Sample records for vaccinia virus infection

  1. PROFLAVINE INHIBITION OF VACCINIA VIRUS SYNTHESIS.

    PubMed

    BUBEL, H C; WOLFF, D A

    1965-04-01

    Bubel, H. Curt (University of Cincinnati College of Medicine, Cincinnati, Ohio), and David A. Wolff. Proflavine inhibition of vaccinia virus synthesis. J. Bacteriol. 89:977-983. 1965.-The synthesis of vaccinia virus, hemagglutinin, and blocking antigen, as well as the development of cytopathic effects, were inhibited by low concentrations of proflavine. This inhibitor did not exert a selective effect on any particular portion of the virus synthetic cycle. Proflavine added to infected KB cells during the eclipse period or later stages of virus maturation rapidly arrested further production of infectious virus and virus-related products. Suppression of virus synthesis was completely reversible, indicating that permanent damage to the virus synthetic mechanism did not result from a transient exposure to proflavine. Photosensitization of maturating vaccinia virus by subinhibiting concentrations of proflavine suggested an interaction of the inhibitor with viral nucleic acid.

  2. Role of sulfatide in vaccinia virus infection.

    PubMed

    Perino, Julien; Foo, Chwan Hong; Spehner, Daniele; Cohen, Gary H; Eisenberg, Roselyn J; Crance, Jean-Marc; Favier, Anne-Laure

    2011-07-01

    Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. We demonstrate that the VACV-WR (VACV Western-Reserve strain) displays no binding to Cer (ceramide) or to Gal-Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3' sulfogalactosylceramide. The interaction between Sulf and VACV-WR resulted in a time-dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV-WR. Together the results suggest that Sulf could play a role as an alternate receptor for VACV-WR and probably other Orthopoxviruses.

  3. Proflavine Inhibition of Vaccinia Virus Synthesis

    PubMed Central

    Bubel, H. Curt; Wolff, David A.

    1965-01-01

    Bubel, H. Curt (University of Cincinnati College of Medicine, Cincinnati, Ohio), and David A. Wolff. Proflavine inhibition of vaccinia virus synthesis. J. Bacteriol. 89:977–983. 1965.—The synthesis of vaccinia virus, hemagglutinin, and blocking antigen, as well as the development of cytopathic effects, were inhibited by low concentrations of proflavine. This inhibitor did not exert a selective effect on any particular portion of the virus synthetic cycle. Proflavine added to infected KB cells during the eclipse period or later stages of virus maturation rapidly arrested further production of infectious virus and virus-related products. Suppression of virus synthesis was completely reversible, indicating that permanent damage to the virus synthetic mechanism did not result from a transient exposure to proflavine. Photosensitization of maturating vaccinia virus by subinhibiting concentrations of proflavine suggested an interaction of the inhibitor with viral nucleic acid. PMID:14276124

  4. Septins suppress the release of vaccinia virus from infected cells.

    PubMed

    Pfanzelter, Julia; Mostowy, Serge; Way, Michael

    2018-06-19

    Septins are conserved components of the cytoskeleton that play important roles in many fundamental cellular processes including division, migration, and membrane trafficking. Septins can also inhibit bacterial infection by forming cage-like structures around pathogens such as Shigella We found that septins are recruited to vaccinia virus immediately after its fusion with the plasma membrane during viral egress. RNA interference-mediated depletion of septins increases virus release and cell-to-cell spread, as well as actin tail formation. Live cell imaging reveals that septins are displaced from the virus when it induces actin polymerization. Septin loss, however, depends on the recruitment of the SH2/SH3 adaptor Nck, but not the activity of the Arp2/3 complex. Moreover, it is the recruitment of dynamin by the third Nck SH3 domain that displaces septins from the virus in a formin-dependent fashion. Our study demonstrates that septins suppress vaccinia release by "entrapping" the virus at the plasma membrane. This antiviral effect is overcome by dynamin together with formin-mediated actin polymerization. © 2018 Pfanzelter et al.

  5. Detection of Vaccinia virus in blood and faeces of experimentally infected cows.

    PubMed

    Guedes, M I M C; Rehfeld, I S; de Oliveira, T M L; Assis, F L; Matos, A C D; Abrahão, J S; Kroon, E G; Lobato, Z I P

    2013-12-01

    Bovine vaccinia (BV), a zoonosis caused by Vaccinia virus (VACV), affects dairy cattle and milkers, causing economic, veterinary and human health impacts. Despite such impacts, there are no experimental studies about the pathogenesis of BV in cows to assess whether there is a systemic spread of the virus and whether there are different ways of VACV shedding. Trying to answer some of these questions, a study was proposed using experimental inoculation of VACV in cows. All experimentally infected cows developed lesions compatible with VACV infection in cattle. Two of the six animals presented VACV DNA in blood and faecal samples, starting at the 2nd and the 3rd day post-infection (d.p.i.), respectively, and lasting until the 36th d.p.i., in an intermittent way. This study provides new evidence that VACV can be detected in blood and faeces of infected cows, suggesting that BV could be a systemic disease, and also bringing new information about the epidemiology and pathogenesis of BV. © 2012 Blackwell Verlag GmbH.

  6. Resistance to Human Respiratory Syncytial Virus (RSV) Infection Induced by Immunization of Cotton Rats with a Recombinant Vaccinia Virus Expressing the RSV G Glycoprotein

    NASA Astrophysics Data System (ADS)

    Elango, Narayanasamy; Prince, Gregory A.; Murphy, Brian R.; Venkatesan, Sundararajan; Chanock, Robert M.; Moss, Bernard

    1986-03-01

    A cDNA copy of the G glycoprotein gene of human respiratory syncytial virus (RSV) was placed under control of a vaccinia virus promoter and inserted into the thymidine kinase locus of the vaccinia virus genome. The recombinant vaccinia virus retained infectivity and expressed a 93-kDa protein that migrated with the authentic RSV G glycoprotein upon polyacrylamide gel electrophoresis. Glycosylation of the expressed protein and transport to the cell surface were demonstrated in the absence of other RSV proteins. Cotton rats that were inoculated intradermally with the infectious recombinant virus produced serum antibody to the G glycoprotein that neutralized RSV in vitro. Furthermore, the vaccinated animals were resistant to lower respiratory tract infection upon intranasal inoculation with RSV and had reduced titers of RSV in the nose.

  7. Vaccinia Virus Entry, Exit, and Interaction with Differentiated Human Airway Epithelia▿

    PubMed Central

    Vermeer, Paola D.; McHugh, Julia; Rokhlina, Tatiana; Vermeer, Daniel W.; Zabner, Joseph; Welsh, Michael J.

    2007-01-01

    Variola virus, the causative agent of smallpox, enters and exits the host via the respiratory route. To better understand the pathogenesis of poxvirus infection and its interaction with respiratory epithelia, we used vaccinia virus and examined its interaction with primary cultures of well-differentiated human airway epithelia. We found that vaccinia virus preferentially infected the epithelia through the basolateral membrane and released viral progeny across the apical membrane. Despite infection and virus production, epithelia retained tight junctions, transepithelial electrical conductance, and a steep transepithelial concentration gradient of virus, indicating integrity of the epithelial barrier. In fact, during the first four days of infection, epithelial height and cell number increased. These morphological changes and maintenance of epithelial integrity required vaccinia virus growth factor, which was released basolaterally, where it activated epidermal growth factor 1 receptors. These data suggest a complex interaction between the virus and differentiated airway epithelia; the virus preferentially enters the cells basolaterally, exits apically, and maintains epithelial integrity by stimulating growth factor receptors. PMID:17581984

  8. Recombinant vaccinia/Venezuelan equine encephalitis (VEE) virus expresses VEE structural proteins.

    PubMed

    Kinney, R M; Esposito, J J; Johnson, B J; Roehrig, J T; Mathews, J H; Barrett, A D; Trent, D W

    1988-12-01

    cDNA molecules encoding the structural proteins of the virulent Trinidad donkey and the TC-83 vaccine strains of Venezuelan equine encephalitis (VEE) virus were inserted under control of the vaccinia virus 7.5K promoter into the thymidine kinase gene of vaccinia virus. Synthesis of the capsid protein and glycoproteins E2 and E1 of VEE virus was demonstrated by immunoblotting of lysates of CV-1 cells infected with recombinant vaccinia/VEE viruses. VEE glycoproteins were detected in recombinant virus-infected cells by fluorescent antibody (FA) analysis performed with a panel of VEE-specific monoclonal antibodies. Seven E2-specific epitopes and two of four E1-specific epitopes were demonstrated by FA.

  9. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  10. Non-plaque-forming virions of Modified Vaccinia virus Ankara express viral genes.

    PubMed

    Lülf, Anna-Theresa; Freudenstein, Astrid; Marr, Lisa; Sutter, Gerd; Volz, Asisa

    2016-12-01

    In cell culture infections with vaccinia virus the number of counted virus particles is substantially higher than the number of plaques obtained by titration. We found that standard vaccine preparations of recombinant Modified Vaccinia virus Ankara produce only about 20-30% plaque-forming virions in fully permissive cell cultures. To evaluate the biological activity of the non-plaque-forming particles, we generated recombinant viruses expressing fluorescent reporter proteins under transcriptional control of specific viral early and late promoters. Live cell imaging and automated counting by fluorescent microscopy indicated that virtually all virus particles can enter cells and switch on viral gene expression. Although most of the non-plaque-forming infections are arrested at the level of viral early gene expression, we detected activation of late viral transcription in 10-20% of single infected cells. Thus, non-plaque-forming particles are biologically active, and likely contribute to the immunogenicity of vaccinia virus vaccines. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effect of Interferon, Polyacrylic Acid, and Polymethacrylic Acid on Tail Lesions in Mice Infected with Vaccinia Virus

    PubMed Central

    De Clercq, E.; De Somer, P.

    1968-01-01

    Intravenous inoculation of mice with vaccinia virus produced characteristic lesions of the tail surface which were suppressed by intraperitoneal administration of interferon and polyacrylic acid (PAA). Polymethacrylic acid (PMAA) stimulated the formation of vaccinia virus lesions. For full activity, both interferon and PAA must be given prior to infection. PAA was still significantly effective at small dose levels (3 mg/kg) and achieved protection for at least 4 weeks. Protection increased with increasing molecular weight of the polymer. The mode of action of PAA is discussed. PMID:5676405

  12. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  13. Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin.

    PubMed Central

    Panicali, D; Davis, S W; Weinberg, R L; Paoletti, E

    1983-01-01

    Recombinant vaccinia viruses containing the cloned hemagglutinin (HA) gene from influenza virus were constructed. The biological activity of these poxvirus vectors was demonstrated both in vitro and in vivo. Expression of HA in cells infected with recombinant vaccinia was detected by using specific anti-HA antiserum and 125I-labeled protein A, showing that HA synthesized under the regulation of vaccinia virus was antigenic. Immunization of rabbits with these recombinant poxviruses resulted in the production of antibodies reactive with authentic influenza HA as detected by radioimmunoassay, by inhibition of HA erythrocyte agglutination, and by neutralization of influenza virus infectivity. The production of antibodies directed against influenza HA suggested that the HA gene expressed in vaccinia is immunogenic. These data indicate the potential of genetically engineered poxviruses for use as generic live vaccine vehicles that have both human and veterinary applications. Images PMID:6310573

  14. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    NASA Astrophysics Data System (ADS)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  15. Protective effect of surfactant protein d in pulmonary vaccinia virus infection: implication of A27 viral protein.

    PubMed

    Perino, Julien; Thielens, Nicole M; Crouch, Erika; Spehner, Danièle; Crance, Jean-Marc; Favier, Anne-Laure

    2013-03-21

    Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.

  16. Evidence for Protection against Chronic Hepatitis C Virus Infection in Chimpanzees by Immunization with Replicating Recombinant Vaccinia Virus▿

    PubMed Central

    Youn, Jin-Won; Hu, Yu-Wen; Tricoche, Nancy; Pfahler, Wolfram; Shata, Mohamed Tarek; Dreux, Marlene; Cosset, François-Loic; Folgori, Antonella; Lee, Dong-Hun; Brotman, Betsy; Prince, Alfred M.

    2008-01-01

    Given the failures of nonreplicating vaccines against chronic hepatitis C virus (HCV) infection, we hypothesized that a replicating viral vector may provide protective immunity. Four chimpanzees were immunized transdermally twice with recombinant vaccinia viruses (rVV) expressing HCV genes. After challenge with 24 50% chimpanzee infective doses of homologous HCV, the two control animals that had received only the parental VV developed chronic HCV infection. All four immunized animals resolved HCV infection. The difference in the rate of chronicity between the immunized and the control animals was close to statistical significance (P = 0.067). Immunized animals developed vigorous gamma interferon enzyme-linked immunospot responses and moderate proliferative responses. To investigate cross-genotype protection, the immunized recovered chimpanzees were challenged with a pool of six major HCV genotypes. During the acute phase after the multigenotype challenge, all animals had high-titer viremia in which genotype 4 dominated (87%), followed by genotype 5 (13%). However, after fluctuating low-level viremia, the viremia finally turned negative or persisted at very low levels. This study suggests the potential efficacy of replicating recombinant vaccinia virus-based immunization against chronic HCV infection. PMID:18753204

  17. Distinct gene expression profiles in peripheral blood mononuclear cells from patients infected with vaccinia virus, yellow fever 17D virus, or upper respiratory infections.

    PubMed

    Scherer, Christina A; Magness, Charles L; Steiger, Kathryn V; Poitinger, Nicholas D; Caputo, Christine M; Miner, Douglas G; Winokur, Patricia L; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A; Gillham, Martha H; Haulman, N Jean; Stapleton, Jack T; Iadonato, Shawn P

    2007-08-29

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents.

  18. Nigericin is a potent inhibitor of the early stage of vaccinia virus replication.

    PubMed

    Myskiw, Chad; Piper, Jessica; Huzarewich, Rhiannon; Booth, Tim F; Cao, Jingxin; He, Runtao

    2010-12-01

    Poxviruses remain a significant public health concern due to their potential use as bioterrorist agents and the spread of animal borne poxviruses, such as monkeypox virus, to humans. Thus, the identification of small molecule inhibitors of poxvirus replication is warranted. Vaccinia virus is the prototypic member of the Orthopoxvirus genus, which also includes variola and monkeypox virus. In this study, we demonstrate that the carboxylic ionophore nigericin is a potent inhibitor of vaccinia virus replication in several human cell lines. In HeLa cells, we found that the 50% inhibitory concentration of nigericin against vaccinia virus was 7.9 nM, with a selectivity index of 1038. We present data demonstrating that nigericin targets vaccinia virus replication at a post-entry stage. While nigericin moderately inhibits both early vaccinia gene transcription and translation, viral DNA replication and intermediate and late gene expression are severely compromised in the presence of nigericin. Our results demonstrate that nigericin has the potential to be further developed into an effective antiviral to treat poxvirus infections. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  19. Expression of Herpes Simplex Virus 1 Glycoprotein B by a Recombinant Vaccinia Virus and Protection of Mice against Lethal Herpes Simplex Virus 1 Infection

    NASA Astrophysics Data System (ADS)

    Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry

    1987-08-01

    The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.

  20. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. Asmore » reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.« less

  1. Enhanced Efficacy of Cidofovir Combined with Vaccinia Immune Globulin in Treating Progressive Cutaneous Vaccinia Virus Infections in Immunosuppressed Hairless Mice

    PubMed Central

    Dagley, Ashley; Downs, Brittney; Hagloch, Joseph; Tarbet, E. Bart

    2014-01-01

    The treatment of progressive vaccinia in individuals has involved antiviral drugs, such as cidofovir (CDV), brincidofovir, and/or tecovirimat, combined with vaccinia immune globulin (VIG). VIG is costly, and its supply is limited, so sparing the use of VIG during treatment is an important objective. VIG sparing was modeled in immunosuppressed mice by maximizing the treatment benefits of CDV combined with VIG to determine the effective treatments that delayed the time to death, reduced cutaneous lesion severity, and/or decreased tissue viral titers. SKH-1 hairless mice immunosuppressed with cyclophosphamide and hairless SCID mice (SHO strain) were infected cutaneously with vaccinia virus. Monotherapy, dual combinations (CDV plus VIG), or triple therapy (topical CDV, parenteral CDV, and VIG) were initiated 2 days postinfection and were given every 3 to 4 days through day 11. The efficacy assessment included survival rate, cutaneous lesion severity, and viral titers. Delays in the time to death and the reduction in lesion severity occurred in the following order of efficacy: triple therapy had greater efficacy than double combinations (CDV plus VIG or topical plus parenteral CDV), which had greater efficacy than VIG alone. Parenteral administration of CDV or VIG was necessary to suppress virus titers in internal organs (liver, lung, and spleen). The skin viral titers were significantly reduced by triple therapy only. The greatest efficacy was achieved by triple therapy. In humans, this regimen should translate to a faster cure rate, thus sparing the amount of VIG used for treatment. PMID:25385098

  2. Vaccinia Virus Induces Rapid Necrosis in Keratinocytes by a STAT3-Dependent Mechanism

    PubMed Central

    He, Yong; Fisher, Robert; Chowdhury, Soma; Sultana, Ishrat; Pereira, Claudia P.; Bray, Mike; Reed, Jennifer L.

    2014-01-01

    Rationale Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens. Methods To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin. Results Mice treated topically with a STAT3 inhibitor (Stattic) developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3. Conclusions Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus. PMID:25419841

  3. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    PubMed

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  4. Susceptibility of Vaccinia Virus to Chemical Disinfectants

    PubMed Central

    de Oliveira, Tércia Moreira Ludolfo; Rehfeld, Izabelle Silva; Coelho Guedes, Maria Isabel Maldonado; Ferreira, Jaqueline Maria Siqueira; Kroon, Erna Geessien; Lobato, Zélia Inês Portela

    2011-01-01

    Vaccinia virus (VACV) is the cause of bovine vaccinia (BV), an emerging zoonotic disease that affects dairy cows and milkers. Some chemical disinfectants have been used on farms affected by BV to disinfect cow teats and milkers' hands. To date, there is no information about the efficacy of disinfectants against VACV. Therefore, this study aimed to assess the virucidal activity of some active disinfectants commonly used in the field. Sodium hypochlorite, quaternary ammonium combined with chlorhexidine, and quaternary ammonium combined with glutaraldehyde were effective in inactivating the virus at all concentrations tested. Iodine and quaternary ammonium as the only active component were partially effective. The presence of bovine feces as organic matter and light decreased the effectiveness of sodium hypochlorite. These results show that an appropriated disinfection and asepsis of teats and hands may be helpful in the control and prevention of BV and other infections with VACV. PMID:21734141

  5. Rabbitpox virus and vaccinia virus infection of rabbits as a model for human smallpox.

    PubMed

    Adams, Mathew M; Rice, Amanda D; Moyer, R W

    2007-10-01

    The threat of smallpox release and use as a bioweapon has encouraged the search for new vaccines and antiviral drugs, as well as development of new small-animal models in which their efficacy can be determined. Here, we reinvestigate a rabbit model in which the intradermal infection of rabbits with very low doses of either rabbitpox virus (RPV) or vaccinia virus Western Reserve (VV-WR) recapitulates many of the clinical features of human smallpox. Following intradermal inoculation with RPV, rabbits develop systemic disease characterized by extensive viremia, numerous secondary lesions on the skin and mucocutaneous tissues, severe respiratory disease, death by 9 days postinfection, and, importantly, natural aerosol transmission between animals. Contrary to previous reports, intradermal infection with VV-WR also resulted in a very similar lethal systemic disease in rabbits, again with natural aerosol transmission between animals. When sentinel and index animals were cohoused, transmission rates approached 100% with either virus, with sentinel animals exhibiting a similar, severe disease. Lower rates of transmission were observed when index and sentinel animals were housed in separate cages. Sentinel animals infected with RPV with one exception succumbed to the disease. However, the majority of VV-WR-infected sentinel animals, while becoming seriously ill, survived. Finally, we tested the efficacy of the drug 1-O-hexadecyloxypropyl-cidofovir in the RPV/rabbit model and found that an oral dose of 5 mg/kg twice a day for 5 days beginning 1 day before infection was able to completely protect rabbits from lethal disease.

  6. Safety and Immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic Smallpox Vaccine in Vaccinia-Naive and Experienced Human Immunodeficiency Virus-Infected Individuals: An Open-Label, Controlled Clinical Phase II Trial.

    PubMed

    Overton, Edgar Turner; Stapleton, Jack; Frank, Ian; Hassler, Shawn; Goepfert, Paul A; Barker, David; Wagner, Eva; von Krempelhuber, Alfred; Virgin, Garth; Meyer, Thomas Peter; Müller, Jutta; Bädeker, Nicole; Grünert, Robert; Young, Philip; Rösch, Siegfried; Maclennan, Jane; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2015-04-01

    Background.  First- and second-generation smallpox vaccines are contraindicated in individuals infected with human immunodeficiency virus (HIV). A new smallpox vaccine is needed to protect this population in the context of biodefense preparedness. The focus of this study was to compare the safety and immunogenicity of a replication-deficient, highly attenuated smallpox vaccine modified vaccinia Ankara (MVA) in HIV-infected and healthy subjects. Methods.  An open-label, controlled Phase II trial was conducted at 36 centers in the United States and Puerto Rico for HIV-infected and healthy subjects. Subjects received 2 doses of MVA administered 4 weeks apart. Safety was evaluated by assessment of adverse events, focused physical exams, electrocardiogram recordings, and safety laboratories. Immune responses were assessed using enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT). Results.  Five hundred seventy-nine subjects were vaccinated at least once and had data available for analysis. Rates of ELISA seropositivity were comparably high in vaccinia-naive healthy and HIV-infected subjects, whereas PRNT seropositivity rates were higher in healthy compared with HIV-infected subjects. Modified vaccinia Ankara was safe and well tolerated with no adverse impact on viral load or CD4 counts. There were no cases of myo-/pericarditis reported. Conclusions.  Modified vaccinia Ankara was safe and immunogenic in subjects infected with HIV and represents a promising smallpox vaccine candidate for use in immunocompromised populations.

  7. Safety and Immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic Smallpox Vaccine in Vaccinia-Naive and Experienced Human Immunodeficiency Virus-Infected Individuals: An Open-Label, Controlled Clinical Phase II Trial

    PubMed Central

    Overton, Edgar Turner; Stapleton, Jack; Frank, Ian; Hassler, Shawn; Goepfert, Paul A.; Barker, David; Wagner, Eva; von Krempelhuber, Alfred; Virgin, Garth; Meyer, Thomas Peter; Müller, Jutta; Bädeker, Nicole; Grünert, Robert; Young, Philip; Rösch, Siegfried; Maclennan, Jane; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2015-01-01

    Background. First- and second-generation smallpox vaccines are contraindicated in individuals infected with human immunodeficiency virus (HIV). A new smallpox vaccine is needed to protect this population in the context of biodefense preparedness. The focus of this study was to compare the safety and immunogenicity of a replication-deficient, highly attenuated smallpox vaccine modified vaccinia Ankara (MVA) in HIV-infected and healthy subjects. Methods. An open-label, controlled Phase II trial was conducted at 36 centers in the United States and Puerto Rico for HIV-infected and healthy subjects. Subjects received 2 doses of MVA administered 4 weeks apart. Safety was evaluated by assessment of adverse events, focused physical exams, electrocardiogram recordings, and safety laboratories. Immune responses were assessed using enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT). Results. Five hundred seventy-nine subjects were vaccinated at least once and had data available for analysis. Rates of ELISA seropositivity were comparably high in vaccinia-naive healthy and HIV-infected subjects, whereas PRNT seropositivity rates were higher in healthy compared with HIV-infected subjects. Modified vaccinia Ankara was safe and well tolerated with no adverse impact on viral load or CD4 counts. There were no cases of myo-/pericarditis reported. Conclusions. Modified vaccinia Ankara was safe and immunogenic in subjects infected with HIV and represents a promising smallpox vaccine candidate for use in immunocompromised populations. PMID:26380340

  8. De novo Fatty Acid Biosynthesis Contributes Significantly to Establishment of a Bioenergetically Favorable Environment for Vaccinia Virus Infection

    PubMed Central

    Greseth, Matthew D.; Traktman, Paula

    2014-01-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in

  9. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    PubMed

    Greseth, Matthew D; Traktman, Paula

    2014-03-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in

  10. Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory

    PubMed Central

    Torres, Alice A.; Smith, Geoffrey L.

    2018-01-01

    The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory. PMID:29495547

  11. Expression of the Bacillus anthracis protective antigen gene by baculovirus and vaccinia virus recombinants.

    PubMed Central

    Iacono-Connors, L C; Schmaljohn, C S; Dalrymple, J M

    1990-01-01

    The gene encoding Bacillus anthracis protective antigen (PA) was modified by site-directed mutagenesis, subcloned into baculovirus and vaccinia virus plasmid transfer vectors (pAcYM1 and pSC-11, respectively), and inserted via homologous recombinations into baculovirus Autographa californica nuclear polyhedrosis virus or vaccinia virus (strains WR and Connaught). Expression of PA was detected in both systems by immunofluorescence assays with antisera from rabbits immunized with B. anthracis PA. Western blot (immunoblot) analysis showed that the expressed product of both systems was slightly larger (86 kilodaltons) than B. anthracis-produced PA (83.5 kilodaltons). Analysis of trypsin digests of virus-expressed and authentic PA suggested that the size difference was due to the presence of a signal sequence remaining with the virus-expressed protein. Immunization of mice with either recombinant baculovirus-infected Spodoptera frugiperda cells or with vaccinia virus recombinants elicited a high-titer, anti-PA antibody response. Images PMID:2105271

  12. Response of dairy calves to vaccinia viruses that express foreign genes.

    PubMed Central

    Gillespie, J H; Geissinger, C; Scott, F W; Higgins, W P; Holmes, D F; Perkus, M; Mercer, S; Paoletti, E

    1986-01-01

    Repeated intradermal inoculations of calves with wild-type vaccinia virus and recombinant vaccinia viruses expressing human hepatitis B virus surface antigen and herpes simplex virus, type 1, glycoprotein D produced characteristic pox lesions at each site of injection. In some instances, calves were inoculated as many as five times at intervals from 4 to 7 weeks. The lesions invariably were more severe after the second inoculation. Subsequent inoculations produced a less severe area of redness, swelling, necrosis, and scab formation. No other signs of illness, such as an elevation in temperature, were noted in the calves. Vaccinia virus was isolated in low titers from scabs taken at various times after inoculation. No lesions were formed at the sites injected with tissue culture fluid and cellular debris at the same time that virus inoculations were made. Calf contact controls remained normal through the 8-week exposure in isolation units with calves inoculated twice with vaccinia virus. No neutralizing antibody to vaccinia virus was detected in the contact controls. In contrast, the virus-inoculated calves developed neutralizing antibody to vaccinia virus and to herpes simplex virus glycoprotein D in serum. In all cattle, a second inoculation significantly enhanced the neutralizing antibody response within 1 week, suggesting that an anamnestic response had occurred. No antibody to hepatitis B virus surface antigen was elicited in calves after repeated inoculations with vaccinia recombinants that express hepatitis B virus surface antigen and are known to elicit in rabbits antibodies reactive with hepatitis B virus surface antigen. Images PMID:3700615

  13. Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release.

    PubMed

    Kern, Aurelie; Zhou, Chensheng W; Jia, Feng; Xu, Qiaobing; Hu, Linden T

    2016-08-31

    The incidence of Lyme disease has continued to rise despite attempts to control its spread. Vaccination of zoonotic reservoirs of human pathogens has been successfully used to decrease the incidence of rabies in raccoons and foxes. We have previously reported on the efficacy of a vaccinia virus vectored vaccine to reduce carriage of Borrelia burgdorferi in reservoir mice and ticks. One potential drawback to vaccinia virus vectored vaccines is the risk of accidental infection of humans. To reduce this risk, we developed a process to encapsulate vaccinia virus with a pH-sensitive polymer that inactivates the virus until it is ingested and dissolved by stomach acids. We demonstrate that the vaccine is inactive both in vitro and in vivo until it is released from the polymer. Once released from the polymer by contact with an acidic pH solution, the virus regains infectivity. Vaccination with coated vaccinia virus confers protection against B. burgdorferi infection and reduction in acquisition of the pathogen by naïve feeding ticks. Copyright © 2016. Published by Elsevier Ltd.

  14. Vaccinia Virus Recombinants: Expression of VSV Genes and Protective Immunization of Mice and Cattle

    NASA Astrophysics Data System (ADS)

    Mackett, M.; Yilma, T.; Rose, J. K.; Moss, B.

    1985-01-01

    Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.

  15. Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus

    PubMed Central

    Mota, Bruno E. F.; Gallardo-Romero, Nadia; Trindade, Giliane; Keckler, M. Shannon; Karem, Kevin; Carroll, Darin; Campos, Marco A.; Vieira, Leda Q.; da Fonseca, Flávio G.; Ferreira, Paulo C. P.; Bonjardim, Cláudio A.; Damon, Inger K.; Kroon, Erna G.

    2011-01-01

    Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1 −/−) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT) produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1 −/− with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1 −/−, and passive transfer of WT T cells to Rag1 −/− animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify

  16. Adverse events post smallpox-vaccination: insights from tail scarification infection in mice with Vaccinia virus.

    PubMed

    Mota, Bruno E F; Gallardo-Romero, Nadia; Trindade, Giliane; Keckler, M Shannon; Karem, Kevin; Carroll, Darin; Campos, Marco A; Vieira, Leda Q; da Fonseca, Flávio G; Ferreira, Paulo C P; Bonjardim, Cláudio A; Damon, Inger K; Kroon, Erna G

    2011-04-15

    Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1(-/-)) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT) produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1(-/-) with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1(-/-), and passive transfer of WT T cells to Rag1(-/-) animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify individuals with

  17. Horizontal study of vaccinia virus infections in an endemic area: epidemiologic, phylogenetic and economic aspects.

    PubMed

    Assis, Felipe L; Franco-Luiz, Ana Paula M; Paim, Luis M; Oliveira, Graziele P; Pereira, Alexandre F; de Almeida, Gabriel M F; Figueiredo, Leandra B; Tanus, Adriano; Trindade, Giliane S; Ferreira, Paulo P; Kroon, Erna G; Abrahão, Jônatas S

    2015-11-01

    Vaccinia virus (VACV), the etiological agent of bovine vaccinia (BV), is widespread in Brazil and present in most of the milk-producing regions. We conducted a horizontal study of BV in Bahia, a state of Brazil in which the production of milk is increasing. During 2011, human and bovine clinical samples were collected during outbreaks for BV diagnosis, virus isolation and molecular analysis. We collected data for epidemiological inferences. Vaccinia virus was detected in 87.7% of the analyzed outbreaks, highlighting the effective circulation of VACV in Bahia. The molecular data showed the spreading of group 1 Brazilian VACV to Bahia. We observed a seasonal profile of BV, with its peak in the drier and cooler season. Manual milking was observed in 96 % of the visited properties, showing its importance to viral spread in herds. Under-notification of BV, ineffective animal trade surveillance, and bad milking practices have contributed to the spread of VACV in Brazil.

  18. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model.

    PubMed

    Chen, Zhaochun; Earl, Patricia; Americo, Jeffrey; Damon, Inger; Smith, Scott K; Yu, Fujuan; Sebrell, Andrew; Emerson, Suzanne; Cohen, Gary; Eisenberg, Roselyn J; Gorshkova, Inna; Schuck, Peter; Satterfield, William; Moss, Bernard; Purcell, Robert

    2007-09-01

    Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human gamma 1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (K(d) of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.

  19. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    PubMed

    Rabenau, Holger F; Rapp, Ingrid; Steinmann, Jochen

    2010-06-23

    Vaccinia virus strain Lister Elstree (VACV) is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA) was studied by testing the activity of different chemical biocides in three German laboratories. The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols) were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v) ethanol and 30% (v/v) isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers.

  20. Structure and Assembly of Intracellular Mature Vaccinia Virus: Thin-Section Analyses

    PubMed Central

    Griffiths, Gareth; Roos, Norbert; Schleich, Sybille; Locker, Jacomine Krijnse

    2001-01-01

    In the preceding study (see accompanying paper), we showed by a variety of different techniques that intracellular mature vaccinia virus (vaccinia IMV) is unexpectedly complex in its structural organization and that this complexity also extends to the underlying viral core, which is highly folded. With that analysis as a foundation, we now present different thin-section electron microscopy approaches for analyzing the IMV and the processes by which it is assembled in infected HeLa cells. We focus on conventional epoxy resin thin sections as well as cryosections to describe key intermediates in the assembly process. We took advantage of streptolysin O's ability to selectively permeabilize the plasma membrane of infected cells to improve membrane contrast, and we used antibodies against bone fide integral membrane proteins of the virus to unequivocally identify membrane profiles in thin sections. All of the images presented here can be rationalized with respect to the model put forward for the assembly of the IMV in the accompanying paper. PMID:11602745

  1. Distinct Gene Expression Profiles in Peripheral Blood Mononuclear Cells from Patients Infected with Vaccinia Virus, Yellow Fever 17D Virus, or Upper Respiratory Infections Running Title: PBMC Expression Response to Viral Agents

    PubMed Central

    Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.

    2007-01-01

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872

  2. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    PubMed Central

    Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas

    2007-01-01

    Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378

  3. Thy1+ Nk Cells from Vaccinia Virus-Primed Mice Confer Protection against Vaccinia Virus Challenge in the Absence of Adaptive Lymphocytes

    PubMed Central

    Gillard, Geoffrey O.; Bivas-Benita, Maytal; Hovav, Avi-Hai; Grandpre, Lauren E.; Panas, Michael W.; Seaman, Michael S.; Haynes, Barton F.; Letvin, Norman L.

    2011-01-01

    While immunological memory has long been considered the province of T- and B- lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1+ subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance. PMID:21829360

  4. Vaccinia Virus: A Tool for Research and Vaccine Development

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1991-06-01

    Vaccinia virus is no longer needed for smallpox immunization, but now serves as a useful vector for expressing genes within the cytoplasm of eukaryotic cells. As a research tool, recombinant vaccinia viruses are used to synthesize biologically active proteins and analyze structure-function relations, determine the targets of humoral- and cell-mediated immunity, and investigate the immune responses needed for protection against specific infectious diseases. When more data on safety and efficacy are available, recombinant vaccinia and related poxviruses may be candidates for live vaccines and for cancer immunotherapy.

  5. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condit, Richard C., E-mail: condit@mgm.ufl.edu; Moussatche, Nissin

    2015-08-15

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulatemore » in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. - Highlights: • Mutation of E6 disrupts association of viral membranes with viral core proteins • Mutation of E6 does not perturb viral membrane biosynthesis • Mutation of E6 does not perturb localization of viral transcription enzymes • Mutation of E6 causes mis-localization and aggregation of viral core proteins • Vaccinia assembly uses three subassemblies: membranes, viroplasm, prenucleocapsid.« less

  6. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development.

    PubMed

    Volz, A; Sutter, G

    2017-01-01

    Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology. © 2017 Elsevier Inc. All rights reserved.

  7. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    PubMed Central

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  8. Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent.

    PubMed

    Kirscher, Lorenz; Deán-Ben, Xosé Luis; Scadeng, Miriam; Zaremba, Angelika; Zhang, Qian; Kober, Christina; Fehm, Thomas Felix; Razansky, Daniel; Ntziachristos, Vasilis; Stritzker, Jochen; Szalay, Aladar A

    2015-01-01

    We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.

  9. Cooperative vaccinia infection demonstrated at the single-cell level using FluidFM.

    PubMed

    Stiefel, Philipp; Schmidt, Florian I; Dörig, Pablo; Behr, Pascal; Zambelli, Tomaso; Vorholt, Julia A; Mercer, Jason

    2012-08-08

    The mechanisms used by viruses to enter and replicate within host cells are subjects of intense investigation. These studies are ultimately aimed at development of new drugs that interfere with these processes. Virus entry and infection are generally monitored by dispensing bulk virus suspensions on layers of cells without accounting for the fate of each virion. Here, we take advantage of the recently developed FluidFM to deposit single vaccinia virions onto individual cells in a controlled manner. While the majority of virions were blocked prior to early gene expression, infection of individual cells increased in a nondeterministic fashion with respect to the number of viruses placed. Microscopic analyses of several stages of the virus lifecycle indicated that this was the result of cooperativity between virions during early stages of infection. These findings highlight the importance of performing controlled virus infection experiments at the single cell level.

  10. Laboratory-acquired vaccinia virus infection in a recently immunized person--Massachusetts, 2013.

    PubMed

    Hsu, Christopher H; Farland, Julien; Winters, Thomas; Gunn, Julia; Caron, Donna; Evans, Jennifer; Osadebe, Lynda; Bethune, Leon; McCollum, Andrea M; Patel, Nishi; Wilkins, Kimberly; Davidson, Whitni; Petersen, Brett; Barry, M Anita

    2015-05-01

    On November 26, 2013, the CDC poxvirus laboratory was notified by the Boston Public Health Commission (BPHC) of an inadvertent inoculation of a recently vaccinated (ACAM2000 smallpox vaccine) laboratory worker with wild type vaccinia virus (VACV) Western Reserve. A joint investigation by CDC and BPHC confirmed orthopoxvirus infection in the worker, who had reported a needle stick in his thumb while inoculating a mouse with VACV. He experienced a non-tender, red rash on his arm, diagnosed at a local emergency department as cellulitis. He subsequently developed a necrotic lesion on his thumb, diagnosed as VACV infection. Three weeks after the injury, the thumb lesion was surgically debrided and at 2 months post-injury, the skin lesion had resolved. The investigation confirmed that the infection was the first reported VACV infection in the United States in a laboratory worker vaccinated according to the Advisory Committee on Immunization Practices (ACIP) recommendations. The incident prompted the academic institution to outline biosafety measures for working with biologic agents, such as biosafety training of laboratory personnel, vaccination (if appropriate), and steps in incident reporting. Though vaccination has been shown to be an effective measure in protecting personnel in the laboratory setting, this case report underscores the importance of proper safety measures and incident reporting.

  11. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara

    PubMed Central

    Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker

    2013-01-01

    The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain. PMID:27694766

  12. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara.

    PubMed

    Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker

    2013-11-01

    The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain.

  13. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmann, S.E.; Jones, J.C.; Schultz-Cherry, S.

    2009-06-05

    Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC{sub 50} of 15 muM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC{sub 50} > 200 muM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption wasmore » unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC{sub 50} of 45 muM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p < 0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.« less

  14. Construction of Poxviruses as Cloning Vectors: Insertion of the Thymidine Kinase Gene from Herpes Simplex Virus into the DNA of Infectious Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Panicali, Dennis; Paoletti, Enzo

    1982-08-01

    We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.

  15. Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles.

    PubMed

    Schweneker, Marc; Laimbacher, Andrea S; Zimmer, Gert; Wagner, Susanne; Schraner, Elisabeth M; Wolferstätter, Michael; Klingenberg, Marieken; Dirmeier, Ulrike; Steigerwald, Robin; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2017-06-01

    There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant. IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified

  16. How Does Vaccinia Virus Interfere With Interferon?

    PubMed

    Smith, Geoffrey L; Talbot-Cooper, Callum; Lu, Yongxu

    2018-01-01

    Interferons (IFNs) are secreted glycoproteins that are produced by cells in response to virus infection and other stimuli and induce an antiviral state in cells bearing IFN receptors. In this way, IFNs restrict virus replication and spread before an adaptive immune response is developed. Viruses are very sensitive to the effects of IFNs and consequently have evolved many strategies to interfere with interferon. This is particularly well illustrated by poxviruses, which have large dsDNA genomes and encode hundreds of proteins. Vaccinia virus is the prototypic poxvirus and expresses many proteins that interfere with IFN and are considered in this review. These proteins act either inside or outside the cell and within the cytoplasm or nucleus. They function by restricting the production of IFN by blocking the signaling pathways leading to transcription of IFN genes, stopping IFNs binding to their receptors, blocking IFN-induced signal transduction leading to expression of interferon-stimulated genes (ISGs), or inhibiting the antiviral activity of ISG products. © 2018 Elsevier Inc. All rights reserved.

  17. Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22

    PubMed Central

    Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen

    2015-01-01

    ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex

  18. Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus

    PubMed Central

    Myers, Rachel; Coviello, Christian; Erbs, Philippe; Foloppe, Johann; Rowe, Cliff; Kwan, James; Crake, Calum; Finn, Seán; Jackson, Edward; Balloul, Jean-Marc; Story, Colin; Coussios, Constantin; Carlisle, Robert

    2016-01-01

    Oncolytic viruses (OV) could become the most powerful and selective cancer therapies. However, the limited transport of OV into and throughout tumors following intravenous injection means their clinical administration is often restricted to direct intratumoral dosing. Application of physical stimuli, such as focused ultrasound, offers a means of achieving enhanced mass transport. In particular, shockwaves and microstreaming resulting from the instigation of an ultrasound-induced event known as inertial cavitation can propel OV hundreds of microns. We have recently developed a polymeric cup formulation which, when delivered intravenously, provides the nuclei for instigation of sustained inertial cavitation events within tumors. Here we report that exposure of tumors to focused ultrasound after intravenous coinjection of cups and oncolytic vaccinia virus , leads to substantial and significant increases in activity. When cavitation was instigated within SKOV-3 or HepG2 xenografts, reporter gene expression from vaccinia virus was enhanced 1,000-fold (P < 0.0001) or 10,000-fold (P < 0.001), respectively. Similar increases in the number of vaccinia virus genomes recovered from tumors were also observed. In survival studies, the application of cup mediated cavitation to a vaccinia virus expressing a prodrug converting enzyme provided significant (P < 0.05) retardation of tumor growth. This technology could improve the clinical utility of all biological therapeutics including OV. PMID:27375160

  19. Bioluminescence imaging of a tumor-selective, thymidine kinase-defective vaccinia virus Guang9 strain after intratumoral or intraperitoneal administration in mice

    PubMed Central

    Ding, Yuedi; Fan, Jun; Deng, Lili; Peng, Ying; Zhang, Jue; Huang, Biao

    2017-01-01

    Vaccinia virus has been used as an oncolytic virus because of its capacity to preferentially infect tumors rather than normal tissues. The vaccinia Tian Tan strain, used as a vaccine against smallpox for millions of people in China, is a promising candidate for cancer therapy. In this study, we constructed an attenuated Tian Tan strain of Guang9 with a disrupted thymidine kinase gene to enhance tumor selectivity and an inserted firefly luciferase to monitor the viral distribution by in vivo bioluminescence imaging. Living animal imaging confirmed the high specificity of vaccinia Guang9 for tumor targeting after intratumoral and intraperitoneal administration. In addition, the vaccinia Guang9 strain produced higher in vivo luciferase activity and endured longer in immunocompromised nude mice than in immunocompetent C57BL/6 mice, all of which had been tumor-challenged. The luciferase activity and viral titers in excised tissues confirmed these conclusions. These data provide evidence for the safety and efficacy of the clinical application of vaccinia virus, which would be a promising approach for cancer therapy. PMID:29179469

  20. Analysis of the L1 gene product of human papillomavirus type 16 by expression in a vaccinia virus recombinant.

    PubMed

    Browne, H M; Churcher, M J; Stanley, M A; Smith, G L; Minson, A C

    1988-06-01

    The L1 open reading frame of human papillomavirus type 16 (HPV16) has been expressed in vaccinia virus under the control of both the 7.5K early and late promoter, and the 4b major late promoter. Antibodies to a beta-galactosidase fusion protein containing a C-terminal portion of the HPV16 L1 gene product were used to compare the levels of L1 expression in the two recombinants, and showed that greater levels of expression were obtained when the gene was placed under the control of the 4b late promoter. Immunofluorescence studies revealed a nuclear location of the L1 gene product when expressed in vaccinia virus. Antibodies to the beta-galactosidase fusion protein detected a major polypeptide species of 57K and a minor species of 64K in Western blots of recombinant-infected cell lysates. The 64K species was not detected when cells were infected in the presence of tunicamycin, indicating that the primary translation product of the HPV16 L1 open reading frame is modified by N-linked glycosylation when expressed in vaccinia virus. Whereas antibodies to HPV16 L1 fusion proteins and to a peptide containing amino acids from the C terminus of HPV16 L1 reacted well in Western blots with the HPV16 L1 target expressed in vaccinia virus, no reactivity was observed with antibodies to bovine papillomavirus type 1 particles or to a HPV6b fusion protein.

  1. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.

    PubMed

    Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H

    1997-01-01

    The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant gB, gC and gD were confirmed by a panel of MAbs specific for each glycoprotein produced in CHV-infected cells. Immunization of mice with these recombinants produced high titers of neutralizing antibodies against CHV. These results suggest that recombinant vaccinia viruses expressing CHV gB, gC and gD may be useful to develop a vaccine to control CHV infection.

  3. Effect of the Deletion of Genes Encoding Proteins of the Extracellular Virion Form of Vaccinia Virus on Vaccine Immunogenicity and Protective Effectiveness in the Mouse Model

    PubMed Central

    Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.

    2013-01-01

    Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523

  4. Preliminary analysis of murine cytotoxic T cell responses to the proteins of the flavivirus Kunjin using vaccinia virus expression.

    PubMed

    Parrish, C R; Coia, G; Hill, A; Müllbacher, A; Westaway, E G; Blanden, R V

    1991-07-01

    A series of recombinant vaccinia viruses expressing various parts of the entire Kunjin virus (KUN) coding region was used to analyse the cytotoxic T (Tc) cell responses to KUN. CBA/H mice inoculated with KUN or West Nile virus were shown to develop responses to KUN or various vaccinia virus expression constructs in either primary cytotoxic assays, or after secondary stimulation of the Tc cells in vitro with KUN antigens. Tc cells from CBA mice showed the strongest response to target cells infected with recombinant vaccinia viruses expressing parts of the KUN NS3 and NS4A proteins, and only a weak response to the other structural or non-structural proteins. Further analysis of deleted versions of the NS3-NS4A region showed that the main epitope recognized was derived from a sequence of 99 amino acids spanning parts of NS3 and NS4A. No other major epitopes were detected by Tc cells from CBA mice in the remaining 3333 amino acids of the KUN polypeptide.

  5. Inhibition of vaccinia virus maturation by zinc chloride.

    PubMed Central

    Katz, E; Margalith, E

    1981-01-01

    Zinc chloride (0.1 mM) inhibited by 96.4% the growth of vaccinia virus in HeLa cells. Approximately 50% inhibition in formation of particles that sedimented in sucrose gradients similarly to vaccinia virions occurred in the presence of zinc ions. Whereas the synthesis of the viral deoxyribonucleic acid was not affected by zinc chloride, a decrease in the overall synthesis of viral polypeptides and inhibition of the cleavage of precursors to the core polypeptides were observed. Images PMID:7347557

  6. Studies on the serological relationships between avian pox, sheep pox, goat pox and vaccinia viruses

    PubMed Central

    Uppal, P. K.; Nilakantan, P. R.

    1970-01-01

    By using neutralization, complement fixation and immunogel-diffusion tests, it has been demonstrated that cross-reactions occur between various avian pox viruses and between sheep pox and goat pox viruses. No such reactions were demonstrated between avian pox viruses and vaccinia virus or between avian pox and sheep pox and goat pox viruses. Furthermore, no serological relationship was demonstrable between vaccinia virus and sheep pox and goat pox viruses. PMID:4989854

  7. Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses.

    PubMed

    Wolferstätter, Michael; Schweneker, Marc; Späth, Michaela; Lukassen, Susanne; Klingenberg, Marieken; Brinkmann, Kay; Wielert, Ursula; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2014-12-01

    Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral

  8. Microbiota is an essential element for mice to initiate a protective immunity against Vaccinia virus.

    PubMed

    Lima, Maurício T; Andrade, Ana C S P; Oliveira, Graziele P; Calixto, Rafael S; Oliveira, Danilo B; Souza, Éricka L S; Trindade, Giliane S; Nicoli, Jacques R; Kroon, Erna G; Martins, Flaviano S; Abrahão, Jônatas S

    2016-02-01

    The gastrointestinal tract of vertebrates harbors one of the most complex ecosystems known in microbial ecology and this indigenous microbiota almost always has a profound influence on host-parasite relationships, which can enhance or reduce the pathology of the infection. In this context, the impact of the microbiota during the infection of several viral groups remains poorly studied, including the family Poxviridae. Vaccinia virus (VACV) is a member of this family and is the causative agent of bovine vaccinia, responsible for outbreaks that affect bovines and humans. To determine the influence of the microbiota in the development of the disease caused by VACV, a comparative study using a murine model was performed. Germ-free and conventional, 6- to 7-week-old Swiss NIH mice were infected by tail scarification and intranasally with VACV. Moreover, immunosuppression and microbiota reposition were performed, to establish the interactions among the host's immune system, microbiota and VACV. The data demonstrate that the microbiota is essential for the effective immune response of mice against VACV in intranasal inoculation and to control the virus at the primary site of infection. Furthermore, this study is the first to show that Swiss conventional mice are refractory to the intranasal infection of VACV. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost

    PubMed Central

    Xiao, Yuhong; Aldaz-Carroll, Lydia; Ortiz, Alexandra M.; Whitbeck, J. Charles; Alexander, Edward; Lou, Huan; Davis, J. Heather L.; Braciale, Thomas J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Isaacs, Stuart N.

    2007-01-01

    The heightened concern about the intentional release of variola virus has led to the need to develop safer smallpox vaccines. While subunit vaccine strategies are safer than live virus vaccines, subunit vaccines have been hampered by the need for multiple boosts to confer optimal protection. Here we developed a protein-based subunit vaccine strategy that provides rapid protection in mouse models of orthopoxvirus infections after a prime and single boost. Mice vaccinated with vaccinia virus envelope proteins from the mature virus (MV) and extracellular virus (EV) adjuvanted with CpG-ODN and alum were protected from lethal intranasal challenge with vaccinia virus and the mouse-specific ectromelia virus. Organs from mice vaccinated with three proteins (A33, B5 and L1) and then sacrificed after challenge contained significantly lower titers of virus when compared to control groups of mice that were not vaccinated or that received sub-optimal formulations of the vaccine. Sera from groups of mice obtained prior to challenge had neutralizing activity against the MV and also inhibited comet formation indicating anti-EV activity. Long-term partial protection was also seen in mice challenged with vaccinia virus 6 months after initial vaccinations. Thus, this work represents a step toward the development of a practical subunit smallpox vaccine. PMID:17098336

  10. Immunogenicity of recombinant vaccinia virus vaccines co-expressing GP3/GP5 of European PRRSV and Cap protein of PCV2 in pigs.

    PubMed

    Han, Jicheng; Ma, Haibin; Cao, Liang; Jing, Jie; Xiao, Pengpeng; Sun, Wenchao; Xie, Changzhan; Wen, Shubo; Li, Yiquan; Tian, Mingyao; Lu, Huijun; Jin, Ningyi

    2018-02-01

    Porcine reproductive and respiratory syndrome (PRRS) is almost always caused by the North American strain of PRRS virus (PRRSV) in China; the European genotype of PRRSV has emerged in China. The mixed infection of PRRSV and Porcine circovirus type 2 virus (PCV2) are always found in pigs and PRRSV-augmented PCV2 replication and serious clinical symptoms. Current vaccines cannot protect mixed European PRRSV and PCV2 infections. Therefore, the development of a safe and effective new vaccine to prevent and control the mixed infection of European PRRSV and PCV2 is both urgent and necessary. In this study, we developed a recombinant vaccinia vaccine co-expressing the GP3 and GP5 proteins of European PRRSV and the ORF2 protein of PCV2 and evaluated the immunogenicity and its protective effects and its inactivated vaccine in pigs. The recombinant vaccinia vaccine and its inactivated vaccine both elicited significant humoral and cellular immune responses with a higher level of specific antibody responses and T-lymphocyte proliferation than the control group. Furthermore, the pigs inoculated with the recombinant vaccinia vaccine were completely protected against challenge with 10 5 TCID 50 of European PRRSV strain LV. These data suggest that the recombinant vaccinia vaccine is a potential candidate vaccine against European PRRSV and PCV2.

  11. Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Nancy Y.; Bartee, Eric; Mohamed, Mohamed R.

    2010-06-05

    Myxoma (MYXV) and vaccinia (VACV) viruses have recently emerged as potential oncolytic agents that can infect and kill different human cancer cells. Although both are structurally similar, it is unknown whether the pathway(s) used by these poxviruses to enter and cause oncolysis in cancer cells are mechanistically similar. Here, we compared the entry of MYXV and VACV-WR into various human cancer cells and observed significant differences: 1 - low-pH treatment accelerates fusion-mediated entry of VACV but not MYXV, 2 - the tyrosine kinase inhibitor genistein inhibits entry of VACV, but not MYXV, 3 - knockdown of PAK1 revealed that itmore » is required for a late stage event downstream of MYXV entry into cancer cells, whereas PAK1 is required for VACV entry into the same target cells. These results suggest that VACV and MYXV exploit different mechanisms to enter into human cancer cells, thus providing some rationale for their divergent cancer cell tropisms.« less

  12. The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.

    PubMed

    Gammon, Don B; Evans, David H

    2009-05-01

    Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.

  13. Vaccinia Virus Encodes a Novel Inhibitor of Apoptosis That Associates with the Apoptosome

    PubMed Central

    Ryerson, Melissa R.; Richards, Monique M.; Hawkins, Christine J.

    2017-01-01

    ABSTRACT Apoptosis is an important antiviral host defense mechanism. Here we report the identification of a novel apoptosis inhibitor encoded by the vaccinia virus (VACV) M1L gene. M1L is absent in the attenuated modified vaccinia virus Ankara (MVA) strain of VACV, a strain that stimulates apoptosis in several types of immune cells. M1 expression increased the viability of MVA-infected THP-1 and Jurkat cells and reduced several biochemical hallmarks of apoptosis, such as PARP-1 and procaspase-3 cleavage. Furthermore, ectopic M1L expression decreased staurosporine-induced (intrinsic) apoptosis in HeLa cells. We then identified the molecular basis for M1 inhibitory function. M1 allowed mitochondrial depolarization but blocked procaspase-9 processing, suggesting that M1 targeted the apoptosome. In support of this model, we found that M1 promoted survival in Saccharomyces cerevisiae overexpressing human Apaf-1 and procaspase-9, critical components of the apoptosome, or overexpressing only conformationally active caspase-9. In mammalian cells, M1 coimmunoprecipitated with Apaf-1–procaspase-9 complexes. The current model is that M1 associates with and allows the formation of the apoptosome but prevents apoptotic functions of the apoptosome. The M1 protein features 14 predicted ankyrin (ANK) repeat domains, and M1 is the first ANK-containing protein reported to use this inhibitory strategy. Since ANK-containing proteins are encoded by many large DNA viruses and found in all domains of life, studies of M1 may lead to a better understanding of the roles of ANK proteins in virus-host interactions. IMPORTANCE Apoptosis selectively eliminates dangerous cells such as virus-infected cells. Poxviruses express apoptosis antagonists to neutralize this antiviral host defense. The vaccinia virus (VACV) M1 ankyrin (ANK) protein, a protein with no previously ascribed function, inhibits apoptosis. M1 interacts with the apoptosome and prevents procaspase-9 processing as well as

  14. Analysis of variola and vaccinia virus neutralization assays for smallpox vaccines.

    PubMed

    Hughes, Christine M; Newman, Frances K; Davidson, Whitni B; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Yan, Lihan; Frey, Sharon E; Belshe, Robert B; Karem, Kevin L; Damon, Inger K

    2012-07-01

    Possible smallpox reemergence drives research for third-generation vaccines that effectively neutralize variola virus. A comparison of neutralization assays using different substrates, variola and vaccinia (Dryvax and modified vaccinia Ankara [MVA]), showed significantly different 90% neutralization titers; Dryvax underestimated while MVA overestimated variola neutralization. Third-generation vaccines may rely upon neutralization as a correlate of protection.

