cell proportion and IL-10 secretion in murine splenic T cells following ex vivo stimulation with β2-GPI. Our results demonstrated the therapeutic efficacy of a β2-GPI DNA vaccine and FK506 as an adjuvant in a murine model of obstetric APS. Possible mechanisms include the inhibition of Th1 and Th17 responses and the up-regulation of Treg cells. PMID:29894515

  18. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin

    PubMed Central

    Schultheis, Katherine; Schaefer, Hubert; Yung, Bryan S.; Oh, Janet; Muthumani, Karuppiah; Humeau, Laurent; Broderick, Kate E.

    2016-01-01

    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site. PMID:27894716

  19. DNA plasmid vaccine carrying Chlamydia trachomatis (Ct) major outer membrane and human papillomavirus 16L2 proteins for anti-Ct infection.

    PubMed

    Wang, Ledan; Cai, Yiqi; Xiong, Yirong; Du, Wangqi; Cen, Danwei; Zhang, Chanqiong; Song, Yiling; Zhu, Shanli; Xue, Xiangyang; Zhang, Lifang

    2017-05-16

    Chlamydia trachomatis (Ct) is one of the most frequently encountered sexual infection all over the world, yielding tremendous reproductive problems (e.g. infertility and ectopic pregnancy) in the women. This work described the design of a plasmid vaccine that protect mice from Ct infection, and reduce productive tract damage by generating effective antibody and cytotoxic T cell immunity. The vaccine, s was composed of MOMP multi-epitope and HPV16L2 genes carried in pcDNA plasmid (i.e. pcDNA3.1/MOMP/HPV16L). In transfection, the vaccine expressed the chimeric genes (i.e. MOMP and HPV16L2), as demonstrated via western blot, RT-PCR and fluorescence imaging. In vitro, the vaccine transfected COS-7 cells and expressed the proteins corresponding to the genes carried in the vaccine. Through intramuscular immunization in BALB/c mice, the vaccine induced higher levels of anti-Ct IgG titer, anti-HPV16L2 IgG titer in serum and IgA titer in local mucosal secretions, compared to plasmid vaccines that carry only Ct MOMP multi-epitope or HPV16L2 chimeric component only. In mice intravaginally challenged with Ct, the vaccines pcDNA3.1/MOMP/HPV16L2 generated a higher level of genital protection compared to other vaccine formulations. Additionally, histochemical staining indicated that pcDNA3.1/MOMP/HPV16L2 eliminated mouse genital tract tissue pathologies induced by Ct infection. This work demonstrated that pcDNA/MOMP/HPV16L2 vaccine can protect against Ct infection by regulating antibody production, cytotoxic T cell killing functions and reducing pathological damage in mice genital tract. This work can potentially offer us a new vaccine platform against Ct infection.

  20. Tomorrow's vector vaccines for small ruminants.

    PubMed

    Kyriakis, C S

    2015-12-14

    Inactivated and attenuated vaccines have contributed to the control or even the eradication of significant animal pathogens. However, these traditional vaccine technologies have limitations and disadvantages. Inactivated vaccines lack efficacy against certain pathogens, while attenuated vaccines are not always as safe. New technology vaccines, namely DNA and recombinant viral vector vaccines, are being developed and tested against pathogens of small ruminants. These vaccines induce both humoral and cellular immune responses, are safe to manufacture and use and can be utilized in strategies for differentiation of infected from vaccinated animals. Although there are more strict regulatory requirements for the safety standards of these vaccines, once a vaccine platform is evaluated and established, effective vaccines can be rapidly produced and deployed in the field to prevent spread of emerging pathogens. The present article offers an introduction to these next generation technologies and examples of vaccines that have been tested against important diseases of sheep and goats. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    PubMed Central

    Li, Yi-Ping; Kang, Hye Na; Babiuk, Lorne A; Liu, Qiang

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays. RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations. PMID:17131474

  2. European Union vaccine research--an overview.

    PubMed

    Sautter, Jürgen; Olesen, Ole F; Bray, Jeremy; Draghia-Akli, Ruxandra

    2011-09-09

    Recent developments in vaccine research provide new momentum for an important area in health innovation. Particularly interesting are novel DNA vaccine approaches, many of which are already under clinical investigation. The Framework Programmes of the European Union play an important role in supporting collaborative efforts in vaccine research to develop new and better vaccines and bring them to the market. With a timely strategic reorientation towards a sustainable investment in innovation, the current seventh Framework Programme will help to bring large industry and small and medium-sized enterprises (SME) on board and foster partnership between stakeholders. As the first human DNA vaccines progresses through the development pipeline, more and more questions revolve around licensing and regulation and appropriate guidelines are being developed. Copyright © 2011. Published by Elsevier Ltd.

  3. Current status of flavivirus vaccines.

    PubMed

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  4. The Evolution of Poxvirus Vaccines

    PubMed Central

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-01-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483

  5. The evolution of poxvirus vaccines.

    PubMed

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-04-07

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.

  6. VP2 (PTA motif) encoding DNA vaccine confers protection against lethal challenge with infectious pancreatic necrosis virus (IPNV) in trout.

    PubMed

    Ahmadivand, Sohrab; Soltani, Mehdi; Behdani, Mahdi; Evensen, Øystein; Alirahimi, Ehsan; Soltani, Elahe; Hassanzadeh, Reza; Ashrafi-Helan, Javad

    2018-02-01

    IPNV in Atlantic salmon is represented by various strains with different virulence and immunogenicity linked to various motifs of the VP2 capsid. IPNV variant with P 217 , T 221 , A 247 (PTA) motif is found to be avirulent in Atlantic salmon, but virulent in rainbow trout, and other salmonid species. This study describes a DNA vaccine delivered intramuscularly encoding the VP2 protein of infectious pancreatic necrosis virus (IPNV) with PTA motif that confers high protection in rainbow trout (Oncorhynchus mykiss). Intramuscular injection of 2, 5 and 10 μg of DNA (pcDNA3.1-VP2) in rainbow trout fry (4-5 g), confers relative protection of 75-83% in the different vaccine groups at 30 days post vaccination (450° days). The VP2 gene is expressed in spleen, kidney, muscle and liver at day 30 post-vaccination (RT-PCR), and IFN-1 and Mx-1 mRNA are upregulated at early time post vaccination, and so also for IgM, IgT, CD4 and CD8 in the head kidney of vaccinated fish compared to controls, 15 and 30 days post vaccination. Significant increase of serum anti-IPNV antibodies was found 30-90 days post-vaccination that was correlated with protection levels. Mortality corresponded with viral VP4 gene expression were significantly decreased in vaccinated and challenged fish. This shows for the first time that a VP2-encoding DNA vaccine delivered intramuscularly elicits a high level of protection alongside with high levels of circulating antibodies in rainbow trout and a lowered viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparison of the immune responses in BALB/c mice following immunization with DNA-based and live attenuated vaccines delivered via different routes.

    PubMed

    Cai, Ming-sheng; Deng, Shu-xuan; Li, Mei-li

    2013-02-18

    The objective of this study was to compare immune responses induced in BALB/c mice following immunization with pcDNA-GPV-VP2 DNA by gene gun bombardment (6 μg) or by intramuscular (im) injection (100 μg) with the responses to live attenuated vaccine by im injection (100 μl). pcDNA3.1 (+) and physiological saline were used as controls. Peripheral blood samples were collected at 3, 7, 14, 21, 28, 35, 49, 63, 77 and 105 d after immunization. T lymphocyte proliferation was analyzed by MTT assay and enumeration of CD4(+), and CD8(+) T cell populations in peripheral blood was performed by flow cytometric analysis. Indirect ELISA was used to detect IgG levels. Cellular and humoral responses were induced by pcDNA-GPV-VP2 DNA and live virus vaccines. No differences were observed in T cell proliferation and CD8(+) T cell responses induced by the genetic vaccine regardless of the route of delivery. However, CD4(+) T cell responses and humoral immunity were enhanced in following gene gun immunization compared with im injection of the genetic vaccine. Cellular and humoral immunity was enhanced in following gene gun delivery of the genetic vaccine compared with the live attenuated vaccine. In conclusion, the pcDNA-GPV-VP2 DNA vaccine induced enhanced cellular and humoral immunity compared with that induced by the live attenuated vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies.

    PubMed

    Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Kepler, Thomas B; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly E; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, M Juliana; Mascola, John R; Koup, Richard A; Corey, Lawrence; Nabel, Gary J; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S; Baden, Lindsey R; Tomaras, Georgia D; Haynes, Barton F

    2015-08-14

    An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. Copyright © 2015, American Association for the Advancement of Science.

  9. Smallpox DNA Vaccine Delivered by Novel Skin Electroporation Device Protects Mice Against Intranasal Poxvirus Challenge

    DTIC Science & Technology

    2006-11-27

    response being elicited by microneedle -mediated skin electroporation. 2006 Elsevier Ltd. All rights reserved. i o a p ( c o t t v H f r eywords...localized skin infection containing infectious virus (i.e., ock), the infection can spread to other sites on the body e.g., ocular autoinoculation) or to...plasmid DNA-coated microneedle arrays. Mice vaccinated with the 4pox DNA vaccine mounted robust antibody responses against the four immunogens-of-interest

  10. Replacing antibodies with modified DNA aptamers in vaccine potency assays.

    PubMed

    Trausch, Jeremiah J; Shank-Retzlaff, Mary; Verch, Thorsten

    2017-10-04

    Vaccine in vitro potency assays are vital regulatory tests that are used to confirm the presence and concentration of an antigen of interest in a form that directly or indirectly relates to protective activity in patients. Current assays come in many forms, but they almost exclusively use antibody reagents for selective detection of the target antigen. Antibodies provide specific recognition of vaccine antigens but also exhibit drawbacks such as stability limitations, cost, and lot-to-lot variation, which can make it challenging to maintain the reagent throughout the lifetime of the vaccine. We explored replacing antibodies with aptamers. Aptamers are macromolecules, such as nucleic acids, which can bind to their targets with high specificity and affinity, similar to that of antibodies. Some of the advantages of using aptamers over antibodies is that aptamers can be more stable, smaller, less expensive to produce, synthesized in vitro, and logistically easier to supply throughout the multi-decade lifespan of a commercial vaccine. We created modified DNA aptamers against the common vaccine carrier protein, CRM 197 . Several aptamers were discovered and one was chosen for further characterization. The binding kinetics of the aptamer revealed an off-rate 16-fold slower than anti-CRM 197 antibodies used for comparison. The aptamers were more sensitive than available antibodies in some assay formats and comparable in others. The aptamer epitope was mapped to the receptor-binding domain of CRM 197 , a site adjacent to a known antibody binding site. These data address some key aspects for a path forward in replacing antibodies with aptamers for use as critical reagents in vaccine assays. We further highlight the possibility of using nucleic acid reagents to develop next generation potency assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modulatory effects of mycobacterial heat-shock protein 70 in DNA vaccination against lymphoma.

    PubMed

    Liso, Arcangelo; Benedetti, Roberta; Fagioli, Marta; Mariano, Angela; Falini, Brunangelo

    2005-01-01

    Pathogen-derived molecules are danger signals and are able to activate innate immunity that in turn controls and regulates generation of adaptive immune responses. Mycobacterium tuberculosis heat shock protein 70 (myc HSP70) has been shown to exert a potent adjuvant effect in vaccination against both infectious agents and solid tumors. Here we explore the use of myc HSP70, as an adjuvant, in DNA vaccination against lymphoma. We describe the effects of vaccination using myc HSP70 encoding plasmid (pHSP70) co-injected with idiotype encoding plasmid (pId), in the 38C13 murine lymphoma model. We dissect mechanisms of anti-tumor immune response and compared efficacy with that of other DNA vaccination strategies. We show that myc HSP70 plasmid prolongs survival of immunized mice challenged with a high number (2000) of tumor cells. The magnitude of the anti-tumor effect is comparable to that obtained using granulocyte-macrophage colony-stimulating factor (GM-CSF) in the same setting. Moreover, HSP-induced protection is independent from the generation of IgG1 and IgG2a antibodies. Instead, anti-idiotype antibodies of IgG2b subclass develop after vaccination with pHSP as well as with pId and Id-GM-CSF fusion plasmid (pId-GM). Co-injection of HSP70 and Id plasmids induces a specific pattern of anti-idiotype immune response able to improve survival of immunized mice.

  12. DNA vaccine-derived human IgG produced in transchromosomal bovines protect in lethal models of hantavirus pulmonary syndrome.

    PubMed

    Hooper, Jay W; Brocato, Rebecca L; Kwilas, Steven A; Hammerbeck, Christopher D; Josleyn, Matthew D; Royals, Michael; Ballantyne, John; Wu, Hua; Jiao, Jin-an; Matsushita, Hiroaki; Sullivan, Eddie J

    2014-11-26

    Polyclonal immunoglobulin-based medical products have been used successfully to treat diseases caused by viruses for more than a century. We demonstrate the use of DNA vaccine technology and transchromosomal bovines (TcBs) to produce fully human polyclonal immunoglobulins (IgG) with potent antiviral neutralizing activity. Specifically, two hantavirus DNA vaccines [Andes virus (ANDV) DNA vaccine and Sin Nombre virus (SNV) DNA vaccine] were used to produce a candidate immunoglobulin product for the prevention and treatment of hantavirus pulmonary syndrome (HPS). A needle-free jet injection device was used to vaccinate TcB, and high-titer neutralizing antibodies (titers >1000) against both viruses were produced within 1 month. Plasma collected at day 10 after the fourth vaccination was used to produce purified α-HPS TcB human IgG. Treatment with 20,000 neutralizing antibody units (NAU)/kg starting 5 days after challenge with ANDV protected seven of eight animals, whereas zero of eight animals treated with the same dose of normal TcB human IgG survived. Likewise, treatment with 20,000 NAU/kg starting 5 days after challenge with SNV protected immunocompromised hamsters from lethal HPS, protecting five of eight animals. Our findings that the α-HPS TcB human IgG is capable of protecting in animal models of lethal HPS when administered after exposure provides proof of concept that this approach can be used to develop candidate next-generation polyclonal immunoglobulin-based medical products without the need for human donors, despeciation protocols, or inactivated/attenuated vaccine antigen. Copyright © 2014, American Association for the Advancement of Science.

  13. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines

    PubMed Central

    Kim, Shin-Hee; Samal, Siba K.

    2016-01-01

    Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578

  14. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.

    PubMed

    Kim, Shin-Hee; Samal, Siba K

    2016-07-04

    Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.

  15. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    PubMed

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microneedle-based vaccines

    PubMed Central

    Prausnitz, Mark R.; Mikszta, John A.; Cormier, Michel; Andrianov, Alexander K.

    2010-01-01

    The threat of pandemic influenza and other public health needs motivates development of better vaccine delivery systems. To address this need, microneedles have been developed as micron-scale needles fabricated using low-cost manufacturing methods that administer vaccine into the skin using a simple device that may be suitable for self-administration. Delivery using solid or hollow microneedles can be accomplished by (i) piercing the skin and then applying a vaccine formulation or patch onto the permeabilized skin, (ii) coating or encapsulating vaccine onto or within microneedles for rapid, or delayed, dissolution and release in the skin and (iii) injection into the skin using a modified syringe or pump. Extensive clinical experience with smallpox, TB and other vaccines has shown that vaccine delivery into the skin using conventional intradermal injection is generally safe and effective and often elicits the same immune responses at lower doses compared to intramuscular injection. Animal experiments using microneedles have shown similar benefits. Microneedles have been used to deliver whole, inactivated virus; trivalent split antigen vaccines; and DNA plasmid encoding the influenza hemagglutinin to rodents and found strong antibody responses. In addition, ChimeriVax™-JE against yellow fever was administered to non-human primates and generated protective levels of neutralizing antibodies more than seven times greater than subcutaneous delivery; DNA plasmid encoding hepatitis B surface antigen was administered to mice and generated antibody and T cell responses at least as strong as hypodermic injections; recombinant Protective Antigen of Baccilus anthracis was administered to rabbits and provided complete protection from lethal aerosol anthrax spore challenge at a lower dose than intramuscular injection; and DNA plasmid encoding four vaccinia virus genes administered to mice in combination with electroporation generated neutralizing antibodies that apparently

  17. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin.

    PubMed

    Schultheis, Katherine; Schaefer, Hubert; Yung, Bryan S; Oh, Janet; Muthumani, Karuppiah; Humeau, Laurent; Broderick, Kate E; Smith, Trevor R F

    2017-01-03

    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Peptide Vaccines for Leishmaniasis.

    PubMed

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  19. Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines

    PubMed Central

    Chin’ombe, Nyasha; Ruhanya, Vurayai

    2013-01-01

    HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity. These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice) and are yet to reach human trials. PMID:24478808

  20. Vaccine process technology.

    PubMed

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory

  1. Advances & challenges in leptospiral vaccine development.

    PubMed

    Bashiru, Garba; Bahaman, Abdul Rani

    2018-01-01

    Considerable progress has been made in the field of leptospiral vaccines development since its first use as a killed vaccine in guinea pigs. Despite the fact that the immunity conferred is restricted to serovars with closely related lipopolysaccharide antigen, certain vaccines have remained useful, especially in endemic regions, for the protection of high-risk individuals. Other conventional vaccines such as the live-attenuated vaccine and lipopolysaccharide (LPS) vaccine have not gained popularity due to the reactive response that follows their administration and the lack of understanding of the pathogenesis of leptospirosis. With the recent breakthrough and availability of complete genome sequences of Leptospira, development of novel vaccine including recombinant protein vaccine using reverse vaccinology approaches has yielded encouraging results. However, factors hindering the development of effective leptospiral vaccines include variation in serovar distribution from region to region, establishment of renal carrier status following vaccination and determination of the dose and endpoint titres acceptable as definitive indicators of protective immunity. In this review, advancements and progress made in LPS-based vaccines, killed- and live-attenuated vaccines, recombinant peptide vaccines and DNA vaccines against leptospirosis are highlighted.

  2. Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine

    PubMed Central

    Baron, Mira; Levin, Myron J; Chatterjee, Archana; Fox, Bradley; Scholar, Sofia; Rosen, Jeffrey; Chakhtoura, Nahida; Meric, Dorothée; Dessy, Francis J; Datta, Sanjoy K; Descamps, Dominique; Dubin, Gary

    2011-01-01

    In this observer-blind study (NCT00423046), women (N = 1,106), stratified by age (18–26, 27–35, 36–45 y), were randomized (1:1) to receive the HPV-16/18 vaccine (Cervarix®, GlaxoSmithKline Biologicals, Months 0, 1, 6) or the HPV-6/11/16/18 vaccine (Gardasil® Merck and Co., Inc., Months 0, 2, 6). Month 7 results were previously reported; we now report Month 24 results. In the according-to-protocol cohort for immunogenicity (seronegative and DNA-negative at baseline for HPV type analyzed), seropositivity rates of neutralizing antibodies (nAbs) [pseudovirion-based neutralization assay] were, across all age strata, 100% (HPV-16/18 vaccine) and 97.5–100% (HPV-6/11/16/18 vaccine) for HPV-16, and 99.0–100% (HPV-16/18 vaccine) and 72.3–84.4% (HPV-6/11/16/18 vaccine) for HPV-18. Corresponding geometric mean titers (GMTs) were 2.4–5.8-fold higher for HPV-16 and 7.7–9.4-fold higher for HPV-18 with the HPV-16/18 vaccine vs. the HPV-6/11/16/18 vaccine; HPV-16 and HPV-18 GMTs were significantly higher with the HPV-16/18 vaccine than the HPV-6/11/16/18 vaccine (p < 0.0001) in the total vaccinated cohort (received ≥1 vaccine dose, irrespective of baseline sero/DNA-status). Similar results were obtained using enzyme-linked immunosorbent assay (ELISA ). Positivity rates and GMTs of antigen-specific IgG antibodies in cervicovaginal secretions (ELISA) were not significantly different between vaccines. At Month 24, CD4+ T-cell responses for HPV-16 and HPV-18 were higher with the HPV-16/18 vaccine; memory B-cell response was higher for HPV-18 with the HPV-16/18 vaccine and similar between vaccines for HPV-16. Both vaccines were generally well tolerated. Although an immunological correlate of protection has not been defined, differences in the magnitude of immune response between vaccines may represent determinants of duration of protection. PMID:22048173

  3. A conserved region of leptospiral immunoglobulin-like A and B proteins as a DNA vaccine elicits a prophylactic immune response against leptospirosis.

    PubMed

    Forster, Karine M; Hartwig, Daiane D; Seixas, Fabiana K; Bacelo, Kátia L; Amaral, Marta; Hartleben, Cláudia P; Dellagostin, Odir A

    2013-05-01

    The leptospiral immunoglobulin-like (Lig) proteins LigA and LigB possess immunoglobulin-like domains with 90-amino-acid repeats and are adhesion molecules involved in pathogenicity. They are conserved in pathogenic Leptospira spp. and thus are of interest for use as serodiagnostic antigens and in recombinant vaccine formulations. The N-terminal amino acid sequences of the LigA and LigB proteins are identical, but the C-terminal sequences vary. In this study, we evaluated the protective potential of five truncated forms of LigA and LigB proteins from Leptospira interrogans serovar Canicola as DNA vaccines using the pTARGET mammalian expression vector. Hamsters immunized with the DNA vaccines were subjected to a heterologous challenge with L. interrogans serovar Copenhageni strain Spool via the intraperitoneal route. Immunization with a DNA vaccine encoding LigBrep resulted in the survival of 5/8 (62.5%) hamsters against lethal infection (P < 0.05). None of the control hamsters or animals immunized with the other vaccine preparations survived. The vaccine induced an IgG antibody response and, additionally, conferred sterilizing immunity in 80% of the surviving animals. Our results indicate that the LigBrep DNA vaccine is a promising candidate for inclusion in a protective leptospiral vaccine.

  4. A Conserved Region of Leptospiral Immunoglobulin-Like A and B Proteins as a DNA Vaccine Elicits a Prophylactic Immune Response against Leptospirosis

    PubMed Central

    Forster, Karine M.; Hartwig, Daiane D.; Seixas, Fabiana K.; Bacelo, Kátia L.; Amaral, Marta; Hartleben, Cláudia P.

    2013-01-01

    The leptospiral immunoglobulin-like (Lig) proteins LigA and LigB possess immunoglobulin-like domains with 90-amino-acid repeats and are adhesion molecules involved in pathogenicity. They are conserved in pathogenic Leptospira spp. and thus are of interest for use as serodiagnostic antigens and in recombinant vaccine formulations. The N-terminal amino acid sequences of the LigA and LigB proteins are identical, but the C-terminal sequences vary. In this study, we evaluated the protective potential of five truncated forms of LigA and LigB proteins from Leptospira interrogans serovar Canicola as DNA vaccines using the pTARGET mammalian expression vector. Hamsters immunized with the DNA vaccines were subjected to a heterologous challenge with L. interrogans serovar Copenhageni strain Spool via the intraperitoneal route. Immunization with a DNA vaccine encoding LigBrep resulted in the survival of 5/8 (62.5%) hamsters against lethal infection (P < 0.05). None of the control hamsters or animals immunized with the other vaccine preparations survived. The vaccine induced an IgG antibody response and, additionally, conferred sterilizing immunity in 80% of the surviving animals. Our results indicate that the LigBrep DNA vaccine is a promising candidate for inclusion in a protective leptospiral vaccine. PMID:23486420

  5. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-07

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Immunogenicity and Protective Efficacy of a Plasmodium yoelii Hsp60 DNA Vaccine in BALB/c Mice

    PubMed Central

    Sanchez, Gloria I.; Sedegah, Martha; Rogers, William O.; Jones, Trevor R.; Sacci, John; Witney, Adam; Carucci, Daniel J.; Kumar, Nirbhay; Hoffman, Stephen L.

    2001-01-01

    The gene encoding the 60-kDa heat shock protein of Plasmodium yoelii (PyHsp60) was cloned into the VR1012 and VR1020 mammalian expression vectors. Groups of 10 BALB/c mice were immunized intramuscularly at 0, 3, and 9 weeks with 100 μg of PyHsp60 DNA vaccine alone or in combination with 30 μg of pmurGMCSF. Sera from immunized mice but not from vector control groups recognized P. yoelii sporozoites, liver stages, and infected erythrocytes in an indirect fluorescent antibody test. Two weeks after the last immunization, mice were challenged with 50 P. yoelii sporozoites. In one experiment the vaccine pPyHsp60-VR1012 used in combination with pmurGMCSF gave 40% protection (Fisher's exact test; P = 0.03, vaccinated versus control groups). In a second experiment this vaccine did not protect any of the immunized mice but induced a delay in the onset of parasitemia. In neither experiment was there any evidence of a protective effect against the asexual erythrocytic stage of the life cycle. In a third experiment mice were primed with PyHsp60 DNA, were boosted 2 weeks later with 2 × 103 irradiated P. yoelii sporozoites, and were challenged several weeks later. The presence of PyHsp60 in the immunization regimen did not lead to reduced blood-stage infection or development of parasites in hepatocytes. PyHsp60 DNA vaccines were immunogenic in BALB/c mice but did not consistently, completely protect against sporozoite challenge. The observation that in some of the PyHsp60 DNA vaccine-immunized mice there was protection against infection or a delay in the onset of parasitemia after sporozoite challenge deserves further evaluation. PMID:11349057

  7. Vaccines against human diarrheal pathogens

    PubMed Central

    Böhles, Nathalie; Böhles, Nathalie; Busch, Kim; Busch, Kim; Hensel, Michael; Hensel, Michael

    2014-01-01

    Worldwide, nearly 1.7 billion people per year contract diarrheal infectious diseases (DID) and almost 760 000 of infections are fatal. DID are a major problem in developing countries where poor sanitation prevails and food and water may become contaminated by fecal shedding. Diarrhea is caused by pathogens such as bacteria, protozoans and viruses. Important diarrheal pathogens are Vibrio cholerae, Shigella spp. and rotavirus, which can be prevented with vaccines for several years. The focus of this review is on currently available vaccines against these three pathogens, and on development of new vaccines. Currently, various types of vaccines based on traditional (killed, live attenuated, toxoid or conjugate vaccines) and reverse vaccinology (DNA/mRNA, vector, recombinant subunit, plant vaccines) are in development or already available. Development of new vaccines demands high levels of knowledge, experience, budget, and time, yet promising new vaccines often fail in preclinical and clinical studies. Efficacy of vaccination also depends on the route of delivery, and mucosal immunization in particular is of special interest for preventing DID. Furthermore, adjuvants, delivery systems and other vaccine components are essential for an adequate immune response. These aspects will be discussed in relation to the improvement of existing and development of new vaccines against DID. PMID:24861668

  8. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle.

    PubMed

    Abdul-Wahid, Aws; Faubert, Gaétan

    2007-12-05

    In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.

  9. Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine.

    PubMed

    Golden, Joseph W; Hooper, Jay W

    2008-07-20

    We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus proteins (A33, L1, B5, and A27). Because any subunit orthopoxvirus vaccine must protect against multiple species of orthopoxviruses, we are interested in understanding the cross-protective potential of our 4pox vaccine target immunogens. In our current studies, we focused on the A33 immunogen. We found one monoclonal antibody against A33, MAb-1G10, which could not bind the monkeypox virus A33 ortholog, A35. MAb-1G10 binding could be rescued if A35 amino acids 118 and 120 were substituted with those from A33. MAb-1G10 has been shown to protect mice from VACV challenge, thus our findings indicated a protective epitope differs among orthopoxviruses. Accordingly, we tested the cross-protective efficacy of a DNA vaccine consisting of A35R against VACV challenge and compared it to vaccination with A33R DNA. Mice vaccinated with A35R had greater mortality and more weight loss compared to those vaccinated with A33R. These findings demonstrate that despite high homology between A33R orthologs, amino acid differences can impact cross-protection. Furthermore, our results caution that adequate cross-protection by any pan-orthopoxvirus subunit vaccine will require not only careful evaluation of cross-protective immunity, but also of targeting of multiple orthopoxvirus immunogens.

  10. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity

    PubMed Central

    Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.

    2016-01-01

    Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278

  11. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    PubMed

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  12. Efficient post-exposure prophylaxis against rabies by applying a four-dose DNA vaccine intranasally.

    PubMed

    Tesoro Cruz, Emiliano; Feria Romero, Iris Angélica; López Mendoza, Juan Gabriel; Orozco Suárez, Sandra; Hernández González, Rafael; Favela, Francisco Blanco; Pérez Torres, Armando; José Alvaro Aguilar Setién

    2008-12-09

    We tested two post-exposure prophylaxes (PEPs) for rabies in laboratory animals; one was a traditional antirabies vaccine for humans via intramuscular route (IM), and the other was a DNA vaccine administered by intranasal route (IN). In contrast to The World Health Organization's recommended five-dose PEP, we gave only four doses without hyper-immune antirabies sera, making the PEP more rigorous. All animals were challenged with challenge virus strain (CVS); 16h later, PEP was applied. All animals that received the PEP with DNA/IN survived, and 87% of the rabbits and 80% of the mice that received the PEP with traditional antirabies vaccine/IM survived. Negative controls succumbed to infection. The expression of G protein was detected in the NALT, cerebellum, cerebral cortex (neocortex), cerebellum and hippocampus, mainly in the glial cells (microglia) and microvessels. On the other hand, plasmid construct was detected in brain and its mRNA expression in medium and posterior encephalon. The efficiency of this DNA/IN PEP is probably due to the early expression of the antigen in the brain stimulating the immune system locally.

  13. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice.

    PubMed

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J

    2016-06-30

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans.

  14. Development and trial of vaccines against Brucella.

    PubMed

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-08-31

    The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella .

  15. Development and trial of vaccines against Brucella

    PubMed Central

    Lalsiamthara, Jonathan

    2017-01-01

    The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella. PMID:28859268

  16. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia).

    PubMed

    Jayakumar, Asha; Castilho, Tiago M; Park, Esther; Goldsmith-Pestana, Karen; Blackwell, Jenefer M; McMahon-Pratt, Diane

    2011-06-01

    Leishmania (Viannia) parasites present particular challenges, as human and murine immune responses to infection are distinct from other Leishmania species, indicating a unique interaction with the host. Further, vaccination studies utilizing small animal models indicate that modalities and antigens that prevent infection by other Leishmania species are generally not protective. Using a newly developed mouse model of chronic L. (Viannia) panamensis infection and the heterologous DNA prime - modified vaccinia virus Ankara (MVA) boost vaccination modality, we examined whether the conserved vaccine candidate antigen tryparedoxin peroxidase (TRYP) could provide protection against infection/disease. Heterologous prime - boost (DNA/MVA) vaccination utilizing TRYP antigen can provide protection against disease caused by L. (V.) panamensis. However, protection is dependent on modulating the innate immune response using the TLR1/2 agonist Pam3CSK4 during DNA priming. Prime-boost vaccination using DNA alone fails to protect. Prior to infection protectively vaccinated mice exhibit augmented CD4 and CD8 IFNγ and memory responses as well as decreased IL-10 and IL-13 responses. IL-13 and IL-10 have been shown to be independently critical for disease in this model. CD8 T cells have an essential role in mediating host defense, as CD8 depletion reversed protection in the vaccinated mice; vaccinated mice depleted of CD4 T cells remained protected. Hence, vaccine-induced protection is dependent upon TLR1/2 activation instructing the generation of antigen specific CD8 cells and restricting IL-13 and IL-10 responses. Given the general effectiveness of prime-boost vaccination, the recalcitrance of Leishmania (Viannia) to vaccine approaches effective against other species of Leishmania is again evident. However, prime-boost vaccination modality can with modulation induce protective responses, indicating that the delivery system is critical. Moreover, these results suggest that CD8 T

  17. Topical Administration Is a Promising Inoculating Route versus Intramuscular Inoculation for the Nanoparticle-Carried DNA Vaccine to Prevent Corneal Infections.

    PubMed

    Hu, Kai; Malla, Tejsu; Zhai, Yujia; Dong, Lili; Tang, Ru

    2015-01-01

    To evaluate the comparative effect of topical versus intramuscular administration of nanoparticle-carried DNA vaccine in preventing corneal herpes simplex virus type 1 (HSV-1) infection. Nanoparticle [polyethylenimine (PEI)-Fe3O4]-carried DNA vaccine (PEI-Fe3O4-pRSC-gD-IL-21) or DNA vaccine (pRSC-gD-IL-21) alone were topically versus intramuscularly inoculated into one eye each of mice on days 0, 14 and 28. Three weeks after the final immunization, the specific immune responses and clinical degrees of primary herpes simplex keratitis were evaluated. Topical inoculation of nanoparticle-carried DNA vaccine induced mice to generate similar levels of specific HSV-1-neutralizing antibody, IFN-γ and IL-4 in serum and specific killing (cytotoxicity) and proliferative activities of the splenic lymphocytes, but a significantly higher level of secretory IgA in tears compared to those of intramuscular inoculation. More importantly, the mice inoculated topically showed a significantly decreased herpes simplex keratitis severity than the mice inoculated intramuscularly after HSV-1 challenge on the corneas of the mice. Topical inoculation of nanoparticle-carried DNA vaccine elicits a stronger specific local immune response and more effectively inhibits herpes simplex keratitis as compared to intramuscular inoculation in an HSV-1 ocular challenge mouse model. Thus, topical administration may be a promising inoculating route for the nanoparticle-carried DNA vaccine to prevent corneal infections. © 2015 S. Karger AG, Basel.

