Science.gov

Sample records for vaccinia virus vaccine

  1. Vaccinia Virus Vaccines: Past, Present and Future

    PubMed Central

    Jacobs, Bertram L.; Langland, Jeffrey O.; Kibler, Karen V.; Denzler, Karen L.; White, Stacy D.; Holechek, Susan A.; Wong, Shukmei; Huynh, Trung; Baskin, Carole R.

    2009-01-01

    Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence. PMID:19563829

  2. Antitumor efficacy of vaccinia virus-modified tumor cell vaccine

    SciTech Connect

    Ito, T.; Wang, D.Q.; Maru, M.; Nakajima, K.; Kato, S.; Kurimura, T.; Wakamiya, N. )

    1990-11-01

    The antitumor efficacies of vaccinia virus-modified tumor cell vaccines were examined in murine syngeneic MH134 and X5563 tumor cells. UV-inactivated vaccinia virus was inoculated i.p. into C3H/HeN mice that had received whole body X-irradiation at 150 rads. After 3 weeks, the vaccines were administered i.p. 3 times at weekly intervals. One week after the last injection, mice were challenged i.p. with various doses of syngeneic MH134 or X5563 viable tumor cells. Four methods were used for preparing tumor cell vaccines: X-ray irradiation; fixation with paraformaldehyde for 1 h or 3 months; and purification of the membrane fraction. All four vaccines were effective, but the former two vaccines were the most effective. A mixture of the membrane fraction of untreated tumor cells and UV-inactivated vaccinia virus also had an antitumor effect. These results indicate that vaccine with the complete cell structure is the most effective. The membrane fraction of UV-inactivated vaccinia virus-absorbed tumor cells was also effective. UV-inactivated vaccinia virus can react with not only intact tumor cells but also the purified membrane fraction of tumor cells and augment antitumor activity.

  3. Vaccinia Virus: A Tool for Research and Vaccine Development

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1991-06-01

    Vaccinia virus is no longer needed for smallpox immunization, but now serves as a useful vector for expressing genes within the cytoplasm of eukaryotic cells. As a research tool, recombinant vaccinia viruses are used to synthesize biologically active proteins and analyze structure-function relations, determine the targets of humoral- and cell-mediated immunity, and investigate the immune responses needed for protection against specific infectious diseases. When more data on safety and efficacy are available, recombinant vaccinia and related poxviruses may be candidates for live vaccines and for cancer immunotherapy.

  4. Clinical development of Modified Vaccinia virus Ankara vaccines.

    PubMed

    Gilbert, Sarah C

    2013-09-01

    The smallpox vaccine Vaccinia was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one or two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is a replication-deficient and attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. Many clinical trials of these new vaccines have been conducted, and the findings of these trials are reviewed here. The safety of MVA is now well documented, immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate.

  5. Modified Vaccinia Ankara Virus Vaccination Provides Long-Term Protection against Nasal Rabbitpox Virus Challenge.

    PubMed

    Jones, Dorothy I; McGee, Charles E; Sample, Christopher J; Sempowski, Gregory D; Pickup, David J; Staats, Herman F

    2016-07-01

    Modified vaccinia Ankara virus (MVA) is a smallpox vaccine candidate. This study was performed to determine if MVA vaccination provides long-term protection against rabbitpox virus (RPXV) challenge, an animal model of smallpox. Two doses of MVA provided 100% protection against a lethal intranasal RPXV challenge administered 9 months after vaccination. PMID:27146001

  6. Vaccination of vampire bats using recombinant vaccinia-rabies virus.

    PubMed

    Aguilar-Setién, Alvaro; Leon, Yolanda Campos; Tesoro, Emiliano Cruz; Kretschmer, Roberto; Brochier, Bernard; Pastoret, Paul-Pierre

    2002-07-01

    Adult vampire bats (Desmodus rotundus) were vaccinated by intramuscular, scarification, oral, or aerosol routes (n = 8 in each group) using a vaccinia-rabies glycoprotein recombinant virus. Sera were obtained before and 30 days after vaccination. All animals were then challenged intramuscularly with a lethal dose of rabies virus. Neutralizing antirabies antibodies were measured by rapid fluorescent focus inhibition test (RFFIT). Seroconversion was observed with each of the routes employed, but some aerosol and orally vaccinated animals failed to seroconvert. The highest antibody titers were observed in animals vaccinated by intramuscular and scarification routes. All animals vaccinated by intramuscular, scarification, and oral routes survived the viral challenge, but one of eight vampire bats receiving aerosol vaccination succumbed to the challenge. Of 31 surviving vaccinated and challenged animals, nine lacked detectable antirabies antibodies by RFFIT (five orally and four aerosol immunized animals). In contrast, nine of 10 non-vaccinated control bats succumbed to viral challenge. The surviving control bat had antiviral antibodies 90 days after viral challenge. These results suggest that the recombinant vaccine is an adequate and safe immunogen for bats by all routes tested.