  15. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model

    PubMed Central

    Rehfeld, Izabelle Silva; Guedes, Maria Isabel Maldonado Coelho; Fraiha, Ana Luiza Soares; Costa, Aristóteles Gomes; Matos, Ana Carolina Diniz; Fiúza, Aparecida Tatiane Lino; Lobato, Zélia Inês Portela

    2015-01-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV), which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs) were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT), viral isolation, histopathology, and immunohistochemistry (IHC) methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral mucosa, albeit

  16. Ectromelia virus accumulates less double-stranded RNA compared to vaccinia virus in BS-C-1 cells.

    PubMed

    Frey, Tiffany R; Lehmann, Michael H; Ryan, Colton M; Pizzorno, Marie C; Sutter, Gerd; Hersperger, Adam R

    2017-09-01

    Most orthopoxviruses, including vaccinia virus (VACV), contain genes in the E3L and K3L families. The protein products of these genes have been shown to combat PKR, a host defense pathway. Interestingly, ectromelia virus (ECTV) contains an E3L ortholog but does not possess an intact K3L gene. Here, we gained insight into how ECTV can still efficiently evade PKR despite lacking K3L. Relative to VACV, we found that ECTV-infected BS-C-1 cells accumulated considerably less double-stranded (ds) RNA, which was due to lower mRNA levels and less transcriptional read-through of some genes by ECTV. The abundance of dsRNA in VACV-infected cells, detected using a monoclonal antibody, was able to activate the RNase L pathway at late time points post-infection. Historically, the study of transcription by orthopoxviruses has largely focused on VACV as a model. Our data suggest that there could be more to learn by studying other members of this genus. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Functional Analysis of Vaccinia Virus B5R Protein: Essential Role in Virus Envelopment Is Independent of a Large Portion of the Extracellular Domain

    PubMed Central

    Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.

    1998-01-01

    Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227

  18. Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Xu, Na; Wang, Cheng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-03-01

    Membrane nanotubes (MNTs) are physical connections for intercellular communication and induced by various viruses. However, the formation of vaccinia virus (VACV)-induced MNTs has never been studied. In this report, VACV-induced MNTs formation process was monitored on a microfluidic chip equipped with a series of side chambers, which protected MNTs from fluidic shear stress. MNTs were formed between susceptible cells and be facilitated by VACV infection through three patterns. The formed MNTs varied with cell migration and virus concentration. The length of MNTs was positively correlated with the distance of cell migration. With increasing virus titer, the peak value of the ratio of MNT-carried cell appeared earlier. The immunofluorescence assay indicated that the rearrangement of actin fibers induced by VACV infection may lead to the formation of MNTs. This study presents evidence for the formation of MNTs induced by virus and helps us to understand the relationship between pathogens and MNTs.

  19. Modified Vaccinia Ankara Virus Vaccination Provides Long-Term Protection against Nasal Rabbitpox Virus Challenge.

    PubMed

    Jones, Dorothy I; McGee, Charles E; Sample, Christopher J; Sempowski, Gregory D; Pickup, David J; Staats, Herman F

    2016-07-01

    Modified vaccinia Ankara virus (MVA) is a smallpox vaccine candidate. This study was performed to determine if MVA vaccination provides long-term protection against rabbitpox virus (RPXV) challenge, an animal model of smallpox. Two doses of MVA provided 100% protection against a lethal intranasal RPXV challenge administered 9 months after vaccination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Generation of Recombinant Modified Vaccinia Virus Ankara Encoding VP2, NS1, and VP7 Proteins of Bluetongue Virus.

    PubMed

    Marín-López, Alejandro; Ortego, Javier

    2016-01-01

    Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental vaccine vector for its lack of replication in mammalian cells and high expression level of foreign/heterologous genes. Recombinant MVAs (rMVAs) are used as platforms for protein production as well as vectors to generate vaccines against a high number of infectious diseases and other pathologies. The portrait of the virus combines desirable elements such as high-level biological safety, the ability to activate appropriate innate immune mediators upon vaccination, and the capacity to deliver substantial amounts of heterologous antigens. Recombinant MVAs encoding proteins of bluetongue virus (BTV), an Orbivirus that infects domestic and wild ruminants transmitted by biting midges of the Culicoides species, are excellent vaccine candidates against this virus. In this chapter we describe the methods for the generation of rMVAs encoding VP2, NS1, and VP7 proteins of bluetongue virus as a model example for orbiviruses. The protocols included cover the cloning of VP2, NS1, and VP7 BTV-4 genes in a transfer plasmid, the construction of recombinant MVAs, the titration of virus working stocks and the protein expression analysis by immunofluorescence and radiolabeling of rMVA infected cells as well as virus purification.

  1. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques.

    PubMed

    Florek, Nicholas W; Weinfurter, Jason T; Jegaskanda, Sinthujan; Brewoo, Joseph N; Powell, Tim D; Young, Ginger R; Das, Subash C; Hatta, Masato; Broman, Karl W; Hungnes, Olav; Dudman, Susanne G; Kawaoka, Yoshihiro; Kent, Stephen J; Stinchcomb, Dan T; Osorio, Jorge E; Friedrich, Thomas C

    2014-11-01

    Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4(+) and CD8(+) T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging pandemic viruses

  2. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  3. Identification of vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines

    PubMed Central

    Drexler, Ingo; Staib, Caroline; Kastenmüller, Wolfgang; Stevanović, Stefan; Schmidt, Burkhard; Lemonnier, François A.; Rammensee, Hans-Georg; Busch, Dirk H.; Bernhard, Helga; Erfle, Volker; Sutter, Gerd

    2003-01-01

    Despite worldwide eradication of naturally occurring variola virus, smallpox remains a potential threat to both civilian and military populations. New, safe smallpox vaccines are being developed, and there is an urgent need for methods to evaluate vaccine efficacy after immunization. Here we report the identification of an immunodominant HLA-A*0201-restricted epitope that is recognized by cytotoxic CD8+ T cells and conserved among Orthopoxvirus species including variola virus. This finding has permitted analysis and monitoring of epitope-specific T cell responses after immunization and demonstration of the identified T cell specificity in an A*0201-positive human donor. Vaccination of transgenic mice allowed us to compare the immunogenicity of several vaccinia viruses including highly attenuated, replication-deficient modified vaccinia virus Ankara (MVA). MVA vaccines elicited levels of CD8+ T cell responses that were comparable to those induced by the replication-competent vaccinia virus strains. Finally, we demonstrate that MVA vaccination is fully protective against a lethal respiratory challenge with virulent vaccinia virus strain Western Reserve. Our data provide a basis to rationally estimate immunogenicity of safe, second-generation poxvirus vaccines and suggest that MVA may be a suitable candidate. PMID:12518065

  4. Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene: an oncolytic virus superior to dl1520 (ONYX-015) for human head and neck cancer.

    PubMed

    Tysome, James R; Wang, Pengju; Alusi, Ghassan; Briat, Arnaud; Gangeswaran, Rathi; Wang, Jiwei; Bhakta, Vipul; Fodor, Istvan; Lemoine, Nick R; Wang, Yaohe

    2011-09-01

    Oncolytic viral therapy represents a promising strategy for the treatment of head and neck squamous cell carcinoma (HNSCC), with dl1520 (ONYX-015) the most widely used oncolytic adenovirus in clinical trials. This study aimed to determine the effectiveness of the Lister vaccine strain of vaccinia virus as well as a vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapy for HNSCC and to compare them with dl1520. The potency and replication of the Lister strain and VVhEA and the expression and function of the fusion protein were determined in human HNSCC cells in vitro and in vivo. Finally, the efficacy of VVhEA was compared with dl1520 in vivo in a human HNSCC model. The Lister vaccine strain of vaccinia virus was more effective than the adenovirus against all HNSCC cell lines tested in vitro. Although the potency of VVhEA was attenuated in vitro, the expression and function of the endostatin-angiostatin fusion protein was confirmed in HNSCC models both in vitro and in vivo. This novel vaccinia virus (VVhEA) demonstrated superior antitumor potency in vivo compared with both dl1520 and the control vaccinia virus. This study suggests that the Lister strain vaccinia virus armed with an endostatin-angiostatin fusion gene may be a potential therapeutic agent for HNSCC.

  5. A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome

    PubMed Central

    Dodding, Mark P; Mitter, Richard; Humphries, Ashley C; Way, Michael

    2011-01-01

    Transport of cargoes by kinesin-1 is essential for many cellular processes. Nevertheless, the number of proteins known to recruit kinesin-1 via its cargo binding light chain (KLC) is still quite small. We also know relatively little about the molecular features that define kinesin-1 binding. We now show that a bipartite tryptophan-based kinesin-1 binding motif, originally identified in Calsyntenin is present in A36, a vaccinia integral membrane protein. This bipartite motif in A36 is required for kinesin-1-dependent transport of the virus to the cell periphery. Bioinformatic analysis reveals that related bipartite tryptophan-based motifs are present in over 450 human proteins. Using vaccinia as a surrogate cargo, we show that regions of proteins containing this motif can function to recruit KLC and promote virus transport in the absence of A36. These proteins interact with the kinesin light chain outside the context of infection and have distinct preferences for KLC1 and KLC2. Our observations demonstrate that KLC binding can be conferred by a common set of features that are found in a wide range of proteins associated with diverse cellular functions and human diseases. PMID:21915095

  6. INTRACELLULAR FORMS OF POX VIRUSES AS SHOWN BY THE ELECTRON MICROSCOPE (VACCINIA, ECTROMELIA, MOLLUSCUM CONTAGIOSUM)

    PubMed Central

    Gaylord, William H.; Melnick, Joseph L.

    1953-01-01

    The intracellular development of three pox viruses has been studied with the electron microscope using thin sections of infected tissue. Cells infected with vaccinia, ectromelia, and molluscum contagiosum viruses all form developmental bodies preliminary to the production of mature virus. Developmental bodies, believed to be virus precursors, are round to oval, slightly larger than mature virus particles, less dense to electrons, and have a more varied morphology. It is suggested as a working hypothesis that the process of maturation of a virus particle takes place as follows. In the earliest form the developmental bodies appear as hollow spheres, imbedded in a very dense cytoplasmic mass constituting an inclusion body, or in a less dense matrix near the nucleus in cells without typical inclusion bodies. The spheres become filled with a homogeneous material of low electron density. A small, dense granule appears in each developmental body and grows in size at the expense of the low density material. Following growth of the granule, particles are found with the dimensions of mature virus and having complex internal structure resembling bars or dumbells. Mature virus is ovoid and very dense to electrons. An "empty" interior may be found within its thick walls. PMID:13069658

  7. Serologic and Molecular Evidence of Vaccinia Virus Circulation among Small Mammals from Different Biomes, Brazil

    PubMed Central

    Miranda, Júlia B.; Borges, Iara A.; Campos, Samantha P.S.; Vieira, Flávia N.; de Ázara, Tatiana M.F.; Marques, Fernanda A.; Costa, Galileu B.; Luis, Ana Paula M.F.; de Oliveira, Jaqueline S.; Ferreira, Paulo César P.; Bonjardim, Cláudio Antônio; da Silva, Silvio L.M.; Eiras, Álvaro E.; Abrahão, Jônatas S.; Kroon, Erna G.; Drumond, Betânia P.; Paglia, Adriano P.

    2017-01-01

    Vaccinia virus (VACV) is a zoonotic agent that causes a disease called bovine vaccinia, which is detected mainly in milking cattle and humans in close contact with these animals. Even though many aspects of VACV infection have been described, much is still unknown about its circulation in the environment and its natural hosts/reservoirs. To investigate the presence of Orthopoxvirus antibodies or VACV DNA, we captured small rodents and marsupials in 3 areas of Minas Gerais state, Brazil, and tested their samples in a laboratory. A total of 336 animals were tested; positivity ranged from 18.1% to 25.5% in the 3 studied regions located in different biomes, including the Atlantic Forest and the Cerrado. Analysis of nucleotide sequences indicated co-circulation of VACV groups I and II. Our findings reinforce the possible role played by rodents and marsupials in VACV maintenance and its transmission chain. PMID:28518030

  8. Disruption of TNFα/TNFR1 function in resident skin cells impairs host immune response against cutaneous vaccinia virus infection

    PubMed Central

    Tian, Tian; Dubin, Krista; Jin, Qiushuang; Qureshi, Ali; King, Sandra L.; Liu, Luzheng; Jiang, Xiaodong; Murphy, George F.; Kupper, Thomas S.; Fuhlbrigge, Robert C.

    2012-01-01

    One strategy adopted by vaccinia virus (VV) to evade the host immune system is to encode homologs of TNF receptors (TNFR) that block TNFα function. The response to VV skin infection under conditions of TNFα deficiency, however, has not been reported. We found that TNFR1−/− mice developed larger primary lesions, numerous satellite lesions and higher skin virus levels after VV scarification. Following their recovery, these TNFR1−/− mice were fully protected against challenge with a lethal intranasal dose of VV, suggesting these mice developed an effective memory immune response. A functional systemic immune response of TNFR1−/− mice was further demonstrated by enhanced production of VV-specific IFNγ and VV-specific CD8+ T cells in spleens and draining lymph nodes. Interestingly, bone marrow (BM) reconstitution studies using WT BM in TNFR1−/− host mice, but not TNFR1−/− BM in WT host mice, reproduced the original results seen in TNFR1−/− mice, indicating that TNFR1 deficiency in resident skin cells, rather than hematopoietic cells, accounts for the impaired cutaneous immune response. Our data suggest that lack of TNFR1 leads to a skin-specific immune deficiency and that resident skin cells play a crucial role in mediating an optimal immune defense to VV cutaneous infection via TNFα/TNFR1 signaling. PMID:22318381

  9. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells

    PubMed Central

    Tkachenko, Anastasiya; Richter, Vladimir

    2017-01-01

    Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity. PMID:28951871

  10. Host range, growth property, and virulence of the smallpox vaccine: Vaccinia virus Tian Tan strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Qing; Yang Lin; Zhu Weijun

    2005-05-10

    Vaccinia Tian Tan (VTT) was used as a vaccine against smallpox in China for millions of people before 1980, yet the biological characteristics of the virus remain unclear. We have characterized VTT with respect to its host cell range, growth properties in vitro, and virulence in vivo. We found that 11 of the 12 mammalian cell lines studied are permissive to VTT infection whereas one, CHO-K1, is non-permissive. Using electron microscopy and sequence analysis, we found that the restriction of VTT replication in CHO-K1 is at a step before viral maturation probably due to the loss of the V025 gene.more » Moreover, VTT is significantly less virulent than vaccinia WR but remains neurovirulent in mice and causes significant body weight loss after intranasal inoculation. Our data demonstrate the need for further attenuation of VTT to serve either as a safer smallpox vaccine or as a live vaccine vector for other pathogens.« less

  11. Coinfection with recombinant vaccinia viruses expressing poliovirus P1 and P3 proteins results in polyprotein processing and formation of empty capsid structures.

    PubMed

    Ansardi, D C; Porter, D C; Morrow, C D

    1991-04-01

    The assembly process of poliovirus occurs via an ordered proteolytic processing of the capsid precursor protein, P1, by the virus-encoded proteinase 3CD. To further delineate this process, we have isolated a recombinant vaccinia virus which expresses, upon infection, the poliovirus P1 capsid precursor polyprotein with an authentic carboxy terminus. Coinfection of HeLa cells with the P1-expressing vaccinia virus and with a second recombinant vaccinia virus which expresses the poliovirus proteinase 3CD resulted in the correct processing of P1 to yield the three individual capsid proteins VP0, VP3, and VP1. When extracts from coinfected cells were fractionated on sucrose density gradients, the VP0, VP3, and VP1 capsid proteins were immunoprecipitated with type 1 poliovirus antisera from fractions corresponding to a sedimentation consistent for poliovirus 75S procapsids. Examination of these fractions by electron microscopy revealed structures which lacked electron-dense cores and which corresponded in size and shape to those expected for poliovirus empty capsids. We conclude that the expression of the two poliovirus proteins P1 and 3CD in coinfected cells is sufficient for the correct processing of the capsid precursor to VP0, VP3, and VP1 as well as for the assembly of poliovirus empty capsid-like structures.

  12. Nucleotide Sequence of the Hantaan Virus S RNA Segment and Expression of Encoded Proteins

    DTIC Science & Technology

    1987-11-03

    human vaccinia vaccination ). A second dose of virus was given in the same ...vaccinia vector. A necessary first step in vaccine investigation woul d be to determine if animals infected with the two HTV recombinant viruses can ...vaccinia virus (Buller et al., 1985). Mice were infected by tail scarification since it is identical to the method used to vaccinate 169 humans

  13. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  14. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus.

    PubMed

    Price, Daniel L; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G; Yu, Yong A; Szalay, Aladar A; Cappello, Joseph; Fong, Yuman; Wong, Richard J

    2016-02-01

    Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  15. E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox.

    PubMed

    Volz, Asisa; Jany, Sylvia; Freudenstein, Astrid; Lantermann, Markus; Ludwig, Holger; Sutter, Gerd

    2018-01-04

    The highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L . Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV) challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.

  16. Vaccination with recombinant modified vaccinia virus Ankara prevents the onset of intestinal allergy in mice.

    PubMed

    Bohnen, C; Wangorsch, A; Schülke, S; Nakajima-Adachi, H; Hachimura, S; Burggraf, M; Süzer, Y; Schwantes, A; Sutter, G; Waibler, Z; Reese, G; Toda, M; Scheurer, S; Vieths, S

    2013-08-01

    Modified vaccinia virus Ankara (MVA)-encoding antigens are considered as safe vaccine candidates for various infectious diseases in humans. Here, we investigated the immune-modulating properties of MVA-encoding ovalbumin (MVA-OVA) on the allergen-specific immune response. The immune-modulating properties of MVA-OVA were investigated using GM-CSF-differentiated BMDCs from C57BL/6 mice. OVA expression upon MVA-OVA infection of BMDCs was monitored. Activation and maturation markers on viable MVA-OVA-infected mDCs were analyzed by flow cytometry. Secretion of INF-γ, IL-2, and IL-10 was determined in a co-culture of BMDCs infected with wtMVA or MVA-OVA and OVA-specific OT-I CD8(+) and OT-II CD4(+ ) T cells. BALB/c mice were vaccinated with wtMVA, MVA-OVA, or PBS, sensitized to OVA/alum and challenged with a diet containing chicken egg white. OVA-specific IgE, IgG1, and IgG2a and cytokine secretion from mesenteric lymph node (MLN) cells were analyzed. Body weight, body temperature, food uptake, intestinal inflammation, and health condition of mice were monitored. Infection with wtMVA and MVA-OVA induced comparable activation of mDCs. MVA-OVA-infected BMDCs expressed OVA and induced enhanced IFN-γ and IL-2 secretion from OVA-specific CD8(+ ) T cells in comparison with OVA, wtMVA, or OVA plus wtMVA. Prophylactic vaccination with MVA-OVA significantly repressed OVA-specific IgE, whereas OVA-specific IgG2a was induced. MVA-OVA vaccination suppressed TH 2 cytokine production in MLN cells and prevented the onset of allergic symptoms and inflammation in a mouse model of OVA-induced intestinal allergy. Modified vaccinia virus Ankara-ovalbumin (MVA-OVA) vaccination induces a strong OVA-specific TH 1- immune response, likely mediated by the induction of IFN-γ and IgG2a. Finally, MVA-based vaccines need to be evaluated for their therapeutic potential in established allergy models. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Animal Movement and Establishment of Vaccinia Virus Cantagalo Strain in Amazon Biome, Brazil

    PubMed Central

    Quixabeira-Santos, Jociane Cristina; Medaglia, Maria Luiza G.; Pescador, Caroline A.

    2011-01-01

    To understand the emergence of vaccinia virus Cantagalo strain in the Amazon biome of Brazil, during 2008–2010 we conducted a molecular and epidemiologic survey of poxvirus outbreaks. Data indicate that animal movement was the major cause of virus dissemination within Rondônia State, leading to the establishment and spread of this pathogen. PMID:21470472

  18. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response.

    PubMed

    Paran, Nir; Lustig, Shlomo; Zvi, Anat; Erez, Noam; Israely, Tomer; Melamed, Sharon; Politi, Boaz; Ben-Nathan, David; Schneider, Paula; Lachmi, Batel; Israeli, Ofir; Stein, Dana; Levin, Reuven; Olshevsky, Udy

    2013-07-10

    Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104-120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope's critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.

  19. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response

    PubMed Central

    2013-01-01

    Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104–120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope’s critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox. PMID:23842430

  20. Comparable polyfunctionality of ectromelia virus- and vaccinia virus-specific murine T cells despite markedly different in vivo replication and pathogenicity.

    PubMed

    Hersperger, Adam R; Siciliano, Nicholas A; Eisenlohr, Laurence C

    2012-07-01

    Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (∼80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.

  1. Molecular characterization of the host defense activity of the barrier to autointegration factor against vaccinia virus.

    PubMed

    Ibrahim, Nouhou; Wicklund, April; Wiebe, Matthew S

    2011-11-01

    The barrier to autointegration factor (BAF) is an essential cellular protein with functions in mitotic nuclear reassembly, retroviral preintegration complex stability, and transcriptional regulation. Molecular properties of BAF include the ability to bind double-stranded DNA in a sequence-independent manner, homodimerize, and bind proteins containing a LEM domain. These capabilities allow BAF to compact DNA and assemble higher-order nucleoprotein complexes, the nature of which is poorly understood. Recently, it was revealed that BAF also acts as a potent host defense against poxviral DNA replication in the cytoplasm. Here, we extend these observations by examining the molecular mechanism through which BAF acts as a host defense against vaccinia virus replication and cytoplasmic DNA in general. Interestingly, BAF rapidly relocalizes to transfected DNA from a variety of sources, demonstrating that BAF's activity as a host defense factor is not limited to poxviral infection. BAF's relocalization to cytoplasmic foreign DNA is highly dependent upon its DNA binding and dimerization properties but does not appear to require its LEM domain binding activity. However, the LEM domain protein emerin is recruited to cytoplasmic DNA in a BAF-dependent manner during both transfection and vaccinia virus infection. Finally, we demonstrate that the DNA binding and dimerization capabilities of BAF are essential for its function as an antipoxviral effector, while the presence of emerin is not required. Together, these data provide further mechanistic insight into which of BAF's molecular properties are employed by cells to impair the replication of poxviruses or respond to foreign DNA in general.

  2. Postexposure prevention of progressive vaccinia in SCID mice treated with vaccinia immune globulin.

    PubMed

    Fisher, R W; Reed, J L; Snoy, P J; Mikolajczyk, M G; Bray, M; Scott, D E; Kennedy, M C

    2011-01-01

    A recently reported case of progressive vaccinia (PV) in an immunocompromised patient has refocused attention on this condition. Uniformly fatal prior to the licensure of vaccinia immune globulin (VIG) in 1978, PV was still fatal in about half of VIG-treated patients overall, with a greater mortality rate in infants and children. Additional therapies would be needed in the setting of a smallpox bioterror event, since mass vaccination following any variola virus release would inevitably result in exposure of immunocompromised people through vaccination or contact with vaccinees. Well-characterized animal models of disease can support the licensure of new products when human studies are not ethical or feasible, as in the case of PV. We chose vaccinia virus-scarified SCID mice to model PV. As in immunocompromised humans, vaccinia virus-scarified SCID animals develop enlarging primary lesions with minimal or no inflammation, eventual distal virus spread, and lethal outcomes if left untreated. Postexposure treatment with VIG slowed disease progression, caused local lesion regression, and resulted in the healthy survival of most of the mice for more than 120 days. Combination treatment with VIG and topical cidofovir also resulted in long-term disease-free survival of most of the animals, even when initiated 7 days postinfection. These results support the possibility that combination treatments may be effective in humans and support using this SCID model of PV to test new antibody therapies and combination therapies and to provide further insights into the pathogenesis and treatment of PV.

  3. Myristoylation increases the CD8+T-cell response to a GFP prototype antigen delivered by modified vaccinia virus Ankara.

    PubMed

    Marr, Lisa; Lülf, Anna-Theresa; Freudenstein, Astrid; Sutter, Gerd; Volz, Asisa

    2016-04-01

    Activation of CD8(+)T-cells is an essential part of immune responses elicited by recombinant modified vaccinia virus Ankara (MVA). Strategies to enhance T-cell responses to antigens may be particularly necessary for broadly protective immunization against influenza A virus infections or for candidate vaccines targeting chronic infections and cancer. Here, we tested recombinant MVAs that targeted a model antigen, GFP, to different localizations in infected cells. In vitro characterization demonstrated that GFP accumulated in the nucleus (MVA-nls-GFP), associated with cellular membranes (MVA-myr-GFP) or was equally distributed throughout the cell (MVA-GFP). On vaccination, we found significantly higher levels of GFP-specific CD8(+)T-cells in MVA-myr-GFP-vaccinated BALB/c mice than in those immunized with MVA-GFP or MVA-nls-GFP. Thus, myristoyl modification may be a useful strategy to enhance CD8(+)T-cell responses to MVA-delivered target antigens.

  4. Enhancement of CD8+ T-cell memory by removal of a vaccinia virus nuclear factor-κB inhibitor

    PubMed Central

    Ren, Hongwei; Ferguson, Brian J; de Motes, Carlos Maluquer; Sumner, Rebecca P; Harman, Laura E R; Smith, Geoffrey L

    2015-01-01

    Factors influencing T-cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8+ T cells and this correlates with its inhibition of nuclear factor-κB (NF-κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF-κB resulted in increased central and memory CD8+ T-cell populations, increased CD8+ T-cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8+ memory T-cell function was increased following infection with vN1.I6E, with more interferon-γ production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8+ T cells from mice infected with wild-type virus (vN1.WT). This demonstrates the importance of NF-κB activation within infected cells for long-term CD8+ T-cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8+ T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety. PMID:25382035

  5. Proteome analysis of vaccinia virus IHD-W-infected HEK 293 cells with 2-dimensional gel electrophoresis and MALDI-PSD-TOF MS of on solid phase support N-terminally sulfonated peptides

    PubMed Central

    2011-01-01

    Background Despite the successful eradication of smallpox by the WHO-led vaccination programme, pox virus infections remain a considerable health threat. The possible use of smallpox as a bioterrorism agent as well as the continuous occurrence of zoonotic pox virus infections document the relevance to deepen the understanding for virus host interactions. Since the permissiveness of pox infections is independent of hosts surface receptors, but correlates with the ability of the virus to infiltrate the antiviral host response, it directly depends on the hosts proteome set. In this report the proteome of HEK293 cells infected with Vaccinia Virus strain IHD-W was analyzed by 2-dimensional gel electrophoresis and MALDI-PSD-TOF MS in a bottom-up approach. Results The cellular and viral proteomes of VACV IHD-W infected HEK293 cells, UV-inactivated VACV IHD-W-treated as well as non-infected cells were compared. Derivatization of peptides with 4-sulfophenyl isothiocyanate (SPITC) carried out on ZipTipμ-C18 columns enabled protein identification via the peptides' primary sequence, providing improved s/n ratios as well as signal intensities of the PSD spectra. The expression of more than 24 human proteins was modulated by the viral infection. Effects of UV-inactivated and infectious viruses on the hosts' proteome concerning energy metabolism and proteins associated with gene expression and protein-biosynthesis were quite similar. These effects might therefore be attributed to virus entry and virion proteins. However, the modulation of proteins involved in apoptosis was clearly correlated to infectious viruses. Conclusions The proteome analysis of infected cells provides insight into apoptosis modulation, regulation of cellular gene expression and the regulation of energy metabolism. The confidence of protein identifications was clearly improved by the peptides' derivatization with SPITC on a solid phase support. Some of the identified proteins have not been described in the

  6. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus

    PubMed Central

    Price, Daniel L.; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G.; Yu, Yong A.; Szalay, Aladar A.; Cappello, Joseph; Fong, Yuman; Wong, Richard J.

    2016-01-01

    Background Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Methods Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. Results GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. Conclusion The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. PMID:25244076

  7. Vaccinia Virus Virulence Factor N1L is a Novel Promising Target for Antiviral Therapeutic Intervention

    PubMed Central

    Cheltsov, Anton V.; Aoyagi, Mika; Aleshin, Alexander; Chi-Wang, Yu Eric; Gilliland, Taylor; Zhai, Dayong; Bobkov, Andrey A.; Reed, John C.; Liddington, Robert C.; Abagyan, Ruben

    2010-01-01

    The 14 kDa homodimeric N1L protein is a potent vaccinia and variola (smallpox) virulence factor. It is not essential for viral replication, but it causes a strong attenuation of viral production in culture when deleted. The N1L protein is predicted to contain the BH3-like binding domain characteristic of Bcl-2 family proteins, and it is able to bind the BH3 peptides. Its overexpression has been reported to prevent infected cells from committing apoptosis. Therefore, interfering with the N1L apoptotic blockade may be a legitimate therapeutic strategy affecting the viral growth. By using in silico ligand docking and an array of in vitro assays, we have identified sub-micromolar (600 nM) N1L antagonists, belonging to the family of polyphenols. Their affinity is comparable to that of the BH3 peptides (70 nM ÷ 1000 nM). We have also identified the natural polyphenol resveratrol as a moderate N1L inhibitor. Finally, we show that our ligands efficiently inhibit growth of vaccinia virus. PMID:20441222

  8. Homology between DNA polymerases of poxviruses, herpesviruses, and adenoviruses: nucleotide sequence of the vaccinia virus DNA polymerase gene.

    PubMed Central

    Earl, P L; Jones, E V; Moss, B

    1986-01-01

    A 5400-base-pair segment of the vaccinia virus genome was sequenced and an open reading frame of 938 codons was found precisely where the DNA polymerase had been mapped by transfer of a phosphonoacetate-resistance marker. A single nucleotide substitution changing glycine at position 347 to aspartic acid accounts for the drug resistance of the mutant vaccinia virus. The 5' end of the DNA polymerase mRNA was located 80 base pairs before the methionine codon initiating the open reading frame. Correspondence between the predicted Mr 108,577 polypeptide and the 110,000 purified enzyme indicates that little or no proteolytic processing occurs. Extensive homology, extending over 435 amino acids, was found upon comparing the DNA polymerase of vaccinia virus and DNA polymerase of Epstein-Barr virus. A highly conserved sequence of 14 amino acids in the carboxyl-terminal regions of the above DNA polymerases is also present at a similar location in adenovirus DNA polymerase. This structure, which is predicted to form a turn flanked by beta-pleated sheets, may form part of an essential binding or catalytic site that accounts for its presence in DNA polymerases of poxviruses, herpesviruses, and adenoviruses. Images PMID:3012524

  9. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge.

    PubMed

    Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

    2014-06-17

    African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Bovine Vaccinia: Insights into the Disease in Cattle

    PubMed Central

    Rehfeld, Izabelle Silva; Lobato, Zélia Inês Portela

    2018-01-01

    Bovine vaccinia (BV), caused by Vaccinia virus (VACV), is a zoonosis characterized by exanthematous lesions in the teats of dairy cows and the hands of milkers and is an important public health issue. Severe VACV-induced lesions in the teats and udder of cows and buffaloes could lead to mastitis and other secondary infections, thereby reducing productivity and resulting in economic losses to the dairy industry. In Brazil, BV re-emerged in the late 1990s and is now endemic in most of the Brazilian territory. In the last 15 years, much effort has been made to know more about this disease and its epidemiology, etiologic agents, and interactions with the host and the environment. In this review, we describe the known dynamics of VACV infection in cattle and the viral shedding routes, as well as the relevance of BV for animal and public health. PMID:29522489

  11. In vitro susceptibility to ST-246 and Cidofovir corroborates the phylogenetic separation of Brazilian Vaccinia virus into two clades.

    PubMed

    Pires, Mariana A; Rodrigues, Nathália F S; de Oliveira, Danilo B; de Assis, Felipe L; Costa, Galileu B; Kroon, Erna G; Mota, Bruno E F

    2018-04-01

    The Orthopoxvirus (OPV) genus of the Poxviridae family contains several human pathogens, including Vaccinia virus (VACV), which have been implicating in outbreaks of a zoonotic disease called Bovine Vaccinia in Brazil. So far, no approved treatment exists for OPV infections, but ST-246 and Cidofovir (CDV) are now in clinical development. Therefore, the objective of this work was to evaluate the susceptibility of five strains of Brazilian VACV (Br-VACV) to ST-246 and Cidofovir. The susceptibility of these strains to both drugs was evaluated by plaque reduction assay, extracellular virus's quantification in the presence of ST-246 and one-step growth curve in cells treated with CDV. Besides that, the ORFs F13L and E9L were sequenced for searching of polymorphisms associated with drug resistance. The effective concentration of 50% (EC 50 ) from both drugs varies significantly for different strains (from 0.0054 to 0.051 μM for ST-246 and from 27.14 to 61.23 μM for CDV). ST-246 strongly inhibits the production of extracellular virus for all isolates in concentrations as low as 0.1 μM and it was observed a relevant decrease of progeny production for all Br-VACV after CDV treatment. Sequencing of the F13L and E9L ORFs showed that Br-VACV do not present the polymorphism(s) associated with resistance to ST-246 and CDV. Taken together, our results showed that ST-246 and CDV are effective against diverse, wild VACV strains and that the susceptibility of Br-VACV to these drugs mirrored the phylogenetic split of these isolates into two groups. Thus, both ST-246 and CDV are of great interest as compounds to treat individuals during Bovine Vaccinia outbreaks in Brazil. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery

    PubMed Central

    Haddad, Dana

    2017-01-01

    Despite advances in technology, the formidable challenge of treating cancer, especially if advanced, still remains with no significant improvement in survival rates, even with the most common forms of cancer. Oncolytic viral therapies have shown great promise for the treatment of various cancers, with the possible advantages of stronger treatment efficacy compared to conventional therapy due to higher tumor selectivity, and less toxicity. They are able to preferentially and selectively propagate in cancer cells, consequently destroying tumor tissue mainly via cell lysis, while leaving non-cancerous tissues unharmed. Several wild-type and genetically engineered vaccinia virus (VACV) strains have been tested in both preclinical and clinical trials with promising results. Greater understanding and advancements in molecular biology have enabled the generation of genetically engineered oncolytic viruses for safer and more efficacious treatment, including arming VACVs with cytokines and immunostimulatory molecules, anti-angiogenic agents, and enzyme prodrug therapy, in addition to combining VACVs with conventional external and systemic radiotherapy, chemotherapy, immunotherapy, and other virus strains. Furthermore, novel oncolytic vaccinia virus strains have been generated that express reporter genes for the tracking and imaging of viral therapy and monitoring of therapeutic response. Further study is needed to unlock VACVs’ full potential as part of the future of cancer therapy. PMID:28589082

  13. Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.

    PubMed

    Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard

    2013-04-01

    Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Vaccinia Virus Vaccines: Past, Present and Future

    PubMed Central

    Jacobs, Bertram L.; Langland, Jeffrey O.; Kibler, Karen V.; Denzler, Karen L.; White, Stacy D.; Holechek, Susan A.; Wong, Shukmei; Huynh, Trung; Baskin, Carole R.

    2009-01-01

    Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence. PMID:19563829

  15. Antibodies to the A27 protein of vaccinia virus neutralize and protect against infection but represent a minor component of Dryvax vaccine--induced immunity.

    PubMed

    He, Yong; Manischewitz, Jody; Meseda, Clement A; Merchlinsky, Michael; Vassell, Russell A; Sirota, Lev; Berkower, Ira; Golding, Hana; Weiss, Carol D

    2007-10-01

    The smallpox vaccine Dryvax, which consists of replication-competent vaccinia virus, elicits antibodies that play a major role in protection. Several vaccinia proteins generate neutralizing antibodies, but their importance for protection is unknown. We investigated the potency of antibodies to the A27 protein of the mature virion in neutralization and protection experiments and the contributions of A27 antibodies to Dryvax-induced immunity. Using a recombinant A27 protein (rA27), we confirmed that A27 contains neutralizing determinants and that vaccinia immune globulin (VIG) derived from Dryvax recipients contains reactivity to A27. However, VIG neutralization was not significantly reduced when A27 antibodies were removed, and antibodies elicited by an rA27 enhanced the protection conferred by VIG in passive transfer experiments. These findings demonstrate that A27 antibodies do not represent the major fraction of neutralizing activity in VIG and suggest that immunity may be augmented by vaccines and immune globulins that include strong antibody responses to A27.

  16. Weak vaccinia virus-induced NK cell regulation of CD4 T cells is associated with reduced NK cell differentiation and cytolytic activity.

    PubMed

    Hatfield, Steven D; Daniels, Keith A; O'Donnell, Carey L; Waggoner, Stephen N; Welsh, Raymond M

    2018-06-01

    Natural killer (NK) cells control antiviral adaptive immune responses in mice during some virus infections, but the universality of this phenomenon remains unknown. Lymphocytic choriomeningitis virus (LCMV) infection of mice triggered potent cytotoxic activity of NK cells (NK LCMV ) against activated CD4 T cells, tumor cells, and allogeneic lymphocytes. In contrast, NK cells activated by vaccinia virus (VACV) infection (NK VACV ) exhibited weaker cytolytic activity against each of these target cells. Relative to NK LCMV cells, NK VACV cells exhibited a more immature (CD11b - CD27 + ) phenotype, and lower expression levels of the activation marker CD69, cytotoxic effector molecules (perforin, granzyme B), and the transcription factor IRF4. NK VACV cells expressed higher levels of the inhibitory molecule NKG2A than NK LCMV cells. Consistent with this apparent lethargy, NK VACV cells only weakly constrained VACV-specific CD4 T-cell responses. This suggests that NK cell regulation of adaptive immunity, while universal, may be limited with viruses that poorly activate NK cells. Published by Elsevier Inc.

  17. Microarray Analysis Reveals Characteristic Changes of Host Cell Gene Expression in Response to Attenuated Modified Vaccinia Virus Ankara Infection of Human HeLa Cells

    PubMed Central

    Guerra, Susana; López-Fernández, Luis A.; Conde, Raquel; Pascual-Montano, Alberto; Harshman, Keith; Esteban, Mariano

    2004-01-01

    The potential use of the modified vaccinia virus Ankara (MVA) strain as a live recombinant vector to deliver antigens and elicit protective immune responses against infectious diseases demands a comprehensive understanding of the effect of MVA infection on human host gene expression. We used microarrays containing more than 15,000 human cDNAs to identify gene expression changes in human HeLa cell cultures at 2, 6, and 16 h postinfection. Clustering of the 410 differentially regulated genes identified 11 discrete gene clusters with altered expression patterns after MVA infection. Clusters 1 and 2 (accounting for 16.59% [68 of 410] of the genes) contained 68 transcripts showing a robust induction pattern that was maintained during the course of infection. Changes in cellular gene transcription detected by microarrays after MVA infection were confirmed for selected genes by Northern blot analysis and by real-time reverse transcription-PCR. Upregulated transcripts in clusters 1 and 2 included 20 genes implicated in immune responses, including interleukin 1A (IL-1A), IL-6, IL-7, IL-8, and IL-15 genes. MVA infection also stimulated the expression of NF-κB and components of the NF-κB signal transduction pathway, including p50 and TRAF-interacting protein. A marked increase in the expression of histone family members was also induced during MVA infection. Expression of the Wiskott-Aldrich syndrome family members WAS, WASF1, and the small GTP-binding protein RAC-1, which are involved in actin cytoskeleton reorganization, was enhanced after MVA infection. This study demonstrates that MVA infection triggered the induction of groups of genes, some of which may be involved in host resistance and immune modulation during virus infection. PMID:15140980

  18. DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults.

    PubMed

    Gorse, Geoffrey J; Newman, Mark J; deCamp, Allan; Hay, Christine Mhorag; De Rosa, Stephen C; Noonan, Elizabeth; Livingston, Brian D; Fuchs, Jonathan D; Kalams, Spyros A; Cassis-Ghavami, Farah L

    2012-05-01

    We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins.

  19. Inhibition of Enveloped Viruses Infectivity by Curcumin

    PubMed Central

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  20. Infection cycles of large DNA viruses: Emerging themes and underlying questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutsafi, Yael, E-mail: yael.mutsafi@weizmann.ac.il; Fridmann-Sirkis, Yael; Milrot, Elad

    The discovery of giant DNA viruses and the recent realization that such viruses are diverse and abundant blurred the distinction between viruses and cells. These findings elicited lively debates on the nature and origin of viruses as well as on their potential roles in the evolution of cells. The following essay is, however, concerned with new insights into fundamental structural and physical aspects of viral replication that were derived from studies conducted on large DNA viruses. Specifically, the entirely cytoplasmic replication cycles of Mimivirus and Vaccinia are discussed in light of the highly limited trafficking of large macromolecules in themore » crowded cytoplasm of cells. The extensive spatiotemporal order revealed by cytoplasmic viral factories is described and contended to play an important role in promoting the efficiency of these ‘nuclear-like’ organelles. Generation of single-layered internal membrane sheets in Mimivirus and Vaccinia, which proceeds through a novel membrane biogenesis mechanism that enables continuous supply of lipids, is highlighted as an intriguing case study of self-assembly. Mimivirus genome encapsidation was shown to occur through a portal different from the ‘stargate’ portal that is used for genome release. Such a ‘division of labor’ is proposed to enhance the efficacy of translocation processes of very large viral genomes. Finally, open questions concerning the infection cycles of giant viruses to which future studies are likely to provide novel and exciting answers are discussed. - Highlights: • The discovery of giant DNA viruses blurs the distinction between viruses and cells. • Mimivirus and Vaccinia replicate exclusively in their host cytoplasm. • Mimivirus genome is delivered through a unique portal coined the Stargate. • Generation of Mimivirus internal membrane proceeds through a novel pathway.« less

  1. Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy

    PubMed Central

    2012-01-01

    Background Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects. PMID:22236378

  2. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    PubMed Central

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092

  3. Endoplasmic Reticulum-Golgi Intermediate Compartment Membranes and Vimentin Filaments Participate in Vaccinia Virus Assembly

    PubMed Central

    Risco, Cristina; Rodríguez, Juan R.; López-Iglesias, Carmen; Carrascosa, José L.; Esteban, Mariano; Rodríguez, Dolores

    2002-01-01

    Vaccinia virus (VV) has a complex morphogenetic pathway whose first steps are poorly characterized. We have studied the early phase of VV assembly, when viral factories and spherical immature viruses (IVs) form in the cytoplasm of the infected cell. After freeze-substitution numerous cellular elements are detected around assembling viruses: membranes, ribosomes, microtubules, filaments, and unidentified structures. A double membrane is clearly resolved in the VV envelope for the first time, and freeze fracture reveals groups of tubules interacting laterally on the surface of the viroplasm foci. These data strongly support the hypothesis of a cellular tubulovesicular compartment, related to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), as the origin of the first VV envelope. Moreover, the cytoskeletal vimentin intermediate filaments are found around viral factories and inside the viroplasm foci, where vimentin and the VV core protein p39 colocalize in the areas where crescents protrude. Confocal microscopy showed that ERGIC elements and vimentin filaments concentrate in the viral factories. We propose that modified cellular ERGIC membranes and vimentin intermediate filaments act coordinately in the construction of viral factories and the first VV form through a unique mechanism of viral morphogenesis from cellular elements. PMID:11799179

  4. Expression of the highly conserved vaccinia virus E6 protein is required for virion morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resch, Wolfgang; Weisberg, Andrea S.; Moss, Bernard, E-mail: bmoss@nih.go

    2009-04-10

    The vaccinia virus E6R gene (VACVWR062) is conserved in all members of the poxvirus family and encodes a protein associated with the mature virion. We confirmed this association and provided evidence for an internal location. An inducible mutant that conditionally expresses E6 was constructed. In the absence of inducer, plaque formation and virus production were severely inhibited in several cell lines, whereas some replication occurred in others. This difference could be due to variation in the stringency of repression, since we could not isolate a stable deletion mutant even in the more 'permissive' cells. Under non-permissive conditions, viral late proteinsmore » were synthesized but processing of core proteins was inefficient, indicative of an assembly block. Transmission electron microscopy of sections of cells infected with the mutant in the absence of inducer revealed morphogenetic defects with crescents and empty immature virions adjacent to dense inclusions of viroplasm. Mature virions were infrequent and cores appeared to have lucent centers.« less

  5. Immunogenicity of modified vaccinia virus Ankara expressing the hemagglutinin stalk domain of pandemic (H1N1) 2009 influenza virus.

    PubMed

    Di Mario, Giuseppina; Soprana, Elisa; Gubinelli, Francesco; Panigada, Maddalena; Facchini, Marzia; Fabiani, Concetta; Garulli, Bruno; Basileo, Michela; Cassone, Antonio; Siccardi, Antonio; Donatelli, Isabella; Castrucci, Maria R

    2017-03-01

    Vaccination offers protection against influenza, although current vaccines need to be reformulated each year. The development of a broadly protective influenza vaccine would guarantee the induction of heterosubtypic immunity also against emerging influenza viruses of a novel subtype. Vaccine candidates based on the stalk region of the hemagglutinin (HA) have the potential to induce broad and persistent protection against diverse influenza A viruses. Modified vaccinia virus Ankara (MVA) expressing a headless HA (hlHA) of A/California/4/09 (CA/09) virus was used as a vaccine to immunize C57BL/6 mice. Specific antibody and cell-mediated immune responses were determined, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. Immunization of mice with CA/09-derived hlHA, vectored by MVA, was able to elicit influenza-specific broad cross-reactive antibodies and cell-mediated immune responses, but failed to induce neutralizing antibodies and did not protect mice against virus challenge. Although highly immunogenic, our vaccine was unable to induce a protective immunity against influenza. A misfolded and unstable conformation of the hlHA molecule may have affected its capacity of inducing neutralizing antiviral, conformational antibodies. Design of stable hlHA-based immunogens and their delivery by recombinant MVA-based vectors has the potential of improving this promising approach for a universal influenza vaccine.

  6. Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome.

    PubMed Central

    Plucienniczak, A; Schroeder, E; Zettlmeissl, G; Streeck, R E

    1985-01-01

    The nucleotide sequence of a 7.6 kb vaccinia DNA segment from a genomic region conserved among different orthopox virus has been determined. This segment contains a tight cluster of 12 partly overlapping open reading frames most of which can be correlated with previously identified early and late proteins and mRNAs. Regulatory signals used by vaccinia virus have been studied. Presumptive promoter regions are rich in A, T and carry the consensus sequences TATA and AATAA spaced at 20-24 base pairs. Tandem repeats of a CTATTC consensus sequence are proposed to be involved in the termination of early transcription. PMID:2987815

  7. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    PubMed

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  8. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins

    PubMed Central

    2018-01-01

    ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant

  9. Generation and Production of Modified Vaccinia Virus Ankara (MVA) as a Vaccine Vector.

    PubMed

    Pavot, Vincent; Sebastian, Sarah; Turner, Alison V; Matthews, Jake; Gilbert, Sarah C

    2017-01-01

    The smallpox vaccine based on the vaccinia virus was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one to two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is an attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. MVA can encode one or more foreign antigens and thus can function as a multivalent vaccine. The vector can be used at biosafety level 1, has intrinsic adjuvant properties, and induces humoral and cellular immune responses. Many clinical trials of these new vaccines have been conducted, and the safety of MVA is now well documented. Immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate. In this chapter, we provide protocols for generation, isolation, amplification, and purification of recombinant MVA for preclinical and clinical evaluation.

  10. Immunogenicity and Protection Against Influenza H7N3 in Mice by Modified Vaccinia Virus Ankara Vectors Expressing Influenza Virus Hemagglutinin or Neuraminidase.

    PubMed

    Meseda, Clement A; Atukorale, Vajini; Soto, Jackeline; Eichelberger, Maryna C; Gao, Jin; Wang, Wei; Weiss, Carol D; Weir, Jerry P

    2018-03-29

    Influenza subtypes such as H7 have pandemic potential since they are able to infect humans with severe consequences, as evidenced by the ongoing H7N9 infections in China that began in 2013. The diversity of H7 viruses calls for a broadly cross-protective vaccine for protection. We describe the construction of recombinant modified vaccinia virus Ankara (MVA) vectors expressing the hemagglutinin (HA) or neuraminidase (NA) from three H7 viruses representing both Eurasian and North American H7 lineages - A/mallard/Netherlands/12/2000 (H7N3), A/Canada/rv444/2004 (H7N3), and A/Shanghai/02/2013 (H7N9). These vectors were evaluated for immunogenicity and protective efficacy against H7N3 virus in a murine model of intranasal challenge. High levels of H7-, N3-, and N9-specific antibodies, including neutralizing antibodies, were induced by the MVA-HA and MVA-NA vectors. Mice vaccinated with MVA vectors expressing any of the H7 antigens were protected, suggesting cross-protection among H7 viruses. In addition, MVA vectors expressing N3 but not N9 elicited protection against H7N3 virus challenge. Similar outcomes were obtained when immune sera from MVA vector-immunized mice were passively transferred to naïve mice prior to challenge with the H7N3 virus. The results support the further development of an MVA vector platform as a candidate vaccine for influenza strains with pandemic potential.

  11. Daily ingestion of the probiotic Lactobacillus paracasei ST11 decreases Vaccinia virus dissemination and lethality in a mouse model.

    PubMed

    Dos Santos Pereira Andrade, A C; Lima, M Teixeira; Oliveira, G Pereira; Calixto, R Silva; de Sales E Souza, É Lorenna; da Glória de Souza, D; de Almeida Leite, C M; Ferreira, J M Siqueira; Kroon, E G; de Oliveira, D Bretas; Dos Santos Martins, F; Abrahão, J S

    2017-02-07

    Vaccinia virus (VACV) is an important pathogen. Although studies have shown relationships between probiotics and viruses, the effect of probiotics on VACV infection is unknown. Therefore, this work aims to investigate the probiotics effects on VACV infection. Mice were divided into four groups, two non-infected groups, one receiving the probiotic, the other one not receiving it, and two groups infected intranasally with VACV Western Reserve (VACV-WR) receiving or not receiving the probiotic. Viral titres in organs and cytokine production in the lungs were analysed. Lung samples were also subjected to histological analysis. The intake of probiotic results in reduction in viral spread with a significant decrease of VACV titer on lung, liver and brain of treated group. In addition,treatment with the probiotic results in attenuated mice lung inflammation showing fewer lesions on histological findings and decreased lethality in mice infected with VACV. The ingestion of Lactobacillus paracasei ST11 (LPST11) after VACV infection resulted in 2/9 animal lethality compared with 4/9 in the VACV group. This is the first study on probiotics and VACV interactions, providing not only information about this interaction, but also proposing a model for future studies involving probiotics and other poxvirus.

  12. MVA ROP2 vaccinia virus recombinant as a vaccine candidate for toxoplasmosis.

    PubMed

    Roque-Reséndiz, J L; Rosales, R; Herion, P

    2004-04-01

    Toxoplasma gondii is the aetiological agent of toxoplasmosis and is the most frequent and best known of the parasitic diseases. In the United States, a serological survey from the Third National Health and Nutrition Examination Survey found that an estimated 23% of adolescents and adults have laboratory evidence of infection with T. gondii. Although toxoplasmosis is asymptomatic or shows self-limited symptoms in adults, in pregnant women infections can cause severe health problems to the fetus if the parasites are transmitted. Also, in immunodeficient patients, chronic infection with T. gondii can reactivate and produce encephalitis, which is frequently lethal. In addition, in veterinary medicine, T. gondii infection is of economic importance due to abortion and neonatal loss in sheep and goats. Recently, the development of vaccines against toxoplasmosis has progressed considerably. The live attenuated S48 strain of Toxoplasma has been broadly used for veterinary purposes. DNA vaccines containing the full-length of SAG1/P30, ROP2 or ROP1 genes have proved to be a promising candidate to induce protection against toxoplasmosis. Viral vectors have proved to be the best candidates for vaccination in different diseases. A recombinant Herpes virus carrying the ROP2 gene is able to induce protective immunity in cats. In the present work we describe the potential of the MVA ROP2 recombinant vaccinia virus as a vaccine against toxoplasmosis. MVA ROP2 induces antibodies against the ROP2 protein in similar amount and types as the thermo-sensible strain ts-4 of T. gondii, which is able to fully protect mice against challenge with the virulent RH strain of T. gondii. Also, the life-span of mice is increased in MVA ROP2 vaccinated animals. We conclude that MVA ROP2 vaccine can possibly generate an immune response, which could be useful in protection against toxoplasmosis.

  13. Vaccinia Virus Mutations in the L4R Gene Encoding a Virion Structural Protein Produce Abnormal Mature Particles Lacking a Nucleocapsid

    PubMed Central

    Moussatche, Nissin; Condit, Richard C.

    2014-01-01

    ABSTRACT Electron micrographs from the 1960s revealed the presence of an S-shaped tubular structure in the center of the vaccinia virion core. Recently, we showed that packaging of virus transcription enzymes is necessary for the formation of the tubular structure, suggesting that the structure is equivalent to a nucleocapsid. Based on this study and on what is known about nucleocapsids of other viruses, we hypothesized that in addition to transcription enzymes, the tubular structure also contains the viral DNA and a structural protein as a scaffold. The vaccinia virion structural protein L4 stands out as the best candidate for the role of a nucleocapsid structural protein because it is abundant, it is localized in the center of the virion core, and it binds DNA. In order to gain more insight into the structure and relevance of the nucleocapsid, we analyzed thermosensitive and inducible mutants in the L4R gene. Using a cryo-fixation method for electron microscopy (high-pressure freezing followed by freeze-substitution) to preserve labile structures like the nucleocapsid, we were able to demonstrate that in the absence of functional L4, mature particles with defective internal structures are produced under nonpermissive conditions. These particles do not contain a nucleocapsid. In addition, the core wall of these virions is abnormal. This suggests that the nucleocapsid interacts with the core wall and that the nucleocapsid structure might be more complex than originally assumed. IMPORTANCE The vaccinia virus nucleocapsid has been neglected since the 1960s due to a lack of electron microscopy techniques to preserve this labile structure. With the advent of cryo-fixation techniques, like high-pressure freezing/freeze-substitution, we are now able to consistently preserve and visualize the nucleocapsid. Because vaccinia virus early transcription is coupled to the viral core structure, detailing the structure of the nucleocapsid is indispensable for determining the

  14. Vaccination with a codon-optimized A27L-containing plasmid decreases virus replication and dissemination after vaccinia virus challenge.