  18. A phase 1, randomized, controlled dose-escalation study of EP-1300 polyepitope DNA vaccine against Plasmodium falciparum malaria administered via electroporation.

    PubMed

    Spearman, Paul; Mulligan, Mark; Anderson, Evan J; Shane, Andi L; Stephens, Kathy; Gibson, Theda; Hartwell, Brooke; Hannaman, Drew; Watson, Nora L; Singh, Karnail

    2016-11-04

    Plasmodium falciparum malaria is one of the leading infectious causes of childhood mortality in Africa. EP-1300 is a polyepitope plasmid DNA vaccine expressing 38 cytotoxic T cell epitopes and 16 helper T cell epitopes derived from P. falciparum antigens expressed predominantly in the liver phase of the parasite's life cycle. We performed a phase 1 randomized, placebo-controlled, dose escalation clinical trial of the EP-1300 DNA vaccine administered via electroporation using the TriGrid Delivery System device (Ichor Medical Systems). Although the delivery of the EP-1300 DNA vaccine via electroporation was safe, tolerability was less than that usually observed with standard needle and syringe intramuscular administration. This was primarily due to acute local discomfort at the administration site during electroporation. Despite the use of electroporation, the vaccine was poorly immunogenic. The reasons for the poor immunogenicity of this polyepitope DNA vaccine remain uncertain. ClinicalTrials.gov NCT01169077. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of the immune response in Shitou geese (Anser anser domesticus) following immunization with GPV-VP1 DNA-based and live attenuated vaccines.

    PubMed

    Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li

    2014-01-01

    Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.

  20. Prospects for new viral vaccines.

    PubMed

    Marmion, B P

    1980-08-11

    Animal virology has made outstanding contributions to preventive medicine by the development of vaccines for the control of infectious disease in man and animals. Cost-benefit analysis indicates substantial savings in health care costs from the control of diseases such as smallpox, poliomyelitis, yellow fever and measels. Areas for further development include vaccines for influenza (living, attenuated virus), the herpes group (varicella: cytomegalovirus), respiratory syncytial virus, rotavirus and hepatitis A, B, and non A/non B. The general options for vaccine formulation are discussed with particular emphasis on approaches with the use of viral genetics to 'tailor make' vaccine viruses with defined growth potential in laboratory systems, low pathogenicity, and defined antigens. Current progress with the development of an inactivated hepatitis B vaccine is reviewed as a case study in vaccine development. The impact of recent experiments in cloning hepatitis B virus DNA in E. coli on the production of a purified viral polypeptide vaccine is assessed.

  1. A hantavirus pulmonary syndrome (HPS) DNA vaccine delivered using a spring-powered jet injector elicits a potent neutralizing antibody response in rabbits and nonhuman primates.

    PubMed

    Kwilas, Steve; Kishimori, Jennifer M; Josleyn, Matthew; Jerke, Kurt; Ballantyne, John; Royals, Michael; Hooper, Jay W

    2014-01-01

    Sin Nombre virus (SNV) and Andes virus (ANDV) cause most of the hantavirus pulmonary syndrome (HPS) cases in North and South America, respectively. The chances of a patient surviving HPS are only two in three. Previously, we demonstrated that SNV and ANDV DNA vaccines encoding the virus envelope glycoproteins elicit high-titer neutralizing antibodies in laboratory animals, and (for ANDV) in nonhuman primates (NHPs). In those studies, the vaccines were delivered by gene gun or muscle electroporation. Here, we tested whether a combined SNV/ANDV DNA vaccine (HPS DNA vaccine) could be delivered effectively using a disposable syringe jet injection (DSJI) system (PharmaJet, Inc). PharmaJet intramuscular (IM) and intradermal (ID) needle-free devices are FDA 510(k)-cleared, simple to use, and do not require electricity or pressurized gas. First, we tested the SNV DNA vaccine delivered by PharmaJet IM or ID devices in rabbits and NHPs. Both IM and ID devices produced high-titer anti-SNV neutralizing antibody responses in rabbits and NHPs. However, the ID device required at least two vaccinations in NHP to detect neutralizing antibodies in most animals, whereas all animals vaccinated once with the IM device seroconverted. Because the IM device was more effective in NHP, the Stratis(®) (PharmaJet IM device) was selected for follow-up studies. We evaluated the HPS DNA vaccine delivered using Stratis(®) and found that it produced high-titer anti-SNV and anti-ANDV neutralizing antibodies in rabbits (n=8/group) as measured by a classic plaque reduction neutralization test and a new pseudovirion neutralization assay. We were interested in determining if the differences between DSJI delivery (e.g., high-velocity liquid penetration through tissue) and other methods of vaccine injection, such as needle/syringe, might result in a more immunogenic DNA vaccine. To accomplish this, we compared the HPS DNA vaccine delivered by DSJI versus needle/syringe in NHPs (n=8/group). We found

  2. Prevention and synergistic control of Ph(+) ALL by a DNA vaccine and 6-mercaptopurine.

    PubMed

    Köchling, Joachim; Rott, Yvonne; Arndt, Stefanie; Marschke, Christina; Schmidt, Manuel; Wittig, Burghardt; Kalies, Katrin; Westermann, Jürgen; Henze, Günter

    2012-09-07

    Although the outcome of patients with acute lymphoblastic leukemia (ALL) has been improved continuously by chemotherapy and tyrosine kinase inhibitors, prognosis of patients with Philadelphia chromosome positive (Ph(+)) ALL still remains poor. Since further intensification of chemotherapy is limited by toxic side effects and patients with high risk of transplant-related mortality are not eligible for allogeneic stem cell transplantation new treatment strategies are urgently needed for the prevention of Ph(+) ALL relapse. There is increasing evidence that the immune system plays an essential role for the eradication or immunologic control of remaining leukemia cells. We developed several DNA-based vaccines encoding a BCR-ABL(p185) specific peptide and GM-CSF, and CD40-L, IL-27 or IL-12 and evaluated the preventive and therapeutic efficacy against a lethal challenge of syngeneic Ph(+) ALL in Balb/c mice. In vivo cell depletion assays and cytokine expression studies were performed and the efficacy of the DNA vaccine was compared with 6-mercaptopurine (6-MP) alone and the combination of the DNA vaccine and 6-MP. Preventive immunization with the vaccine BCR-ABL/GM-CSF/IL-12 and the TLR-9 agonist dSLIM induced an innate and adaptive immune response mediated by NK-cells, CD4(+) T-cells and CD8(+) T-cells leading to a survival rate of 80%. Therapeutic vaccination resulted in a significantly longer leukemia-free survival (40.7 days vs. 20.4 days) and a higher survival rate (56% vs. 10%) compared to chemotherapy with 6-MP. Remarkably, in combination with the vaccine 6-MP acted synergistically and led to 100% survival. These results demonstrate that minimal residual disease of Ph(+) ALL can be significantly better controlled by a combined treatment approach of immunotherapy and chemotherapy. This provides a rationale for improving maintenance therapy in order to reduce the relapse rate in patients with Ph(+) ALL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Recombinant DNA technology for melanoma immunotherapy: anti-Id DNA vaccines targeting high molecular weight melanoma-associated antigen.

    PubMed

    Barucca, A; Capitani, M; Cesca, M; Tomassoni, D; Kazmi, U; Concetti, F; Vincenzetti, L; Concetti, A; Venanzi, F M

    2014-11-01

    Anti-idiotypic MK2-23 monoclonal antibody (anti-Id MK2-23 mAb), which mimics the high molecular weight melanoma-associated antigen (HMW-MAA), has been used to implement active immunotherapy against melanoma. However, due to safety and standardization issues, this approach never entered extensive clinical trials. In the present study, we investigated the usage of DNA vaccines as an alternative to MK2-23 mAb immunization. MK2-23 DNA plasmids coding for single chain (scFv) MK2-23 antibody were constructed via the insertion of variable heavy (V H) and light (V L) chains of MK2-23 into the pVAC-1mcs plasmids. Two alternative MK2-23 plasmids format V H/V L, and V L/V H were assembled. We demonstrate that both polypeptides expressed by scFv plasmids in vitro retained the ability to mimic HMW-MAA antigen, and to elicit specific anti-HMW-MAA humoral and cellular immunoresponses in immunized mice. Notably, MK2-23 scFv DNA vaccines impaired the onset and growth of transplantable B16 melanoma cells not engineered to express HMW-MAA. This pilot study suggests that optimized MK2-23 scFv DNA vaccines could potentially provide a safer and cost-effective alternative to anti-Id antibody immunization, for melanoma immunotherapy.

  4. The recent progress in RSV vaccine technology.

    PubMed

    Fretzayas, Andrew; Papadopoulou, Anna; Kotzia, Doxa; Moustaki, Maria

    2012-12-01

    The most effective way to control RSV infection would be the development of an expedient and safe vaccine. Subunit vaccines, live attenuated RSV vaccines, plasmid DNA vaccines have been tested either in human or in mouse models without reaching the ultimate goal of efficacy and safety, at least in humans. Viruses such as adenovirus, sendai virus, measles virus were also used as vectors for the generation of RSV vaccines with promising results in animal models. Recent patents describe new techniques for the generation of candidate vaccines. These patents include virus like particles as vaccine platforms, recombinant RSVs or modified RSV F protein as component of the vaccine. Despite the number of the candidate vaccines, the new RSV vaccines should overcome many obstacles before being established as effective vaccines for the control of RSV infections especially for the young infants who are more susceptible to the virus.

  5. HIV-1 vaccines

    PubMed Central

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  6. Formulation in DDA-MPLA-TDB Liposome Enhances the Immunogenicity and Protective Efficacy of a DNA Vaccine against Mycobacterium tuberculosis Infection

    PubMed Central

    Tian, Maopeng; Zhou, Zijie; Tan, Songwei; Fan, Xionglin; Li, Longmeng; Ullah, Nadeem

    2018-01-01

    Despite the vaccine Mycobacterium bovis Bacillus Calmette–Guérin is used worldwide, tuberculosis (TB) remains the first killer among infectious diseases. An effective vaccine is urgently required. DNA vaccine has shown prophylactic as well as therapeutic effects against TB, while its weak immunogenicity hinders the application. As a strong inducer of Th1-biased immune response, DMT, consisting of dimethyldioctadecylammonium (DDA) and two pattern recognition receptor agonists monophosphoryl lipid A and trehalose 6,6′-dibehenate (TDB), was a newly developed liposomal adjuvant. To elucidate the action mechanism of DMT and improve immunological effects induced by DNA vaccine, a new recombinant eukaryotic expression plasmid pCMFO that secretes the fusion of four multistage antigens (Rv2875, Rv3044, Rv2073c, and Rv0577) of Mycobacterium tuberculosis was constructed. pCMFO/DDA and pCMFO/DMT complexes were then prepared and their physicochemical properties were analyzed. The immunogenicity and protection against M. tuberculosis infection in vaccinated C57BL/6 mice were compared. Formulation of DNA and two agonists into the DDA liposome decreased zeta potential but increased the stability of storage, which resulted in a slower and longer-lasting release of DNA from the DNA–DMT complex than the DNA–DDA liposome. Besides Th1-biased responses, pCMFO/DMT vaccinated mice elicited more significantly CFMO-specific IL2+ TCM cell responses in the spleen and provided an enhanced and persistent protection against M. tuberculosis aerosol infection, compared to pCMFO/DDA and pCMFO groups. Therefore, the adjuvant DMT can release DNA and agonists slowly, which might attribute to the improved protection of DMT adjuvanted vaccines. pCMFO/DMT, a very promising TB vaccine, warrants for further preclinical and clinical trials. PMID:29535714

  7. Good Manufacturing Practices production and analysis of a DNA vaccine against dental caries.

    PubMed

    Yang, Ya-ping; Li, Yu-hong; Zhang, Ai-hua; Bi, Lan; Fan, Ming-wen

    2009-11-01

    To prepare a clinical-grade anti-caries DNA vaccine pGJA-P/VAX and explore its immune effect and protective efficacy against a cariogenic bacterial challenge. A large-scale industrial production process was developed under Good Manufacturing Practices (GMP) by combining and optimizing common unit operations such as alkaline lysis, precipitation, endotoxin removal and column chromatography. Quality controls of the purified bulk and final lyophilized vaccine were conducted according to authoritative guidelines. Mice and gnotobiotic rats were intranasally immunized with clinical-grade pGJA-P/VAX with chitosan. Antibody levels of serum IgG and salivary SIgA were assessed by an enzyme-linked immunosorbent assay (ELISA), and caries activity was evaluated by the Keyes method. pGJA-P/VAX and pVAX1 prepared by a laboratory-scale commercial kit were used as controls. The production process proved to be scalable and reproducible. Impurities including host protein, residual RNA, genomic DNA and endotoxin in the purified plasmid were all under the limits of set specifications. Intranasal vaccination with clinical-grade pGJA-P/VAX induced higher serum IgG and salivary SIgA in both mice and gnotobiotic rats. While in the experimental caries model, the enamel (E), dentinal slight (Ds), and dentinal moderate (Dm) caries lesions were reduced by 21.1%, 33.0%, and 40.9%, respectively. The production process under GMP was efficient in preparing clinical-grade pGJA-P/VAX with high purity and intended effectiveness, thus facilitating future clinical trials for the anti-caries DNA vaccine.

  8. Approaches to Preventative and Therapeutic HIV vaccines

    PubMed Central

    Gray, Glenda E.; Laher, Fatima; Lazarus, Erica; Ensoli, Barbara; Corey, Lawrence

    2016-01-01

    Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Nonefficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials. PMID:26985884

  9. Protection of Mice against Plasmodium yoelii Sporozoite Challenge with P. yoelii Merozoite Surface Protein 1 DNA Vaccines

    PubMed Central

    Becker, Sylvia I.; Wang, Ruobing; Hedstrom, Richard C.; Aguiar, Joao C.; Jones, Trevor R.; Hoffman, Stephen L.; Gardner, Malcolm J.

    1998-01-01

    Immunization of mice with DNA vaccines encoding the full-length form and C and N termini of Plasmodium yoelii merozoite surface protein 1 provided partial protection against sporozoite challenge and resulted in boosting of antibody titers after challenge. In C57BL/6 mice, two DNA vaccines provided protection comparable to that of recombinant protein consisting of the C terminus in Freund’s adjuvant. PMID:9632624

  10. Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model.

    PubMed

    Albrecht, Mark T; Eyles, Jim E; Baillie, Les W; Keane-Myers, Andrea M

    2012-08-01

    The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y . pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B. anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y. pestis. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. The elusive HIV vaccine: an update on the politics, propaganda and scientific barriers in the search for a safe and effective HIV vaccine.

    PubMed

    Allen, D

    1999-01-01

    An update is provided on the barriers confronting the development of an effective HIV vaccine. These issues include political and organizational problems, inadequate research funding, pharmaceutical company reluctance to do vaccine research, and the scientific and testing complexities that must be overcome. Two preventive vaccines (Wyeth-Ayerst DNA and AIDSVAX), and two treatment vaccines (Wyeth-Ayerst DNA and Remune) currently in human trials in the United States are described, along with the rationale behind them.

  12. Applications and challenges of multivalent recombinant vaccines

    PubMed Central

    Naim, Hussein Y.

    2013-01-01

    The exceptional discoveries of antigen/gene delivery systems have allowed the development of novel prophylactic and therapeutic vaccine candidates. The vaccine candidates employ various antigen-delivery systems, particularly recombinant viral vectors. Recombinant viral vectors are experimental vaccines similar to DNA vaccines, but they use attenuated viruses or bacterium as a carrier “vector” to introduce microbial DNA to cells of the body. They closely mimic a natural infection and therefore can efficiently stimulate the immune system. Although such recombinant vectors may face extensive preclinical testing and will possibly have to meet stringent regulatory requirements, some of these vectors (e.g. measles virus vectors) may benefit from the profound industrial and clinical experience of the parent vaccine. Most notably, novel vaccines based on live attenuated viruses combine the induction of broad, strong and persistent immune responses with acceptable safety profiles. We assess certain technologies in light of their use against human immunodeficiency virus (HIV). PMID:23249651

  13. Efficacy of Three Vaccines in Protecting Western Scrub-Jays (Aphelocoma californica) from Experimental Infection with West Nile Virus: Implications for Vaccination of Island Scrub-Jays (Aphelocoma insularis)

    PubMed Central

    Wheeler, Sarah S.; Langevin, Stanley; Woods, Leslie; Carroll, Brian D.; Vickers, Winston; Morrison, Scott A.; Chang, Gwong-Jen J.; Reisen, William K.

    2011-01-01

    Abstract The devastating effect of West Nile virus (WNV) on the avifauna of North America has led zoo managers and conservationists to attempt to protect vulnerable species through vaccination. The Island Scrub-Jay (Aphelocoma insularis) is one such species, being a corvid with a highly restricted insular range. Herein, we used congeneric Western Scrub-Jays (Aphelocoma californica) to test the efficacy of three WNV vaccines in protecting jays from an experimental challenge with WNV: (1) the Fort Dodge West Nile-Innovator® DNA equine vaccine, (2) an experimental DNA plasmid vaccine, pCBWN, and (3) the Merial Recombitek® equine vaccine. Vaccine efficacy after challenge was compared with naïve and nonvaccinated positive controls and a group of naturally immune jays. Overall, vaccination lowered peak viremia compared with nonvaccinated positive controls, but some WNV-related pathology persisted and the viremia was sufficient to possibly infect susceptible vector mosquitoes. The Fort Dodge West Nile-Innovator DNA equine vaccine and the pCBWN vaccine provided humoral immune priming and limited side effects. Five of the six birds vaccinated with the Merial Recombitek vaccine, including a vaccinated, non-WNV challenged control, developed extensive necrotic lesions in the pectoral muscle at the vaccine inoculation sites, which were attributed to the Merial vaccine. In light of the well-documented devastating effects of high morbidity and mortality associated with WNV infection in corvids, vaccination of Island Scrub-Jays with either the Fort Dodge West Nile-Innovator DNA vaccine or the pCBWN vaccine may increase the numbers of birds that would survive an epizootic should WNV become established on Santa Cruz Island. PMID:21438693

  14. Effect of West Nile virus DNA-plasmid vaccination on response to live virus challenge in red-tailed hawks (Buteo jamaicensis).

    PubMed

    Redig, Patrick T; Tully, Thomas N; Ritchie, Branson W; Roy, Alma F; Baudena, M Alexandra; Chang, Gwong-Jen J

    2011-08-01

    To evaluate the safety and efficacy of an experimental adjuvanted DNA-plasmid vaccine against West Nile virus (WNV) in red-tailed hawks (Buteo jamaicensis). 19 permanently disabled but otherwise healthy red-tailed hawks of mixed ages and both sexes without detectable serum antibodies against WNV. Hawks were injected IM with an experimental WNV DNA-plasmid vaccine in an aluminum-phosphate adjuvant (n = 14) or with the adjuvant only (control group; 5). All birds received 2 injections at a 3-week interval. Blood samples for serologic evaluation were collected before the first injection and 4 weeks after the second injection (day 0). At day 0, hawks were injected SC with live WNV. Pre- and postchallenge blood samples were collected at intervals for 14 days for assessment of viremia and antibody determination; oropharyngeal and cloacal swabs were collected for assessment of viral shedding. Vaccination was not associated with morbidity or deaths. Three of the vaccinated birds seroconverted after the second vaccine injection; all other birds seroconverted following the live virus injection. Vaccinated birds had significantly less severe viremia and shorter and less-intense shedding periods, compared with the control birds. Use of the WNV DNA-plasmid vaccine in red-tailed hawks was safe, and vaccination attenuated but did not eliminate both the viremia and the intensity of postchallenge shedding following live virus exposure. Further research is warranted to conclusively determine the efficacy of this vaccine preparation for protection of red-tailed hawks and other avian species against WNV-induced disease.

  15. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    PubMed Central

    Cao, Yan; Zhao, Bin; Han, Yanhui; Zhang, Juan; Li, Xuezhen; Qiu, Chunhui; Wu, Xiujuan; Hong, Yang; Ai, Dezhou; Lin, Jiaojiao; Fu, Zhiqiang

    2013-01-01

    Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR) plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% (P < 0.01) of worm reduction and 40.38–44.51% (P < 0.01) of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects. PMID:23509820

  16. Vaccinating parents experience vaccine anxiety too.

    PubMed

    Luthy, Karlen E; Beckstrand, Renea L; Asay, Whitney; Hewett, Carly

    2013-12-01

    To identify common causes of parental anxiety regarding childhood vaccinations among parents who vaccinate. Another purpose was to seek recommendations for healthcare providers to help parents overcome their anxiety when their children are immunized. Four 1-h focus groups were conducted, each consisting of 8-10 parents. Each focus group discussion was conducted by a moderator and an assistant moderator. The moderator facilitated discussion while the assistant moderator took notes. Each session was recorded on video. The data were transcribed and analyzed for themes. Parents identifying themselves as being compliant with childhood vaccination requirements reported anxiety that can be divided into five major themes: parental anxiety prior to vaccination, parental anxiety during the vaccination, parental anxiety after the vaccination, parental suggestions for healthcare providers, and informational issues. Making minor changes in office policies may help alleviate some parental anxiety regarding vaccinations. Providers should also create lists of credible sources about vaccination information. Because the cause of vaccine-related parental anxiety varies, targeted education is necessary to relieve common causes of vaccine anxiety, even among parents who vaccinate. ©2013 The Author(s) ©2013 American Association of Nurse Practitioners.

  17. Mixing of M Segment DNA Vaccines to Hantaan Virus and Puumala Virus Reduces Their Immunogenicity in Hamsters

    DTIC Science & Technology

    2008-01-01

    vaccines for Rift Valley fever virus, tick- borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 2006;24(May 22 (21)):4657–66. ...Valley fever virus, tick-borne encephalitis virus, TNV, and Crimean Congo hemorrhagic fever virus [19]. Thus, it s clearly possible to develop certain...online 25 April 2008 eywords: a b s t r a c t To determine if DNA vaccines for two hantaviruses causing hemorrhagic

  18. Vaccine decision-making begins in pregnancy: Correlation between vaccine concerns, intentions and maternal vaccination with subsequent childhood vaccine uptake.

    PubMed

    Danchin, M H; Costa-Pinto, J; Attwell, K; Willaby, H; Wiley, K; Hoq, M; Leask, J; Perrett, K P; O'Keefe, Jacinta; Giles, M L; Marshall, H

    2017-08-12

    Maternal and childhood vaccine decision-making begins prenatally. Amongst pregnant Australian women we aimed to ascertain vaccine information received, maternal immunisation uptake and attitudes and concerns regarding childhood vaccination. We also aimed to determine any correlation between a) intentions and concerns regarding childhood vaccination, (b) concerns about pregnancy vaccination, (c) socioeconomic status (SES) and (d) uptake of influenza and pertussis vaccines during pregnancy and routine vaccines during childhood. Women attending public antenatal clinics were recruited in three Australian states. Surveys were completed on iPads. Follow-up phone surveys were done three to six months post delivery, and infant vaccination status obtained via the Australian Childhood Immunisation Register (ACIR). Between October 2015 and March 2016, 975 (82%) of 1184 mothers consented and 406 (42%) agreed to a follow up survey, post delivery. First-time mothers (445; 49%) had significantly more vaccine concerns in pregnancy and only 73% had made a decision about childhood vaccination compared to 89% of mothers with existing children (p-value<0.001). 66% of mothers reported receiving enough information during pregnancy on childhood vaccination. In the post delivery survey, 46% and 82% of mothers reported receiving pregnancy influenza and pertussis vaccines respectively. The mother's degree of vaccine hesitancy and two attitudinal factors were correlated with vaccine uptake post delivery. There was no association between reported maternal vaccine uptake or SES and childhood vaccine uptake. First time mothers are more vaccine hesitant and undecided about childhood vaccination, and only two thirds of all mothers believed they received enough information during pregnancy. New interventions to improve both education and communication on childhood and maternal vaccines, delivered by midwives and obstetricians in the Australian public hospital system, may reduce vaccine hesitancy

  19. Rational design of gene-based vaccines.

    PubMed

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    PubMed

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens

    PubMed Central

    Asbach, Benedikt; Kliche, Alexander; Köstler, Josef; Perdiguero, Beatriz; Esteban, Mariano; Jacobs, Bertram L.; Montefiori, David C.; LaBranche, Celia C.; Yates, Nicole L.; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; Roederer, Mario; Landucci, Gary; Forthal, Donald N.; Seaman, Michael S.; Hawkins, Natalie; Self, Steven G.; Sato, Alicia; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, James; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony D.; Weiss, Deborah E.; Francis, Jesse; Galmin, Lindsey; Ding, Song; Heeney, Jonathan L.; Pantaleo, Giuseppe

    2016-01-01

    ABSTRACT In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8+ and CD4+ T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of

  2. The influence of antigen targeting to sub-cellular compartments on the anti-allergic potential of a DNA vaccine.

    PubMed

    Weinberger, Esther E; Isakovic, Almedina; Scheiblhofer, Sandra; Ramsauer, Christina; Reiter, Katrin; Hauser-Kronberger, Cornelia; Thalhamer, Josef; Weiss, Richard

    2013-12-09

    Gene vaccines offer attractive rationales for prophylactic as well as therapeutic treatments of type I allergies. DNA and mRNA vaccines have been shown to prevent from allergic sensitization and to counterbalance established allergic immune reactions. Recent advances in gene vaccine manipulation offer additional opportunities for modulation of T helper cell profiles by specific targeting of cellular compartments. DNA vaccines encoding the major birch pollen allergen Bet v 1.0101 were equipped with different leader sequences to shuttle the antigen to lysosomes (LIMP-II), to trigger cellular secretion (hTPA), or to induce proteasomal degradation via forced ubiquitination (ubi). Mice were pre-vaccinated with these constructs and the protective efficacy was tested by subcutaneous Th2-promoting challenges, followed by allergen inhalation. IgG antibody subclass distribution and allergen-specific IgE as well as cytokine profiles from re-stimulated splenocytes and from BALFs were assessed. The cellular composition of BALFs, and lung resistance and compliance were determined. Immunization with all targeting variants protected from allergic sensitization, i.e. IgE induction, airway hyperresponsiveness, lung inflammation, and systemic and local Th2 cytokine expression. Surprisingly, protection did not clearly correlate with the induction of a systemic Th1 cytokine profile, but rather with proliferating CD4+ CD25+ FoxP3+ T regulatory cells in splenocyte cultures. Targeting the allergen to proteasomal or lysosomal degradation severely down-regulated antibody induction after vaccination, while T cell responses remained unaffected. Although secretion of antigen promoted the highest numbers of Th1 cells, this vaccine type was the least efficient in suppressing the establishment of an allergic immune response. This comparative analysis highlights the modulatory effect of antigen targeting on the resulting immune response, with a special emphasis on prophylactic anti-allergy DNA

  3. Human papillomavirus vaccines and vaccine implementation.

    PubMed

    de Sanjosé, Silvia; Alemany, Laia; Castellsagué, Xavier; Bosch, F Xavier

    2008-11-01

    Countries are now challenged by the rapid development of vaccines aimed at the primary prevention of infections. In the years to come, several vaccines will need to be considered as potential candidates in routine immunization programs. Recently, two new vaccines against two/four types of human papillomavirus (HPV) have been commercialized. Bivalent HPV 16 and 18 (Cervarix) and quadrivalent HPV 6, 11, 16 and 18 (Gardasil) vaccines are now extensively used in some countries. These vaccines will prevent infection and long-running complications, such as cervical cancer, other HPV-related cancers and genital warts (for the quadrivalent vaccine). The beneficial effect of these vaccines will be largely observed in women. This article summarizes the burden of HPV preventable disease worldwide and briefly describes the impact of secondary prevention and the most relevant aspects of the current available vaccines, their efficacy and safety. Finally, some major aspects that are likely to impact the introduction of these vaccines around the world are outlined, with particular emphasis on developing countries.

  4. Development of Streptococcus agalactiae vaccines for tilapia.

    PubMed

    Liu, Guangjin; Zhu, Jielian; Chen, Kangming; Gao, Tingting; Yao, Huochun; Liu, Yongjie; Zhang, Wei; Lu, Chengping

    2016-12-21

    Vaccination is a widely accepted and effective method to prevent most pathogenic diseases in aquaculture. Various species of tilapia, especially Nile tilapia Oreochromis niloticus, are farmed worldwide because of their high consumer demand. Recently, the tilapia-breeding industry has been hampered by outbreaks of Streptococcus agalactiae infection, which cause high mortality and huge economic losses. Many researchers have attempted to develop effective S. agalactiae vaccines for tilapia. This review provides a summary of the different kinds of S. agalactiae vaccines for tilapia that have been developed recently. Among the various vaccine types, inactivated S. agalactiae vaccines showed superior protection efficiency when compared with live attenuated, recombinant and DNA vaccines. With respect to vaccination method, injecting the vaccine into tilapia provided the most effective immunoprotection. Freund's incomplete adjuvant appeared to be suitable for tilapia vaccines. Other factors, such as immunization duration and number, fish size and challenge dose, also influenced the vaccine efficacy.

  5. Noninvasive vaccination against infectious diseases.

    PubMed

    Zheng, Zhichao; Diaz-Arévalo, Diana; Guan, Hongbing; Zeng, Mingtao

    2018-04-06

    The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.

  6. Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa.

    PubMed

    Nkolola, J P; Wee, E G-T; Im, E-J; Jewell, C P; Chen, N; Xu, X-N; McMichael, A J; Hanke, T

    2004-07-01

    For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.

  7. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens.

    PubMed

    Xu, Jinjun; Zhang, Yan; Tao, Jianping

    2013-04-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×10(4) sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control.

  8. Efficacy of a DNA Vaccine Carrying Eimeria maxima Gam56 Antigen Gene against Coccidiosis in Chickens

    PubMed Central

    Xu, Jinjun; Zhang, Yan

    2013-01-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×104 sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control. PMID:23710081

  9. Protective vaccination and blood-stage malaria modify DNA methylation of gene promoters in the liver of Balb/c mice.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel-Azeem S; Ghanjati, Foued; Erichsen, Lars; Santourlidis, Simeon; Wunderlich, Frank; Araúzo-Bravo, Marcos J

    2017-05-01

    Epigenetic mechanisms such as DNA methylation are increasingly recognized to be critical for vaccination efficacy and outcome of different infectious diseases, but corresponding information is scarcely available for host defense against malaria. In the experimental blood-stage malaria Plasmodium chabaudi, we investigate the possible effects of a blood-stage vaccine on DNA methylation of gene promoters in the liver, known as effector against blood-stage malaria, using DNA methylation microarrays. Naturally susceptible Balb/c mice acquire, by protective vaccination, the potency to survive P. chabaudi malaria and, concomitantly, modifications of constitutive DNA methylation of promoters of numerous genes in the liver; specifically, promoters of 256 genes are hyper(=up)- and 345 genes are hypo(=down)-methylated (p < 0.05). Protective vaccination also leads to changes in promoter DNA methylation upon challenge with P. chabaudi at peak parasitemia on day 8 post infection (p.i.), when 571 and 1013 gene promoters are up- and down-methylated, respectively, in relation to constitutive DNA methylation (p < 0.05). Gene set enrichment analyses reveal that both vaccination and P. chabaudi infections mainly modify promoters of those genes which are most statistically enriched with functions relating to regulation of transcription. Genes with down-methylated promoters encompass those encoding CX3CL1, GP130, and GATA2, known to be involved in monocyte recruitment, IL-6 trans-signaling, and onset of erythropoiesis, respectively. Our data suggest that vaccination may epigenetically improve parts of several effector functions of the liver against blood-stage malaria, as, e.g., recruitment of monocyte/macrophage to the liver accelerated liver regeneration and extramedullary hepatic erythropoiesis, thus leading to self-healing of otherwise lethal P. chabaudi blood-stage malaria.