  7. Vaccination of vampire bats using recombinant vaccinia-rabies virus.

    PubMed

    Aguilar-Setién, Alvaro; Leon, Yolanda Campos; Tesoro, Emiliano Cruz; Kretschmer, Roberto; Brochier, Bernard; Pastoret, Paul-Pierre

    2002-07-01

    Adult vampire bats (Desmodus rotundus) were vaccinated by intramuscular, scarification, oral, or aerosol routes (n = 8 in each group) using a vaccinia-rabies glycoprotein recombinant virus. Sera were obtained before and 30 days after vaccination. All animals were then challenged intramuscularly with a lethal dose of rabies virus. Neutralizing antirabies antibodies were measured by rapid fluorescent focus inhibition test (RFFIT). Seroconversion was observed with each of the routes employed, but some aerosol and orally vaccinated animals failed to seroconvert. The highest antibody titers were observed in animals vaccinated by intramuscular and scarification routes. All animals vaccinated by intramuscular, scarification, and oral routes survived the viral challenge, but one of eight vampire bats receiving aerosol vaccination succumbed to the challenge. Of 31 surviving vaccinated and challenged animals, nine lacked detectable antirabies antibodies by RFFIT (five orally and four aerosol immunized animals). In contrast, nine of 10 non-vaccinated control bats succumbed to viral challenge. The surviving control bat had antiviral antibodies 90 days after viral challenge. These results suggest that the recombinant vaccine is an adequate and safe immunogen for bats by all routes tested. PMID:12243138

  8. Analysis of variola and vaccinia virus neutralization assays for smallpox vaccines.

    PubMed

    Hughes, Christine M; Newman, Frances K; Davidson, Whitni B; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Yan, Lihan; Frey, Sharon E; Belshe, Robert B; Karem, Kevin L; Damon, Inger K

    2012-07-01

    Possible smallpox reemergence drives research for third-generation vaccines that effectively neutralize variola virus. A comparison of neutralization assays using different substrates, variola and vaccinia (Dryvax and modified vaccinia Ankara [MVA]), showed significantly different 90% neutralization titers; Dryvax underestimated while MVA overestimated variola neutralization. Third-generation vaccines may rely upon neutralization as a correlate of protection.

  9. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    PubMed Central

    Hruby, D E

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector. PMID:2187593

  10. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  11. Ty virus-like particles, DNA vaccines and Modified Vaccinia Virus Ankara; comparisons and combinations.

    PubMed

    Gilbert, S C; Schneider, J; Plebanski, M; Hannan, C M; Blanchard, T J; Smith, G L; Hill, A V

    1999-03-01

    Three types of vaccine, all expressing the same antigen from Plasmodium berghei, or a CD8+ T cell epitope from that antigen, were compared for their ability to induce CD8+ T cell responses in mice. Higher levels of lysis and numbers of IFN-gamma secreting T cells were primed with Ty virus-like particles and Modified Vaccinia Virus Ankara (MVA) than with DNA vaccines, but none of the vaccines were able to protect immunised mice from infectious challenge even after repeated doses. However, when the immune response was primed with one type of vaccine (Ty-VLPs or DNA) and boosted with another (MVA) complete protection against infection was achieved. Protection correlated with very high levels of IFN-gamma secreting T cells and lysis. This method of vaccination uses delivery systems and routes that can be used in humans and could provide a generally applicable regime for the induction of high levels of CD8+ T cells.

  12. New vaccinia virus promoter as a potential candidate for future vaccines.

    PubMed

    Di Pilato, Mauro; Mejías-Pérez, Ernesto; Gómez, Carmen Elena; Perdiguero, Beatriz; Sorzano, Carlos Oscar S; Esteban, Mariano

    2013-12-01

    Here we describe the design and strength of a new synthetic late-early optimized (LEO) vaccinia virus (VACV) promoter used as a transcriptional regulator of GFP expression during modified vaccinia Ankara infection. In contrast to the described synthetic VACV promoter (pS), LEO induced significantly higher levels of GFP expression in vitro within the first hour after infection, which correlated with an enhancement in the GFP-specific CD8 T-cell response detected in vivo, demonstrating its potential use in future vaccines.

  13. Host range, growth property, and virulence of the smallpox vaccine: Vaccinia virus Tian Tan strain

    SciTech Connect

    Fang Qing; Yang Lin; Zhu Weijun; Liu Li; Wang Haibo; Yu Wenbo; Xiao Genfu; Tien Po; Zhang Linqi; Chen Zhiwei . E-mail: zchen@adarc.org

    2005-05-10

    Vaccinia Tian Tan (VTT) was used as a vaccine against smallpox in China for millions of people before 1980, yet the biological characteristics of the virus remain unclear. We have characterized VTT with respect to its host cell range, growth properties in vitro, and virulence in vivo. We found that 11 of the 12 mammalian cell lines studied are permissive to VTT infection whereas one, CHO-K1, is non-permissive. Using electron microscopy and sequence analysis, we found that the restriction of VTT replication in CHO-K1 is at a step before viral maturation probably due to the loss of the V025 gene. Moreover, VTT is significantly less virulent than vaccinia WR but remains neurovirulent in mice and causes significant body weight loss after intranasal inoculation. Our data demonstrate the need for further attenuation of VTT to serve either as a safer smallpox vaccine or as a live vaccine vector for other pathogens.