    PubMed

    Martínez, Osmarie; Bravo Cruz, Ariana; Santos, Saritza; Ramírez, Maite; Miranda, Eric; Shisler, Joanna; Otero, Miguel

    2017-10-20

    Smallpox is a disease caused by Variola virus (VARV). Although eradicated by WHO in 1980, the threat of using VARV on a bioterror attack has increased. The current smallpox vaccine ACAM2000, which consists of live vaccinia virus (VACV), causes complications in individuals with a compromised immune system or with previously reported skin diseases. Thus, a safer and efficacious vaccine needs to be developed. Previously, we reported that our virus-free DNA vaccine formulation, a pVAX1 plasmid encoding codon-optimized VACV A27L gene (pA27LOPT) with and without Imiquimod adjuvant, stimulates A27L-specific production of IFN-γ and increases humoral immunity 7days post-vaccination. Here, we investigated the immune response of our novel vaccine by measuring the frequency of splenocytes producing IFN-γ by ELISPOT, the TH1 and TH2 cytokine profiles, and humoral immune responses two weeks post-vaccination, when animals were challenged with VACV. In all assays, the A27-based DNA vaccine conferred protective immune responses. Specifically, two weeks after vaccination, mice were challenged intranasally with vaccinia virus, and viral titers in mouse lungs and ovaries were significantly lower in groups immunized with pA27LOPT and pA27LOPT+Imiquimod. These results demonstrate that our vaccine formulation decreases viral replication and dissemination in a virus-free DNA vaccine platform, and provides an alternative towards a safer an efficacious vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Ectopic expression of vaccinia virus E3 and K3 cannot rescue ectromelia virus replication in rabbit RK13 cells.

    PubMed

    Hand, Erin S; Haller, Sherry L; Peng, Chen; Rothenburg, Stefan; Hersperger, Adam R

    2015-01-01

    As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV.

  16. Long-lasting stability of vaccinia virus (orthopoxvirus) in food and environmental samples.

    PubMed

    Essbauer, S; Meyer, H; Porsch-Ozcürümez, M; Pfeffer, M

    2007-01-01

    Poxviruses are known to remain infectious in the scabs of patients for months to years. The aim of this study was to investigate viral stability in storm water, food or gauze spiked with vaccinia virus strain Munich 1 (VACV M1). Storm water, storm water supplemented with either fetal calf serum (FCS) or potting soil was stored at two different temperatures (refrigerator, room temperature; 4 degrees C/25 degrees C). In addition, we analysed the viability of VACV M1 on the surface of bread, salad, sausages and gauze bandages stored at 4 degrees C. Samples were titrated in MA 104 cells and the presence of viral DNA was demonstrated by orthopoxvirus-specific PCRs. After 2 weeks, reisolation of VACV M1 from all kinds of food, bandage and water samples except for storm water supplemented with potting soil was possible. Viral DNA was detected in almost all samples by PCR. Prolonged experiments with VACV M1-spiked storm water and storm water supplemented with FCS revealed that samples kept at 4.5 degrees C are infectious for up to 166 days. Our data demonstrate that VACV M1 has a longlasting stability in water and food. The results obtained during this study should be taken into account for risk assessment calculations for poxvirus transmission. Implying that variola virus and vaccinia virus behave in a similar way, our data call for sophisticated countermeasures in cases of a variola release in biological warfare.

  17. Protective immunity against influenza in HLA-A2 transgenic mice by modified vaccinia virus Ankara vectored vaccines containing internal influenza proteins.

    PubMed

    Di Mario, Giuseppina; Sciaraffia, Ester; Facchini, Marzia; Gubinelli, Francesco; Soprana, Elisa; Panigada, Maddalena; Bernasconi, Valentina; Garulli, Bruno; Siccardi, Antonio; Donatelli, Isabella; Castrucci, Maria R

    2017-03-01

    The emergence of novel strains of influenza A viruses with hemagglutinins (HAs) that are antigenically distinct from those circulating in humans, and thus have pandemic potential, pose concerns and call for the development of more broadly protective influenza vaccines. In the present study, modified vaccinia virus Ankara (MVA) encoding internal influenza antigens were evaluated for their immunogenicity and ability to protect HLA-A2.1 transgenic (AAD) mice from infection with influenza viruses. MVAs expressing NP (MVA-NP), M1 (MVA-M1) or polymerase PB1 (MVA-PB1) of A/California/4/09 (CA/09) virus were generated and used to immunize AAD mice. Antibodies and CD8+T cell responses were assessed by ELISA and ELISPOT, respectively, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. CD8+T cells specific to immunodominant and subdominant epitopes on the internal influenza proteins were elicited by MVA-based vectors in AAD mice, whereas influenza-specific antibodies were detected only in MVA-NP-immunized mice. Both M1- and NP-based MVA vaccines, regardless of whether they were applied individually or in combination, conferred protection against lethal influenza virus challenge. Our data further emphasize the promising potential of MVA vector expressing internal antigens toward the development of a universal influenza vaccine.

  18. Recombinant modified vaccinia virus Ankara-based malaria vaccines.

    PubMed

    Sebastian, Sarah; Gilbert, Sarah C

    2016-01-01

    A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.

  19. Novel Nonreplicating Vaccinia Virus Vector Enhances Expression of Heterologous Genes and Suppresses Synthesis of Endogenous Viral Proteins.

    PubMed

    Wyatt, Linda S; Xiao, Wei; Americo, Jeffrey L; Earl, Patricia L; Moss, Bernard

    2017-06-06

    Viruses are used as expression vectors for protein synthesis, immunology research, vaccines, and therapeutics. Advantages of poxvirus vectors include the accommodation of large amounts of heterologous DNA, the presence of a cytoplasmic site of transcription, and high expression levels. On the other hand, competition of approximately 200 viral genes with the target gene for expression and immune recognition may be disadvantageous. We describe a vaccinia virus (VACV) vector that uses an early promoter to express the bacteriophage T7 RNA polymerase; has the A23R intermediate transcription factor gene deleted, thereby restricting virus replication to complementing cells; and has a heterologous gene regulated by a T7 promoter. In noncomplementing cells, viral early gene expression and DNA replication occurred normally but synthesis of intermediate and late proteins was prevented. Nevertheless, the progeny viral DNA provided templates for abundant expression of heterologous genes regulated by a T7 promoter. Selective expression of the Escherichia coli lac repressor gene from an intermediate promoter reduced transcription of the heterologous gene specifically in complementing cells, where large amounts might adversely impact VACV replication. Expression of heterologous proteins mediated by the A23R deletion vector equaled that of a replicating VACV, was higher than that of a nonreplicating modified vaccinia virus Ankara (MVA) vector used for candidate vaccines in vitro and in vivo , and was similarly immunogenic in mice. Unlike the MVA vector, the A23R deletion vector still expresses numerous early genes that can restrict immunogenicity as demonstrated here by the failure of the prototype vector to induce interferon alpha. By deleting immunomodulatory genes, we anticipate further improvements in the system. IMPORTANCE Vaccines provide an efficient and effective way of preventing infectious diseases. Nevertheless, new and better vaccines are needed. Vaccinia virus, which

  20. Smallpox virus plaque phenotypes: genetic, geographical and case fatality relationships.

    PubMed

    Olson, Victoria A; Karem, Kevin L; Smith, Scott K; Hughes, Christine M; Damon, Inger K

    2009-04-01

    Smallpox (infection with Orthopoxvirus variola) remains a feared illness more than 25 years after its eradication. Historically, case-fatality rates (CFRs) varied between outbreaks (<1 to approximately 40 %), the reasons for which are incompletely understood. The extracellular enveloped virus (EEV) form of orthopoxvirus progeny is hypothesized to disseminate infection. Investigations with the closely related Orthopoxvirus vaccinia have associated increased comet formation (EEV production) with increased mouse mortality (pathogenicity). Other vaccinia virus genetic manipulations which affect EEV production inconsistently support this association. However, antisera against vaccinia virus envelope protect mice from lethal challenge, further supporting a critical role for EEV in pathogenicity. Here, we show that the increased comet formation phenotypes of a diverse collection of variola viruses associate with strain phylogeny and geographical origin, but not with increased outbreak-related CFRs; within clades, there may be an association of plaque size with CFR. The mechanisms for variola virus pathogenicity probably involves multiple host and pathogen factors.

  1. Antibodies induced by the HA2 glycopolypeptide of influenza virus haemagglutinin improve recovery from influenza A virus infection.

    PubMed

    Gocník, M; Fislová, T; Mucha, V; Sládková, T; Russ, G; Kostolansky, F; Varecková, E

    2008-04-01

    The haemagglutinin (HA) of influenza A virus consists of two glycopolypeptides designated HA1 and HA2. Antibodies recognizing HA1 inhibit virus haemagglutination, neutralize virus infectivity and provide good protection against infection, but do not cross-react with the HA of other subtypes. Little is known regarding the biological activities of antibodies against HA2. To study the role of antibodies directed against HA2 during influenza virus infection, two vaccinia virus recombinants (rVVs) were used expressing chimeric molecules of HA, in which HA1 and HA2 were derived from different HA subtypes. The KG-11 recombinant expressed HA1 from A/PR/8/34 (H1N1) virus and HA2 from A/NT/60 (H3N2) virus, whilst KG-12 recombinant expressed HA1 from A/NT/60 virus and HA2 from A/PR/8/34 virus. Immunization of BALB/c mice with rVV expressing HA2 of the HA subtype homologous to the challenge virus [A/PR/8/34 (H1N1) or A/Mississippi/1/85 (H3N2)] did not prevent virus infection, but nevertheless resulted in an increase in mice survival and faster elimination of virus from the lungs. Passive immunization with antibodies purified from mice immunized with rVVs confirmed that antibodies against HA2 were responsible for the described effect on virus infection. Based on the facts that HA2 is a rather conserved part of the HA and that antibodies against HA2, as shown here, may moderate virus infection, future vaccine design should deal with the problem of how to increase the HA2 antibody response.

  2. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol.

    PubMed

    Luteijn, Rutger David; Drexler, Ingo; Smith, Geoffrey L; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2018-06-01

    Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.

  3. Infection cycles of large DNA viruses: emerging themes and underlying questions.

    PubMed

    Mutsafi, Yael; Fridmann-Sirkis, Yael; Milrot, Elad; Hevroni, Liron; Minsky, Abraham

    2014-10-01

    The discovery of giant DNA viruses and the recent realization that such viruses are diverse and abundant blurred the distinction between viruses and cells. These findings elicited lively debates on the nature and origin of viruses as well as on their potential roles in the evolution of cells. The following essay is, however, concerned with new insights into fundamental structural and physical aspects of viral replication that were derived from studies conducted on large DNA viruses. Specifically, the entirely cytoplasmic replication cycles of Mimivirus and Vaccinia are discussed in light of the highly limited trafficking of large macromolecules in the crowded cytoplasm of cells. The extensive spatiotemporal order revealed by cytoplasmic viral factories is described and contended to play an important role in promoting the efficiency of these 'nuclear-like' organelles. Generation of single-layered internal membrane sheets in Mimivirus and Vaccinia, which proceeds through a novel membrane biogenesis mechanism that enables continuous supply of lipids, is highlighted as an intriguing case study of self-assembly. Mimivirus genome encapsidation was shown to occur through a portal different from the 'stargate' portal that is used for genome release. Such a 'division of labor' is proposed to enhance the efficacy of translocation processes of very large viral genomes. Finally, open questions concerning the infection cycles of giant viruses to which future studies are likely to provide novel and exciting answers are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Vaccinia Virus C9 Ankyrin Repeat/F-Box Protein Is a Newly Identified Antagonist of the Type I Interferon-Induced Antiviral State.

    PubMed

    Liu, Ruikang; Moss, Bernard

    2018-05-01

    Type I interferons (IFNs) induce expression of more than 300 cellular genes that provide protection against viruses and other pathogens. For survival, viruses evolved defenses to prevent the IFN response or counteract the IFN-induced antiviral state. However, because viruses and cells coevolved, the dynamic relationship between virus and host is difficult to discern. In the present study, we demonstrated that vaccinia virus with a large deletion near the left end of the genome had a diminished ability to replicate in cells that had been pretreated with beta interferon (IFN-β), suggesting that one or more of the missing 17 open reading frames (ORFs) encode an antagonist of the IFN-induced antiviral state. By systematically deleting groups of ORFs and then individual ORFs, the C9L gene was shown to be required for IFN resistance. Replication of the C9L deletion mutant (vΔC9) was impaired in human cells that had been pretreated with IFN-β. Expression of viral early genes occurred, but subsequent events, including genome uncoating, genome replication, and postreplicative gene expression, were inhibited. Expression of the C9 protein occurred prior to genome replication, consistent with an early role in counteracting the IFN-induced antiviral state. C9 contains six ankyrin repeat motifs and a near C-terminal F-box. Mass spectrometry and immunoblotting identified host proteins that copurified with a functional epitope-tagged C9. The most abundant proteins were components of the SCF (CUL1, SKP1, F-box) and signalosome/deneddylation complexes, which interact with each other, suggesting a possible role in proteolysis of one or more interferon-induced proteins. IMPORTANCE Poxviruses comprise a family of large DNA viruses that replicate in the cytoplasm of vertebrate and insect hosts and cause human and zoonotic diseases. In most cases the primary infection is moderated by innate immune defenses. Vertebrates, including fish, amphibians, reptiles, birds, and mammals, all

  5. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells.

    PubMed

    Dai, Peihong; Wang, Weiyi; Yang, Ning; Serna-Tamayo, Cristian; Ricca, Jacob M; Zamarin, Dmitriy; Shuman, Stewart; Merghoub, Taha; Wolchok, Jedd D; Deng, Liang

    2017-05-19

    Advanced cancers remain a therapeutic challenge despite recent progress in targeted therapy and immunotherapy. Novel approaches are needed to alter the tumor immunosuppressive microenvironment and to facilitate the recognition of tumor antigens that leads to antitumor immunity. Poxviruses, such as modified vaccinia virus Ankara (MVA), have potential as immunotherapeutic agents. We show that infection of conventional dendritic cells (DCs) with heat- or ultraviolet-inactivated MVA leads to higher levels of interferon induction than MVA alone through the cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase)-STING cytosolic DNA-sensing pathway. Intratumoral injection of inactivated MVA (iMVA) was effective and generated adaptive antitumor immunity in murine melanoma and colon cancer models. iMVA-induced antitumor therapy was less effective in STING- or Batf3-deficient mice than in wild-type mice, indicating that both cytosolic DNA sensing and Batf3-dependent CD103 + /CD8α + DCs are essential for iMVA immunotherapy. The combination of intratumoral delivery of iMVA and systemic delivery of immune checkpoint blockade generated synergistic antitumor effects in bilateral tumor implantation models as well as in a unilateral large established tumor model. Our results suggest that inactivated vaccinia virus could be used as an immunotherapeutic agent for human cancers. Copyright © 2017, American Association for the Advancement of Science.

  6. Variola virus F1L is a Bcl-2-like protein that unlike its vaccinia virus counterpart inhibits apoptosis independent of Bim

    PubMed Central

    Marshall, B; Puthalakath, H; Caria, S; Chugh, S; Doerflinger, M; Colman, P M; Kvansakul, M

    2015-01-01

    Subversion of host cell apoptosis is an important survival strategy for viruses to ensure their own proliferation and survival. Certain viruses express proteins homologous in sequence, structure and function to mammalian pro-survival B-cell lymphoma 2 (Bcl-2) proteins, which prevent rapid clearance of infected host cells. In vaccinia virus (VV), the virulence factor F1L was shown to be a potent inhibitor of apoptosis that functions primarily be engaging pro-apoptotic Bim. Variola virus (VAR), the causative agent of smallpox, harbors a homolog of F1L of unknown function. We show that VAR F1L is a potent inhibitor of apoptosis, and unlike all other characterized anti-apoptotic Bcl-2 family members lacks affinity for the Bim Bcl-2 homology 3 (BH3) domain. Instead, VAR F1L engages Bid BH3 as well as Bak and Bax BH3 domains. Unlike its VV homolog, variola F1L only protects against Bax-mediated apoptosis in cellular assays. Crystal structures of variola F1L bound to Bid and Bak BH3 domains reveal that variola F1L forms a domain-swapped Bcl-2 fold, which accommodates Bid and Bak BH3 in the canonical Bcl-2-binding groove, in a manner similar to VV F1L. Despite the observed conservation of structure and sequence, variola F1L inhibits apoptosis using a startlingly different mechanism compared with its VV counterpart. Our results suggest that unlike during VV infection, Bim neutralization may not be required during VAR infection. As molecular determinants for the human-specific tropism of VAR remain essentially unknown, identification of a different mechanism of action and utilization of host factors used by a VAR virulence factor compared with its VV homolog suggest that studying VAR directly may be essential to understand its unique tropism. PMID:25766319

  7. Variola virus F1L is a Bcl-2-like protein that unlike its vaccinia virus counterpart inhibits apoptosis independent of Bim.

    PubMed

    Marshall, B; Puthalakath, H; Caria, S; Chugh, S; Doerflinger, M; Colman, P M; Kvansakul, M

    2015-03-12

    Subversion of host cell apoptosis is an important survival strategy for viruses to ensure their own proliferation and survival. Certain viruses express proteins homologous in sequence, structure and function to mammalian pro-survival B-cell lymphoma 2 (Bcl-2) proteins, which prevent rapid clearance of infected host cells. In vaccinia virus (VV), the virulence factor F1L was shown to be a potent inhibitor of apoptosis that functions primarily be engaging pro-apoptotic Bim. Variola virus (VAR), the causative agent of smallpox, harbors a homolog of F1L of unknown function. We show that VAR F1L is a potent inhibitor of apoptosis, and unlike all other characterized anti-apoptotic Bcl-2 family members lacks affinity for the Bim Bcl-2 homology 3 (BH3) domain. Instead, VAR F1L engages Bid BH3 as well as Bak and Bax BH3 domains. Unlike its VV homolog, variola F1L only protects against Bax-mediated apoptosis in cellular assays. Crystal structures of variola F1L bound to Bid and Bak BH3 domains reveal that variola F1L forms a domain-swapped Bcl-2 fold, which accommodates Bid and Bak BH3 in the canonical Bcl-2-binding groove, in a manner similar to VV F1L. Despite the observed conservation of structure and sequence, variola F1L inhibits apoptosis using a startlingly different mechanism compared with its VV counterpart. Our results suggest that unlike during VV infection, Bim neutralization may not be required during VAR infection. As molecular determinants for the human-specific tropism of VAR remain essentially unknown, identification of a different mechanism of action and utilization of host factors used by a VAR virulence factor compared with its VV homolog suggest that studying VAR directly may be essential to understand its unique tropism.

  8. SARS-CoV spike protein-expressing recombinant vaccinia virus efficiently induces neutralizing antibodies in rabbits pre-immunized with vaccinia virus.

    PubMed

    Kitabatake, Masahiro; Inoue, Shingo; Yasui, Fumihiko; Yokochi, Shoji; Arai, Masaaki; Morita, Kouichi; Shida, Hisatoshi; Kidokoro, Minoru; Murai, Fukashi; Le, Mai Quynh; Mizuno, Kyosuke; Matsushima, Kouji; Kohara, Michinori

    2007-01-08

    A vaccine for severe acute respiratory syndrome (SARS) is being intensively pursued against its re-emergence. We generated a SARS coronavirus (SARS-CoV) spike protein-expressing recombinant vaccinia virus (RVV-S) using highly attenuated strain LC16m8. Intradermal administration of RVV-S into rabbits induced neutralizing (NT) antibodies against SARS-CoV 1 week after administration and the NT titer reached 1:1000 after boost immunization with RVV-S. Significantly, NT antibodies against SARS-CoV were induced by administration of RVV-S to rabbits that had been pre-immunized with LC16m8. RVV-S can induce NT antibodies against SARS-CoV despite the presence of NT antibodies against VV. These results suggest that RVV-S may be a powerful SARS vaccine, including in patients previously immunized with the smallpox vaccine.

  9. Antiviral immunity following smallpox virus infection: a case-control study.

    PubMed

    Hammarlund, Erika; Lewis, Matthew W; Hanifin, Jon M; Mori, Motomi; Koudelka, Caroline W; Slifka, Mark K

    2010-12-01

    Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4(+) and CD8(+) T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases.

  10. Antiviral Immunity following Smallpox Virus Infection: a Case-Control Study▿

    PubMed Central

    Hammarlund, Erika; Lewis, Matthew W.; Hanifin, Jon M.; Mori, Motomi; Koudelka, Caroline W.; Slifka, Mark K.

    2010-01-01

    Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4+ and CD8+ T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases. PMID:20926574

  11. DNA Packaging Mutant: Repression of the Vaccinia Virus A32 Gene Results in Noninfectious, DNA-Deficient, Spherical, Enveloped Particles

    PubMed Central

    Cassetti, Maria Cristina; Merchlinsky, Michael; Wolffe, Elizabeth J.; Weisberg, Andrea S.; Moss, Bernard

    1998-01-01

    The vaccinia virus A32 open reading frame was predicted to encode a protein with a nucleoside triphosphate-binding motif and a mass of 34 kDa. To investigate the role of this protein, we constructed a mutant in which the original A32 gene was replaced by an inducible copy. The recombinant virus, vA32i, has a conditional lethal phenotype: infectious virus formation was dependent on isopropyl-β-d-thiogalactopyranoside (IPTG). Under nonpermissive conditions, the mutant synthesized early- and late-stage viral proteins, as well as viral DNA that was processed into unit-length genomes. Electron microscopy of cells infected in the absence of IPTG revealed normal-appearing crescents and immature virus particles but very few with nucleoids. Instead of brick-shaped mature particles with defined core structures, there were numerous electron-dense, spherical particles. Some of these spherical particles were wrapped with cisternal membranes, analogous to intracellular and extracellular enveloped virions. Mutant viral particles, purified by sucrose density gradient centrifugation, had low infectivity and transcriptional activity, and the majority were spherical and lacked DNA. Nevertheless, the particle preparation contained representative membrane proteins, cleaved and uncleaved core proteins, the viral RNA polymerase, the early transcription factor and several enzymes, suggesting that incorporation of these components is not strictly coupled to DNA packaging. PMID:9621036

  12. Enteric Immunization of Mice Against Influenza with Recombinant Vaccinia

    NASA Astrophysics Data System (ADS)

    Meitin, Catherine A.; Bender, Bradley S.; Small, Parker A., Jr.

    1994-11-01

    Intrajejunal administration to mice of a recombinant vaccinia virus containing the influenza virus hemagglutinin gene induced IgA antibody in nasal, gut, and vaginal secretions. It also induced IgG antibody in serum and cell-mediated immunity. The immunization provided significant protection against an influenza virus challenge. This work suggests that enteric-coated recombinant vaccinia could be an orally administered, inexpensive, multivalent, temperature-stable, safe, and effective vaccine for children that could be particularly useful in developing nations, where multiple injections are not easily administered. Oral administration of vaccines should also reduce children's fear of shots at the doctor's office.

  13. Role of Metalloproteases in Vaccinia Virus Epitope Processing for Transporter Associated with Antigen Processing (TAP)-independent Human Leukocyte Antigen (HLA)-B7 Class I Antigen Presentation*

    PubMed Central

    Lorente, Elena; García, Ruth; Mir, Carmen; Barriga, Alejandro; Lemonnier, François A.; Ramos, Manuel; López, Daniel

    2012-01-01

    The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8+ lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8+ T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections. PMID:22298786

  14. Human Immune Response to Dengue Infections

    DTIC Science & Technology

    1989-07-31

    antigens of all 4 serotypes. These CTL lysed autologous fibroblasts infected with vaccinia-dengue recombinant viruses containing the E, or several non...responses of PBMC from a dengue 4-immune donor to call-free dengue viruses . .. ........... 6 Table 2. Lysis of dengue virus-infected fibroblasts by dengue...4-immune PBMC stimulated with dengue viruses ... ...... 7 Table 3. Inhibition of the lysis of dengue- infected fibroblasts by monoclonal anti-CD8

  15. Prevention of poxvirus infection by tetrapyrroles

    PubMed Central

    Chen-Collins, Avril RM; Dixon, Dabney W; Vzorov, Andrei N; Marzilli, Luigi G; Compans, Richard W

    2003-01-01

    Background Prevention of poxvirus infection is a topic of great current interest. We report inhibition of vaccinia virus in cell culture by porphyrins and phthalocyanines. Most previous work on the inhibition of viruses with tetrapyrroles has involved photodynamic mechanisms. The current study, however, investigates light-independent inhibition activity. Methods The Western Reserve (WR) and International Health Department-J (IHD-J) strains of vaccinia virus were used. Virucidal and antiviral activities as well as the cytotoxicity of test compounds were determined. Results Examples of active compounds include zinc protoporphyrin, copper hematoporphyrin, meso(2,6-dihydroxyphenyl)porphyrin, the sulfonated tetra-1-naphthyl and tetra-1-anthracenylporphyrins, selected sulfonated derivatives of halogenated tetraphenyl porphyrins and the copper chelate of tetrasulfonated phthalocyanine. EC50 values for the most active compounds are as low as 0.05 µg/mL (40 nM). One of the most active compounds was the neutral meso(2,6-dihydroxyphenyl)porphyrin, indicating that the compounds do not have to be negatively charged to be active. Conclusions Porphyrins and phthalocyanines have been found to be potent inhibitors of infection by vaccinia virus in cell culture. These tetrapyrroles were found to be active against two different virus strains, and against both enveloped and non-enveloped forms of the virus, indicating that these compounds may be broadly effective in their ability to inhibit poxvirus infection. PMID:12773208

  16. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever.

    PubMed

    Schäfer, Birgit; Holzer, Georg W; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A; Kreil, Thomas R; Barrett, P Noel; Falkner, Falko G

    2011-01-01

    Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5) TCID(50). Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.

  17. The attenuated NYCBH vaccinia virus deleted for the immune evasion gene, E3L, completely protects mice against heterologous challenge with ectromelia virus.

    PubMed

    Denzler, Karen L; Schriewer, Jill; Parker, Scott; Werner, Chas; Hartzler, Hollyce; Hembrador, Ed; Huynh, Trung; Holechek, Susan; Buller, R M; Jacobs, Bertram L

    2011-12-06

    The New York City Board of Health (NYCBH) vaccinia virus (VACV) vaccine strain was deleted for the immune evasion gene, E3L, and tested for its pathogenicity and ability to protect mice from heterologous challenge with ectromelia virus (ECTV). NYCBHΔE3L was found to be highly attenuated for pathogenicity in a newborn mouse model and showed a similar attenuated phenotype as the NYVAC strain of vaccinia virus. Scarification with one or two doses of the attenuated NYCBHΔE3L was able to protect mice equally as well as NYCBH from death, weight loss, and viral spread to visceral organs. A single dose of NYCBHΔE3L resulted in low poxvirus-specific antibodies, and a second dose increased levels of poxvirus-specific antibodies to a level similar to that seen in animals vaccinated with a single dose of NYCBH. However, similar neutralizing antibody titers were observed following one or two doses of NYCBHΔE3L or NYCBH. Thus, NYCBHΔE3L shows potential as a candidate for a safer human smallpox vaccine since it protects mice from challenge with a heterologous poxvirus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Attenuated and Replication-Competent Vaccinia Virus Strains M65 and M101 with Distinct Biology and Immunogenicity as Potential Vaccine Candidates against Pathogens

    PubMed Central

    Sánchez-Sampedro, Lucas; Gómez, Carmen Elena; Mejías-Pérez, Ernesto; Pérez-Jiménez, Eva; Oliveros, Juan Carlos

    2013-01-01

    Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors. PMID

  19. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meador, Lydia R.

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viralmore » vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.« less

  20. Major neutralizing sites on vaccinia virus glycoprotein B5 are exposed differently on variola virus ortholog B6.

    PubMed

    Aldaz-Carroll, Lydia; Xiao, Yuhong; Whitbeck, J Charles; de Leon, Manuel Ponce; Lou, Huan; Kim, Mikyung; Yu, Jessica; Reinherz, Ellis L; Isaacs, Stuart N; Eisenberg, Roselyn J; Cohen, Gary H

    2007-08-01

    Immunization against smallpox (variola virus) with Dryvax, a live vaccinia virus (VV), was effective, but now safety is a major concern. To overcome this issue, subunit vaccines composed of VV envelope proteins from both forms of infectious virions, including the extracellular enveloped virion (EV) protein B5, are being developed. However, since B5 has 23 amino acid differences compared with its B6 variola virus homologue, B6 might be a better choice for such a strategy. Therefore, we compared the properties of both proteins using a panel of monoclonal antibodies (MAbs) to B5 that we had previously characterized and grouped according to structural and functional properties. The B6 gene was obtained from the Centers for Disease Control and Prevention, and the ectodomain was cloned and expressed in baculovirus as previously done with B5, allowing us to compare the antigenic properties of the proteins. Polyclonal antibodies to B5 or B6 cross-reacted with the heterologous protein, and 16 of 26 anti-B5 MAbs cross-reacted with B6. Importantly, 10 anti-B5 MAbs did not cross-react with B6. Of these, three have important anti-VV biologic properties, including their ability to neutralize EV infectivity and block comet formation. Here, we found that one of these three MAbs protected mice from a lethal VV challenge by passive immunization. Thus, epitopes that are present on B5 but not on B6 would generate an antibody response that would not recognize B6. Assuming that B6 contains similar variola virus-specific epitopes, our data suggest that a subunit vaccine using the variola virus homologues might exhibit improved protective efficacy against smallpox.

  1. Smallpox and live-virus vaccination in transplant recipients.

    PubMed

    Fishman, Jay A

    2003-07-01

    Recent bioterrorism raises the specter of reemergence of smallpox as a clinical entity. The mortality of variola major infection ('typical smallpox') was approximately 30% in past outbreaks. Programs for smallpox immunization for healthcare workers have been proposed. Atypical forms of smallpox presenting with flat or hemorrhagic skin lesions are most common in individuals with immune deficits with historic mortality approaching 100%. Smallpox vaccination, even after exposure, is highly effective. Smallpox vaccine contains a highly immunogenic live virus, vaccinia. Few data exist for the impact of variola or safety of vaccinia in immunocompromised hosts. Both disseminated infection by vaccinia and person-to-person spread after vaccination are uncommon. When it occurs, secondary vaccinia has usually affected individuals with pre-existing skin conditions (atopic dermatitis or eczema) or with other underlying immune deficits. Historically, disseminated vaccinia infection was uncommon but often fatal even in the absence of the most severe form of disease, "progressive vaccinia". Some responded to vaccinia immune globulin. Smallpox exposure would be likely to cause significant mortality among immunocompromised hosts. In the absence of documented smallpox exposures, immunocompromised hosts should not be vaccinated against smallpox. Planning for bioterrorist events must include consideration of uniquely susceptible hosts.

  2. L-selectin Is Essential for Delivery of Activated CD8+ T Cells to Virus-Infected Organs for Protective Immunity

    PubMed Central

    Mohammed, Rebar N.; Watson, H. Angharad; Vigar, Miriam; Ohme, Julia; Thomson, Amanda; Humphreys, Ian R.; Ager, Ann

    2016-01-01

    Summary Cytotoxic CD8+ T lymphocytes play a critical role in the host response to infection by viruses. The ability to secrete cytotoxic chemicals and cytokines is considered pivotal for eliminating virus. Of equal importance is how effector CD8+ T cells home to virus-infected tissues. L-selectin has not been considered important for effector T cell homing, because levels are low on activated T cells. We report here that, although L-selectin expression is downregulated following T cell priming in lymph nodes, L-selectin is re-expressed on activated CD8+ T cells entering the bloodstream, and recruitment of activated CD8+ T cells from the bloodstream into virus-infected tissues is L-selectin dependent. Furthermore, L-selectin on effector CD8+ T cells confers protective immunity to two evolutionally distinct viruses, vaccinia and influenza, which infect mucosal and visceral organs, respectively. These results connect homing and a function of virus-specific CD8+ T cells to a single molecule, L-selectin. PMID:26804910

  3. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

  4. Effective Induction of Simian Immunodeficiency Virus-Specific Cytotoxic T Lymphocytes in Macaques by Using a Multiepitope Gene and DNA Prime-Modified Vaccinia Virus Ankara Boost Vaccination Regimen

    PubMed Central

    Hanke, Tomas; Samuel, Rachel V.; Blanchard, Tom J.; Neumann, Veronica C.; Allen, Todd M.; Boyson, Jon E.; Sharpe, Sally A.; Cook, Nicola; Smith, Geoffrey L.; Watkins, David I.; Cranage, Martin P.; McMichael, Andrew J.

    1999-01-01

    DNA and modified vaccinia virus Ankara (MVA) are vaccine vehicles suitable and safe for use in humans. Here, by using a multicytotoxic T-lymphocyte (CTL) epitope gene and a DNA prime-MVA boost vaccination regimen, high levels of CTLs specific for a single simian immunodeficiency virus (SIV) gag-derived epitope were elicited in rhesus macaques. These vaccine-induced CTLs were capable of killing SIV-infected cells in vitro. Fluorescence-activated cell sorter analysis using soluble tetrameric major histocompatibility complex-peptide complexes showed that the vaccinated animals had 1 to 5% circulating CD8+ lymphocytes specific for the vaccine epitope, frequencies comparable to those in SIV-infected monkeys. Upon intrarectal challenge with pathogenic SIVmac251, no evidence for protection was observed in at least two of the three vaccinated animals. This study does not attempt to define correlates of protective immunity nor design a protective vaccine against immunodeficiency viruses, but it demonstrates clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques. It also shows that powerful tools for studying the role of CTLs in the control of SIV and human immunodeficiency virus infections are now available: epitope-based vaccines, a protocol for an effective induction of CTLs in primates, and a simple and sensitive method for quantitation of epitope-specific T cells. The advantages of the DNA prime-MVA boost regimen as well as the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed. PMID:10438842

  5. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    PubMed Central

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. Conclusions/Significance The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice. PMID:21931732

  6. Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion.

    PubMed

    Wagenaar, Timothy R; Moss, Bernard

    2009-02-01

    Many animal viruses induce cells to fuse and form syncytia. For vaccinia virus, this phenomenon is associated with mutations affecting the A56 and K2 proteins, which form a multimer (A56/K2) on the surface of infected cells. Recent evidence that A56/K2 interacts with the entry/fusion complex (EFC) and that the EFC is necessary for syncytium formation furnishes a strong connection between virus entry and cell fusion. Among the important remaining questions are whether A56/K2 can prevent virus entry as well as cell-cell fusion and whether these two viral proteins are sufficient as well as necessary for this. To answer these questions, we transiently and stably expressed A56 and K2 in uninfected cells. Uninfected cells expressing A56 and K2 exhibited resistance to fusing with A56 mutant virus-infected cells, whereas expression of A56 or K2 alone induced little or no resistance, which fits with the need for both proteins to bind the EFC. Furthermore, transient or stable expression of A56/K2 interfered with virus entry and replication as determined by inhibition of early expression of a luciferase reporter gene, virus production, and plaque formation. The specificity of this effect was demonstrated by restoring entry after enzymatically removing a chimeric glycophosphatidylinositol-anchored A56/K2 or by binding a monoclonal antibody to A56. Importantly, the antibody disrupted the interaction between A56/K2 and the EFC without disrupting the A56-K2 interaction itself. Thus, we have shown that A56/K2 is sufficient to prevent virus entry and fusion as well as formation of syncytia through interaction with the EFC.

  7. Combined prime-boost vaccination against tick-borne encephalitis (TBE) using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    PubMed Central

    Aleshin, SE; Timofeev, AV; Khoretonenko, MV; Zakharova, LG; Pashvykina, GV; Stephenson, JR; Shneider, AM; Altstein, AD

    2005-01-01

    Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines. PMID:16076390

  8. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model.

    PubMed

    Kreijtz, Joost H C M; Wiersma, Lidewij C M; De Gruyter, Heidi L M; Vogelzang-van Trierum, Stella E; van Amerongen, Geert; Stittelaar, Koert J; Fouchier, Ron A M; Osterhaus, Albert D M E; Sutter, Gerd; Rimmelzwaan, Guus F

    2015-03-01

    Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Variola virus immune evasion proteins.

    PubMed

    Dunlop, Lance R; Oehlberg, Katherine A; Reid, Jeremy J; Avci, Dilek; Rosengard, Ariella M

    2003-09-01

    Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.

  10. Species Specificity of Vaccinia Virus Complement Control Protein for the Bovine Classical Pathway Is Governed Primarily by Direct Interaction of Its Acidic Residues with Factor I

    PubMed Central

    Kumar, Jitendra; Yadav, Viveka Nand; Phulera, Swastik; Kamble, Ashish; Gautam, Avneesh Kumar; Panwar, Hemendra Singh

    2017-01-01

    ABSTRACT Poxviruses display species tropism—variola virus is a human-specific virus, while vaccinia virus causes repeated outbreaks in dairy cattle. Consistent with this, variola virus complement regulator SPICE (smallpox inhibitor of complement enzymes) exhibits selectivity in inhibiting the human alternative complement pathway and vaccinia virus complement regulator VCP (vaccinia virus complement control protein) displays selectivity in inhibiting the bovine alternative complement pathway. In the present study, we examined the species specificity of VCP and SPICE for the classical pathway (CP). We observed that VCP is ∼43-fold superior to SPICE in inhibiting bovine CP. Further, functional assays revealed that increased inhibitory activity of VCP for bovine CP is solely due to its enhanced cofactor activity, with no effect on decay of bovine CP C3-convertase. To probe the structural basis of this specificity, we utilized single- and multi-amino-acid substitution mutants wherein 1 or more of the 11 variant VCP residues were substituted in the SPICE template. Examination of these mutants for their ability to inhibit bovine CP revealed that E108, E120, and E144 are primarily responsible for imparting the specificity and contribute to the enhanced cofactor activity of VCP. Binding and functional assays suggested that these residues interact with bovine factor I but not with bovine C4(H2O) (a moiety conformationally similar to C4b). Mapping of these residues onto the modeled structure of bovine C4b-VCP-bovine factor I supported the mutagenesis data. Taken together, our data help explain why the vaccine strain of vaccinia virus was able to gain a foothold in domesticated animals. IMPORTANCE Vaccinia virus was used for smallpox vaccination. The vaccine-derived virus is now circulating and causing outbreaks in dairy cattle in India and Brazil. However, the reason for this tropism is unknown. It is well recognized that the virus is susceptible to neutralization by the

  11. Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines.

    PubMed

    Altenburg, Arwen F; van Trierum, Stella E; de Bruin, Erwin; de Meulder, Dennis; van de Sandt, Carolien E; van der Klis, Fiona R M; Fouchier, Ron A M; Koopmans, Marion P G; Rimmelzwaan, Guus F; de Vries, Rory D

    2018-04-24

    The replication-deficient orthopoxvirus modified vaccinia virus Ankara (MVA) is a promising vaccine vector against various pathogens and has an excellent safety record. However, pre-existing vector-specific immunity is frequently suggested to be a drawback of MVA-based vaccines. To address this issue, mice were vaccinated with MVA-based influenza vaccines in the presence or absence of orthopoxvirus-specific immunity. Importantly, protective efficacy of an MVA-based influenza vaccine against a homologous challenge was not impaired in the presence of orthopoxvirus-specific pre-existing immunity. Nonetheless, orthopoxvirus-specific pre-existing immunity reduced the induction of antigen-specific antibodies under specific conditions and completely prevented induction of antigen-specific T cell responses by rMVA-based vaccination. Notably, antibodies induced by vaccinia virus vaccination, both in mice and humans, were not capable of neutralizing MVA. Thus, when using rMVA-based vaccines it is important to consider the main correlate of protection induced by the vaccine, the vaccine dose and the orthopoxvirus immune status of vaccine recipients.

  12. Major Neutralizing Sites on Vaccinia Virus Glycoprotein B5 Are Exposed Differently on Variola Virus Ortholog B6▿

    PubMed Central

    Aldaz-Carroll, Lydia; Xiao, Yuhong; Whitbeck, J. Charles; de Leon, Manuel Ponce; Lou, Huan; Kim, Mikyung; Yu, Jessica; Reinherz, Ellis L.; Isaacs, Stuart N.; Eisenberg, Roselyn J.; Cohen, Gary H.

    2007-01-01

    Immunization against smallpox (variola virus) with Dryvax, a live vaccinia virus (VV), was effective, but now safety is a major concern. To overcome this issue, subunit vaccines composed of VV envelope proteins from both forms of infectious virions, including the extracellular enveloped virion (EV) protein B5, are being developed. However, since B5 has 23 amino acid differences compared with its B6 variola virus homologue, B6 might be a better choice for such a strategy. Therefore, we compared the properties of both proteins using a panel of monoclonal antibodies (MAbs) to B5 that we had previously characterized and grouped according to structural and functional properties. The B6 gene was obtained from the Centers for Disease Control and Prevention, and the ectodomain was cloned and expressed in baculovirus as previously done with B5, allowing us to compare the antigenic properties of the proteins. Polyclonal antibodies to B5 or B6 cross-reacted with the heterologous protein, and 16 of 26 anti-B5 MAbs cross-reacted with B6. Importantly, 10 anti-B5 MAbs did not cross-react with B6. Of these, three have important anti-VV biologic properties, including their ability to neutralize EV infectivity and block comet formation. Here, we found that one of these three MAbs protected mice from a lethal VV challenge by passive immunization. Thus, epitopes that are present on B5 but not on B6 would generate an antibody response that would not recognize B6. Assuming that B6 contains similar variola virus-specific epitopes, our data suggest that a subunit vaccine using the variola virus homologues might exhibit improved protective efficacy against smallpox. PMID:17522205

  13. Vaccinia Virus Blocks Stat1-Dependent and Stat1-Independent Gene Expression Induced by Type I and Type II Interferons

    PubMed Central

    Mann, Brandon A.; Huang, Julia He; Li, Ping; Chang, Hua-Chen; Slee, Roger B.; O'Sullivan, Audrey; Mathur, Anita; Yeh, Norman; Klemsz, Michael J.; Brutkiewicz, Randy R.; Blum, Janice S.

    2008-01-01

    Blocking the function of Stat (signal transducer and activator of transcription) proteins, which are critical for antiviral responses, has evolved as a common mechanism for pathogen immune evasion. The poxvirus-encoded phosphatase H1 is critical for viral replication, and may play an additional role in the evasion of host defense by dephosphorylating Stat1 and blocking interferon (IFN)-stimulated innate immune responses. Vaccinia virus (VACV) H1 can inhibit the phosphorylation of the transcription factor Stat1 after IFN-γ stimulation of epithelial cells, greatly attenuating IFN-induced biological functions. In this study, we demonstrate that VACV infection is capable of inhibiting the phosphorylation of Stat1 and Stat2 after stimulation of fibroblasts or bone marrow-derived macrophages with either type I or type II IFNs, but did not inhibit the activation of Stat3 or Stat5 in either cell type. By using recombinant proteins for in vitro assays, we observe that variola virus H1 is more active than VACV H1, although it has similar selectivity for Stat targets. Differential effects of VACV infection were observed on the induction of IFN-stimulated genes, with complete inhibition of some genes by VACV infection, while others were less affected. Despite the IFN-γ-induced expression of some genes in VACV-infected cells, IFN-γ was unable to rescue the VACV-mediated inhibition of MHC class II antigen presentation. Moreover, VACV infection can affect the IFN-induced expression of Stat1-dependent and Stat1-independent genes, suggesting that the virus may target additional IFN-activated pathways. Thus, VACV targets multiple signaling pathways in the evasion of antiviral immune responses. PMID:18593332

  14. Development and Evaluation of Adeno-HTLV-III Hybrid Virus and Non-Cytopathic HTLV-III Mutant for Vaccine Use.

    DTIC Science & Technology

    1987-10-28

    34" HIV will be tested. The recombinant Adeno-HIV virus is being developed as part of this proposal. The vaccines will be tested in two species of monkeys...vaccinia-HIV viruses was investigated (Table 4). All the vaccinated monkeys developed antibodies to HIV envelope antigen. However, no neutralizing antibody...Table 5). Epstein Barr virus transformed autologous B cells infected with recon- binant vaccinia-HIV virus may be used as targets. 30 chimpanzees from

  15. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    PubMed

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  16. Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice.

    PubMed

    Altenburg, A F; Magnusson, S E; Bosman, F; Stertman, L; de Vries, R D; Rimmelzwaan, G F

    2017-10-01

    Because of the high variability of seasonal influenza viruses and the eminent threat of influenza viruses with pandemic potential, there is great interest in the development of vaccines that induce broadly protective immunity. Most probably, broadly protective influenza vaccines are based on conserved proteins, such as nucleoprotein (NP). NP is a vaccine target of interest as it has been shown to induce cross-reactive antibody and T cell responses. Here we tested and compared various NP-based vaccine preparations for their capacity to induce humoral and cellular immune responses to influenza virus NP. The immunogenicity of protein-based vaccine preparations with Matrix-M™ adjuvant as well as recombinant viral vaccine vector modified Vaccinia virus Ankara (MVA) expressing the influenza virus NP gene, with or without modifications that aim at optimization of CD8 + T cell responses, was addressed in BALB/c mice. Addition of Matrix-M™ adjuvant to NP wild-type protein-based vaccines significantly improved T cell responses. Furthermore, recombinant MVA expressing the influenza virus NP induced strong antibody and CD8 + T cell responses, which could not be improved further by modifications of NP to increase antigen processing and presentation. © 2017 British Society for Immunology.

  17. Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3.

    PubMed

    Koehler, Heather; Cotsmire, Samantha; Langland, Jeffrey; Kibler, Karen V; Kalman, Daniel; Upton, Jason W; Mocarski, Edward S; Jacobs, Bertram L

    2017-10-24

    Vaccinia virus (VACV) encodes an innate immune evasion protein, E3, which contains an N-terminal Z-nucleic acid binding (Zα) domain that is critical for pathogenicity in mice. Here we demonstrate that the N terminus of E3 is necessary to inhibit an IFN-primed virus-induced necroptosis. VACV deleted of the Zα domain of E3 (VACV-E3LΔ83N) induced rapid RIPK3-dependent cell death in IFN-treated L929 cells. Cell death was inhibited by the RIPK3 inhibitor, GSK872, and infection with this mutant virus led to phosphorylation and aggregation of MLKL, the executioner of necroptosis. In 293T cells, induction of necroptosis depended on expression of RIPK3 as well as the host-encoded Zα domain-containing DNA sensor, DAI. VACV-E3LΔ83N is attenuated in vivo, and pathogenicity was restored in either RIPK3- or DAI-deficient mice. These data demonstrate that the N terminus of the VACV E3 protein prevents DAI-mediated induction of necroptosis.

  18. Effects of Postchallenge Administration of ST-246 on Dissemination of IHD-J-Luc Vaccinia Virus in Normal Mice and in Immune-Deficient Mice Reconstituted with T Cells

    PubMed Central

    Shotwell, Elisabeth; Scott, John; Cruz, Stephanie; King, Lisa R.; Manischewitz, Jody; Diaz, Claudia G.; Jordan, Robert A.; Grosenbach, Douglas W.; Golding, Hana

    2013-01-01

    Whole-body bioimaging was used to study dissemination of vaccinia virus (VACV) in normal and in immune deficient (nu−/nu−) mice protected from lethality by postchallenge administration of ST-246. Total fluxes were recorded in the liver, spleen, lungs, and nasal cavities of live mice after intranasal infection with a recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve were calculated for individual mice to assess viral loads. Treatment for 2 to 5 days of normal BALB/c mice with ST-246 at 100 mg/kg starting 24 h postchallenge conferred 100% protection and reduced viral loads in four organs compared to control mice. Mice also survived after 5 days of treatment with ST-246 at 30 mg/kg, and yet the viral loads and poxes were higher in these mice compared to 100-mg/kg treatment group. Nude mice were not protected by ST-246 alone or by 10 million adoptively transferred T cells. In contrast, nude mice that received T cells and 7-day treatment with ST-246 survived infection and exhibited reduced viral loads compared to nonreconstituted and ST-246-treated mice after ST-246 was stopped. Similar protection of nude mice was achieved using adoptively transferred 1.0 and 0.1 million, but not 0.01 million, purified T cells or CD4+ or CD8+ T cells in conjunction with ST-246 treatment. These data suggest that ST-246 protects immunocompetent mice from lethality and reduces viral dissemination in internal organs and poxvirus lesions. Furthermore, immune-deficient animals with partial T cell reconstitution can control virus replication after a course of ST-246 and survive lethal vaccinia virus challenge. PMID:23468500

  19. Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope.

    PubMed

    Raafat, Nermin; Sadowski-Cron, Charlotte; Mengus, Chantal; Heberer, Michael; Spagnoli, Giulio C; Zajac, Paul

    2012-09-01

    Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness. Copyright © 2011 UICC.

  20. Unintentional transfer of vaccinia virus associated with smallpox vaccines: ACAM2000(®) compared with Dryvax(®).

    PubMed

    Tack, Danielle M; Karem, Kevin L; Montgomery, Jay R; Collins, Limone; Bryant-Genevier, Marthe G; Tiernan, Rosemary; Cano, Maria; Lewis, Paige; Engler, Renata J M; Damon, Inger K; Reynolds, Mary G

    2013-07-01

    Routine vaccination against smallpox (variola) ceased in the US in 1976. However, in 2002 limited coverage for military personnel and some healthcare workers was reinstituted. In March 2008, ACAM2000® replaced Dryvax® as the vaccine used in the United States against smallpox. Unintentional transfer of vaccinia virus from a vaccination site by autoinoculation or contact transmission, can have significant public health implications. We summarize unintentional virus transfer AEs associated with ACAM2000® since March 2008 and compare with Dryvax®. We identified 309 reports for ACAM2000® with skin or ocular involvement, of which 93 were autoinoculation cases and 20 were contact transmission cases. The rate for reported cases of autoinoculation was 20.6 per 100,000 vaccinations and for contact transmission was 4.4 per 100,000 vaccinations. Eighteen contact transmission cases could be attributed to contact during a sporting activity (45%) or intimate contact (45%). Of the 113 unintentional transfer cases, 6 met the case definition for ocular vaccinia. The most common locations for all autoinoculation and contact cases were arm/elbow/shoulder (35/113; 31%) and face (24/113; 21%). Methods We reviewed 753 reports associated with smallpox in the Vaccine Adverse Event Reporting System and CDC Poxvirus consultation log, reported from March 2008 to August 2010. Reports were classified into categories based upon standard case definitions. Overall, unintentional transfer events for ACAM2000® and Dryvax® are similar. We recommend continued efforts to prevent transfer events and continuing education for healthcare providers focused on recognition of vaccinia lesions, proper sample collection, and laboratory testing to confirm diagnosis.

  1. Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo.

    PubMed

    Altenburg, Arwen F; van de Sandt, Carolien E; Li, Bobby W S; MacLoughlin, Ronan J; Fouchier, Ron A M; van Amerongen, Geert; Volz, Asisa; Hendriks, Rudi W; de Swart, Rik L; Sutter, Gerd; Rimmelzwaan, Guus F; de Vries, Rory D

    2017-08-17

    Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies.

  2. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    PubMed

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  3. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus.

    PubMed

    Jin, H; Elliott, R M

    1993-03-01

    Analysis of the 5' termini of Bunyamwera virus S segment mRNAs by cloning and sequence analysis revealed the presence of nonviral, heterogeneous sequences 12 to 17 bases long. This is similar to reports for other members of the family Bunyaviridae and is taken to indicate that mRNA transcription is primed by a "cap-snatching" mechanism. The 3' end of the Bunyamwera virus S mRNA was mapped, by using an RNase protection assay, to 100 to 110 nucleotides upstream of the 3' end of the template. Previously we reported expression of the Bunyamwera virus L (polymerase) protein by recombinant vaccinia virus and demonstrated that the recombinant L protein was functional in terms of RNA synthesis activity in a nucleocapsid transfection assay (H. Jin and R. M. Elliott, J. Virol. 65: 4182-4189, 1991). In the present study we further analyze the RNAs made by using this system and show that positive-sense RNAs contain 5' nonviral sequences. Hence the initiation of mRNA transcription by the recombinant L protein resembles that seen during authentic bunyavirus infection and suggests that the L protein has the endonuclease activity which generates the primers. Some of these positive-sense transcripts terminated at the mRNA termination site, but the majority read through to the end of the template. No primer sequences were found at the 5' terminal of negative-sense RNAs. The recombinant L protein was able to replicate negative-sense RNA supplied by transfected virion-derived nucleocapsids, and both positive- and negative-sense RNAs were synthesized. These results indicate that the recombinant L protein has both transcriptase and replicase activities.

  4. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus.

    PubMed Central

    Jin, H; Elliott, R M

    1993-01-01

    Analysis of the 5' termini of Bunyamwera virus S segment mRNAs by cloning and sequence analysis revealed the presence of nonviral, heterogeneous sequences 12 to 17 bases long. This is similar to reports for other members of the family Bunyaviridae and is taken to indicate that mRNA transcription is primed by a "cap-snatching" mechanism. The 3' end of the Bunyamwera virus S mRNA was mapped, by using an RNase protection assay, to 100 to 110 nucleotides upstream of the 3' end of the template. Previously we reported expression of the Bunyamwera virus L (polymerase) protein by recombinant vaccinia virus and demonstrated that the recombinant L protein was functional in terms of RNA synthesis activity in a nucleocapsid transfection assay (H. Jin and R. M. Elliott, J. Virol. 65: 4182-4189, 1991). In the present study we further analyze the RNAs made by using this system and show that positive-sense RNAs contain 5' nonviral sequences. Hence the initiation of mRNA transcription by the recombinant L protein resembles that seen during authentic bunyavirus infection and suggests that the L protein has the endonuclease activity which generates the primers. Some of these positive-sense transcripts terminated at the mRNA termination site, but the majority read through to the end of the template. No primer sequences were found at the 5' terminal of negative-sense RNAs. The recombinant L protein was able to replicate negative-sense RNA supplied by transfected virion-derived nucleocapsids, and both positive- and negative-sense RNAs were synthesized. These results indicate that the recombinant L protein has both transcriptase and replicase activities. Images PMID:8437222

  5. Transmission of vaccinia virus, possibly through sexual contact, to a woman at high risk for adverse complications.

    PubMed

    Said, Maria A; Haile, Charles; Palabindala, Venkataraman; Barker, Naomi; Myers, Robert; Thompson, Ruth; Wilson, Lucy; Allan-Martinez, Frances; Montgomery, Jay; Monroe, Benjamin; Tack, Danielle; Reynolds, Mary; Damon, Inger; Blythe, David

    2013-12-01

    Severe adverse events, including eczema vaccinatum (EV), can result after smallpox vaccination. Persons at risk for EV include those with underlying dermatologic conditions, such as atopic dermatitis. We investigated a case of vaccinia infection, possibly acquired during sexual contact with a recently vaccinated military service member, in a female Maryland resident with atopic dermatitis. The U.S. Department of Defense's Vaccine Healthcare Centers Network (VHCN) and the Centers for Disease Control and Prevention (CDC) worked in conjunction with the patient's physician and the Maryland Department of Health and Mental Hygiene (DHMH) to confirm the diagnosis, ensure treatment, and prevent further transmission. Specimens collected from the patient were tested at the DHMH laboratories and were positive by real-time polymerase chain reaction for nonvariola orthopoxvirus. Testing at the CDC verified the presence of vaccinia-specific DNA signatures. Continuing spread of the patient's lesions led to the administration of vaccinia immune globulin and strict infection control measures to prevent tertiary transmission to vulnerable family members, also with atopic dermatitis. VHCN contacted the service member to reinforce vaccination site care and hygiene. This case underscores the importance of prevaccination education for those receiving the smallpox vaccine to protect contacts at risk for developing severe adverse reactions. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  6. Dogs and Opossums Positive for Vaccinia Virus during Outbreak Affecting Cattle and Humans, São Paulo State, Brazil.