  10. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Tiezhu; Provincial Key Laboratory of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070; Fan Huiying

    2006-09-08

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28{sub 4} were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d{sub 3} DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD{sub 5}) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immunemore » response by inducing IL-4 production. The IL-4 level for sgC-C3d{sub 3} DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.« less

  11. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus).

    PubMed

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Jung, Sung-Ju

    2018-02-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream (Oplegnathus fasciatus) in Korea. In this study, we investigated the potential of viral membrane protein to induce antiviral status protecting rock bream against RBIV infection. We found that fish administered with ORF008L (myristoylated membrane protein, MMP) vaccine exhibited significantly higher levels of survival compared to ORF007L (major capsid protein, MCP). Moreover, ORF008L-based DNA vaccinated fish showed significant protection at 4 and 8 weeks post vaccination (wpv) than non-vaccinated fish after infected with RBIV (6.7 × 10 5 ) at 23 °C, with relative percent survival (RPS) of 73.36% and 46.72%, respectively. All of the survivors from the first RBIV infection were strongly protected (100% RPS) from re-infected with RBIV (1.1 × 10 7 ) at 100 dpi. In addition, the MMP (ORF008L)-based DNA vaccine significantly induced the gene expression of TLR3 (14.2-fold), MyD88 (11.6-fold), Mx (84.7-fold), ISG15 (8.7-fold), PKR (25.6-fold), MHC class I (13.3-fold), Fas (6.7-fold), Fas ligand (6.7-fold), caspase9 (17.0-fold) and caspase3 (15.3-fold) at 7 days post vaccination in the muscle (vaccine injection site). Our results showed the induction of immune responses and suggest the possibility of developing preventive measures against RBIV using myristoylated membrane protein-based DNA vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities.

    PubMed

    Luo, Kun; Zhang, Hong; Zavala, Fidel; Biragyn, Arya; Espinosa, Diego A; Markham, Richard B

    2014-01-01

    Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80-100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.

  13. Vaccines today, vaccines tomorrow: a perspective.

    PubMed

    Loucq, Christian

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts.

  14. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model.

    PubMed

    Jin, Dong; Yu, Xin; Chen, Bing; Li, Zhitao; Ding, Jia; Zhao, Xiuyun; Qi, Gaofu

    2017-06-01

    Development of EGF and VEGF vaccines with high antigenicity for combined immunotherapy of EGF-EGFR signaling-dependent epithelial tumors such as breast cancer. EGF genes from mouse, human and chicken were randomly assembled to chimeric genes by DNA shuffling, then a chimeric EGF was selected out by PCR, SDS-PAGE and immunization for combined immunotherapy of breast cancer with a previously constructed chimeric VEGF vaccine from shuffling. Combined vaccination with chimeric EGF and VEGF from shuffling could induce high titer of antibodies against EGF and VEGF to inhibit tumor growth and angiogenesis, and improve the survival rate of mice with breast cancer. Combined vaccination with EGF and VEGF from shuffling showed better immunotherapy on EGF-EGFR signaling-dependent epithelial tumors such as breast cancer than the single-agent EGF vaccination.

  15. Oral DNA vaccines based on CS-TPP nanoparticles and alginate microparticles confer high protection against infectious pancreatic necrosis virus (IPNV) infection in trout.

    PubMed

    Ahmadivand, Sohrab; Soltani, Mehdi; Behdani, Mahdi; Evensen, Øystein; Alirahimi, Ehsan; Hassanzadeh, Reza; Soltani, Ellahe

    2017-09-01

    Infectious pancreatic necrosis virus (IPNV) is the etiological agent of a contagious viral disease causing remarkable mortalities in different fish species. Despite the availability of commercial vaccines against IPN, the disease still constitutes one of the main threats to the aquaculture industry worldwide. In this study, we developed a DNA vaccine encoding the VP2 gene of IPNV and evaluated its ability to induce protective immunity in rainbow trout fry (3 g) at doses of 10 and 25 μg/fish and boosting with the same doses two weeks later through the oral route using chitosan/tripolyphosphate (CS-TPP) nanoparticles and alginate microparticles incorporated into fish feed. The distribution of the administered vaccines in different organs and transcription of VP2 gene were confirmed by RT-PCR assay at day 30 post boost-vaccination. Transcript levels of IFN-1, Mx-1, IgM, IgT and CD4 genes was dependent on vaccine dose and was significantly up-regulated in head kidney of all orally vaccinated fish groups compared to controls (pcDNA3.1). Cumulative mortalities post-challenge with virulent isolate of the virus were lower in the vaccinated fish and a relative percentage survival (RPS) of 59% and 82% were obtained for the 10 and 25 μg/fish pcDNA3.1-VP2 groups, respectively. Vaccination with the same amount of pcDNA3.1-VP2 encapsulated with CS-TPP nanoparticles resulted in RPS of 47 %and 70%, respectively. Detectable anti-IPNV antibodies were shown until 90 days postvaccination. The orally administrated vaccines significantly decreased VP4 transcripts thus contributing to reducing viral load in surviving fish on day 45 post-challenge. In conclusion, these results show good to high protection post-vaccination alongside with significant up-regulation of key immune genes and detectable levels of circulating antibodies after oral administration of the DNA vaccine formulated in CS-TPP nanoparticles and alginate microparticles in fish feed. Copyright © 2017 Elsevier Ltd. All

  16. In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations

    PubMed Central

    Yang, Yi; Sun, Weilai; Guo, Jingjing; Zhao, Guangyu; Sun, Shihui; Yu, Hong; Guo, Yan; Li, Jungfeng; Jin, Xia; Du, Lanying; Jiang, Shibo; Kou, Zhihua; Zhou, Yusen

    2015-01-01

    The development of an HIV-1 vaccine that is capable of inducing effective and broadly cross-reactive humoral and cellular immune responses remains a challenging task because of the extensive diversity of HIV-1, the difference of virus subtypes (clades) in different geographical regions, and the polymorphism of human leukocyte antigens (HLA). We performed an in silico design of 3 DNA vaccines, designated pJW4303-MEG1, pJW4303-MEG2 and pJW4303-MEG3, encoding multi-epitopes that are highly conserved within the HIV-1 subtypes most prevalent in China and can be recognized through HLA alleles dominant in China. The pJW4303-MEG1-encoded protein consisted of one Th epitope in Env, and one, 2, and 6 epitopes in Pol, Env, and Gag proteins, respectively, with a GGGS linker sequence between epitopes. The pJW4303-MEG2-encoded protein contained similar epitopes in a different order, but with the same linker as pJW4303-MEG1. The pJW4303-MEG3-encoded protein contained the same epitopes in the same order as that of pJW4303-MEG2, but with a different linker sequence (AAY). To evaluate immunogenicity, mice were immunized intramuscularly with these DNA vaccines. Both pJW4303-MEG1 and pJW4303-MEG2 vaccines induced equally potent humoral and cellular immune responses in the vaccinated mice, while pJW4303-MEG3 did not induce immune responses. These results indicate that both epitope and linker sequences are important in designing effective epitope-based vaccines against HIV-1 and other viruses. PMID:25839222

  17. Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin.

    PubMed Central

    Kodihalli, S; Haynes, J R; Robinson, H L; Webster, R G

    1997-01-01

    Inoculation of mice with hemagglutinin (HA)-expressing DNA affords reliable protection against lethal influenza virus infection, while in chickens the same strategy has yielded variable results. Here we show that gene gun delivery of DNA encoding an H5 HA protein confers complete immune protection to chickens challenged with lethal H5 viruses. In tests of the influence of promoter selection on vaccine efficacy, close correlations were obtained between immune responses and the dose of DNA administered, whether a cytomegalovirus (CMV) immediate-early promoter or a chicken beta-actin promoter was used. Perhaps most important, the HA-DNA vaccine conferred 95% cross-protection against challenge with lethal antigenic variants that differed from the primary antigen by 11 to 13% (HA1 amino acid sequence homology). Overall, the high levels of protection seen with gene gun delivery of HA-DNA were as good as, if not better than, those achieved with a conventional whole-virus vaccine, with fewer instances of morbidity and death. The absence of detectable antibody titers after primary immunization, together with the rapid appearance of high titers immediately after challenge, implicates efficient B-cell priming as the principal mechanism of DNA-mediated immune protection. Our results suggest that the efficacy of HA-DNA influenza virus vaccine in mice extends to chickens and probably to other avian species as well. Indeed, the H5 preparation we describe offers an attractive means to protect the domestic poultry industry in the United States from lethal H5N2 viruses, which continue to circulate in Mexico. PMID:9094608

  18. KISS1 can be used as a novel target for developing a DNA immunocastration vaccine in ram lambs.

    PubMed

    Han, Yanguo; Liu, Guiqiong; Jiang, Xunping; Ijaz, Nabeel; Tesema, Birhanu; Xie, Guangyue

    2015-02-04

    KISS1 gene-encoding kisspeptins are critical for the onset of puberty and control of adult fertility. This study investigated whether KISS1 can be used as a novel target for immunocastration. Human KISS1 was fused with the HBsAg-S gene for constructing an antibiotic-free recombinant plasmid pKS-asd that coded for 31.168 kDa target fusion protein. Six male Hu sheep lambs were divided into two equal groups, treatment and control. The vaccine (1mg/ram lamb) prepared in saline solution was injected into lambs at weeks 0, 3 and 6 of the experiment, respectively. Vaccine efficacy was evaluated in terms of KISS1-specific IgG antibody response, serum testosterone levels, scrotal circumference, testicular weight, length and breadth, extent of testicular tissue damage, and sexual behaviour changes. The specific anti-KISS1 antibody titre in vaccinated animals was significantly higher than that in controls (p<0.05). In addition, vaccinated animals showed lower serum testosterone level, testicular weight and length and smaller scrotal circumference than those in controls (p<0.05). Spermatogenesis of seminiferous tubules in vaccinated animals was suppressed; sexual behaviours in vaccinated animals were significantly lower (p<0.05) than those in controls. In conclusion, the immunization against KISS1 in this DNA vaccine induced a strong antibody response and resulted in the suppression of gonadal function and sexual behaviour in animals, demonstrating that KISS1 can be used as a novel target for developing a DNA immunocastration vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins.

    PubMed

    Gangadhara, Sailaja; Kwon, Young-Man; Jeeva, Subbiah; Quan, Fu-Shi; Wang, Baozhong; Moss, Bernard; Compans, Richard W; Amara, Rama Rao; Jabbar, M Abdul; Kang, Sang-Moo

    2017-12-19

    Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.

  20. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation.

    PubMed

    Barrett, Alan D T

    2018-01-01

    Zika virus (ZIKV), a mosquito-borne flavivirus, was first identified in the 1940s in Uganda in Africa and emerged in the Americas in Brazil in May 2015. In the 30 months since ZIKV emerged as a major public health problem, spectacular progress has been made with vaccine development cumulating with the publication of three reports of phase 1 clinical trials in the 4th quarter of 2017. Clinical trials involving candidate DNA and purified inactivated virus vaccines showed all were safe and well-tolerated in the small number of volunteers and all induced neutralizing antibodies, although these varied by vaccine candidate and dosing regimen. These results suggest that a Zika vaccine can be developed and that phase 2 clinical trials are warranted. However, it is difficult to compare the results from the different phase 1 studies or with neutralizing antibodies induced by licensed flavivirus vaccines (Japanese encephalitis, tick-borne encephalitis, and yellow fever) as neutralizing antibody assays vary and, unfortunately, there are no standards for Zika virus neutralizing antibodies. In addition to clinical studies, substantial progress continues to be made in nonclinical development, particularly in terms of the ability of candidate vaccines to protect reproductive tissues, and the potential use of monoclonal antibodies for passive prophylaxis.

  1. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever

    PubMed Central

    Golden, Joseph W.; Maes, Piet; Kwilas, Steven A.; Ballantyne, John

    2016-01-01

    ABSTRACT Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT50), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can

  2. Footrot vaccines and vaccination.

    PubMed

    Dhungyel, Om; Hunter, James; Whittington, Richard

    2014-05-30

    Research on footrot in small ruminants, which is caused by Dichelobacter nodosus, has led to development of vaccines and their application for control, treatment and eradication of the disease in sheep. Footrot vaccines have evolved over decades to contain monovalent whole cell, multivalent recombinant fimbrial, and finally mono or bivalent recombinant fimbrial antigens. Initially whole cell vaccines made against the few known serogroups of D. nodosus were found to be inefficient in control of the disease in the field, which was attributed to the presence of other unidentified serogroups and also the use of inefficient adjuvants. Fimbriae or pili, which are the basis for antigenic variation, were found to be the major protective and also curative antigens but they are not cross protective between the different serogroups. Multivalent vaccines incorporating all the known serogroups have been proven to be of limited efficacy due to the phenomenon of antigenic competition. Recent studies in Nepal, Bhutan and Australia have shown that outbreak-specific vaccination which involves targeting identified serogroups with mono- or bivalent recombinant fimbrial vaccines, can be very effective in sheep and goats. Where multiple serogroups are present in a flock, antigenic competition can be overcome by sequentially targeting the serogroups with different bivalent vaccines every 3 months. A common antigen which would confer immunity to all serogroups would be the ideal immunogen but the initial studies were not successful in this area. Until universal antigen/s are available, flock specific mono or bivalent fimbrial vaccines are likely to be the most effective tool for control and eradication of footrot in sheep and goats. Future research in footrot vaccines should be focused on improving the duration of prophylaxis by incorporating new and emerging immunomodulators or adjuvants with modified delivery vehicles, discovering a common antigen and understanding the mechanisms of

  3. Vaccine platform recombinant measles virus.

    PubMed

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  4. Influence of temperature on the efficacy of homologous and heterologous DNA vaccines against viral hemorrhagic septicemia in Pacific Herring

    USGS Publications Warehouse

    Hart, Lucas; Lorenzen, Niels; Einer-Jensen, Katja; Purcell, Maureen; Hershberger, Paul

    2017-01-01

    Homologous and heterologous (genogroup Ia) DNA vaccines against viral hemorrhagic septicemia virus (genogroup IVa) conferred partial protection in Pacific Herring Clupea pallasii. Early protection at 2 weeks postvaccination (PV) was low and occurred only at an elevated temperature (12.6°C, 189 degree days), where the relative percent survival following viral exposure was similar for the two vaccines (IVa and Ia) and higher than that of negative controls at the same temperature. Late protection at 10 weeks PV was induced by both vaccines but was higher with the homologous vaccine at both 9.0°C and 12.6°C. Virus neutralization titers were detected among 55% of all vaccinated fish at 10 weeks PV. The results suggest that the immune response profile triggered by DNA vaccination of herring was similar to that reported for Rainbow Trout Oncorhynchus mykiss by Lorenzen and LaPatra in 2005, who found interferon responses in the early days PV and the transition to adaptive response later. However, the protective effect was far less prominent in herring, possibly reflecting different physiologies or adaptations of the two fish species.

  5. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  6. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    PubMed

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  7. Leishmaniasis vaccines: past, present and future.

    PubMed

    Modabber, Farrokh

    2010-11-01

    No vaccine exists against any form of leishmaniasis. Because recovery from infection is usually accompanied by a strong immunity and because it is possible to protect experimental animals against live challenge, hope for the development of a vaccine for humans has been high. However, leishmaniasis is a disease of the poor and the market for a vaccine is very limited. Until a few years ago, with minimal resources, only a pragmatic approach was possible for testing the first-generation vaccines (i.e. killed whole parasites). Recently, funding has become available for developing defined second-generation vaccines, including recombinant proteins and DNA constructs. With new adjuvants also being developed there is new hope, and several new vaccines are in development against leishmaniasis. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA.

    DTIC Science & Technology

    1987-10-13

    after multiple passages in vivo and in vitro. J. Gen. Virol. 67, 1741- 1744. Sabin , A.B. (1985). Oral poliovirus vaccine : history of its development...IN (N NEW APPROACHES TO ATTENUATED HEPATITIS A VACCINE DEVELOPMENT: Q) CLONING AND SEQUENCING OF CELL-CULTURE ADAPTED VIRAL cDNA I ANNUAL REPORT...6ll02Bsl0 A 055 11. TITLE (Include Security Classification) New Approaches to Attenuated Hepatitis A Vaccine Development: Cloning and Sequencing of Cell

  9. Vaccines for Canine Leishmaniasis

    PubMed Central

    Palatnik-de-Sousa, Clarisa B.

    2012-01-01

    Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost–effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL. PMID:22566950

  10. Protective and Anti-Pathology Effects of Sm Fructose-1,6-Bisphosphate Aldolase-Based DNA Vaccine against Schistosoma mansoni by Changing Route of Injection

    PubMed Central

    Saber, Mohamed; Hammam, Olft; Karim, Amr; Medhat, Amina; Khela, Mamdouh; El-Dabaa, Ehab

    2013-01-01

    This study aimed to evaluate the efficacy of fructose-1,6-bis phosphate aldolase (SMALDO) DNA vaccination against Schistosoma mansoni infection using different routes of injection. The SMALDO has been cloned into the eukaryotic expression vector pcDNA3.1/V5-His TOPO-TA and was used in injecting Swiss albino mice intramuscularly (IM), subcutaneously (SC), or intraperitoneally (IP) (50 µg/mouse). Mice vaccinated with non-recombinant pcDNA3.1 served as controls. Each group was immunized 4 times at weeks 0, 2, 4, and 6. Two weeks after the last booster dose, all mice groups were infected with 80 S. mansoni cercariae via tail immersion. At week 8 post-infection, animals were sacrificed for assessment of parasitological and histopathological parameters. High anti-SMALDO IgG antibody titers were detected in sera of all vaccinated groups (P<0.01) compared to the control group. Both the IP and SC vaccination routes resulted in a significant reduction in worm burden (46.2% and 28.9%, respectively, P<0.01). This was accompanied by a significant reduction in hepatic and intestinal egg counts (41.7% and 40.2%, respectively, P<0.01) in the IP group only. The number of dead eggs was significantly increased in both IP and IM groups (P<0.01). IP vaccination recorded the highest significant reduction in granuloma number and diameter (54.7% and 29.2%, respectively, P<0.01) and significant increase in dead miracidia (P<0.01). In conclusion, changing the injection route of SMALDO DNA vaccination significantly influenced the efficacy of vaccination. SMALDO DNA vaccination via IP route could be a promising protective and anti-pathology vaccine candidate against S. mansoni infection. PMID:23710082

  11. Protective and anti-pathology effects of Sm fructose-1,6-bisphosphate aldolase-based DNA vaccine against schistosoma mansoni by changing route of injection.

    PubMed

    Saber, Mohamed; Diab, Tarek; Hammam, Olft; Karim, Amr; Medhat, Amina; Khela, Mamdouh; El-Dabaa, Ehab

    2013-04-01

    This study aimed to evaluate the efficacy of fructose-1,6-bis phosphate aldolase (SMALDO) DNA vaccination against Schistosoma mansoni infection using different routes of injection. The SMALDO has been cloned into the eukaryotic expression vector pcDNA3.1/V5-His TOPO-TA and was used in injecting Swiss albino mice intramuscularly (IM), subcutaneously (SC), or intraperitoneally (IP) (50 µg/mouse). Mice vaccinated with non-recombinant pcDNA3.1 served as controls. Each group was immunized 4 times at weeks 0, 2, 4, and 6. Two weeks after the last booster dose, all mice groups were infected with 80 S. mansoni cercariae via tail immersion. At week 8 post-infection, animals were sacrificed for assessment of parasitological and histopathological parameters. High anti-SMALDO IgG antibody titers were detected in sera of all vaccinated groups (P<0.01) compared to the control group. Both the IP and SC vaccination routes resulted in a significant reduction in worm burden (46.2% and 28.9%, respectively, P<0.01). This was accompanied by a significant reduction in hepatic and intestinal egg counts (41.7% and 40.2%, respectively, P<0.01) in the IP group only. The number of dead eggs was significantly increased in both IP and IM groups (P<0.01). IP vaccination recorded the highest significant reduction in granuloma number and diameter (54.7% and 29.2%, respectively, P<0.01) and significant increase in dead miracidia (P<0.01). In conclusion, changing the injection route of SMALDO DNA vaccination significantly influenced the efficacy of vaccination. SMALDO DNA vaccination via IP route could be a promising protective and anti-pathology vaccine candidate against S. mansoni infection.

  12. Novel Antigen Identification Method for Discovery of Protective Malaria Antigens by Rapid Testing of DNA Vaccines Encoding Exons from the Parasite Genome

    PubMed Central

    Haddad, Diana; Bilcikova, Erika; Witney, Adam A.; Carlton, Jane M.; White, Charles E.; Blair, Peter L.; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C.; Carucci, Daniel J.; Weiss, Walter R.

    2004-01-01

    We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens. PMID:14977966

  13. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    PubMed

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Identification and characterization of avian retroviruses in chicken embryo-derived yellow fever vaccines: investigation of transmission to vaccine recipients.

    PubMed

    Hussain, Althaf I; Johnson, Jeffrey A; Da Silva Freire, Marcos; Heneine, Walid

    2003-01-01

    All currently licensed yellow fever (YF) vaccines are propagated in chicken embryos. Recent studies of chick cell-derived measles and mumps vaccines show evidence of two types of retrovirus particles, the endogenous avian retrovirus (EAV) and the endogenous avian leukosis virus (ALV-E), which originate from the chicken embryonic fibroblast substrates. In this study, we investigated substrate-derived avian retrovirus contamination in YF vaccines currently produced by three manufacturers (YF-vax [Connaught Laboratories], Stamaril [Aventis], and YF-FIOCRUZ [FIOCRUZ-Bio-Manguinhos]). Testing for reverse transcriptase (RT) activity was not possible because of assay inhibition. However, Western blot analysis of virus pellets with anti-ALV RT antiserum detected three distinct RT proteins in all vaccines, indicating that more than one source is responsible for the RTs present in the vaccines. PCR analysis of both chicken substrate DNA and particle-associated RNA from the YF vaccines showed no evidence of the long terminal repeat sequences of exogenous ALV subgroups A to D in any of the vaccines. In contrast, both ALV-E and EAV particle-associated RNA were detected at equivalent titers in each vaccine by RT-PCR. Quantitative real-time RT-PCR revealed 61,600, 348,000, and 1,665,000 ALV-E RNA copies per dose of Stamaril, YF-FIOCRUZ, and YF-vax vaccines, respectively. ev locus-specific PCR testing of the vaccine-associated chicken substrate DNA was positive both for the nondefective ev-12 locus in two vaccines and for the defective ev-1 locus in all three vaccines. Both intact and ev-1 pol sequences were also identified in the particle-associated RNA. To investigate the risks of transmission, serum samples from 43 YF vaccine recipients were studied. None of the samples were seropositive by an ALV-E-based Western blot assay or had detectable EAV or ALV-E RNA sequences by RT-PCR. YF vaccines produced by the three manufacturers all have particles containing EAV genomes and

  15. Construction and immunogenicity of a DNA vaccine coexpressing GP3 and GP5 of genotype-I porcine reproductive and respiratory syndrome virus

    PubMed Central

    2014-01-01

    Background The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. Results To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN–γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. Conclusions Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More

  16. Granulocyte-Macrophage Colony-Stimulating Factor Priming plus Papillomavirus E6 DNA Vaccination: Effects on Papilloma Formation and Regression in the Cottontail Rabbit Papillomavirus-Rabbit Model

    PubMed Central

    Leachman, Sancy A.; Tigelaar, Robert E.; Shlyankevich, Mark; Slade, Martin D.; Irwin, Michele; Chang, Ed; Wu, T. C.; Xiao, Wei; Pazhani, Sundaram; Zelterman, Daniel; Brandsma, Janet L.

    2000-01-01

    A cottontail rabbit papillomavirus (CRPV) E6 DNA vaccine that induces significant protection against CRPV challenge was used in a superior vaccination regimen in which the cutaneous sites of vaccination were primed with an expression vector encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that induces differentiation and local recruitment of professional antigen-presenting cells. This treatment induced a massive influx of major histocompatibility complex class II-positive cells. In a vaccination-challenge experiment, rabbit groups were treated by E6 DNA vaccination, GM-CSF DNA inoculation, or a combination of both treatments. After two immunizations, rabbits were challenged with CRPV at low, moderate, and high stringencies and monitored for papilloma formation. As expected, all clinical outcomes were monotonically related to the stringency of the viral challenge. The results demonstrate that GM-CSF priming greatly augmented the effects of CRPV E6 vaccination. First, challenge sites in control rabbits (at the moderate challenge stringency) had a 0% probability of remaining disease free, versus a 50% probability in E6-vaccinated rabbits, and whereas GM-CSF alone had no effect, the interaction between GM-CSF priming and E6 vaccination increased disease-free survival to 67%. Second, the incubation period before papilloma onset was lengthened by E6 DNA vaccination alone or to some extent by GM-CSF DNA inoculation alone, and the combination of treatments induced additive effects. Third, the rate of papilloma growth was reduced by E6 vaccination and, to a lesser extent, by GM-CSF treatment. In addition, the interaction between the E6 and GM-CSF treatments was synergistic and yielded more than a 99% reduction in papilloma volume. Finally, regression occurred among the papillomas that formed in rabbits treated with the E6 vaccine and/or with GM-CSF, with the highest regression frequency occurring in rabbits that received the combination

  17. How Influenza Vaccination Policy May affect Vaccine Logistics

    PubMed Central

    Assi, Tina-Marie; Rookkapan, Korngamon; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T.; Welling, Joel S.; Norman, Bryan A.; Connor, Diana L.; Chen, Sheng-I; Slayton, Rachel B.; Laosiritaworn, Yongjua; Wateska, Angela R.; Wisniewski, Stephen R.; Lee, Bruce Y.

    2012-01-01

    Background When policymakers make decision about the target populations and timing of influenza vaccination, they may not consider the impact on the vaccine supply chains, which may in turn affect vaccine availability. Purpose Our goal is to explore the effects on the Thailand vaccine supply chain of introducing influenza vaccines and varying the target populations and immunization time-frames. Methods Utilized our custom-designed software HERMES (Highly Extensible Resource for Modeling Supply Chains), we developed a detailed, computational discrete-event simulation model of the Thailand's National Immunization Program (NIP) supply chain in Trang Province, Thailand., A suite of experiments simulated introducing influenza vaccines for different target populations and over different time-frames prior to and during the annual influenza season. Results Introducing influenza vaccines creates bottlenecks that reduce the availability of both influenza vaccines as well as the other NIP vaccines, with provincial to district transport capacity being the primary constraint. Even covering only 25% of the Advisory Committee on Immunization Practice-recommended population while administering the vaccine over six months hinders overall vaccine availability so that only 62% of arriving patients can receive vaccines. Increasing the target population from 25% to 100% progressively worsens these bottlenecks, while increasing influenza vaccination time - frame from 1 to 6 months decreases these bottlenecks. Conclusion Since the choice of target populations for influenza vaccination and the time-frame to deliver this vaccine can substantially affect the flow of all vaccines, policy-makers may want to consider supply chain effects when choosing target populations for a vaccine. PMID:22537993

  18. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+ T cell responses.

    PubMed

    Bazhan, S I; Karpenko, L I; Ilyicheva, T N; Belavin, P A; Seregin, S V; Danilyuk, N K; Antonets, D V; Ilyichev, A A

    2010-04-01

    Advances in defining HIV-1 CD8+ T cell epitopes and understanding endogenous MHC class I antigen processing enable the rational design of polyepitope vaccines for eliciting broadly targeted CD8+ T cell responses to HIV-1. Here we describe the construction and comparison of experimental DNA vaccines consisting of ten selected HLA-A2 epitopes from the major HIV-1 antigens Env, Gag, Pol, Nef, and Vpr. The immunogenicity of designed gene constructs was assessed after double DNA prime, single vaccinia virus boost immunization of HLA-A2 transgenic mice. We compared a number of parameters including different strategies for fusing ubiquitin to the polyepitope and including spacer sequences between epitopes to optimize proteasome liberation and TAP transport. It was demonstrated that the vaccine construct that induced in vitro the largest number of [peptide-MHC class I] complexes was also the most immunogenic in the animal experiments. This most immunogenic vaccine construct contained the N-terminal ubiquitin for targeting the polyepitope to the proteasome and included both proteasome liberation and TAP transport optimized spacer sequences that flanked the epitopes within the polyepitope construct. The immunogenicity of determinants was strictly related to their affinities for HLA-A2. Our finding supports the concept of rational vaccine design based on detailed knowledge of antigen processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Induction of long-lasting multi-specific CD8+ T cells by a four-component DNA-MVA/HIVA-RENTA candidate HIV-1 vaccine in rhesus macaques.

    PubMed

    Im, Eung-Jun; Nkolola, Joseph P; di Gleria, Kati; McMichael, Andrew J; Hanke, Tomás

    2006-10-01

    As a part of a long-term effort to develop vaccine against HIV-1 clade A inducing protective T cell responses in humans, we run mutually complementing studies in humans and non-human primates (NHP) with the aim to maximize vaccine immunogenicity. The candidate vaccine under development has four components, pTHr.HIVA and pTH.RENTA DNA, and modified vaccinia virus Ankara (MVA).HIVA and MVA.RENTA, delivered in a heterologous DNA prime-MVA boost regimen. While the HIVA (Gag/epitopes) components have been tested in NHP and over 300 human subjects, we plan to test in humans the RENTA (reverse transcriptase, gp41, Nef, Tat) vaccines designed to broaden HIVA-induced responses in year 2007. Here, we investigated the four-component vaccine long-term immunogenicity in Mamu-A*01-positive rhesus macaques and demonstrated that the vaccine-induced T cells were multi-specific, multi-functional, readily proliferated to recall peptides and were circulating in the peripheral blood of vaccine recipients over 1 year after vaccine administration. The consensus clade A-elicited T cells recognized 50% of tested epitope variants from other HIV-1 clades. Thus, the DNA-MVA/HIVA-RENTA vaccine induced memory T cells of desirable characteristics and similarities to those induced in humans by HIVA vaccines alone; however, single-clade vaccines may not elicit sufficiently cross-reactive responses.

  20. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model.

    PubMed

    Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein

    2012-06-08

    Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Vaccine-preventable diseases, vaccines and Guillain-Barre' syndrome.

    PubMed

    Principi, Nicola; Esposito, Susanna

    2018-06-04

    Guillain-Barré syndrome (GBS) is an acute, immune-mediated polyradiculoneuropathy. Infections and vaccines have been hypothesized to play a role in triggering GBS development. These beliefs can play a role in reducing vaccination coverage. In this report, data concerning this hypothesis are discussed. It is shown that an association between vaccine administration and GBS has never been proven for most of debated vaccines, although it cannot be definitively excluded. The only exception is the influenza vaccine, at least for the preparation used in 1976. For some vaccines, such as measles/mumps/rubella, human papillomavirus, tetravalent conjugated meningococcal vaccine, and influenza, the debate between supporters and opponents of vaccination remains robust and perception of vaccines' low safety remains a barrier to achieving adequate vaccination coverage. Less than 1 case of GBS per million immunized persons might occur for these vaccines. However, in some casesimmunization actually reduces the risk of GBS development. In addition, the benefits of vaccination are clearly demonstrated by the eradication or enormous decline in the incidence of many vaccine-preventable diseases. These data highlight that the hypothesized risks of adverse events, such as GBS, cannot be considered a valid reason to avoid the administration of currently recommended vaccines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Recombinant Saccharomyces cerevisiae serves as novel carrier for oral DNA vaccines in Carassius auratus.

    PubMed

    Yan, Nana; Xu, Kun; Li, Xinyi; Liu, Yuwan; Bai, Yichun; Zhang, Xiaohan; Han, Baoquan; Chen, Zhilong; Zhang, Zhiying

    2015-12-01

    Oral delivery of DNA vaccines represents a promising vaccinating method for fish. Recombinant yeast has been proved to be a safe carrier for delivering antigen proteins and DNAs to some species in vivo. However, whether recombinant yeast can be used to deliver functional DNAs for vaccination to fish is still unknown. In this study, red crucian carp (Carassius auratus) was orally administrated with recombinant Saccharomyces cerevisiae harboring CMV-EGFP expression cassette. On day 5 post the first vaccination, EGFP expression in the hindgut was detected under fluorescence microscope. To further study whether the delivered gene could induce specific immune responses, the model antigen ovalbumin (OVA) was used as immunogen, and oral administrations were conducted with recombinant S. cerevisiae harboring pCMV-OVA mammalian gene expression cassette as gene delivery or pADH1-OVA yeast gene expression cassette as protein delivery. Each administration was performed with three different doses, and the OVA-specific serum antibody was detected in all the experimental groups by western blotting and enzyme-linked immunosorbent assay (ELISA). ELISA assay also revealed that pCMV-OVA group with lower dose (pCMV-OVA-L) and pADH1-OVA group with moderate dose (pADH1-OVA-M) triggered relatively stronger antibody response than the other two doses. Moreover, the antibody level induced by pCMV-OVA-L group was significantly higher than pADH1-OVA-M group at the same serum dilutions. All the results suggested that recombinant yeast can be used as a potential carrier for oral DNA vaccines and would help to develop more practical strategies to control infectious diseases in aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses.