  14. Host range, growth property, and virulence of the smallpox vaccine: vaccinia virus Tian Tan strain.

    PubMed

    Fang, Qing; Yang, Lin; Zhu, Weijun; Liu, Li; Wang, Haibo; Yu, Wenbo; Xiao, Genfu; Tien, Po; Zhang, Linqi; Chen, Zhiwei

    2005-05-10

    Vaccinia Tian Tan (VTT) was used as a vaccine against smallpox in China for millions of people before 1980, yet the biological characteristics of the virus remain unclear. We have characterized VTT with respect to its host cell range, growth properties in vitro, and virulence in vivo. We found that 11 of the 12 mammalian cell lines studied are permissive to VTT infection whereas one, CHO-K1, is non-permissive. Using electron microscopy and sequence analysis, we found that the restriction of VTT replication in CHO-K1 is at a step before viral maturation probably due to the loss of the V025 gene. Moreover, VTT is significantly less virulent than vaccinia WR but remains neurovirulent in mice and causes significant body weight loss after intranasal inoculation. Our data demonstrate the need for further attenuation of VTT to serve either as a safer smallpox vaccine or as a live vaccine vector for other pathogens.

  15. Live Virus Smallpox Vaccine

    MedlinePlus

    ... Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live virus" used ... cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine that ...

  16. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response.

    PubMed

    Paran, Nir; Lustig, Shlomo; Zvi, Anat; Erez, Noam; Israely, Tomer; Melamed, Sharon; Politi, Boaz; Ben-Nathan, David; Schneider, Paula; Lachmi, Batel; Israeli, Ofir; Stein, Dana; Levin, Reuven; Olshevsky, Udy

    2013-07-10

    Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104-120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope's critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.

  17. A vaccinia virus renaissance

    PubMed Central

    Verardi, Paulo H.; Titong, Allison; Hagen, Caitlin J.

    2012-01-01

    In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies. PMID:22777090

  18. A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication.

    PubMed

    Verardi, Paulo H; Titong, Allison; Hagen, Caitlin J

    2012-07-01

    In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies. PMID:22777090

  19. A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication.

    PubMed

    Verardi, Paulo H; Titong, Allison; Hagen, Caitlin J

    2012-07-01

    In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies.

  20. Attenuation of Vaccinia Virus.

    PubMed

    Yakubitskiy, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2015-01-01

    Since 1980, in the post-smallpox vaccination era the human population has become increasingly susceptible compared to a generation ago to not only the variola (smallpox) virus, but also other zoonotic orthopoxviruses. The need for safer vaccines against orthopoxviruses is even greater now. The Lister vaccine strain (LIVP) of vaccinia virus was used as a parental virus for generating a recombinant 1421ABJCN clone defective in five virulence genes encoding hemagglutinin (A56R), the IFN-γ-binding protein (B8R), thymidine kinase (J2R), the complement-binding protein (C3L), and the Bcl-2-like inhibitor of apoptosis (N1L). We found that disruption of these loci does not affect replication in mammalian cell cultures. The isogenic recombinant strain 1421ABJCN exhibits a reduced inflammatory response and attenuated neurovirulence relative to LIVP. Virus titers of 1421ABJCN were 3 lg lower versus the parent VACV LIVP when administered by the intracerebral route in new-born mice. In a subcutaneous mouse model, 1421ABJCN displayed levels of VACV-neutralizing antibodies comparable to those of LIVP and conferred protective immunity against lethal challenge by the ectromelia virus. The VACV mutant holds promise as a safe live vaccine strain for preventing smallpox and other orthopoxvirus infections. PMID:26798498

  1. Genome Sequence of Vaccinia virus Strain Lister-Butantan, a Lister Vaccine Variant Used during a Smallpox Eradication Campaign in Brazil

    PubMed Central

    Assis, Felipe; Trindade, Giliane; Drumond, Betânia; Frace, Mike; Sammons, Scott; Emerson, Ginny; Li, Yu; Carroll, Darin; Batra, Dhwani; Kroon, Erna

    2016-01-01

    Here, we report the 187.8-kb genome sequence of Vaccinia virus Lister-Butantan, which was used in Brazil during the WHO smallpox eradication campaign. Its genome showed an average similarity of 98.18% with the original Lister isolate, highlighting the low divergence among related Vaccinia virus vaccine strains, even after several passages in animals and cell culture. PMID:27340056

  2. Genome Sequence of Vaccinia virus Strain Lister-Butantan, a Lister Vaccine Variant Used during a Smallpox Eradication Campaign in Brazil.