    PubMed

    Peres, Marina G; Barros, Claudenice B; Appolinário, Camila M; Antunes, João M A P; Mioni, Mateus S R; Bacchiega, Thais S; Allendorf, Susan D; Vicente, Acácia F; Fonseca, Clóvis R; Megid, Jane

    2016-02-01

    During a vaccinia virus (VACV) outbreak in São Paulo State, Brazil, blood samples were collected from cows, humans, other domestic animals, and wild mammals. Samples from 3 dogs and 3 opossums were positive for VACV by PCR. Results of gene sequencing yielded major questions regarding other mammalian species acting as reservoirs of VACV.

  7. ST-246 inhibits in vivo poxvirus dissemination, virus shedding, and systemic disease manifestation.

    PubMed

    Berhanu, Aklile; King, David S; Mosier, Stacie; Jordan, Robert; Jones, Kevin F; Hruby, Dennis E; Grosenbach, Douglas W

    2009-12-01

    Orthopoxvirus infections, such as smallpox, can lead to severe systemic disease and result in considerable morbidity and mortality in immunologically naïve individuals. Treatment with ST-246, a small-molecule inhibitor of virus egress, has been shown to provide protection against severe disease and death induced by several members of the poxvirus family, including vaccinia, variola, and monkeypox viruses. Here, we show that ST-246 treatment not only results in the significant inhibition of vaccinia virus dissemination from the site of inoculation to distal organs, such as the spleen and liver, but also reduces the viral load in organs targeted by the dissemination. In mice intranasally infected with vaccinia virus, virus shedding from the nasal and lung mucosa was significantly lower (approximately 22- and 528-fold, respectively) upon ST-246 treatment. Consequently, virus dissemination from the nasal site of replication to the lung also was dramatically reduced, as evidenced by a 179-fold difference in virus levels in nasal versus bronchoalveolar lavage. Furthermore, in ACAM2000-immunized mice, vaccination site swabs showed that ST-246 treatment results in a major (approximately 3,900-fold by day 21) reduction in virus detected at the outside surfaces of lesions. Taken together, these data suggest that ST-246 would play a dual protective role if used during a smallpox bioterrorist attack. First, ST-246 would provide therapeutic benefit by reducing the disease burden and lethality in infected individuals. Second, by reducing virus shedding from those prophylactically immunized with a smallpox vaccine or harboring variola virus infection, ST-246 could reduce the risk of virus transmission to susceptible contacts.

  8. Postchallenge Administration of Brincidofovir Protects Healthy and Immune-Deficient Mice Reconstituted with Limited Numbers of T Cells from Lethal Challenge with IHD-J-Luc Vaccinia Virus

    PubMed Central

    McCullough, Kevin Tyler; Cruz, Stephanie; Thomas, Antonia; Diaz, Claudia G.; Keilholz, Laurie; Grossi, Irma M.; Trost, Lawrence C.; Golding, Hana

    2015-01-01

    ABSTRACT Protection from lethality by postchallenge administration of brincidofovir (BCV, CMX001) was studied in normal and immune-deficient (nude, nu/nu) BALB/c mice infected with vaccinia virus (VACV). Whole-body bioluminescence imaging was used to record total fluxes in the nasal cavity, lungs, spleen, and liver and to enumerate pox lesions on tails of mice infected via the intranasal route with 105 PFU of recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve (AUCs) were calculated for individual mice to assess viral loads. A three-dose regimen of 20 mg/kg BCV administered every 48 h starting either on day 1 or day 2 postchallenge protected 100% of mice. Initiating BCV treatment earlier was more efficient in reducing viral loads and in providing protection from pox lesion development. All BCV-treated mice that survived challenge were also protected from rechallenge with IHD-J-Luc or WRvFire VACV without additional treatment. In immune-deficient mice, BCV protected animals from lethality and reduced viral loads while animals were on the drug. Viral recrudescence occurred within 4 to 9 days, and mice succumbed ∼10 to 20 days after treatment termination. Nude mice reconstituted with 105 T cells prior to challenge with 104 PFU of IHD-J-Luc and treated with BCV postchallenge survived the infection, cleared the virus from all organs, and survived rechallenge with 105 PFU of IHD-J-Luc VACV without additional BCV treatment. Together, these data suggest that BCV protects immunocompetent and partially T cell-reconstituted immune-deficient mice from lethality, reduces viral dissemination in organs, prevents pox lesion development, and permits generation of VACV-specific memory. IMPORTANCE Mass vaccination is the primary element of the public health response to a smallpox outbreak. In addition to vaccination, however, antiviral drugs are required for individuals with uncertain exposure status to smallpox or for whom vaccination is contraindicated

  9. A Single Dose of Modified Vaccinia Ankara expressing Ebola Virus Like Particles Protects Nonhuman Primates from Lethal Ebola Virus Challenge.

    PubMed

    Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea

    2018-01-16

    Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.

  10. Inhibition of allergic encephalomyelitis in marmosets by vaccination with recombinant vaccinia virus encoding for myelin basic protein.

    PubMed

    Genain, C P; Gritz, L; Joshi, N; Panicali, D; Davis, R L; Whitaker, J N; Letvin, N L; Hauser, S L

    1997-11-01

    A primary demyelinating form of experimental allergic encephalomyelitis (EAE) resembling human multiple sclerosis (MS) occurs in Callithrix jacchus marmosets following immunization with human white matter. Participation of a T-cell immune response against myelin basic protein (MBP) in this disease model is supported by observations of increased reactivity against MBP in PBMC and of adoptive transfer of an inflammatory form of EAE by MBP-reactive T-cells. To evaluate the effects of ectopic presentation of MBP on marmoset EAE, animals were vaccinated prior to induction of EAE by subcutaneous injection of attenuated strains of vaccinia virus genetically engineered to contain either the entire coding sequence for human MBP (vT15) or the equine herpes virus glycoprotein gH gene (vAbT249). Vaccination with vT15 was followed by transient cytoplasmic and surface membrane expression of MBP in circulating PBMC (15-45 days). The onset of clinical EAE after immunization (pi) was markedly delayed in vT15-vaccinated animals (37-97 days pi, n = 4) compared to vAbT249-vaccinated controls (14-18 days pi, n = 3). Proliferative responses against MBP but not against vaccinia antigens or phytohemagglutinin were suppressed in protected animals. Thus, development of attenuated live viruses carrying genes for myelin antigens could be useful for induction of immunologic tolerance and for modulation of autoimmune demyelination.

  11. Potent Neutralization of Vaccinia Virus by Divergent Murine Antibodies Targeting a Common Site of Vulnerability in L1 Protein

    PubMed Central

    Kaever, Thomas; Meng, Xiangzhi; Matho, Michael H.; Schlossman, Andrew; Li, Sheng; Sela-Culang, Inbal; Ofran, Yanay; Buller, Mark; Crump, Ryan W.; Parker, Scott; Frazier, April; Crotty, Shane; Zajonc, Dirk M.; Peters, Bjoern

    2014-01-01

    ABSTRACT Vaccinia virus (VACV) L1 is an important target for viral neutralization and has been included in multicomponent DNA or protein vaccines against orthopoxviruses. To further understand the protective mechanism of the anti-L1 antibodies, we generated five murine anti-L1 monoclonal antibodies (MAbs), which clustered into 3 distinct epitope groups. While two groups of anti-L1 failed to neutralize, one group of 3 MAbs potently neutralized VACV in an isotype- and complement-independent manner. This is in contrast to neutralizing antibodies against major VACV envelope proteins, such as H3, D8, or A27, which failed to completely neutralize VACV unless the antibodies are of complement-fixing isotypes and complement is present. Compared to nonneutralizing anti-L1 MAbs, the neutralization antibodies bound to the recombinant L1 protein with a significantly higher affinity and also could bind to virions. By using a variety of techniques, including the isolation of neutralization escape mutants, hydrogen/deuterium exchange mass spectrometry, and X-ray crystallography, the epitope of the neutralizing antibodies was mapped to a conformational epitope with Asp35 as the key residue. This epitope is similar to the epitope of 7D11, a previously described potent VACV neutralizing antibody. The epitope was recognized mainly by CDR1 and CDR2 of the heavy chain, which are highly conserved among antibodies recognizing the epitope. These antibodies, however, had divergent light-chain and heavy-chain CDR3 sequences. Our study demonstrates that the conformational L1 epitope with Asp35 is a common site of vulnerability for potent neutralization by a divergent group of antibodies. IMPORTANCE Vaccinia virus, the live vaccine for smallpox, is one of the most successful vaccines in human history, but it presents a level of risk that has become unacceptable for the current population. Studying the immune protection mechanism of smallpox vaccine is important for understanding the basic

  12. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    PubMed

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  13. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    PubMed

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  14. Modified Vaccinia Virus Ankara-Infected Dendritic Cells Present CD4+ T-Cell Epitopes by Endogenous Major Histocompatibility Complex Class II Presentation Pathways

    PubMed Central

    Thiele, Frank; Tao, Sha; Zhang, Yi; Muschaweckh, Andreas; Zollmann, Tina; Protzer, Ulrike; Abele, Rubert

    2014-01-01

    ABSTRACT CD4+ T lymphocytes play a central role in the immune system and mediate their function after recognition of their respective antigens presented on major histocompatibility complex II (MHCII) molecules on antigen-presenting cells (APCs). Conventionally, phagocytosed antigens are loaded on MHCII for stimulation of CD4+ T cells. Certain epitopes, however, can be processed directly from intracellular antigens and are presented on MHCII (endogenous MHCII presentation). Here we characterized the MHCII antigen presentation pathways that are possibly involved in the immune response upon vaccination with modified vaccinia virus Ankara (MVA), a promising live viral vaccine vector. We established CD4+ T-cell lines specific for MVA-derived epitopes as tools for in vitro analysis of MHCII antigen processing and presentation in MVA-infected APCs. We provide evidence that infected APCs are able to directly transfer endogenous viral proteins into the MHCII pathway to efficiently activate CD4+ T cells. By using knockout mice and chemical inhibitory compounds, we further elucidated the molecular basis, showing that among the various subcellular pathways investigated, proteasomes and autophagy are key players in the endogenous MHCII presentation during MVA infection. Interestingly, although proteasomal processing plays an important role, neither TAP nor LAMP-2 was found to be involved in the peptide transport. Defining the molecular mechanism of MHCII presentation during MVA infection provides a basis for improving MVA-based vaccination strategies by aiming for enhanced CD4+ T-cell activation by directing antigens into the responsible pathways. IMPORTANCE This work contributes significantly to our understanding of the immunogenic properties of pathogens by deciphering antigen processing pathways contributing to efficient activation of antigen-specific CD4+ T cells. We identified autophagosome formation, proteasomal activity, and lysosomal integrity as being crucial for

  15. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2.

    PubMed

    Stuart, Jennifer H; Sumner, Rebecca P; Lu, Yongxu; Snowden, Joseph S; Smith, Geoffrey L

    2016-12-01

    The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.

  16. Loss of cytoskeletal transport during egress critically attenuates ectromelia virus infection in vivo.

    PubMed

    Lynn, Helena; Horsington, Jacquelyn; Ter, Lee Kuan; Han, Shuyi; Chew, Yee Lian; Diefenbach, Russell J; Way, Michael; Chaudhri, Geeta; Karupiah, Gunasegaran; Newsome, Timothy P

    2012-07-01

    Egress of wrapped virus (WV) to the cell periphery following vaccinia virus (VACV) replication is dependent on interactions with the microtubule motor complex kinesin-1 and is mediated by the viral envelope protein A36. Here we report that ectromelia virus (ECTV), a related orthopoxvirus and the causative agent of mousepox, encodes an A36 homologue (ECTV-Mos-142) that is highly conserved despite a large truncation at the C terminus. Deleting the ECTV A36R gene leads to a reduction in the number of extracellular viruses formed and to a reduced plaque size, consistent with a role in microtubule transport. We also observed a complete loss of virus-associated actin comets, another phenotype dependent on A36 expression during VACV infection. ECTV ΔA36R was severely attenuated when used to infect the normally susceptible BALB/c mouse strain. ECTV ΔA36R replication and spread from the draining lymph nodes to the liver and spleen were significantly reduced in BALB/c mice and in Rag-1-deficient mice, which lack T and B lymphocytes. The dramatic reduction in ECTV ΔA36R titers early during the course of infection was not associated with an augmented immune response. Taken together, these findings demonstrate the critical role that subcellular transport pathways play not only in orthopoxvirus infection in an in vitro context but also during orthopoxvirus pathogenesis in a natural host. Furthermore, despite the attenuation of the mutant virus, we found that infection nonetheless induced protective immunity in mice, suggesting that orthopoxvirus vectors with A36 deletions may be considered another safe vaccine alternative.

  17. Transcription of a vaccinia virus late promoter template: requirement for the product of the A2L intermediate-stage gene.

    PubMed Central

    Passarelli, A L; Kovacs, G R; Moss, B

    1996-01-01

    Evidence is presented that a 26-kDa protein encoded by the vaccinia virus A2L open reading frame, originally shown to be one of three intermediate-stage genes that together can transactivate late-stage gene expression in transfection assays (J. G. Keck, C. J. Baldick, and B. Moss, Cell 61:801-809, 1990), is required for in vitro transcription of a template with a late promoter. The critical step in this analysis was the preparation of an extract containing all the required factors except for the A2L protein. This extract was prepared from cells infected with a recombinant vaccinia virus expressing the bacteriophage T7 RNA polymerase in the presence of the DNA synthesis inhibitor cytosine arabinoside and transfected with plasmids containing the two other known transactivator genes, A1L and G8R, under T7 promoter control. Reaction mixtures made with extracts of these cells had background levels of late transcription activity, unless they were supplemented with extracts of cells transfected with the A2L gene. Active transcription mixtures were also made by mixing extracts from three sets of cells, each transfected with a gene (A1L, A2L, or G8R) encoding a separate factor, indicating the absence of any requirement for their coexpression. To minimize the possibility that the A2L protein functions indirectly by activating another viral or cellular protein, this gene was expressed in insect cells by using a baculovirus vector. The partially purified recombinant protein complemented the activity of A2L-deficient cell extracts. Recombinant A1L, A2L, and G8R proteins, all produced in insect cells, together complemented extracts from mammalian cells containing only viral early proteins, concordant with previous in vivo transfection data. PMID:8676468

  18. Vaccinia immune globulin: current policies, preparedness, and product safety and efficacy.

    PubMed

    Wittek, Riccardo

    2006-05-01

    In 1980 the World Health Organization declared that smallpox was eradicated from the world, and routine smallpox vaccination was discontinued. Nevertheless, samples of the smallpox virus (variola virus) were retained for research purposes, not least because of fears that terrorist groups or rogue states might also have kept samples in order to develop a bioweapon. Variola virus represents an effective bioweapon because it is associated with high morbidity and mortality and is highly contagious. Since September 11, 2001, countries around the world have begun to develop policies and preparedness programs to deal with a bioterror attack, including stockpiling of smallpox vaccine. Smallpox vaccine itself may be associated with a number of serious adverse events, which can often be managed with vaccinia immune globulin (VIG). VIG may also be needed as prophylaxis in patients for whom pre-exposure smallpox vaccine is contraindicated (such as those with eczema or pregnant women), although it is currently not licensed in these cases. Two intravenous formulations of VIG (VIGIV Cangene and VIGIV Dynport) have been licensed by the FDA for the management of patients with progressive vaccinia, eczema vaccinatum, severe generalized vaccinia, and extensive body surface involvement or periocular implantation following inadvertent inoculation.

  19. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection.

    PubMed

    Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi

    2010-11-01

    We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  20. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  1. Nuclear localization of foamy virus Gag precursor protein.

    PubMed Central

    Schliephake, A W; Rethwilm, A

    1994-01-01

    All foamy viruses give rise to a strong nuclear staining when infected cells are reacted with sera from infected hosts. This nuclear fluorescence distinguishes foamy viruses from all other retroviruses. The experiments reported here indicate that the foamy virus Gag precursor protein is transiently located in the nuclei of infected cells and this is the likely reason for the typical foamy virus nuclear fluorescence. By using the vaccinia virus expression system, a conserved basic sequence motif in the nucleocapsid domain of foamy virus Gag proteins was identified to be responsible for the nuclear transport of the gag precursor molecule. This motif was also found to be able to direct a heterologous protein, the Gag protein of human immunodeficiency virus, into the nucleus. Images PMID:8035493

  2. Role of phosphatidylserine receptors in enveloped virus infection.

    PubMed

    Morizono, Kouki; Chen, Irvin S Y

    2014-04-01

    . We were the first to report that a bifunctional serum protein, Gas6, bridges envelope phosphatidylserine to a cell surface receptor, Axl. Recent studies demonstrated that many envelope viruses, including vaccinia, dengue, West Nile, and Ebola viruses, utilize Axl/Gas6 to facilitate their entry, suggesting that the phosphatidylserine-mediated viral entry mechanism can be shared by various enveloped viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most human phosphatidylserine-recognizing molecules for their abilities to facilitate viral infection. The results provide insights into the role(s) of envelope phosphatidylserine in viral infection, which can be applicable to the development of novel antiviral reagents that block phosphatidylserine-mediated viral entry.

  3. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection.

    PubMed

    Stittelaar, Koert J; Neyts, Johan; Naesens, Lieve; van Amerongen, Geert; van Lavieren, Rob F; Holý, Antonin; De Clercq, Erik; Niesters, Hubert G M; Fries, Edwin; Maas, Chantal; Mulder, Paul G H; van der Zeijst, Ben A M; Osterhaus, Albert D M E

    2006-02-09

    There is concern that variola virus, the aetiological agent of smallpox, may be used as a biological weapon. For this reason several countries are now stockpiling (vaccinia virus-based) smallpox vaccine. Although the preventive use of smallpox vaccination has been well documented, little is known about its efficacy when used after exposure to the virus. Here we compare the effectiveness of (1) post-exposure smallpox vaccination and (2) antiviral treatment with either cidofovir (also called HPMPC or Vistide) or with a related acyclic nucleoside phosphonate analogue (HPMPO-DAPy) after lethal intratracheal infection of cynomolgus monkeys (Macaca fascicularis) with monkeypox virus (MPXV). MPXV causes a disease similar to human smallpox and this animal model can be used to measure differences in the protective efficacies of classical and new-generation candidate smallpox vaccines. We show that initiation of antiviral treatment 24 h after lethal intratracheal MPXV infection, using either of the antiviral agents and applying various systemic treatment regimens, resulted in significantly reduced mortality and reduced numbers of cutaneous monkeypox lesions. In contrast, when monkeys were vaccinated 24 h after MPXV infection, using a standard human dose of a currently recommended smallpox vaccine (Elstree-RIVM), no significant reduction in mortality was observed. When antiviral therapy was terminated 13 days after infection, all surviving animals had virus-specific serum antibodies and antiviral T lymphocytes. These data show that adequate preparedness for a biological threat involving smallpox should include the possibility of treating exposed individuals with antiviral compounds such as cidofovir or other selective anti-poxvirus drugs.

  4. Characterization of ectromelia virus deficient in EVM036, the homolog of vaccinia virus F13L, and its application for rapid generation of recombinant viruses.

    PubMed

    Roscoe, Felicia; Xu, Ren-Huan; Sigal, Luis J

    2012-12-01

    The orthopoxvirus (OPV) vaccinia virus (VACV) requires an intact F13L gene to produce enveloped virions (EV) and to form plaques in cell monolayers. Simultaneous introduction of an exogenous gene and F13L into F13L-deficient VACV results in expression of the foreign gene and restoration of plaque size. This is used as a method to rapidly generate VACV recombinants without the need for drug selection. However, whether other OPVs require the orthologs of F13L to generate EV and form plaques, whether F13L orthologs and EV are important for OPV pathogenesis in natural hosts, and whether a system based on F13L ortholog deficiency can be used to generate recombinant OPVs other than VACV have not been reported. The F13L ortholog in ectromelia virus (ECTV), the agent of mousepox, is EVM036. We show that ECTV lacking EVM036 formed small plaques and was highly attenuated in vivo but still induced strong antibody responses. Reintroduction of EVM036 in tandem with the DsRed gene resulted in a virus that expressed DsRed in infected cells but was indistinguishable from wild-type ECTV in terms of plaque size and in vivo virulence. Thus, our data show that, like F13L in VACV, EVM036 is required for ECTV plaque formation and that EVM036 and EV are important for ECTV virulence. Our experiments also suggest that OPVs deficient in F13L orthologs could serve as safer anti-OPV vaccines. Further, our results demonstrate that ECTV deficient in EVM036 can be exploited for the rapid generation of fully virulent ECTV expressing foreign genes of interest.

  5. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis.

    PubMed

    Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga

    2015-03-16

    The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Single-Virus Fusion Experiments Reveal Proton Influx into Vaccinia Virions and Hemifusion Lag Times

    PubMed Central

    Schmidt, Florian I.; Kuhn, Phillip; Robinson, Tom; Mercer, Jason; Dittrich, Petra S.

    2013-01-01

    Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements. PMID:23870263

  7. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II

    PubMed Central

    Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L

    2009-01-01

    Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538

  8. From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus

    PubMed Central

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Neto, José Diomedes; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-01-01

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

  9. Changes in the mitochondrial network during ectromelia virus infection of permissive L929 cells.

    PubMed

    Gregorczyk, Karolina P; Szulc-Dąbrowska, Lidia; Wyżewski, Zbigniew; Struzik, Justyna; Niemiałtowski, Marek

    2014-01-01

    Mitochondria are extremely important organelles in the life of a cell. Recent studies indicate that mitochondria also play a fundamental role in the cellular innate immune mechanisms against viral infections. Moreover, mitochondria are able to alter their shape continuously through fusion and fission. These tightly regulated processes are activated or inhibited under physiological or pathological (e.g. viral infection) conditions to help restore homeostasis. However, many types of viruses, such as orthopoxviruses, have developed various strategies to evade the mitochondrial-mediated antiviral innate immune responses. Moreover, orthopoxviruses exploit the mitochondria for their survival. Such viral activity has been reported during vaccinia virus (VACV) infection. Our study shows that the Moscow strain of ectromelia virus (ECTV-MOS), an orthopoxvirus, alters the mitochondrial network in permissive L929 cells. Upon infection, the branching structure of the mitochondrial network collapses and becomes disorganized followed by destruction of mitochondrial tubules during the late stage of infection. Small, discrete mitochondria co-localize with progeny virions, close to the cell membrane. Furthermore, clustering of mitochondria is observed around viral factories, particularly between the nucleus and viroplasm. Our findings suggest that ECTV-MOS modulates mitochondrial cellular distribution during later stages of the replication cycle, probably enabling viral replication and/or assembly as well as transport of progeny virions inside the cell. However, this requires further investigation.

  10. Genome-Wide Comparison of Cowpox Viruses Reveals a New Clade Related to Variola Virus

    PubMed Central

    Kurth, Andreas; Nitsche, Andreas

    2013-01-01

    Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages. PMID:24312452

  11. Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus.

    PubMed

    Dabrowski, Piotr Wojtek; Radonić, Aleksandar; Kurth, Andreas; Nitsche, Andreas

    2013-01-01

    Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages.

  12. Three-Year Durability of Immune Responses Induced by HIV-DNA and HIV-Modified Vaccinia Virus Ankara and Effect of a Late HIV-Modified Vaccinia Virus Ankara Boost in Tanzanian Volunteers.

    PubMed

    Joachim, Agricola; Munseri, Patricia J; Nilsson, Charlotta; Bakari, Muhammad; Aboud, Said; Lyamuya, Eligius F; Tecleab, Teghesti; Liakina, Valentina; Scarlatti, Gabriella; Robb, Merlin L; Earl, Patricia L; Moss, Bernard; Wahren, Britta; Mhalu, Fred; Ferrari, Guido; Sandstrom, Eric; Biberfeld, Gunnel

    2017-08-01

    We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.

  13. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed Central

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-01-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines. PMID:8995676

  14. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-02-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines.

  15. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.

    PubMed

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-08-18

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection.

  16. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis

    PubMed Central

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-01-01

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression,more » and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.« less

  18. Use of Bioclimatic Factors to Determine Potential Niche of Vaccinia Virus, an Emerging and Zoonotic Pathogen

    NASA Astrophysics Data System (ADS)

    Quiner, C. A.; Nakazawa, Y.

    2017-12-01

    Emerging and understudied pathogens often lack information that most commonly used analytical tools require, such as negative controls or baseline data making public health control of emerging pathogens challenging. In lieu of opportunities to collect more data from larger outbreaks or formal epidemiological studies, new analytical strategies, merging case data with publically available datasets, can be used to understand transmission patterns and drivers of disease emergence. Zoonotic infections with Vaccinia virus (VACV) were first reported in Brazil in 1999, VACV is an emerging zoonotic Orthopoxvirus, which primarily infects dairy cattle and farmers in close contact with infected cows. Prospective studies of emerging pathogens could provide critical data that would inform public health planning and response to outbreaks. By using the location of 87-recorded outbreaks and publicly available bioclimatic data we demonstrate one such approach. Using an Ecological Niche Model (ENM), we identify the environmental conditions under which VACV outbreaks have occurred, and determine additional locations in two affected South American countries that may be susceptible to transmission. Further, we show how suitability for the virus responds to different levels of various environmental factors and highlight the most important climatic factors in determining its transmission. The final ENM predicted all areas where Brazilian outbreaks occurred, two out of five Colombian outbreaks and identified new regions within Brazil that are suitable for transmission based on bioclimatic factors. Further, the most important factors in determining transmission suitability are precipitation of the wettest quarter, annual precipitation, mean temperature of the coldest quarter and mean diurnal range. The analyses here provide a means by which to study patterns of an emerging infectious disease, and regions that are potentially at risk for it, in spite of the paucity of critical data. Policy

  19. Antigenic relatedness between glycoproteins of human respiratory syncytial virus subgroups A and B: evaluation of the contributions of F and G glycoproteins to immunity.

    PubMed Central

    Johnson, P R; Olmsted, R A; Prince, G A; Murphy, B R; Alling, D W; Walsh, E E; Collins, P L

    1987-01-01

    The degree of antigenic relatedness between human respiratory syncytial virus (RSV) subgroups A and B was estimated from antibody responses induced in cotton rats by respiratory tract infection with RSV. Glycoprotein-specific enzyme-linked immunosorbent assays of antibody responses induced by RSV infection demonstrated that the F glycoproteins of subgroups A and B were antigenically closely related (relatedness, R approximately 50%), whereas the G glycoproteins were only distantly related (R approximately 5%). Intermediate levels of antigenic relatedness (R approximately 25%) were seen in neutralizing antibodies from cotton rats infected with RSV of the two subgroups. Immunity against the F glycoprotein of subgroup A, induced by vaccinia-A2-F, conferred a high level of protection which was of comparable magnitude against challenge by RSV of either subgroup. In comparison, immunity against the G glycoprotein of subgroup A, induced by vaccinia-A2-G, conferred less complete, but significant, protection. Importantly, in vaccinia-A2-G-immunized animals, suppression of homologous challenge virus replication was significantly greater (13-fold) than that observed for the heterologous virus. PMID:3305988

  20. N1L is an ectromelia virus virulence factor and essential for in vivo spread upon respiratory infection.

    PubMed

    Gratz, Meike S; Suezer, Yasemin; Kremer, Melanie; Volz, Asisa; Majzoub, Monir; Hanschmann, Kay-Martin; Kalinke, Ulrich; Schwantes, Astrid; Sutter, Gerd

    2011-04-01

    The emergence of zoonotic orthopoxvirus infections and the threat of possible intentional release of pathogenic orthopoxviruses have stimulated renewed interest in understanding orthopoxvirus infections and the resulting diseases. Ectromelia virus (ECTV), the causative agent of mousepox, offers an excellent model system to study an orthopoxvirus infection in its natural host. Here, we investigated the role of the vaccinia virus ortholog N1L in ECTV infection. Respiratory infection of mice with an N1L deletion mutant virus (ECTVΔN1L) demonstrated profound attenuation of the mutant virus, confirming N1 as an orthopoxvirus virulence factor. Upon analysis of virus dissemination in vivo, we observed a striking deficiency of ECTVΔN1L spreading from the lungs to the livers or spleens of infected mice. Investigating the immunological mechanism controlling ECTVΔN1L infection, we found the attenuated phenotype to be unaltered in mice deficient in Toll-like receptor (TLR) or RIG-I-like RNA helicase (RLH) signaling as well as in those missing the type I interferon receptor or lacking B cells. However, in RAG-1(-/-) mice lacking mature B and T cells, ECTVΔN1L regained virulence, as shown by increasing morbidity and virus spread to the liver and spleen. Moreover, T cell depletion experiments revealed that ECTVΔN1L attenuation was reversed only by removing both CD4(+) and CD8(+) T cells, so the presence of either cell subset was still sufficient to control the infection. Thus, the orthopoxvirus virulence factor N1 may allow efficient ECTV infection in mice by interfering with host T cell function.

  1. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    PubMed

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  2. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins

    PubMed Central

    Hyun, Seong-In; Weisberg, Andrea

    2017-01-01

    ABSTRACT The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights

  3. Development and Evaluation of Single Domain Antibodies for Vaccinia and the L1 Antigen

    PubMed Central

    Walper, Scott A.; Liu, Jinny L.; Zabetakis, Daniel; Anderson, George P.; Goldman, Ellen R.

    2014-01-01

    There is ongoing interest to develop high affinity, thermal stable recognition elements to replace conventional antibodies in biothreat detection assays. As part of this effort, single domain antibodies that target vaccinia virus were developed. Two llamas were immunized with killed viral particles followed by boosts with the recombinant membrane protein, L1, to stimulate the immune response for envelope and membrane proteins of the virus. The variable domains of the induced heavy chain antibodies were selected from M13 phage display libraries developed from isolated RNA. Selection via biopanning on the L1 antigen produced single domain antibodies that were specific and had affinities ranging from 4×10−9 M to 7.0×10−10 M, as determined by surface plasmon resonance. Several showed good ability to refold after heat denaturation. These L1-binding single domain antibodies, however, failed to recognize the killed vaccinia antigen. Useful vaccinia binding single domain antibodies were isolated by a second selection using the killed virus as the target. The virus binding single domain antibodies were incorporated in sandwich assays as both capture and tracer using the MAGPIX system yielding limits of detection down to 4×105 pfu/ml, a four-fold improvement over the limit obtained using conventional antibodies. This work demonstrates the development of anti-vaccinia single domain antibodies and their incorporation into sandwich assays for viral detection. It also highlights the properties of high affinity and thermal stability that are hallmarks of single domain antibodies. PMID:25211488

  4. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity.

    PubMed

    Ami, Yasushi; Izumi, Yasuyuki; Matsuo, Kazuhiro; Someya, Kenji; Kanekiyo, Masaru; Horibata, Shigeo; Yoshino, Naoto; Sakai, Koji; Shinohara, Katsuaki; Matsumoto, Sohkichi; Yamada, Takeshi; Yamazaki, Shudo; Yamamoto, Naoki; Honda, Mitsuo

    2005-10-01

    Virus-specific T-cell responses can limit immunodeficiency virus type 1 (HIV-1) transmission and prevent disease progression and so could serve as the basis for an affordable, safe, and effective vaccine in humans. To assess their potential for a vaccine, we used Mycobacterium bovis bacillus Calmette-Guérin (BCG)-Tokyo and a replication-deficient vaccinia virus strain (DIs) as vectors to express full-length gag from simian immunodeficiency viruses (SIVs) (rBCG-SIVgag and rDIsSIVgag). Cynomolgus macaques were vaccinated with either rBCG-SIVgag dermally as a single modality or in combination with rDIsSIVgag intravenously. When cynomologus macaques were primed with rBCG-SIVgag and then boosted with rDIsSIVgag, high levels of gamma interferon (IFN-gamma) spot-forming cells specific for SIV Gag were induced. This combination regimen elicited effective protective immunity against mucosal challenge with pathogenic simian-human immunodeficiency virus for the 1 year the macaques were under observation. Antigen-specific intracellular IFN-gamma activity was similarly induced in each of the macaques with the priming-boosting regimen. Other groups receiving the opposite combination or the single-modality vaccines were not effectively protected. These results suggest that a recombinant M. bovis BCG-based vector may have potential as an HIV/AIDS vaccine when administered in combination with a replication-deficient vaccinia virus DIs vector in a priming-boosting strategy.

  5. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice.

    PubMed

    Magnusson, Sofia E; Altenburg, Arwen F; Bengtsson, Karin Lövgren; Bosman, Fons; de Vries, Rory D; Rimmelzwaan, Guus F; Stertman, Linda

    2018-04-01

    Influenza viruses continuously circulate in the human population and escape recognition by virus neutralizing antibodies induced by prior infection or vaccination through accumulation of mutations in the surface proteins hemagglutinin (HA) and neuraminidase (NA). Various strategies to develop a vaccine that provides broad protection against different influenza A viruses are under investigation, including use of recombinant (r) viral vectors and adjuvants. The replication-deficient modified vaccinia virus Ankara (MVA) is a promising vaccine vector that efficiently induces B and T cell responses specific for the antigen of interest. It is assumed that live vaccine vectors do not require an adjuvant to be immunogenic as the vector already mediates recruitment and activation of immune cells. To address this topic, BALB/c mice were vaccinated with either protein- or rMVA-based HA influenza vaccines, formulated with or without the saponin-based Matrix-M™ adjuvant. Co-formulation with Matrix-M significantly increased HA vaccine immunogenicity, resulting in antigen-specific humoral and cellular immune responses comparable to those induced by unadjuvanted rMVA-HA. Of special interest, rMVA-HA immunogenicity was also enhanced by addition of Matrix-M, demonstrated by enhanced HA inhibition antibody titres and cellular immune responses. Matrix-M added to either protein- or rMVA-based HA vaccines mediated recruitment and activation of antigen-presenting cells and lymphocytes to the draining lymph node 24 and 48 h post-vaccination. Taken together, these results suggest that adjuvants can be used not only with protein-based vaccines but also in combination with rMVA to increase vaccine immunogenicity, which may be a step forward to generate new and more effective influenza vaccines.

  6. Comparative Proteomics of Human Monkeypox and Vaccinia Intracellular Mature and Extracellular Enveloped Virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manes, Nathan P.; Estep, Ryan D.; Mottaz, Heather M.

    2008-03-07

    Orthopoxviruses are the largest and most complex of the animal viruses. In response to the recent emergence of monkeypox in Africa and the threat of smallpox bioterrorism, virulent (monkeypox virus) and benign (vaccinia virus) orthopoxviruses were proteomically compared with the goal of identifying proteins required for pathogenesis. Orthopoxviruses were grown in HeLa cells to two different viral forms (intracellular mature virus and extracellular enveloped virus), purified by sucrose gradient ultracentrifugation, denatured using RapiGest™ surfactant, and digested with trypsin. Unfractionated samples and strong cation exchange HPLC fractions were analyzed by reversed-phase LC-MS/MS, and analyses of the MS/MS spectra using SEQUEST® andmore » X! Tandem resulted in the identification of hundreds of monkeypox, vaccinia, and copurified host proteins. The unfractionated samples were additionally analyzed by LC-MS on an LTQ-Orbitrap™, and the accurate mass and elution time tag approach was used to perform quantitative comparisons. Possible pathophysiological roles of differentially expressed orthopoxvirus genes are discussed.« less

  7. Single-virus fusion experiments reveal proton influx into vaccinia virions and hemifusion lag times.

    PubMed

    Schmidt, Florian I; Kuhn, Phillip; Robinson, Tom; Mercer, Jason; Dittrich, Petra S

    2013-07-16

    Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. [Experiments on disinfection of vaccinia virus embedded in scabs and/or at the hand].

    PubMed

    Schümann, K; Grossgebauer, K

    1977-01-01

    Vaccinia viruses embedded in rabbit dermal scabs were subjected to physical and chemical disinfection procedures. Scabs were suspended in vitro without saline or in physiological saline, and left for 1 hour at 70 to 90 degrees C. A complete inactivation was achived only in those scab samples which had been incubated at 90 degrees C for 1 hour and suspended in physiological saline. Scabs which had been placed in a disinfecting apparatus (Vacudes 4000) filled with mattrasses consistently proved to be free of infectious vaccinia viruses in each of the chosen programs. In addition scabs were subjected to disinfection by means of chemical disinfecting agents. The scabs had been placed in a chemical disinfecting suspension and left there for 90 minutes. Complete disinfection was obtained with glutaraldehyde 2%, formaldehyde 2%, Lysoformin 2% or 3%, phenol 5% and chloramine T 2%. Complete disinfection was likewise achieved after 3 hours treatment with some alchohols (ethylalcohol 80%, isopropylalcohol 7%, n-propylalcohol 60%), Amocid 5% and formaldehyde 1%.0.5% formaldehyde caused complete disinfection when applied for 6 hours. The only exception was a Quat which did not disinfect fully even after 18 hours application. Concerning the tests to disinfect the hands complete disinfection occurs when using chloramine T (1.5%) or isopropylalcohol (70%) in 2 to 5 minutes. Further tests were performed with scabs which were placed in sick rooms that were terminally disinfected with formaline vapor. It could be confirmed that the usual terminal disinfection with formaldehyde vapor was unable to completely disinfect the scabs. It is necessary to double the amount of formaldehyde (10 g formaldehyde per cubic metre of space) and prolong the period of treatment to 24 hours to achieve a greater degree of disinfection rate.

  9. Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex.

    PubMed

    Erez, Noam; Paran, Nir; Maik-Rachline, Galia; Politi, Boaz; Israely, Tomer; Schnider, Paula; Fuchs, Pinhas; Melamed, Sharon; Lustig, Shlomo

    2009-09-29

    Ectromelia virus, a member of the Orthopox genus, is the causative agent of the highly infectious mousepox disease. Previous studies have shown that different poxviruses induce cell-cell fusion which is manifested by the formation of multinucleated-giant cells (polykaryocytes). This phenomenon has been widely studied with vaccinia virus in conditions which require artificial acidification of the medium. We show that Ectromelia virus induces cell-cell fusion under neutral pH conditions and requires the presence of a sufficient amount of viral particles on the plasma membrane of infected cells. This could be achieved by infection with a replicating virus and its propagation in infected cells (fusion "from within") or by infection with a high amount of virus particles per cell (fusion "from without"). Inhibition of virus maturation or inhibition of virus transport on microtubules towards the plasma membrane resulted in a complete inhibition of syncytia formation. We show that in contrast to vaccinia virus, Ectromelia virus induces cell-cell fusion irrespectively of its hemagglutination properties and cell-surface expression of the orthologs of the fusion inhibitory complex, A56 and K2. Additionally, cell-cell fusion was also detected in mice lungs following lethal respiratory infection. Ectromelia virus induces spontaneous cell-cell fusion in-vitro and in-vivo although expressing an A56/K2 fusion inhibitory complex. This syncytia formation property cannot be attributed to the 37 amino acid deletion in ECTV A56.

  10. Monocytes Phenotype and Cytokine Production in Human Immunodeficiency Virus-1 Infected Patients Receiving a Modified Vaccinia Ankara-Based HIV-1 Vaccine: Relationship to CD300 Molecules Expression.

    PubMed

    Vitallé, Joana; Zenarruzabeitia, Olatz; Terrén, Iñigo; Plana, Montserrat; Guardo, Alberto C; Leal, Lorna; Peña, José; García, Felipe; Borrego, Francisco

    2017-01-01

    A modified vaccinia Ankara-based HIV-1 vaccine clade B (MVA-B) has been tested for safety and immunogenicity in low-risk human immunodeficiency virus (HIV)-uninfected individuals and as a therapeutic vaccine in HIV-1-infected individuals on combined antiretroviral therapy (cART). As a therapeutic vaccine, MVA-B was safe and broadly immunogenic; however, patients still showed a viral rebound upon treatment interruption. Monocytes are an important part of the viral reservoir and several studies suggest that they are partly responsible for the chronic inflammation observed in cART-treated HIV-infected people. The CD300 family of receptors has an important role in several diseases, including viral infections. Monocytes express CD300a, c, e, and f molecules and lipopolysaccharide (LPS) and other stimuli regulate their expression. However, the expression and function of CD300 receptors on monocytes in HIV infection is still unknown. In this work, we investigated for the first time the expression of CD300 molecules and the cytokine production in response to LPS on monocytes from HIV-1-infected patients before and after vaccination with MVA-B. Our results showed that CD300 receptors expression on monocytes from HIV-1-infected patients correlates with markers of HIV infection progression and immune inflammation. Specifically, we observed a positive correlation between the expression of CD300e and CD300f receptors on monocytes with the number of CD4+ T cells of HIV-1-infected patients before vaccination. We also saw a positive correlation between the expression of the inhibitory receptor CD300f and the expression of CD163 on monocytes from HIV-1-infected individuals before and after vaccination. In addition, monocytes exhibited a higher cytokine production in response to LPS after vaccination, almost at the same levels of monocytes from healthy donors. Furthermore, we also described a correlation in the expression of CD300e and CD300f receptors with TNF-α production in

  11. Statistical Approach To Estimate Vaccinia-Specific Neutralizing Antibody Titers Using a High-Throughput Assay▿

    PubMed Central

    Kennedy, Richard; Pankratz, V. Shane; Swanson, Eric; Watson, David; Golding, Hana; Poland, Gregory A.

    2009-01-01

    Because of the bioterrorism threat posed by agents such as variola virus, considerable time, resources, and effort have been devoted to biodefense preparation. One avenue of this research has been the development of rapid, sensitive, high-throughput assays to validate immune responses to poxviruses. Here we describe the adaptation of a β-galactosidase reporter-based vaccinia virus neutralization assay to large-scale use in a study that included over 1,000 subjects. We also describe the statistical methods involved in analyzing the large quantity of data generated. The assay and its associated methods should prove useful tools in monitoring immune responses to next-generation smallpox vaccines, studying poxvirus immunity, and evaluating therapeutic agents such as vaccinia virus immune globulin. PMID:19535540

  12. Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement.

    PubMed

    Rosengard, Ariella M; Liu, Yu; Nie, Zhiping; Jimenez, Robert

    2002-06-25

    Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30-40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges.

  13. Variola virus immune evasion design: Expression of a highly efficient inhibitor of human complement

    PubMed Central

    Rosengard, Ariella M.; Liu, Yu; Nie, Zhiping; Jimenez, Robert

    2002-01-01

    Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30–40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges. PMID:12034872

  14. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  15. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  16. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  17. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  18. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, Sean Damien

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  19. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice.

    PubMed

    Bathke, Barbara; Pätzold, Juliane; Kassub, Ronny; Giessel, Raphael; Lämmermann, Kerstin; Hinterberger, Maria; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus; Lauterbach, Henning

    2017-12-27

    The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic ® (MVA-BN ® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN ® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN ® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN ® backbone. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  20. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition.

    PubMed

    Kleinpeter, Patricia; Fend, Laetitia; Thioudellet, Christine; Geist, Michel; Sfrontato, Nathalie; Koerper, Véronique; Fahrner, Catherine; Schmitt, Doris; Gantzer, Murielle; Remy-Ziller, Christelle; Brandely, Renée; Villeval, Dominique; Rittner, Karola; Silvestre, Nathalie; Erbs, Philippe; Zitvogel, Laurence; Quéméneur, Eric; Préville, Xavier; Marchand, Jean-Baptiste

    2016-01-01

    We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro . Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8 + and CD4 + ). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.

  1. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition

    PubMed Central

    Kleinpeter, Patricia; Fend, Laetitia; Thioudellet, Christine; Geist, Michel; Sfrontato, Nathalie; Koerper, Véronique; Fahrner, Catherine; Schmitt, Doris; Gantzer, Murielle; Remy-Ziller, Christelle; Brandely, Renée; Villeval, Dominique; Rittner, Karola; Silvestre, Nathalie; Erbs, Philippe; Zitvogel, Laurence; Quéméneur, Eric; Préville, Xavier; Marchand, Jean-Baptiste

    2016-01-01

    ABSTRACT We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs. PMID:27853644

  2. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  3. A novel system for constructing a recombinant highly-attenuated vaccinia virus strain (LC16m8) expressing foreign genes and its application for the generation of LC16m8-based vaccines against herpes simplex virus 2.

    PubMed

    Omura, Natsumi; Yoshikawa, Tomoki; Fujii, Hikaru; Shibamura, Miho; Inagaki, Takuya; Kato, Hirofumi; Egawa, Kazutaka; Harada, Shizuko; Yamada, Souichi; Takeyama, Haruko; Saijo, Masayuki

    2018-04-27

    A novel system was developed for generating a highly-attenuated vaccinia virus LC16m8 (m8, third generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with the fluorescent signal. Using this system, recombinant m8s, which expressed either herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB+gD) were developed, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with each of these recombinant m8s was confirmed with an immunofluorescence assay. Next, mice pre-infected with each of the recombinant m8s were infected with HSV-2 at the lethal dose to examine the vaccine efficacy. The fatality rate in mice pre-infected with either of the recombinant gB+gD- or gD-expressing m8s significantly decreased in comparison with that of the control. The survival rate in both male and female mice pre-infected with either of the recombinant gB+gD- and gD-expressing m8s increased to 100 % and 60 %, respectively, while most of the control mice died. In summary, this new system might be applicable for generating a novel m8-based vaccine.

  4. Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure.

    PubMed

    Mirzakhanyan, Yeva; Gershon, Paul D

    2017-09-01

    The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size. Copyright © 2017 American Society for Microbiology.

  5. Development of a Genetically-Engineered Venezuelan Equine Encephalitis virus Vaccine

    DTIC Science & Technology

    1989-11-13

    necrosis. We have evaluated the efficacy of a recombinant vaccinia/VEE virus vaccine (TC-5A) to protect horses against challenge with equine virulent...of horse vaccinees with equine virulent VEE virus 71-180 and vaccinia viruses ........ 27 7. ELISA cross-reactivity of sera from immunized equines ...antibodies in equines after immuniza- tion with TC-83, TC-5A and wild-type vaccinia viruses . .40 5. Body temperature of horses immunized with TC-5A (A

  6. Viruses Infecting Reptiles

    PubMed Central

    Marschang, Rachel E.

    2011-01-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. PMID:22163336

  7. Viruses infecting reptiles.

    PubMed

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  8. Immunization with a Recombinant Vaccinia Virus That Encodes Nonstructural Proteins of the Hepatitis C Virus Suppresses Viral Protein Levels in Mouse Liver

    PubMed Central

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid–polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29(+/−)/MxCre(+/−) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine. PMID:23284733

  9. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    PubMed

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  10. Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques.

    PubMed

    Iyer, Smita S; Gangadhara, Sailaja; Victor, Blandine; Shen, Xiaoying; Chen, Xuemin; Nabi, Rafiq; Kasturi, Sudhir P; Sabula, Michael J; Labranche, Celia C; Reddy, Pradeep B J; Tomaras, Georgia D; Montefiori, David C; Moss, Bernard; Spearman, Paul; Pulendran, Bali; Kozlowski, Pamela A; Amara, Rama Rao

    2016-10-01

    The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing

  11. Nucleic Acid-Induced Resistance to Viral Infection

    PubMed Central

    Takano, Kouichi; Warren, Joel; Jensen, Keith E.; Neal, Alan L.

    1965-01-01

    Takano, Kouichi (Chas. Pfizer & Co., Inc., Terre Haute, Ind.), Joel Warren, Keith E. Jensen, and Alan L. Neal. Nucleic acid resistance to viral infection. J. Bacteriol. 90:1542–1547. 1965.—Administration of nonviral nucleic acids to mice increased their resistance to a subsequent infection with influenza or encephalomyocarditis viruses. Injection of ribonucleic acid or deoxyribonucleic acid by peripheral routes did not modify susceptibility to intranasal infection. Lung tissue extracts from animals previously treated with yeast nucleic acid inhibited the growth of vaccinia and influenza viruses. The protective effect of exogenous nucleic acids persisted in mice for several days, but gradually diminished to undetectable levels. PMID:4285332

  12. RAB1A promotes Vaccinia virus replication by facilitating the production of intracellular enveloped virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechenick Jowers, Tali; Featherstone, Rebecca J.; Reynolds, Danielle K.

    2015-01-15

    Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore bemore » added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. - Highlights: • Characterisation of the role of the small GTPase RAB1A in VACV replication. • RAB1A is not required for production of the primary virion form (IMV). • RAB1A is required for production of processed virion forms (IEVs, CEVs and EEVs). • Consistent with known role of RAB1A in ER to Golgi transport.« less

  13. Preclinical Testing Oncolytic Vaccinia Virus Strain GLV-5b451 Expressing an Anti-VEGF Single-Chain Antibody for Canine Cancer Therapy

    PubMed Central

    Adelfinger, Marion; Bessler, Simon; Frentzen, Alexa; Cecil, Alexander; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Szalay, Aladar A.

    2015-01-01

    Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for canine cancer therapy. Here we describe, for the first time, the characterization and the use of VACV strain GLV-5b451 expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as therapeutic agent against different canine cancers. Cell culture data demonstrated that GLV-5b451 efficiently infected and destroyed all four tested canine cancer cell lines including: mammary carcinoma (MTH52c), mammary adenoma (ZMTH3), prostate carcinoma (CT1258), and soft tissue sarcoma (STSA-1). The GLV-5b451 virus-mediated production of GLAF-2 antibody was observed in all four cancer cell lines. In addition, this antibody specifically recognized canine VEGF. Finally, in canine soft tissue sarcoma (CSTS) xenografted mice, a single systemic administration of GLV-5b451 was found to be safe and led to anti-tumor effects resulting in the significant reduction and substantial long-term inhibition of tumor growth. A CD31-based immuno-staining showed significantly decreased neo-angiogenesis in GLV-5b451-treated tumors compared to the controls. In summary, these findings indicate that GLV-5b451 has potential for use as a therapeutic agent in the treatment of CSTS. PMID:26205404

  14. Discrete virus infection model of hepatitis B virus.

    PubMed

    Zhang, Pengfei; Min, Lequan; Pian, Jianwei

    2015-01-01

    In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely applied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable. Based on one revised Nowak et al's virus infection model, this study introduces a discrete virus infection model (DVIM). Two equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0<1 then the virus free equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model (SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.

  15. Isolated limb perfusion with melphalan, tumour necrosis factor-alpha and oncolytic vaccinia virus improves tumour targeting and prolongs survival in a rat model of advanced extremity sarcoma.

    PubMed

    Pencavel, Tim D; Wilkinson, Michelle J; Mansfield, David C; Khan, Aadil A; Seth, Rohit; Karapanagiotou, Eleni M; Roulstone, Victoria; Aguilar, Richard J; Chen, Nanhai G; Szalay, Aladar A; Hayes, Andrew J; Harrington, Kevin J

    2015-02-15

    Isolated limb perfusion (ILP) is a treatment for advanced extremity sarcoma and in-transit melanoma. Advancing this procedure by investigating the addition of novel agents, such as cancer-selective oncolytic viruses, may improve both the therapeutic efficacy of ILP and the tumour-targeted delivery of oncolytic virotherapy. Standard in vitro assays were used to characterise single agent and combinatorial activities of melphalan, tumour necrosis factor-alpha (TNF-α) and Lister strain vaccinia virus (GLV-1h68) against BN175 rat sarcoma cells. An orthotopic model of advanced extremity sarcoma was used to evaluate survival of animals after ILP with combinations of TNF-α, melphalan and GLV-1h68. We investigated the efficiency of viral tumour delivery by ILP compared to intravenous therapy, the locoregional and systemic biodistribution of virus after ILP, and the effect of mode of administration on antibody response. The combination of melphalan and GLV-1h68 was synergistic in vitro. The addition of virus to standard ILP regimens was well tolerated and demonstrated superior tumour targeting compared to intravenous administration. Triple therapy (melphalan/TNF-α/GLV-1h68) resulted in increased tumour growth delay and enhanced survival compared to other treatment regimens. Live virus was recovered in large amounts from perfused regions, but in smaller amounts from systemic organs. The addition of oncolytic vaccinia virus to existing TNF-α/melphalan-based ILP strategies results in survival advantage in an immunocompetent rat model of advanced extremity sarcoma. Virus administered by ILP has superior tumour targeting compared to intravenous delivery. Further evaluation and clinical translation of this approach is warranted. © 2014 UICC.

  16. Parainfluenza virus 5-based vaccine vectors expressing vaccinia virus (VACV) antigens provide long-term protection in mice from lethal intranasal VACV challenge.