    PubMed

    Ferraro, Bernadette; Cisper, Neil J; Talbott, Kendra T; Philipson-Weiner, Lindsey; Lucke, Colleen E; Khan, Amir S; Sardesai, Niranjan Y; Weiner, David B

    2011-01-01

    Prostate cancer (PCa) remains a significant public health problem. Current treatment modalities for PCa can be useful, but may be accompanied by deleterious side effects and often do not confer long-term control. Accordingly, additional modalities, such as immunotherapy, may represent an important approach for PCa treatment. The identification of tissue-specific antigens engenders PCa an attractive target for immunotherapeutic approaches. Delivery of DNA vaccines with electroporation has shown promising results for prophylactic and therapeutic targets in a variety of species including humans. Application of this technology for PCa immunotherapy strategies has been limited to single antigen and epitope targets. We sought to test the hypothesis that a broader collection of antigens would improve the breadth and effectiveness of a PCa immune therapy approach. We therefore developed highly optimized DNA vaccines encoding prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) as a dual antigen approach to immune therapy of PCa. PSA-and PSMA-specific cellular immunogenicity was evaluated in a mouse model for co-delivery and single antigen vaccination. Mice received 2 immunizations spaced 2 weeks apart and immunogenicity was evaluated 1 week after the second vaccination. Both the PSA and PSMA vaccines induced robust antigen-specific IFNγ responses by ELISpot. Further characterization of cellular immunogenicity by flow cytometry indicated strong antigen-specific TNFα production by CD4+ T cells and IFNγ and IL-2 secretion by both CD4+ and CD8+ T cells. There was also a strong humoral response as determined by PSA-specific seroconversion. These data support further study of this novel approach to immune therapy of PCa.

  4. A DNA vaccine for the prevention of Ebola virus infection.

    PubMed

    Dery, Markalain; Bausch, Daniel G

    2008-06-01

    The NIH and Vical Inc are developing an intramuscular needle-free DNA vaccine containing plasmids encoding the envelope glycoprotein of Ebola virus (EBOV) from the Sudan and Zaire strains, and the nucleoprotein of EBOV Zaire strain. A phase I clinical trial demonstrated a good safety profile, with most adverse events limited to the site of injection and largely attributable to the delivery.

  5. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia ( Niloticus oreochromis ) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  6. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  7. Development of a New DNA Vaccine for Alzheimer Disease Targeting a Wide Range of Aβ Species and Amyloidogenic Peptides

    PubMed Central

    Matsumoto, Yoh; Niimi, Naoko; Kohyama, Kuniko

    2013-01-01

    It has recently been determined that not only Aβ oligomers, but also other Aβ species and amyloidogenic peptides are neurotoxic in Alzheimer disease (AD) and play a pivotal role in AD pathogenesis. In the present study, we attempted to develop new DNA vaccines targeting a wide range of Aβ species. For this purpose, we first performed in vitro assays with newly developed vaccines to evaluate Aβ production and Aβ secretion abilities and then chose an IgL-Aβx4-Fc-IL-4 vaccine (designated YM3711) for further studies. YM3711 was vaccinated to mice, rabbits and monkeys to evaluate anti-Aβ species antibody-producing ability and Aβ reduction effects. It was found that YM3711 vaccination induced significantly higher levels of antibodies not only to Aβ1-42 but also to AD-related molecules including AβpE3-42, Aβ oligomers and Aβ fibrils. Importantly, YM3711 significantly reduced these Aβ species in the brain of model mice. Binding and competition assays using translated YM3711 protein products clearly demonstrated that a large part of antibodies induced by YM3711 vaccination are directed at conformational epitopes of the Aβ complex and oligomers. Taken together, we demonstrate that YM3711 is a powerful DNA vaccine targeting a wide range of AD-related molecules and is worth examining in preclinical and clinical trials. PMID:24086465

  8. Recent developments in leishmaniasis vaccine delivery systems.

    PubMed

    Bhowmick, Sudipta; Ali, Nahid

    2008-07-01

    The observation that recovery from infection with Leishmania confers immunity to reinfection suggests that control of leishmaniasis by vaccination may be possible. New generation vaccines, particularly those based on recombinant proteins and DNA, are found to be less immunogenic. There is an urgent need for the development of new and improved vaccine adjuvants. Based on their principal mechanisms of action, adjuvants can be broadly separated into two classes: immunostimulatory adjuvants and vaccine delivery systems. Vaccine delivery systems can carry both antigen and adjuvant for effective delivery to the antigen-presenting cells (APCs). In this article, we review the adjuvants, the delivery systems and their combinations used in the search of an effective vaccine against leishmaniasis. Based on current knowledge, cationic liposomes appear to have better prospects as effective delivery systems for developing a vaccine for leishmaniasis.

  9. Immunogenicity and safety of xenogeneic vascular endothelial growth factor receptor-2 DNA vaccination in mice and dogs

    PubMed Central

    Denies, Sofie; Cicchelero, Laetitia; Polis, Ingeborgh; Sanders, Niek N.

    2016-01-01

    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an attractive target in oncology due to its crucial role in angiogenesis. In this study a DNA vaccine coding for human VEGFR-2 was evaluated in healthy mice and dogs, administered by intradermal injection and electroporation. In mice, three doses and vaccination schedules were evaluated. Cellular immune responses were measured by intracellular IFN-gamma staining and a cytotoxicity assay and antibodies by ELISA. Safety was assessed by measuring regulatory T cells and myeloid derived suppressor cells and a wound healing assay. The vaccine was subsequently evaluated in dogs, which were vaccinated three times with 100μg. Cellular immune responses were measured by intracellular IFN-gamma staining and antibodies by a flow cytometric assay. In mice, maximal cellular responses were observed after two vaccinations with 5μg. Humoral responses continued to increase with higher dose and number of vaccinations. No abnormalities in the measured safety parameters were observed. The vaccine was also capable of eliciting a cellular and humoral immune response in dogs. No adverse effects were observed, but tolerability of the electroporation was poor. This study will facilitate the evaluation of the vaccine in tumor bearing animals, ranging from rodent models to dogs with spontaneous tumors. PMID:26871296

  10. Development of Zika Virus Vaccines

    PubMed Central

    Makhluf, Huda; Shresta, Sujan

    2018-01-01

    Zika virus (ZIKV) is a mosquito-borne flavivirus that emerged as a global threat following the most recent outbreak in Brazil in 2015. ZIKV infection of pregnant women is associated with fetal abnormalities such as microcephaly, and infection of adults can lead to Guillain–Barré syndrome, an autoimmune disease characterized by neurological deficits. Although there are currently licensed vaccines for other flaviviruses, there remains an urgent need for preventative vaccines against ZIKV infection. Herein we describe the current efforts to accelerate the development of ZIKV vaccines using various platforms, including live attenuated virus, inactivated virus, DNA and RNA, viral vectors, and in silico-predicted immunogenic viral epitopes. Many of these approaches have leveraged lessons learned from past experience with Dengue and other flavivirus vaccines. PMID:29346287

  11. The impact of new technologies on vaccines.

    PubMed

    Talwar, G P; Diwan, M; Razvi, F; Malhotra, R

    1999-01-01

    Vast changes are taking place in vaccinology consequent to the introduction of new technologies. Amongst the vaccines included in the Expanded Programme of Immunization (EPI), the pertussis vaccine has been replaced by acellular purified fractions devoid of side-effects. Non-pathogenic but immunogenic mutants of tetanus and diptheria toxins are likely to replace the toxoids. An effective vaccine against hepatitis B prepared by recombinant technology is in large-scale use. Conjugated vaccines against Haemophilus influenzae b, S. pneumococcus and meningococcus are now available, as also vaccines against mumps, rubella and measles. Combination vaccines have been devised to limit the number of injections. Vaccine delivery systems have been developed to deliver multiple doses of the vaccine at a single contact point. A genetically-engineered oral vaccine for typhoid imparts better and longer duration of immunity. Oral vaccines for cholera and other enteric infections are under clinical trials. The nose as a route for immunization is showing promise for mucosal immunity and for anti-inflammatory experimental vaccines against multiple sclerosis and insulin-dependent diabetes mellitus. The range of vaccines has expanded to include pathogens resident in the body such as Helicobacter pylori (duodenal ulcer), S. mutans (dental caries), and human papilloma virus (carcinoma of the cervix). An important progress is the recognition that DNA alone can constitute the vaccines, inducing both humoral and cell-mediated immune responses. A large number of DNA vaccines have been made and shown interesting results in experimental animals. Live recombinant vaccines against rabies and rinderpest have proven to be highly effective for controlling these infections in the field, and those for AIDS are under clinical trial. Potent adjuvants have added to the efficacy of the vaccines. New technologies have emerged to 'humanize' mouse monoclonals by genetic engineering and express these

  12. Canine Distemper Virus DNA Vaccination Induces Humoral and Cellular Immunity and Protects against a Lethal Intracerebral Challenge

    PubMed Central

    Sixt, Nathalie; Cardoso, Alicia; Vallier, Agnès; Fayolle, Joël; Buckland, Robin; Wild, T. Fabian

    1998-01-01

    We have studied the immune responses to the two glycoproteins of the Morbillivirus canine distemper virus (CDV) after DNA vaccination of BALB/c mice. The plasmids coding for both CDV hemagglutinin (H) and fusion protein (F) induce high levels of antibodies which persist for more than 6 months. Intramuscular inoculation of the CDV DNA induces a predominantly immunoglobulin G2a (IgG2a) response (Th1 response), whereas gene gun immunization with CDV H evokes exclusively an IgG1 response (Th2 response). In contrast, the CDV F gene elicited a mixed, IgG1 and IgG2a response. Mice vaccinated (by gene gun) with either the CDV H or F DNA showed a class I-restricted cytotoxic lymphocyte response. Immunized mice challenged intracerebrally with a lethal dose of a neurovirulent strain of CDV were protected. However, approximately 30% of the mice vaccinated with the CDV F DNA became obese in the first 2 months following the challenge. This was not correlated with the serum antibody levels. PMID:9765383

  13. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Vaccine hesitancy

    PubMed Central

    Dubé, Eve; Laberge, Caroline; Guay, Maryse; Bramadat, Paul; Roy, Réal; Bettinger, Julie A.

    2013-01-01

    Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination. PMID:23584253

  15. Partial reconstitution of the CD4+-T-cell compartment in CD4 gene knockout mice restores responses to tuberculosis DNA vaccines.

    PubMed

    D'Souza, Sushila; Romano, Marta; Korf, Johanna; Wang, Xiao-Ming; Adnet, Pierre-Yves; Huygen, Kris

    2006-05-01

    Reactivation tuberculosis (TB) is a serious problem in immunocompromised individuals, especially those with human immunodeficiency virus (HIV) coinfection. The adaptive immune response mediated by CD4+ and CD8+ T cells is known to confer protection against TB. Hence, vaccines against TB are designed to activate these two components of the immune system. Anti-TB DNA vaccines encoding the immunodominant proteins Ag85A, Ag85B, and PstS-3 from Mycobacterium tuberculosis are ineffective in mice lacking CD4+ T cells (CD4-/- mice). In this study, we demonstrate that reconstitution of the T-cell compartment in CD4-/- mice restores vaccine-specific antibody and gamma interferon (IFN-gamma) responses to these DNA vaccines. The magnitude of the immune responses correlated with the extent of reconstitution of the CD4+-T-cell compartment. Reconstituted mice vaccinated with DNA encoding PstS-3, known to encode a dominant D(b)-restricted CD8+-T-cell epitope, displayed CD8+-T-cell responses not observed in CD4-/- mice. M. tuberculosis challenge in reconstituted mice led to the extravasation of IFN-gamma-producing CD4+ and CD8+ T cells into lungs, the primary site of bacterial replication. Importantly, a reconstitution of 12 to 15% of the CD4+-T-cell compartment resulted in Ag85B plasmid DNA-mediated protection against a challenge M. tuberculosis infection. Our findings provide evidence that anti-TB DNA vaccines could be effective in immunodeficient individuals after CD4+-T-lymphocyte reconstitution, as may occur following antiretroviral therapy in HIV+ patients.

  16. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery

    PubMed Central

    Best, Simon R.; Peng, Shiwen; Juang, Chi-Mou; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.; Pai, Sara I.

    2009-01-01

    DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC Class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination – conventional intramuscular injection, electroporation mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery - in the ability to generate antigen specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin’s role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials. PMID:19622402

  17. Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens.

    PubMed

    Stachyra, Anna; Redkiewicz, Patrycja; Kosson, Piotr; Protasiuk, Anna; Góra-Sochacka, Anna; Kudla, Grzegorz; Sirko, Agnieszka

    2016-08-26

    Highly pathogenic avian influenza viruses are a serious threat to domestic poultry and can be a source of new human pandemic and annual influenza strains. Vaccination is the main strategy of protection against influenza, thus new generation vaccines, including DNA vaccines, are needed. One promising approach for enhancing the immunogenicity of a DNA vaccine is to maximize its expression in the immunized host. The immunogenicity of three variants of a DNA vaccine encoding hemagglutinin (HA) from the avian influenza virus A/swan/Poland/305-135V08/2006 (H5N1) was compared in two animal models, mice (BALB/c) and chickens (broilers and layers). One variant encoded the wild type HA while the other two encoded HA without proteolytic site between HA1 and HA2 subunits and differed in usage of synonymous codons. One of them was enriched for codons preferentially used in chicken genes, while in the other modified variant the third position of codons was occupied in almost 100 % by G or C nucleotides. The variant of the DNA vaccine containing almost 100 % of the GC content in the third position of codons stimulated strongest immune response in two animal models, mice and chickens. These results indicate that such modification can improve not only gene expression but also immunogenicity of DNA vaccine. Enhancement of the GC content in the third position of the codon might be a good strategy for development of a variant of a DNA vaccine against influenza that could be highly effective in distant hosts, such as birds and mammals, including humans.

  18. Study of a chimeric foot-and-mouth disease virus DNA vaccine containing structural genes of serotype O in a genome backbone of serotype Asia 1 in guinea pigs.

    PubMed

    Chockalingam, A K; Thiyagarajan, S; Govindasamy, N; Patnaikuni, R; Garlapati, S; Golla, R R; Joyappa, D H; Krishnamshetty, P; Veluvarti, V V S; Veluvati, V V S

    2010-01-01

    Since foot-and-mouth disease virus (FMDV) serotypes display a great genetic and antigenic diversity, there is a constant requirement to monitor the performance of FMDV vaccines in the field with respect to their antigenic coverage. To avoid possible antigenic changes in field FMDV isolates during their adaptation to BHK-21 cells, a standard step used in production of conventional FMDV vaccines, the custom-made chimeric conventional or DNA vaccines, in which antigenic determinants are replaced with those of appropriate field strains, should be constructed. Using this approach, we made a plasmid-based chimeric FMDV DNA vaccine containing structural genes of serotype O in the genome backbone of serotype Asia 1, all under the control of Human cytomegalovirus (HCMV) immediate early gene promoter. BHK-21 cells transfected with the chimeric DNA vaccine did not show cytopathic effect (CPE), but expressed virus-specific proteins as demonstrated by 35S-methionine labeling and immunoprecipitation. Guinea pigs immunized with the chimeric DNA vaccine produced virus-specific antibodies assayed by ELISA and virus neutralization test (VNT), respectively. The chimeric DNA vaccine showed a partial protection of guinea pigs challenged with the virulent FMDV. Although the chimeric DNA vaccine, in general, was not as effective as a conventional one, this study encourages further work towards the development of genetically engineered custom-made chimeric vaccines against FMDV.

  19. Vaccines.gov

    MedlinePlus

    ... Vaccine Safety Vaccines Work Vaccine Types Vaccine Ingredients Vaccines by Disease Chickenpox ... Typhoid Fever Whooping Cough (Pertussis) Yellow Fever Who and When Infants, Children, and Teens ...

  20. Dengue vaccine development: strategies and challenges.

    PubMed

    Ramakrishnan, Lakshmy; Pillai, Madhavan Radhakrishna; Nair, Radhakrishnan R

    2015-03-01

    Infection with dengue virus may result in dengue fever or a more severe outcome, such as dengue hemorrhagic syndrome/shock. Dengue virus infection poses a threat to endemic regions for four reasons: the presence of four serotypes, each with the ability to cause a similar disease outcome, including fatality; difficulties related to vector control; the lack of specific treatment; and the nonavailability of a suitable vaccine. Vaccine development is considered challenging due to the severity of the disease observed in individuals who have acquired dengue-specific immunity, either passively or actively. Therefore, the presence of vaccine-induced immunity against a particular serotype may prime an individual to severe disease on exposure to dengue virus. Vaccine development strategies include live attenuated vaccines, chimeric, DNA-based, subunit, and inactivated vaccines. Each of the candidates is in various stages of preclinical and clinical development. Issues pertaining to selection pressures, viral interaction, and safety still need to be evaluated in order to induce a complete protective immune response against all four serotypes. This review highlights the various strategies that have been employed in vaccine development, and identifies the obstacles to producing a safe and effective vaccine.

  1. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

  2. A brief history of vaccines & vaccination in India.

    PubMed

    Lahariya, Chandrakant

    2014-04-01

    The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19 th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI) (1978) and then Universal Immunization Programme (UIP) (1985) were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts.

  3. A brief history of vaccines & vaccination in India

    PubMed Central

    Lahariya, Chandrakant

    2014-01-01

    The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI) (1978) and then Universal Immunization Programme (UIP) (1985) were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts. PMID:24927336

  4. Prime-boost immunization using a DNA vaccine delivered by attenuated Salmonella enterica serovar typhimurium and a killed vaccine completely protects chickens from H5N1 highly pathogenic avian influenza virus.

    PubMed

    Pan, Zhiming; Zhang, Xiaoming; Geng, Shizhong; Fang, Qiang; You, Meng; Zhang, Lei; Jiao, Xinan; Liu, Xiufan

    2010-04-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) has posed a great threat not only for the poultry industry but also for human health. However, an effective vaccine to provide a full spectrum of protection is lacking in the poultry field. In the current study, a novel prime-boost vaccination strategy against H5N1 HPAIV was developed: chickens were first orally immunized with a hemagglutinin (HA) DNA vaccine delivered by attenuated Salmonella enterica serovar Typhimurium, and boosting with a killed vaccine followed. Chickens in the combined vaccination group but not in single vaccination and control groups were completely protected against disease following H5N1 HPAIV intranasal challenge, with no clinical signs and virus shedding. Chickens in the prime-boost group also generated significantly higher serum hemagglutination inhibition (HI) titers and intestinal mucosal IgA titers against avian influenza virus (AIV) and higher host immune cellular responses than those from other groups before challenge. These results demonstrated that the prime-boost vaccination strategy provides an effective way to prevent and control H5N1 highly pathogenic avian influenza virus.

  5. Progress and Challenges toward the Development of Vaccines against Avian Infectious Bronchitis

    PubMed Central

    Bande, Faruku; Arshad, Siti Suri; Hair Bejo, Mohd; Moeini, Hassan; Omar, Abdul Rahman

    2015-01-01

    Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes. PMID:25954763

  6. Ethical and legal challenges of vaccines and vaccination: Reflections.

    PubMed

    Jesani, Amar; Johari, Veena

    2017-01-01

    Vaccines and vaccination have emerged as key medical scientific tools for prevention of certain diseases. Documentation of the history of vaccination shows that the initial popular resistance to universal vaccination was based on false assumptions and eventually gave way to acceptance of vaccines and trust in their ability to save lives. The successes of the global eradication of smallpox, and now of polio, have only strengthened the premier position occupied by vaccines in disease prevention. However, the success of vaccines and public trust in their ability to eradicate disease are now under challenge, as increasing numbers of people refuse vaccination, questioning the effectiveness of vaccines and the need to vaccinate.

  7. HPV vaccine

    MedlinePlus

    ... HPV; Gardasil; HPV2; HPV4; Vaccine to prevent cervical cancer; Genital warts - HPV vaccine; Cervical dysplasia - HPV vaccine; Cervical cancer - HPV vaccine; Cancer of the cervix - HPV vaccine; ...

  8. Faecal shedding of canine parvovirus after modified-live vaccination in healthy adult dogs.

    PubMed

    Freisl, M; Speck, S; Truyen, U; Reese, S; Proksch, A-L; Hartmann, K

    2017-01-01

    Since little is known about the persistence and faecal shedding of canine parvovirus (CPV) in dogs after modified-live vaccination, diagnostic tests for CPV can be difficult to interpret in the post-vaccination period. The primary aim of this study was to determine the incidence, duration and extent of CPV vaccine virus shedding in adult dogs and to investigate related factors, including the presence of protective antibodies, increase in anti-CPV antibody titres and development of any gastrointestinal side-effects. A secondary objective was to assess prevalence of CPV field virus shedding in clinically healthy dogs due to subclinical infections. One hundred adult, healthy privately owned dogs were vaccinated with a commercial CPV-2 modified-live vaccine (MLV). Faeces were tested for the presence of CPV DNA on days 0 (prior to vaccination), 3, 7, 14, 21 and 28 by quantitative real-time PCR. Pre- and post-vaccination serum titres were determined by haemagglutination inhibition on days 0, 7 and 28. Transient excretion of CPV DNA was detected in 2.0% of dogs before vaccination. About one quarter of dogs (23.0%) shed CPV DNA during the post-vaccination period, but field and vaccine virus differentiation by VP2 gene sequencing was only successful in few samples. Faecal CPV excretion occurred despite protective serum antibody titres. Post-vaccination CPV shedding was not related to adequate antibody response after vaccination or to the occurrence of gastrointestinal side-effects. Despite individual differences, CPV DNA was detectable for up to 28 days after vaccination, although the faecal CPV DNA load in these clinically healthy dogs was very low. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Results of Booster Vaccination in Children with Primary Vaccine Failure after Initial Varicella Vaccination].

    PubMed

    Ozakiv, Takao; Nishimura, Naoko; Gotoh, Kensei; Funahashi, Keiji; Yoshii, Hironori; Okuno, Yoshinobu

    2016-05-01

    In October 2014, the varicella vaccination policy in Japan was changed from a single voluntary inoculation to two routine inoculations. This paper reports the results of booster vaccination in children who did not show seroconversion after initial vaccination (i.e., primary vaccine failure : PVF) over a 7-year period prior to the introduction of routine varicella vaccination. Between November 2007 and May 2014, 273 healthy children aged between 1.1 and 14.5 years (median : 1.7 years) underwent varicella vaccination. Before and 4 to 6 weeks after vaccination, the antibody titers were measured using an immune adherence hemagglutination (IAHA) assay and a glycoprotein-based enzyme-linked immunosorbent assay (gpELISA). In addition, side reactions were examined during the four-week period after vaccination. Children who did not show IAHA seroconversion (PVF) were recommended to receive a booster vaccination, and the measurement of antibody titers and an assessment of side reactions were performed after the booster dose. In May 2015, a questionnaire was mailed to each of the 273 participants to investigate whether they had developed varicella and/or herpes zoster after vaccination. After initial vaccination, the IAHA seroconversion rate was 75% and the mean antibody titer (Log2) with seroconversion was 4.7, while the gpELISA seroconversion rate was 84% and the mean antibody titer (Log10) with seroconversion was 2.4. Among children with PVF, 54 received booster vaccination within 81 to 714 days (median : 139 days) after the initial vaccination. After booster vaccination, the IAHA seroconversion rate was 98% and the mean antibody titer (Log2) with seroconversion was 5.8. Both the seroconversion rate and the antibody titer were higher compared with the values after the initial vaccination (p < 0.01). After booster vaccination, the gpELISA seropositive rate was 100% and the mean positive antibody titer (Log 10) was 3.6 ; similar results were obtained for the IAHA assay, with

  10. Glycoprotein-Specific Antibodies Produced by DNA Vaccination Protect Guinea Pigs from Lethal Argentine and Venezuelan Hemorrhagic Fever.

    PubMed

    Golden, Joseph W; Maes, Piet; Kwilas, Steven A; Ballantyne, John; Hooper, Jay W

    2016-01-20

    Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT(50)), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the

  11. Vaccine Development for Zika Virus-Timelines and Strategies.

    PubMed

    Durbin, Anna P

    2016-09-01

    Zika virus is a mosquito-borne Flavivirus that spread rapidly through South and Central America in 2015 to 2016. Microcephaly has been causally associated with Zika virus infection during pregnancy and the World Health Organization declared Zika virus as a Public Health Emergency of International Concern. To address this crisis, many groups have expressed their commitment to developing a Zika virus vaccine. Different strategies for Zika virus vaccine development are being considered including recombinant live attenuated vaccines, purified inactivated vaccines (PIVs), DNA vaccines, and viral vectored vaccines. Important to Zika virus vaccine development will be the target group chosen for vaccination and which end point(s) is chosen for efficacy determination. The first clinical trials of Zika virus vaccine candidates will begin in Q3/4 2016 but the pathway to licensure for a Zika virus vaccine is expected to take several years. Efforts are ongoing to accelerate Zika virus vaccine development and evaluation with the ultimate goal of reducing time to licensure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. HPV Vaccine: Access and Use in the U.S.

    MedlinePlus

    ... vaccine, Pap Tests, and HPV DNA testing without cost-sharing. Public Financing Medicaid – The VFC pays for vaccinations for ... dropped from three to two shots, and the cost is fully covered by private insurance and public programs. With these improvements, the vaccine holds the ...

  13. Vaccine Hesitancy.

    PubMed

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  14. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  15. Enhanced Immune Response and Protective Effects of Nano-chitosan-based DNA Vaccine Encoding T Cell Epitopes of Esat-6 and FL against Mycobacterium Tuberculosis Infection

    PubMed Central

    Feng, Ganzhu; Jiang, Qingtao; Xia, Mei; Lu, Yanlai; Qiu, Wen; Zhao, Dan; Lu, Liwei; Peng, Guangyong; Wang, Yingwei

    2013-01-01

    Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice. PMID:23637790

  16. Leishmania vaccines: progress and problems.

    PubMed

    Kedzierski, L; Zhu, Y; Handman, E

    2006-01-01

    Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world resulting in an estimated 12 million new cases each year. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective due to the emergence of drug resistance. Leishmaniasis is considered one of a few parasitic diseases likely to be controllable by vaccination. The relatively uncomplicated leishmanial life cycle and the fact that recovery from infection renders the host resistant to subsequent infection indicate that a successful vaccine is feasible. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunisation with protein or DNA vaccines. However, to date no such vaccine is available despite substantial efforts by many laboratories. Advances in our understanding of Leishmania pathogenesis and generation of host protective immunity, together with the completed Leishmania genome sequence open new avenues for vaccine research. The major remaining challenges are the translation of data from animal models to human disease and the transition from the laboratory to the field. This review focuses on advances in anti-leishmania vaccine development over the recent years and examines current problems hampering vaccine development and implementation.

  17. A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge.

    PubMed

    Grant-Klein, Rebecca J; Van Deusen, Nicole M; Badger, Catherine V; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2012-11-01

    We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection. Survival curve analysis revealed there was a statistically significant increase in survival compared to the control groups for both the Ebola and Ravn virus challenges. These data suggest that further analysis of the immune responses generated in the mice and additional protection studies in nonhuman primates are warranted.

  18. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    PubMed

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  19. Immune Responses Induced by Gene Gun or Intramuscular Injection of DNA Vaccines That Express Immunogenic Regions of the Serine Repeat Antigen from Plasmodium falciparum

    PubMed Central

    Belperron, Alexia A.; Feltquate, David; Fox, Barbara A.; Horii, Toshihiro; Bzik, David J.

    1999-01-01

    The liver- and blood-stage-expressed serine repeat antigen (SERA) of Plasmodium falciparum is a candidate protein for a human malaria vaccine. We compared the immune responses induced in mice immunized with SERA-expressing plasmid DNA vaccines delivered by intramuscular (i.m.) injection or delivered intradermally by Gene Gun immunization. Mice were immunized with a pcdna3 plasmid encoding the entire 47-kDa domain of SERA (amino acids 17 to 382) or the N-terminal domain (amino acids 17 to 110) of SERA. Minimal antibody responses were detected following DNA vaccination with the N-terminal domain of SERA, suggesting that the N-terminal domain alone is not highly immunogenic by this route of vaccine delivery. Immunization of mice by Gene Gun delivery of the 47-kDa domain of SERA elicited a significantly higher serum antibody titer to the antigen than immunization of mice by i.m. injection with the same plasmid did. The predominant isotype subclass of the antibodies elicited to the SERA protein following i.m. and Gene Gun immunizations with SERA plasmid DNA was immunoglobulin G1. Coimmunization of mice with SERA plasmid DNA and a plasmid expressing the hepatitis B surface antigen (pCMV-s) by the i.m. route resulted in higher anti-SERA titers than those generated in mice immunized with the SERA DNA plasmid alone. Vaccination with DNA may provide a viable alternative or may be used in conjunction with protein-based subunit vaccines to maximize the efficacy of a human malaria vaccine that includes immunogenic regions of the SERA protein. PMID:10496891

  20. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag.

    PubMed

    Garrod, Tamsin J; Gargett, Tessa; Yu, Wenbo; Major, Lee; Burrell, Christopher J; Wesselingh, Steven; Suhrbier, Andreas; Grubor-Bauk, Branka; Gowans, Eric J

    2014-11-04

    Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    PubMed

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  2. Vaccination Confidence and Parental Refusal/Delay of Early Childhood Vaccines.

    PubMed

    Gilkey, Melissa B; McRee, Annie-Laurie; Magnus, Brooke E; Reiter, Paul L; Dempsey, Amanda F; Brewer, Noel T

    2016-01-01

    To support efforts to address parental hesitancy towards early childhood vaccination, we sought to validate the Vaccination Confidence Scale using data from a large, population-based sample of U.S. parents. We used weighted data from 9,354 parents who completed the 2011 National Immunization Survey. Parents reported on the immunization history of a 19- to 35-month-old child in their households. Healthcare providers then verified children's vaccination status for vaccines including measles, mumps, and rubella (MMR), varicella, and seasonal flu. We used separate multivariable logistic regression models to assess associations between parents' mean scores on the 8-item Vaccination Confidence Scale and vaccine refusal, vaccine delay, and vaccination status. A substantial minority of parents reported a history of vaccine refusal (15%) or delay (27%). Vaccination confidence was negatively associated with refusal of any vaccine (odds ratio [OR] = 0.58, 95% confidence interval [CI], 0.54-0.63) as well as refusal of MMR, varicella, and flu vaccines specifically. Negative associations between vaccination confidence and measures of vaccine delay were more moderate, including delay of any vaccine (OR = 0.81, 95% CI, 0.76-0.86). Vaccination confidence was positively associated with having received vaccines, including MMR (OR = 1.53, 95% CI, 1.40-1.68), varicella (OR = 1.54, 95% CI, 1.42-1.66), and flu vaccines (OR = 1.32, 95% CI, 1.23-1.42). Vaccination confidence was consistently associated with early childhood vaccination behavior across multiple vaccine types. Our findings support expanding the application of the Vaccination Confidence Scale to measure vaccination beliefs among parents of young children.

  3. Serum Cytokine Profiles Associated with Specific Adjuvants Used in a DNA Prime-Protein Boost Vaccination Strategy

    PubMed Central

    Buglione-Corbett, Rachel; Pouliot, Kimberly; Marty-Roix, Robyn; West, Kim; Wang, Shixia; Lien, Egil; Lu, Shan

    2013-01-01

    In recent years, heterologous prime-boost vaccines have been demonstrated to be an effective strategy for generating protective immunity, consisting of both humoral and cell-mediated immune responses against a variety of pathogens including HIV-1. Previous reports of preclinical and clinical studies have shown the enhanced immunogenicity of viral vector or DNA vaccination followed by heterologous protein boost, compared to using either prime or boost components alone. With such approaches, the selection of an adjuvant for inclusion in the protein boost component is expected to impact the immunogenicity and safety of a vaccine. In this study, we examined in a mouse model the serum cytokine and chemokine profiles for several candidate adjuvants: QS-21, Al(OH)3, monophosphoryl lipid A (MPLA) and ISCOMATRIX™ adjuvant, in the context of a previously tested pentavalent HIV-1 Env DNA prime-protein boost formulation, DP6-001. Our data revealed that the candidate adjuvants in the context of the DP6-001 formulation are characterized by unique serum cytokine and chemokine profiles. Such information will provide valuable guidance in the selection of an adjuvant for future AIDS vaccine development, with the ultimate goal of enhancing immunogenicity while minimizing reactogenicity associated with the use of an adjuvant. More significantly, results reported here will add to the knowledge on how to include an adjuvant in the context of a heterologous prime-protein boost vaccination strategy in general. PMID:24019983

  4. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses

    PubMed Central

    Mooney, Alaina J; Tompkins, S Mark

    2013-01-01

    Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches. PMID:23440999

  5. [Approaches and problems in vaccine development against leishmaniasis].