    PubMed

    Assis, Felipe; Trindade, Giliane; Drumond, Betânia; Frace, Mike; Sammons, Scott; Emerson, Ginny; Li, Yu; Carroll, Darin; Batra, Dhwani; Abrahão, Jonatas; Kroon, Erna

    2016-01-01

    Here, we report the 187.8-kb genome sequence of Vaccinia virus Lister-Butantan, which was used in Brazil during the WHO smallpox eradication campaign. Its genome showed an average similarity of 98.18% with the original Lister isolate, highlighting the low divergence among related Vaccinia virus vaccine strains, even after several passages in animals and cell culture. PMID:27340056

  3. DNA sequence analysis of the Hind III M fragment from Chinese vaccine strain of vaccinia virus.

    PubMed

    Liu, V J; Jin, Q; Jin, D Y; Hou, Y D

    1989-01-01

    The complete DNA sequence of the Hind III M fragment of vaccinia virus (VV) Tian Tan strain genome was determined by the dideoxynucleotide chain termination method. Three open reading frames (ORFs) were identified in the complementary strand of the sequence, comprised of 2218bp. Among them, ORF K1 initiates its transcription at -45 of the Hind III K fragment. The deduced peptide encoded by K1 contains 284 amino acids with a calculated molecular weight of 32.48 KDa. Its sequence is homologous to the host range protein of VV Copenhagen strain; the variation is only 2.46% at the amino acid level. ORF M2 could encode a peptide of 21.94 KDa with 196 amino acids. This gene was shown to be homologous to that of the 23 KDa peptide of herpes simplex virus type I. A non-coding region of 204bp located between K1 and M2 is rich in palindromic structures. ORF M1 extends its 3' terminus into the Hind III N fragment. Within the M fragment, M1 can only encode 212 amino acids. The major part of ORF M1 is very similar to the M portion of a possible alpha-amanitin resistance gene isolated from VV-WR strain. This work provides a molecular foundation in the construction of a new insertion vector for the preparation of a recombinant vaccinia virus to be used as a polyvalent live vaccine.

  4. Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Mackett, Michael; Moss, Bernard

    1983-04-01

    Potential live vaccines against hepatitis B virus have been produced. The coding sequence for hepatitis B virus surface antigen (HBsAg) has been inserted into the vaccinia virus genome under control of vaccinia virus early promoters. Cells infected with these vaccinia virus recombinants synthesize and excrete HBsAg and vaccinated rabbits rapidly produce antibodies to HBsAg.

  5. Vaccinia virus infections in martial arts gym, Maryland, USA, 2008.

    PubMed

    Hughes, Christine M; Blythe, David; Li, Yu; Reddy, Ramani; Jordan, Carol; Edwards, Cindy; Adams, Celia; Conners, Holly; Rasa, Catherine; Wilby, Sue; Russell, Jamaal; Russo, Kelly S; Somsel, Patricia; Wiedbrauk, Danny L; Dougherty, Cindy; Allen, Christopher; Frace, Mike; Emerson, Ginny; Olson, Victoria A; Smith, Scott K; Braden, Zachary; Abel, Jason; Davidson, Whitni; Reynolds, Mary; Damon, Inger K

    2011-04-01

    Vaccinia virus is an orthopoxvirus used in the live vaccine against smallpox. Vaccinia virus infections can be transmissible and can cause severe complications in those with weakened immune systems. We report on a cluster of 4 cases of vaccinia virus infection in Maryland, USA, likely acquired at a martial arts gym.

  6. [Modified vaccinia virus ankara (MVA)--development as recombinant vaccine and prospects for use in veterinary medicine].

    PubMed

    Volz, Asisa; Fux, Robert; Langenmayer, Martin C; Sutter, Gerd

    2015-01-01

    Poxviruses as expression vectors are widely used in medical research for the development of recombinant vaccines and molecular therapies. Here we review recent accomplishments in vaccine research using recombinant modified vaccinia virus ankara (MVA). MVA is a highly attenuated vaccinia virus strain that originated from serial tissue culture passage in chicken embryo fibroblasts more than 40 years ago. Growth adaptation to avian host cells caused deletions and mutations in the viral genome affecting about 15% of the original genetic information. In consequence, MVA is replication-deficient in cells of mammalian origin and fails to produce many of the virulence factors encoded by conventional vaccinia virus. Because of its safety for the general environment MVA can be handled under conditions of biosafety level one. Non-replicating MVA can enter any target cell and activate its molecular life cycle to express all classes of viral and recombinant genes. Therefore, recombinant MVA have been established as an extremely safe and efficient vector system for vaccine development in medical research. By now, various recombinant MVA vaccines have been found safe and immunogenic when used for phase I/II clinical testing in humans, and suitable for industrial scale production following good practice of manufacturing. Thus, there is an obvious usefulness of recombinant MVA vaccines for novel prophylactic and therapeutic approaches also in veterinary medicine. Results from first studies in companion and farm animals are highly promising.