    PubMed

    Clark, Kimberly M; Johnson, John B; Kock, Nancy D; Mizel, Steven B; Parks, Griffith D

    2011-10-25

    To test the potential for parainfluenza virus 5 (PIV5)-based vectors to provide protection from vaccinia virus (VACV) infection, PIV5 was engineered to express secreted VACV L1R and B5R proteins, two important antigens for neutralization of intracellular mature (IMV) and extracellular enveloped (EEV) virions, respectively. Protection of mice from lethal intranasal VACV challenge required intranasal immunization with PIV5-L1R/B5R in a prime-boost protocol, and correlated with low VACV-induced pathology in the respiratory tract and anti-VACV neutralizing antibody. Mice immunized with PIV5-L1R/B5R showed some disease symptoms following VACV challenge such as loss of weight and hunching, but these symptoms were delayed and less severe than with unimmunized control mice. While immunization with PIV5 expressing B5R alone conferred at least some protection, the most effective immunization included the PIV5 vector expressing L1R alone or in combination with PIV5-B5R. PIV5-L1R/B5R vectors elicited protection from VACV challenge even when CD8+ cells were depleted, but not in the case of mice that were defective in B cell production. Mice were protected from VACV challenge out to at least 1.5 years after immunization with PIV5-L1R/B5R vectors, and showed significant levels of anti-VACV neutralizing antibodies. These results demonstrate the potential for PIV5-based vectors to provide long lasting protection against complex human respiratory pathogens such as VACV, but also highlight the need to understand mechanisms for the generation of strong immune responses against poorly immunogenic viral proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Towards a universal vaccine for avian influenza: Protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus

    PubMed Central

    Boyd, Amy C.; Ruiz-Hernandez, Raul; Peroval, Marylene Y.; Carson, Connor; Balkissoon, Devanand; Staines, Karen; Turner, Alison V.; Hill, Adrian V.S.; Gilbert, Sarah C.; Butter, Colin

    2013-01-01

    Current vaccines targeting surface proteins can drive antigenic variation resulting either in the emergence of more highly pathogenic viruses or of antigenically distinct viruses that escape control by vaccination and thereby persist in the host population. Influenza vaccines typically target the highly mutable surface proteins and do not provide protection against heterologous challenge. Vaccines which induce immune responses against conserved influenza epitopes may confer protection against heterologous challenge. We report here the results of vaccination with recombinant modified Vaccinia virus Ankara (MVA) and Adenovirus (Ad) expressing a fusion construct of nucleoprotein and matrix protein (NP + M1). Prime and boost vaccination regimes were trialled in different ages of chicken and were found to be safe and immunogenic. Interferon-γ (IFN-γ) ELISpot was used to assess the cellular immune response post secondary vaccination. In ovo Ad prime followed by a 4 week post hatch MVA boost was identified as the most immunogenic regime in one outbred and two inbred lines of chicken. Following vaccination, one inbred line (C15I) was challenged with low pathogenic avian influenza (LPAI) H7N7 (A/Turkey/England/1977). Birds receiving a primary vaccination with Ad-NP + M1 and a secondary vaccination with MVA-NP + M1 exhibited reduced cloacal shedding as measured by plaque assay at 7 days post infection compared with birds vaccinated with recombinant viruses containing irrelevant antigen. This preliminary indication of efficacy demonstrates proof of concept in birds; induction of T cell responses in chickens by viral vectors containing internal influenza antigens may be a productive strategy for the development of vaccines to induce heterologous protection against influenza in poultry. PMID:23200938

  18. Recombinant modified vaccinia virus Ankara–simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer

    PubMed Central

    Seth, Aruna; Ourmanov, Ilnour; Kuroda, Marcelo J.; Schmitz, Jörn E.; Carroll, Miles W.; Wyatt, Linda S.; Moss, Bernard; Forman, Meryl A.; Hirsch, Vanessa M.; Letvin, Norman L.

    1998-01-01

    The utility of modified vaccinia virus Ankara (MVA) as a vector for eliciting AIDS virus-specific cytotoxic T lymphocytes (CTL) was explored in the simian immunodeficiency virus (SIV)/rhesus monkey model. After two intramuscular immunizations with recombinant MVA-SIVSM gag pol, the monkeys developed a Gag epitope-specific CTL response readily detected in peripheral blood lymphocytes by using a functional killing assay. Moreover, those immunizations also elicited a population of CD8+ T lymphocytes in the peripheral blood that bound a specific major histocompatibility complex class I/peptide tetramer. These Gag epitope-specific CD8+ T lymphocytes also were demonstrated by using both functional and tetramer-binding assays in lymph nodes of the immunized monkeys. These observations suggest that MVA may prove a useful vector for an HIV-1 vaccine. They also suggest that tetramer staining may be a useful technology for monitoring CTL generation in vaccine trials in nonhuman primates and in humans. PMID:9707609

  19. The neutralizing antibody response to the vaccinia virus A28 protein is specifically enhanced by its association with the H2 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinoda, Kaori; Wyatt, Linda S.; Moss, Bernard, E-mail: bmoss@niaid.nih.go

    2010-09-15

    The vaccinia virus (VACV) entry-fusion complex (EFC) is composed of at least nine membrane proteins. Immunization of mice with individual EFC genes induced corresponding protein-binding antibody but failed to protect against VACV intranasal challenge and only DNA encoding A28 elicited low neutralizing antibody. Because the A28 and H2 proteins interact, we determined the effect of immunizing with both genes simultaneously. This procedure greatly enhanced the amount of antibody that bound intact virions, neutralized infectivity, and provided partial protection against respiratory challenge. Neither injection of A28 and H2 plasmids at different sites or mixing A28 and H2 sera enhanced neutralizing antibody.more » The neutralizing antibody could be completely removed by binding to the A28 protein alone and the epitope was located in the C-terminal segment. These data suggest that the interaction of H2 with A28 stabilizes the immunogenic form of A28, mimicking an exposed region of the entry-fusion complex on infectious virions.« less

  20. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses.

    PubMed

    Dowall, Stuart D; Graham, Victoria A; Rayner, Emma; Hunter, Laura; Watson, Robert; Taylor, Irene; Rule, Antony; Carroll, Miles W; Hewson, Roger

    2016-01-01

    Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge.

  1. Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins.

    PubMed

    Gangadhara, Sailaja; Kwon, Young-Man; Jeeva, Subbiah; Quan, Fu-Shi; Wang, Baozhong; Moss, Bernard; Compans, Richard W; Amara, Rama Rao; Jabbar, M Abdul; Kang, Sang-Moo

    2017-12-19

    Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.

  2. Immune and histopathological responses in animals vaccinated with recombinant vaccinia viruses that express individual genes of human respiratory syncytial virus.

    PubMed

    Stott, E J; Taylor, G; Ball, L A; Anderson, K; Young, K K; King, A M; Wertz, G W

    1987-12-01

    Previous reports have established that vaccinia virus (VV) recombinants expressing G, F, or N protein of respiratory syncytial (RS) virus protect small animals against intranasal challenge with live RS virus. This work demonstrates that a variety of parameters affect the protection induced by recombinant viruses. The route of vaccination, the subtype of challenge virus, and the species used influenced the antibody titers and extent of protection. During these studies, observations were also made on the subclass of antibody generated, and pulmonary histopathological changes induced by challenge after vaccination were noted. The effect of route of inoculation on host response was examined by vaccinating mice intranasally, intraperitoneally, or by scarification with a recombinant VV expressing the RS virus G glycoprotein. Intranasal vaccination induced 25-fold-higher titers of antibody to RS virus in the lung than the intraperitoneal route did, but both routes resulted in complete suppression of virus replication after intranasal challenge 21 days after vaccination. Scarification was a less effective method of vaccination. The antibody induced by recombinant VV in mice was mostly immunoglobulin G2a (IgG2a) with some IgG2b. No antibody to RS virus was detected in the IgA, IgM, IgG1, or IgG3 subclass irrespective of the vaccination route. The G and F glycoproteins were shown to elicit similar subclasses of antibody. However, animals vaccinated with the G and F vectors differed strikingly in their response to challenge by heterologous virus. Mice or cotton rats vaccinated with recombinant VV carrying the G gene of RS virus were protected against challenge only with homologous subtype A virus. Vaccination with a recombinant VV expressing the F glycoprotein induced protection against both homologous and heterologous subtype B virus challenge. The protection induced in mice was greater than that detected in cotton rats, indicating that the host may also affect immunity

  3. The Myristate Moiety and Amino Terminus of Vaccinia Virus L1 Constitute a Bipartite Functional Region Needed for Entry

    PubMed Central

    Whitbeck, J. Charles; Ponce-de-León, Manuel; Saw, Wan Ting; Cohen, Gary H.; Eisenberg, Roselyn J.

    2012-01-01

    Vaccinia virus (VACV) L1 is a myristoylated envelope protein which is required for cell entry and the fusion of infected cells. L1 associates with members of the entry-fusion complex (EFC), but its specific role in entry has not been delineated. We recently demonstrated (Foo CH, et al., Virology 385:368–382, 2009) that soluble L1 binds to cells and blocks entry, suggesting that L1 serves as the receptor-binding protein for entry. Our goal is to identify the structural domains of L1 which are essential for its functions in VACV entry. We hypothesized that the myristate and the conserved residues at the N terminus of L1 are critical for entry. To test our hypothesis, we generated mutants in the N terminus of L1 and used a complementation assay to evaluate their ability to rescue infectivity. We also assessed the myristoylation efficiency of the mutants and their ability to interact with the EFC. We found that the N terminus of L1 constitutes a region that is critical for the infectivity of VACV and for myristoylation. At the same time, the nonmyristoylated mutants were incorporated into mature virions, suggesting that the myristate is not required for the association of L1 with the viral membrane. Although some of the mutants exhibited altered structural conformations, two mutants with impaired infectivity were similar in conformation to wild-type L1. Importantly, these two mutants, with changes at A4 and A5, undergo myristoylation. Overall, our results imply dual differential roles for myristate and the amino acids at the N terminus of L1. We propose a myristoyl switch model to describe how L1 functions. PMID:22398293

  4. HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine.

    PubMed

    Shen, Xiaoying; Basu, Rahul; Sawant, Sheetal; Beaumont, David; Kwa, Sue Fen; LaBranche, Celia; Seaton, Kelly E; Yates, Nicole L; Montefiori, David C; Ferrari, Guido; Wyatt, Linda S; Moss, Bernard; Alam, S Munir; Haynes, Barton F; Tomaras, Georgia D; Robinson, Harriet L

    2017-12-15

    An important goal of human immunodeficiency virus (HIV) vaccine design is identification of strategies that elicit effective antiviral humoral immunity. One novel approach comprises priming with DNA and boosting with modified vaccinia virus Ankara (MVA) expressing HIV-1 Env on virus-like particles. In this study, we evaluated whether the addition of a gp120 protein in alum or MVA-expressed secreted gp140 (MVAgp140) could improve immunogenicity of a DNA prime-MVA boost vaccine. Five rhesus macaques per group received two DNA primes at weeks 0 and 8 followed by three MVA boosts (with or without additional protein or MVAgp140) at weeks 18, 26, and 40. Both boost immunogens enhanced the breadth of HIV-1 gp120 and V1V2 responses, antibody-dependent cellular cytotoxicity (ADCC), and low-titer tier 1B and tier 2 neutralizing antibody responses. However, there were differences in antibody kinetics, linear epitope specificity, and CD4 T cell responses between the groups. The gp120 protein boost elicited earlier and higher peak responses, whereas the MVAgp140 boost resulted in improved antibody durability and comparable peak responses after the final immunization. Linear V3 specific IgG responses were particularly enhanced by the gp120 boost, whereas the MVAgp140 boost also enhanced responses to linear C5 and C2.2 epitopes. Interestingly, gp120, but not the MVAgp140 boost, increased peak CD4 + T cell responses. Thus, both gp120 and MVAgp140 can augment potential protection of a DNA/MVA vaccine by enhancing gp120 and V1/V2 antibody responses, whereas potential protection by gp120, but not MVAgp140 boosts, may be further impacted by increased CD4 + T cell responses. IMPORTANCE Prior immune correlate analyses with humans and nonhuman primates revealed the importance of antibody responses in preventing HIV-1 infection. A DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine has proven to be potent in eliciting antibody responses. Here we explore the ability of boosts with

  5. [Safety and efficacy of an antirabies vaccine consisting of recombinant vaccinia-rabies virus administered orally to the fox, dog and cat].

    PubMed

    Blancou, J; Artois, M; Brochier, B; Thomas, I; Pastoret, P P; Desmettre, P; Languet, B; Kiény, M P

    1989-01-01

    One of the most promising ways to control rabies in wildlife seems to be the distribution of bait containing an anti-rabies vaccine. So far, the most widely used vaccines were modified live viruses (SAD strain or derivatives). Nevertheless, these strains retain some pathogenicity for non-target species. A novel vaccine was proposed consisting of genetically modified vaccinia virus (strain Copenhagen, thermosensitive ts 26) expressing the foreign glycoprotein G for the rabies virus (strain ERA). Different doses of this recombinant virus were administered orally to 59 foxes (Vulpes vulpes) and their antibodies were titrated before challenge. Foxes (8/8) resisted 1 month after vaccination with 10(7) plaque forming units (PFU), or 4/4 after 18 months. Seroconversion among dogs was 4/4 after vaccination with 10(9,6) PFU and 4/4 among cats after vaccination with 10(8) PFU. These dogs (4/4) and cats (3/4) resisted the challenge 2-3 months after vaccination. This vaccine thus appears to be potent and safe in these species. Its properties are discussed.

  6. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses

    PubMed Central

    Dowall, Stuart D.; Graham, Victoria A.; Rayner, Emma; Hunter, Laura; Watson, Robert; Taylor, Irene; Rule, Antony; Carroll, Miles W.; Hewson, Roger

    2016-01-01

    Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge. PMID:27272940

  7. Rapid and Effective Virucidal Activity of Povidone-Iodine Products Against Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and Modified Vaccinia Virus Ankara (MVA).

    PubMed

    Eggers, Maren; Eickmann, Markus; Zorn, Juergen

    2015-12-01

    Since the first case of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection was reported in 2012, the virus has infected more than 1300 individuals in 26 countries, and caused more than 480 deaths. Human-to-human transmission requires close contact, and has typically occurred in the healthcare setting. Improved global awareness, together with improved hygiene practices in healthcare facilities, has been highlighted as key strategies in controlling the spread of MERS-CoV. This study tested the in vitro efficacy of three formulations of povidone iodine (PVP-I: 4% PVP-I skin cleanser, 7.5% PVP-I surgical scrub, and 1% PVP-I gargle/mouthwash) against a reference virus (Modified vaccinia virus Ankara, MVA) and MERS-CoV. According to EN14476, a standard suspension test was used to assess virucidal activity against MVA and large volume plating was used for MERS-CoV. All products were tested under clean (0.3 g/L bovine serum albumin, BSA) and dirty conditions (3.0 g/L BSA + 3.0 mL/L erythrocytes), with application times of 15, 30, and 60 s for MVA, and 15 s for MERS-CoV. The products were tested undiluted, 1:10 and 1:100 diluted against MVA, and undiluted against MERS-CoV. A reduction in virus titer of ≥4 log10 (corresponding to an inactivation of ≥99.99%) was regarded as evidence of virucidal activity. This was achieved versus MVA and MERS-CoV, under both clean and dirty conditions, within 15 s of application of each undiluted PVP-I product. These data indicate that PVP-I-based hand wash products for potentially contaminated skin, and PVP-I gargle/mouthwash for reduction of viral load in the oral cavity and the oropharynx, may help to support hygiene measures to prevent transmission of MERS-CoV. Mundipharma Research GmbH & Co.

  8. Reverse Genetics of Newcastle Disease Virus.

    PubMed

    Cardenas-Garcia, Stivalis; Afonso, Claudio L

    2017-01-01

    Reverse genetics allows for the generation of recombinant viruses or vectors used in functional studies, vaccine development, and gene therapy. This technique enables genetic manipulation and cloning of viral genomes, gene mutation through site-directed mutagenesis, along with gene insertion or deletion, among other studies. An in vitro infection-based system including the highly attenuated vaccinia virus Ankara strain expressing the T7 RNA polymerase from bacteriophage T7, with co-transfection of three helper plasmids and a full-length cDNA plasmid, was successfully developed to rescue genetically modified Newcastle disease viruses in 1999. In this chapter, the materials and the methods involved in rescuing Newcastle disease virus (NDV) from cDNA, utilizing site-directed mutagenesis and gene replacement techniques, are described in detail.

  9. Gene Therapy Using Therapeutic and Diagnostic Recombinant Oncolytic Vaccinia Virus GLV-1h153 for Management of Colorectal Peritoneal Carcinomatosis

    PubMed Central

    Eveno, Clarisse; Mojica, Kelly; Ady, Justin W.; Thorek, Daniel L.J.; Longo, Valerie; Belin, Laurence J.; Gholami, Sepideh; Johnsen, Clark; Zanzonico, Pat; Chen, Nanhai; Yu, Tony; Szalay, Aladar A.; Fong, Yuman

    2015-01-01

    Background Peritoneal carcinomatosis (PC) is a terminal progression of colorectal cancer (CRC). Poor response to cytoreductive surgery and chemotherapy, coupled with the inability to reliably track disease progression using established diagnostic methods make this a deadly disease. This paper examines the effectiveness of the oncolytic vaccinia virus GLV-1h153 as a therapeutic and diagnostic vehicle. We believe that viral expression of the human sodium iodide transporter (hNIS) can provide both real-time monitoring of viral therapy and effective treatment of colorectal peritoneal carcinomatosis (CRPC). Methods Infectivity and cytotoxic effect of GLV-1h153 on CRC cell lines was assayed in-vitro. Viral replication was examined by standard viral plaque assays. Orthotopic CRPC xenografts were generated in athymic nude mice, and subsequently administered GLV-1h153 intraperitoneally. Reduction of tumor burden was assessed by mass. Orthotopic tumors were visualized by SPECT/CT after Iodine (131I) administration and by fluorescence optical imaging. Results GLV-1h153 infected and killed CRC cells in a time and concentration dependent manner. Viral replication demonstrated greater than a 2.35 log increase in titer over 4 days. Intraperitoneal treatment of orthotopic CRPC xenografts resulted in a significant reduction of tumor burden. Infection of orthotopic xenografts was both therapeutic and facilitated monitoring by 131I-SPECT/CT via expression of hNIS in infected tissue. Conclusions GLV-1h153 effectively kills CRC in-vitro and dramatically reduces tumor burden in-vivo. We demonstrate that GLV-1h153 can be used as an agent to provide accurate delineation of tumor burden in-vivo. These findings indicate that GLV-1h153 has significant potential for use as theragnostic agent in the treatment of CRPC. PMID:25616946

  10. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    PubMed

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  11. Zika Virus Infection.

    PubMed

    Shirley, Debbie-Ann T; Nataro, James P

    2017-08-01

    In less than 2 years since entry into the Americas, we have witnessed the emergent spread of Zika virus into large subsets of immunologically naïve human populations and then encountered the devastating effects of microcephaly and brain anomalies that can arise from in utero infection with the virus. Diagnostic evaluation and management of affected infants continues to evolve as our understanding of Zika virus rapidly advances. The development of a safe and effective vaccine holds the potential to attenuate the spread of infection and limit the impact of congenital infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. One More Piece in the VACV Ecological Puzzle: Could Peridomestic Rodents Be the Link between Wildlife and Bovine Vaccinia Outbreaks in Brazil?

    PubMed Central

    Abrahão, Jônatas S.; Guedes, Maria Isabel M.; Trindade, Giliane S.; Fonseca, Flávio G.; Campos, Rafael K.; Mota, Bruno F.; Lobato, Zélia I. P.; Silva-Fernandes, André T.; Rodrigues, Gisele O. L.; Lima, Larissa S.; Ferreira, Paulo C. P.; Bonjardim, Cláudio A.; Kroon, Erna G.

    2009-01-01

    Background Despite the fact that smallpox eradication was declared by the World Health Organization (WHO) in 1980, other poxviruses have emerged and re-emerged, with significant public health and economic impacts. Vaccinia virus (VACV), a poxvirus used during the WHO smallpox vaccination campaign, has been involved in zoonotic infections in Brazilian rural areas (Bovine Vaccinia outbreaks – BV), affecting dairy cattle and milkers. Little is known about VACV's natural hosts and its epidemiological and ecological characteristics. Although VACV was isolated and/or serologically detected in Brazilian wild animals, the link between wildlife and farms has not yet been elucidated. Methodology/Principal Findings In this study, we describe for the first time, to our knowledge, the isolation of a VACV (Mariana virus - MARV) from a mouse during a BV outbreak. Genetic data, in association with biological assays, showed that this isolate was the same etiological agent causing exanthematic lesions observed in the cattle and human inhabitants of a particular BV-affected area. Phylogenetic analysis grouped MARV with other VACV isolated during BV outbreaks. Conclusion/Significance These data provide new biological and epidemiological information on VACV and lead to an interesting question: could peridomestic rodents be the link between wildlife and BV outbreaks? PMID:19838293

  13. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    DTIC Science & Technology

    2006-04-01

    ble-stranded RNA binding proteins of vaccinia virus. J. Virol. 76:5251–5259. 54. Yokota, S., N. Yokosawa , T. Kubota, T. Suzutani, I. Yoshida, S...Janus kinases during an early infection stage. Virology 286:119–124. 55. Yokota, S.-I., N. Yokosawa , T. Okabayashi, T. Suzutani, S. Miura, K. Jimbow

  14. [Zika virus infection during pregnancy].

    PubMed

    Picone, O; Vauloup-Fellous, C; D'Ortenzio, E; Huissoud, C; Carles, G; Benachi, A; Faye, A; Luton, D; Paty, M-C; Ayoubi, J-M; Yazdanpanah, Y; Mandelbrot, L; Matheron, S

    2016-05-01

    A Zika virus epidemic is currently ongoing in the Americas. This virus is linked to congenital infections with potential severe neurodevelopmental dysfunction. However, incidence of fetal infection and whether this virus is responsible of other fetal complications are still unknown. National and international public health authorities recommend caution and several prevention measures. Declaration of Zika virus infection is now mandatory in France. Given the available knowledge on Zika virus, we suggest here a review of the current recommendations for management of pregnancy in case of suspicious or infection by Zika virus in a pregnant woman. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Three distinct cell phenotypes of induced-TNF cytotoxicity and their relationship to apoptosis

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We have identified three distinct cell phenotypes with respect to the conditions under which cells became susceptible to TNF-mediated lysis. These conditions include: 1) treatment with the protein synthesis inhibitor, cycloheximide; 2) contact with activated macrophages, and 3) infection with vaccinia virus. Whereas vaccinia virus-infected 3T3 cells became sensitive to soluble TNF, F5b cells required contact with activated macrophages. We showed that the "macrophage-resistant" F5m cells did not become sensitive to TNF or to killing by activated macrophages after infection with vaccinia virus. Therefore, vaccinia infection does not sensitize all cells to TNF. We also determined the pathways of lysis for cells after sensitization. Whereas 3T3, LM929, and F5b cells were killed by the process of necrosis, F5m cells lysis was characterized by the release of low mol wt DNA fragments (apoptosis).

  16. Vaccinia Virus-mediated Expression of Human Erythropoietin in Tumors Enhances Virotherapy and Alleviates Cancer-related Anemia in Mice

    PubMed Central

    Nguyen, Duong H; Chen, Nanhai G; Zhang, Qian; Le, Ha T; Aguilar, Richard J; Yu, Yong A; Cappello, Joseph; Szalay, Aladar A

    2013-01-01

    Recombinant human erythropoietin (rhEPO), a glycoprotein hormone regulating red blood cell (RBC) formation, is used for the treatment of cancer-related anemia. The effect of rhEPO on tumor growth, however, remains controversial. Here, we report the construction and characterization of the recombinant vaccinia virus (VACV) GLV-1h210, expressing hEPO. GLV-1h210 was shown to replicate in and kill A549 lung cancer cells in culture efficiently. In mice bearing A549 lung cancer xenografts, treatment with a single intravenous dose of GLV-1h210 resulted in tumor-specific production and secretion of functional hEPO, which exerted an effect on RBC progenitors and precursors in the mouse bone marrow, leading to a significant increase in the number of RBCs and in the level of hemoglobin. Furthermore, virally expressed hEPO, but not exogenously added rhEPO, enhanced virus-mediated green fluorescent protein (GFP) expression in tumors and subsequently accelerated tumor regression when compared with the treatment with the parental virus GLV-1h68 or GLV-1h209 that expressed a nonfunctional hEPO protein. Moreover, intratumorally expressed hEPO caused enlarged tumoral microvessels, likely facilitating virus spreading. Taken together, VACV-mediated intratumorally expressed hEPO not only enhanced oncolytic virotherapy but also simultaneously alleviated cancer-related anemia. PMID:23765443

  17. Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections

    PubMed Central

    2013-01-01

    Background Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years. Results VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naïve T cell repertoire. Conclusions TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory. PMID:23971624

  18. Telomere length dynamics in human memory T cells specific for viruses causing acute or latent infections.

    PubMed

    O'Bryan, Joel M; Woda, Marcia; Co, Mary; Mathew, Anuja; Rothman, Alan L

    2013-08-26

    Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years. VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naïve T cell repertoire. TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory.

  19. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-07-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus.

  20. [ZIKA--VIRUS INFECTION].

    PubMed

    Velev, V

    2016-01-01

    This review summarizes the knowledge of the scientific community for Zika-virus infection. It became popular because of severe congenital damage causes of CNS in newborns whose mothers are infected during pregnancy, as well as the risk of pandemic distribution. Discusses the peculiarities of the biology and ecology of vectors--blood-sucking mosquitoes Aedes; stages in the spread of infection and practical problems which caused during pregnancy. Attention is paid to the recommendations that allow leading national and international medical organizations to deal with the threat Zika-virus infection.

  1. Ross River virus and Barmah Forest virus infection. Commonly asked questions.

    PubMed

    Hills, S

    1996-12-01

    Ross River virus infection and Barmah Forest virus infection are two commonly reported arboviral diseases in Australia. Ross River virus has long been recognised as a cause of epidemic polyarthritis and polyarticular disease. Clinical disease as a result of Barmah Forest virus infection has only been identified since 1988 and Australia is the only country in which this virus has been detected. Severe and prolonged symptoms can occur as a result of infection with either virus and may result in significant distress to the patient. This article reviews some of the issues that patients raise in relation to both Ross River virus and Barmah Forest virus disease including the source of infection, the duration of symptoms and measures to prevent infection.

  2. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    PubMed

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Modified Vaccinia virus Ankara-based vaccines in the era of personalized immunotherapy of cancer.

    PubMed

    Bendjama, Kaïdre; Quemeneur, Eric

    2017-09-02

    While interest in immunotherapies is renewed by the successful introduction of immune checkpoint blocking agent in the clinic, advances in genome sequencing are opening new possibilities in the design of increasingly personalized vaccines. Personalization of medicine can now be realistically contemplated at the single patient level. Unlike the previous generation of cancer vaccines, neoantigen directed vaccines would target truly specific tumor antigens resulting from acquired tumor genome mutations. Immune response induced by this next generation vaccine would not be subject to self-tolerance and will likely result to enhanced efficacy. Nevertheless, this new technologies can hold to their promises only if sponsors manage to meet several scientific, technical, logistical and regulatory challenges. In particular manufacturers will have to design, manufacture, and deliver to the patient a new pharmaceutical grade in a matters of weeks. In this paper, we briefly review current technologies currently tried at the translation of personalized vaccines and explore the possibilities offered by the Modified Vaccinia virus Ankara in this next wave of cancer vaccines.

  4. Viral exploitation of the MEK/ERK pathway - A tale of vaccinia virus and other viruses.

    PubMed

    Bonjardim, Cláudio A

    2017-07-01

    The VACV replication cycle is remarkable in the sense that it is performed entirely in the cytoplasmic compartment of vertebrate cells, due to its capability to encode enzymes required either for regulating the macromolecular precursor pool or the biosynthetic processes. Although remarkable, this gene repertoire is not sufficient to confer the status of a free-living microorganism to the virus, and, consequently, the virus relies heavily on the host to successfully generate its progeny. During the complex virus-host interaction, viruses must deal not only with the host pathways to accomplish their temporal demands but also with pathways that counteract viral infection, including the inflammatory, innate and acquired immune responses. This review focuses on VACV and other DNA or RNA viruses that stimulate the MEK (MAPK - Mitogen Activated Protein Kinase)/ERK- Extracellular signal-Regulated Kinase) pathway as part of their replication cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    DTIC Science & Technology

    2005-10-01

    action by the E3L double-stranded RNA 19 binding proteins of vaccinia virus. J Virol 76:5251-9. 20 54. Yokota, S., N. Yokosawa , T. Kubota, T. Suzutani, I...phosphorylation of STATs and janus kinases during an early 23 infection stage. Virology 286:119-124. 25 1 55. Yokota, S.-i., N. Yokosawa , T. Okabayashi, T

  6. CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus SIV239 vaccine enhances SIV-specific humoral and cellular immunity and improves protection against a heterologous SIVE660 mucosal challenge.

    PubMed

    Kwa, Suefen; Lai, Lilin; Gangadhara, Sailaja; Siddiqui, Mariam; Pillai, Vinod B; Labranche, Celia; Yu, Tianwei; Moss, Bernard; Montefiori, David C; Robinson, Harriet L; Kozlowski, Pamela A; Amara, Rama Rao

    2014-09-01

    It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1. Despite many advances in the field of AIDS research, an effective AIDS vaccine that can prevent infection remains elusive. CD40L is a key stimulator of dendritic cells and B cells and can therefore enhance T cell and antibody responses, but its overly potent nature can lead to adverse effects unless used in small doses. In order to modulate local expression of CD40L at relatively lower levels, we expressed

  7. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps?

    PubMed Central

    Okeke, Malachy I.; Okoli, Arinze S.; Offor, Collins; Oludotun, Taiwo G.; Tryland, Morten; Bøhn, Thomas; Moens, Ugo

    2017-01-01

    Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines. PMID:29109380

  8. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps?

    PubMed

    Okeke, Malachy I; Okoli, Arinze S; Diaz, Diana; Offor, Collins; Oludotun, Taiwo G; Tryland, Morten; Bøhn, Thomas; Moens, Ugo

    2017-10-29

    Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.

  9. Transient dominant host-range selection using Chinese hamster ovary cells to generate marker-free recombinant viral vectors from vaccinia virus.

    PubMed

    Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D

    2017-04-01

    Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.

  10. Vaccine Efficacy against Malaria by the Combination of Porcine Parvovirus-Like Particles and Vaccinia Virus Vectors Expressing CS of Plasmodium

    PubMed Central

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R.; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J. Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8+ T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria. PMID:22529915

  11. Vergleich von rekombinanten Vaccinia- und DNA-Vektoren zur Tumorimmuntherapie im C57BL/6-Mausmodell

    NASA Astrophysics Data System (ADS)

    Johnen, Heiko

    2002-10-01

    antigenpräsentierender Zellen verantwortlich sein. Durch die Modifikation einer Methode zur intrazellulären IFN-gamma Färbung konnten in vakzinierten Mäusen tumorantigenspezifische CTL sensitiv und quantitativ detektiert werden. Die so bestimmte CTL-Frequenz, nicht jedoch die humorale Antwort, korrelierte mit der in vivo Wirksamkeit der verschiedenen Vakzinen: DNA vakzinierte Tiere entwickeln starke tumorantigenspezifische CTL-Antworten, wohingegen in MVA-vakzinierten Tieren überwiegend gegen virale Epitope gerichtete CD4 und CD8-T-Zellen detektiert wurden. Die Wirksamkeit der pCI-DNA-Vakzine spricht für die Weiterentwicklung in weiteren präklinischen Mausmodellen, beispielsweise unter Verwendung von MUC1 oder HLA-A2 transgenen Mäusen. Die Methoden zur Detektion Tumorantigen-spezifischer CTL in 96-Loch-Mikrotiterplatten können dabei zur systematischen Suche nach im Menschen immundominanten T-Zell-Epitopen im Muzin-Molekül genutzt werden. Der durchgeführte Vergleich der auf den Vektoren pCI und MVA basierenden Vakzinen und die Analyse neuerer Publikationen führen zu dem Ergebniss, daß vor allem DNA-Vakzinen in Zukunft eine wichtige Rolle bei der Entwicklung von aktiven Tumorimpfstoffen spielen werden. Rekombinante MVA-Viren, eventuell in Kombination mit DNA- oder anderen Vektoren, haben sich dagegen in zahlreichen Studien als wirksame Impfstoffe zur Kontrolle von durch Pathogene hervorgerufenen Infektionserkrankungen erwiesen. In this study, tumor vaccines based on the plasmid pCI, the attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) and MVA-infected dendritic cells were constructed and characterized by sequencing, Western blot and flow cytometric analysis. The efficiency to induce tumor immunity in vivo was compared in several C57BL/6 mouse tumor models. Naked DNA Vaccination based on the eukaryotic expression vector pCI did induce very effective, antigen-specific and long-term protection against tumor cell lines expressing mucin, CEA or

  12. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    PubMed

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  13. [Nosocomial virus infections].

    PubMed

    Eggers, H J

    1986-12-01

    Enveloped viruses, e.g. influenza- or varicella viruses may cause highly contagious airborne infections. Their spread is difficult to control, also in hospitals. In the case of influenza and varicella immune prophylaxis and chemotherapy/chemoprophylaxis are possible. This is of particular significance, since varicella and zoster are of increasing importance for immunocompromized patients. Diarrhea is caused to a large extent by viruses. Rotavirus infections play an important role in infancy, and are frequently acquired in the hospital. In a study on infectious gastroenteritis of infants in a hospital we were able to show that 30 percent of all rotavirus infections were of nosocomial origin. Admission of a rotavirus-excreting patient (or personnel) may start a long chain of rotavirus infections on pediatric wards. Even careful hygienic measures in the hospital can hardly prevent the spread of enterovirus infections. Such infections may be severe and lethal for newborns, as shown by us in a study on an outbreak of echovirus 11 disease on a maternity ward. We have recently obtained data on the "stickiness" of enteroviruses on human skin. This could explain essential features of the spread of enteroviruses in the population.

  14. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed Central

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-01-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus. PMID:6286497

  15. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    PubMed

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  16. THE SUSCEPTIBILITY OF CHICK EMBRYO SKIN ORGAN CULTURES TO INFLUENZA VIRUS FOLLOWING EXCESS VITAMIN A

    PubMed Central

    Huang, J. S.; Bang, F. B.

    1964-01-01

    The conversion of chick embryonic epidermis to mucous epithelium by excess vitamin A in organ culture as reported by Fell and Mellanby (5) was shown to be accompanied by a corresponding change of susceptibility to influenza and vaccinia viruses. Untreated epidermis of 10- to 12-day chick embryos supported the growth of influenza (PR8) virus in organ cultures and a maximum infectivity (EID50) titer was reached 2 to 3 days after infection. At the same time) the epidermis showed squamous keratinization, beginning about the 4th day of cultivation. Addition of excess vitamin A (40 µg per ml) to the skin organ culture induced the following changes: (a) mucous metaplasia of the epidermis which was usually first evident after 4 to 5 days in the vitamin A medium, (b) increase in the daily and maximum yield of influenza virus, if the epidermis had been grown for 4 or more days in the vitamin A medium before infection took place, and (c) decrease in the production of vaccinia virus under similar conditions. The maximum yield of both viruses remained unchanged, however, if excess vitamin A was introduced to the organ culture at the time of virus inoculation. The magnitude of increase in the yield of influenza virus in this organ culture system was found to be proportionally related to the concentration of vitamin A added 4 or more days before inoculation of this virus. Increasing doses of vitamin A however, had no effect on the short-term growth of influenza virus in tissue cultures of chorio-allantoic membrane. Observation on the early period (2 to 12 hours) of influenza virus growth initiated in the 4-day organ cultures of chick embryonic skin showed no significant difference in virus production between the normal and the vitamin A medium groups. The change of virus specificity apparently is not due to the presence of excess vitamin A per se, but appears to be related to the change of differentiation produced in the organ culture system. PMID:14206436

  17. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection

    PubMed Central

    McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A.; Baric, Ralph S.; Lazear, Helen M.

    2017-01-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus–specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity. PMID:28418292

  18. Virus-Like-Vaccines against HIV

    PubMed Central

    Andersson, Anne-Marie C.; Schwerdtfeger, Melanie; Holst, Peter J.

    2018-01-01

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8+ and CD4+ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response. PMID:29439476

  19. Virus-Like-Vaccines against HIV.

    PubMed

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  20. Protective Efficacy of the Conserved NP, PB1, and M1 Proteins as Immunogens in DNA- and Vaccinia Virus-Based Universal Influenza A Virus Vaccines in Mice

    PubMed Central

    Wang, Wenling; Li, Renqing; Deng, Yao; Lu, Ning; Chen, Hong; Meng, Xin; Wang, Wen; Wang, Xiuping; Yan, Kexia; Qi, Xiangrong; Zhang, Xiangmin; Xin, Wei; Lu, Zhenhua; Li, Xueren; Bian, Tao; Gao, Yingying; Tan, Wenjie

    2015-01-01

    The conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50 and 10 LD50 and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics. PMID:25834017

  1. Interferon-γ Inhibits Ebola Virus Infection.

    PubMed

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  2. Therapeutic and prophylactic drugs to treat orthopoxvirus infections.

    PubMed

    Parker, Scott; Handley, Lauren; Buller, R Mark

    2008-11-01

    With the global eradication of smallpox in 1979, the causative agent, variola, no longer circulates in human populations. Other human poxvirus infections, such as those caused by vaccinia, cowpox virus and molluscum, are usually relatively benign in immunocompetent individuals. Conversely, monkeypox virus infections cause high levels of mortality and morbidity in Africa and the virus appears to be increasing its host range, virulence and demographic environs. Furthermore, there are concerns that clandestine stocks of variola virus exist. The re-introduction of aerosolized variola (or perhaps monkeypox virus) into human populations would result in high levels of morbidity and mortality. The attractiveness of variola as a bioweapon and, to a certain extent, monkeypox virus is its inherent ability to spread from person-to-person. The threat posed by the intentional release of variola or monkeypox virus, or a monkeypox virus epizoonosis, will require the capacity to rapidly diagnose the disease and to intervene with antivirals, as intervention is likely to take place during the initial diagnosis, approximately 10-15 days postinfection. Preimmunization of 'at-risk populations' with vaccines will likely not be practical, and the therapeutic use of vaccines has been shown to be ineffective after 4 days of infection with variola. However, a combination of vaccine and antivirals for those infected may be an option. Here we describe historical, current and future therapies to treat orthopoxvirus diseases.

  3. Antiviral activity of lauryl gallate against animal viruses.

    PubMed

    Hurtado, Carolina; Bustos, Maria Jose; Sabina, Prado; Nogal, Maria Luisa; Granja, Aitor G; González, Maria Eugenia; Gónzalez-Porqué, Pedro; Revilla, Yolanda; Carrascosa, Angel L

    2008-01-01

    Antiviral compounds are needed in the control of many animal and human diseases. We analysed the effect of the antitumoural drug lauryl gallate on the infectivity of the African swine fever virus among other DNA (herpes simplex and vaccinia) and RNA (influenza, porcine transmissible gastroenteritis and Sindbis) viruses, paying attention to its effect on the viability of the corresponding host cells. Viral production was strongly inhibited in different cell lines at non-toxic concentrations of the drug (1-10 microM), reducing the titres 3->5 log units depending on the multiplicity of infection. In our model system (African swine fever virus in Vero cells), the addition of the drug 1 h before virus adsorption completely abolished virus productivity in a one-step growth virus cycle. Interestingly, no inhibitory effect was observed when lauryl gallate was added after 5-8 h post-infection. Both cellular and viral DNA synthesis and late viral transcription were inhibited by the drug; however, the early viral protein synthesis and the virus-mediated increase of p53 remained unaffected. Activation of the apoptotic effector caspase-3 was not detected after lauryl gallate treatment of Vero cells. Furthermore, the presence of the drug abrogated the activation of this protease induced by the virus infection. Lauryl gallate is a powerful antiviral agent against several pathogens of clinical and veterinary importance. The overall results indicate that a cellular factor or function might be the target of the antiviral action of alkyl gallates.

  4. Longevity of T-cell memory following acute viral infection.

    PubMed

    Walker, Joshua M; Slifka, Mark K

    2010-01-01

    Investigation of T-cell-mediated immunity following acute viral infection represents an area of research with broad implications for both fundamental immunology research as well as vaccine development. Here, we review techniques that are used to assess T-cell memory including limiting dilution analysis, enzyme-linked immunospot (ELISPOT) assays, intracellular cytokine staining (ICCS) and peptide-MHC Class I tetramer staining. The durability of T-cell memory is explored in the context of several acute viral infections including vaccinia virus (VV), measles virus (MV) and yellow fever virus (YFV). Following acute infection, different virus-specific T-cell subpopulations exhibit distinct cytokine profiles and these profiles change over the course of infection. Differential regulation of the cytotoxic proteins, granzyme A, granzyme B and perforin are also observed in virus-specific T cells following infection. As a result of this work, we have gained a broader understanding of the kinetics and magnitude of antiviral T-cell immunity as well as new insight into the patterns of immunodominance and differential regulation of cytokines and cytotoxicity-associated molecules. This information may eventually lead to the generation of more effective vaccines that elicit T-cell memory with the optimal combination of functional characteristics required for providing protective immunity against infectious disease.

  5. Efficient Processing of the Immunodominant, HLA-A*0201-Restricted Human Immunodeficiency Virus Type 1 Cytotoxic T-Lymphocyte Epitope despite Multiple Variations in the Epitope Flanking Sequences

    PubMed Central

    Brander, Christian; Yang, Otto O.; Jones, Norman G.; Lee, Yun; Goulder, Philip; Johnson, R. Paul; Trocha, Alicja; Colbert, David; Hay, Christine; Buchbinder, Susan; Bergmann, Cornelia C.; Zweerink, Hans J.; Wolinsky, Steven; Blattner, William A.; Kalams, Spyros A.; Walker, Bruce D.

    1999-01-01

    Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences. PMID:10559335

  6. The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype.

    PubMed

    Munier, C Mee Ling; van Bockel, David; Bailey, Michelle; Ip, Susanna; Xu, Yin; Alcantara, Sheilajen; Liu, Sue Min; Denyer, Gareth; Kaplan, Warren; Suzuki, Kazuo; Croft, Nathan; Purcell, Anthony; Tscharke, David; Cooper, David A; Kent, Stephen J; Zaunders, John J; Kelleher, Anthony D

    2016-10-17

    Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear. We undertook a detailed functional and genetic characterization of CD4 T-cells during acute VV-infection of humans. VV-specific T-cells were identified by up-regulation of activation markers directly ex vivo and through cytokine and co-stimulatory molecule expression. At day-13-post primary inoculation with VV, CD38highCD45RO+ CD4 T-cells were purified by cell sorting, RNA isolated and analysed by microarray. Differential expression of up-regulated genes in activated CD4 T-cells was confirmed at the mRNA and protein levels. We compared analyses of VV-specific CD4 T-cells to studies on 12 subjects with primary HIV infection (PHI). VV-specific T-cells lines were established from PBMCs collected post vaccination and checked for cytotoxicity potential. A median 11.9% CD4 T-cells were CD38highCD45RO+ at day-13 post-VV inoculation, compared to 3.0% prior and 10.4% during PHI. Activated CD4 T-cells had an up-regulation of genes related to cytolytic function, including granzymes K and A, perforin, granulysin, TIA-1, and Rab27a. No difference was seen between CD4 T-cell expression of perforin or TIA-1 to VV and PHI, however granzyme k was more dominant in the VV response. At 25:1 effector to target ratio, two VV-specific T-cell lines exhibited 62% and 30% cytotoxicity respectively and CD107a degranulation. We show for the first time that CD4 CTL are prominent in the early response to VV. Understanding the role of CD4 CTL in the generation of an effective anti-viral memory may help develop more effective vaccines for diseases such as HIV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges.

    PubMed

    Khattar, Sunil K; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C; Montefiori, David C; Samal, Siba K

    2015-07-21

    Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. A safe and effective vaccine that can induce both systemic and mucosal immune responses is needed to control HIV-1. In this study, we showed that coexpression of Env and Gag proteins of HIV-1 performed using a single

  8. Vaccination with recombinant Modified Vaccinia Ankara (MVA) viruses expressing single African horse sickness virus VP2 antigens induced cross-reactive virus neutralising antibodies (VNAb) in horses when administered in combination.

    PubMed

    Manning, Nicola Mary; Bachanek-Bankowska, Katarzyna; Mertens, Peter Paul Clement; Castillo-Olivares, Javier

    2017-10-20

    African horse sickness is a lethal viral disease of equids transmitted by biting midges of the Genus Culicoides. The disease is endemic to sub-Saharan Africa but outbreaks of high mortality and economic impact have occurred in the past in non-endemic regions of Africa, Asia and Southern Europe. Vaccination is critical for the control of this disease but only live attenuated vaccines are currently available. However, there are bio-safety concerns over the use of this type of vaccines, especially in non-endemic countries, and live attenuated vaccines do not have DIVA (Differentiation of Infected from Vaccinated Animals) capacity. In addition, large scale manufacturing of live attenuated vaccines of AHSV represents a significant environmental and health risk and level 3 bio-safety containment facilities are required for their production. A variety of different technologies have been investigated over the years to develop alternative AHSV vaccines, including the use of viral vaccine vectors such Modified Vaccinia Ankara virus (MVA). In previous studies we demonstrated that recombinant MVA expressing outer capsid protein AHSV-VP2 induced virus neutralising antibodies and protection against virulent challenge both in a mouse model and in the horse. However, AHSV-VP2 is antigenically variable and determines the existence of 9 different AHSV serotypes. Immunity against AHSV is serotype-specific and there is limited cross-reactivity between certain AHSV serotypes: 1 and 2, 3 and 7, 5 and 8, 6 and 9. In Africa, multiple serotypes circulate simultaneously and a polyvalent attenuated vaccine comprising different AHSV serotypes is used. We investigated the potential of a polyvalent AHSV vaccination strategy based on combinations of MVA-VP2 viruses each expressing a single VP2 antigen from a specific serotype. We showed that administration of 2 different recombinant MVA viruses, each expressing a single VP2 protein from AHSV serotype 4 or 9, denoted respectively as MVA-VP2

  9. Protective immunity provided by HLA-A2 epitopes for fusion and hemagglutinin proteins of measles virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sang Kon; Stegman, Brian; Pendleton, C. David

    2006-09-01

    Natural infection and vaccination with a live-attenuated measles virus (MV) induce CD8{sup +} T-cell-mediated immune responses that may play a central role in controlling MV infection. In this study, we show that newly identified human HLA-A2 epitopes from MV hemagglutinin (H) and fusion (F) proteins induced protective immunity in HLA-A2 transgenic mice challenged with recombinant vaccinia viruses expressing F or H protein. HLA-A2 epitopes were predicted and synthesized. Five and four peptides from H and F, respectively, bound to HLA-A2 molecules in a T2-binding assay, and four from H and two from F could induce peptide-specific CD8{sup +} T cellmore » responses in HLA-A2 transgenic mice. Further experiments proved that three peptides from H (H9-567, H10-250, and H10-516) and one from F protein (F9-57) were endogenously processed and presented on HLA-A2 molecules. All peptides tested in this study are common to 5 different strains of MV including Edmonston. In both A2K{sup b} and HHD-2 mice, the identified peptide epitopes induced protective immunity against recombinant vaccinia viruses expressing H or F. Because F and H proteins induce neutralizing antibodies, they are major components of new vaccine strategies, and therefore data from this study will contribute to the development of new vaccines against MV infection.« less

  10. Genomic Sequence and Virulence of Clonal Isolates of Vaccinia Virus Tiantan, the Chinese Smallpox Vaccine Strain

    PubMed Central

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector. PMID:23593246

  11. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    PubMed

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  12. Research in Drug Development against Viral Diseases of Military Importance (Biological Testing).

    DTIC Science & Technology

    HAMSTERS, HEMORRHAGIC FEVERS, KOREA, VIRUSES , SECONDARY, STRAINS(BIOLOGY), VESICULAR STOMATITIS, VIRUS DISEASES, JAPANESE ENCEPHALITIS VIRUSES , MICE...SANDFLY FEVER VIRUS INFECTION, SPECTRA, VACCINIA VIRUS , VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS , YELLOW FEVER VIRUS .

  13. The Plaque-Antiserum Method: an Assay of Virus Infectivity and an Experimental Model of Virus Infection

    PubMed Central

    De Flora, Silvio

    1974-01-01

    Areas of cytopathic effect can be circumscribed in cell monolayers by adding antiserum to the liquid nutrient medium after adsorption of virus. This procedure represents a simple and reliable tool for the titration of virus infectivity and provides an experimental model for studying some aspects of virus infection. Images PMID:4364462

  14. [Disease concept of the slow virus infection].

    PubMed

    Takasu, Toshiaki

    2007-08-01

    This article gives a brief history of the terminology of slow virus infection, the conceptual change that occurred in it, the features common to slow infection and the current concept of slow virus infection. Björn Sigurdsson from the field of veterinary medicine proposed slow virus infection as unique mode of infection in 1954. Its initial concept was remodeled along with the general acceptance of prion theory of sheep scrapie that was proposed in 1982. The features common to slow infection include very long latency, unanimous poor prognosis, central nervous system involvement, etc. Currently the slow infection comprises those caused by slow conventional viruses that is the slow virus infection (for example subacute sclerosing panencephalitis and progressive multifocal encephalopathy in human and visna-maedi in sheep) and prion diseases (for example kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome in human, scrapie and bovine spongiform encephalopathy).

  15. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins.

    PubMed

    Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2017-12-01

    Among nucleic acid-based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned.

  16. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins

    PubMed Central

    Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2017-01-01

    Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647

  17. The detection of Vaccinia virus confirms the high circulation of Orthopoxvirus in buffaloes living in geographical isolation, Marajó Island, Brazilian Amazon.

    PubMed

    Franco-Luiz, Ana Paula Moreira; Fagundes Pereira, Alexandre; de Oliveira, Cairo Henrique Sousa; Barbosa, José Diomedes; Oliveira, Danilo Bretas; Bonjardim, Cláudio Antônio; Ferreira, Paulo César Peregrino; de Souza Trindade, Giliane; Abrahão, Jônatas Santos; Kroon, Erna Geessien

    2016-06-01

    In Brazil, serologic evidence of Orthopoxvirus (OPV) circulation showed positivity around 20% in cattle, humans, monkeys and rodents. Although OPV seropositivity has been described in buffalo herds in southeastern Brazil, no Vaccinia virus (VACV) (member of genus OPV) outbreaks in buffalo herds have been described in this country. This study aimed to investigate the detection of anti-OPV antibodies and to study the OPV genome in Brazilian buffalo herds. Our results demonstrated a high OPV seropositivity in buffalo herds on Marajó Island and molecular data confirmed the circulation of VACV. The geographical isolation conditionmight be a sine qua non condition to explain our results. Copyright © 2016. Published by Elsevier Ltd.

  18. Protective Efficacy of the Conserved NP, PB1, and M1 Proteins as Immunogens in DNA- and Vaccinia Virus-Based Universal Influenza A Virus Vaccines in Mice.

    PubMed

    Wang, Wenling; Li, Renqing; Deng, Yao; Lu, Ning; Chen, Hong; Meng, Xin; Wang, Wen; Wang, Xiuping; Yan, Kexia; Qi, Xiangrong; Zhang, Xiangmin; Xin, Wei; Lu, Zhenhua; Li, Xueren; Bian, Tao; Gao, Yingying; Tan, Wenjie; Ruan, Li

    2015-06-01

    The conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50 and 10 LD50 and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Comparative Pathology of Hepatitis A Virus and Hepatitis E Virus Infection.

    PubMed

    Cullen, John M; Lemon, Stanley M

    2018-04-30

    Hepatitis A virus (HAV) and hepatitis E virus (HEV) cause acute, self-limiting hepatic infections that are usually spread by the fecal-oral route in humans. Naturally occurring and experimental infections are possible in a variety of nonhuman primates and, in the case of HEV, a number of other species. Many advances in understanding the pathogenesis of these viruses have come from studies in experimental animals. In general, animals infected with these viruses recapitulate the histologic lesions seen in infected humans, but typically with less severe clinical and histopathological manifestations. This review describes the histopathologic changes associated with HAV and HEV infection in humans and experimental animals. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Zika virus infection.

    PubMed

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  1. In vitro inhibition of monkeypox virus production and spread by Interferon-β

    PubMed Central

    2012-01-01

    Background The Orthopoxvirus genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox), monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus). Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naïve population. Results The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-β (IFN-β) for use against monkeypox virus. We found that treatment with human IFN-β results in a significant decrease in monkeypox virus production and spread in vitro. IFN-β substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-β induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection. Conclusions Our results demonstrate the successful inhibition of monkeypox virus using human IFN-β and suggest that IFN-β could potentially serve as a novel safe therapeutic for human monkeypox disease. PMID:22225589

  2. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Autonomic symptoms following Zika virus infection.

    PubMed

    Rodríguez, Yhojan; Rojas, Manuel; Ramírez-Santana, Carolina; Acosta-Ampudia, Yeny; Monsalve, Diana M; Anaya, Juan-Manuel

    2018-04-01

    To determine if autonomic symptoms are associated with previous Zika virus infection. Case-control study including 35 patients with Zika virus infection without evidence of neurological disease and 105 controls. Symptoms of autonomic dysfunction were assessed with the composite autonomic symptom scale 31 (COMPASS-31). Patients with previous Zika virus infection had significantly higher COMPASS-31 score than controls regardless of age and sex (p = 0.007). The main drivers for the higher scores where orthostatic intolerance (p = 0.003), secretomotor (p = 0.04) and bladder symptoms (p < 0.001). Zika virus infection is associated with autonomic dysfunction. The mechanisms remain to be elucidated.

  4. [Progress in research of occult hepatitis B virus infection].

    PubMed

    Huang, X Y; Shi, Q F; Huang, T

    2017-05-10

    Occult hepatitis B virus infection is a worldwide public health problem, which seriously affects the clinical diagnosis of hepatitis B and threatens the safety of blood transfusion. The concept of occult hepatitis B virus infection, the pathogenesis of occult hepatitis B virus infection, the prevalence of occult hepatitis B virus infection in different groups, including healthy population and different patients, and the possibility of transmission were summarized. The prevalence of occult hepatitis B virus infection was found in healthy population and different patients, and there is possibility of occult hepatitis B virus infection to be transmitted through blood transfusion. The paper provides a comprehensive introduction of the pathogenesis and prevalence of occult hepatitis B virus infection. More attention should be paid to occult hepatitis B virus infection.