    PubMed

    Allahverdiyev, Adil; Bağirova, Melahat; Cakir Koç, Rabia; Oztel, Olga Nehir; Elçıçek, Serhat; Ateş, Sezen Canım; Karaca, Tuğçe Deniz

    2010-01-01

    Leishmaniasis is a major public health problem of the world and Turkey. Recently there has been increasing interest in vaccine studies among strategies for control of leishmaniasis. Recently the increase of interest in vaccine studies among leishmaniasis control strategies makes the subject more up to date. So the aim of this review is to present information about recent vaccine studies, problems and new strategies for vaccine development studies. There are 3 generations of vaccine against leishmaniasis. First-generation vaccines are killed or live attenuated parasites; second-generation vaccines are recombinant or native antigens and live genetically modified parasites (knock out and suicidal cassettes), third generation vaccines are DNA vaccines. Also vector salivary proteins, dendritic cells and non-pathogenic L. tarentolae have been used as vaccine candidates. However there is still no effective vaccine against leishmaniasis. Since polymer conjugates considerably increase immunogenicity, polymer based vaccine studies have gained importance in recent years. However, there has not been such a study for an antileishmanial vaccine yet. LPG, surface antigen of Leishmania promastigotes, and polymer conjugates may be promising in antileishmanial vaccine studies so we are carrying out a TUBITAK Project on this subject which has been given the number, 1085170SBAG-4007.

  6. Detection and pharmacokinetics of a cytomegalovirus (CMV) DNA plasmid in human plasma during a clinical trial of an intramuscular CMV vaccine in hematopoietic stem cell transplant recipients.

    PubMed

    Salimnia, H; Fairfax, M R; Chandrasekar, P H

    2014-12-01

    Cytomegalovirus (CMV) causes significant morbidity and mortality in solid organ and bone marrow transplant recipients. DNA vaccines can provide both humoral and cellular immunity without exposing immune-compromised persons to replication-competent CMV. We studied the kinetics of CMV vaccine DNA in plasma. The samples were obtained from vaccine recipients who were enrolled in a double-blinded, placebo-controlled clinical trial of an intramuscular, plasmid-based, bivalent DNA vaccine for CMV in stem cell transplant recipients. Residual specimens on patients enrolled in the vaccine trial were saved until the trial was unblinded and published. Quantitative real-time polymerase chain reaction (PCR) was used to detect and quantify CMV glycoprotein B (gB) DNA in plasma from 4 recipients of the vaccine. The melting temperature of the vaccine gB amplicon was 62.4°C, compared to 68.8°C, which is seen with the wild-type virus. Sequence analysis revealed that there were 3 mismatches between the fluorescent resonance energy transfer probe and the vaccine DNA sequence. Because preemptive treatment of CMV disease in stem cell transplant patients is based on quantitative PCR analysis of viral sequences in plasma, it is important that vaccine sequences not be confused with those in wild-type virus. Confusion could lead to treatment with toxic medications, potentially compromising the transplant. Effects of PCR target choice and amplicon detection techniques on patient management and vaccine trials are discussed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Vaccine candidate discovery for the next generation of malaria vaccines.

    PubMed

    Tuju, James; Kamuyu, Gathoni; Murungi, Linda M; Osier, Faith H A

    2017-10-01

    Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  8. Vaccination Confidence and Parental Refusal/Delay of Early Childhood Vaccines

    PubMed Central

    Gilkey, Melissa B.; McRee, Annie-Laurie; Magnus, Brooke E.; Reiter, Paul L.; Dempsey, Amanda F.; Brewer, Noel T.

    2016-01-01

    Objective To support efforts to address parental hesitancy towards early childhood vaccination, we sought to validate the Vaccination Confidence Scale using data from a large, population-based sample of U.S. parents. Methods We used weighted data from 9,354 parents who completed the 2011 National Immunization Survey. Parents reported on the immunization history of a 19- to 35-month-old child in their households. Healthcare providers then verified children’s vaccination status for vaccines including measles, mumps, and rubella (MMR), varicella, and seasonal flu. We used separate multivariable logistic regression models to assess associations between parents’ mean scores on the 8-item Vaccination Confidence Scale and vaccine refusal, vaccine delay, and vaccination status. Results A substantial minority of parents reported a history of vaccine refusal (15%) or delay (27%). Vaccination confidence was negatively associated with refusal of any vaccine (odds ratio [OR] = 0.58, 95% confidence interval [CI], 0.54–0.63) as well as refusal of MMR, varicella, and flu vaccines specifically. Negative associations between vaccination confidence and measures of vaccine delay were more moderate, including delay of any vaccine (OR = 0.81, 95% CI, 0.76–0.86). Vaccination confidence was positively associated with having received vaccines, including MMR (OR = 1.53, 95% CI, 1.40–1.68), varicella (OR = 1.54, 95% CI, 1.42–1.66), and flu vaccines (OR = 1.32, 95% CI, 1.23–1.42). Conclusions Vaccination confidence was consistently associated with early childhood vaccination behavior across multiple vaccine types. Our findings support expanding the application of the Vaccination Confidence Scale to measure vaccination beliefs among parents of young children. PMID:27391098

  9. Vaccines for leishmaniasis in the fore coming 25 years.

    PubMed

    Palatnik-de-Sousa, Clarisa B

    2008-03-25

    Human vaccination against leishmaniasis using live Leishmania was used in Middle East and Russia (1941-1980). First-generation vaccines, composed by killed parasites induce low efficacies (54%) and were tested in humans and dogs Phase III trials in Asia and South America since 1940. Second-generation vaccines using live genetically modified parasites, or bacteria or viruses containing Leishmania genes, recombinant or native fractions are known since the 1990s. Due to the loss of PAMPs, the use of adjuvants increased vaccine efficacies of the purified antigens to 82%, in Phase III dog trials. Recombinant second-generation vaccines and third-generation DNA vaccines showed average values of parasite load reduction of 68% and 59% in laboratory animal models, respectively, but their success in field trials had not yet been reported. This review is focused on vaccine candidates that show any efficacy against leishmaniasis and that are already in different phase trials. A lot of interest though was generated in recent years, by the studies going on in experimental models. The promising candidates may find a place in the forth coming years. Among them most probably are the multiple-gene DNA vaccines that are stable and do not require cold-chain transportation. In the mean time, second-generation vaccines with native antigens and effective adjuvants are likely to be licensed and used in Public Health control programs in the fore coming 25 years. To date, only three vaccines have been licensed for use: one live vaccine for humans in Uzbekistan, one killed vaccine for human immunotherapy in Brazil and a second-generation vaccine for dog prophylaxis in Brazil.

  10. Vaccine exemptions and the kindergarten vaccination coverage gap.

    PubMed

    Smith, Philip J; Shaw, Jana; Seither, Ranee; Lopez, Adriana; Hill, Holly A; Underwood, Mike; Knighton, Cynthia; Zhao, Zhen; Ravanam, Megha Shah; Greby, Stacie; Orenstein, Walter A

    2017-09-25

    Vaccination requirements for kindergarten entry vary by state, but all states require 2 doses of measles containing vaccine (MCV) at kindergarten entry. To assess (i) national MCV vaccination coverage for children who had attended kindergarten; (ii) the extent to which undervaccination after kindergarten entry is attributable to parents' requests for an exemption; (iii) the extent to which undervaccinated children had missed opportunities to be administered missing vaccine doses among children whose parent did not request an exemption; and (iv) the vaccination coverage gap between the "highest achievable" MCV coverage and actual MCV coverage among children who had attended kindergarten. A national survey of 1465 parents of 5-7year-old children was conducted during October 2013 through March 2014. Vaccination coverage estimates are based provider-reported vaccination histories. Children have a "missed opportunity" for MCV if they were not up-to-date and if there were dates on which other vaccines were administered but not MCV. The "highest achievable" MCV vaccination coverage rate is 100% minus the sum of the percentages of (i) undervaccinated children with parents who requested an exemption; and (ii) undervaccinated children with parents who did not request an exemption and whose vaccination statuses were assessed during a kindergarten grace period or period when they were provisionally enrolled in kindergarten. Among all children undervaccinated for MCV, 2.7% were attributable to having a parent who requested an exemption. Among children who were undervaccinated for MCV and whose parent did not request an exemption, 41.6% had a missed opportunity for MCV. The highest achievable MCV coverage was 98.6%, actual MCV coverage was 90.9%, and the kindergarten vaccination gap was 7.7%. Vaccination coverage may be increased by schools fully implementing state kindergarten vaccination laws, and by providers assessing children's vaccination status at every clinic visit, and

  11. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP) fused antigens: a potential tool to develop DNA vaccines against flaviviruses.

    PubMed

    Dhalia, Rafael; Maciel, Milton; Cruz, Fábia S P; Viana, Isabelle F T; Palma, Mariana L; August, Thomas; Marques, Ernesto T A

    2009-12-01

    Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the development of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP). The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.

  12. Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice.

    PubMed

    Qu, Daofeng; Han, Jianzhong; Du, Aifang

    2013-07-01

    The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.

  13. Vaccines and immunization strategies for dengue prevention

    PubMed Central

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  14. Cationic microparticle [poly(D,L-lactide-co-glycolide)]-coated DNA vaccination induces a long-term immune response against foot and mouth disease in guinea pigs.

    PubMed

    Reddy, Kotla S; Rashmi, Brabhi R; Dechamma, Hosur J; Gopalakrishna, Susarla; Banumathi, N; Suryanarayana, Veluvarthy V S; Reddy, Golla R

    2012-05-01

    Foot and mouth disease (FMD) can be controlled by regular vaccination and restriction of the movement of infected animals in the endemic countries. Although presently used, tissue culture inactivated vaccine gives protection, it has several limitations, including a short duration of immunity. DNA vaccine delivered through microparticles could comprise an alternative approach to conventional vaccine when aiming to circumvent these limitations. We constructed the expression plasmid (pVAC-1D) containing 1D gene FMD virus serotype Asia 1. Poly(D,L-lactide-co-glycolide) (PLG) microparticles were prepared and coated with the pVAC-1D plasmid. Guinea pigs were vaccinated with PLG-coated and naked DNA vaccine constructs intramuscularly. The humoral response was measured by an enzyme-linked immunosorbent assay (ELISA) and the serum neutralization test (SNT). Analysis of the persistence and the expression of pVAC-1D plasmid construct was carried out by quantitative polymerase chain reaction (qPCR). The humoral response lasted for 1 year, as measured by ELISA and SNT. Analysis of the persistence and the expression of pVAC-1D plasmid construct by qPCR has shown that pVAC-1D expression was seen for a longer duration compared to the naked DNA vaccine. Microparticles coated plasmid DNA-injected guinea pigs were protected when challenged with FMD virus. The present study has shown that the delivery of plasmid coated on cationic PLG microparticles enhance the duration of immunity of the DNA vaccine constructs. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Directed Molecular Evolution Improves the Immunogenicity and Protective Efficacy of a Venezuelan Equine Encephalitis Virus DNA Vaccine

    DTIC Science & Technology

    2009-05-01

    p t S S 0 d Vaccine 27 (2009) 4152–4160 Contents lists available at ScienceDirect Vaccine...equine encephalitis virus DNA vaccine esley C. Dupuya,1, Christopher P . Locherc,1,2, Madan Paidhungatc,3, Michelle J. Richardsa, athleen M. Linda...a 8 s t d i t c w w i v i s s i i c f p a [ r p r V i w 2 2 I P L t g t b h i t c m s c T A L A A A A A L.C. Dupuy et al. / Vac ytomegalovirus

  16. Mitochondrial DNA and retroviral RNA analyses of archival oral polio vaccine (OPV CHAT) materials: evidence of macaque nuclear sequences confirms substrate identity.

    PubMed

    Berry, Neil; Jenkins, Adrian; Martin, Javier; Davis, Clare; Wood, David; Schild, Geoffrey; Bottiger, Margareta; Holmes, Harvey; Minor, Philip; Almond, Neil

    2005-02-25

    Inoculation of live experimental oral poliovirus vaccines (OPV CHAT) during the 1950s in central Africa has been proposed to account for the introduction of HIV into human populations. For this to have occurred, it would have been necessary for chimpanzee rather than macaque kidney epithelial cells to have been included in the preparation of early OPV materials. Theoretically, this could have led to contamination with a progenitor of HIV-1 derived from a related simian immunodeficiency virus of chimpanzees (SIVCPZ). In this article we present further detailed analyses of two samples of OPV, CHAT 10A-11 and CHAT 6039/Yugo, which were used in early human trials of poliovirus vaccination. Recovery of poliovirus by culture techniques confirmed the biological viability of the vaccines and sequence analysis of poliovirus RNA specifically identified the presence of the CHAT strain. Independent nested sets of oligonucleotide primers specific for HIV-1/SIVCPZ and HIV-2/SIVMAC/SIVSM phylogenetic lineages, respectively, indicated no evidence of HIV/SIV RNA in either vaccine preparation, at a sensitivity of 100 RNA equivalents/ml. Analysis of cellular substrate by the amplification of two distinct regions of mitochondrial DNA (D-loop control region and 12S ribosomal sequences) revealed no evidence of chimpanzee cellular sequences. However, this approach positively identified rhesus and cynomolgus macaque DNA for the CHAT 10A-11 and CHAT 6039/Yugo vaccine preparations, respectively. Analysis of multiple clones of mtDNA 12S rDNA indicated a relatively high number of nuclear mitochondrial DNA sequences (numts) in the CHAT 10A-11 material, but confirmed the macaque origin of cellular substrate used in vaccine preparation. These data reinforce earlier findings on this topic providing no evidence to support the contention that poliovirus vaccination was responsible for the introduction of HIV into humans and sparking the AIDS pandemic.

  17. Radiation and Anti-Cancer Vaccines: A Winning Combination.

    PubMed

    Cadena, Alexandra; Cushman, Taylor R; Anderson, Clark; Barsoumian, Hampartsoum B; Welsh, James W; Cortez, Maria Angelica

    2018-01-30

    The emerging combination of radiation therapy with vaccines is a promising new treatment plan in the fight against cancer. While many cancer vaccines such as MUC1, p53 CpG oligodeoxynucleotide, and SOX2 may be great candidates for antitumor vaccination, there still remain many investigations to be done into possible vaccine combinations. One fruitful partnership that has emerged are anti-tumor vaccines in combination with radiation. Radiation therapy was previously thought to be only a tool for directly or indirectly damaging DNA and therefore causing cancer cell death. Now, with much preclinical and clinical data, radiation has taken on the role of an in situ vaccine. With both cancer vaccines and radiation at our disposal, more and more studies are looking to combining vaccine types such as toll-like receptors, viral components, dendritic-cell-based, and subunit vaccines with radiation. While the outcomes of these combinatory efforts are promising, there is still much work to be covered. This review sheds light on the current state of affairs in cancer vaccines and how radiation will bring its story into the future.

  18. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    PubMed

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  19. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a doctor...

  20. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a doctor...

  1. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a doctor...

  2. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a doctor...

  3. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a doctor...

  4. Development of a highly sensitive PCR/DNA chip method to detect mycoplasmas in a veterinary modified live vaccine.

    PubMed

    Mbelo, Sylvie; Gay, Virginie; Blanchard, Stephanie; Abachin, Eric; Falque, Stephanie; Lechenet, Jacques; Poulet, Hervé; de Saint-Vis, Blandine

    2018-05-09

    Mycoplasmas are potential contaminants that introduce undesirable changes in mammalian cell cultures. They frequently contaminate cell substrates and other starting materials used for manufacturing cell-derived biologics, such as vaccines and pharmaceutical products. Mycoplasma purity testing of live vaccines, active ingredients, raw material, and seed lots is required during vaccine production. Previously, testing using a time-consuming, costly 28-day culture assay, which lacks sensitivity for species that do not grow in culture, was required in the European Pharmacopoeia (Ph. Eur). But now nucleic acid amplification techniques (NATs) can be used. NATs provide rapid results and are sensitive. We evaluated the sensitivity and specificity of a commercially-available NAT to detect individual mycoplasma DNA in a veterinary modified live vaccine using five reference strains recommended by the Ph. Eur. Our results showed that this NAT-based method can be used to detect mycoplasma in spiked live vaccine, without interference from the vaccine components, with a limit of detection of 10 CFU/mL, as required by the Ph. Eur. Its specificity was demonstrated since no mycoplasmas were detected in non-spiked vaccine. This method is undergoing validation as a replacement for the conventional culture method in the production of veterinary live vaccines. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Broad-spectrum anti-tumor and anti-metastatic DNA vaccine based on p62-encoding vector

    PubMed Central

    Sherman, Michael Y.; Gabai, Vladimir; Kiselev, Oleg; Komissarov, Andrey; Grudinin, Mikhail; Shartukova, Maria; Romanovskaya-Romanko, Ekaterina A.; Kudryavets, Yuri; Bezdenezhnykh, Natalya; Lykhova, Oleksandra; Semesyuk, Nadiia; Concetti, Antonio; Tsyb, Anatoly; Filimonova, Marina; Makarchuk, Victoria; Yakubovsky, Raisa; Chursov, Andrey; Shcherbinina, Vita; Shneider, Alexander

    2013-01-01

    Autophagy plays an important role in neoplastic transformation of cells and in resistance of cancer cells to radio- and chemotherapy. p62 (SQSTM1) is a key component of autophagic machinery which is also involved in signal transduction. Although recent empirical observations demonstrated that p62 is overexpressed in variety of human tumors, a mechanism of p62 overexpression is not known. Here we report that the transformation of normal human mammary epithelial cells with diverse oncogenes (RAS, PIK3CA and Her2) causes marked accumulation of p62. Based on this result, we hypothesized that p62 may be a feasible candidate to be an anti-cancer DNA vaccine. Here we performed a preclinical study of a novel DNA vaccine encoding p62. Intramuscularly administered p62-encoding plasmid induced anti-p62 antibodies and exhibited strong antitumor activity in four models of allogeneic mouse tumors – B16 melanoma, Lewis lung carcinoma (LLC), S37 sarcoma, and Ca755 breast carcinoma. In mice challenged with Ca755 cells, p62 treatment had dual effect: inhibited tumor growth in some mice and prolonged life in those mice which developed tumor size similar to control. P62-encoding plasmid has demonstrated its potency both as a preventive and therapeutic vaccine. Importantly, p62 vaccination drastically suppressed metastasis formation: in B16 melanoma where tumor cells where injected intravenously, and in LLC and S37 sarcoma with spontaneous metastasis. Overall, we conclude that a p62-encoding vector(s) constitute(s) a novel, effective broad-spectrum antitumor and anti-metastatic vaccine feasible for further development and clinical trials. PMID:24121124

  6. A public-professional web-bridge for vaccines and vaccination: user concerns about vaccine safety.

    PubMed

    García-Basteiro, Alberto L; Alvarez-Pasquín, María-José; Mena, Guillermo; Llupià, Anna; Aldea, Marta; Sequera, Victor-Guillermo; Sanz, Sergi; Tuells, Jose; Navarro-Alonso, José-Antonio; de Arísteguí, Javier; Bayas, José-María

    2012-05-28

    Vacunas.org (http://www.vacunas.org), a website founded by the Spanish Association of Vaccinology offers a personalized service called Ask the Expert, which answers any questions posed by the public or health professionals about vaccines and vaccination. The aim of this study was to analyze the factors associated with questions on vaccination safety and determine the characteristics of questioners and the type of question asked during the period 2008-2010. A total of 1341 questions were finally included in the analysis. Of those, 30% were related to vaccine safety. Questions about pregnant women had 5.01 higher odds of asking about safety (95% CI 2.82-8.93) than people not belonging to any risk group. Older questioners (>50 years) were less likely to ask about vaccine safety compared to younger questioners (OR: 0.44, 95% CI 0.25-0.76). Questions made after vaccination or related to influenza (including H1N1) or travel vaccines were also associated with a higher likelihood of asking about vaccine safety. These results identify risk groups (pregnant women), population groups (older people) and some vaccines (travel and influenza vaccines, including H1N1) where greater efforts to provide improved, more-tailored vaccine information in general and on the Internet are required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Bicistronic DNA vaccines simultaneously encoding HIV, HSV and HPV antigens promote CD8⁺ T cell responses and protective immunity.

    PubMed

    Santana, Vinicius C; Diniz, Mariana O; Cariri, Francisco A M O; Ventura, Armando M; Cunha-Neto, Edécio; Almeida, Rafael R; Campos, Marco A; Lima, Graciela K; Ferreira, Luís C S

    2013-01-01

    Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.

  8. The influence of vaccine-critical websites on perceiving vaccination risks.

    PubMed

    Betsch, Cornelia; Renkewitz, Frank; Betsch, Tilmann; Ulshöfer, Corina

    2010-04-01

    This large-scale Internet-experiment tests whether vaccine-critical pages raise perceptions of the riskiness of vaccinations and alter vaccination intentions. We manipulated the information environment (vaccine-critical website, control, both) and the focus of search (on vaccination risks, omission risks, no focus). Our analyses reveal that accessing vaccine-critical websites for five to 10 minutes increases the perception of risk of vaccinating and decreases the perception of risk of omitting vaccinations as well as the intentions to vaccinate. In line with the 'risk-as-feelings' approach, the affect elicited by the vaccine-critical websites was positively related to changes in risk perception.

  9. Nanoparticles for transcutaneous vaccination.

    PubMed

    Hansen, Steffi; Lehr, Claus-Michael

    2012-03-01

    The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano-vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle-free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra-flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed. © 2011 The Authors; Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Nanoparticles for transcutaneous vaccination

    PubMed Central

    Hansen, Steffi; Lehr, Claus‐Michael

    2012-01-01

    Summary The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano‐vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle‐free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra‐flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed. PMID:21854553

  11. The Latest in Vaccine Policies: Selected Issues in School Vaccinations, Healthcare Worker Vaccinations, and Pharmacist Vaccination Authority Laws.

    PubMed

    Barraza, Leila; Schmit, Cason; Hoss, Aila

    2017-03-01

    This paper discusses recent changes to state legal frameworks for mandatory vaccination in the context of school and healthcare worker vaccination. It then discusses state laws that allow pharmacists the authority to vaccinate.

  12. The history of vaccination against cytomegalovirus.

    PubMed

    Plotkin, Stanley

    2015-06-01

    Cytomegalovirus vaccine development started in the 1970s with attenuated strains. In the 1980s, one of the strains was shown to be safe and effective in renal transplant patients. Then, attention switched to glycoprotein gB, which was shown to give moderate but transient protection against acquisition of the virus by women. The identification of the pp65 tegument protein as the principal target of cellular immune responses resulted in new approaches, particularly DNA, plasmids to protect hematogenous stem cell recipients. The subsequent discovery of the pentameric protein complex that generates most neutralizing antibodies led to efforts to incorporate that complex into vaccines. At this point, there are many candidate CMV vaccines, including live recombinants, replication-defective virus, DNA plasmids, soluble pentameric proteins, peptides, virus-like particles and vectored envelope proteins.

  13. [Rabies vaccines: Current status and prospects for development].

    PubMed

    Starodubova, E S; Preobrazhenskaia, O V; Kuzmenko, Y V; Latanova, A A; Yarygina, E I; Karpov, V L

    2015-01-01

    Rabies is an infectious disease among humans and animals that remains incurable, despite its longstanding research history. The only way to prevent the disease is prompt treatment, including vaccination as an obligatory component and administration of antirabies immunoglobulin as a supplement. Since the first antirabies vaccination performed in the 19th century, a large number of different rabies vaccines have been developed. Progress in molecular biology and biotechnology enabled the development of effective and safe technologies of vaccine production. Currently, new-generation vaccines are being developed based on recombinant rabies virus strains or on the production of an individual recombinant rabies antigen-glycoprotein (G protein), either as a component of nonpathogenic viruses, or in plants, or in the form of DNA vaccines. In this review, the main modern trends in the development of rabies vaccines have been discussed.

  14. DNA Vaccine Molecular Adjuvants SP-D-BAFF and SP-D-APRIL Enhance Anti-gp120 Immune Response and Increase HIV-1 Neutralizing Antibody Titers

    PubMed Central

    Gupta, Sachin; Clark, Emily S.; Termini, James M.; Boucher, Justin; Kanagavelu, Saravana; LeBranche, Celia C.; Abraham, Sakhi; Montefiori, David C.

    2015-01-01

    ABSTRACT Broadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1. IMPORTANCE Recent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These

  15. Informing vaccine decision-making: A strategic multi-attribute ranking tool for vaccines-SMART Vaccines 2.0.

    PubMed

    Knobler, Stacey; Bok, Karin; Gellin, Bruce

    2017-01-20

    SMART Vaccines 2.0 software is being developed to support decision-making among multiple stakeholders in the process of prioritizing investments to optimize the outcomes of vaccine development and deployment. Vaccines and associated vaccination programs are one of the most successful and effective public health interventions to prevent communicable diseases and vaccine researchers are continually working towards expanding targets for communicable and non-communicable diseases through preventive and therapeutic modes. A growing body of evidence on emerging vaccine technologies, trends in disease burden, costs associated with vaccine development and deployment, and benefits derived from disease prevention through vaccination and a range of other factors can inform decision-making and investment in new and improved vaccines and targeted utilization of already existing vaccines. Recognizing that an array of inputs influences these decisions, the strategic multi-attribute ranking method for vaccines (SMART Vaccines 2.0) is in development as a web-based tool-modified from a U.S. Institute of Medicine Committee effort (IOM, 2015)-to highlight data needs and create transparency to facilitate dialogue and information-sharing among decision-makers and to optimize the investment of resources leading to improved health outcomes. Current development efforts of the SMART Vaccines 2.0 framework seek to generate a weighted recommendation on vaccine development or vaccination priorities based on population, disease, economic, and vaccine-specific data in combination with individual preference and weights of user-selected attributes incorporating valuations of health, economics, demographics, public concern, scientific and business, programmatic, and political considerations. Further development of the design and utility of the tool is being carried out by the National Vaccine Program Office of the Department of Health and Human Services and the Fogarty International Center of the

  16. Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles.

    PubMed

    Adomako, M; St-Hilaire, S; Zheng, Y; Eley, J; Marcum, R D; Sealey, W; Donahower, B C; Lapatra, S; Sheridan, P P

    2012-03-01

    A DNA vaccine against infectious haematopoietic necrosis virus (IHNV) is effective at protecting rainbow trout, Oncorhynchus mykiss, against disease, but intramuscular injection is required and makes the vaccine impractical for use in the freshwater rainbow trout farming industry. Poly (D,L-lactic-co-glycolic acid) (PLGA) is a U.S. Food and Drug Administration (FDA) approved polymer that can be used to deliver DNA vaccines. We evaluated the in vivo absorption of PLGA nanoparticles containing coumarin-6 when added to a fish food pellet. We demonstrated that rainbow trout will eat PLGA nanoparticle coated feed and that these nanoparticles can be detected in the epithelial cells of the lower intestine within 96 h after feeding. We also detected low levels of gene expression and anti-IHNV neutralizing antibodies when fish were fed or intubated with PLGA nanoparticles containing IHNV G gene plasmid. A virus challenge evaluation suggested a slight increase in survival at 6 weeks post-vaccination in fish that received a high dose of the oral vaccine, but there was no difference when additional fish were challenged at 10 weeks post-vaccination. The results of this study suggest that it is possible to induce an immune response using an orally delivered DNA vaccine, but the current system needs improvement. © 2012 Blackwell Publishing Ltd.

  17. Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: Effect of IL-12, dose, and route

    PubMed Central

    Mealey, R.H.; Stone, D.M.; Hines, M.T.; Alperin, D.C.; Littke, M.H.; Leib, S.R.; Leach, S.E.; Hines, S.A.

    2012-01-01

    Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates. PMID:17889970

  18. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model.

    PubMed

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kodama, Yukinobu; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Ichinose, Akitoyo; Yanagi, Tetsuo; Sasaki, Hitoshi; Yui, Katsuyuki; Tien, Nguyen Huy; Karbwang, Juntra; Hirayama, Kenji

    2014-04-07

    We have previously reported the new formulation of polyethylimine (PEI) with gamma polyglutamic acid (γ-PGA) nanoparticle (NP) to have provided Plasmodium yoelii merozoite surface protein-1 (PyMSP-1) plasmid DNA vaccine with enhanced protective cellular and humoral immunity in the lethal mouse malaria model. PyGPI8p-transamidase-related protein (PyTAM) was selected as a possible candidate vaccine antigen by using DNA vaccination screening from 29 GPI anchor and signal sequence motif positive genes picked up using web-based bioinformatics tools; though the observed protection was not complete. Here, we observed augmented protective effect of PyTAM DNA vaccine by using PEI and γ-PGA complex as delivery system. NP-coated PyTAM plasmid DNA immunized mice showed a significant survival rate from lethal P. yoelii challenge infection compared with naked PyTAM plasmid or with NP-coated empty plasmid DNA group. Antigen-specific IgG1 and IgG2b subclass antibody levels, proportion of CD4 and CD8T cells producing IFN-γ in the splenocytes and IL-4, IFN-γ, IL-12 and TNF-α levels in the sera and in the supernatants from ex vivo splenocytes culture were all enhanced by the NP-coated PyTAM DNA vaccine. These data indicates that NP augments PyTAM protective immune response, and this enhancement was associated with increased DC activation and concomitant IL-12 production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The impact of making vaccines thermostable in Niger's vaccine supply chain.

    PubMed

    Lee, Bruce Y; Cakouros, Brigid E; Assi, Tina-Marie; Connor, Diana L; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R; Pierre, Lionel; Brown, Shawn T

    2012-08-17

    Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1-2%. Our study shows the potential benefits of making any of Niger's EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Vaccine history, gender and influenza vaccination in a household context.

    PubMed

    Mamelund, Svenn-Erik; Riise Bergsaker, Marianne A

    2011-11-28

    Few studies have investigated the effect of the history of vaccination on the current influenza vaccine uptake. The objective of this paper is to study the effects of vaccine history, for each sex separately, on the likelihood of vaccine uptake among single-head households and two-person households, controlling not only for the respondents' own prior vaccination history but also the history of vaccination among possible co-residents. We used logistic regression and data from a nationally representative telephone survey of the non-institutionalized Norwegian population aged ≥ 65 years to estimate our models (N=354). The survey was carried out in November 2008. The lowest vaccine uptake was found among those who live alone with no prior history of vaccination and among those who live in two-person households where both members had no prior history of vaccination (10-22%). Those who live in two-person households where both members had previously been vaccinated had the highest vaccine uptake (86%). While a man who has previously been vaccinated has a higher likelihood of continued vaccination if his wife also has a prior history of vaccination, a woman with a prior history of vaccination is not dependent on her husband's prior practice with respect to the probability of continued vaccination. Of those who have no history of vaccination, more women than men are vaccinated for the first time when they have a spouse who has a history of vaccination. Our study shows that the history of vaccination of a co-resident/spouse has an effect above and beyond the respondent's own vaccination history. The results indicate that there are gender differences in the willingness to encourage family members to be vaccinated or to embark upon a familial vaccination regime in order to protect the individual's own personal health and that of other family members from influenza. To the best of our knowledge such gender differences have never been shown before in research on influenza

  1. Classical swine fever vaccines-State-of-the-art.

    PubMed

    Blome, Sandra; Moß, Claudia; Reimann, Ilona; König, Patricia; Beer, Martin

    2017-07-01

    Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model.

    PubMed

    Suarez, D L; Schultz-Cherry, S

    2000-01-01

    Vaccination of poultry with naked plasmid DNA has been successfully demonstrated with several different poultry pathogens, but the technology needs to be further developed before it can be practically implemented. Many different methods can conceivably enhance the efficacy of DNA vaccines, and this report examines the use of different eukaryotic expression vectors with different promoters and different adjuvants to express the influenza hemagglutinin protein. Four different promoters in five different plasmids were used to express the hemagglutinin protein of an H5 avian influenza virus, including two different immediate early cytomegaloviruses (CMVs), Rous sarcoma virus, chicken actin, and simian virus 40 promoters. All five constructs expressed detectable hemagglutinin protein in cell culture, but the pCI-neo HA plasmid with the CMV promoter provided the best response in chickens when vaccinated intramuscularly at 1 day of age on the basis of antibody titer and survivability after challenge with a highly pathogenic avian influenza virus at 6 wk postinoculation. A beneficial response was observed in birds boostered at 3 wk of age, in birds given larger amounts of DNA, and with the use of multiple injection sites to administer the vaccine. With the use of the pCI-neo construct, the effects of different adjuvants designed to increase the uptake of plasmid DNA, including 25% sucrose, diethylaminoethyl dextran, calcium phosphate, polybrene, and two different cationic liposomes, were examined. Both liposomes tested enhanced antibody titers as compared with the positive controls, but the other chemical adjuvants decreased the antibody response as compared with the control chickens that received just the plasmid alone. The results observed are promising for continued studies, but continued improvements in vaccine response and reduced costs are necessary before the technology can be commercially developed.