  7. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    PubMed

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  8. Modified Vaccinia Virus Ankara (MVA) as Production Platform for Vaccines against Influenza and Other Viral Respiratory Diseases

    PubMed Central

    Altenburg, Arwen F.; Kreijtz, Joost H. C. M.; de Vries, Rory D.; Song, Fei; Fux, Robert; Rimmelzwaan, Guus F.; Sutter, Gerd; Volz, Asisa

    2014-01-01

    Respiratory viruses infections caused by influenza viruses, human parainfluenza virus (hPIV), respiratory syncytial virus (RSV) and coronaviruses are an eminent threat for public health. Currently, there are no licensed vaccines available for hPIV, RSV and coronaviruses, and the available seasonal influenza vaccines have considerable limitations. With regard to pandemic preparedness, it is important that procedures are in place to respond rapidly and produce tailor made vaccines against these respiratory viruses on short notice. Moreover, especially for influenza there is great need for the development of a universal vaccine that induces broad protective immunity against influenza viruses of various subtypes. Modified Vaccinia Virus Ankara (MVA) is a replication-deficient viral vector that holds great promise as a vaccine platform. MVA can encode one or more foreign antigens and thus functions as a multivalent vaccine. The vector can be used at biosafety level 1, has intrinsic adjuvant capacities and induces humoral and cellular immune responses. However, there are some practical and regulatory issues that need to be addressed in order to develop MVA-based vaccines on short notice at the verge of a pandemic. In this review, we discuss promising novel influenza virus vaccine targets and the use of MVA for vaccine development against various respiratory viruses. PMID:25036462

  9. Adverse events post smallpox-vaccination: insights from tail scarification infection in mice with Vaccinia virus.

    PubMed

    Mota, Bruno E F; Gallardo-Romero, Nadia; Trindade, Giliane; Keckler, M Shannon; Karem, Kevin; Carroll, Darin; Campos, Marco A; Vieira, Leda Q; da Fonseca, Flávio G; Ferreira, Paulo C P; Bonjardim, Cláudio A; Damon, Inger K; Kroon, Erna G

    2011-04-15

    Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1(-/-)) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT) produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1(-/-) with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1(-/-), and passive transfer of WT T cells to Rag1(-/-) animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify individuals with

  10. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens.

    PubMed

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Lülf, Anna; Marr, Lisa; Jany, Sylvia; Deeg, Cornelia A; Pijlman, Gorben P; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E; Sutter, Gerd

    2016-04-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans. PMID:26939903

  11. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens.

    PubMed

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Lülf, Anna; Marr, Lisa; Jany, Sylvia; Deeg, Cornelia A; Pijlman, Gorben P; Koraka, Penelope; Osterhaus, Albert D M E; Martina, Byron E; Sutter, Gerd

    2016-04-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious diseases and cancer. Here, we generated and evaluated recombinant MVA candidate vaccines that deliver WNV envelope (E) antigens and fulfil all the requirements to proceed to clinical testing in humans. Infections of human and equine cell cultures with recombinant MVA demonstrated efficient synthesis and secretion of WNV envelope proteins in mammalian cells non-permissive for MVA replication. Prime-boost immunizations in BALB/c mice readily induced circulating serum antibodies binding to recombinant WNV E protein and neutralizing WNV in tissue culture infections. Vaccinations in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice elicited WNV E-specific CD8+ T cell responses. Moreover, the MVA-WNV candidate vaccines protected C57BL/6 mice against lineage 1 and lineage 2 WNV infection and induced heterologous neutralizing antibodies. Thus, further studies are warranted to evaluate these recombinant MVA-WNV vaccines in other preclinical models and use them as candidate vaccine in humans.

  12. Reemergence of vaccinia virus during Zoonotic outbreak, Pará State, Brazil.

    PubMed

    de Assis, Felipe L; Vinhote, Wagner M; Barbosa, José D; de Oliveira, Cairo H S; de Oliveira, Carlos M G; Campos, Karinny F; Silva, Natália S; Trindade, Giliane de Souza

    2013-12-01

    In 2010, vaccinia virus caused an outbreak of bovine vaccinia that affected dairy cattle and rural workers in Pará State, Brazil. Genetic analyses identified the virus as distinct from BeAn58058 vaccinia virus (identified in 1960s) and from smallpox vaccine virus strains. These findings suggest spread of autochthonous group 1 vaccinia virus in this region.

  13. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    PubMed

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  14. Group 2 vaccinia virus, Brazil.

    PubMed

    Assis, Felipe Lopes; Borges, Iara Apolinario; Ferreira, Paulo César Peregrino; Bonjardim, Cláudio Antônio; Trindade, Giliane de Souza; Lobato, Zélia Inês Portela; Guedes, Maria Isabel Maldonado; Mesquita, Vaz; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2012-12-01

    In 2011, vaccinia virus caused an outbreak of bovine vaccinia, affecting dairy cattle and dairy workers in Brazil. Genetic and phenotypic analyses identified this isolate as distinct from others recently identified, thereby reinforcing the hypothesis that different vaccinia virus strains co-circulate in Brazil.