  5. High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques.

    PubMed

    Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja; Chamcha, Venkatesarlu; Chea, Lynette S; Kozlowski, Pamela A; LaBranche, Celia C; Chennareddi, Lakshmi; Lawson, Benton; Reddy, Pradeep B J; Styles, Tiffany M; Vanderford, Thomas H; Montefiori, David C; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-11-01

    We tested, in rhesus macaques, the effects of a 500-fold range of an admixed recombinant modified vaccinia Ankara (MVA) expressing rhesus GM-CSF (MVA/GM-CSF) on the immunogenicity and protection elicited by an MVA/SIV macaque 239 vaccine. High doses of MVA/GM-CSF did not affect the levels of systemic envelope (Env)-specific Ab, but it did decrease the expression of the gut-homing receptor α4β7 on plasmacytoid dendritic cells (p < 0.01) and the magnitudes of Env-specific IgA (p = 0.01) and IgG (p < 0.05) in rectal secretions. The protective effect of the vaccine was evaluated using 12 weekly rectal challenges in rhesus macaques subgrouped by tripartite motif-containing protein 5α (TRIM5α) genotypes that are restrictive or permissive for infection by the challenge virus SIVsmE660. Eight of nine TRIM5α-restrictive animals receiving no or the lowest dose (1 × 10 5 PFU) of MVA/GM-CSF resisted all 12 challenges. In the comparable TRIM5α-permissive group, only 1 of 12 animals resisted all 12 challenges. In the TRIM5α-restrictive animals, but not in the TRIM5α-permissive animals, the number of challenges to infection directly correlated with the magnitudes of Env-specific rectal IgG (r = +0.6) and IgA (r = +0.6), the avidity of Env-specific serum IgG (r = +0.5), and Ab dependent cell-mediated virus inhibition (r = +0.6). Titers of neutralizing Ab did not correlate with protection. We conclude that 1) protection elicited by MVA/SIVmac239 is strongly dependent on the presence of TRIM5α restriction, 2) nonneutralizing Ab responses contribute to protection against SIVsmE660 in TRIM5α-restrictive animals, and 3) high doses of codelivered MVA/GM-CSF inhibit mucosal Ab responses and the protection elicited by MVA expressing noninfectious SIV macaque 239 virus-like particles. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Immune Ecosystem of Virus-Infected Host Tissues.

    PubMed

    Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long

    2018-05-06

    Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.

  7. Virus-host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus.

    PubMed

    Milrot, Elad; Mutsafi, Yael; Fridmann-Sirkis, Yael; Shimoni, Eyal; Rechav, Katya; Gurnon, James R; Van Etten, James L; Minsky, Abraham

    2016-01-01

    The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway. © 2015 John Wiley & Sons Ltd.

  8. Hepatitis C virus infection in the human immunodeficiency virus infected patient.

    PubMed

    Clausen, Louise Nygaard; Lundbo, Lene Fogt; Benfield, Thomas

    2014-09-14

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) share the same transmission routes; therefore, coinfection is frequent. An estimated 5-10 million individuals alone in the western world are infected with both viruses. The majority of people acquire HCV by injection drug use and, to a lesser extent, through blood transfusion and blood products. Recently, there has been an increase in HCV infections among men who have sex with men. In the context of effective antiretroviral treatment, liver-related deaths are now more common than Acquired Immune Deficiency Syndrome-related deaths among HIV-HCV coinfected individuals. Morbidity and mortality rates from chronic HCV infection will increase because the infection incidence peaked in the mid-1980s and because liver disease progresses slowly and is clinically silent to cirrhosis and end-stage-liver disease over a 15-20 year time period for 15%-20% of chronically infected individuals. HCV treatment has rapidly changed with the development of new direct-acting antiviral agents; therefore, cure rates have greatly improved because the new treatment regimens target different parts of the HCV life cycle. In this review, we focus on the epidemiology, diagnosis and the natural course of HCV as well as current and future strategies for HCV therapy in the context of HIV-HCV coinfection in the western world.

  9. West Nile virus infection.

    PubMed

    Guharoy, Roy; Gilroy, Shelley A; Noviasky, John A; Ference, Jonathan

    2004-06-15

    The epidemiology, virology, and transmission of West Nile virus (WNV) are reviewed, and the clinical features, diagnosis, and treatment of WNV infection are examined. WNV infection is caused by a flavivirus transmitted from birds to humans through the bite of culicine mosquitoes. WNV was discovered in the blood of a febrile woman from Uganda's West Nile province in 1937. The first case of domestically acquired WNV infection was reported in the United States in 1999 in New York. Since then, WNV infection has spread rapidly across the United States, with 9306 confirmed cases and 210 deaths reported from 45 states in 2003. It is still not clear how WNV was introduced into North America. WNV is a small, single-stranded RNA virus and a member of the Japanese encephalitis virus antigenic complex. While most humans infected with WNV are asymptomatic, some may develop an influenza-like illness. Disease surveillance remains the cornerstone for the early recognition and control of WNV. We describe one case of WNV infection with an update on the disease. Strategies for the prevention and control of this infection are reviewed. There is no established treatment for WNV infection. Currently, prevention and control are the only measures that help decrease the morbidity and mortality associated with WNV infection. As the number of cases escalates and the geographic distribution of WNV infection widens, the epidemic will continue to pose a major challenge to clinicians in the coming years. There is an urgent need for more research on the pathogenesis and treatment of WNV infection.

  10. The impact of hepatitis A virus infection on hepatitis C virus infection: a competitive exclusion hypothesis.

    PubMed

    Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Chaib, Eleazar; Massad, Eduardo

    2013-01-01

    We address the observation that, in some cases, patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We hypothesise that this phenomenon can be explained by the competitive exclusion principle, including the action of the immune system, and show that the inclusion of the immune system explains both the elimination of one virus and the co-existence of both infections for a certain range of parameters. We discuss the potential clinical implications of our findings.

  11. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perera, Rushika M.; Riley, Catherine; Isaac, Georgis

    Dengue virus causes {approx}50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complexmore » membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.« less

  12. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    PubMed Central

    Perera, Rushika; Moore, Ronald J.; Weitz, Karl W.; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Adamec, Jiri; Kuhn, Richard J.

    2012-01-01

    Dengue virus causes ∼50–100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture. PMID:22457619

  13. Varicella zoster virus infection

    PubMed Central

    Gershon, Anne A.; Breuer, Judith; Cohen, Jeffrey I.; Cohrs, Randall J.; Gershon, Michael D.; Gilden, Don; Grose, Charles; Hambleton, Sophie; Kennedy, Peter G. E.; Oxman, Michael N.; Seward, Jane F.; Yamanishi, Koichi

    2017-01-01

    Infection with varicella zoster virus (VZV) causes varicella (chickenpox), which can be severe in immunocompromised individuals, infants and adults. Primary infection is followed by latency in ganglionic neurons. During this period, no virus particles are produced and no obvious neuronal damage occurs. Reactivation of the virus leads to virus replication, which causes zoster (shingles) in tissues innervated by the involved neurons, inflammation and cell death — a process that can lead to persistent radicular pain (postherpetic neuralgia). The pathogenesis of postherpetic neuralgia is unknown and it is difficult to treat. Furthermore, other zoster complications can develop, including myelitis, cranial nerve palsies, meningitis, stroke (vasculopathy), retinitis, and gastroenterological infections such as ulcers, pancreatitis and hepatitis. VZV is the only human herpesvirus for which highly effective vaccines are available. After varicella or vaccination, both wild-type and vaccine-type VZV establish latency, and long-term immunity to varicella develops. However, immunity does not protect against reactivation. Thus, two vaccines are used: one to prevent varicella and one to prevent zoster. In this Primer we discuss the pathogenesis, diagnosis, treatment, and prevention of VZV infections, with an emphasis on the molecular events that regulate these diseases. For an illustrated summary of this Primer, visit: http://go.nature.com/14×VI1 PMID:27188665

  14. Establishing elements of a synthetic biology platform for Vaccinia virus production: BioBrick™ design, serum-free virus production and microcarrier-based cultivation of CV-1 cells.

    PubMed

    Liu, Shuchang; Ruban, Ludmila; Wang, Yaohe; Zhou, Yuhong; Nesbeth, Darren N

    2017-02-01

    Vaccinia virus (VACV) is an established vector for vaccination and is beginning to prove effective as an oncolytic agent. Industrial production of VACV stands to benefit in future from advances made by synthetic biology in genome engineering and standardisation. The CV-1 cell line can be used for VACV propagation and has been used extensively with the CRISPR/Cas9 system for making precise edits of the VACV genome. Here we take first steps toward establishing a scalable synthetic biology platform for VACV production with CV-1 cells featuring standardised biological tools and serum free cell cultivation. We propose a new BioBrick™ plasmid backbone format for inserting transgenes into VACV. We then test the performance of CV-1 cells in propagation of a conventional recombinant Lister strain VACV, VACVL-15 RFP, in a serum-free process. CV-1 cells grown in 5% foetal bovine serum (FBS) Dulbecco's Modified Eagle Medium (DMEM) were adapted to growth in OptiPRO and VP-SFM brands of serum-free media. Specific growth rates of 0.047 h -1 and 0.044 h -1 were observed for cells adapted to OptiPRO and VP-SFM respectively, compared to 0.035 h -1 in 5% FBS DMEM. Cells adapted to OptiPRO and to 5% FBS DMEM achieved recovery ratios of over 96%, an indication of their robustness to cryopreservation. Cells adapted to VP-SFM showed a recovery ratio of 82%. Virus productivity in static culture, measured as plaque forming units (PFU) per propagator cell, was 75 PFU/cell for cells in 5% FBS DMEM. VP-SFM and OptiPRO adaptation increased VACV production to 150 PFU/cell and 350 PFU/cell respectively. Boosted PFU/cell from OptiPRO-adapted cells persisted when 5% FBS DMEM or OptiPRO medium was observed during the infection step and when titre was measured using cells adapted to 5% FBS DMEM or OptiPRO medium. Finally, OptiPRO-adapted CV-1 cells were successfully cultivated using Cytodex-1 microcarriers to inform future scale up studies.

  15. Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections

    PubMed Central

    DiNapoli, Sarah R.; Hirsch, Vanessa M.

    2016-01-01

    The cells that are targeted by primate lentiviruses (HIV and simian immunodeficiency virus [SIV]) are of intense interest given the renewed effort to identify potential cures for HIV. These viruses have been reported to infect multiple cell lineages of hematopoietic origin, including all phenotypic and functional CD4 T cell subsets. The two most commonly reported cell types that become infected in vivo are memory CD4 T cells and tissue-resident macrophages. Though viral infection of CD4 T cells is routinely detected in both HIV-infected humans and SIV-infected Asian macaques, significant viral infection of macrophages is only routinely observed in animal models wherein CD4 T cells are almost entirely depleted. Here we review the roles of macrophages in lentiviral disease progression, the evidence that macrophages support viral replication in vivo, the animal models where macrophage-mediated replication of SIV is thought to occur, how the virus can interact with macrophages in vivo, pathologies thought to be attributed to viral replication within macrophages, how viral replication in macrophages might contribute to the asymptomatic phase of HIV/SIV infection, and whether macrophages represent a long-lived reservoir for the virus. PMID:27307568

  16. Virus reactivation: a panoramic view in human infections

    PubMed Central

    Traylen, Christopher M; Patel, Hersh R; Fondaw, Wylder; Mahatme, Sheran; Williams, John F; Walker, Lia R; Dyson, Ossie F; Arce, Sergio; Akula, Shaw M

    2011-01-01

    Viruses are obligate intracellular parasites, relying to a major extent on the host cell for replication. An active replication of the viral genome results in a lytic infection characterized by the release of new progeny virus particles, often upon the lysis of the host cell. Another mode of virus infection is the latent phase, where the virus is ‘quiescent’ (a state in which the virus is not replicating). A combination of these stages, where virus replication involves stages of both silent and productive infection without rapidly killing or even producing excessive damage to the host cells, falls under the umbrella of a persistent infection. Reactivation is the process by which a latent virus switches to a lytic phase of replication. Reactivation may be provoked by a combination of external and/or internal cellular stimuli. Understanding this mechanism is essential in developing future therapeutic agents against viral infection and subsequent disease. This article examines the published literature and current knowledge regarding the viral and cellular proteins that may play a role in viral reactivation. The focus of the article is on those viruses known to cause latent infections, which include herpes simplex virus, varicella zoster virus, Epstein–Barr virus, human cytomegalovirus, human herpesvirus 6, human herpesvirus 7, Kaposi’s sarcoma-associated herpesvirus, JC virus, BK virus, parvovirus and adenovirus. PMID:21799704

  17. Bovine herpes virus infections in cattle.

    PubMed

    Nandi, S; Kumar, Manoj; Manohar, M; Chauhan, R S

    2009-06-01

    Bovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.

  18. Efficient and stable production of Modified Vaccinia Ankara virus in two-stage semi-continuous and in continuous stirred tank cultivation systems.

    PubMed

    Tapia, Felipe; Jordan, Ingo; Genzel, Yvonne; Reichl, Udo

    2017-01-01

    One important aim in cell culture-based viral vaccine and vector production is the implementation of continuous processes. Such a development has the potential to reduce costs of vaccine manufacturing as volumetric productivity is increased and the manufacturing footprint is reduced. In this work, continuous production of Modified Vaccinia Ankara (MVA) virus was investigated. First, a semi-continuous two-stage cultivation system consisting of two shaker flasks in series was established as a small-scale approach. Cultures of the avian AGE1.CR.pIX cell line were expanded in the first shaker, and MVA virus was propagated and harvested in the second shaker over a period of 8-15 days. A total of nine small-scale cultivations were performed to investigate the impact of process parameters on virus yields. Harvest volumes of 0.7-1 L with maximum TCID50 titers of up to 1.0×109 virions/mL were obtained. Genetic analysis of control experiments using a recombinant MVA virus containing green-fluorescent-protein suggested that the virus was stable over at least 16 d of cultivation. In addition, a decrease or fluctuation of infectious units that may indicate an excessive accumulation of defective interfering particles was not observed. The process was automated in a two-stage continuous system comprising two connected 1 L stirred tank bioreactors. Stable MVA virus titers, and a total production volume of 7.1 L with an average TCID50 titer of 9×107 virions/mL was achieved. Because titers were at the lower range of the shake flask cultivations potential for further process optimization at large scale will be discussed. Overall, MVA virus was efficiently produced in continuous and semi-continuous cultivations making two-stage stirred tank bioreactor systems a promising platform for industrial production of MVA-derived recombinant vaccines and viral vectors.

  19. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    PubMed

    Slike, Bonnie M; Creegan, Matthew; Marovich, Mary; Ngauy, Viseth

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10-20 years post vaccination. This contrasted with a comparator group of adults, ages 35-49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112-3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  20. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations

    PubMed Central

    Slike, Bonnie M.; Creegan, Matthew

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5–10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10–20 years post vaccination. This contrasted with a comparator group of adults, ages 35–49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112–3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program. PMID:28046039

  1. Mutational analysis of vaccinia virus E3 protein: the biological functions do not correlate with its biochemical capacity to bind double-stranded RNA.

    PubMed

    Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin

    2015-05-01

    Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related

  2. Hepatitis Virus Infections in Poultry.

    PubMed

    Yugo, Danielle M; Hauck, Ruediger; Shivaprasad, H L; Meng, Xiang-Jin

    2016-09-01

    Viral hepatitis in poultry is a complex disease syndrome caused by several viruses belonging to different families including avian hepatitis E virus (HEV), duck hepatitis B virus (DHBV), duck hepatitis A virus (DHAV-1, -2, -3), duck hepatitis virus Types 2 and 3, fowl adenoviruses (FAdV), and turkey hepatitis virus (THV). While these hepatitis viruses share the same target organ, the liver, they each possess unique clinical and biological features. In this article, we aim to review the common and unique features of major poultry hepatitis viruses in an effort to identify the knowledge gaps and aid the prevention and control of poultry viral hepatitis. Avian HEV is an Orthohepevirus B in the family Hepeviridae that naturally infects chickens and consists of three distinct genotypes worldwide. Avian HEV is associated with hepatitis-splenomegaly syndrome or big liver and spleen disease in chickens, although the majority of the infected birds are subclinical. Avihepadnaviruses in the family of Hepadnaviridae have been isolated from ducks, snow geese, white storks, grey herons, cranes, and parrots. DHBV evolved with the host as a noncytopathic form without clinical signs and rarely progressed to chronicity. The outcome for DHBV infection varies by the host's ability to elicit an immune response and is dose and age dependent in ducks, thus mimicking the pathogenesis of human hepatitis B virus (HBV) infections and providing an excellent animal model for human HBV. DHAV is a picornavirus that causes a highly contagious virus infection in ducks with up to 100% flock mortality in ducklings under 6 wk of age, while older birds remain unaffected. The high morbidity and mortality has an economic impact on intensive duck production farming. Duck hepatitis virus Types 2 and 3 are astroviruses in the family of Astroviridae with similarity phylogenetically to turkey astroviruses, implicating the potential for cross-species infections between strains. Duck astrovirus (DAstV) causes

  3. Viruses infecting marine molluscs.

    PubMed

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Epidemiologic aspects of human immunodeficiency virus and hepatitis virus infections].

    PubMed

    Diarra, M; Konate, A; Minta, D; Sounko, A; Dembele, M; Toure, C S; Kalle, A; Traore, H H; Maiga, M Y

    2006-01-01

    In order to determinate the prevalence of hepatitis B virus and hepatitis C virus among patients infected by the HIV, We realized a transverse survey case--control in hepato-gastro-enterological ward and serology unity of National Institute of Research in Public health (INRSP). Our sample was constituted with 100 patients HIV positive compared to 100 controls HIV negative. The viral markers research has been made by methods immuno-enzymatiqueses of ELISA 3rd generation. Tests permitted to get the following results: Hepatitis B surface antigen (HBs Ag) was positive among 21% with patients HIV positive versus 23% among control (p = 0,732); Antibody to hepatitis C virus (anti-HCV ab) was present among 23% with patients HIV positive versus 0% among control (p <0,05). Female was predominant among co-infections patient, but without statistic link (p = 0,9 and p = 0,45); The co-infection HBV- HCV was significatively linked to age beyond 40 years (p = 0,0005). Co-infections with HIV infection and hepatitis virus are not rare and deserve to be investigated.

  5. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  6. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE PAGES

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; ...

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  7. Interferon production by cells infected with subacute sclerosing panencephalitis (SSPE) virus or measles virus.

    PubMed

    Hasegawa, Shunji; Mori, Natsumi; Satomi, Mika; Jiang, Da-Peng; Hotta, Hak; Matsushige, Takeshi; Ichiyama, Takashi

    2011-12-01

    Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurodegenerative encephalitis caused by some variants of measles virus (MV). The structure of SSPE virus in the brains of SSPE patients is different from that of MV. The difference in interferon (IFN) production between cells infected with SSPE virus and those infected with MV remains unclear. We measured the concentrations of IFN-α, β, γ, and λ1 (interleukin (IL)-29) from MV- or SSPE virus-infected B95a cells (a marmoset B-lymphoblastoid cell line). SSPE virus-infected B95a cells produced significantly higher levels of IFN-α and λ1 than did MV-infected or mock-infected cells. Our results suggest that SSPE virus and MV induce different IFN production profiles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Induction of Mucosal Homing Virus-Specific CD8+ T Lymphocytes by Attenuated Simian Immunodeficiency Virus

    PubMed Central

    Cromwell, Mandy A.; Veazey, Ronald S.; Altman, John D.; Mansfield, Keith G.; Glickman, Rhona; Allen, Todd M.; Watkins, David I.; Lackner, Andrew A.; Johnson, R. Paul

    2000-01-01

    Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8+ lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor α4β7 and traffic to the intestinal mucosa. SIV-specific CD8+ T cells expressing α4β7 were detected in peripheral blood and intestine of macaques infected with attenuated SIV. In contrast, virus-specific T cells in blood of animals immunized cutaneously by a combined DNA-modified vaccinia virus Ankara regimen did not express α4β7. These results demonstrate the selective induction of SIV-specific CD8+ T lymphocytes expressing α4β7 by a vaccine approach that replicates in mucosal tissue and suggest that induction of virus-specific lymphocytes that are able to home to mucosal sites may be an important characteristic of a successful AIDS vaccine. PMID:10954580

  9. [Behavior of Orf virus in permissive and nonpermissive systems].

    PubMed

    Büttner, M; Czerny, C P; Schumm, M

    1995-04-01

    Dogs were immunized i.m. with attenuated poxvirus vaccines (vaccinia virus, Orf-virus) and a bovine herpesvirus-1 (BHV-1) vaccine. After intradermal (i.d.) application of the vaccine viruses a specific delayed type hypersensitivity (DTH) reaction of the skin occurred only with vaccinia virus. The i.d. application of Orf-virus caused a short-term, non-specific inflammatory reaction of the skin, even in dogs not immunized with Orf-virus. Out of 30 sera from Orf-virus immunized beagles (n = 4) only eight were found reactive to Orf-virus in a competition ELISA. Three sera from dogs not Orf-virus immunized but skin-tested with the virus contained low antibody titers. Using indirect immunofluorescence (IIF) in flow cytometry, the existence of Orf-virus antigens was examined on the surface and in the cytoplasm of permissive (BFK and Vero)- and questionable permissive MDCK cells. The canine kidney MDCK cell line was found to be non-permissive for Orf-virus replication; the occurrence of an Orf-(ecthyma contagiosum) like disease in dogs is unlikely.

  10. [The Past and Future of Hepatitis B Virus, Hepatitis C Virus, and Human Immunodeficiency Virus Infection].

    PubMed

    Hayashi, Jun

    2015-06-01

    In Japan, hepatitis B virus (HBV) and hepatitis C virus (HCV) infections have decreased; however, human immunodeficiency virus (HIV) infection has increased. Antiviral treatment against these viruses has been established. With antiviral medicines, HBV DNA and HIV RNA levels decrease to under the detectable limits and HCV is completely eliminated from almost 90% of infected patients. Furthermore, the morbidities associated with hepatocellular carcinoma and acquired immunodeficiency syndrome (AIDS) have decreased. The: appearance of antiviral-resistant HBV and HCV is a concern because long-term treatment is needed against these viruses. Patients infected with HBV in the past have the potential to develop de novo hepatitis with immunosuppressive treatment, in spite of being HBsAg-negative and with HBV DNA under the detectable level.

  11. Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review.

    PubMed

    Maki, Joanne; Guiot, Anne-Laure; Aubert, Michel; Brochier, Bernard; Cliquet, Florence; Hanlon, Cathleen A; King, Roni; Oertli, Ernest H; Rupprecht, Charles E; Schumacher, Caroline; Slate, Dennis; Yakobson, Boris; Wohlers, Anne; Lankau, Emily W

    2017-09-22

    RABORAL V-RG ® is an oral rabies vaccine bait that contains an attenuated ("modified-live") recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control

  12. Infection of endothelial cells by common human viruses.

    PubMed

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  13. Physicochemical studies of equine infectious anemia virus: V. Effect of ultraviolet irradiation on virus infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, H.; Mizuno, Y.; Yasuda, K.

    1973-03-01

    The effect of ultraviolet radiation on the infectivity of equine infectious anemia (EIA) virus is described using influenza virus and Rous sarcoma (RSV) virus as controls. Virus preparations were placed in Petri dishes and uv- irradiated by a 15 watt germicidal lamp. At intervals up to 30 min samples were taken to determine the infectivity in surviving fractions. The infectivity of the influenza virus was reduced by four orders about 2 min after irradiation; the EIA virus infectivity was reduced to the same extent in 20 min, and the RSV infectivity was reduced to the same extent in 30 min.

  14. Reactivation West Nile virus infection-related chorioretinitis.

    PubMed

    Beardsley, Robert; McCannel, Colin

    2012-01-01

    West Nile Virus is a relatively uncommon infection that can involve retinal and choroidal inflammation leading to photopsias, photophobia, and orbital pain. The diagnosis is made by clinical history, serology, and characteristic funduscopic exam and fluorescein angiography findings. Treatment involves primarily supportive care as there are no known effective anti-viral agents. Visual recovery is usually full. Here we present a case of West Nile Virus Infection Related chorioretinitis that demonstrated active linear chorioretinal lesions approximately one year after the initial infection was diagnosed and treated. The patient noted new onset blurry vision and floaters for two weeks prior to presentation. Antibody titers to West Nile Virus increased from baseline levels indicating active infection. This represents the first case of reactivation West Nile Virus Infection Related chorioretinitis that has been documented.

  15. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    PubMed

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  16. Short-lived infected cells support virus replication in sooty mangabeys naturally infected with simian immunodeficiency virus: implications for AIDS pathogenesis.

    PubMed

    Gordon, Shari N; Dunham, Richard M; Engram, Jessica C; Estes, Jacob; Wang, Zichun; Klatt, Nichole R; Paiardini, Mirko; Pandrea, Ivona V; Apetrei, Cristian; Sodora, Donald L; Lee, Ha Youn; Haase, Ashley T; Miller, Michael D; Kaur, Amitinder; Staprans, Silvija I; Perelson, Alan S; Feinberg, Mark B; Silvestri, Guido

    2008-04-01

    Sooty mangabeys (SMs) naturally infected with simian immunodeficiency virus (SIV) do not develop AIDS despite high levels of virus replication. At present, the mechanisms underlying this disease resistance are poorly understood. Here we tested the hypothesis that SIV-infected SMs avoid immunodeficiency as a result of virus replication occurring in infected cells that live significantly longer than human immunodeficiency virus (HIV)-infected human cells. To this end, we treated six SIV-infected SMs with potent antiretroviral therapy (ART) and longitudinally measured the decline in plasma viremia. We applied the same mathematical models used in HIV-infected individuals and observed that SMs naturally infected with SIV also present a two-phase decay of viremia following ART, with the bulk (92 to 99%) of virus replication sustained by short-lived cells (average life span, 1.06 days), and only 1 to 8% occurring in longer-lived cells. In addition, we observed that ART had a limited impact on CD4(+) T cells and the prevailing level of T-cell activation and proliferation in SIV-infected SMs. Collectively, these results suggest that in SIV-infected SMs, similar to HIV type 1-infected humans, short-lived activated CD4(+) T cells, rather than macrophages, are the main source of virus production. These findings indicate that a short in vivo life span of infected cells is a common feature of both pathogenic and nonpathogenic primate lentivirus infections and support a model for AIDS pathogenesis whereby the direct killing of infected cells by HIV is not the main determinant of disease progression.

  17. Short-Lived Infected Cells Support Virus Replication in Sooty Mangabeys Naturally Infected with Simian Immunodeficiency Virus: Implications for AIDS Pathogenesis▿

    PubMed Central

    Gordon, Shari N.; Dunham, Richard M.; Engram, Jessica C.; Estes, Jacob; Wang, Zichun; Klatt, Nichole R.; Paiardini, Mirko; Pandrea, Ivona V.; Apetrei, Cristian; Sodora, Donald L.; Lee, Ha Youn; Haase, Ashley T.; Miller, Michael D.; Kaur, Amitinder; Staprans, Silvija I.; Perelson, Alan S.; Feinberg, Mark B.; Silvestri, Guido

    2008-01-01

    Sooty mangabeys (SMs) naturally infected with simian immunodeficiency virus (SIV) do not develop AIDS despite high levels of virus replication. At present, the mechanisms underlying this disease resistance are poorly understood. Here we tested the hypothesis that SIV-infected SMs avoid immunodeficiency as a result of virus replication occurring in infected cells that live significantly longer than human immunodeficiency virus (HIV)-infected human cells. To this end, we treated six SIV-infected SMs with potent antiretroviral therapy (ART) and longitudinally measured the decline in plasma viremia. We applied the same mathematical models used in HIV-infected individuals and observed that SMs naturally infected with SIV also present a two-phase decay of viremia following ART, with the bulk (92 to 99%) of virus replication sustained by short-lived cells (average life span, 1.06 days), and only 1 to 8% occurring in longer-lived cells. In addition, we observed that ART had a limited impact on CD4+ T cells and the prevailing level of T-cell activation and proliferation in SIV-infected SMs. Collectively, these results suggest that in SIV-infected SMs, similar to HIV type 1-infected humans, short-lived activated CD4+ T cells, rather than macrophages, are the main source of virus production. These findings indicate that a short in vivo life span of infected cells is a common feature of both pathogenic and nonpathogenic primate lentivirus infections and support a model for AIDS pathogenesis whereby the direct killing of infected cells by HIV is not the main determinant of disease progression. PMID:18216113

  18. Expression of Glycoproteins in Wild-Type and Vaccine Strains of Varicella Zoster Virus

    DTIC Science & Technology

    1990-06-18

    gpV vaccinia recombinants 142 XI LIST OF FIGURES ^ig^rfi Page 1 . Structural model of the herpesvirus virion 8 2. A diagram of the VZV and HSV ...gpIV-specific antiserum 139 36. Fc receptor activity in HSV - 1 and VZV glycoprotein recombinant vaccinia viruses 145 37. The gene 14 transcription...subfamily alphaherpesvirinae. The human alphaherpesviruses are comprised of VZV and herpes simplex viruses 1 and 2 ( HSV - 1 and HSV -2). Four other

  19. Genital herpes simplex virus infections.

    PubMed

    Rosenthal, M S

    1979-09-01

    In recent years, a great increase in interest in genital herpes has been stimulated partly by the rising prevalence of this disease and partly by observations suggesting that genital herpes is a cause of cervical cancer. The clinical pictures produced by genital herpes simplex virus infections are similar in men and women. In contrast to recurrent attacks, initial episodes of infection are generally more extensive, last longer, and are more often associated with regional lymphadenopathy and systemic symptoms. Genital herpes in pregnancy may pose a serious threat to the newborn infant. Although the data suggesting genital herpes simplex virus infection is a cause of cervical cancer are quite extensive, the evidence is largely circumstantial. In spite of these more serious aspects of genital herpes simplex virus infection, episodes of genital herpes are almost always self-limited and benign. Frequent recurrences pose the major therapeutic and management problem. At present, there is no satisfactory treatment for recurrent genital herpes simplex virus in fection. Many of the suggested therapies, although some sound very promising, are potentially dangerous and should be used only under carefully controlled conditions.

  20. Co-infection with Influenza Viruses and Influenza-Like Virus During the 2015/2016 Epidemic Season.

    PubMed

    Szymański, K; Cieślak, K; Kowalczyk, D; Brydak, L B

    2017-01-01

    Concerning viral infection of the respiratory system, a single virus can cause a variety of clinical symptoms and the same set of symptoms can be caused by different viruses. Moreover, infection is often caused by a combination of viruses acting at the same time. The present study demonstrates, using multiplex RT-PCR and real-time qRT-PCR, that in the 2015/2016 influenza season, co-infections were confirmed in patients aged 1 month to 90 years. We found 73 co-infections involving influenza viruses, 17 involving influenza viruses and influenza-like viruses, and six involving influenza-like viruses. The first type of co-infections above mentioned was the most common, amounting to 51 cases, with type A and B viruses occurring simultaneously. There also were four cases of co-infections with influenza virus A/H1N1/pdm09 and A/H1N1/ subtypes and two cases with A/H1N1/pdm09 and A/H3N2/ subtypes. The 2015/2016 epidemic season was characterized by a higher number of confirmed co-infections compared with the previous seasons. Infections by more than one respiratory virus were most often found in children and in individuals aged over 65.

  1. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straus, S.E.

    1989-12-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle themore » neurons.« less

  2. Acute infectious mononucleosis and coincidental measles virus infection.

    PubMed

    Atrasheuskaya, A V; Kameneva, S N; Neverov, A A; Ignatyev, G M

    2004-10-01

    Both Epstein-Barr and measles viruses (MV) cause immune suppression, and the association of the two viruses is evaluated as life threatening. The cell immune impairment caused by simultaneous Epstein-Barr and measles viral infections was responsible for the complicated course of the disease in all described previously reports and for unfavorable outcomes in most of the cases. Timely diagnosis of coincidental viral infections could be a useful predictor for the clinical course and complications. Diagnosis must be based on an accurate assessment of clinical, hematologic, serologic manifestations and supported by appropriate laboratory methods. Recognizing the infectious etiology of concomitant infections is important for both clinicians and epidemiologists. To describe a case report of a 20-year-old woman previously vaccinated against measles infected with acute mononucleosis and coincidental measles virus infection. The clinical, routine laboratory, as well as serological and virologic findings of this patient were scrutinized. Special emphasis was placed on the use of RT-PCR/PCR for confirming the involvement of both measles virus and Epstein-Barr virus (EBV) in this patient's illness. Infectious mononucleosis was not suspected at admission to the hospital. The final diagnosis of a concomitant measles virus infection and acute infectious mononucleosis was facilitated using viral serology to detect virus-specific IgG and IgM antibodies and by RT-PCR for the detection of measles virus RNA and EBV DNA from peripheral blood monocyte cells (PBMC). The present report highlights the difficulty of diagnosing two coincidental virus infections on clinical grounds. Serological and molecular laboratory methods, specifically the PCR (RT-PCR) analysis, are found to be useful for confirming the concomitant viral infections and proper identification of the infecting pathogens.

  3. Zika Virus Infection: Current Concerns and Perspectives.

    PubMed

    Maharajan, Mari Kannan; Ranjan, Aruna; Chu, Jian Feng; Foo, Wei Lim; Chai, Zhi Xin; Lau, Eileen YinYien; Ye, Heuy Mien; Theam, Xi Jin; Lok, Yen Ling

    2016-12-01

    The Zika virus outbreaks highlight the growing importance need for a reliable, specific and rapid diagnostic device to detect Zika virus, as it is often recognized as a mild disease without being identified. Many Zika virus infection cases have been misdiagnosed or underreported because of the non-specific clinical presentation. The aim of this review was to provide a critical and comprehensive overview of the published peer-reviewed evidence related to clinical presentations, various diagnostic methods and modes of transmission of Zika virus infection, as well as potential therapeutic targets to combat microcephaly. Zika virus is mainly transmitted through bites from Aedes aegypti mosquito. It can also be transmitted through blood, perinatally and sexually. Pregnant women are advised to postpone or avoid travelling to areas where active Zika virus transmission is reported, as this infection is directly linked to foetal microcephaly. Due to the high prevalence of Guillain-Barre syndrome and microcephaly in the endemic area, it is vital to confirm the diagnosis of Zika virus. Zika virus infection had been declared as a public health emergency and of international concern by the World Health Organisation. Governments and agencies should play an important role in terms of investing time and resources to fundamentally understand this infection so that a vaccine can be developed besides raising awareness.

  4. Hepatitis B and C Virus Infections Among Human Immunodeficiency Virus-Infected People Who Inject Drugs in Lahore, Pakistan.

    PubMed

    Mansha, Sana; Imran, Muhammad; Shah, Amir Miraj Ul Hussain; Jamal, Muhsin; Ahmed, Fayyaz; Atif, Muhammad; Saleem, Muhammmad; Safi, Sher Zaman; Fatima, Zareen; Bilal Waqar, Ahmed

    2017-06-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major cause of the global burden of hepatitis. One of the main routes of transmission for both viruses is through exposure to infected blood, which includes sharing blood-contaminated syringes and needles. Human immunodeficiency virus (HIV) attacks the immune system and results in acquired immune deficiency syndrome and opportunistic infections. The objective of this study was to assess the epidemiology of HBV and HCV infections among HIV-infected people who inject drugs (PWID). The study enrolled 100 PWID from different addiction centers of the city of Lahore in Pakistan. All subjects were HIV-infected males and were above 16 years of age. Screening of HBV and HCV infections was performed through immunochromatography tests and enzyme-linked immunosorbent assays. The prevalence of HCV and HBV infections among the 100 HIV-infected PWID was 55% and 6%, respectively. HIV monoinfection was found in 37% of the subjects, while triple infection was detected in 2% of the subjects. Majority of the HIV-infected PWID were using heroin and Avil injections (65%). Half of the subjects had used injection drugs for 1-5 years, while 32% had used injection drugs for 6-10 years. HCV infection was more common than HBV infection among the enrolled subjects. Most of the PWID were practicing heroin and Avil injections.

  5. Deletion of the Vaccinia Virus Gene A46R, Encoding for an Inhibitor of TLR Signalling, Is an Effective Approach to Enhance the Immunogenicity in Mice of the HIV/AIDS Vaccine Candidate NYVAC-C

    PubMed Central

    Perdiguero, Beatriz; Gómez, Carmen Elena; Di Pilato, Mauro; Sorzano, Carlos Oscar S.; Delaloye, Julie; Roger, Thierry; Calandra, Thierry; Pantaleo, Giuseppe; Esteban, Mariano

    2013-01-01

    Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates. PMID:24069354

  6. Linear Epitopes in Vaccinia Virus A27 Are Targets of Protective Antibodies Induced by Vaccination against Smallpox.

    PubMed

    Kaever, Thomas; Matho, Michael H; Meng, Xiangzhi; Crickard, Lindsay; Schlossman, Andrew; Xiang, Yan; Crotty, Shane; Peters, Bjoern; Zajonc, Dirk M

    2016-05-01

    Vaccinia virus (VACV) A27 is a target for viral neutralization and part of the Dryvax smallpox vaccine. A27 is one of the three glycosaminoglycan (GAG) adhesion molecules and binds to heparan sulfate. To understand the function of anti-A27 antibodies, especially their protective capacity and their interaction with A27, we generated and subsequently characterized 7 murine monoclonal antibodies (MAbs), which fell into 4 distinct epitope groups (groups I to IV). The MAbs in three groups (groups I, III, and IV) bound to linear peptides, while the MAbs in group II bound only to VACV lysate and recombinant A27, suggesting that they recognized a conformational and discontinuous epitope. Only group I antibodies neutralized the mature virion in a complement-dependent manner and protected against VACV challenge, while a group II MAb partially protected against VACV challenge but did not neutralize the mature virion. The epitope for group I MAbs was mapped to a region adjacent to the GAG binding site, a finding which suggests that group I MAbs could potentially interfere with the cellular adhesion of A27. We further determined the crystal structure of the neutralizing group I MAb 1G6, as well as the nonneutralizing group IV MAb 8E3, bound to the corresponding linear epitope-containing peptides. Both the light and the heavy chains of the antibodies are important in binding to their antigens. For both antibodies, the L1 loop seems to dominate the overall polar interactions with the antigen, while for MAb 8E3, the light chain generally appears to make more contacts with the antigen. Vaccinia virus is a powerful model to study antibody responses upon vaccination, since its use as the smallpox vaccine led to the eradication of one of the world's greatest killers. The immunodominant antigens that elicit the protective antibodies are known, yet for many of these antigens, little information about their precise interaction with antibodies is available. In an attempt to better

  7. Establishment of a Nipah virus rescue system.

    PubMed

    Yoneda, Misako; Guillaume, Vanessa; Ikeda, Fusako; Sakuma, Yuki; Sato, Hiroki; Wild, T Fabian; Kai, Chieko

    2006-10-31

    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans and incurred a high fatality rate in humans. Fruit bats, living in vast areas extending from India to the western Pacific, were identified as the natural reservoir of the virus. However, the mechanisms that resulted in severe pathogenicity in humans (up to 70% mortality) and that enabled crossing the species barrier were not known. In this study, we established a system that enabled the rescue of replicating NiVs from a cloned DNA by cotransfection of a constructed full-length cDNA clone and supporting plasmids coding virus nucleoprotein, phosphoprotein, and polymerase with the infection of the recombinant vaccinia virus, MVAGKT7, expressing T7 RNA polymerase. The rescued NiV (rNiV), by using the newly developed reverse genetics system, showed properties in vitro that were similar to the parent virus and retained the severe pathogenicity in a previously established animal model by experimental infection. A recombinant NiV was also developed, expressing enhanced green fluorescent protein (rNiV-EGFP). Using the virus, permissibility of NiV was compared with the presence of a known cellular receptor, ephrin B2, in a number of cell lines of different origins. Interestingly, two cell lines expressing ephrin B2 were not susceptible for rNiV-EGFP, indicating that additional factors are clearly required for full NiV replication. The reverse genetics for NiV will provide a powerful tool for the analysis of the molecular mechanisms of pathogenicity and cross-species infection.

  8. Severe Thrombocytopenia after Zika Virus Infection, Guadeloupe, 2016.

    PubMed

    Boyer Chammard, Timothée; Schepers, Kinda; Breurec, Sébastien; Messiaen, Thierry; Destrem, Anne-Laure; Mahevas, Matthieu; Soulillou, Adrien; Janaud, Ludovic; Curlier, Elodie; Herrmann-Storck, Cécile; Hoen, Bruno

    2017-04-01

    Severe thrombocytopenia during or after the course of Zika virus infection has been rarely reported. We report 7 cases of severe thrombocytopenia and hemorrhagic signs and symptoms in Guadeloupe after infection with this virus. Clinical course and laboratory findings strongly suggest a causal link between Zika virus infection and immune-mediated thrombocytopenia.

  9. Mouse Elberfeld (ME) virus determines the cell surface alterations when mixedly infecting poliovirus-infected cells.

    PubMed

    Zeichhardt, H; Schlehofer, J R; Wetz, K; Hampl, H; Habermehl, K O

    1982-02-01

    The surface alterations of HEp-2 cells induced by mixed infection with two different picornaviruses (poliovirus and ME virus) were compared by scanning electron microscopic and transmission electron microscopic studies and by 51Cr-release assay. The contribution of each of the viruses to the resulting surface changes was discernible, as investigations on the chronology of the cytopathic alterations demonstrated that the changes were distinct for either virus. The surface of ME virus-infected cells was characterized by large membranous structures ('sheets' and blebs) representing huge vacuoles. These sheets were not seen in poliovirus-infected cells. Poliovirus induced more prominent cell pycnosis, elongation of filopodia and condensation of collapsed microvilli on the cell surface than ME virus. Mixed infection with these two viruses led to surface alterations typical for ME virus. These ME virus-specific changes occurred irrespective of poliovirus reproduction or its inhibition by guanidine. ME virus-specific alterations also predominated in cytolytic membrane damage as expressed by 51Cr-release from infected cells. 51Cr-release was more pronounced from ME virus than from poliovirus-infected cells, even when ME virus reproduction was suppressed by interfering poliovirus. However, alteration of the internal structures of the infected cells was only dominated by ME virus when the reproduction of poliovirus was suppressed.

  10. Pivotal advance: CTLA-4+ T cells exhibit normal antiviral functions during acute viral infection.

    PubMed

    Raué, Hans-Peter; Slifka, Mark K

    2007-05-01

    Previous studies have shown that T cells, which are genetically deficient in CTLA-4/CD152 expression, will proliferate uncontrollably, resulting in lethal autoimmune disease. This and other evidence indicate that CTLA-4 plays a critical role in the negative regulation of effector T cell function. In contrast to expectations, BrdU incorporation experiments demonstrated that CTLA-4 expression was associated with normal or even enhanced in vivo proliferation of virus-specific CD4+ and CD8+ T cells following acute lymphocytic choriomeningitis virus or vaccinia virus infection. When compared with CTLA-4- T cells directly ex vivo, CTLA-4+ T cells also exhibited normal antiviral effector functions following stimulation with peptide-coated cells, virus-infected cells, plate-bound anti-CD3/anti-CTLA-4, or the cytokines IL-12 and IL-18. Together, this indicates that CTLA-4 does not directly inhibit antiviral T cell expansion or T cell effector functions, at least not under the normal physiological conditions associated with either of these two acute viral infections.

  11. Pneumonia Virus of Mice Severe Respiratory Virus Infection in a Natural Host

    PubMed Central

    Rosenberg, Helene F.; Domachowske, Joseph B.

    2008-01-01

    Pneumonia virus of mice (PVM; family Paramyxoviridae, genus Pneumovirus) is a natural mouse pathogen that is closely related to the human and bovine respiratory syncytial viruses. Among the prominent features of this infection, robust replication of PVM takes place in bronchial epithelial cells in response to a minimal virus inoculum. Virus replication in situ results in local production of proinflammatory cytokines (MIP-1α, MIP-2, MCP-1 and IFNγ) and granulocyte recruitment to the lung. If left unchecked, PVM infection and the ensuing inflammatory response ultimately lead to pulmonary edema, respiratory compromise and death. In this review, we consider the recent studies using the PVM model that have provided important insights into the role of the inflammatory response in the pathogenesis of severe respiratory virus infection. We also highlight several works that have elucidated acquired immune responses to this pathogen, including T cell responses and the development of humoral immunity. Finally, we consider several immunomodulatory strategies that have been used successfully to reduce morbidity and mortality when administered to PVM infected, symptomatic mice, and thus hold promise as realistic therapeutic strategies for severe respiratory virus infections in human subjects. PMID:18471897

  12. Smallpox infections during pregnancy, lessons on pathogenesis from nonpregnant animal models of infection.

    PubMed

    Hassett, Daniel E

    2003-10-01

    Both vaccinated and unvaccinated women during pregnancy who contract variola virus, the causative agent of smallpox, suffer much higher mortality rates than nonpregnants. Furthermore, acute maternal smallpox leads to spontaneous abortion, premature termination of pregnancy and early postnatal infant mortality. The mechanisms governing the abortifacient activity of smallpox, as well as the enhanced susceptibility of gestating women to lethal disease, have remained largely unexamined. Experimental poxvirus infections in nonpregnant small animal models have revealed that T helper type 1 (TH1) cytokines promote efficient resolution of these infections whereas type 2 (TH2) cytokines enhance viral pathogenesis. These data, combined with recent understanding of how the immune system is modulated by pregnancy, may offer important clues as to the increased pathogenesis of variola in pregnant women. The aim of this review is to bring together the current literature on the effects of poxvirus infections in nonpregnant hosts, as well as the effects of pregnancy on the immune system, in order to develop unifying concepts that may provide insight into the pathogenesis of variola during pregnancy and why prior vaccination with vaccinia virus the live anti-variola vaccine offers less protection to pregnant women and their unborn children.

  13. Hepatitis E virus infection presenting with paraesthesia.

    PubMed

    Bennett, Susan; Li, Kathy; Gunson, Rory N

    2015-05-01

    Hepatitis E virus infection is an emerging disease in developed countries. Acute and chronic infection has been reported, with chronic infection being increasingly reported in immunocompromised patients. Neurological disorders are an emerging manifestation of both acute and chronic hepatitis E virus infection. We report a 77-year-old female presented with paraesthesia and was found to have abnormal liver function tests. Serology was found to be positive for hepatitis E virus IgM, IgG and RNA. Liver function tests normalised after three weeks and her neurological symptoms completely resolved. To our knowledge, this is the first case in Scotland of hepatitis E virus presenting only with neurological symptoms. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Pathogenesis of human immunodeficiency virus infection.

    PubMed Central

    Levy, J A

    1993-01-01

    The lentivirus human immunodeficiency virus (HIV) causes AIDS by interacting with a large number of different cells in the body and escaping the host immune response against it. HIV is transmitted primarily through blood and genital fluids and to newborn infants from infected mothers. The steps occurring in infection involve an interaction of HIV not only with the CD4 molecule on cells but also with other cellular receptors recently identified. Virus-cell fusion and HIV entry subsequently take place. Following virus infection, a variety of intracellular mechanisms determine the relative expression of viral regulatory and accessory genes leading to productive or latent infection. With CD4+ lymphocytes, HIV replication can cause syncytium formation and cell death; with other cells, such as macrophages, persistent infection can occur, creating reservoirs for the virus in many cells and tissues. HIV strains are highly heterogeneous, and certain biologic and serologic properties determined by specific genetic sequences can be linked to pathogenic pathways and resistance to the immune response. The host reaction against HIV, through neutralizing antibodies and particularly through strong cellular immune responses, can keep the virus suppressed for many years. Long-term survival appears to involve infection with a relatively low-virulence strain that remains sensitive to the immune response, particularly to control by CD8+ cell antiviral activity. Several therapeutic approaches have been attempted, and others are under investigation. Vaccine development has provided some encouraging results, but the observations indicate the major challenge of preventing infection by HIV. Ongoing research is necessary to find a solution to this devastating worldwide epidemic. Images PMID:8464405

  15. Severe Thrombocytopenia after Zika Virus Infection, Guadeloupe, 2016

    PubMed Central

    Boyer Chammard, Timothée; Schepers, Kinda; Breurec, Sébastien; Messiaen, Thierry; Destrem, Anne-Laure; Mahevas, Matthieu; Soulillou, Adrien; Janaud, Ludovic; Curlier, Elodie; Herrmann-Storck, Cécile

    2017-01-01

    Severe thrombocytopenia during or after the course of Zika virus infection has been rarely reported. We report 7 cases of severe thrombocytopenia and hemorrhagic signs and symptoms in Guadeloupe after infection with this virus. Clinical course and laboratory findings strongly suggest a causal link between Zika virus infection and immune-mediated thrombocytopenia. PMID:27997330

  16. Novel Recombinant Mycobacterium bovis BCG, Ovine Atadenovirus, and Modified Vaccinia Virus Ankara Vaccines Combine To Induce Robust Human Immunodeficiency Virus-Specific CD4 and CD8 T-Cell Responses in Rhesus Macaques▿

    PubMed Central

    Rosario, Maximillian; Hopkins, Richard; Fulkerson, John; Borthwick, Nicola; Quigley, Máire F.; Joseph, Joan; Douek, Daniel C.; Greenaway, Hui Yee; Venturi, Vanessa; Gostick, Emma; Price, David A.; Both, Gerald W.; Sadoff, Jerald C.; Hanke, Tomáš

    2010-01-01

    Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration. PMID:20375158

  17. Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo.

    PubMed

    Duncan, Melanie Laura; Horsington, Jacquelyn; Eldi, Preethi; Al Rumaih, Zahrah; Karupiah, Gunasegaran; Newsome, Timothy P

    2018-03-05

    Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted.

  18. Loss of Actin-Based Motility Impairs Ectromelia Virus Release In Vitro but Is Not Critical to Spread In Vivo

    PubMed Central

    Duncan, Melanie Laura; Horsington, Jacquelyn; Eldi, Preethi; Al Rumaih, Zahrah; Karupiah, Gunasegaran

    2018-01-01

    Ectromelia virus (ECTV) is an orthopoxvirus and the causative agent of mousepox. Like other poxviruses such as variola virus (agent of smallpox), monkeypox virus and vaccinia virus (the live vaccine for smallpox), ECTV promotes actin-nucleation at the surface of infected cells during virus release. Homologs of the viral protein A36 mediate this function through phosphorylation of one or two tyrosine residues that ultimately recruit the cellular Arp2/3 actin-nucleating complex. A36 also functions in the intracellular trafficking of virus mediated by kinesin-1. Here, we describe the generation of a recombinant ECTV that is specifically disrupted in actin-based motility allowing us to examine the role of this transport step in vivo for the first time. We show that actin-based motility has a critical role in promoting the release of virus from infected cells in vitro but plays a minor role in virus spread in vivo. It is likely that loss of microtubule-dependent transport is a major factor for the attenuation observed when A36R is deleted. PMID:29510577

  19. Identification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and Demonstration that it Interacts with ICP8, the Major DNA Binding Protein of Herpes Simplex Virus

    DTIC Science & Technology

    1992-10-20

    Identification of ORFs HSV DNA binding proteins • 1 3 3 5 7 7 11 17 18 22 reps and its role in HSV replication 23 Biochemical properties . . 23...Figure 1 . 2. 3 • 4. 5. 6. 7. 8. Structural model of the herpesvirus virion Schematic diagram of HSV pathogenesis . Diagram of the main...vaccinia virus- 13. Autoradiogram of an immunoblot of HSV - 1 -infected cell proteins harvested at various times postinfec- 85 tioD probed with anti-UL42

  20. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

    PubMed

    Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha

    2017-10-28

    Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Spontaneous Elimination of Hepatitis C Virus Infection.

    PubMed

    Janiak, Maciej; Caraballo Cortes, Kamila; Demkow, Urszula; Radkowski, Marek

    2018-01-01

    Hepatitis C virus (HCV) is the etiological agent of chronic hepatitis C and a major cause of liver cirrhosis and hepatocellular carcinoma. Only a minority of infected individuals can clear the virus spontaneously. The knowledge of the determinants of virus clearance would allow the development of effective methods preventing its further spread and optimizing treatment regimens. Viral factors associated with spontaneous virus clearance in the acute phase of infection, such as HCV genotype, virus heterogeneity, and the impact of viral proteins on the immune system have been characterized. Likewise, host genetic markers, such as the interleukin genotypes, HLA alleles, and factors affecting the T lymphocyte response appear to play an important role. Studies have revealed that natural clearance of HCV infection in the chronic phase is rare and its mechanisms are not well understood. In this review, we present the state-of-the art knowledge on the viral and host factors affecting the spontaneous elimination of HCV infection.

  2. Virus specific antigens in mammalian cells infected with herpes simplex virus

    PubMed Central

    Watson, D. H.; Shedden, W. I. H.; Elliot, A.; Tetsuka, T.; Wildy, P.; Bourgaux-Ramoisy, D.; Gold, E.

    1966-01-01

    Antisera to specific proteins in herpes simplex infected cells were produced by immunization of rabbits with infected rabbit kidney cells. These antisera were highly virus specific and produced up to twelve lines in immunodiffusion tests against infected cell extracts. Acrylamide electrophoresis and immunoelectrophoresis revealed up to ten virus specific proteins of varying size. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4288648

  3. Hepatitis C virus infection in HIV-infected patients.

    PubMed

    Sulkowski, Mark S

    2007-10-01

    The hepatitis C virus (HCV) is a spherical enveloped RNA virus of the Flaviviridae family, classified within the Hepacivirus genus. Since its discovery in 1989, HCV has been recognized as a major cause of chronic hepatitis and hepatic fibrosis that progresses in some patients to cirrhosis and hepatocellular carcinoma. In the United States, approximately 4 million people have been infected with HCV, and 10,000 HCVrelated deaths occur each year. Due to shared routes of transmission, HCV and HIV co-infection are common, affecting approximately one third of all HIV-infected persons in the United States. In addition, HIV co-infection is associated with higher HCV RNA viral load and a more rapid progression of HCV-related liver disease, leading to an increased risk of cirrhosis. HCV infection may also impact the course and management of HIV disease, particularly by increasing the risk of antiretroviral drug-induced hepatotoxicity. Thus, chronic HCV infection acts as an opportunistic disease in HIV-infected persons because the incidence of infection is increased and the natural history of HCV infection is accelerated in co-infected persons. Strategies to prevent primary HCV infection and to modify the progression of HCV-related liver disease are urgently needed among HIV/HCV co-infected individuals.

  4. Dynamics of influenza A virus infections in permanently infected pig farms: evidence of recurrent infections, circulation of several swine influenza viruses and reassortment events.

    PubMed

    Rose, Nicolas; Hervé, Séverine; Eveno, Eric; Barbier, Nicolas; Eono, Florent; Dorenlor, Virginie; Andraud, Mathieu; Camsusou, Claire; Madec, François; Simon, Gaëlle

    2013-09-04

    Concomitant infections by different influenza A virus subtypes within pig farms increase the risk of new reassortant virus emergence. The aims of this study were to characterize the epidemiology of recurrent swine influenza virus infections and identify their main determinants. A follow-up study was carried out in 3 selected farms known to be affected by repeated influenza infections. Three batches of pigs were followed within each farm from birth to slaughter through a representative sample of 40 piglets per batch. Piglets were monitored individually on a monthly basis for serology and clinical parameters. When a flu outbreak occurred, daily virological and clinical investigations were carried out for two weeks. Influenza outbreaks, confirmed by influenza A virus detection, were reported at least once in each batch. These outbreaks occurred at a constant age within farms and were correlated with an increased frequency of sneezing and coughing fits. H1N1 and H1N2 viruses from European enzootic subtypes and reassortants between viruses from these lineages were consecutively and sometimes simultaneously identified depending on the batch, suggesting virus co-circulations at the farm, batch and sometimes individual levels. The estimated reproduction ratio R of influenza outbreaks ranged between 2.5 [1.9-2.9] and 6.9 [4.1-10.5] according to the age at infection-time and serological status of infected piglets. Duration of shedding was influenced by the age at infection time, the serological status of the dam and mingling practices. An impaired humoral response was identified in piglets infected at a time when they still presented maternally-derived antibodies.