  3. Efficacy of vaccination with plasmid DNA encoding for HER2/neu or HER2/neu-eGFP fusion protein against prostate cancer in rats.

    PubMed

    Bhattachary, R; Bukkapatnam, R; Prawoko, I; Soto, J; Morgan, M; Salup, R R

    2002-05-01

    Despite early diagnosis and improved therapy, 31,500 men will die from prostate cancer (PC) this year. The HER2/neu oncoprotein is an important effector of cell growth found in the majority of high-grade prostatic tumors and is capable of rendering immunogenicity. The antigenicity of this oncoprotein might prove useful in the development of PC vaccines. Our goal is to prove the principle that a single DNA vaccine can provide reliable immunity against PC in the MatLyLu (MLL) translational tumor model. The parental rat MatLyLu PC cell line expresses low to moderate levels of the rat neu protein. To simulate in vivo human PC, MatLyLu cells were transfected with a truncated sequence of human HER2/neu cDNA cloned into the pCI-neo vector. This HER2/neu cDNA sequence encodes the first 433 amino acids of the extracellular domain (ECD). MatLyLu cells were also transfected with the same HER2/neu cDNA sequence cloned into the N1-terminal sequence of EGFP reporter gene to produce a fusion protein. The partial ECD sequence of HER2/neu includes five rat major histocompatibility (MHC)-II-restricted peptides with complete human-to-rat cross-species homology. The HER2/neu protein overexpression was documented by Western Blot analysis, and the expression of fusion protein was monitored by confocal microscopy and fluorimetry. Vaccination with a single injection of HER2/neu cDNA protected 50% of animals against HER2/neu-MatLyLu tumors (P < 0.01). When the tumor cells were engineered to express HER2/neu-EGFP fusion protein, the antitumor immunity was enhanced, as following vaccination with HER2/neu-EGFP cDNA, 80% of these rats rejected HER2/neu-EGFP-MatLyLu (P<0.001). Both vaccines induced HER2/neu-specific antibody titers. Rats vaccinated with EGFP-cDNA rejected 80% of EGFP-MatLyLu tumors and, interestingly, 40% of HER2/neu-MatLyLu tumors. None of the cDNA vaccines induced immunity against parental MatLyLu cells. Our data clearly demonstrate that a single injection of HER2/neu-EGFP cDNA

  4. Hepatitis Vaccines

    PubMed Central

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  5. ZIKA-001: Safety and Immunogenicity of an Engineered DNA Vaccine Against ZIKA virus infection

    PubMed Central

    Tebas, Pablo; Roberts, Christine C; Muthumani, Kar; Reuschel, Emma; White, Scott; Khan, Amir S; Racine, Trina; Choi, Hyeree; Zaidi, Faraz; Boyer, Jean; Kudchodkar, Sagar; Park, Young K; Trottier, Sylvie; Remigio, Celine; Krieger, Diane; Kobinger, Gary P; Weiner, David; Maslow, Joel

    2017-01-01

    Abstract Background While Zika virus (ZIKV) infection is typically self-limited, congenital birth defects and Guillain-Barré syndrome are well-described. There are no therapies or vaccines against ZIKV infection. Methods ZIKA-001 is a phase I, open label, clinical trial designed to evaluate the safety, side effect profile, and immunogenicity of a synthetic, DNA vaccine (GLS-5700) targeting the pre-membrane+envelope proteins (prME) of the virus. Two groups of 20 participants received GLS-5700 at one of two dose levels: 1 mg or 2 mg DNA/dose at 0, 4, and 12 weeks. Vaccine was administered as 0.1 or 0.2 ml (1 or 2 mg) intradermal (ID) injection followed by electroporation (EP) with the CELLECTRA®-3P device Results The median age of the 40 participants was 38 (IQR 30–54) years; 60% were female 30% Latino and 78% white. No SAEs have been reported to date. Local minor AEs were injection site pain, redness, swelling and itching that occurred in half of the participants. Systemic adverse events were rare and included headache, myalgias, upper respiratory infections, fatigue/malaise and nausea. Four weeks after the first dose 25% vs. 60% of the participants in the 1 mg and 2 mg dose seroconverted. By week 6, 2 weeks after the second dose, the response was 65 and 84% respectively and 2 weeks after the third dose all participants in both dosing groups developed antibodies. At the end of the vaccination period over 60% of vaccinated person neutralized Zika virus in a vero cell assay and greater than 80% on neuronal cell targets. The protective efficacy of the antibodies generated by the vaccine was evaluated in the lethal IFNAR−/− mouse model. After the intraperitoneal administration of 0.1 ml of either baseline, week 14 serum or PBS the animals were challenged with 106 PFUs of ZIKV PR209 isolate. Whereas animals administered PBS (control) or baseline serum succumbed after a median of 5 days, those pretreated with week 14 serum from study participants survived

  6. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination

    USGS Publications Warehouse

    Purcell, Maureen K.; Kurath, Gael; Garver, Kyle A.; Herwig, Russell P.; Winton, James R.

    2004-01-01

    Infectious haematopoietic necrosis virus (IHNV) is a well-studied virus of salmonid fishes. A highly efficacious DNA vaccine has been developed against this virus and studies have demonstrated that this vaccine induces both an early and transient non-specific anti-viral phase as well as long-term specific protection. The mechanisms of the early anti-viral phase are not known, but previous studies noted changes in Mx gene expression, suggesting a role for type I interferon. This study used quantitative real-time reverse transcriptase PCR methodology to compare expression changes over time of a number of cytokine or cytokine-related genes in the spleen of rainbow trout following injection with poly I:C, live IHNV, the IHNV DNA vaccine or a control plasmid encoding the non-antigenic luciferase gene. The target genes included Mx-1, viral haemorrhagic septicaemia virus induced gene 8 (Vig-8), TNF-α1, TNF-α2, IL-1β1, IL-8, TGF-β1 and Hsp70. Poly I:C stimulation induced several genes but the strongest and significant response was observed in the Mx-1 and Vig-8 genes. The live IHN virus induced a significant response in all genes examined except TGF-β1. The control plasmid construct and the IHNV DNA vaccine marginally induced a number of genes, but the main difference between these two groups was a statistically significant induction of the Mx-1 and Vig-8 genes by the IHNV vaccine only. The gene expression profiles elicited by the live virus and the IHNV DNA vaccine differed in a number of aspects but this study confirms the clear role for a type I interferon-like response in early anti-viral defence.

  7. Imperfect Vaccine Aggravates the Long-Standing Dilemma of Voluntary Vaccination

    PubMed Central

    Wu, Bin; Fu, Feng; Wang, Long

    2011-01-01

    Achieving widespread population immunity by voluntary vaccination poses a major challenge for public health administration and practice. The situation is complicated even more by imperfect vaccines. How the vaccine efficacy affects individuals' vaccination behavior has yet to be fully answered. To address this issue, we combine a simple yet effective game theoretic model of vaccination behavior with an epidemiological process. Our analysis shows that, in a population of self-interested individuals, there exists an overshooting of vaccine uptake levels as the effectiveness of vaccination increases. Moreover, when the basic reproductive number, , exceeds a certain threshold, all individuals opt for vaccination for an intermediate region of vaccine efficacy. We further show that increasing effectiveness of vaccination always increases the number of effectively vaccinated individuals and therefore attenuates the epidemic strain. The results suggest that ‘number is traded for efficiency’: although increases in vaccination effectiveness lead to uptake drops due to free-riding effects, the impact of the epidemic can be better mitigated. PMID:21687680

  8. The effects of anti-vaccine conspiracy theories on vaccination intentions.

    PubMed

    Jolley, Daniel; Douglas, Karen M

    2014-01-01

    The current studies investigated the potential impact of anti-vaccine conspiracy beliefs, and exposure to anti-vaccine conspiracy theories, on vaccination intentions. In Study 1, British parents completed a questionnaire measuring beliefs in anti-vaccine conspiracy theories and the likelihood that they would have a fictitious child vaccinated. Results revealed a significant negative relationship between anti-vaccine conspiracy beliefs and vaccination intentions. This effect was mediated by the perceived dangers of vaccines, and feelings of powerlessness, disillusionment and mistrust in authorities. In Study 2, participants were exposed to information that either supported or refuted anti-vaccine conspiracy theories, or a control condition. Results revealed that participants who had been exposed to material supporting anti-vaccine conspiracy theories showed less intention to vaccinate than those in the anti-conspiracy condition or controls. This effect was mediated by the same variables as in Study 1. These findings point to the potentially detrimental consequences of anti-vaccine conspiracy theories, and highlight their potential role in shaping health-related behaviors.

  9. Next-generation dengue vaccines: novel strategies currently under development.

    PubMed

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  10. Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis

    PubMed Central

    2012-01-01

    Background DNA vaccines represent promising therapeutic strategies in autoimmune disorders such as multiple sclerosis (MS). However, the precise mechanisms by which DNA vaccines induce immune regulation remain largely unknown. Here, we aimed to expand previous knowledge existing on the mechanisms of action of DNA vaccines in the animal model of MS, experimental autoimmune encephalomyelitis (EAE), by treating EAE mice with a DNA vaccine encoding the myelin oligodendrocyte glycoprotein (MOG), and exploring the therapeutic effects on the disease-induced inflammatory and neurodegenerative changes. Methods EAE was induced in C57BL6/J mice by immunization with MOG35-55 peptide. Mice were intramuscularly treated with a MOG-DNA vaccine or vehicle in prophylactic and therapeutic approaches. Histological studies were performed in central nervous system (CNS) tissue. Cytokine production and regulatory T cell (Treg) quantification were achieved by flow cytometry. Gene expression patterns were determined using microarrays, and the main findings were validated by real-time PCR. Results MOG-DNA treatment reduced the clinical and histopathological signs of EAE when administered in both prophylactic and therapeutic settings. Suppression of clinical EAE was associated with dampening of antigen (Ag)-specific proinflammatory Th1 and Th17 immune responses and, interestingly, expansion of Treg in the periphery and upregulation in the CNS of genes encoding neurotrophic factors and proteins involved in remyelination. Conclusions These results suggest for the first time that the beneficial effects of DNA vaccines in EAE are not limited to anti-inflammatory mechanisms, and DNA vaccines may also exert positive effects through hitherto unknown neuroprotective mechanisms. PMID:22727044

  11. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.

    PubMed

    Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.

  12. Current Status of Veterinary Vaccines

    PubMed Central

    Meeusen, Els N. T.; Walker, John; Peters, Andrew; Pastoret, Paul-Pierre; Jungersen, Gregers

    2007-01-01

    The major goals of veterinary vaccines are to improve the health and welfare of companion animals, increase production of livestock in a cost-effective manner, and prevent animal-to-human transmission from both domestic animals and wildlife. These diverse aims have led to different approaches to the development of veterinary vaccines from crude but effective whole-pathogen preparations to molecularly defined subunit vaccines, genetically engineered organisms or chimeras, vectored antigen formulations, and naked DNA injections. The final successful outcome of vaccine research and development is the generation of a product that will be available in the marketplace or that will be used in the field to achieve desired outcomes. As detailed in this review, successful veterinary vaccines have been produced against viral, bacterial, protozoal, and multicellular pathogens, which in many ways have led the field in the application and adaptation of novel technologies. These veterinary vaccines have had, and continue to have, a major impact not only on animal health and production but also on human health through increasing safe food supplies and preventing animal-to-human transmission of infectious diseases. The continued interaction between animals and human researchers and health professionals will be of major importance for adapting new technologies, providing animal models of disease, and confronting new and emerging infectious diseases. PMID:17630337

  13. Development and Characterization of an Infectious cDNA Clone of the Modified Live Virus Vaccine Strain of Equine Arteritis Virus

    PubMed Central

    Zhang, Jianqiang; Go, Yun Young; Huang, Chengjin M.; Meade, Barry J.; Lu, Zhengchun; Snijder, Eric J.; Timoney, Peter J.

    2012-01-01

    A stable full-length cDNA clone of the modified live virus (MLV) vaccine strain of equine arteritis virus (EAV) was developed. RNA transcripts generated from this plasmid (pEAVrMLV) were infectious upon transfection into mammalian cells, and the resultant recombinant virus (rMLV) had 100% nucleotide identity to the parental MLV vaccine strain of EAV. A single silent nucleotide substitution was introduced into the nucleocapsid gene (pEAVrMLVB), enabling the cloned vaccine virus (rMLVB) to be distinguished from parental MLV vaccine as well as other field and laboratory strains of EAV by using an allelic discrimination real-time reverse transcription (RT)-PCR assay. In vitro studies revealed that the cloned vaccine virus rMLVB and the parental MLV vaccine virus had identical growth kinetics and plaque morphologies in equine endothelial cells. In vivo studies confirmed that the cloned vaccine virus was very safe and induced high titers of neutralizing antibodies against EAV in experimentally immunized horses. When challenged with the heterologous EAV KY84 strain, the rMLVB vaccine virus protected immunized horses in regard to reducing the magnitude and duration of viremia and virus shedding but did not suppress the development of signs of EVA, although these were reduced in clinical severity. The vaccine clone pEAVrMLVB could be further manipulated to improve the vaccine efficacy as well as to develop a marker vaccine for serological differentiation of EAV naturally infected from vaccinated animals. PMID:22739697

  14. Rotavirus vaccines

    PubMed Central

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children <5 years worldwide. Currently licensed rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  15. Vaccination Perceptions of College Students: With and without Vaccination Waiver.

    PubMed

    Jadhav, Emmanuel D; Winkler, Danielle L; Anderson, Billie S

    2018-01-01

    The resurgence of vaccine preventable diseases occurs more often among intentionally unvaccinated individuals, placing at direct risk young adults not caught up on vaccinations. The objectives of this study were to characterize the sociodemographic characteristics of young adults with and without vaccination waivers and identify their perceived benefits, barriers, and influencers of vaccination. Young adults ( n  = 964) from a Midwestern rural university responded to a survey (fall 2015-spring 2016) designed to identify their perception toward vaccination. Instrument consistency was measured using the Cronbach α-scores. The Chi-square test was used to test any sociodemographic differences and Mann-Whitney U -tests results for differences between exempt and non-exempt students. Analysis occurred in spring 2017. A little over one-third of young adults with a vaccination waiver were not up to date on their vaccinations, and think that vaccinations can cause autism. The biggest identifiable benefit was effective control against disease. The surveyed young adults ranked the out of pocket cost associated with vaccination as the most important barrier and safe and easy to use vaccines as the most important influencer of vaccination. Young adults who have had a vaccination waiver appear to not be up to date on their vaccinations. Vaccine administration programs, such as university campus clinics, would benefit from addressing perceptions unique to young adults with and without a vaccine waiver. This would subsequently better provide young adults a second shot for getting appropriately caught up on vaccinations.

  16. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques.

    PubMed

    Borggren, Marie; Vinner, Lasse; Andresen, Betina Skovgaard; Grevstad, Berit; Repits, Johanna; Melchers, Mark; Elvang, Tara Laura; Sanders, Rogier W; Martinon, Frédéric; Dereuddre-Bosquet, Nathalie; Bowles, Emma Joanne; Stewart-Jones, Guillaume; Biswas, Priscilla; Scarlatti, Gabriella; Jansson, Marianne; Heyndrickx, Leo; Grand, Roger Le; Fomsgaard, Anders

    2013-07-19

    HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  17. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques

    PubMed Central

    Borggren, Marie; Vinner, Lasse; Andresen, Betina Skovgaard; Grevstad, Berit; Repits, Johanna; Melchers, Mark; Elvang, Tara Laura; Sanders, Rogier W; Martinon, Frédéric; Dereuddre-Bosquet, Nathalie; Bowles, Emma Joanne; Stewart-Jones, Guillaume; Biswas, Priscilla; Scarlatti, Gabriella; Jansson, Marianne; Heyndrickx, Leo; Le Grand, Roger; Fomsgaard, Anders

    2013-01-01

    HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques. PMID:26344115

  18. The March Toward Malaria Vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-12-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  19. The March Toward Malaria Vaccines

    PubMed Central

    Hoffman, Stephen L.; Vekemans, Johan; Richie, Thomas L.; Duffy, Patrick E.

    2016-01-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  20. The march toward malaria vaccines

    PubMed Central

    Hoffman, Stephen L.; Vekemans, Johan; Richie, Thomas L.; Duffy, Patrick E.

    2016-01-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  1. The march toward malaria vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-11-27

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  2. HPV Vaccine

    MedlinePlus

    ... Safe Videos for Educators Search English Español HPV Vaccine KidsHealth / For Teens / HPV Vaccine What's in this ... starting at age 9. How Does the HPV Vaccine Work? The HPV vaccine is approved for people ...

  3. Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats.

    PubMed

    Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M

    2003-05-01

    Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.

  4. [From new vaccine to new target: revisiting influenza vaccination].

    PubMed

    Gérard, M

    2011-09-01

    Annual vaccination is since many years the corner stone of Influenza control strategy. Because conventional vaccine are needle-based, are less immunogenic in old people and induce only systemic IgG production, intranasal and intradermal vaccines that are recently or will be soon available in Belgium will offer distinct advantages. Intradermal vaccination is on the Belgian market since 2010. A stronger immune response that allows an antigen sparing strategy is elicited because antigens are delivered near the dermal dendritic cells. Local side effects are more pronounced than after intramuscular injection. The needle-free intranasal vaccine that has been approved for use in people less than 18 years old by the EMEA in October 2010 induces also a mucosal IgA response. Improved clinical results than with intramuscular vaccine has been documented in several studies in children. Several conditions are contraindication to nasal vaccination because of patterns of side effects and because the vaccine is an live-attenuated vaccine. Pregnant women has become a top priority for Influenza vaccination in the recommendations of the High Council of Health in Belgium since the 2009 H1N1 pandemic. Several studies has since then documented the increased risk for Influenza-related morbidity in pregnant women especially during the third trimester and independently of the presence of other comorbidities. Reduced incidence of documented Influenza and of Influenza-related hospitalizations are observed in the new born of vaccinated women until 6 months of age. Availability of new vaccines for Influenza and better knowledge of the benefit of vaccination in target populations are important tools to optimize vaccine coverage of the population.

  5. The Effects of Anti-Vaccine Conspiracy Theories on Vaccination Intentions

    PubMed Central

    Jolley, Daniel; Douglas, Karen M.

    2014-01-01

    The current studies investigated the potential impact of anti-vaccine conspiracy beliefs, and exposure to anti-vaccine conspiracy theories, on vaccination intentions. In Study 1, British parents completed a questionnaire measuring beliefs in anti-vaccine conspiracy theories and the likelihood that they would have a fictitious child vaccinated. Results revealed a significant negative relationship between anti-vaccine conspiracy beliefs and vaccination intentions. This effect was mediated by the perceived dangers of vaccines, and feelings of powerlessness, disillusionment and mistrust in authorities. In Study 2, participants were exposed to information that either supported or refuted anti-vaccine conspiracy theories, or a control condition. Results revealed that participants who had been exposed to material supporting anti-vaccine conspiracy theories showed less intention to vaccinate than those in the anti-conspiracy condition or controls. This effect was mediated by the same variables as in Study 1. These findings point to the potentially detrimental consequences of anti-vaccine conspiracy theories, and highlight their potential role in shaping health-related behaviors. PMID:24586574

  6. Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes

    PubMed Central

    Lubell, Yoel; Koh, Gavin C. K. W.; White, Lisa J.; Day, Nicholas P. J.; Titball, Richard W.

    2012-01-01

    Background Burkholderia pseudomallei is a Category B select agent and the cause of melioidosis. Research funding for vaccine development has largely considered protection within the biothreat context, but the resulting vaccines could be applicable to populations who are at risk of naturally acquired melioidosis. Here, we discuss target populations for vaccination, consider the cost-benefit of different vaccination strategies and review potential vaccine candidates. Methods and Findings Melioidosis is highly endemic in Thailand and northern Australia, where a biodefense vaccine might be adopted for public health purposes. A cost-effectiveness analysis model was developed, which showed that a vaccine could be a cost-effective intervention in Thailand, particularly if used in high-risk populations such as diabetics. Cost-effectiveness was observed in a model in which only partial immunity was assumed. The review systematically summarized all melioidosis vaccine candidates and studies in animal models that had evaluated their protectiveness. Possible candidates included live attenuated, whole cell killed, sub-unit, plasmid DNA and dendritic cell vaccines. Live attenuated vaccines were not considered favorably because of possible reversion to virulence and hypothetical risk of latent infection, while the other candidates need further development and evaluation. Melioidosis is acquired by skin inoculation, inhalation and ingestion, but routes of animal inoculation in most published studies to date do not reflect all of this. We found a lack of studies using diabetic models, which will be central to any evaluation of a melioidosis vaccine for natural infection since diabetes is the most important risk factor. Conclusion Vaccines could represent one strand of a public health initiative to reduce the global incidence of melioidosis. PMID:22303489

  7. [VACCINES].

    PubMed

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  8. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette; Fischer, William; Wallstrom, Timothy

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highlymore » conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.« less

  9. Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery.

    PubMed

    Nawwab Al-Deen, F M; Selomulya, C; Kong, Y Y; Xiang, S D; Ma, C; Coppel, R L; Plebanski, M

    2014-02-01

    Dendritic cells (DC) targeting vaccines require high efficiency for uptake, followed by DC activation and maturation. We used magnetic vectors comprising polyethylenimine (PEI)-coated superparamagnetic iron oxide nanoparticles, with hyaluronic acid (HA) of different molecular weights (<10 and 900 kDa) to reduce cytotoxicity and to facilitate endocytosis of particles into DCs via specific surface receptors. DNA encoding Plasmodium yoelii merozoite surface protein 1-19 and a plasmid encoding yellow fluorescent gene were added to the magnetic complexes with various % charge ratios of HA: PEI. The presence of magnetic fields significantly enhanced DC transfection and maturation. Vectors containing a high-molecular-weight HA with 100% charge ratio of HA: PEI yielded a better transfection efficiency than others. This phenomenon was attributed to their longer molecular chains and higher mucoadhesive properties aiding DNA condensation and stability. Insights gained should improve the design of more effective DNA vaccine delivery systems.

  10. Enhancing Malaria Vaccine Development by the Naval Medical Research Center

    DTIC Science & Technology

    2003-03-01

    optimized in Milestone 1 of this Phase II project. Reduction in particle size of the biopolymeric carrier was sufficient for intramuscular administration of...glycolide) (PLGA) with incorporated DNA plasmid were developed for systemic administration of DNA plasmids for use as a malaria vaccine. Objectives in...with incorporated DNA plasmid were developed for systemic administration of DNA plasmids for use as a malaria vaccine. Objectives in Milestone 1

  11. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease

    PubMed Central

    Enjuanes, Luis; DeDiego, Marta L.; Álvarez, Enrique; Deming, Damon; Sheahan, Tim; Baric, Ralph

    2009-01-01

    An important effort has been performed after the emergence of severe acute respiratory syndrome (SARS) epidemic in 2003 to diagnose and prevent virus spreading. Several types of vaccines have been developed including inactivated viruses, subunit vaccines, virus-like particles (VLPs), DNA vaccines, heterologous expression systems, and vaccines derived from SARS-CoV genome by reverse genetics. This review describes several aspects essential to develop SARS-CoV vaccines, such as the correlates of protection, virus serotypes, vaccination side effects, and bio-safeguards that can be engineered into recombinant vaccine approaches based on the SARS-CoV genome. The production of effective and safe vaccines to prevent SARS has led to the development of promising vaccine candidates, in contrast to the design of vaccines for other coronaviruses, that in general has been less successful. After preclinical trials in animal models, efficacy and safety evaluation of the most promising vaccine candidates described has to be performed in humans. PMID:17416434

  12. Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine.

    PubMed

    Hashemi, Hamidreza; Bamdad, Taravat; Jamali, Abbas; Pouyanfard, Somayeh; Mohammadi, Masoumeh Gorgian

    2010-02-01

    Phage display is based on expressing peptides as a fusion to one of the phage coat proteins. To date, many vaccine researches have been conducted to display immunogenic peptides or mimotopes of various pathogens and tumors on the surface of filamentous bacteriophages. In recent years as a new approach to application of phages, recombinant bacteriophage lambda particles were used as DNA delivery vehicles to mammalian cells. In this study, recombinant filamentous phage whole particles were used for vaccination of mice. BALB/c mice were inoculated with filamentous phage particles containing expression cassette of Herpes simplex virus 1 (HSV-1) glycoprotein D that has essential roles in the virus attachment and entry. Both humoral and cellular immune responses were measured in the immunized mice and compared to conventional DNA vaccination. A dose-response relationship was observed in both arms of immune responses induced by recombinant filamentous phage inoculation. The results were similar to those from DNA vaccination. Filamentous phages can be considered as suitable alternative candidate vaccines because of easier and more cost-effective production and purification over plasmid DNA or bacteriophage lambda particles. 2009 Elsevier B.V. All rights reserved.

  13. Vaccines for viral diseases with dermatologic manifestations.

    PubMed

    Brentjens, Mathijs H; Yeung-Yue, Kimberly A; Lee, Patricia C; Tyring, Stephen K

    2003-04-01

    Vaccines against infectious diseases have been available since the 1800s, when an immunization strategy against smallpox developed by Jenner gained wide acceptance. Until recently, the only vaccination strategies available involved the use of protein-based, whole killed, and attenuated live virus vaccines. These strategies have led to the development of effective vaccines against a variety of diseases with primary or prominent cutaneous manifestations. Effective and safe vaccines now used worldwide include those directed against measles and rubella (now commonly used together with a mumps vaccine as the trivalent MMR), chickenpox, and hepatitis B. The eradication of naturally occurring smallpox remains one of the greatest successes in the history of modern medicine, but stockpiles of live smallpox exist in the United States and Russia. Renewed interest in the smallpox vaccine reflects concerns about a possible bioterrorist threat using this virus. Yellow fever is a hemorrhagic virus endemic to tropical areas of South America and Africa. An effective vaccine for this virus has existed since 1937, and it is used widely in endemic areas of South America, and to a lesser extent in Africa. This vaccine is recommended once every 10 years for people who are traveling to endemic areas. Advances in immunology have led to a greater understanding of immune system function in viral diseases. Progress in genetics and molecular biology has allowed researchers to design vaccines with novel mechanisms of action (eg, DNA, vector, and VLP vaccines). Vaccines have also been designed to specifically target particular viral components, allowing for stimulation of various arms of the immune system as desired. Ongoing research shows promise in prophylactic and therapeutic vaccination for viral infections with cutaneous manifestations. Further studies are necessary before vaccines for HSV, HPV, and HIV become commercially available.

  14. Efficacy of a glycoprotein DNA vaccine against viral haemorrhagic septicaemia (VHS) in Pacific herring, Clupea pallasii Valenciennes

    USGS Publications Warehouse

    Hart, L.M.; Lorenzen, Niels; LaPatra, S.E.; Grady, C.A.; Roon, S.E.; O’Reilly, J.; Gregg, J.L.; Hershberger, P.K.

    2012-01-01

    Viral haemorrhagic septicaemia virus (VHSV) and its associated disease state, viral haemorrhagic septicaemia (VHS), is hypothesized to be a proximate factor accounting for the decline and failed recovery of Pacific herring populations in Prince William Sound, AK (Marty et al. 1998, 2003, 2010). Survivors of laboratory-induced VHSV epizootics develop resistance to subsequent viral exposure (Kocan et al. 2001; Hershberger et al. 2007, 2010), which is likely the result of immune system recognition of the viral glycoprotein (G) (Lecocq-Xhonneux et al. 1994), a surface antigen that contains neutralizing epitopes (Lorenzen, Olesen & Jorgensen 1990; Jørgensen et al. 1995) and cell attachment domains (Lecocq-Xhonneux et al. 1994; Estepa & Coll 1996). These properties have proven useful in the development of G-gene-based DNA vaccines for VHSV and a related rhabdovirus, infectious haematopoietic necrosis virus (IHNV) (Anderson et al. 1996; Heppell et al. 1998; Corbeil et al. 1999; Einer-Jensen et al. 2009). Rainbow trout fingerlings, Oncorhynchus mykiss (Walbaum), vaccinated with 1 µg of either the VHS or IHN vaccine are protected from VHS when exposed to virus as early as 4 days (44 degree days) post-vaccination (p.v.) (Lorenzen et al. 2002). At later time points (80 days p.v.; 880 degree days), the level of cross-protection against VHS by IHN vaccination is either completely lost (60 days p.v.; 660 degree days) (3 g rainbow trout; 1 µg vaccine dose) (Lorenzen et al. 2002) or present at intermediate levels (6.5 g rainbow trout; 1 µg vaccine dose) (Einer-Jensen et al. 2009). Comparatively, VHS vaccination remains effective as long as 9 months (2520 degree days) p.v. (100 g rainbow trout; 0.5 µg vaccine dose) (McLauchlan et al. 2003). These results suggest that IHN and VHS vaccination activate a rapid transitory innate immune response against VHSV that is followed by long-term adaptive immunity in VHS-vaccinated trout (Lorenzen et al. 2002).

  15. Neutralizing antibodies respond to a bivalent dengue DNA vaccine or/and a recombinant bivalent antigen.

    PubMed

    Zhang, Zhi-Shan; Weng, Yu-Wei; Huang, Hai-Long; Zhang, Jian-Ming; Yan, Yan-Sheng

    2015-02-01

    There is currently no effective vaccine to prevent dengue infection, despite the existence of multiple studies on potential methods of immunization. The aim of the present study was to explore the effect of DNA and/or recombinant protein on levels of neutralizing antibodies. For this purpose, envelope domain IIIs of dengue serotypes 1 and 2 (DEN-1/2)were spliced by a linker (Gly‑Gly‑Ser‑Gly‑Ser)3 and cloned into the prokaryotic expression plasmid pET30a (+) and eukaryotic vector pcDNA3.1 (+). The chimeric bivalent protein was expressed in Escherichia coli, and one‑step purification by high‑performance liquid chromatography was conducted. Protein expression levels of the DNA plasmid were tested in BHK‑21 cells by indirect immunofluorescent assay. In order to explore a more effective immunization strategy and to develop neutralizing antibodies against the two serotypes, mice were inoculated with recombinant bivalent protein, the DNA vaccine, or the two given simultaneously. Presence of the specific antibodies was tested by ELISA and the presence of the neutralizing antibodies was determined by plaque reduction neutralization test. Results of the analysis indicated that the use of a combination of DNA and protein induced significantly higher titers of neutralizing antibodies against either DEN‑1 or DEN‑2 (1:64.0 and 1:76.1, respectively) compared with the DNA (1:24.7 and 1:26.9, DEN‑1 and DEN‑2, respectively) or the recombinant protein (1:34.9 and 1:45.3 in DEN‑1 and DEN‑2, respectively). The present study demonstrated that the combination of recombinant protein and DNA as an immunization strategy may be an effective method for the development of a vaccine to prevent dengue virus infection.