  15. Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express PreM and E glycoproteins of Japanese encephalitis virus.

    PubMed Central

    Yasuda, A; Kimura-Kuroda, J; Ogimoto, M; Miyamoto, M; Sata, T; Sato, T; Takamura, C; Kurata, T; Kojima, A; Yasui, K

    1990-01-01

    A cDNA clone representing the genome of structural proteins of Japanese encephalitis virus (JEV) was inserted into the thymidine kinase gene of vaccinia virus strains LC16mO and WR under the control of a strong early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. Indirect immunofluorescence and fluorescence-activated flow cytometric analysis revealed that the recombinant vaccinia viruses expressed JEV E protein on the membrane surface, as well as in the cytoplasm, of recombinant-infected cells. In addition, the E protein expressed from the JEV recombinants reacted to nine different characteristic monoclonal antibodies, some of which have hemagglutination-inhibiting and JEV-neutralizing activities. Radioimmunoprecipitation analysis demonstrated that two major proteins expressed in recombinant-infected cells were processed and glycosylated as the authentic PreM and E glycoproteins of JEV. Inoculation of rabbits with the infectious recombinant vaccinia virus resulted in rapid production of antiserum specific for the PreM and E glycoproteins of JEV. This antiserum had both hemagglutination-inhibiting and virus-neutralizing activities against JEV. Furthermore, mice vaccinated with the recombinant also produced JEV-neutralizing antibodies and were resistant to challenge with JEV. Images PMID:2159544

  16. Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release.

    PubMed

    Kern, Aurelie; Zhou, Chensheng W; Jia, Feng; Xu, Qiaobing; Hu, Linden T

    2016-08-31

    The incidence of Lyme disease has continued to rise despite attempts to control its spread. Vaccination of zoonotic reservoirs of human pathogens has been successfully used to decrease the incidence of rabies in raccoons and foxes. We have previously reported on the efficacy of a vaccinia virus vectored vaccine to reduce carriage of Borrelia burgdorferi in reservoir mice and ticks. One potential drawback to vaccinia virus vectored vaccines is the risk of accidental infection of humans. To reduce this risk, we developed a process to encapsulate vaccinia virus with a pH-sensitive polymer that inactivates the virus until it is ingested and dissolved by stomach acids. We demonstrate that the vaccine is inactive both in vitro and in vivo until it is released from the polymer. Once released from the polymer by contact with an acidic pH solution, the virus regains infectivity. Vaccination with coated vaccinia virus confers protection against B. burgdorferi infection and reduction in acquisition of the pathogen by naïve feeding ticks. PMID:27502570

  17. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  18. Complete Genome Sequence of Vaccinia Virus Strain L-IVP

    PubMed Central

    Shvalov, Alexander N.; Sivolobova, Galina F.; Kuligina, Elena V.

    2016-01-01

    Most of the live vaccine doses of vaccinia virus donated to the Intensified Smallpox Eradication Programme after 1971 were prepared using the L-IVP strain. A mixture of three clones of the L-IVP strain was sequenced using MySEQ. Consensus sequence similarity with the vaccinia virus Lister strain is 99.5%. PMID:27174282

  19. Complete Genome Sequence of Vaccinia Virus Strain L-IVP.

    PubMed

    Shvalov, Alexander N; Sivolobova, Galina F; Kuligina, Elena V; Kochneva, Galina V

    2016-01-01

    Most of the live vaccine doses of vaccinia virus donated to the Intensified Smallpox Eradication Programme after 1971 were prepared using the L-IVP strain. A mixture of three clones of the L-IVP strain was sequenced using MySEQ. Consensus sequence similarity with the vaccinia virus Lister strain is 99.5%. PMID:27174282

  20. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  1. Long-Term Sterilizing Immunity to Rinderpest in Cattle Vaccinated with a Recombinant Vaccinia Virus Expressing High Levels of the Fusion and Hemagglutinin Glycoproteins

    PubMed Central

    Verardi, Paulo H.; Aziz, Fatema H.; Ahmad, Shabbir; Jones, Leslie A.; Beyene, Berhanu; Ngotho, Rosemary N.; Wamwayi, Henry M.; Yesus, Mebratu G.; Egziabher, Berhe G.; Yilma, Tilahun D.