  5. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen

    PubMed Central

    Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano

    2015-01-01

    In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive

  6. Chikungunya Virus Infection of Aedes Mosquitoes.

    PubMed

    Wong, Hui Vern; Chan, Yoke Fun; Sam, I-Ching; Sulaiman, Wan Yusof Wan; Vythilingam, Indra

    2016-01-01

    In vivo infection of mosquitoes is an important method to study and characterize arthropod-borne viruses. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is transmitted primarily by Aedes mosquitoes. In this chapter, we describe a protocol for infection of CHIKV in two species of Aedes mosquitoes, Aedes aegypti and Aedes albopictus, together with the isolation of CHIKV in different parts of the infected mosquito such as midgut, legs, wings, salivary gland, head, and saliva. This allows the study of viral infection, replication and dissemination within the mosquito vector.

  7. The immunogenicity of recombinant vaccines based on modified Vaccinia Ankara (MVA) viruses expressing African horse sickness virus VP2 antigens depends on the levels of expressed VP2 protein delivered to the host.

    PubMed

    Calvo-Pinilla, Eva; Gubbins, Simon; Mertens, Peter; Ortego, Javier; Castillo-Olivares, Javier

    2018-06-01

    African horse sickness (AHS) is a lethal equine disease transmitted by Culicoides biting midges and caused by African horse sickness virus (AHSV). AHS is endemic to sub-Saharan Africa, but devastating outbreaks have been recorded periodically outside this region. The perceived risk of an AHS outbreak occurring in Europe has increased following the frequent epidemics caused in ruminants by bluetongue virus, closely related to AHSV. Attenuated vaccines for AHS are considered unsuitable for use in non-endemic countries due bio-safety concerns. Further, attenuated and inactivated vaccines are not compatible with DIVA (differentiate infected from vaccinated animals) strategies. All these factors stimulated the development of novel AHS vaccines that are safer, more efficacious and DIVA compatible. We showed previously that recombinant modified Vaccinia Ankara virus (MVA) vaccines encoding the outer capsid protein of AHSV (AHSV-VP2) induced virus neutralising antibodies (VNAb) and protection against AHSV in a mouse model and also in the horse. Passive immunisation studies demonstrated that immunity induced by MVA-VP2 was associated with pre-challenge VNAb titres in the vaccinates. Analyses of the inoculum of these MVA-VP2 experimental vaccines showed that they contained pre-formed AHSV-VP2. We continued studying the influence of pre-formed AHSV-VP2, present in the inoculum of MVA-VP2 vaccines, in the immunogenicity of MVA-VP2 vaccines. Thus, we compared correlates of immunity in challenged mice that were previously vaccinated with: a) MVA-VP2 (live); b) MVA-VP2 (live and sucrose gradient purified); c) MVA-VP2 (UV light inactivated); d) MVA-VP2 (UV light inactivated and diluted); e) MVA-VP2 (heat inactivated); f) MVA-VP2 (UV inactivated) + MVA-VP2 (purified); g) MVA-VP2 (heat inactivated) + MVA-VP2 (purified); and h) wild type-MVA (no insert). The results of these experiments showed that protection was maximal using MVA-VP2 (live) vaccine and that the protection

  8. Photodynamic therapy augments the efficacy of oncolytic vaccinia virus against primary and metastatic tumours in mice

    PubMed Central

    Gil, M; Bieniasz, M; Seshadri, M; Fisher, D; Ciesielski, M J; Chen, Y; Pandey, R K; Kozbor, D

    2011-01-01

    Background: Therapies targeted towards the tumour vasculature can be exploited for the purpose of improving the systemic delivery of oncolytic viruses to tumours. Photodynamic therapy (PDT) is a clinically approved treatment for cancer that is known to induce potent effects on tumour vasculature. In this study, we examined the activity of PDT in combination with oncolytic vaccinia virus (OVV) against primary and metastatic tumours in mice. Methods: The effect of 2-[1-hexyloxyethyl-]-2-devinyl pyropheophorbide-a (HPPH)-sensitised-PDT on the efficacy of oncolytic virotherapy was investigated against subcutaneously implanted syngeneic murine NXS2 neuroblastoma and human FaDu head and neck squamous cell carcinoma xenografts in nude mice. Treatment efficacy was evaluated by monitoring tumour growth and survival. The effects of combination treatment on vascular function were examined using magnetic resonance imaging (MRI) and immunohistochemistry, whereas viral replication in tumour cells was analysed by a standard plaque assay. Normal tissue phototoxicity following PDT-OV treatment was studied using the mouse foot response assay. Results: Combination of PDT with OVV resulted in inhibition of primary and metastatic tumour growth compared with either monotherapy. PDT-induced vascular disruption resulted in higher intratumoural viral titres compared with the untreated tumours. Five days after delivery of OVV, there was a loss of blood flow to the interior of tumour that was associated with infiltration of neutrophils. Administration of OVV did not result in any additional photodynamic damage to normal mouse foot tissue. Conclusion: These results provide evidence into the usefulness of PDT as a means of enhancing intratumoural replication and therapeutic efficacy of OV. PMID:21989183

  9. Mosaic H5 Hemagglutinin Provides Broad Humoral and Cellular Immune Responses against Influenza Viruses

    PubMed Central

    Kamlangdee, Attapon; Kingstad-Bakke, Brock

    2016-01-01

    ABSTRACT The most effective way to prevent influenza virus infection is via vaccination. However, the constant mutation of influenza viruses due to antigenic drift and shift compromises vaccine efficacy. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. Using the modified vaccinia Ankara (MVA) virus, we had previously generated a recombinant vaccine against highly pathogenic avian influenza virus (H5N1) based on an in silico mosaic approach. This MVA-H5M construct protected mice against multiple clades of H5N1 and H1N1 viruses. We have now further characterized the immune responses using immunodepletion of T cells and passive serum transfer, and these studies indicate that antibodies are the main contributors in homosubtypic protection (H5N1 clades). Compared to a MVA construct expressing hemagglutinin (HA) from influenza virus A/VN/1203/04 (MVA-HA), the MVA-H5M vaccine markedly increased and broadened B cell and T cell responses against H5N1 virus. The MVA-H5M also provided effective protection with no morbidity against H5N1 challenge, whereas MVA-HA-vaccinated mice showed clinical signs and experienced significant weight loss. In addition, MVA-H5M induced CD8+ T cell responses that play a major role in heterosubtypic protection (H1N1). Finally, expression of the H5M gene as either a DNA vaccine or a subunit protein protected mice against H5N1 challenge, indicating the effectiveness of the mosaic sequence without viral vectors for the development of a universal influenza vaccine. IMPORTANCE Influenza viruses infect up to one billion people around the globe each year and are responsible for 300,000 to 500,000 deaths annually. Vaccines are still the main intervention to prevent infection, but they fail to provide effective protection against heterologous strains of viruses. We developed broadly reactive H5N1 vaccine based on an in silico mosaic approach and previously

  10. Virus Infection and Death Receptor-Mediated Apoptosis.

    PubMed

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-10-27

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.

  11. Virus Infection and Death Receptor-Mediated Apoptosis

    PubMed Central

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-01-01

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis. PMID:29077026

  12. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection.

    PubMed

    Buckingham, Erin M; Carpenter, John E; Jackson, Wallen; Zerboni, Leigh; Arvin, Ann M; Grose, Charles

    2015-01-06

    Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.

  13. [Skin symptoms associated with human immunodeficiency virus infection].

    PubMed

    Tamási, Béla; Marschalkó, Márta; Kárpáti, Sarolta

    2015-01-04

    The recently observed accelerated increase of human immunodeficiency virus infection in Hungary poses a major public concern for the healthcare system. Given the effective only but not the curative therapy, prevention should be emphasized. Current statistics estimate that about 50% of the infected persons are not aware of their human immunodeficiency virus-positivity. Thus, early diagnosis of the infection by serological screening and timely recognition of the disease-associated symptoms are crucial. The authors' intention is to facilitate early infection detection with this review on human immunodeficiency virus-associated skin symptoms, and highlight the significance of human immunodeficiency virus care in the everyday medical practice.

  14. Vaccinia virus recombinants encoding the truncated structural gene region of Venezuelan equine encephalitis virus (VEEV) give solid protection against peripheral challenge but only partial protection against airborne challenge with virulent VEEV.

    PubMed

    Phillpotts, R J; Lescott, T L; Jacobs, S C

    2000-10-01

    Vaccinia virus (VV) recombinants that contain the genes encoding the Venezuelan equine encephalitis virus (VEEV) structural gene region (C-E3-E2-6 K-E1) solidly protect mice against peripheral challenge with virulent VEEV, but provide only partial protection against airborne challenge. To improve upon these results we focussed on the principal antigens involved in protection. VV recombinants encoding the structural genes E3-E2-6 K-E1, E3-E2-6 K or 6 K-E1 were prepared and evaluated for their ability to protect Balb/c mice after a single dorsal scarification with 10(8) PFU against peripheral or airborne challenge with virulent VEEV. The antibody response was also examined. Our experiments provide new evidence that truncates of the VEEV structural region (E3-E2-6 K-E1, E3-E2-6 K), cloned and expressed in VV, protect against challenge with virulent virus. They also confirm the important role of E2 in protection. However, we were unable to improve upon previously reported levels of protection against airborne challenge. A substantial level of circulating antibodies and the presence of local IgA (not always induced by mucosal immunization) (Greenway et al., 1992) appear essential for protection against the airborne virus. Current VV-VEEV recombinants seem unable to elicit this level of immune response and further improvements are therefore required to increase the immunogenicity of VV-VEEV vaccines.

  15. INFLUENCE OF ANESTHESIA ON EXPERIMENTAL NEUROTROPIC VIRUS INFECTIONS

    PubMed Central

    Sulkin, S. Edward; Zarafonetis, Christine; Goth, Andres

    1946-01-01

    Anesthesia with diethyl ether significantly alters the course and outcome of experimental infections with the equine encephalomyelitis virus (Eastern or Western type) or with the St. Louis encephalitis virus. No comparable effect is observed in experimental infections produced with rabies or poliomyelitis (Lansing) viruses. The neurotropic virus infections altered by ether anesthesia are those caused by viruses which are destroyed in vitro by this anesthetic, and those infections not affected by ether anesthesia are caused by viruses which apparently are not destroyed by ether in vitro. Another striking difference between these two groups of viruses is their pathogenesis in the animal host; those which are inhibited in vivo by ether anesthesia tend to infect cells of the cortex, basal ganglia, and only occasionally the cervical region of the cord. On the other hand, those which are not inhibited in vivo by ether anesthesia tend to involve cells of the lower central nervous system and in the case of rabies, peripheral nerves. This difference is of considerable importance in view of the fact that anesthetics affect cells of the lower central nervous system only in very high concentrations. It is obvious from the complexity of the problem that no clear-cut statement can be made at this point as to the mechanism of the observed effect of ether anesthesia in reducing the mortality rate in certain of the experimental neurotropic virus infections. Important possibilities include a direct specific effect of diethyl ether upon the virus and a less direct effect of the anesthetic upon the virus through its alteration of the metabolism of the host cell. PMID:19871570

  16. Vaccinia-based influenza vaccine overcomes previously induced immunodominance hierarchy for heterosubtypic protection.

    PubMed

    Kwon, Ji-Sun; Yoon, Jungsoon; Kim, Yeon-Jung; Kang, Kyuho; Woo, Sunje; Jung, Dea-Im; Song, Man Ki; Kim, Eun-Ha; Kwon, Hyeok-Il; Choi, Young Ki; Kim, Jihye; Lee, Jeewon; Yoon, Yeup; Shin, Eui-Cheol; Youn, Jin-Won

    2014-08-01

    Growing concerns about unpredictable influenza pandemics require a broadly protective vaccine against diverse influenza strains. One of the promising approaches was a T cell-based vaccine, but the narrow breadth of T-cell immunity due to the immunodominance hierarchy established by previous influenza infection and efficacy against only mild challenge condition are important hurdles to overcome. To model T-cell immunodominance hierarchy in humans in an experimental setting, influenza-primed C57BL/6 mice were chosen and boosted with a mixture of vaccinia recombinants, individually expressing consensus sequences from avian, swine, and human isolates of influenza internal proteins. As determined by IFN-γ ELISPOT and polyfunctional cytokine secretion, the vaccinia recombinants of influenza expanded the breadth of T-cell responses to include subdominant and even minor epitopes. Vaccine groups were successfully protected against 100 LD50 challenges with PR/8/34 and highly pathogenic avian influenza H5N1, which contained the identical dominant NP366 epitope. Interestingly, in challenge with pandemic A/Cal/04/2009 containing mutations in the dominant epitope, only the group vaccinated with rVV-NP + PA showed improved protection. Taken together, a vaccinia-based influenza vaccine expressing conserved internal proteins improved the breadth of influenza-specific T-cell immunity and provided heterosubtypic protection against immunologically close as well as distant influenza strains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  18. Mitigating Prenatal Zika Virus Infection in the Americas.

    PubMed

    Ndeffo-Mbah, Martial L; Parpia, Alyssa S; Galvani, Alison P

    2016-10-18

    Because of the risk for Zika virus infection in the Americas and the links between infection and microcephaly, other serious neurologic conditions, and fetal death, health ministries across the region have advised women to delay pregnancy. However, the effectiveness of this policy in reducing prenatal Zika virus infection has yet to be quantified. To evaluate the effectiveness of pregnancy-delay policies on the incidence and prevalence of prenatal Zika virus infection. Vector-borne Zika virus transmission model fitted to epidemiologic data from 2015 to 2016 on Zika virus infection in Colombia. Colombia, August 2015 to July 2017. Population of Colombia, stratified by sex, age, and pregnancy status. Recommendations to delay pregnancy by 3, 6, 9, 12, or 24 months, at different levels of adherence. Weekly and cumulative incidence of prenatal infections and microcephaly cases. With 50% adherence to recommendations to delay pregnancy by 9 to 24 months, the cumulative incidence of prenatal Zika virus infections is likely to decrease by 17% to 44%, whereas recommendations to delay pregnancy by 6 or fewer months are likely to increase prenatal infections by 2% to 7%. This paradoxical exacerbation of prenatal Zika virus exposure is due to an elevated risk for pregnancies to shift toward the peak of the outbreak. Sexual transmission was not explicitly accounted for in the model because of limited data but was implicitly subsumed within the overall transmission rate, which was calibrated to observed incidence. Pregnancy delays can have a substantial effect on reducing cases of microcephaly but risks exacerbating the Zika virus outbreak if the duration is not sufficient. Duration of the delay, population adherence, and the timing of initiation of the intervention must be carefully considered. National Institutes of Health.

  19. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection.

    PubMed

    Maliogka, Varvara I; Calvo, María; Carbonell, Alberto; García, Juan Antonio; Valli, Adrian

    2012-07-01

    HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.

  20. The CD8 T Cell Response to Respiratory Virus Infections.

    PubMed

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  1. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  2. Regression of Established Human Papillomavirus Type 16 (HPV-16) Immortalized Tumors In Vivo by Vaccinia Viruses Expressing Different Forms of HPV-16 E7 Correlates with Enhanced CD8+ T-Cell Responses That Home to the Tumor Site

    PubMed Central

    Lamikanra, Abigail; Pan, Zhen-Kun; Isaacs, Stuart N.; Wu, Tzyy-Choou; Paterson, Yvonne

    2001-01-01

    Using vaccinia virus as a live vector, we show that the expression of human papillomavirus type 16 (HPV-16) E7 fused to a nonhemolytic portion of the Listeria monocytogenes virulence factor, listeriolysin O (LLO), induces an immune response that causes the regression of established HPV-16 immortalized tumors in C57BL/6 mice. The vaccinia virus construct expressing LLO fused to E7 (VacLLOE7) was compared with two previously described vaccinia virus constructs: one that expresses unmodified E7 (VacE7) and another that expresses E7 in a form designed to direct it to intracellular lysosomal compartments and improve major histocompatibility complex class II-restricted responses (VacSigE7LAMP-1). C57BL/6 mice bearing established HPV-16 immortalized tumors of 5 or 8 mm were treated with each of these vaccines. Fifty percent of the mice treated with VacLLOE7 remained tumor free 2 months after tumor inoculation, whereas 12 to 25% of the mice were tumor free after treatment with VacSigE7LAMP-1 (depending on the size of the tumor). No mice were tumor free in the group given VacE7. Compared to VacE7, VacSigE7LAMP-1 and VacLLOE7 resulted in increased numbers of H2-Db-specific tetramer-positive CD8+ T cells in mouse spleens that produced gamma interferon and tumor necrosis factor alpha upon stimulation with RAHYNIVTF peptide. In addition, the highest frequency of tetramer-positive T cells was seen in the tumor sites of mice treated with VacLLOE7. An increased efficiency of E7-specific lysis by splenocytes from mice immunized with VacLLOE7 was also observed. These results indicate that the fusion of E7 with LLO not only enhances antitumor therapy by improving the tumoricidal function of E7-specific CD8+ T cells but may also increase the number of antigen-specific CD8+ T cells in the tumor, the principle site of antigen expression. PMID:11559797

  3. Safety and immunogenicity of modified vaccinia Ankara in hematopoietic stem cell transplant recipients: a randomized, controlled trial.

    PubMed

    Walsh, Stephen R; Wilck, Marissa B; Dominguez, David J; Zablowsky, Elise; Bajimaya, Shringkhala; Gagne, Lisa S; Verrill, Kelly A; Kleinjan, Jane A; Patel, Alka; Zhang, Ying; Hill, Heather; Acharyya, Aruna; Fisher, David C; Antin, Joseph H; Seaman, Michael S; Dolin, Raphael; Baden, Lindsey R

    2013-06-15

    Modified vaccinia Ankara (MVA-BN, IMVAMUNE) is emerging as a primary immunogen and as a delivery system to treat or prevent a wide range of diseases. Defining the safety and immunogenicity of MVA-BN in key populations is therefore important. We performed a dose-escalation study of MVA-BN administered subcutaneously in 2 doses, one on day 0 and another on day 28. Twenty-four hematopoietic stem cell transplant recipients were enrolled sequentially into the study, and vaccine or placebo was administered under a randomized, double-blind allocation. Ten subjects received vaccine containing 10(7) median tissue culture infective doses (TCID50) of MVA-BN, 10 subjects received vaccine containing 10(8) TCID50 of MVA-BN, and 4 subjects received placebo. MVA-BN was generally well tolerated at both doses. No vaccine-related serious adverse events were identified. Transient local reactogenicity was more frequently seen at the higher dose. Neutralizing antibodies (NAb) to Vaccinia virus (VACV) were elicited by both doses of MVA-BN and were greater for the higher dose. Median peak anti-VACV NAb titers were 1:49 in the lower-dose group and 1:118 in the higher-dose group. T-cell immune responses to VACV were detected by an interferon γ enzyme-linked immunosorbent spot assay and were higher in the higher-dose group. MVA-BN is safe, well tolerated, and immunogenic in HSCT recipients. These data support the use of 10(8) TCID50 of MVA-BN in this population. NCT00565929.

  4. Nora virus persistent infections are not affected by the RNAi machinery.

    PubMed

    Habayeb, Mazen S; Ekström, Jens-Ola; Hultmark, Dan

    2009-05-29

    Drosophila melanogaster is widely used to decipher the innate immune system in response to various pathogens. The innate immune response towards persistent virus infections is among the least studied in this model system. We recently discovered a picorna-like virus, the Nora virus which gives rise to persistent and essentially symptom-free infections in Drosophila melanogaster. Here, we have used this virus to study the interaction with its host and with some of the known Drosophila antiviral immune pathways. First, we find a striking variability in the course of the infection, even between flies of the same inbred stock. Some flies are able to clear the Nora virus but not others. This phenomenon seems to be threshold-dependent; flies with a high-titer infection establish stable persistent infections, whereas flies with a lower level of infection are able to clear the virus. Surprisingly, we find that both the clearance of low-level Nora virus infections and the stability of persistent infections are unaffected by mutations in the RNAi pathways. Nora virus infections are also unaffected by mutations in the Toll and Jak-Stat pathways. In these respects, the Nora virus differs from other studied Drosophila RNA viruses.

  5. Cowpea viruses: Effect of single and mixed infections on symptomatology and virus concentration

    PubMed Central

    Taiwo, Moni A; Kareem, Kehinde T; Nsa, Imade Y; D'A Hughes, Jackies

    2007-01-01

    Natural multiple viral infections of cultivated cowpeas have been reported in Nigeria. In this study, three Nigerian commercial cowpea cultivars ("Olo 11", "Oloyin" and "White") and two lines from the IITA (IT86D- 719 and TVU 76) were mechanically inoculated with Cowpea aphid-borne mosaic virus (CABMV), Bean southern mosaic virus (SBMV) and Cowpea mottle virus (CMeV) singly, as well as in all possible combinations at 10, 20 and 30 days after planting (DAP). Samples of leaves or stems were collected at 10, 20 and 30 days after inoculation (DAI) and analyzed for relative virus concentration by Enzyme-Linked Immunosrbent Assay. All the cultivars and lines {CVS/L} were susceptible to the viruses but the commercial CVS showed more severe symptoms and had relatively higher viral concentration. In single virus infections, CABMV which induced the most severe symptoms had absorbance values (at 405 nm) of 0.11 to 0.46 while SBMV and CMeV which induced moderate symptoms had virus titre of 0.74 to 1.99 and 0.11 to 0.90 respectively. Plants inoculated 10 DAP had significantly higher virus concentration than those inoculated 30 DAP. In mixed infections involving CABMV (10 DAP) apical necrosis and death were observed in commercial cultivars "Olo 11" and "White". Enhancement of CMeV titers were observed in plants infected with CMeV + CABMV. Multiple viral infections of cowpeas may result in complete yield loss, hence, the availability of seeds of cultivars with a high level of multiple virus resistance is recommended as a means of control. PMID:17900355

  6. Unusual Features of Vaccinia Virus Extracellular Virion Form Neutralization Resistance Revealed in Human Antibody Responses to the Smallpox Vaccine

    PubMed Central

    Benhnia, Mohammed Rafii-El-Idrissi; Maybeno, Matthew; Blum, David; Aguilar-Sino, Rowena; Matho, Michael; Meng, Xiangzhi; Head, Steven; Felgner, Philip L.; Zajonc, Dirk M.; Koriazova, Lilia; Kato, Shinichiro; Burton, Dennis R.; Xiang, Yan; Crowe, James E.; Peters, Bjoern

    2013-01-01

    The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201–1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33. PMID:23152530

  7. Infection of phytoplankton by aerosolized marine viruses

    PubMed Central

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  8. Mucosal vaccination with recombinant poxvirus vaccines protects ferrets against symptomatic CDV infection.

    PubMed

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    1999-01-28

    Canine distemper virus (CDV) infection of ferrets causes a disease characterized by fever, erythema, conjunctivitis and leukocytopenia, similar clinically to measles except for the fatal neurologic sequelae of CDV. We vaccinated juvenile ferrets twice at 4-week intervals by the intranasal or intraduodenal route with attenuated vaccinia (NYVAC) or canarypox virus (ALVAC) constructs containing the CDV hemagglutinin and fusion genes. Controls were vaccinated with the same vectors expressing rabies glycoprotein. Animals were challenged intranasally 4 weeks after the second vaccination with virulent CDV. Body weights, white blood cell (WBC) counts and temperatures were monitored and ferrets were observed daily for clinical signs of infection. WBCs were assayed for the presence of viral RNA by RT-PCR. Intranasally vaccinated animals survived challenge with no virologic or clinical evidence of infection. Vaccination by the intraduodenal route did not provide complete protection. All control animals developed typical distemper. Ferrets can be effectively protected against distemper by mucosal vaccination with poxvirus vaccines.

  9. Zika virus infection of Hofbauer cells.

    PubMed

    Simoni, Michael K; Jurado, Kellie Ann; Abrahams, Vikki M; Fikrig, Erol; Guller, Seth

    2017-02-01

    Recent studies have linked antenatal infection with Zika virus (ZIKV) with major adverse fetal and neonatal outcomes, including microcephaly. There is a growing consensus for the existence of a congenital Zika syndrome (CZS). Previous studies have indicated that non-placental macrophages play a key role in the replication of dengue virus (DENV), a closely related flavivirus. As the placenta provides the conduit for vertical transmission of certain viruses, and placental Hofbauer cells (HBCs) are fetal-placental macrophages located adjacent to fetal capillaries, it is not surprising that several recent studies have examined infection of HBCs by ZIKV. In this review, we describe congenital abnormalities associated with ZIKV infection, the role of HBCs in the placental response to infection, and evidence for the susceptibility of HBCs to ZIKV infection. We conclude that HBCs may contribute to the spread of ZIKV in placenta and promote vertical transmission of ZIKV, ultimately compromising fetal and neonatal development and function. Current evidence strongly suggests that further studies are warranted to dissect the specific molecular mechanism through which ZIKV infects HBCs and its potential impact on the development of CZS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The mature virion of ectromelia virus, a pathogenic poxvirus, is capable of intrahepatic spread and can serve as a target for delayed therapy.

    PubMed

    Ma, Xueying; Xu, Ren-Huan; Roscoe, Felicia; Whitbeck, J Charles; Eisenberg, Roselyn J; Cohen, Gary H; Sigal, Luis J

    2013-06-01

    Orthopoxviruses (OPVs), which include the agent of smallpox (variola virus), the zoonotic monkeypox virus, the vaccine and zoonotic species vaccinia virus, and the mouse pathogen ectromelia virus (ECTV), form two types of infectious viral particles: the mature virus (MV), which is cytosolic, and the enveloped virus (EV), which is extracellular. It is believed that MVs are required for viral entry into the host, while EVs are responsible for spread within the host. Following footpad infection of susceptible mice, ECTV spreads lymphohematogenously, entering the liver at 3 to 4 days postinfection (dpi). Afterwards, ECTV spreads intrahepatically, killing the host. We found that antibodies to an MV protein were highly effective at curing mice from ECTV infection when administered after the virus reached the liver. Moreover, a mutant ECTV that does not make EV was able to spread intrahepatically and kill immunodeficient mice. Together, these findings indicate that MVs are sufficient for the spread of ECTV within the liver and could have implications regarding the pathogenesis of other OPVs, the treatment of emerging OPV infections, as well as strategies for preparedness in case of accidental or intentional release of pathogenic OPVs.

  11. Prediction of Steps in the Evolution of Variola Virus Host Range

    PubMed Central

    Smithson, Chad; Purdy, Alex; Verster, Adrian J.; Upton, Chris

    2014-01-01

    Variola virus, the agent of smallpox, has a severely restricted host range (humans) but a devastatingly high mortality rate. Although smallpox has been eradicated by a World Health Organization vaccination program, knowledge of the evolutionary processes by which human super-pathogens such as variola virus arise is important. By analyzing the evolution of variola and other closely related poxviruses at the level of single nucleotide polymorphisms we detected a hotspot of genome variation within the smallpox ortholog of the vaccinia virus O1L gene, which is known to be necessary for efficient replication of vaccinia virus in human cells. These mutations in the variola virus ortholog and the subsequent loss of the functional gene from camelpox virus and taterapox virus, the two closest relatives of variola virus, strongly suggest that changes within this region of the genome may have played a key role in the switch to humans as a host for the ancestral virus and the subsequent host-range restriction that must have occurred to create the phenotype exhibited by smallpox. PMID:24626337

  12. Prediction of steps in the evolution of variola virus host range.

    PubMed

    Smithson, Chad; Purdy, Alex; Verster, Adrian J; Upton, Chris

    2014-01-01

    Variola virus, the agent of smallpox, has a severely restricted host range (humans) but a devastatingly high mortality rate. Although smallpox has been eradicated by a World Health Organization vaccination program, knowledge of the evolutionary processes by which human super-pathogens such as variola virus arise is important. By analyzing the evolution of variola and other closely related poxviruses at the level of single nucleotide polymorphisms we detected a hotspot of genome variation within the smallpox ortholog of the vaccinia virus O1L gene, which is known to be necessary for efficient replication of vaccinia virus in human cells. These mutations in the variola virus ortholog and the subsequent loss of the functional gene from camelpox virus and taterapox virus, the two closest relatives of variola virus, strongly suggest that changes within this region of the genome may have played a key role in the switch to humans as a host for the ancestral virus and the subsequent host-range restriction that must have occurred to create the phenotype exhibited by smallpox.

  13. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis.

    PubMed

    Lv, Chunwei; Su, Qunshu; Liang, Yupei; Hu, Jinqing; Yuan, Sujing

    2016-07-15

    Lung cancer has an especially high incidence rate worldwide, and its resistance to cell death and chemotherapeutic drugs increases its intractability. The vaccinia virus has been shown to destroy neoplasm within a short time and disseminate rapidly and extensively as an enveloped virion throughout the circulatory system, and this virus has also demonstrated a strong ability to overexpress exogenous genes. Interleukin-24 (IL-24/mda-7) is an important cytokine that belongs to the activating caspase family and facilitates the inhibition of STAT3 when a cell enters the apoptosis pathway. In this study, we constructed a cancer-targeted vaccinia virus carrying the IL-24 gene knocked in the region of the viral thymidine kinase (TK) gene (VV-IL-24). Our results showed that VV-IL-24 efficiently infected and destroyed lung cancer cells via caspase-dependent apoptosis and decreased the expression of STAT3. In vivo, VV-IL-24 expressed IL-24 at a high level in the transplanted tumour, reduced STAT3 activity, and eventually led to apoptosis. In conclusion, we demonstrated that vv-IL-24 has the potential for use as a new human lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The neurobiology of varicella zoster virus infection

    PubMed Central

    Gilden, D.; Mahalingam, R.; Nagel, M. A.; Pugazhenthi, S.; Cohrs, R. J.

    2011-01-01

    Varicella zoster virus (VZV) is a neurotropic herpesvirus that infects nearly all humans. Primary infection usually causes chickenpox (varicella), after which virus becomes latent in cranial nerve ganglia, dorsal root ganglia and autonomic ganglia along the entire neuraxis. Although VZV cannot be isolated from human ganglia, nucleic acid hybridization and, later, polymerase chain reaction proved that VZV is latent in ganglia. Declining VZV-specific host immunity decades after primary infection allows virus to reactivate spontaneously, resulting in shingles (zoster) characterized by pain and rash restricted to 1-3 dermatomes. Multiple other serious neurological and ocular disorders also result from VZV reactivation. This review summarizes the current state of knowledge of the clinical and pathological complications of neurological and ocular disease produced by VZV reactivation, molecular aspects of VZV latency, VZV virology and VZV-specific immunity, the role of apoptosis in VZV-induced cell death, and the development of an animal model provided by simian varicella virus infection of monkeys. PMID:21342215

  15. Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates.

    PubMed

    Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S; Koopman, Gerrit; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G; Kondova, Ivanela; Wagner, Ralf; Wolf, Hans; Gómez, Carmen E; Nájera, José L; Jiménez, Victoria; Esteban, Mariano; Heeney, Jonathan L

    2008-03-01

    Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4(+) and CD8(+) T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4(+) T-cell response (NYVAC). Remarkably, vector-induced differences in CD4(+)/CD8(+) T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4(+) T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4(+) T-cell responses showed efficacies similar to those with stronger CD8(+) T-cell responses.

  16. Human papilloma virus infection and psoriasis: Did human papilloma virus infection trigger psoriasis?

    PubMed

    Jain, Sonia P; Gulhane, Sachin; Pandey, Neha; Bisne, Esha

    2015-01-01

    Psoriasis is an autoimmune chronic inflammatory skin disease known to be triggered by streptococcal and HIV infections. However, human papilloma virus infection (HPV) as a triggering factor for the development of psoriasis has not been reported yet. We, hereby report a case of plaque type with inverse psoriasis which probably could have been triggered by genital warts (HPV infection) and discuss the possible pathomechanisms for their coexistence and its management.

  17. Inactivation of Viruses by Benzalkonium Chloride

    PubMed Central

    Armstrong, J. A.; Froelich, E. J.

    1964-01-01

    Benzalkonium chloride (as Roccal or Zephiran) was found to inactivate influenza, measles, canine distemper, rabies, fowl laryngotracheitis, vaccinia, Semliki Forest, feline pneumonitis, meningopneumonitis, and herpes simplex viruses after 10 min of exposure at 30 C or at room temperature. Poliovirus and encephalomyocarditis virus were not inactivated under the same conditions. It was concluded that all viruses tested were sensitive except members of the picorna group. The literature was reviewed. PMID:4288740

  18. Pathogenesis of Lassa fever virus infection: I. Susceptibility of mice to recombinant Lassa Gp/LCMV chimeric virus.

    PubMed

    Lee, Andrew M; Cruite, Justin; Welch, Megan J; Sullivan, Brian; Oldstone, Michael B A

    2013-08-01

    Lassa virus (LASV) is a BSL-4 restricted agent. To allow study of infection by LASV under BSL-2 conditions, we generated a recombinant virus in which the LASV glycoprotein (Gp) was placed on the backbone of lymphocytic choriomeningitis virus (LCMV) Cl13 nucleoprotein, Z and polymerase genes (rLCMV Cl13/LASV Gp). The recombinant virus displayed high tropism for dendritic cells following in vitro or in vivo infection. Inoculation of immunocompetent adults resulted in an acute infection, generation of virus-specific CD8(+) T cells and clearance of the infection. Inoculation of newborn mice with rLCMV Cl13/LASV Gp resulted in a life-long persistent infection. Interestingly, adoptive transfer of rLCMV Cl13/LASV Gp immune memory cells into such persistently infected mice failed to purge virus but, in contrast, cleared virus from mice persistently infected with wt LCMV Cl13. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Mouse superkiller‐2‐like helicase DDX60 is dispensable for type I IFN induction and immunity to multiple viruses

    PubMed Central

    Goubau, Delphine; van der Veen, Annemarthe G.; Chakravarty, Probir; Lin, Rongtuan; Rogers, Neil; Rehwinkel, Jan; Deddouche, Safia; Rosewell, Ian; Hiscott, John

    2015-01-01

    Abstract IFN‐α/β allow cells to fight virus infection by inducing the expression of many genes that encode effectors of antiviral defense. One of these, the Ski2‐like DExH‐box helicase DDX60, was recently implicated in resistance of human cells to hepatitis C virus, as well as in induction of IFN‐α/β by retinoic acid inducible gene 1‐like receptors (RLRs) that detect the presence of RNA viruses in a cell‐intrinsic manner. Here, we sought to investigate the role of DDX60 in IFN‐α/β induction and in resistance to virus infection. Analysis of fibroblasts and myeloid cells from Ddx60‐deficient mice revealed no impairment in IFN‐α/β production in response to RLR agonists, RNA viruses, or other stimuli. Moreover, overexpression of DDX60 did not potentiate IFN induction and DDX60 did not interact with RLRs or capture RLR agonists from virally infected cells. We also failed to identify any impairment in Ddx60‐deficient murine cells or mice in resistance to infection with influenza A virus, encephalomyocarditis virus, Sindbis virus, vaccinia virus, or herpes simplex virus‐1. These results put in question the reported role of DDX60 as a broad‐acting positive regulator of RLR responses and hint at the possibility that it may function as a restriction factor highly specific for a particular virus or class of viruses. PMID:26457795

  20. Herpes virus infection of the peripheral nervous system.

    PubMed

    Steiner, Israel

    2013-01-01

    Among the human herpes viruses, three are neurotropic and capable of producing severe neurological abnormalities: herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus (VZV). Both the acute, primary infection and the reactivation from the site of latent infection, the dorsal sensory ganglia, are associated with severe human morbidity and mortality. The peripheral nervous system is one of the major loci affected by these viruses. The present review details the virology and molecular biology underlying the human infection. This is followed by detailed description of the symtomatology, clinical presentation, diagnosis, course, therapy, and prognosis of disorders of the peripheral nervous system caused by these viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Inhibition of Neurogenesis by Zika virus Infection.

    PubMed

    Ahmad, Fahim; Siddiqui, Amna; Kamal, Mohammad A; Sohrab, Sayed S

    2018-02-01

    The association between Zika virus infection and neurological disorder has raised urgent global alarm. The ongoing epidemic has triggered quick responses in the scientific community. The first case of Zika virus was reported in 2015 from Brazil and now has spread over 30 countries. Nearly four hundred cases of travel-associated Zika virus infection have also been reported in the United States. Zika virus is primarily transmitted by mosquito belongs to the genus Aedes that are widely distributed throughout the world including the Southern United States. Additionally, the virus can also be transmitted from males to females by sexual contact. The epidemiological investigations during the current outbreak found a causal link between infection in pregnant women and development of microcephaly in their unborn babies. This finding is a cause for grave concern since microcephaly is a serious neural developmental disorder that can lead to significant post-natal developmental abnormalities and disabilities. Recently, published data indicate that Zika virus infection affects the growth of fetal neural progenitor cells and cerebral neurons that results in malformation of cerebral cortex leading to microcephaly. Recently, it has been reported that Zika virus infection deregulates the signaling pathway of neuronal cell and inhibit the neurogenesis resulting into dementia. In this review we have discussed about the information about cellular and molecular mechanisms in neurodegeneration of human neuronal cells and inhibit the neurogenesis. Additionally, this information will be very helpful further not only in neuro-scientific research but also designing and development of management strategies for microcephaly and other mosquito borne disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Persistent RNA virus infections: do PAMPS drive chronic disease?

    PubMed Central

    McCarthy, Mary K.; Morrison, Thomas E.

    2017-01-01

    Chronic disease associated with persistent RNA virus infections represents a key public health concern. While human immunodeficiency virus-1 and hepatitis C virus are perhaps the most well-known examples of persistent RNA viruses that cause chronic disease, evidence suggests that many other RNA viruses, including re-emerging viruses such as chikungunya virus, Ebola virus and Zika virus, establish persistent infections. The mechanisms by which RNA viruses drive chronic disease are poorly understood. Here, we discuss how the persistence of viral RNA may drive chronic disease manifestations via the activation of RNA sensing pathways. PMID:28214732

  3. Differential Sensitivity of Bat Cells to Infection by Enveloped RNA Viruses: Coronaviruses, Paramyxoviruses, Filoviruses, and Influenza Viruses

    PubMed Central

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  4. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections.

    PubMed

    Geisbert, Thomas W; Feldmann, Heinz

    2011-11-01

    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Among the most-promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Importantly, a single injection of blended rVSV-based filovirus vaccines was shown to completely protect nonhuman primates against Marburg virus and 3 different species of Ebola virus. These rVSV-based vaccines have also shown utility when administered as a postexposure treatment against filovirus infections, and a rVSV-based Ebola virus vaccine was recently used to treat a potential laboratory exposure. Here, we review the history of rVSV-based vaccines and pivotal animal studies showing their utility in combating Ebola and Marburg virus infections.

  5. [The development of therapeutic vaccine for hepatitis C virus].

    PubMed

    Kimura, Kiminori; Kohara, Michinori

    2012-10-01

    Chronic hepatitis C caused by infection with the hepatitis C virus(HCV)is a global health problem. HCV causes persistent infection that can lead to chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The therapeutic efficacy of antiviral drugs is not optimal in patients with chronic infection; furthermore, an effective vaccine has not yet been developed. To design an effective HCV vaccine, generation of a convenient animal model of HCV infection is necessary. Recently, we used the Cre/loxP switching system to generate an immunocompetent mouse model of HCV expression, thereby enabling the study of host immune responses against HCV proteins. At present vaccine has not yet been shown to be therapeutically effective against chronic HCV infection. We examined the therapeutic effects of a recombinant vaccinia virus(rVV)encoding HCV protein in a mouse model. we generated rVVs for 3 different HCV proteins and found that one of the recombinant viruses encoding a nonstructural protein(rVV-N25)resolved pathological chronic hepatitis C symptoms in the liver. We propose the possibility that rVV-N25 immunization has the potential for development of an effective therapeutic vaccine for HCV induced chronic hepatitis. The utilization of the therapeutic vaccine can protect progress to chronic hepatitis, and as a consequence, leads to eradication of hepatocellular carcinoma. In this paper, we summarized our current study for HCV therapeutic vaccine and review the vaccine development to date.

  6. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Scalzo, Anthony A; Eldi, Preethi; Newsome, Timothy P; Buller, Robert M; Karupiah, Gunasegaran

    2015-12-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status.

  7. Reversible Inactivation and Desiccation Tolerance of Silicified Viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laidler, James J.; Shugart, Jessica A.; Cady, Sherry L.

    2013-11-19

    Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus SSV-K and Vaccinia are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot springs. By contrast, bacteriophage PRD1 is not silicified. Moreover silicification provides viruses with remarkable desiccation resistance, which could allow extensive aerial dispersal.

  8. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    PubMed

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  9. Infection and Proliferation of Giant Viruses in Amoeba Cells.

    PubMed

    Takemura, Masaharu

    2016-01-01

    Acanthamoeba polyphaga mimivirus, the first discovered giant virus with genome size and particle size much larger than previously discovered viruses, possesses several genes for translation and CRISPER Cas system-like defense mechanism against virophages, which co-infect amoeba cells with the giant virus and which inhibit giant virus proliferation. Mimiviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their stargate structure. After infection, giant virion factories (VFs) form in amoeba cytoplasm, followed by DNA replication and particle formation at peripheral regions of VF. Marseilleviruses, the smallest giant viruses, infect amoeba cells by phagocytosis or endocytosis, form larger VF than Mimivirus's VF in amoeba cytoplasm, and replicate their particles. Pandoraviruses found in 2013 have the largest genome size and particle size among all viruses ever found. Pandoraviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their mouth-like apical pores. The proliferation of Pandoraviruses occurs along with nucleus disruption. New virions form at the periphery of the region formerly occupied by the amoeba cell nucleus.

  10. Characterisation of three novel giant viruses reveals huge diversity among viruses infecting Prymnesiales (Haptophyta).

    PubMed

    Johannessen, Torill Vik; Bratbak, Gunnar; Larsen, Aud; Ogata, Hiroyuki; Egge, Elianne S; Edvardsen, Bente; Eikrem, Wenche; Sandaa, Ruth-Anne

    2015-02-01

    We have isolated three novel lytic dsDNA-viruses from Raunefjorden (Norway) that are putative members of the Mimiviridae family, namely Haptolina ericina virus RF02 (HeV RF02), Prymnesium kappa virus RF01 (PkV RF01), and Prymnesium kappa virus RF02 (PkV RF02). Each of the novel haptophyte viruses challenges the common conceptions of algal viruses with respect to host range, phylogenetic affiliation and size. PkV RF01 has a capsid of ~310 nm and is the largest algal virus particle ever reported while PkV RF01 and HeV RF02 were able to infect different species, even belonging to different genera. Moreover, PkV RF01 and HeV RF02 infected the same hosts, but phylogenetic analysis placed them in different groups. Our results reveal large variation among viruses infecting closely related microalgae, and challenge the common conception that algal viruses have narrow host range, and phylogeny reflecting their host affiliation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. First Imported Case of Zika Virus Infection into Korea.

    PubMed

    Jang, Hee-Chang; Park, Wan Beom; Kim, Uh Jin; Chun, June Young; Choi, Su-Jin; Choe, Pyoeng Gyun; Jung, Sook-In; Jee, Youngmee; Kim, Nam-Joong; Choi, Eun Hwa; Oh, Myoung-Don

    2016-07-01

    Since Zika virus has been spreading rapidly in the Americas from 2015, the outbreak of Zika virus infection becomes a global health emergency because it can cause neurological complications and adverse fetal outcome including microcephaly. Here, we report clinical manifestations and virus isolation findings from a case of Zika virus infection imported from Brazil. The patient, 43-year-old Korean man, developed fever, myalgia, eyeball pain, and maculopapular rash, but not neurological manifestations. Zika virus was isolated from his semen, and reverse-transcriptase PCR was positive for the virus in the blood, urine, and saliva on the 7th day of the illness but was negative on the 21st day. He recovered spontaneously without any neurological complications. He is the first case of Zika virus infection in Korea imported from Brazil.

  12. Getah Virus Infection among Racehorses, Japan, 2014

    PubMed Central

    Bannai, Hiroshi; Tsujimura, Koji; Kobayashi, Minoru; Kikuchi, Takuya; Yamanaka, Takashi; Kondo, Takashi

    2015-01-01

    An outbreak of Getah virus infection occurred among racehorses in Japan during September and October 2014. Of 49 febrile horses tested by reverse transcription PCR, 25 were positive for Getah virus. Viruses detected in 2014 were phylogenetically different from the virus isolated in Japan in 1978. PMID:25898181

  13. Epidemiology of virus infection and human cancer.

    PubMed

    Chen, Chien-Jen; Hsu, Wan-Lun; Yang, Hwai-I; Lee, Mei-Hsuan; Chen, Hui-Chi; Chien, Yin-Chu; You, San-Lin

    2014-01-01

    The International Agency for Research on Cancer (IARC) has comprehensively assessed the human carcinogenicity of biological agents. Seven viruses including Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), Kaposi's sarcoma herpes virus (KSHV), human immunodeficiency virus, type-1 (HIV-1), human T cell lymphotrophic virus, type-1 (HTLV-1), and human papillomavirus (HPV) have been classified as Group 1 human carcinogens by IARC. The conclusions are based on the findings of epidemiological and mechanistic studies. EBV, HPV, HTLV-1, and KSHV are direct carcinogens; HBV and HCV are indirect carcinogens through chronic inflammation; HIV-1 is an indirect carcinogen through immune suppression. Some viruses may cause more than one cancer, while some cancers may be caused by more than one virus. However, only a proportion of persons infected by these oncogenic viruses will develop specific cancers. A series of studies have been carried out to assess the viral, host, and environmental cofactors of EBV-associated nasopharyngeal carcinoma, HBV/HCV-associated hepatocellular carcinoma, and HPV-associated cervical carcinoma. Persistent infection and high viral load are important risk predictors of these virus-caused cancers. Risk calculators incorporating host and viral factors have also been developed for the prediction of long-term risk of hepatocellular carcinoma. These risk calculators are useful for the triage and clinical management of infected patients. Both clinical trials and national programs of immunization or antiviral therapy have demonstrated a significant reduction in the incidence of cancers caused by HBV, HCV, and HPV. Future researches on gene-gene and gene-environment interaction of oncogenic viruses and human host are in urgent need.

  14. Mouse superkiller-2-like helicase DDX60 is dispensable for type I IFN induction and immunity to multiple viruses.

    PubMed

    Goubau, Delphine; van der Veen, Annemarthe G; Chakravarty, Probir; Lin, Rongtuan; Rogers, Neil; Rehwinkel, Jan; Deddouche, Safia; Rosewell, Ian; Hiscott, John; Reis E Sousa, Caetano

    2015-12-01

    IFN-α/β allow cells to fight virus infection by inducing the expression of many genes that encode effectors of antiviral defense. One of these, the Ski2-like DExH-box helicase DDX60, was recently implicated in resistance of human cells to hepatitis C virus, as well as in induction of IFN-α/β by retinoic acid inducible gene 1-like receptors (RLRs) that detect the presence of RNA viruses in a cell-intrinsic manner. Here, we sought to investigate the role of DDX60 in IFN-α/β induction and in resistance to virus infection. Analysis of fibroblasts and myeloid cells from Ddx60-deficient mice revealed no impairment in IFN-α/β production in response to RLR agonists, RNA viruses, or other stimuli. Moreover, overexpression of DDX60 did not potentiate IFN induction and DDX60 did not interact with RLRs or capture RLR agonists from virally infected cells. We also failed to identify any impairment in Ddx60-deficient murine cells or mice in resistance to infection with influenza A virus, encephalomyocarditis virus, Sindbis virus, vaccinia virus, or herpes simplex virus-1. These results put in question the reported role of DDX60 as a broad-acting positive regulator of RLR responses and hint at the possibility that it may function as a restriction factor highly specific for a particular virus or class of viruses. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Acute Hepatitis E Virus infection with coincident reactivation of Epstein-Barr virus infection in an immunosuppressed patient with rheumatoid arthritis: a case report.

    PubMed

    Schultze, Detlev; Mani, Bernhard; Dollenmaier, Günter; Sahli, Roland; Zbinden, Andrea; Krayenbühl, Pierre Alexandre

    2015-10-29

    Hepatitis E virus (HEV) is the most recently discovered of the hepatotropic viruses, and is considered an emerging pathogen in developed countries with the possibility of fulminant hepatitis in immunocompromised patients. Especially in the latter elevated transaminases should be taken as a clue to consider HEV infection, as it can be treated by discontinuation of immunosuppression and/or ribavirin therapy. To our best knowledge, this is a unique case of autochthonous HEV infection with coincident reactivation of Epstein-Barr virus (EBV) infection in an immunosuppressed patient with rheumatoid arthritis (RA). A 68-year-old Swiss woman with RA developed hepatitis initially diagnosed as methotrexate-induced liver injury, but later diagnosed as autochthonous HEV infection accompanied by reactivation of her latent EBV infection. She showed confounding serological results pointing to three hepatotropic viruses (HEV, Hepatitis B virus (HBV) and EBV) that could be resolved by detection of HEV and EBV viraemia. The patient recovered by temporary discontinuation of immunosuppressive therapy. In immunosuppressed patients with RA and signs of liver injury, HEV infection should be considered, as infection can be treated by discontinuation of immunosuppression. Although anti-HEV-IgM antibody assays can be used as first line virological tools, nucleic acid amplification tests (NAAT) for detection of HEV RNA are recommended--as in our case--if confounding serological results from other hepatotropic viruses are obtained. After discontinuation of immunosuppressive therapy, our patient recovered from both HEV infection and reactivation of latent EBV infection without sequelae.

  16. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry.

    PubMed

    Bertran, Kateri; Balzli, Charles; Kwon, Yong-Kuk; Tumpey, Terrence M; Clark, Andrew; Swayne, David E

    2017-11-01

    Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus-naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry.

  17. Deletion of Specific Immune-Modulatory Genes from Modified Vaccinia Virus Ankara-Based HIV Vaccines Engenders Improved Immunogenicity in Rhesus Macaques

    PubMed Central

    O'Mara, Leigh A.; Gangadhara, Sailaja; McQuoid, Monica; Zhang, Xiugen; Zheng, Rui; Gill, Kiran; Verma, Meena; Yu, Tianwei; Johnson, Brent; Li, Bing; Derdeyn, Cynthia A.; Ibegbu, Chris; Altman, John D.; Hunter, Eric; Feinberg, Mark B.

    2012-01-01

    Modified vaccinia virus Ankara (MVA) is a safe, attenuated orthopoxvirus that is being developed as a vaccine vector but has demonstrated limited immunogenicity in several early-phase clinical trials. Our objective was to rationally improve the immunogenicity of MVA-based HIV/AIDS vaccines via the targeted deletion of specific poxvirus immune-modulatory genes. Vaccines expressing codon-optimized HIV subtype C consensus Env and Gag antigens were generated from MVA vector backbones that (i) harbor simultaneous deletions of four viral immune-modulatory genes, encoding an interleukin-18 (IL-18) binding protein, an IL-1β receptor, a dominant negative Toll/IL-1 signaling adapter, and CC-chemokine binding protein (MVAΔ4-HIV); (ii) harbor a deletion of an additional (fifth) viral gene, encoding uracil-DNA glycosylase (MVAΔ5-HIV); or (iii) represent the parental MVA backbone as a control (MVA-HIV). We performed head-to-head comparisons of the cellular and humoral immune responses that were elicited by these vectors during homologous prime-boost immunization regimens utilizing either high-dose (2 × 108 PFU) or low-dose (1 × 107 PFU) intramuscular immunization of rhesus macaques. At all time points, a majority of the HIV-specific T cell responses, elicited by all vectors, were directed against Env, rather than Gag, determinants, as previously observed with other vector systems. Both modified vectors elicited up to 6-fold-higher frequencies of HIV-specific CD8 and CD4 T cell responses and up to 25-fold-higher titers of Env (gp120)-specific binding (nonneutralizing) antibody responses that were relatively transient in nature. While the correlates of protection against HIV infection remain incompletely defined, our results indicate that the rational deletion of specific genes from MVA vectors can positively alter their cellular and humoral immunogenicity profiles in nonhuman primates. PMID:22973033

  18. Single virus particle mass detection using microresonators with nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Akin, D.; Bashir, R.

    2004-03-01

    In this letter, we present the microfabrication and application of arrays of silicon cantilever beams as microresonator sensors with nanoscale thickness to detect the mass of individual virus particles. The dimensions of the fabricated cantilever beams were in the range of 4-5 μm in length, 1-2 μm in width and 20-30 nm in thickness. The virus particles we used in the study were vaccinia virus, which is a member of the Poxviridae family and forms the basis of the smallpox vaccine. The frequency spectra of the cantilever beams, due to thermal and ambient noise, were measured using a laser Doppler vibrometer under ambient conditions. The change in resonant frequency as a function of the virus particle mass binding on the cantilever beam surface forms the basis of the detection scheme. We have demonstrated the detection of a single vaccinia virus particle with an average mass of 9.5 fg. These devices can be very useful as components of biosensors for the detection of airborne virus particles.

  19. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    PubMed

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. NK cells and poxvirus infection

    PubMed Central

    Burshtyn, Deborah N.

    2013-01-01

    In recent years, our understanding of the role of natural killer (NK) cells in the response to viral infection has grown rapidly. Not only do we realize viruses have many immune-evasion strategies to escape NK cell responses, but that stimulation of NK cell subsets during an antiviral response occurs through receptors seemingly geared directly at viral products and that NK cells can provide a memory response to viral pathogens. Tremendous knowledge has been gained in this area through the study of herpes viruses, but appreciation for the significance of NK cells in the response to other types of viral infections is growing. The function of NK cells in defense against poxviruses has emerged over several decades beginning with the early seminal studies showing the role of NK cells and the NK gene complex in susceptibility of mouse strains to ectromelia, a poxvirus pathogen of mice. More recently, greater understanding has emerged of the molecular details of the response. Given that human diseases caused by poxviruses can be as lethal as smallpox or as benign as Molluscum contagiosum, and that vaccinia virus, the prototypic member of the pox family, persists as a mainstay of vaccine design and has potential as an oncolytic virus for tumor therapy, further research in this area remains important. This review focuses on recent advances in understanding the role of NK cells in the immune response to poxviruses, the receptors involved in activation of NK cells during poxvirus infection, and the viral evasion strategies poxviruses employ to avoid the NK response. PMID:23372568

  1. Differentiated human airway organoids to assess infectivity of emerging influenza virus.

    PubMed

    Zhou, Jie; Li, Cun; Sachs, Norman; Chiu, Man Chun; Wong, Bosco Ho-Yin; Chu, Hin; Poon, Vincent Kwok-Man; Wang, Dong; Zhao, Xiaoyu; Wen, Lei; Song, Wenjun; Yuan, Shuofeng; Wong, Kenneth Kak-Yuen; Chan, Jasper Fuk-Woo; To, Kelvin Kai-Wang; Chen, Honglin; Clevers, Hans; Yuen, Kwok-Yung

    2018-06-26

    Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human. Copyright © 2018 the Author(s). Published by PNAS.