  16. Survey of Australian inpatients on vaccination status and perceptions of influenza vaccination.

    PubMed

    Loke, Xin Yee; Tran, Winnie; Alderman, Christopher P

    2012-08-01

    To assess vaccination status, potential influences upon vaccination status, and attitudes and beliefs about vaccination among hospital inpatients. This prospective, cross-sectional audit assessed vaccination status for important communicable diseases, patient perceptions about the influenza vaccination, and possible influences on vaccination status. Information was collected during face-to-face interviews using a structured questionnaire. This study was undertaken in a general teaching hospital in suburban Adelaide, South Australia. The study participants comprised a convenience sample of 50 inpatients at the hospital from April 25, 2011, to May 18, 2011. Interview and structured questionnaire at bedside. Vaccination status for seasonal influenza, pneumococcal vaccine, diphtheriatetanus-pertussis/diphtheria-tetanus vaccination, herpes zoster virus, and hepatitis B were assessed for inpatients. Qualitative information regarding patient perceptions about the influenza vaccination was also surveyed. Possible influences on vaccination status including comorbidities or high-risk conditions, area of residence, age, and gender were also assessed. The self-reported vaccination rates were: seasonal influenza vaccine 2010 (64%), seasonal influenza vaccine 2011 (52%), pneumococcal vaccine (46%), diphtheria-tetanuspertussis/ diphtheria-tetanus vaccination (70%), herpes zoster vaccination (34%), and hepatitis B vaccination (40%). Vaccination was significantly more common among those older than 64 years of age (P = 0.01), with 46% of patients older than 64 years vaccinated against influenza. There was no significant association between vaccination status and other characteristics such as gender, number of risk factors, recent hospital admission, and living in a residential facility. Regarding perceptions toward the influenza vaccine, the only factor associated with significantly increased likelihood of vaccination was self-reported risk perception (P = 0.03). The majority of

  17. Repeated annual influenza vaccination and vaccine effectiveness: review of evidence.

    PubMed

    Belongia, Edward A; Skowronski, Danuta M; McLean, Huong Q; Chambers, Catharine; Sundaram, Maria E; De Serres, Gaston

    2017-07-01

    Studies in the 1970s and 1980s signaled concern that repeated influenza vaccination could affect vaccine protection. The antigenic distance hypothesis provided a theoretical framework to explain variability in repeat vaccination effects based on antigenic similarity between successive vaccine components and the epidemic strain. Areas covered: A meta-analysis of vaccine effectiveness studies from 2010-11 through 2014-15 shows substantial heterogeneity in repeat vaccination effects within and between seasons and subtypes. When negative effects were observed, they were most pronounced for H3N2, especially in 2014-15 when vaccine components were unchanged and antigenically distinct from the epidemic strain. Studies of repeated vaccination across multiple seasons suggest that vaccine effectiveness may be influenced by more than one prior season. In immunogenicity studies, repeated vaccination blunts the hemagglutinin antibody response, particularly for H3N2. Expert commentary: Substantial heterogeneity in repeated vaccination effects is not surprising given the variation in study populations and seasons, and the variable effects of antigenic distance and immunological landscape in different age groups and populations. Caution is required in the interpretation of pooled results across multiple seasons, since this can mask important variation in repeat vaccination effects between seasons. Multi-season clinical studies are needed to understand repeat vaccination effects and guide recommendations.

  18. Vaccine preventable disease incidence as a complement to vaccine efficacy for setting vaccine policy

    PubMed Central

    Gessner, Bradford D.; Feikin, Daniel R.

    2015-01-01

    Traditionally, vaccines have been evaluated in clinical trials that establish vaccine efficacy (VE) against etiology-confirmed disease outcomes, a measure important for licensure. Yet, VE does not reflect a vaccine’s public health impact because it does not account for relative disease incidence. An additional measure that more directly establishes a vaccine’s public health value is the vaccine preventable disease incidence (VPDI), which is the incidence of disease preventable by vaccine in a given context. We describe how VE and VPDI can vary, sometimes in inverse directions, across disease outcomes and vaccinated populations. We provide examples of how VPDI can be used to reveal the relative public health impact of vaccines in developing countries, which can be masked by focus on VE alone. We recommend that VPDI be incorporated along with VE into the analytic plans of vaccine trials, as well as decisions by funders, ministries of health, and regulatory authorities. PMID:24731817

  19. Update on the current status of cytomegalovirus vaccines.

    PubMed

    Sung, Heungsup; Schleiss, Mark R

    2010-11-01

    Human cytomegalovirus (HCMV) is ubiquitous in all populations, and is the most commonly recognized cause of congenital viral infection in developed countries. On the basis of the economic costs saved and the improvement in quality of life that could potentially be conferred by a successful vaccine for prevention of congenital HCMV infection, the Institute of Medicine has identified HCMV vaccine development as a major public health priority. An effective vaccine could potentially also be beneficial in preventing or ameliorating HCMV disease in immunocompromised individuals. Although there are no licensed HCMV vaccines currently available, enormous progress has been made in the last decade, as evidenced by the recently reported results of a Phase II trial of a glycoprotein B vaccine for the prevention of HCMV infection in seronegative women of childbearing age. HCMV vaccines currently in clinical trials include: glycoprotein B subunit vaccines; alphavirus replicon particle vaccines; DNA vaccines; and live-attenuated vaccines. A variety of vaccine strategies are also being examined in preclinical systems and animal models of infection. These include: recombinant vesicular stomatitis virus vaccines; recombinant modified vaccinia virus Ankara; replication-deficient adenovirus-vectored vaccines; and recombinant live-attenuated virus vaccines generated by mutagenesis of cloned rodent CMV genomes maintained as bacterial artificial chromosomes in Escherichia coli. In this article, we provide an overview of the current state of clinical trials and preclinical development of vaccines against HCMV, with an emphasis on studies that have been conducted in the past 5 years. We also summarize a number of recent advances in the study of the biology of HCMV, particularly with respect to epithelial and endothelial cell entry of the virus, which have implications for future vaccine design.

  20. Multisite HPV16/18 Vaccine Efficacy Against Cervical, Anal, and Oral HPV Infection

    PubMed Central

    Kreimer, Aimée R.; Schiffman, Mark; Herrero, Rolando; Wacholder, Sholom; Rodriguez, Ana Cecilia; Lowy, Douglas R.; Porras, Carolina; Schiller, John T.; Quint, Wim; Jimenez, Silvia; Safaeian, Mahboobeh; Struijk, Linda; Schussler, John; Hildesheim, Allan; Gonzalez, Paula

    2016-01-01

    Background: Previous Costa Rica Vaccine Trial (CVT) reports separately demonstrated vaccine efficacy against HPV16 and HPV18 (HPV16/18) infections at the cervical, anal, and oral regions; however, the combined overall multisite efficacy (protection at all three sites) and vaccine efficacy among women infected with HPV16 or HPV18 prior to vaccination are less known. Methods: Women age 18 to 25 years from the CVT were randomly assigned to the HPV16/18 vaccine (Cervarix) or a hepatitis A vaccine. Cervical, oral, and anal specimens were collected at the four-year follow-up visit from 4186 women. Multisite and single-site vaccine efficacies (VEs) and 95% confidence intervals (CIs) were computed for one-time detection of point prevalent HPV16/18 in the cervical, anal, and oral regions four years after vaccination. All statistical tests were two-sided. Results: The multisite woman-level vaccine efficacy was highest among “naïve” women (HPV16/18 seronegative and cervical HPV high-risk DNA negative at vaccination) (vaccine efficacy = 83.5%, 95% CI = 72.1% to 90.8%). Multisite woman-level vaccine efficacy was also demonstrated among women with evidence of a pre-enrollment HPV16 or HPV18 infection (seropositive for HPV16 and/or HPV18 but cervical HPV16/18 DNA negative at vaccination) (vaccine efficacy = 57.8%, 95% CI = 34.4% to 73.4%), but not in those with cervical HPV16 and/or HPV18 DNA at vaccination (anal/oral HPV16/18 VE = 25.3%, 95% CI = -40.4% to 61.1%). Concordant HPV16/18 infections at two or three sites were also less common in HPV16/18-infected women in the HPV vaccine vs control arm (7.4% vs 30.4%, P < .001). Conclusions: This study found high multisite vaccine efficacy among “naïve” women and also suggests the vaccine may provide protection against HPV16/18 infections at one or more anatomic sites among some women infected with these types prior to HPV16/18 vaccination. PMID:26467666

  1. Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems.

    PubMed

    Kalariya, Mayurkumar; Amiji, Mansoor M

    2013-09-10

    The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The Impact of Making Vaccines Thermostable in Niger’s Vaccine Supply Chain

    PubMed Central

    Lee, Bruce Y.; Cakouros, Brigid E.; Assi, Tina-Marie; Connor, Diana L.; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R.; Pierre, Lionel; Brown, Shawn T.

    2012-01-01

    Objective Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Methods Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Findings Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1–2%. Conclusion Our study shows the potential benefits of making any of Niger’s EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. PMID:22789507

  3. Adjuvant effect of polysaccharide from fruits of Physalis alkekengi L. in DNA vaccine against systemic candidiasis.

    PubMed

    Yang, Huimin; Han, Shuying; Zhao, Danyang; Wang, Guiyun

    2014-08-30

    Adjuvant effect mediated by polysaccharide (PPSB) isolated from the fruits of Physalis alkekengi L. in DNA vaccine was evaluated in mice. Recombinant plasmid containing epitope C (LKVIRK) from heat shock protein 90 (HSP90) of Candida albicans (C. albican) was used as DNA vaccine (pD-HSP90C). The results indicated that PPSB significantly enhanced specific antibody titers IgG, IgG1, IgG2b, and concentration of IL-2 and IL-4 in sera of mice immunized with pD-HSP90C (p<0.05). More importantly, it was found that the mice immunized with pD-HSP90C/PPSB not only had fewer CFU (colony forming unites) in the kidneys than mice immunized with pD-HSP90C, but also a statistically significant higher survival rate over PBS-injected group (p<0.05) when the immunized mice were challenged with living C. albican cells. However, no statistically significant difference in survival rate was observed between pD-HSP90C-immunized group and PBS-injected group. Therefore, PPSB can be considered as a promising adjuvant eliciting both Th1 and Th2 responses to enhance the efficacy of DNA vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Universal fungal vaccines

    PubMed Central

    Hamad, Mawieh

    2012-01-01

    The complex nature of fungal pathogens, the intricate host-pathogen relationship and the health status of subjects in need of antifungal vaccination continue to hamper efforts to develop fungal vaccines for clinical use. That said, the rise of the universal vaccine concept is hoped to revive fungal vaccine research by expanding the pool of vaccine candidates worthy of clinical evaluation. It can do so through antigenic commonality-based screening for vaccine candidates from a wide range of pathogens and by reassessing the sizable collection of already available experimental and approved vaccines. Development of experimental vaccines protective against multiple fungal pathogens is evidence of the utility of this concept in fungal vaccine research. However, universal fungal vaccines are not without difficulties; for instance, development of vaccines with differential effectiveness is an issue that should be addressed. Additionally, rationalizing the development of universal fungal vaccines on health or economic basis could be contentious. Herein, universal fungal vaccines are discussed in terms of their potential usefulness and possible drawbacks. PMID:22922769

  5. Making vaccines “on demand”

    PubMed Central

    De Groot, Anne S; Einck, Leo; Moise, Leonard; Chambers, Michael; Ballantyne, John; Malone, Robert W; Ardito, Matthew; Martin, William

    2013-01-01

    The integrated US Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has made great strides in strategic preparedness and response capabilities. There have been numerous advances in planning, biothreat countermeasure development, licensure, manufacturing, stockpiling and deployment. Increased biodefense surveillance capability has dramatically improved, while new tools and increased awareness have fostered rapid identification of new potential public health pathogens. Unfortunately, structural delays in vaccine design, development, manufacture, clinical testing and licensure processes remain significant obstacles to an effective national biodefense rapid response capability. This is particularly true for the very real threat of “novel pathogens” such as the avian-origin influenzas H7N9 and H5N1, and new coronaviruses such as hCoV-EMC. Conventional approaches to vaccine development, production, clinical testing and licensure are incompatible with the prompt deployment needed for an effective public health response. An alternative approach, proposed here, is to apply computational vaccine design tools and rapid production technologies that now make it possible to engineer vaccines for novel emerging pathogen and WMD biowarfare agent countermeasures in record time. These new tools have the potential to significantly reduce the time needed to design string-of-epitope vaccines for previously unknown pathogens. The design process—from genome to gene sequence, ready to insert in a DNA plasmid—can now be accomplished in less than 24 h. While these vaccines are by no means “standard,” the need for innovation in the vaccine design and production process is great. Should such vaccines be developed, their 60-d start-to-finish timeline would represent a 2-fold faster response than the current standard. PMID:23877094

  6. Generation and Evaluation of Prophylactic mRNA Vaccines Against Allergy.

    PubMed

    Weiss, Richard; Scheiblhofer, Sandra; Thalhamer, Josef

    2017-01-01

    Due to the worldwide increase in allergies and a limited efficacy of therapeutic interventions, the need for prophylactic vaccination against allergies has been recognized. mRNA and DNA vaccines have demonstrated their high potential for preventing allergic sensitization by inducing an immunological bias that prevents TH2 sensitization. However, only mRNA vaccines fulfill the stringent safety requirements for vaccination of healthy children. In this chapter, we describe the generation of conventional as well as self-replicating mRNA vaccines and methods to test their prophylactic efficacy in animal models.

  7. Vaccines against poverty

    PubMed Central

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  8. Physician communication about adolescent vaccination: How is human papillomavirus vaccine different?

    PubMed

    Gilkey, Melissa B; Moss, Jennifer L; Coyne-Beasley, Tamera; Hall, Megan E; Shah, Parth D; Brewer, Noel T

    2015-08-01

    Low human papillomavirus (HPV) vaccination coverage stands in stark contrast to our success in delivering other adolescent vaccines. To identify opportunities for improving physicians' recommendations for HPV vaccination, we sought to understand how the communication context surrounding adolescent vaccination varies by vaccine type. A national sample of 776 U.S. physicians (53% pediatricians, 47% family medicine physicians) completed our online survey in 2014. We assessed physicians' perceptions and communication practices related to recommending adolescent vaccines for 11- and 12-year-old patients. About three-quarters of physicians (73%) reported recommending HPV vaccine as highly important for patients, ages 11-12. More physicians recommended tetanus, diphtheria, and acellular pertussis (Tdap) (95%) and meningococcal vaccines (87%, both p<0.001) as highly important for this age group. Only 13% of physicians perceived HPV vaccine as being highly important to parents, which was far fewer than perceived parental support for Tdap (74%) and meningococcal vaccines (62%, both p<0.001). Physicians reported that discussing HPV vaccine took almost twice as long as discussing Tdap. Among physicians with a preferred order for discussing adolescent vaccines, most (70%) discussed HPV vaccine last. Our findings suggest that primary care physicians perceived HPV vaccine discussions to be burdensome, requiring more time and engendering less parental support than other adolescent vaccines. Perhaps for this reason, physicians in our national study recommended HPV vaccine less strongly than other adolescent vaccines, and often chose to discuss it last. Communication strategies are needed to support physicians in recommending HPV vaccine with greater confidence and efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Randomized Trials Comparing Inactivated Vaccine After Medium- or High-titer Measles Vaccine With Standard Titer Measles Vaccine After Inactivated Vaccine: A Meta-analysis.

    PubMed

    Aaby, Peter; Ravn, Henrik; Benn, Christine S; Rodrigues, Amabelia; Samb, Badara; Ibrahim, Salah A; Libman, Michael D; Whittle, Hilton C

    2016-11-01

    Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated vaccines [after medium-titer MV (MTMV) or high-titer MV (HTMV)] and a live standard titer MV (after an initial inactivated vaccine). The trials were conducted in Sudan, Senegal, The Gambia and Guinea-Bissau. The intervention group received live MTMV or HTMV from 4 to 5 months and then an inactivated vaccine from 9 to 10 months of age; the control children received inactivated vaccine/placebo from 4 to 5 months and standard titer MV from 9 to 10 months of age. We compared mortality from 9 months until end of study at 3 to 5 years of age for children who received inactivated vaccine (after MTMV or HTMV) and standard titer MV (after inactivated vaccine), respectively. The original datasets were analyzed using a Cox proportional hazards model stratified by trial. The mortality rate ratio (MRR) was 1.38 (95% confidence interval: 1.05-1.83) after an inactivated vaccine (after MTMV or HTMV) compared with a standard titer MV (after inactivated vaccine). Girls had a MRR of 1.89 (1.27-2.80), whereas there was no effect for boys, the sex-differential effect being significant (P = 0.02). Excluding measles cases did not alter these conclusions, the MRR after inactivated vaccines (after MTMV or HTMV) being 1.40 (1.06-1.86) higher overall and 1.92 (1.29-2.86) for girls. Control for variations in national immunization schedules for other vaccines did not modify these results. After 9 months of age, all children had been immunized against measles, and mortality in girls was higher when they had received inactivated vaccines (after MTMV or HTMV) rather than live standard titer MV (after an inactivated vaccine).

  10. From genomes to vaccines: Leishmania as a model.

    PubMed Central

    Almeida, Renata; Norrish, Alan; Levick, Mark; Vetrie, David; Freeman, Tom; Vilo, Jaak; Ivens, Alasdair; Lange, Uta; Stober, Carmel; McCann, Sharon; Blackwell, Jenefer M

    2002-01-01

    The 35 Mb genome of Leishmania should be sequenced by late 2002. It contains approximately 8500 genes that will probably translate into more than 10 000 proteins. In the laboratory we have been piloting strategies to try to harness the power of the genome-proteome for rapid screening of new vaccine candidate. To this end, microarray analysis of 1094 unique genes identified using an EST analysis of 2091 cDNA clones from spliced leader libraries prepared from different developmental stages of Leishmania has been employed. The plan was to identify amastigote-expressed genes that could be used in high-throughput DNA-vaccine screens to identify potential new vaccine candidates. Despite the lack of transcriptional regulation that polycistronic transcription in Leishmania dictates, the data provide evidence for a high level of post-transcriptional regulation of RNA abundance during the developmental cycle of promastigotes in culture and in lesion-derived amastigotes of Leishmania major. This has provided 147 candidates from the 1094 unique genes that are specifically upregulated in amastigotes and are being used in vaccine studies. Using DNA vaccination, it was demonstrated that pooling strategies can work to identify protective vaccines, but it was found that some potentially protective antigens are masked by other disease-exacerbatory antigens in the pool. A total of 100 new vaccine candidates are currently being tested separately and in pools to extend this analysis, and to facilitate retrospective bioinformatic analysis to develop predictive algorithms for sequences that constitute potentially protective antigens. We are also working with other members of the Leishmania Genome Network to determine whether RNA expression determined by microarray analyses parallels expression at the protein level. We believe we are making good progress in developing strategies that will allow rapid translation of the sequence of Leishmania into potential interventions for disease

  11. Therapeutic Vaccination for HPV Induced Cervical Cancers

    PubMed Central

    Brinkman, Joeli A.; Hughes, Sarah H.; Stone, Pamela; Caffrey, Angela S.; Muderspach, Laila I.; Roman, Lynda D.; Weber, Jeffrey S.; Kast, W. Martin

    2007-01-01

    Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV) infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence. PMID:17627067

  12. Egg-Independent Influenza Vaccines and Vaccine Candidates

    PubMed Central

    Manini, Ilaria; Pozzi, Teresa; Rossi, Stefania; Montomoli, Emanuele

    2017-01-01

    Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines. PMID:28718786

  13. Vaccines and vaccination strategies against human cutaneous leishmaniasis.

    PubMed

    Okwor, Ifeoma; Uzonna, Jude

    2009-05-01

    One might think that the development of a vaccine against cutaneous leishmaniasis would be relatively straightforward because the type of immune response required for protection is known and natural immunity occurs following recovery from primary infection. However, there is as yet no effective vaccine against the disease in humans. Although vaccination in murine studies has yielded promising results, these vaccines have failed miserably when tested in primates or humans. The reasons behind these failures are unknown and remain a major hurdle for vaccine design and development against cutaneous leishmaniasis. In contrast, recovery from natural, deliberate or experimental infections results in development of long-lasting immunity to re-infection. This so called infection-induced resistance is the strongest anti-Leishmania immunity known. Here, we briefly review the different approaches to vaccination against cutaneous leishmaniasis and argue that vaccines composed of genetically modified (attenuated) parasites, which induce immunity akin to infection-induced resistance, may provide best protection against cutaneous leishmaniasis in humans.

  14. European Vaccine Initiative: lessons from developing malaria vaccines.

    PubMed

    Geels, Mark J; Imoukhuede, Egeruan B; Imbault, Nathalie; van Schooten, Harry; McWade, Terry; Troye-Blomberg, Marita; Dobbelaer, Roland; Craig, Alister G; Leroy, Odile

    2011-12-01

    For over 10 years, the European Vaccine Initiative (EVI; European Malaria Vaccine Initiative until 2009) has contributed to the development of 24 malaria candidate vaccine antigens with 13 vaccine candidates being advanced into Phase I clinical trials, two of which have been transitioned for further clinical development in sub-Saharan Africa. Since its inception the EVI organization has operated as a funding agency, but with a clear service-oriented strategy. The scientific successes and difficulties encountered during these years and how these efforts have led to standardization and harmonization in vaccine development through large-scale European consortia are discussed. In the future, the EVI will remain instrumental in the pharmaceutical and clinical development of vaccines against 'diseases of poverty' with a continued focus on malaria. EVI will continue to focus on funding and managing preclinical evaluation up to Phase I/II clinical trials and strengthening the vaccine-development infrastructure in Europe, albeit with a global orientation.

  15. Immunogenicity of DNA Vaccine against H5N1 Containing Extended Kappa B Site: In Vivo Study in Mice and Chickens

    PubMed Central

    Redkiewicz, Patrycja; Stachyra, Anna; Sawicka, Róz∙a; Bocian, Katarzyna; Góra-Sochacka, Anna; Kosson, Piotr; Sirko, Agnieszka

    2017-01-01

    Influenza is one of the most important illnesses in the modern world, causing great public health losses each year due to the lack of medication and broadly protective, long-lasting vaccines. The development of highly immunogenic and safe vaccines is currently one of the major problems encountered in efficient influenza prevention. DNA vaccines represent a novel and powerful alternative to the conventional vaccine approaches. To improve the efficacy of the DNA vaccine against influenza H5N1, we inserted three repeated kappa B (κB) motifs, separated by a 5-bp nucleotide spacer, upstream of the cytomegalovirus promoter and downstream of the SV40 late polyadenylation signal. The κB motif is a specific DNA element (10pb-long) recognized by one of the most important transcription factors NFκB. NFκB is present in almost all animal cell types and upon cell stimulation under a variety of pathogenic conditions. NFκB is released from IκB and translocates to the nucleus and binds to κB sites, thereby leading to enhanced transcription and expression of downstream genes. We tested the variants of DNA vaccine with κB sites flanking the antigen expression cassette and without such sites in two animal models: chickens (broilers and layers) and mice (BALB/c). In chickens, the variant with κB sites stimulated stronger humoral response against the target antigen. In mice, the differences in humoral response were less apparent. Instead, it was possible to spot several gene expression differences in the spleens isolated from mice immunized with both variants. The results of our study indicate that modification of the sequence outside of the sequence encoding the antigen might enhance the immune response to the target but understanding the mechanisms responsible for this process requires further analysis. PMID:28883819

  16. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: a systematic review of published literature, 2007-2012.

    PubMed

    Larson, Heidi J; Jarrett, Caitlin; Eckersberger, Elisabeth; Smith, David M D; Paterson, Pauline

    2014-04-17

    Vaccine "hesitancy" is an emerging term in the literature and discourse on vaccine decision-making and determinants of vaccine acceptance. It recognizes a continuum between the domains of vaccine acceptance and vaccine refusal and de-polarizes previous characterization of individuals and groups as either anti-vaccine or pro-vaccine. The primary aims of this systematic review are to: 1) identify research on vaccine hesitancy; 2) identify determinants of vaccine hesitancy in different settings including its context-specific causes, its expression and its impact; and 3) inform the development of a model for assessing determinants of vaccine hesitancy in different settings as proposed by the Strategic Advisory Group of Experts Working Group (SAGE WG) for dealing with vaccine hesitancy. A broad search strategy, built to capture multiple dimensions of public trust, confidence and hesitancy around vaccines, was applied across multiple databases. Peer-reviewed studies were selected for inclusion if they focused on childhood vaccines [≤ 7 years of age], used multivariate analyses, and were published between January 2007 and November 2012. Our results show a variety of factors as being associated with vaccine hesitancy but they do not allow for a complete classification and confirmation of their independent and relative strength of influence. Determinants of vaccine hesitancy are complex and context-specific - varying across time, place and vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Timeliness of MMR vaccination and barriers to vaccination in preschool children.

    PubMed

    Jeong, Y W; Park, B H; Kim, K H; Han, Y R; Go, U Y; Choi, W S; Kong, K A; Park, H

    2011-02-01

    The documented vaccine coverage rate of measles-mumps-rubella (MMR) vaccination is almost 99% in Korea, but measles cases are constantly being reported. This study evaluated the vaccine coverage, timeliness, and barriers to immunization of measles vaccination in preschool children in Korea. We assessed 452 children aged 15-23 months and 300 children aged 4-6 years in September 2007. Questionnaires were administered in order to estimate measles vaccination rate, its timeliness and barriers to vaccine uptake. Being unaware of the necessity for vaccination and its schedule, child being sick during the recommended vaccination period, and recommended vaccination period not being over were significant preventive factors to timely vaccination (P < 0·05). Children with working mothers, single parents, those not being cared for by their parents, and those younger among siblings were at a higher risk of not being vaccinated on time. In order to increase timely vaccination, accurate information should be delivered and a systematic approach should be targeted to high-risk groups.

  18. Governments, off-patent vaccines, smallpox and universal childhood vaccination.

    PubMed

    Music, Stanley

    2010-01-22

    WHO is now celebrating more than 30 years of freedom from smallpox. What was originally seen as a victory over an ancient scourge can now be viewed as an epidemiologically driven programme to overcome governmental inertia and under-achievement in delivering an off-patent vaccine. Though efforts are accelerating global vaccine use, a plea is made to push the world's governments to commit to universal childhood vaccination via a proposed new programme. The latter should begin by exploiting a long list of ever more affordable off-patent vaccines, vaccines that can virtually eliminate the bulk of the world's current vaccine-preventable disease burden.

  19. Optimal vaccination choice, vaccination games, and rational exemption: an appraisal.

    PubMed

    Manfredi, Piero; Posta, Pompeo Della; d'Onofrio, Alberto; Salinelli, Ernesto; Centrone, Francesca; Meo, Claudia; Poletti, Piero

    2009-12-10

    A threat for vaccination policies might be the onset of "rational" exemption, i.e. the family's decision not to vaccinate children after a seemingly rational comparison between the perceived risk of infection and the perceived risk of vaccine side effects. We study the implications of rational exemption by models of vaccination choice. By a simple model of individual choice we first prove the "elimination impossible" result in presence of informed families, i.e. aware of herd immunity, and suggest that limited information might explain patterns of universal vaccination. Next, we investigate vaccination choice in a game-theoretic framework for communities stratified into two groups, "pro" and "anti" vaccinators, having widely different perceived costs of infection and of vaccine side effects. We show that under informed families neither a Nash nor a Stackelberg behaviour (characterized, respectively, by players acting simultaneously and by an asymmetric situation with a "leader" and a "follower) allow elimination, unless "pro-vaccinators" assign no costs to vaccine side effects. Elimination turns out to be possible when cooperation is encouraged by a social planner, provided, however, he incorporates in the "social loss function" the preferences of anti-vaccinators only. This allows an interpretation of the current Italian vaccination policy.

  20. Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis.

    PubMed

    Williams, Ann; Hatch, Graham J; Clark, Simon O; Gooch, Karen E; Hatch, Kim A; Hall, Graham A; Huygen, Kris; Ottenhoff, Tom H M; Franken, Kees L M C; Andersen, Peter; Doherty, T Mark; Kaufmann, Stefan H E; Grode, Leander; Seiler, Peter; Martin, Carlos; Gicquel, Brigitte; Cole, Stewart T; Brodin, Priscille; Pym, Alexander S; Dalemans, Wilfried; Cohen, Joe; Lobet, Yves; Goonetilleke, Nilu; McShane, Helen; Hill, Adrian; Parish, Tanya; Smith, Debbie; Stoker, Neil G; Lowrie, Douglas B; Källenius, Gunilla; Svenson, Stefan; Pawlowski, Andrzej; Blake, Karen; Marsh, Philip D

    2005-01-01

    The TB Vaccine Cluster project funded by the EU Fifth Framework programme aims to provide novel vaccines against tuberculosis that are suitable for evaluation in humans. This paper describes the studies of the protective efficacy of vaccines in a guinea pig aerosol-infection model of primary tuberculosis. The objective was to conduct comparative evaluations of vaccines that had previously demonstrated efficacy in other animal models. Groups of 6 guinea pigs were immunized with vaccines provided by the relevant EU Vaccine Cluster partners. Survival over 17 or 26 weeks was used as the principal measure of vaccine efficacy following aerosol challenge with H37Rv. Counts of mycobacteria in lungs and spleens, and histopathological changes in the lungs, were also used to provide evidence of protection. A total of 24 vaccines were evaluated in 4 experiments each of a different design. A heterologous prime-boost strategy of DNA and MVA, each expressing Ag85A and a fusion protein of ESAT-6 and Ag85B in adjuvant, protected the guinea pigs to the same extent as BCG. Genetically modified BCG vaccines and boosted BCG strategies also protected guinea pigs to the same extent as BCG but not statistically significantly better. A relatively high aerosol-challenge dose and evaluation over a protracted time post-challenge allowed superior protection over BCG to be demonstrated by BCG boosted with MVA and fowl pox vectors expressing Ag85A.

  1. Rotavirus vaccines

    PubMed Central

    Tate, Jacqueline E; Patel, Manish M; Cortese, Margaret M; Lopman, Benjamin; Fleming, Jessica; Lewis, Kristen; Jiang, Baoming; Gentsch, Jon; Steele, Duncan; Parashar, Umesh D

    2011-01-01

    Early rotavirus vaccine adopter countries in the Americas, Europe, and in Australia have documented substantial declines in rotavirus disease burden following the introduction of vaccination. However, the full public health impact of rotavirus vaccines has not been realized as they have not been introduced into routine immunization programs in countries of Africa and Asia with the highest rotavirus disease morbidity and mortality burden. In this article, we review the epidemiology of rotavirus disease, the development and current status of rotavirus vaccines including newly available vaccine impact data from early-introducer countries, and future priorities for implementation and monitoring of rotavirus vaccination programs in developing countries. PMID:22108032

  2. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development.

    PubMed

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format.

  3. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    PubMed Central

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format. PMID:22505817

  4. Update on the current status of cytomegalovirus vaccines

    PubMed Central

    Sung, Heungsup; Schleiss, Mark R

    2013-01-01

    Human cytomegalovirus (HCMV) is ubiquitous in all populations, and is the most commonly recognized cause of congenital viral infection in developed countries. On the basis of the economic costs saved and the improvement in quality of life that could potentially be conferred by a successful vaccine for prevention of congenital HCMV infection, the Institute of Medicine has identified HCMV vaccine development as a major public health priority. An effective vaccine could potentially also be beneficial in preventing or ameliorating HCMV disease in immunocompromised individuals. Although there are no licensed HCMV vaccines currently available, enormous progress has been made in the last decade, as evidenced by the recently reported results of a Phase II trial of a glycoprotein B vaccine for the prevention of HCMV infection in seronegative women of childbearing age. HCMV vaccines currently in clinical trials include: glycoprotein B subunit vaccines; alphavirus replicon particle vaccines; DNA vaccines; and live-attenuated vaccines. A variety of vaccine strategies are also being examined in preclinical systems and animal models of infection. These include: recombinant vesicular stomatitis virus vaccines; recombinant modified vaccinia virus Ankara; replication-deficient adenovirus-vectored vaccines; and recombinant live-attenuated virus vaccines generated by mutagenesis of cloned rodent CMV genomes maintained as bacterial artificial chromosomes in Escherichia coli. In this article, we provide an overview of the current state of clinical trials and preclinical development of vaccines against HCMV, with an emphasis on studies that have been conducted in the past 5 years. We also summarize a number of recent advances in the study of the biology of HCMV, particularly with respect to epithelial and endothelial cell entry of the virus, which have implications for future vaccine design. PMID:21087108

  5. Abeta DNA vaccination for Alzheimer's disease: focus on disease prevention.

    PubMed

    Cribbs, David H

    2010-04-01

    several significant advantages, including lower cost and the typical immunization protocol should be much less intrusive to the patient relative to passive therapy, in the advent of Abeta-antibody immune complex-induced adverse events the patients will have to receive immuno-supperssive therapy for an extended period until the anti Abeta antibody levels drop naturally as the effects of the vaccine decays over time. Obviously, improvements in vaccine design are needed to improve both the safety, as well as the efficacy of anti-Abeta immunotherapy. The focus of this review is on the advantages of DNA vaccination for anti-Abeta immunotherapy, and the major hurdles, such as immunosenescence, selection of appropriate molecular adjuvants, universal T cell epitopes, and possibly a polyepitope design based on utilizing existing memory T cells in the general population that were generated in response to childhood or seasonal vaccines, as well as various infections. Ultimately, we believe that the further refinement of our AD DNA epitope vaccines, possibly combined with a prime boost regime will facilitate translation to human clinical trials in either very early AD, or preferably in preclinical stage individuals identified by validated AD biomarkers.