    2002-01-01

    Rinderpest is an acute and highly contagious viral disease of ruminants, often resulting in greater than 90% mortality. We have constructed a recombinant vaccinia virus vaccine (v2RVFH) that expresses both the fusion (F) and hemagglutinin (H) genes of rinderpest virus (RPV) under strong synthetic vaccinia virus promoters. v2RVFH-infected cells express high levels of the F and H glycoproteins and show extensive syncytium formation. Cattle vaccinated intramuscularly with as little as 103 PFU of v2RVFH and challenged 1 month later with a lethal dose of RPV were completely protected from clinical disease; the 50% protective dose was determined to be 102 PFU. Animals vaccinated with v2RVFH did not develop pock lesions and did not transmit the recombinant vaccinia virus to contact animals. Intramuscular vaccination of cattle with 108 PFU of v2RVFH provided long-term sterilizing immunity against rinderpest. In addition to being highly safe and efficacious, v2RVFH is a heat-stable, inexpensive, and easily administered vaccine that allows the serological differentiation between vaccinated and naturally infected animals. Consequently, mass vaccination of cattle with v2RVFH could eradicate rinderpest. PMID:11752138

  2. Safety and Immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic Smallpox Vaccine in Vaccinia-Naive and Experienced Human Immunodeficiency Virus-Infected Individuals: An Open-Label, Controlled Clinical Phase II Trial

    PubMed Central

    Overton, Edgar Turner; Stapleton, Jack; Frank, Ian; Hassler, Shawn; Goepfert, Paul A.; Barker, David; Wagner, Eva; von Krempelhuber, Alfred; Virgin, Garth; Meyer, Thomas Peter; Müller, Jutta; Bädeker, Nicole; Grünert, Robert; Young, Philip; Rösch, Siegfried; Maclennan, Jane; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2015-01-01

    Background. First- and second-generation smallpox vaccines are contraindicated in individuals infected with human immunodeficiency virus (HIV). A new smallpox vaccine is needed to protect this population in the context of biodefense preparedness. The focus of this study was to compare the safety and immunogenicity of a replication-deficient, highly attenuated smallpox vaccine modified vaccinia Ankara (MVA) in HIV-infected and healthy subjects. Methods. An open-label, controlled Phase II trial was conducted at 36 centers in the United States and Puerto Rico for HIV-infected and healthy subjects. Subjects received 2 doses of MVA administered 4 weeks apart. Safety was evaluated by assessment of adverse events, focused physical exams, electrocardiogram recordings, and safety laboratories. Immune responses were assessed using enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT). Results. Five hundred seventy-nine subjects were vaccinated at least once and had data available for analysis. Rates of ELISA seropositivity were comparably high in vaccinia-naive healthy and HIV-infected subjects, whereas PRNT seropositivity rates were higher in healthy compared with HIV-infected subjects. Modified vaccinia Ankara was safe and well tolerated with no adverse impact on viral load or CD4 counts. There were no cases of myo-/pericarditis reported. Conclusions. Modified vaccinia Ankara was safe and immunogenic in subjects infected with HIV and represents a promising smallpox vaccine candidate for use in immunocompromised populations. PMID:26380340

  3. Extent of Systemic Spread Determines CD8+ T Cell Immunodominance for Laboratory Strains, Smallpox Vaccines, and Zoonotic Isolates of Vaccinia Virus.

    PubMed

    Flesch, Inge E A; Hollett, Natasha A; Wong, Yik Chun; Quinan, Bárbara Resende; Howard, Debbie; da Fonseca, Flávio G; Tscharke, David C

    2015-09-01

    CD8(+) T cells that recognize virus-derived peptides presented on MHC class I are vital antiviral effectors. Such peptides presented by any given virus vary greatly in immunogenicity, allowing them to be ranked in an immunodominance hierarchy. However, the full range of parameters that determine immunodominance and the underlying mechanisms remain unknown. In this study, we show across a range of vaccinia virus strains, including the current clonal smallpox vaccine, that the ability of a strain to spread systemically correlated with reduced immunodominance. Reduction in immunodominance was observed both in the lymphoid system and at the primary site of infection. Mechanistically, reduced immunodominance was associated with more robust priming and especially priming in the spleen. Finally, we show this is not just a property of vaccine and laboratory strains of virus, because an association between virulence and immunodominance was also observed in isolates from an outbreak of zoonotic vaccinia virus that occurred in Brazil.

  4. Use of Vaccinia Virus Smallpox Vaccine in Laboratory and Health Care Personnel at Risk for Occupational Exposure to Orthopoxviruses - Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015.