  2. Infection of neuroblastoma cells by rabies virus is modulated by the virus titer.

    PubMed

    Fuoco, Natalia Langenfeld; Dos Ramos Silva, Sandriana; Fernandes, Elaine Raniero; Luiz, Fernanda Guedes; Ribeiro, Orlando Garcia; Katz, Iana Suly Santos

    2018-01-01

    Rabies is a lethal viral infection that can affect almost all mammals, including humans. To better understand the replication of Rabies lyssavirus, we investigated if the viral load in brains naturally infected with rabies influences viral internalization and viral growth kinetics in neuroblastoma cells, and if the viral load affects mortality in mice after intradermal infection. We noted that high initial viral loads in brains (group II) were unfavourable for increasing viral titers during serial passages in neuroblastoma cells when compared to low initial viral loads in brains (group I). In addition, group I strains showed higher viral growth and enhanced internalization efficiency in neuroblastoma cells than group II strains. However, we observed that the dominant virus subpopulation in group II promoted efficient viral infection in the central nervous system in the new host, providing a selective advantage to the virus. Our data indicate that rabies infection in animal models depends on not only the virus strain but also the amount of virus. This study may serve as a basis for understanding the biologic proprieties of Rabies lyssavirus strains with respect to the effects on viral replication and the impact on pathogenesis, improving virus yields for use in vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hepatitis B and C virus co-infections in human immunodeficiency virus positive North Indian patients

    PubMed Central

    Gupta, Swati; Singh, Sarman

    2006-01-01

    AIM: To determine the prevalence of hepatitis B and C virus infections in human immunodeficiency virus (HIV) -positive patients at a tertiary care hospital in New Delhi, India. METHODS: Serum samples from 451 HIV positive patients were analyzed for HBsAg and HCV antibodies during three years (Jan 2003-Dec 2005). The control group comprised of apparently healthy bone-marrow and renal donors. RESULTS: The study population comprised essentially of heterosexually transmitted HIV infection. The prevalence rate of HBsAg in this population was 5.3% as compared to 1.4% in apparently healthy donors (P < 0.001). Though prevalence of HCV co-infection (2.43%) was lower than HBV in this group of HIV positive patients, the prevalence was significantly higher (P < 0.05) than controls (0.7%). Triple infection of HIV, HBV and HCV was not detected in any patient. CONCLUSION: Our study shows a significantly high prevalence of hepatitis virus infections in HIV infected patients. Hepatitis viruses in HIV may lead to faster progression to liver cirrhosis and a higher risk of antiretroviral therapy induced hepatotoxicity. Therefore, it would be advisable to detect hepatitis virus co-infections in these patients at the earliest. PMID:17106941

  4. Tioman virus infection in experimentally infected mouse brain and its association with apoptosis.

    PubMed

    Yaiw, Koon Chu; Ong, Kien Chai; Chua, Kaw Bing; Bingham, John; Wang, Linfa; Shamala, Devi; Wong, Kum Thong

    2007-08-01

    Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.

  5. Prenatal brain MRI of fetuses with Zika virus infection.

    PubMed

    Guillemette-Artur, Prisca; Besnard, Marianne; Eyrolle-Guignot, Dominique; Jouannic, Jean-Marie; Garel, Catherine

    2016-06-01

    An outbreak of Zika virus was observed in French Polynesia in 2013-2014. Maternal Zika virus infection has been associated with fetal microcephaly and severe cerebral damage. To analyze the MRI cerebral findings in fetuses with intrauterine Zika virus infection. We retrospectively analyzed prospectively collected data. Inclusion criteria comprised cases with (1) estimated conception date between June 2013 and May 2014, (2) available US and MRI scans revealing severe fetal brain lesions and (3) positive polymerase chain reaction for Zika virus in the amniotic fluid. We recorded pregnancy history of Zika virus infection and analyzed US and MRI scans. Three out of 12 cases of severe cerebral lesions fulfilled all inclusion criteria. History of maternal Zika virus infection had been documented in two cases. Calcifications and ventriculomegaly were present at US in all cases. MRI showed micrencephaly (n = 3), low cerebellar biometry (n = 2), occipital subependymal pseudocysts (n = 2), polymicrogyria with laminar necrosis and opercular dysplasia (n = 3), absent (n = 1) or hypoplastic (n = 1) corpus callosum and hypoplastic brainstem (n = 1). Severe cerebral damage was observed in our series, with indirect findings suggesting that the germinal matrix is the principal target for Zika virus. The lesions are very similar to severe forms of congenital cytomegalovirus and lymphocytic choriomeningitis virus infections.

  6. Inhibition of Bim Enhances Replication of Varicella-Zoster Virus and Delays Plaque Formation in Virus-Infected Cells

    PubMed Central

    Liu, XueQiao

    2014-01-01

    Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication. PMID:24227856

  7. Natural history of chronic hepatitis B virus infection.

    PubMed

    Busch, Katrin; Thimme, Robert

    2015-02-01

    Hepatitis B virus infection represents a major global health problem. Currently, there are more than 240 million chronically infected people worldwide. The development of chronic hepatitis B virus-mediated liver disease may lead to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma. Recently, the discovery of the viral entry receptor sodium taurocholate cotransporting polypeptide has facilitated new approaches for a better understanding of viral physiopathology. Hopefully, these novel insights may give rise to the development of more effective antiviral therapy concepts during the next years. In this review, we will discuss the natural history of hepatitis B virus infection including the viral biology, the clinical course of infection and the role of the immune response.

  8. Hepatitis B virus infection in dentistry: a forgotten topic.

    PubMed

    Mahboobi, N; Agha-Hosseini, F; Mahboobi, N; Safari, S; Lavanchy, D; Alavian, S-M

    2010-05-01

    More than two billion people have been infected with hepatitis B virus (HBV). Globally, 350-400 million suffer from chronic HBV infection. It is postulated that dentists and dental staff are infected and transmit the virus to their patients more than any other occupation. The aim of this article is to review the HBV incidence in dental society, the points of view of dentists and their patients regarding transmission of the virus during dental procedures, the occurrence of HBV outbreaks in dental clinics and the importance of methods of preventing HBV infection in dentistry.

  9. Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection.

    PubMed

    Yajima, Toshitaka

    2011-05-01

    Virus infection can inflict significant damage on cardiomyocytes through direct injury and secondary immune reactions, leading to myocarditis and dilated cardiomyopathy. While viral myocarditis or cardiomyopathy is a complication of systemic infection of cardiotropic viruses, most individuals infected with the viruses do not develop significant cardiac disease. However, some individuals proceed to develop severe virus-mediated heart disease. Recent studies have shown that viral infection of cardiomyocytes is required for the development of myocarditis and subsequent cardiomyopathy. This suggests that viral infection of cardiomyocytes can be an important step that determines the pathogenesis of viral myocarditis during systemic infection. Accordingly, this article focuses on potential defense mechanisms within the cardiomyocyte against virus infection. Understanding of the cardiomyocyte defense against invading viruses may give us novel insights into the pathophysiology of viral myocarditis, and enable us to develop innovative strategies of diagnosis and treatment for this challenging clinical entity.

  10. Development of a High-Content Orthopoxvirus Infectivity and Neutralization Assays

    PubMed Central

    Gates, Irina; Olson, Victoria; Smith, Scott; Patel, Nishi; Damon, Inger; Karem, Kevin

    2015-01-01

    Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT), newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as β-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox. PMID:26426117

  11. Is the gut the major source of virus in early simian immunodeficiency virus infection?

    PubMed

    Lay, Matthew D H; Petravic, Janka; Gordon, Shari N; Engram, Jessica; Silvestri, Guido; Davenport, Miles P

    2009-08-01

    The acute phases of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection are characterized by rapid and profound depletion of CD4+ T cells from the guts of infected individuals. The large number of CD4+ T cells in the gut (a large fraction of which are activated and express the HIV/SIV coreceptor CCR5), the high level of infection of these cells, and the temporal coincidence of this CD4+ T-cell depletion with the peak of virus in plasma in acute infection suggest that the intestinal mucosa may be the major source of virus driving the peak viral load. Here, we used data on CD4+ T-cell proportions in the lamina propria of the rectums of SIV-infected rhesus macaques (which progress to AIDS) and sooty mangabeys (which do not progress) to show that in both species, the depletion of CD4+ T cells from this mucosal site and its maximum loss rate are often observed several days before the peak in viral load, with few CD4+ T cells remaining in the rectum by the time of peak viral load. In contrast, the maximum loss rate of CD4+ T cells from bronchoalveolar lavage specimens and lymph nodes coincides with the peak in virus. Analysis of the kinetics of depletion suggests that, in both rhesus macaques and sooty mangabeys, CD4+ T cells in the intestinal mucosa are a highly susceptible population for infection but not a major source of plasma virus in acute SIV infection.

  12. Towards a universal influenza vaccine: volunteer virus challenge studies in quarantine to speed the development and subsequent licensing.

    PubMed

    Oxford, John S

    2013-08-01

    There are now more than 5 experimental vaccine formulations which induce T and B cell immunity towards the internally situated virus proteins matrix (M1 and M2e) and nucleoprotein (NP), and towards stem and stalk regions of the HA which have a shared antigenic structure amongst many of the 17 influenza A virus sub types. Such 'universal vaccines' could be used, at least in theory, as a prophylactic stockpile vaccine for newly emerged epidemic and novel pandemic influenza A viruses or as a supplement to conventional HA/NA vaccines. My own laboratory has approached the problem from the clinical viewpoint by identifying CD4(+) cells which are present in influenza infected volunteers who resist influenza infection. We have established precisely which peptides in M and NP proteins react with these immune CD4 cells. These experimental vaccines induce immunity in animal models but with a single exception no data have been published on protection against influenza virus infection in humans. The efficacy of the latter vaccine is based on vaccinia virus (MVA) as a carrier and was analyzed in a quarantine unit. Given the absence of induced HI antibody in the new universal vaccines a possible licensing strategy is a virus challenge model in quarantine whereby healthy volunteers can be immunized with the new vaccine and thereafter deliberately infected and clinical signs recorded alongside quantities of virus excreted and compared with unvaccinated controls. © 2013 The British Pharmacological Society.

  13. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)--a second-generation smallpox vaccine for biological defense.

    PubMed

    Monath, Thomas P; Caldwell, Joseph R; Mundt, Wolfgang; Fusco, Joan; Johnson, Casey S; Buller, Mark; Liu, Jian; Gardner, Bridget; Downing, Greg; Blum, Paul S; Kemp, Tracy; Nichols, Richard; Weltzin, Richard

    2004-10-01

    The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions. The genomes of ACAM1000 and ACAM2000 had identical nucleotide sequences, and the vaccines had comparable biological phenotypes. ACAM1000 and ACAM2000 were evaluated in three Phase 1 clinical trials. The vaccines produced major cutaneous reactions and evoked neutralizing antibody and cell-mediated immune responses in the vast majority of subjects and had a reactogenicity profile similar to that of Dryvax.

  14. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    PubMed

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope. TIM family proteins were recently found to enhance infections by many different viruses, including several members of the Flaviviridae family. However, their importance in HCV infection has not previously been examined experimentally. The TIM family proteins include three members in humans: TIM-1, TIM-3, and TIM-4. The findings derived from our studies demonstrate that TIM-1, but not TIM-3 or TIM-4, promotes HCV infection by functioning as an HCV attachment factor. Knockout of the TIM-1 gene resulted in a remarkable reduction of HCV cell attachment and infection. PS-containing liposomes blocked HCV cell attachment and subsequent HCV infection. HCV particles could also be precipitated with a PS-specific monoclonal antibody. These findings suggest that TIM-1

  15. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    PubMed

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Zika virus infection confers protection against West Nile virus challenge in mice

    PubMed Central

    Vázquez-Calvo, Ángela; Blázquez, Ana-Belén; Escribano-Romero, Estela; Merino-Ramos, Teresa; Saiz, Juan-Carlos; Martín-Acebes, Miguel A; Jiménez de Oya, Nereida

    2017-01-01

    Flaviviruses are RNA viruses that constitute a worrisome threat to global human and animal health. Zika virus (ZIKV), which was initially reported to cause a mild disease, recently spread in the Americas, infecting millions of people. During this recent epidemic, ZIKV infection has been linked to serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome (GBS) and microcephaly. Because information about ZIKV immunity remains scarce, we assessed the humoral response of immunocompetent mice to infection with three viral strains of diverse geographical origin (Africa, Asia and America). No infected animals showed any sign of disease or died after infection. However, specific neutralizing antibodies were elicited in all infected mice. Considering the rapid expansion of ZIKV throughout the American continent and its co-circulation with other medically relevant flaviviruses, such as West Nile virus (WNV), the induction of protective immunity between ZIKV and WNV was analyzed. Remarkably, protection after challenge with WNV was observed in mice previously infected with ZIKV, as survival rates were significantly higher than in control mice. Moreover, previous ZIKV infection enhanced the humoral immune response against WNV. These findings may be relevant in geographical areas where both ZIKV and WNV co-circulate, as well as for the future development of broad-spectrum flavivirus vaccines. PMID:28928416

  17. Zika virus infection confers protection against West Nile virus challenge in mice.

    PubMed

    Vázquez-Calvo, Ángela; Blázquez, Ana-Belén; Escribano-Romero, Estela; Merino-Ramos, Teresa; Saiz, Juan-Carlos; Martín-Acebes, Miguel A; Jiménez de Oya, Nereida

    2017-09-20

    Flaviviruses are RNA viruses that constitute a worrisome threat to global human and animal health. Zika virus (ZIKV), which was initially reported to cause a mild disease, recently spread in the Americas, infecting millions of people. During this recent epidemic, ZIKV infection has been linked to serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome (GBS) and microcephaly. Because information about ZIKV immunity remains scarce, we assessed the humoral response of immunocompetent mice to infection with three viral strains of diverse geographical origin (Africa, Asia and America). No infected animals showed any sign of disease or died after infection. However, specific neutralizing antibodies were elicited in all infected mice. Considering the rapid expansion of ZIKV throughout the American continent and its co-circulation with other medically relevant flaviviruses, such as West Nile virus (WNV), the induction of protective immunity between ZIKV and WNV was analyzed. Remarkably, protection after challenge with WNV was observed in mice previously infected with ZIKV, as survival rates were significantly higher than in control mice. Moreover, previous ZIKV infection enhanced the humoral immune response against WNV. These findings may be relevant in geographical areas where both ZIKV and WNV co-circulate, as well as for the future development of broad-spectrum flavivirus vaccines.

  18. Coated microneedle arrays for transcutaneous delivery of live virus vaccines

    PubMed Central

    Vrdoljak, Anto; McGrath, Marie G.; Carey, John B.; Draper, Simon J.; Hill, Adrian V.S.; O’Mahony, Conor; Crean, Abina M.; Moore, Anne C.

    2016-01-01

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8+ T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. PMID:22245683

  19. Coated microneedle arrays for transcutaneous delivery of live virus vaccines.

    PubMed

    Vrdoljak, Anto; McGrath, Marie G; Carey, John B; Draper, Simon J; Hill, Adrian V S; O'Mahony, Conor; Crean, Abina M; Moore, Anne C

    2012-04-10

    Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Inhibitory effect of the green tea molecule EGCG against dengue virus infection.

    PubMed

    Raekiansyah, Muhareva; Buerano, Corazon C; Luz, Mark Anthony D; Morita, Kouichi

    2018-06-01

    Dengue virus (DENV) infection is a major public health problem worldwide; however, specific antiviral drugs against it are not available. Hence, identifying effective antiviral agents for the prevention of DENV infection is important. In this study, we showed that the reportedly highly biologically active green-tea component epigallocatechin gallate (EGCG) inhibited dengue virus infection regardless of infecting serotype, but no or minimal inhibition was observed with other flaviviruses, including Japanese encephalitis virus, yellow fever virus, and Zika virus. EGCG exerted its antiviral effect mainly at the early stage of infection, probably by interacting directly with virions to prevent virus infection. Our results suggest that EGCG specifically targets DENV and might be used as a lead structure to develop an antiviral drug for use against the virus.

  1. NON-FATAL INFECTION OF MICE FOLLOWING INTRACEREBRAL INOCULATION OF YELLOW FEVER VIRUS

    PubMed Central

    Fox, John P.

    1943-01-01

    Observations have been reported which indicate that mice inoculated intracerebrally with active yellow fever virus may develop an infection which is not only non-fatal but may also be completely inapparent. The most extensive observations were made on mice which showed signs of infection but were still alive 22 days after inoculation with virus of one or another of several 17D substrains. In such cases, the infection usually progressed no further and partial or complete recovery often ensued. Agents other than yellow fever virus were excluded as a significant cause of such nonfatal infections by the failure of repeated attempts to isolate other infective agents, by the demonstration of antibodies against yellow fever virus in the sera of the mice, and by the demonstration of a high degree of resistance on the part of such surviving mice to reinoculation with large doses of neurotropic yellow fever virus. Completely inapparent infections with 17D virus were also shown to occur. Studies of apparently normal survivors of 17D virus titrations revealed a small but significant number of animals resistant to intracerebral challenge with neurotropic yellow fever virus. Further, pooled sera from such mice were shown to contain specific protective antibodies. The occurrence of non-fatal infections with 17D virus was found related to virus dose and substrain. Small doses of virus provoked a significantly higher proportion of non-fatal infections than large doses; while different 17D substrains, tested over equivalent ranges of virus dose, varied greatly with respect to the proportion of infections which did not terminate with death. In the case of two substrains (17DD low and 17D3), non-fatal infections (as demonstrated by resistance to intracerebral challenge with neurotropic virus) were sufficiently frequent to cause an increase, when included in the computation of the infective titers, of 25 per cent above the figures based on deaths alone. The demonstration of non

  2. Real-Time PCR Assay To Detect Smallpox Virus

    PubMed Central

    Sofi Ibrahim, M.; Kulesh, David A.; Saleh, Sharron S.; Damon, Inger K.; Esposito, Joseph J.; Schmaljohn, Alan L.; Jahrling, Peter B.

    2003-01-01

    We developed a highly sensitive and specific assay for the rapid detection of smallpox virus DNA on both the Smart Cycler and LightCycler platforms. The assay is based on TaqMan chemistry with the orthopoxvirus hemagglutinin gene used as the target sequence. With genomic DNA purified from variola virus Bangladesh 1975, the limit of detection was estimated to be approximately 25 copies on both machines. The assay was evaluated in a blinded study with 322 coded samples that included genomic DNA from 48 different isolates of variola virus; 25 different strains and isolates of camelpox, cowpox, ectromelia, gerbilpox, herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia, and varicella-zoster viruses; and two rickettsial species at concentrations mostly ranging from 100 fg/μl to 1 ng/μl. Contained within those 322 samples were variola virus DNA, obtained from purified viral preparations, at concentrations of 1 fg/μl to 1 ng/μl. On the Smart Cycler platform, 2 samples with false-positive results were detected among the 116 samples not containing variola virus tested; i.e., the overall specificity of the assay was 98.3%. On the LightCycler platform, five samples with false-positive results were detected (overall specificity, 95.7%). Of the 206 samples that contained variola virus DNA ranging in concentrations from 100 fg/μl to 1 ng/μl, 8 samples were considered negative on the Smart Cycler platform and 1 sample was considered negative on the LightCycler platform. Thus, the clinical sensitivities were 96.1% for the Smart Cycler instrument and 99.5% for the LightCycler instrument. The vast majority of these samples were derived from virus-infected cell cultures and variola virus-infected tissues; thus, the DNA material contained both viral DNA and cellular DNA. Of the 43 samples that contained purified variola virus DNA ranging in concentration from 1 fg/μl to 1 ng/μl, the assay correctly detected the virus in all 43 samples on both the Smart Cycler

  3. Nervous System Injury and Neuroimaging of Zika Virus Infection.

    PubMed

    Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng

    2018-01-01

    In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain-Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray-white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease.

  4. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry

    PubMed Central

    Bertran, Kateri; Balzli, Charles; Kwon, Yong-Kuk; Tumpey, Terrence M.; Clark, Andrew

    2017-01-01

    Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus–naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry. PMID:29047426

  5. DAMPs and influenza virus infection in ageing.

    PubMed

    Samy, Ramar Perumal; Lim, Lina H K

    2015-11-01

    Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Avian influenza virus H9N2 infections in farmed minks.

    PubMed

    Zhang, Chuanmei; Xuan, Yang; Shan, Hu; Yang, Haiyan; Wang, Jianlin; Wang, Ke; Li, Guimei; Qiao, Jian

    2015-11-02

    The prevalence of avian H9N2 viruses throughout Asia, along with their demonstrated ability to infect mammals, puts them high on the list of influenza viruses with pandemic potential for humans. In this study, we investigated whether H9N2 viruses could infect farmed minks. First, we conducted a serological survey for avian influenza virus antibodies on a random sample of the field-trial population of farmed minks. Then we inoculated farmed minks with A/Chicken/Hebei/4/2008 H9N2 viruses and observed the potential pathogenicity of H9N2 virus and virus shedding in infected minks. H9 influenza antibodies could be detected in most farmed minks with a higher seropositivity, which indicated that farmed minks had the high prevalence of exposure to H9 viruses. After infection, the minks displayed the slight clinical signs including lethargy and initial weight loss. The infected lungs showed the mild diffuse pneumonia with thickened alveolar walls and inflammatory cellular infiltration. Influenza virus detection showed that viruses were detected in the allantoic fluids inoculated supernatant of lung tissues at 3 and 7 days post-infection (dpi), and found in the nasal swabs of H9N2-infected minks at 3-11 dpi, suggesting that H9N2 viruses replicated in the respiratory organ, were then shed outwards. HI antibody test showed that antibody levels began to rise at 7 dpi. Our data provided the serological and experimental evidences that strongly suggested farmed minks under the natural state were susceptible to H9N2 viral infection and might be the H9N2 virus carriers. It is imperative to strengthen the H9N2 viral monitoring in farmed minks and pay urgent attention to prevent and control new influenza viruses pandemic prevalence.

  7. Transcriptional Profiling of the Immune Response to Marburg Virus Infection.

    PubMed

    Connor, John H; Yen, Judy; Caballero, Ignacio S; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J

    2015-10-01

    Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a naturalmore » mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus.« less

  9. Vaccinia virus proteins A36 and F12/E2 show strong preferences for different kinesin light chain isoforms.

    PubMed

    Gao, William N D; Carpentier, David C J; Ewles, Helen A; Lee, Stacey-Ann; Smith, Geoffrey L

    2017-08-01

    Vaccinia virus (VACV) utilizes microtubule-mediated trafficking at several stages of its life cycle, of which virus egress is the most intensely studied. During egress VACV proteins A36, F12 and E2 are involved in kinesin-1 interactions; however, the roles of these proteins remain poorly understood. A36 forms a direct link between virions and kinesin-1, yet in its absence VACV egress still occurs on microtubules. During a co-immunoprecipitation screen to seek an alternative link between virions and kinesin, A36 was found to bind isoform KLC1 rather than KLC2. The F12/E2 complex associates preferentially with the C-terminal tail of KLC2, to a region that overlaps the binding site of cellular 14-3-3 proteins. F12/E2 displaces 14-3-3 from KLC and, unlike 14-3-3, does not require phosphorylation of KLC for its binding. The region determining the KLC1 specificity of A36 was mapped to the KLC N-terminal heptad repeat region that is responsible for its association with kinesin heavy chain. Despite these differing binding properties F12/E2 can co-operatively enhance A36 association with KLC, particularly when using a KLC1-KLC2 chimaera that resembles several KLC1 spliceforms and can bind A36 and F12/E2 efficiently. This is the first example of a pathogen encoding multiple proteins that co-operatively associate with kinesin-1. © 2017 The Authors. Traffic published by John Wiley & Sons Ltd.

  10. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  11. Swine Workers and Swine Influenza Virus Infections

    PubMed Central

    McCarthy, Troy; Capuano, Ana W.; Setterquist, Sharon F.; Olsen, Christopher W.; Alavanja, Michael C.; Lynch, Charles F.

    2007-01-01

    In 2004, 803 rural Iowans from the Agricultural Health Study were enrolled in a 2-year prospective study of zoonotic influenza transmission. Demographic and occupational exposure data from enrollment, 12-month, and 24-month follow-up encounters were examined for association with evidence of previous and incident influenza virus infections. When proportional odds modeling with multivariable adjustment was used, upon enrollment, swine-exposed participants (odds ratio [OR] 54.9, 95% confidence interval [CI] 13.0–232.6) and their nonswine-exposed spouses (OR 28.2, 95% CI 6.1–130.1) were found to have an increased odds of elevated antibody level to swine influenza (H1N1) virus compared with 79 nonexposed University of Iowa personnel. Further evidence of occupational swine influenza virus infections was observed through self-reported influenza-like illness data, comparisons of enrollment and follow-up serum samples, and the isolation of a reassortant swine influenza (H1N1) virus from an ill swine farmer. Study data suggest that swine workers and their nonswine-exposed spouses are at increased risk of zoonotic influenza virus infections. PMID:18258038

  12. Epidemiology and neurological complications of infection by the Zika virus: a new emerging neurotropic virus.

    PubMed

    Carod-Artal, Francisco J

    2016-04-01

    The current epidemic outbreak due to Zika virus began in 2015 and since then it has been reported in 31 countries and territories in America. The epidemiological and clinical aspects related to infection by Zika virus are reviewed. Since 2007, 55 countries in America, Asia, Africa and Oceania have detected local transmission of the virus. This epidemic has affected almost 1.5 million people in Brazil. 80% of the cases are asymptomatic. The symptoms of Zika virus disease include fever, maculopapular rash, arthralgia and non-purulent conjunctivitis. The symptoms are usually self-limiting and last one week. An increase in the incidence of cases of microcephaly, retinal lesions and Guillain-Barre syndrome associated with the Zika virus has been reported. Zika-associated Guillain-Barre syndrome in Polynesia is a pure motor axonal variant. The RNA of the Zika virus has been identified in samples of brain tissue, placenta and amniotic liquid of children with microcephaly and in the still-born infants of women infected by Zika during pregnancy. The reverse transcription polymerase chain reaction test is recommended to detect viral RNA, and serological tests (IgM ELISA and neutralising antibodies) should be conducted to confirm infection by Zika. The differential diagnosis includes infection by the dengue and chikungunya viruses. Knowledge about the pathogenic mechanisms involved in infection due to Zika virus and its long-term consequences in adults and newborn infants is still limited.

  13. Immunogenicity of HILDA/LIF either in a soluble or in a membrane anchored form expressed in vivo by recombinant vaccinia viruses.

    PubMed

    Taupin, J L; Acres, B; Dott, K; Schmitt, D; Kieny, M P; Gualde, N; Moreau, J F

    1993-09-01

    Insertion of various cDNAs in the genome of the vaccinia virus (VV) enables the in vivo and in vitro study of the functional role and/or the immunogenicity of the virally encoded recombinant proteins. We have prepared a recombinant VV expressing the cDNA of the human cytokine HILDA/LIF (human interleukin for DA cells/leukaemia inhibitory factor), and used this virus to immunize mice against this protein, which is very homologous to its murine counterpart (approximately 80% homology). We also constructed and expressed by the same system a chimeric gene encoding the HILDA/LIF protein fused to the 37 COOH-terminal amino-acids of the human decay accelerating factor (DAF). This sequence proved to be sufficient for the targeting of the fusion protein to the cell membrane, where it is linked to the phosphatidylinositols. Both recombinant VVs induced cytokine-specific antibodies in mice as analysed with an ELISA where the recombinant HILDA/LIF was plastic-coated and a cytofluorometric assay where the LIF-DAF molecule was present at the cell surface of stably transfected P815. In the latter case HILDA/LIF remained biologically active suggesting that it was expressed in its native form. The LIF-DAF fusion protein was found to exhibit a better capacity to elicit an antibody response against the native form of the cytokine as detected in cytofluorometric assays. Whatever the recombinant virus used to immunize the mice, the MoAbs obtained were positive either in the ELISA or in the cytofluorometric assays but one, which suggested that the plastic coating induced a conformational change of HILDA/LIF.

  14. Development of therapeutics for treatment of Ebola virus infection.

    PubMed

    Li, Haoyang; Ying, Tianlei; Yu, Fei; Lu, Lu; Jiang, Shibo

    2015-02-01

    Ebola virus infection can cause Ebola virus disease (EVD). Patients usually show severe symptoms, and the fatality rate can reach up to 90%. No licensed medicine is available. In this review, development of therapeutics for treatment of Ebola virus infection and EVD will be discussed. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Potent neutralizing monoclonal antibodies against Ebola virus infection

    PubMed Central

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F.; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-01-01

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection. PMID:27181584

  16. Potent neutralizing monoclonal antibodies against Ebola virus infection.

    PubMed

    Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi

    2016-05-16

    Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection.

  17. Nervous System Injury and Neuroimaging of Zika Virus Infection

    PubMed Central

    Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng

    2018-01-01

    In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain–Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray–white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease. PMID:29740383

  18. Enhanced production of enveloped viruses in BST-2-deficient cell lines.

    PubMed

    Yi, Eunbi; Oh, Jinsoo; Giao, Ngoc Q; Oh, Soohwan; Park, Se-Ho

    2017-10-01

    Despite all the advantages that cell-cultured influenza vaccines have over egg-based influenza vaccines, the inferior productivity of cell-culture systems is a major drawback that must be addressed. BST-2 (tetherin) is a host restriction factor which inhibits budding-out of various enveloped viruses from infected host cells. We developed BST-2-deficient MDCK and Vero cell lines to increase influenza virus release in cell culture. BST-2 gene knock-out resulted in increased release of viral particles into the culture medium, by at least 2-fold and up to 50-fold compared to release from wild-type counterpart cells depending on cell line and virus type. The effect was not influenza virus/MDCK/Vero-specific, but was also present in a broad range of host cells and virus families; we observed similar results in murine, human, canine, and monkey cell lines with viruses including MHV-68 (Herpesviridae), influenza A virus (Orthomyxoviridae), porcine epidemic diarrhea virus (Coronaviridae), and vaccinia virus (Poxviridae). Our results suggest that the elimination of BST-2 expression in virus-producing cell lines can enhance the production of viral vaccines. Biotechnol. Bioeng.2017;114: 2289-2297. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Infection and Replication of Influenza Virus at the Ocular Surface.

    PubMed

    Creager, Hannah M; Kumar, Amrita; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M; Belser, Jessica A

    2018-04-01

    Although influenza viruses typically cause respiratory tract disease, some viruses, particularly those with an H7 hemagglutinin, have been isolated from the eyes of conjunctivitis cases. Previous work has shown that isolates of multiple subtypes from both ocular and respiratory infections are capable of replication in human ex vivo ocular tissues and corneal or conjunctival cell monolayers, leaving the determinants of ocular tropism unclear. Here, we evaluated the effect of several variables on tropism for ocular cells cultured in vitro and examined the potential effect of the tear film on viral infectivity. All viruses tested were able to replicate in primary human corneal epithelial cell monolayers subjected to aerosol inoculation. The temperature at which cells were cultured postinoculation minimally affected infectivity. Replication efficiency, in contrast, was reduced at 33°C relative to that at 37°C, and this effect was slightly greater for the conjunctivitis isolates than for the respiratory ones. With the exception of a seasonal H3N2 virus, the subset of viruses studied in multilayer corneal tissue constructs also replicated productively after either aerosol or liquid inoculation. Human tears significantly inhibited the hemagglutination of both ocular and nonocular isolates, but the effect on viral infectivity was more variable, with tears reducing the infectivity of nonocular isolates more than ocular isolates. These data suggest that most influenza viruses may be capable of establishing infection if they reach the surface of ocular cells but that this is more likely for ocular-tropic viruses, as they are better able to maintain their infectivity during passage through the tear film. IMPORTANCE The potential spread of zoonotic influenza viruses to humans represents an important threat to public health. Unfortunately, despite the importance of cellular and tissue tropism to pathogenesis, determinants of influenza virus tropism have yet to be fully

  20. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy

    PubMed Central

    2018-01-01

    Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec. PMID:29445265

  1. Co-infection and disease severity of Ohio Maize dwarf mosaic virus and Maize chlorotic dwarf virus strains

    USDA-ARS?s Scientific Manuscript database

    Two major maize viruses have been reported in the United States: Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV). These viruses co-occur in regions where maize is grown such that co-infections are likely. Co-infection of different strains of MCDV is also observed frequently...

  2. The role of virus dose in experimental bovine leukemia virus infection in sheep.

    PubMed

    Stirtzinger, T; Valli, V E; Miller, J M

    1988-04-01

    Twenty-four, six month old lambs were assembled into four groups of five animals each and one group of four animals. All groups were inoculated with lymphocytes from a single donor lamb infected with bovine leukemia virus. The inoculum varied from 250 to 250,000 lymphocytes, in tenfold increments. Animals were exposed by intradermal injection in the neck region immediately anterior to the left shoulder joint. All groups were monitored at 0, 3, 7 and 12 weeks after inoculation using the following procedures: a. Syncytia induction assay for detection of bovine leukemia virus in peripheral blood lymphocytes. b. Agar gel immunodiffusion against the gp51 antigen of bovine leukemia virus for the detection of antibovine leukemia virus gp51 antibody. c. Lymphocyte stimulation test for the assessment of cell-mediated immunity using mitogen, nonfractionated bovine leukemia virus antigen, and partially purified bovine lymphoma tumor-associated antigen for the in vitro activation of lymphocytes from bovine leukemia virus-inoculated and sham-inoculated, control animals. d. Routine hematological techniques for the assessment of total leukocyte and lymphocyte counts. The median infectious dose for lymphocytes from the single bovine leukemia virus-infected donor used in this study was determined to be 2000 cells. The syncytia induction assay detected more infected individuals (13/23) at an earlier time than did the agar gel immunodiffusion assay (10/23). Using either serological or virus isolation techniques, infected animals were first detected at three weeks postinoculation in the group receiving the high-dose inoculum and at seven weeks postinoculation in groups receiving low- or medium-dose inocula.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Interval Between Infections and Viral Hierarchy Are Determinants of Viral Interference Following Influenza Virus Infection in a Ferret Model

    PubMed Central

    Laurie, Karen L.; Guarnaccia, Teagan A.; Carolan, Louise A.; Yan, Ada W. C.; Aban, Malet; Petrie, Stephen; Cao, Pengxing; Heffernan, Jane M.; McVernon, Jodie; Mosse, Jennifer; Kelso, Anne; McCaw, James M.; Barr, Ian G.

    2015-01-01

    Background. Epidemiological studies suggest that, following infection with influenza virus, there is a short period during which a host experiences a lower susceptibility to infection with other influenza viruses. This viral interference appears to be independent of any antigenic similarities between the viruses. We used the ferret model of human influenza to systematically investigate viral interference. Methods. Ferrets were first infected then challenged 1–14 days later with pairs of influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B viruses circulating in 2009 and 2010. Results. Viral interference was observed when the interval between initiation of primary infection and subsequent challenge was <1 week. This effect was virus specific and occurred between antigenically related and unrelated viruses. Coinfections occurred when 1 or 3 days separated infections. Ongoing shedding from the primary virus infection was associated with viral interference after the secondary challenge. Conclusions. The interval between infections and the sequential combination of viruses were important determinants of viral interference. The influenza viruses in this study appear to have an ordered hierarchy according to their ability to block or delay infection, which may contribute to the dominance of different viruses often seen in an influenza season. PMID:25943206

  4. The Effects of Statistical Multiplicity of Infection on Virus Quantification and Infectivity Assays.

    PubMed

    Mistry, Bhaven A; D'Orsogna, Maria R; Chou, Tom

    2018-06-19

    Many biological assays are employed in virology to quantify parameters of interest. Two such classes of assays, virus quantification assays (VQAs) and infectivity assays (IAs), aim to estimate the number of viruses present in a solution and the ability of a viral strain to successfully infect a host cell, respectively. VQAs operate at extremely dilute concentrations, and results can be subject to stochastic variability in virus-cell interactions. At the other extreme, high viral-particle concentrations are used in IAs, resulting in large numbers of viruses infecting each cell, enough for measurable change in total transcription activity. Furthermore, host cells can be infected at any concentration regime by multiple particles, resulting in a statistical multiplicity of infection and yielding potentially significant variability in the assay signal and parameter estimates. We develop probabilistic models for statistical multiplicity of infection at low and high viral-particle-concentration limits and apply them to the plaque (VQA), endpoint dilution (VQA), and luciferase reporter (IA) assays. A web-based tool implementing our models and analysis is also developed and presented. We test our proposed new methods for inferring experimental parameters from data using numerical simulations and show improvement on existing procedures in all limits. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Life-Threatening Sochi Virus Infections, Russia

    PubMed Central

    Tkachenko, Evgeniy A.; Morozov, Vyacheslav G.; Yunicheva, Yulia V.; Pilikova, Olga M.; Malkin, Gennadiy; Ishmukhametov, Aydar A.; Heinemann, Patrick; Witkowski, Peter T.; Klempa, Boris; Dzagurova, Tamara K.

    2015-01-01

    Sochi virus was recently identified as a new hantavirus genotype carried by the Black Sea field mouse, Apodemus ponticus. We evaluated 62 patients in Russia with Sochi virus infection. Most clinical cases were severe, and the case-fatality rate was as high as 14.5%. PMID:26584463

  6. Negative-strand RNA viruses: the plant-infecting counterparts.

    PubMed

    Kormelink, Richard; Garcia, Maria Laura; Goodin, Michael; Sasaya, Takahide; Haenni, Anne-Lise

    2011-12-01

    While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Persistent infection of chimpanzees with human immunodeficiency virus: serological responses and properties of reisolated viruses.

    PubMed Central

    Nara, P L; Robey, W G; Arthur, L O; Asher, D M; Wolff, A V; Gibbs, C J; Gajdusek, D C; Fischinger, P J

    1987-01-01

    Persistent infection by human immunodeficiency virus (HIV-1) in the chimpanzee may be valuable for immunopathologic and potential vaccine evaluation. Two HIV strains, the tissue culture-derived human T-cell lymphotropic virus type IIIB (HTLV-IIIB) and in vivo serially passaged lymphadenopathy-associated virus type 1 (LAV-1), were injected intravenously into chimpanzees. Two animals received HTLV-IIIB as either virus-infected H9 cells or cell-free virus. A third animal received chimpanzee-passaged LAV-1. Evaluation of their sera for virus-specific serologic changes, including neutralizations, was done during a 2-year period. During this period all animals had persistently high titers of antibodies to viral core and envelope antigens. All three animals developed a progressively increasing type-specific neutralizing LAV-1 versus HTLV-IIIB antibody titer during the 2-year observation period which broadened in specificity to include HTLV-HIRF, HTLV-IIIMN, and HTLV-IIICC after 6 to 12 months. The antibody titers against both viruses were still increasing by 2 years after experimental virus inoculation. Sera from all animals were capable of neutralizing both homologously and heterologously reisolated virus from chimpanzees. A slightly more rapid type-specific neutralizing response was noted for the animal receiving HTLV-IIIB-infected cells compared with that for cell-free HTLV-IIIB. Sera from all persistently infected chimpanzees were capable of mediating group-specific antibody-mediated complement-dependent cytolysis of HIV-infected cells derived from all isolates tested. Viruses reisolated from all three animals at 20 months after inoculation revealed very similar peptide maps of their respective envelope gp120s, as determined by two-dimensional chymotrypsin oligopeptide analysis. One peptide, however, from the original HTLV-IIIB-inoculated virus was deleted in viruses from all three animals, and in addition, we noted the appearance of a new or modified peptide which

  8. Infection of cells by Sindbis virus at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Gongbo; Hernandez, Raquel; Weninger, Keith

    2007-06-05

    Sindbis virus, which belongs to the family Togaviridae genus Alphavirus infects a variety of vertebrate and invertebrate cells. The initial steps of Sindbis virus infection involve attachment, penetration and uncoating. Two different pathways of infection have been proposed for Alphaviruses. One proposed mechanism involves receptor mediated virion endocytosis followed by membrane fusion triggered by endosome acidification. This virus-host membrane fusion model, well established by influenza virus, has been applied to other unrelated membrane-containing viruses including Alphaviruses. The other mechanism proposes direct penetration of the cell plasma membrane by the virus glycoproteins in the absence of membrane fusion. This alternate modelmore » is supported by both ultrastructural [Paredes, A.M., Ferreira, D., Horton, M., Saad, A., Tsuruta, H., Johnston, R., Klimstra, W., Ryman, K., Hernandez, R., Chiu, W., Brown, D.T., 2004. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion. Virology 324(2), 373-386] and biochemical [Koschinski, A., Wengler, G., Wengler, G., and Repp, H., 2005. Rare earth ions block the ion pores generated by the class II fusion proteins of alphaviruses and allow analysis of the biological functions of these pores. J. Gen. Virol. 86(Pt. 12), 3311-3320] studies. We have examined the ability of Sindbis virus to infect Baby Hamster Kidney (BHK) cells at temperatures which block endocytosis. We have found that under these conditions Sindbis virus infects cells in a temperature- and time-dependent fashion.« less

  9. Seoul Virus Infection in Humans, France, 2014–2016

    PubMed Central

    Carli, Damien; Bour, Jean-Baptiste; Boudjeltia, Samir; Dewilde, Anny; Gerbier, Guillaume; Nussbaumer, Timothée; Jacomo, Véronique; Rapt, Marie-Pierre; Rollin, Pierre E.; Septfons, Alexandra

    2017-01-01

    We report detection of Seoul virus in 3 patients in France over a 2-year period. These patients accounted for 3 of the 4 Seoul virus infections among 434 hantavirus infections (1.7%) reported during this time. More attention should be given to this virus in Europe where surveillance has been focused mostly on Puumala and Dobrava-Belgrade hantaviruses. PMID:28368241

  10. Exploratory Spatial Analysis of in vitro Respiratory Syncytial Virus Co-infections

    PubMed Central

    Simeonov, Ivan; Gong, Xiaoyan; Kim, Oekyung; Poss, Mary; Chiaromonte, Francesca; Fricks, John

    2010-01-01

    The cell response to virus infection and virus perturbation of that response is dynamic and is reflected by changes in cell susceptibility to infection. In this study, we evaluated the response of human epithelial cells to sequential infections with human respiratory syncytial virus strains A2 and B to determine if a primary infection with one strain will impact the ability of cells to be infected with the second as a function of virus strain and time elapsed between the two exposures. Infected cells were visualized with fluorescent markers, and location of all cells in the tissue culture well were identified using imaging software. We employed tools from spatial statistics to investigate the likelihood of a cell being infected given its proximity to a cell infected with either the homologous or heterologous virus. We used point processes, K-functions, and simulation procedures designed to account for specific features of our data when assessing spatial associations. Our results suggest that intrinsic cell properties increase susceptibility of cells to infection, more so for RSV-B than for RSV-A. Further, we provide evidence that the primary infection can decrease susceptibility of cells to the heterologous challenge virus but only at the 16 h time point evaluated in this study. Our research effort highlights the merits of integrating empirical and statistical approaches to gain greater insight on in vitro dynamics of virus-host interactions. PMID:21994640

  11. Development of an animal model of progressive vaccinia in nu/nu mice and the use of bioluminescence imaging for assessment of the efficacy of monoclonal antibodies against vaccinial B5 and L1 proteins.

    PubMed

    Zaitseva, Marina; Thomas, Antonia; Meseda, Clement A; Cheung, Charles Y K; Diaz, Claudia G; Xiang, Yan; Crotty, Shane; Golding, Hana

    2017-08-01

    Bioluminescence imaging (BLI) was used to follow dissemination of recombinant vaccinia virus (VACV) expressing luciferase (IHD-J-Luc) in BALB/c nu/nu mice treated post-challenge with monoclonal antibodies (MAbs) against L1 and B5 VACV proteins in a model of Progressive Vaccinia (PV). Areas Under the flux Curve (AUC) were calculated for viral loads in multiple organs in individual mice. Following scarification with 10 5  pfu, IHD-J-Luc VACV undergoes fast replication at the injection site and disseminates rapidly to the inguinal lymph nodes followed by spleen, liver, and axillary lymph nodes within 2-3 days and before primary lesions are visible at the site of scarification. Extension of survival in nude mice treated with a combination of anti-B5 and anti-L1 MAbs 24 h post challenge correlated with a significant reduction in viral load at the site of scarification and delayed systemic dissemination. Nude mice reconstituted with 10 4  T cells prior to challenge with IHD-J-Luc, and treated with MAbs post-challenge, survived infection, cleared the virus from all organs and scarification site, and developed anti-VACV IgG and VACV-specific polyfunctional CD8 + T cells that co-expressed the degranulation marker CD107a, and IFNγ and TNFα cytokines. All T cell reconstituted mice survived intranasal re-challenge with IHD-J-Luc (10 4  pfu) two months after the primary infection. Thus, using BLI to monitor VACV replication in a PV model, we showed that anti-VACV MAbs administered post challenge extended survival of nude mice and protected T cell reconstituted nude mice from lethality by reducing replication at the site of scarification and systemic dissemination of VACV. Published by Elsevier B.V.

  12. Smallpox: can we still learn from the journey to eradication?

    PubMed

    Smith, Kendall A

    2013-05-01

    One of the most celebrated achievements of immunology and modern medicine is the eradication of the dreaded plague smallpox. From the introduction of smallpox vaccination by Edward Jenner, to its popularization by Louis Pasteur, to the eradication effort led by Donald Henderson, this story has many lessons for us today, including the characteristics of the disease and vaccine that permitted its eradication, and the obviousness of the vaccine as a vector for other intractable Infectious diseases. The disease itself, interpreted in the light of modern molecular immunology, is an obvious immunopathological disease, which occurs after a latent interval of 1-2 weeks, and manifests as a systemic cell-mediated delayed type hypersensitivity (DTH) syndrome. The vaccine that slayed this dragon was given the name vaccinia, and was thought to have evolved from cowpox virus, but is now known to be most closely related to a poxvirus isolated from a horse. Of interest is the fact that of the various isolates of orthopox viruses, only variola, vaccinia and monkeypox viruses can infect humans. In contrast to the systemic disease of variola, vaccinia only replicates locally at the site of inoculation, and causes a localized DTH response that usually peaks after 7-10 days. This difference in the pathogenicity of variola vs. vaccinia is thought to be due to the capacity of variola to circumvent innate immunity, which allows it to disseminate widely before the adaptive immune response occurs. Thus, the fact that vaccinia virus is attenuated compared to variola, but is still replication competent, makes for its remarkable efficacy as a vaccine, as the localized infection activates all of the cells and molecules of both innate and adaptive immunity. Accordingly vaccinia itself, and not modified replication incompetent vaccina, is the hope for use as a vector in the eradication of additional pathogenic microbes from the globe.

  13. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  14. Is the Gut the Major Source of Virus in Early Simian Immunodeficiency Virus Infection? ▿

    PubMed Central

    Lay, Matthew D. H.; Petravic, Janka; Gordon, Shari N.; Engram, Jessica; Silvestri, Guido; Davenport, Miles P.

    2009-01-01

    The acute phases of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection are characterized by rapid and profound depletion of CD4+ T cells from the guts of infected individuals. The large number of CD4+ T cells in the gut (a large fraction of which are activated and express the HIV/SIV coreceptor CCR5), the high level of infection of these cells, and the temporal coincidence of this CD4+ T-cell depletion with the peak of virus in plasma in acute infection suggest that the intestinal mucosa may be the major source of virus driving the peak viral load. Here, we used data on CD4+ T-cell proportions in the lamina propria of the rectums of SIV-infected rhesus macaques (which progress to AIDS) and sooty mangabeys (which do not progress) to show that in both species, the depletion of CD4+ T cells from this mucosal site and its maximum loss rate are often observed several days before the peak in viral load, with few CD4+ T cells remaining in the rectum by the time of peak viral load. In contrast, the maximum loss rate of CD4+ T cells from bronchoalveolar lavage specimens and lymph nodes coincides with the peak in virus. Analysis of the kinetics of depletion suggests that, in both rhesus macaques and sooty mangabeys, CD4+ T cells in the intestinal mucosa are a highly susceptible population for infection but not a major source of plasma virus in acute SIV infection. PMID:19458001

  15. Moderately virulent African swine fever virus infection: blood cell changes and infective virus distribution among blood components.

    PubMed

    Genovesi, E V; Knudsen, R C; Whyard, T C; Mebus, C A

    1988-03-01

    Blood samples of pigs infected with a moderately virulent African swine fever virus (ASFV) isolate, obtained from the Dominican Republic (DR-II), were monitored temporally for viremia, infective ASFV association with major blood components, differential changes in blood cell composition, and plasma antibodies to ASFV. After intranasal/oral virus inoculation, pigs underwent acute infection and illness that resolved. Acute illness began on postinoculation day (PID) 4 and continued to PID 11, and pigs were febrile, with maximal infective ASFV titers detected in blood. By PID 11, initial antibody titers to ASFV antigens were detected in plasma. The WBC numbers were maintained near preinoculation counts; however, lymphocyte counts decreased slightly with a compensatory increment in neutrophil and monocyte numbers. From PID 11 to PID 25, rectal temperatures gradually returned to preinoculation values, titers of viremia began to decrease, plasma antibody to ASFV antigens increased to peak titers, and WBC numbers increased slightly. Percentages of lymphocytes returned to preinoculation values, neutrophil percentages decreased to slightly below preinoculation values, monocyte percentages were mildly increased, and eosinophil percentages were unaffected. From PID 25 to PID 46, titers of viremia further decreased, and plasma titers of antibodies to ASFV antigens remained high. In pigs with DR-II viremia (PID 4 to PID 46), most viral infectivity (greater than 95%) was RBC associated. Plasma contained less than 1% infectivity, and less than 0.1% of virus was in the WBC fraction (monocytes, lymphocytes, and granulocytes). After PID 46, viremia was no longer detectable.

  16. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.

    PubMed

    Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S

    2017-03-01

    Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.

  17. Autoimmune neuroretinopathy secondary to Zika virus infection.

    PubMed

    Burgueño-Montañés, C; Álvarez-Coronado, M; Colunga-Cueva, M

    2018-04-29

    A 40-year-old woman diagnosed with Zika virus infection 6 months before she arrived at this hospital. She referred to a progressive and painless vision loss, of 2 weeks onset after the infection diagnosis. She was treated with topical steroids. Previous visual acuity was recovered, but she still refers to reduced visual field and nyctalopia. Ophthalmologic examination revealed severe retinal sequels, compatible with autoimmune retinopathy. Based on the clinical features and the temporal relationship with Zika virus infection, non-para-neoplastic autoimmune retinopathy was diagnosed and managed with steroids and infliximab. Zika virus can trigger a non-para-neoplastic autoimmune retinopathy. The diagnosis is based on clinical features, and requires early immunosuppressive therapy. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Virus Infections of Honeybees Apis Mellifera

    PubMed Central

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  19. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes.

    PubMed

    Hall-Mendelin, Sonja; McLean, Breeanna J; Bielefeldt-Ohmann, Helle; Hobson-Peters, Jody; Hall, Roy A; van den Hurk, Andrew F

    2016-07-25

    Insect-specific viruses do not replicate in vertebrate cells, but persist in mosquito populations and are highly prevalent in nature. These viruses may naturally regulate the transmission of pathogenic vertebrate-infecting arboviruses in co-infected mosquitoes. Following the isolation of the first Australian insect-specific flavivirus (ISF), Palm Creek virus (PCV), we investigated routes of infection and transmission of this virus in key Australian arbovirus vectors and its impact on replication and transmission of West Nile virus (WNV). Culex annulirostris, Aedes aegypti and Aedes vigilax were exposed to PCV, and infection, replication and transmission rates in individual mosquitoes determined. To test whether the virus could be transmitted vertically, progeny reared from eggs oviposited by PCV-inoculated Cx. annulirostris were analysed for the presence of PCV. To assess whether prior infection of mosquitoes with PCV could also suppress the transmission of pathogenic flaviviruses, PCV positive or negative Cx. annulirostris were subsequently exposed to WNV. No PCV-infected Cx. annulirostris were detected 16 days after feeding on an infectious blood meal. However, when intrathoracically inoculated with PCV, Cx. annulirostris infection rates were 100 %. Similar rates of infection were observed in Ae. aegypti (100 %) and Ae. vigilax (95 %). Notably, PCV was not detected in any saliva expectorates collected from any of these species. PCV was not detected in 1038 progeny reared from 59 PCV-infected Cx. annulirostris. After feeding on a blood meal containing 10(7) infectious units of WNV, significantly fewer PCV-infected Cx. annulirostris were infected or transmitted WNV compared to PCV negative mosquitoes. Immunohistochemistry revealed that PCV localized in the midgut epithelial cells, which are the first site of infection with WNV. Our results indicate that PCV cannot infect Cx. annulirostris via the oral route, nor be transmitted in saliva or vertically to progeny

  20. Clonorchis sinensis infection and co-infection with the hepatitis B virus are important factors associated with cholangiocarcinoma and hepatocellular carcinoma.

    PubMed

    Shi, Yunliang; Jiang, Zhihua; Yang, Yichao; Zheng, Peiqiu; Wei, Haiyan; Lin, Yuan; Lv, Guoli; Yang, Qingli

    2017-10-01

    To evaluate the contributions of Clonorchis sinensis and hepatitis B virus to the development of cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC), C. sinensis and hepatitis B virus infections in 20 clinical liver cancer cases from a C. sinensis- and hepatitis B virus-epidemic region were detected. Eight cases of ICC, 11 cases of HCC and one mixed ICC and HCC case were verified by CT, pathological section and (or) observations during surgery. The C. sinensis infection was detected by stool microscopy and ELISA, and the worms and eggs found during surgery and in pathological sections also allowed for diagnoses. Hepatitis B virus infections were detected by ELISA. In the 20 cases, 18 patients were diagnosed with C. sinensis infections. Eight of the 20 patients were infected with the hepatitis B virus, and seven were co-infected with C. sinensis. In the eight ICC patients, seven were diagnosed with C. sinensis infection, and two had mixed infections with the hepatitis B virus. In the 11 HCC patients, 10 were diagnosed with C. sinensis, four had mixed infections with the hepatitis B virus, and only one HCC patient presented a single infection by the hepatitis B virus. These clinical observations revealed that C. sinensis infection and C. sinensis co-infection with the hepatitis B virus are important factors in ICC and HCC.