  6. Experiements with an inactivated hepatitis leptospirosis vaccine in vaccination programmes for dogs.

    PubMed

    Wilson, J H; Hermann-Dekkers, W M; Leemans-Dessy, S; Meijer, J W

    1977-06-25

    A fluid adjuvanted vaccine consisting of inactivated hepatitis virus (iH) and leptospirae antigens (L) was developed. The vaccine (Kavak iHL; Duphar) was tested in several vaccination programmes both alone and in combination with freeze dried measles (M) or distemper (D) vaccines. The results demonstrate that this new vaccine is also effective in pups with maternally derived antibodies, although a second vaccination at 14 weeks of age is recommended to boost the first vaccination. For the booster vaccination either the iHL-vaccine or the liver attenuated hepatitis vaccine (H) can be used.

  7. DNA Vaccine Encoding the Chimeric Form of Schistosoma mansoni Sm-TSP2 and Sm29 Confers Partial Protection against Challenge Infection

    PubMed Central

    Gonçalves de Assis, Natan Raimundo; Batistoni de Morais, Suellen; Figueiredo, Bárbara Castro Pimentel; Ricci, Natasha Delaqua; de Almeida, Leonardo Augusto; da Silva Pinheiro, Carina; Martins, Vicente de Paulo; Oliveira, Sergio Costa

    2015-01-01

    Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2) are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed. PMID:25942636

  8. Parents with doubts about vaccines: which vaccines and reasons why.

    PubMed

    Gust, Deborah A; Darling, Natalie; Kennedy, Allison; Schwartz, Ben

    2008-10-01

    The goals were (1) to obtain national estimates of the proportions of parents with indicators of vaccine doubt, (2) to identify factors associated with those parents, compared with parents reporting no vaccine doubt indicators, (3) to identify the specific vaccines that prompted doubt and the reasons why, and (4) to describe the main reasons parents changed their minds about delaying or refusing a vaccine for their child. Data were from the National Immunization Survey (2003-2004). Groups included parents who ever got a vaccination for their child although they were not sure it was the best thing to do ("unsure"), delayed a vaccination for their child ("delayed"), or decided not to have their child get a vaccination ("refused"). A total of 3924 interviews were completed. Response rates were 57.9% in 2003 and 65.0% in 2004. Twenty-eight percent of parents responded yes to ever experiencing >or=1 of the outcome measures listed above. In separate analyses for each outcome measure, vaccine safety concern was a predictor for unsure, refused, and delayed parents. The largest proportions of unsure and refused parents chose varicella vaccine as the vaccine prompting their concern, whereas delayed parents most often reported "not a specific vaccine" as the vaccine prompting their concern. Most parents who delayed vaccines for their child did so for reasons related to their child's illness, unlike the unsure and refused parents. The largest proportion of parents who changed their minds about delaying or not getting a vaccination for their child listed "information or assurances from health care provider" as the main reason. Parents who exhibit doubts about immunizations are not all the same. This research suggests encouraging children's health care providers to solicit questions about vaccines, to establish a trusting relationship, and to provide appropriate educational materials to parents.

  9. Cost-effectiveness of human papillomavirus vaccination and cervical cancer screening in Thailand.

    PubMed

    Sharma, M; Ortendahl, J; van der Ham, E; Sy, S; Kim, J J

    2012-01-01

    To assess the health and economic outcomes of various screening and vaccination strategies for cervical cancer prevention. Cost-effectiveness analysis from a societal perspective. Thailand. Females aged 9 years and older. Using a mathematical model of human papillomavirus (HPV) infection and cervical cancer, calibrated to epidemiological data from Thailand, we estimated the cost-effectiveness of pre-adolescent HPV vaccination, screening [visual inspection with acetic acid (VIA), HPV DNA testing, and cytology] between one and five times per lifetime in adulthood, and combined pre-adolescent vaccination and screening. Vaccine efficacy, coverage, cost, and screening frequency were varied in sensitivity analyses. Incremental cost-effectiveness ratios, expressed as cost per year of life saved (YLS). Assuming lifelong efficacy and 80% coverage, pre-adolescent HPV vaccination alone was projected to reduce the lifetime risk of cervical cancer by 55%, which was greater than any strategy of screening alone. When cost per vaccinated girl was I$10 (approximately $2 per dose) or less, HPV vaccination alone was cost saving. Pre-adolescent vaccination and HPV DNA testing five times per lifetime, starting at age 35 years, reduced the lifetime cervical cancer risk by 70%, and had a cost-effectiveness ratio less than Thailand's GDP per capita (I$8100), provided the cost per vaccinated girl was I$200 or less. Low cost pre-adolescent HPV vaccination followed by HPV screening five times per lifetime is an efficient strategy for Thailand. Costs may need to be lower, however, for this strategy to be affordable. If vaccination is not feasible, HPV DNA testing five times per lifetime is efficient. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.

  10. Delivery of DNA vaccines by agarose hydrogel implants facilitates genetic immunization in cattle.

    PubMed

    Toussaint, J F; Dubois, A; Dispas, M; Paquet, D; Letellier, C; Kerkhofs, P

    2007-01-26

    The present study demonstrates the interest of two slow-release systems as vaccination tools in cattle. Two experiments show that a first intradermal administration of one DNA vaccine dose combined with the slow-release of a second dose conduct to a priming of the bovine herpesvirus 1-specific immune response similar to the one generated by two discrete administrations 4 weeks apart. The first experiment demonstrates the efficacy of the slow-release system with well-characterized Alzet osmotic pumps, whereas the second experiment extends the same concept with innovative agarose hydrogel implants. These latter implants are cheaper and more convenient than the osmotic pumps or repeated intradermal administrations since they contribute to an efficient priming of the immune response in a single manipulation of the animals.

  11. Genetic cancer vaccines: current status and perspectives.

    PubMed

    Aurisicchio, Luigi; Ciliberto, Gennaro

    2012-08-01

    The recent approval of the first therapeutic cancer vaccine by the US Regulatory Agency represents a breakthrough event in the history of cancer treatment. The past scepticism towards this type of therapeutic intervention is now replaced by great expectations. The field is now moving towards the development of alternative vaccination technologies, which are capable of generating stronger, more durable and efficient immune responses against specific tumour-associated antigens (TAAs) in combination with cheaper and more standardised manufacturing. In this context, genetic vaccines are emerging among the most promising methodologies. Several evidences point to combinations of different genetic immunisation modalities (heterologous prime/boost) as a powerful approach to induce superior immune responses and achieve greater clinical efficacy. In this review, we provide an overview of the current status of development of genetic cancer vaccines with particular emphasis on adenoviral vector prime/DNA boost vaccination schedules. We believe that therapeutic genetic cancer vaccines have the strong potential to become an established therapeutic modality for cancer in next coming years, in a manner similar to what have now become monoclonal antibodies.

  12. Framework for Optimal Global Vaccine Stockpile Design for Vaccine-Preventable Diseases: Application to Measles and Cholera Vaccines as Contrasting Examples.

    PubMed

    Thompson, Kimberly M; Duintjer Tebbens, Radboud J

    2016-07-01

    Managing the dynamics of vaccine supply and demand represents a significant challenge with very high stakes. Insufficient vaccine supplies can necessitate rationing, lead to preventable adverse health outcomes, delay the achievements of elimination or eradication goals, and/or pose reputation risks for public health authorities and/or manufacturers. This article explores the dynamics of global vaccine supply and demand to consider the opportunities to develop and maintain optimal global vaccine stockpiles for universal vaccines, characterized by large global demand (for which we use measles vaccines as an example), and nonuniversal (including new and niche) vaccines (for which we use oral cholera vaccine as an example). We contrast our approach with other vaccine stockpile optimization frameworks previously developed for the United States pediatric vaccine stockpile to address disruptions in supply and global emergency response vaccine stockpiles to provide on-demand vaccines for use in outbreaks. For measles vaccine, we explore the complexity that arises due to different formulations and presentations of vaccines, consideration of rubella, and the context of regional elimination goals. We conclude that global health policy leaders and stakeholders should procure and maintain appropriate global vaccine rotating stocks for measles and rubella vaccine now to support current regional elimination goals, and should probably also do so for other vaccines to help prevent and control endemic or epidemic diseases. This work suggests the need to better model global vaccine supplies to improve efficiency in the vaccine supply chain, ensure adequate supplies to support elimination and eradication initiatives, and support progress toward the goals of the Global Vaccine Action Plan. © 2014 Society for Risk Analysis.

  13. [Influenza vaccination. Effectiveness of current vaccines and future challenges].

    PubMed

    Ortiz de Lejarazu, Raúl; Tamames, Sonia

    2015-01-01

    Seasonal influenza is an annual challenge for health-care systems, due to factors such as co-circulation of 2 influenza A subtypes jointly with 2 influenza B lineages; the antigenic drift of these virus, which eludes natural immunity, as well as immunity conferred by vaccination; together with influenza impact in terms of morbidity and mortality. Influenza vaccines have been available for more than 70 years and they have progressed in formulation, production and delivery route. Recommendations on vaccination are focused on those with a higher probability of severe disease, and have a progressively wider coverage, and classically based on inactivated vaccines, but with an increasing importance of attenuated live vaccines. More inactivated vaccines are becoming available, from adyuvanted and virosomal vaccines to intradermal delivery, cell-culture or quadrivalent. Overall vaccine effectiveness is about 65%, but varies depending on characteristics of vaccines, virus, population and the outcomes to be prevented, and ranges from less than 10% to almost 90%. Future challenges are formulations that confer more extensive and lasting protection, as well as increased vaccination coverage, especially in groups such as pregnant women and health-care professionals, as well as being extended to paediatrics. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Development of a novel in-water vaccination protocol for DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in adult sheep.

    PubMed

    Mohler, V L; Heithoff, D M; Mahan, M J; Hornitzky, M A; Thomson, P C; House, J K

    2012-02-14

    Intensive livestock production is associated with an increased incidence of salmonellosis. The risk of infection and the subsequent public health concern is attributed to increased pathogen exposure and disease susceptibility due to multiple stressors experienced by livestock from farm to feedlot. Traditional parenteral vaccine methods can further stress susceptible populations and cause carcass damage, adverse reactions, and resultant increased production costs. As a potential means to address these issues, in-water delivery of live attenuated vaccines affords a low cost, low-stress method for immunization of livestock populations that is not associated with the adverse handling stressors and injection reactions associated with parenteral administration. We have previously established that in-water administration of a Salmonella enterica serovar Typhimurium dam vaccine conferred significant protection in livestock. While these experimental trials hold significant promise, the ultimate measure of the vaccine will not be established until it has undergone clinical testing in the field wherein environmental and sanitary conditions are variable. Here we show that in-water administration of a S. Typhimurium dam attenuated vaccine was safe, stable, and well-tolerated in adult sheep. The dam vaccine did not alter water consumption or vaccine dosing; remained viable under a wide range of temperatures (21-37°C); did not proliferate within fecal-contaminated trough water; and was associated with minimal fecal shedding and clinical disease as a consequence of vaccination. The capacity of Salmonella dam attenuated vaccines to be delivered in drinking water to protect livestock from virulent Salmonella challenge offers an effective, economical, stressor-free Salmonella prophylaxis for intensive livestock production systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Parasite Carbohydrate Vaccines.

    PubMed

    Jaurigue, Jonnel A; Seeberger, Peter H

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma , and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.

  16. Parasite Carbohydrate Vaccines

    PubMed Central

    Jaurigue, Jonnel A.; Seeberger, Peter H.

    2017-01-01

    Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases—malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development. PMID:28660174

  17. An oral Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus delivered by Escherichia coli elicits immune responses in dogs.

    PubMed

    Dahiya, S S; Saini, M; Kumar, P; Gupta, P K

    2011-01-01

    A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.

  18. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    PubMed

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (P<0.05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation compared with the controls (P<0.05). Serum from chickens immunized with pVAX1-MIC2 and rEmMIC2 protein displayed significantly high levels of IL-2, IFN-γ, IL-10, IL-17, TGF-β and IL-4 (P<0.05) compared to those of negative controls. The challenge experiment results showed that both the recombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. [Conjugated vaccines].

    PubMed

    Fritzell, Bernard

    2005-01-01

    Encapsulated bacterial pathogens (e.g. Haemophilus influenzae type b [Hib], Neisseria meningitidis, or Streptococcus pneumoniae) target infants and young children who have lost any protective anti-capsular antibodies supplied maternally and whose immune systems are ineffective against T-independent antigens such as the polysaccharides of the capsule. The polysaccharide-protein conjugate vaccines overcome this limitation by converting the polysaccharide to a T-dependent antigen, which allows a vaccinated infant to mount a protective immune response. Where conjugated vaccines have been introduced into paediatric vaccination schedules, the incidence of invasive diseases caused by Hib, the group C meningococcus, or the pneumococcus has plummeted by at least 80%, a major public health success. Furthermore, surveillance has demonstrated that the conjugate vaccines provide 'herd protection' through their beneficial impact on nasopharyngeal colonisation among vaccinated children. Promising future approaches include enhancement of the number of capsular serogroups targeted by the meningococcal or pneumococcal conjugate vaccines.

  20. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine.

    PubMed

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R; Robinson, Harriet L

    2012-11-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection.

  1. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.

    PubMed

    Mohan, Teena; Verma, Priyanka; Rao, D Nageswara

    2013-11-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.

  2. Novel adjuvants & delivery vehicles for vaccines development: A road ahead

    PubMed Central

    Mohan, Teena; Verma, Priyanka; Rao, D. Nageswara

    2013-01-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines. PMID:24434331

  3. MeNZB vaccine and epidemic control: when do you stop vaccinating?

    PubMed

    Loring, Belinda J; Turner, Nikki; Petousis-Harris, Helen

    2008-11-05

    New Zealand developed a strain-specific group B meningococcal vaccine to control an epidemic. Following a mass vaccination campaign of three doses to the population under 20 years of age, commencing in July 2004, the vaccine continued to be offered routinely as a four-dose schedule from 6 weeks of age. There is little international data on when to cease epidemic vaccination campaigns. The decision to stop using this vaccine needed to take into account a range of factors. These included epidemiology, vaccine effectiveness and duration of immunity, vaccine coverage, concomitant use with other vaccinations being added to the infant schedule, vaccine supply and cost-benefit criteria. This paper discusses these issues, along with the potential challenges for communication to both health professionals and the public.

  4. Immune Interference After Sequential Alphavirus Vaccine Vaccinations

    DTIC Science & Technology

    2009-01-01

    education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or...western equine encephalitis (EEE and WEE) vaccines before live attenuated Venezuelan (VEE) vaccine had significantly lower rates of antibody response than...Venezuelan equine encephalitis virus, VEE, vaccines, alphavirus, antibody responses, human studies 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  5. Immunogenicity and malaria transmission reducing potency of Pfs48/45 and Pfs25 encoded by DNA vaccines administered by intramuscular electroporation.

    PubMed

    Datta, Dibyadyuti; Bansal, Geetha P; Gerloff, Dietlind L; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay

    2017-01-05

    Pfs48/45 and Pfs25 are leading candidates for the development of Plasmodium falciparum transmission blocking vaccines (TBV). Expression of Pfs48/45 in the erythrocytic sexual stages and presentation to the immune system during infection in the human host also makes it ideal for natural boosting. However, it has been challenging to produce a fully folded, functionally active Pfs48/45, using various protein expression platforms. In this study, we demonstrate that full-length Pfs48/45 encoded by DNA plasmids is able to induce significant transmission reducing immune responses. DNA plasmids encoding Pfs48/45 based on native (WT), codon optimized (SYN), or codon optimized and mutated (MUT1 and MUT2), to prevent any asparagine (N)-linked glycosylation were compared with or without intramuscular electroporation (EP). EP significantly enhanced antibody titers and transmission blocking activity elicited by immunization with SYN Pfs48/45 DNA vaccine. Mosquito membrane feeding assays also revealed improved functional immunogenicity of SYN Pfs48/45 (N-glycosylation sites intact) as compared to MUT1 or MUT2 Pfs48/45 DNA plasmids (all N-glycosylation sites mutated). Boosting with recombinant Pfs48/45 protein after immunization with each of the different DNA vaccines resulted in significant boosting of antibody response and improved transmission reducing capabilities of all four DNA vaccines. Finally, immunization with a combination of DNA plasmids (SYN Pfs48/45 and SYN Pfs25) also provides support for the possibility of combining antigens targeting different life cycle stages in the parasite during transmission through mosquitoes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Impact of porcine circovirus type 2 (PCV2) vaccination on boar semen quality and quantity using two different vaccines.

    PubMed

    Caspari, K; Henning, H; Schreiber, F; Maass, P; Gössl, R; Schaller, C; Waberski, D

    2014-09-01

    Porcine circovirus type-2 (PCV2) is widespread in domestic pig populations. It can be shed with boar semen, but the role boars have in epidemiology is still unclear. Vaccinating boars against PCV2 can reduce disease and virus load in semen, but may have unwanted side effects, that is, impairment of spermatogenesis. Therefore, the aim of this study was to investigate the effect and impact of two different PCV2 vaccines on boar semen quality and quantity. Healthy normospermic Large White boars in three groups of 12 each were vaccinated with either Circovac, Ingelvac CircoFLEX, or received NaCl. Eight ejaculates were collected starting 1 week after vaccination and assessed for quantitative traits. In general, sperm quantity and quality parameters did not change due to the vaccination (P > 0.05). Only DNA integrity between the Circovac and control group was P < 0.05 but remained at a low level (<2%). One boar showed clinical signs with body temperature up to 39.9 °C and went off feed. For this animal, a clear relation between vaccination, fever period, and impaired sperm quality could be observed. The results indicate that both vaccines did not have a major impact on sperm quality or quantity. Therefore, vaccination of boars against PCV2 seems to be feasible. However, one boar treated with the oil-based vaccine showed a temporarily impaired semen quality after elevated body temperature after vaccination. Thus, possible systemic reactions and the subsequent impact on sperm quality should be taken into account when choosing a PCV2 vaccine for boars. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Monitoring vaccine and non-vaccine HPV type prevalence in the post-vaccination era in women living in the Basilicata region, Italy.

    PubMed

    Carozzi, Francesca; Puliti, Donella; Ocello, Cristina; Anastasio, Pasquale Silvio; Moliterni, Espedito Antonio; Perinetti, Emilia; Serradell, Laurence; Burroni, Elena; Confortini, Massimo; Mantellini, Paola; Zappa, Marco; Dominiak-Felden, Géraldine

    2018-01-15

    A large free-of-charge quadrivalent HPV (qHPV) vaccination program, covering four cohorts annually (women 11, 14, 17 and 24 years), has been implemented in Basilicata since 2007. This study evaluated vaccine and non-vaccine HPV prevalence 5-7 years post-vaccination program implementation in vaccinated and unvaccinated women. This population-based, cross-sectional study was conducted in the public screening centers of the Local Health Unit in Matera between 2012 and 2014. Cervical samples were obtained for Pap and HPV testing (HC2, LiPA Extra® assay) and participants completed a sociodemographic and behavioral questionnaire. Detailed HPV vaccination status was retrieved from the official HPV vaccine registry. HPV prevalence was described overall, by type and vaccination status. The association between HPV type-detection and risk/protective factors was studied. Direct vaccine protection (qHPV vaccine effectiveness [VE]), cross-protection, and type-replacement were evaluated in cohorts eligible for vaccination, by analyzing HPV prevalence of vaccine and non-vaccine types according to vaccination status. Overall, 2793 women (18-50 years) were included, 1314 of them having been in birth cohorts eligible for the HPV vaccination program (18- to 30-year-old women at enrolment). Among the latter, qHPV vaccine uptake was 59% (at least one dose), with 94% completing the schedule; standardized qHPV type prevalence was 0.6% in vaccinated versus 5.5% in unvaccinated women (P <0.001); adjusted VE against vaccine type infections was 90% (95% CI: 73%-96%) for all fully vaccinated women and 100% (95% CI not calculable) in women vaccinated before sexual debut. No statistically significant difference in overall high-risk HPV, high-risk non-vaccine HPV, or any single non-vaccine type prevalence was observed between vaccinated and unvaccinated women. These results, conducted in a post-vaccine era, suggest a high qHPV VE and that a well-implemented catch-up vaccination program may be

  8. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    PubMed Central

    Sridhar, Saranya; Brokstad, Karl A.; Cox, Rebecca J.

    2015-01-01

    Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection. PMID:26343192

  9. Rotavirus vaccine strain transmission by vaccinated infants in the foster home.

    PubMed

    Miura, Hiroki; Kawamura, Yoshiki; Sugata, Ken; Koshiyama, Nozomi; Yoshikawa, Akiko; Komoto, Satoshi; Taniguchi, Koki; Ihira, Masaru; Yoshikawa, Tetsushi

    2017-01-01

    Previous studies have demonstrated the transmission of rotavirus vaccine strains from vaccinated children to nonvaccinated siblings. We sought to fully elucidate the safety of rotavirus (RV) vaccination in closed contact circumstance, such as the foster home for future assessment of the vaccine safety in an neonatal intensive care unit. Stool samples were collected from 4 RV vaccinated (160 samples) and 23 unvaccinated (766 samples) infants. RV viral RNA loads were measured using real-time reverse transcription polymerase chain reaction (RT-PCR). RV vaccine strain RNA was persistently detected in stool samples collected from the four vaccine recipients and one unvaccinated infant, but not in the stool samples collected from the 22 other unvaccinated infants. The unvaccinated infant who tested positive for the RV vaccine strain was vaccinated prior to enrollment in this study. The quantitative real-time RT-PCR data revealed a peak viral RNA load 1 week after vaccination followed by a gradual decrease. The current study suggests that RV vaccination may be safe in a close contact environment because there was limited transmission from RV vaccinated to unvaccinated infants. J. Med. Virol. 89:79-84, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Effective Induction of Simian Immunodeficiency Virus-Specific Cytotoxic T Lymphocytes in Macaques by Using a Multiepitope Gene and DNA Prime-Modified Vaccinia Virus Ankara Boost Vaccination Regimen

    PubMed Central

    Hanke, Tomas; Samuel, Rachel V.; Blanchard, Tom J.; Neumann, Veronica C.; Allen, Todd M.; Boyson, Jon E.; Sharpe, Sally A.; Cook, Nicola; Smith, Geoffrey L.; Watkins, David I.; Cranage, Martin P.; McMichael, Andrew J.

    1999-01-01

    DNA and modified vaccinia virus Ankara (MVA) are vaccine vehicles suitable and safe for use in humans. Here, by using a multicytotoxic T-lymphocyte (CTL) epitope gene and a DNA prime-MVA boost vaccination regimen, high levels of CTLs specific for a single simian immunodeficiency virus (SIV) gag-derived epitope were elicited in rhesus macaques. These vaccine-induced CTLs were capable of killing SIV-infected cells in vitro. Fluorescence-activated cell sorter analysis using soluble tetrameric major histocompatibility complex-peptide complexes showed that the vaccinated animals had 1 to 5% circulating CD8+ lymphocytes specific for the vaccine epitope, frequencies comparable to those in SIV-infected monkeys. Upon intrarectal challenge with pathogenic SIVmac251, no evidence for protection was observed in at least two of the three vaccinated animals. This study does not attempt to define correlates of protective immunity nor design a protective vaccine against immunodeficiency viruses, but it demonstrates clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques. It also shows that powerful tools for studying the role of CTLs in the control of SIV and human immunodeficiency virus infections are now available: epitope-based vaccines, a protocol for an effective induction of CTLs in primates, and a simple and sensitive method for quantitation of epitope-specific T cells. The advantages of the DNA prime-MVA boost regimen as well as the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed. PMID:10438842

  11. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines).

    PubMed

    Doroshenko, Alexander; Halperin, Scott A

    2009-06-01

    Annual influenza epidemics continue to have a considerable impact in both developed and developing countries. Vaccination remains the principal measure to prevent seasonal influenza and reduce associated morbidity and mortality. The WHO recommends using established mammalian cell culture lines as an alternative to egg-based substrates in the manufacture of influenza vaccine. In June 2007, the EMEA approved Optaflu, a Madin Darby canine kidney cell culture-derived influenza vaccine manufactured by Novartis Vaccines. This review examines the advantages and disadvantages of cell culture-based technology for influenza vaccine production, compares immunogenicity and safety data for Optaflu with that of currently marketed conventional egg-based influenza vaccines, and considers the prospects for wider use of cell culture-based influenza vaccines.

  12. Identifying ethical issues in the development of vaccines and in vaccination.

    PubMed

    Johari, Veena

    2017-01-01

    Vaccines are a widely accepted public health intervention. They are also a profitable tool for pharmaceutical companies manufacturing vaccines. There are many vaccines in the pipeline, for various diseases, or as combination vaccines for several diseases. However, there is also a growing concern about vaccines and the manner in which they are developed and approved by the authorities. Approvals are fast tracked and adverse events and serious adverse events following vaccination are seldom reported once the vaccine gets its marketing approval. Thus, vaccines have been clouded with many controversies and their use as a public health tool to prevent diseases is constantly under challenge.

  13. Vaccination of broiler chickens with dispersed dry powder vaccines as an alternative for liquid spray and aerosol vaccination.

    PubMed

    Corbanie, E A; Vervaet, C; van Eck, J H H; Remon, J P; Landman, W J M

    2008-08-18

    Vaccination of chickens with dispersable dry powder vaccines was compared with commercial liquid vaccines. A Clone 30 Newcastle disease vaccine virus was spray dried with mannitol or with a mixture of trehalose, polyvinylpyrrolidone and bovine serum albumin. A coarse (+/-30 microm) and fine (+/-7 microm) powder were produced with both formulations. A commercial reconstituted Clone 30 vaccine was applied as coarse liquid spray (+/-222 microm) or fine liquid aerosol (+/-24 microm). Reduction of virus concentration in the air after dispersion/nebulization was monitored by air sampling and was explained by sedimentation of coarse particles/droplets and evaporation of fine droplets. The vaccine formulations induced high haemagglutination inhibition antibody titres in the serum of 4-week-old broilers (2(7) at 4 weeks post-vaccination). The good serum antibody response with the fine liquid aerosol despite extensive inactivation of virus due to evaporation of droplets, suggested that powder formulations (without inactivation due to evaporation) might allow a significant reduction of vaccine dose, thereby offering new options for fine aerosol vaccination with low-titre vaccines.

  14. Adjuvants and Inactivated Polio Vaccine: A Systematic Review

    PubMed Central

    Hawken, Jennifer; Troy, Stephanie B.

    2012-01-01

    Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by universal use of inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV. PMID:23041122

  15. Adjuvants and inactivated polio vaccine: a systematic review.

    PubMed

    Hawken, Jennifer; Troy, Stephanie B

    2012-11-19

    Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by use of universal inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com

    ABSTRACT: For the development of a human West Nile (WN) infectious DNA (iDNA) vaccine, we created highly attenuated chimeric virus W1806 with the serological identity of highly virulent WN-NY99. Earlier, we attempted to utilize mutations found in the E protein of the SA14-14-2 vaccine to bring safety of W1806 to the level acceptable for human use (). Here, we analyzed effects of the SA14-14-2 changes on growth properties and neurovirulence of W1806. A set including the E138K, K279M, K439R and G447D changes was identified as the perspective subset for satisfying the target safety profile without compromising immunogenicity of the vaccinemore » candidate. The genetic stability of the attenuated phenotype was found to be unsatisfactory being dependent on a subset of attenuating changes incorporated in W1806. Elucidation of underlying mechanisms influencing selection of pathways for restoration of the envelope protein functionality will facilitate resolution of the emerged genetic stability issue. - Highlights: •Effect of mutations in E on properties of WN1806 is determined. •A subset of attenuating mutations suitable for a human vaccine is defined. •Mechanism of attenuation is proposed and illustrated. •Underlying mechanisms of neurovirulence reversion are suggested.« less

  17. Sustainable vaccine development: a vaccine manufacturer's perspective.

    PubMed

    Rappuoli, Rino; Hanon, Emmanuel

    2018-05-08

    Vaccination remains the most cost-effective public health intervention after clean water, and the benefits impressively outweigh the costs. The efforts needed to fulfill the steadily growing demands for next-generation and novel vaccines designed for emerging pathogens and new indications are only realizable in a sustainable business model. Vaccine development can be fast-tracked through strengthening international collaborations, and the continuous innovation of technologies to accelerate their design, development, and manufacturing. However, these processes should be supported by a balanced project portfolio, and by managing sustainable vaccine procurement strategies for different types of markets. Collectively this will allow a gradual shift to a more streamlined and profitable vaccine production, which can significantly contribute to the worldwide effort to shape global health. Copyright © 2018 GlaxoSmithKine Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  18. Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination.

    PubMed

    Michel, Nico; Osen, Wolfram; Gissmann, Lutz; Schumacher, Ton N M; Zentgraf, Hanswalter; Müller, Martin

    2002-03-01

    DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. For immunotherapy of HPV-16-associated diseases the E7 protein is considered a prime candidate, as it is expressed in all HPV-16-positive tumors. Unfortunately, the E7 protein is a very poor inducer of a cytotoxic T-cell response, when being used as antigen in DNA vaccination. Here we demonstrate that after fusion to protein export/import signals such as the herpes simplex virus ferry protein VP22, E7 can translocate in vitro from VP22-E7-expressing cells to neighboring cells that do not carry the VP22-E7 gene. In vivo, the VP22-E7 fusion shows significantly increased efficiency in inducing a cytotoxic T-cell response. Our data suggest that the export function of VP22 plays a major role in this phenomenon, since VP22 can be replaced by classical protein export signals, without impairing the induction of the E7-specific cellular immune response. However, all E7 fusion constructs showed significantly elevated protein steady-state levels, which might also account for the observed boost in immunogenicity. (C)2002 Elsevier Science (USA).

  19. Vaccination coverage and reasons for non-vaccination in a district of Istanbul

    PubMed Central

    Torun, Sebahat D; Bakırcı, Nadi

    2006-01-01

    Background In order to control and eliminate the vaccine preventable diseases it is important to know the vaccination coverage and reasons for non-vaccination. The primary objective of this study was to determine the complete vaccination rate; the reasons for non-vaccination and the predictors that influence vaccination of children. The other objective was to determine coverage of measles vaccination of the Measles Immunization Days (MID) 2005 for children aged 9 month to 6 years in a region of Umraniye, Istanbul, Turkey. Methods A '30 × 7' cluster sampling design was used as the sampling method. Thirty streets were selected at random from study area. Survey data were collected by a questionnaire which was applied face to face to parents of 221 children. A Chi-square test and logistic regression was used for the statistical analyses. Content analysis method was used to evaluate the open-ended questions. Results The complete vaccination rate for study population was 84.5% and 3.2% of all children were totally non-vaccinated. The siblings of non-vaccinated children were also non-vaccinated. Reasons for non-vaccination were as follows: being in the village and couldn't reach to health care services; having no knowledge about vaccination; the father of child didn't allow vaccination; intercurrent illness of child during vaccination time; missed opportunities like not to shave off a vial for only one child. In logistic regression analysis, paternal and maternal levels of education and immigration time of both parents to Istanbul were found to influence whether children were completely vaccinated or non-vaccinated. Measles vaccination coverage during MID was 79.3%. Conclusion Efforts to increase vaccination coverage should take reasons for non-vaccination into account. PMID:16677375

  20. HisAK70: progress towards a vaccine against different forms of leishmaniosis.

    PubMed

    Domínguez-Bernal, Gustavo; Horcajo, Pilar; Orden, José A; Ruiz-Santa-Quiteria, José A; De La Fuente, Ricardo; Ordóñez-Gutiérrez, Lara; Martínez-Rodrigo, Abel; Mas, Alicia; Carrión, Javier

    2015-12-09

    Leishmania major and Leishmania infantum are among the main species that are responsible for cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL), respectively. The leishmanioses represent the second-largest parasitic killer in the world after malaria. Recently, we succeeded in generating a plasmid DNA (pCMV-HISA70m2A) and demonstrated that immunized mice were protected against L. major challenge. The efficacy of the DNA-vaccine was further enhanced by the inclusion of KMP-11 antigen into the antibiotic-free plasmid pVAX1-asd. Here, we describe the use of a HisAK70 DNA-vaccine encoding seven Leishmania genes (H2A, H2B, H3, H4, A2, KMP11 and HSP70) for vaccination of mice to assess the induction of a resistant phenotype against VL and CL. HisAK70 was successful in vaccinated mice, resulting in a high amount of efficient sterile hepatic granulomas associated with a hepatic parasite burden fully resolved in the VL model; and resulting in 100% inhibition of parasite visceralization in the CL model. The results suggest that immunization with the HisAK70 DNA-vaccine may provide a rapid, suitable, and efficient vaccination strategy to confer cross-protective immunity against VL and CL.