    PubMed

    Petersen, Brett W; Harms, Tiara J; Reynolds, Mary G; Harrison, Lee H

    2016-03-18

    On June 25, 2015, the Advisory Committee on Immunization Practices (ACIP) recommended routine vaccination with live smallpox (vaccinia) vaccine (ACAM2000) for laboratory personnel who directly handle 1) cultures or 2) animals contaminated or infected with replication-competent vaccinia virus, recombinant vaccinia viruses derived from replication-competent vaccinia strains (i.e., those that are capable of causing clinical infection and producing infectious virus in humans), or other orthopoxviruses that infect humans (e.g., monkeypox, cowpox, and variola) (recommendation category: A, evidence type 2 [Box]). Health care personnel (e.g., physicians and nurses) who currently treat or anticipate treating patients with vaccinia virus infections and whose contact with replication-competent vaccinia viruses is limited to contaminated materials (e.g., dressings) and persons administering ACAM2000 smallpox vaccine who adhere to appropriate infection prevention measures can be offered vaccination with ACAM2000 (recommendation category: B, evidence type 2 [Box]). These revised recommendations update the previous ACIP recommendations for nonemergency use of vaccinia virus smallpox vaccine for laboratory and health care personnel at risk for occupational exposure to orthopoxviruses (1). Since 2001, when the previous ACIP recommendations were developed, ACAM2000 has replaced Dryvax as the only smallpox vaccine licensed by the U.S. Food and Drug Administration (FDA) and available for use in the United States (2). These recommendations contain information on ACAM2000 and its use in laboratory and health care personnel at risk for occupational exposure to orthopoxviruses.

  5. Use of Vaccinia Virus Smallpox Vaccine in Laboratory and Health Care Personnel at Risk for Occupational Exposure to Orthopoxviruses - Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015.

    PubMed

    Petersen, Brett W; Harms, Tiara J; Reynolds, Mary G; Harrison, Lee H

    2016-03-18

    On June 25, 2015, the Advisory Committee on Immunization Practices (ACIP) recommended routine vaccination with live smallpox (vaccinia) vaccine (ACAM2000) for laboratory personnel who directly handle 1) cultures or 2) animals contaminated or infected with replication-competent vaccinia virus, recombinant vaccinia viruses derived from replication-competent vaccinia strains (i.e., those that are capable of causing clinical infection and producing infectious virus in humans), or other orthopoxviruses that infect humans (e.g., monkeypox, cowpox, and variola) (recommendation category: A, evidence type 2 [Box]). Health care personnel (e.g., physicians and nurses) who currently treat or anticipate treating patients with vaccinia virus infections and whose contact with replication-competent vaccinia viruses is limited to contaminated materials (e.g., dressings) and persons administering ACAM2000 smallpox vaccine who adhere to appropriate infection prevention measures can be offered vaccination with ACAM2000 (recommendation category: B, evidence type 2 [Box]). These revised recommendations update the previous ACIP recommendations for nonemergency use of vaccinia virus smallpox vaccine for laboratory and health care personnel at risk for occupational exposure to orthopoxviruses (1). Since 2001, when the previous ACIP recommendations were developed, ACAM2000 has replaced Dryvax as the only smallpox vaccine licensed by the U.S. Food and Drug Administration (FDA) and available for use in the United States (2). These recommendations contain information on ACAM2000 and its use in laboratory and health care personnel at risk for occupational exposure to orthopoxviruses. PMID:26985679

  6. Evaluation of pseudorabies virus glycoprotein gp50 as a vaccine for Aujeszky's disease in mice and swine: expression by vaccinia virus and Chinese hamster ovary cells.

    PubMed Central

    Marchioli, C C; Yancey, R J; Petrovskis, E A; Timmins, J G; Post, L E

    1987-01-01

    Pseudorabies virus (PRV) is an alphaherpesvirus which causes an economically important disease of swine. One of the PRV glycoproteins, gp50, was previously identified as the sequence homolog of herpes simplex virus glycoprotein gD (E.A. Petrovskis, J.G. Timmins, M.A. Armentrout, C.C. Marchioli, R.J. Yancey, Jr., and L.E. Post, J. Virol. 59:216-223, 1986). gp50 was evaluated as a PRV subunit vaccine candidate. gp50 protected mice from PRV-induced mortality either when delivered via infection with a recombinant vaccinia virus or when administered as a subunit vaccine produced in a eucaryotic cell line, Chinese hamster ovary (CHO) cells. In addition, gp50 synthesized in CHO cells protected pigs from lethal infection with PRV. This result demonstrates that a single viral glycoprotein could induce a protective immune response in the natural host of a herpesvirus infection. Images PMID:2824827

  7. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge

    PubMed Central

    Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

    2014-01-01

    African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR −/−) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field. PMID:24837765

  8. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge.

    PubMed

    Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

    2014-06-17

    African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field.

  9. Adjuvant-like Effect of Vaccinia Virus 14K Protein: A Case Study with Malaria Vaccine Based on the Circumsporozoite Protein

    PubMed Central

    Vijayan, Aneesh; Gómez, Carmen E.; Espinosa, Diego A.; Goodman, Alan G.; Sanchez-Sampedro, Lucas; Sorzano, Carlos Oscar S.; Zavala, Fidel; Esteban, Mariano

    2014-01-01

    Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8+ T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8+ T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K. PMID:22615208

  10. Prime-boost vaccination with plasmid DNA followed by recombinant vaccinia virus expressing BgGARP induced a partial protective immunity to inhibit Babesia gibsoni proliferation in dogs.

    PubMed

    Cao, Shinuo; Mousa, Ahmed Abdelmoniem; Aboge, Gabriel Oluga; Kamyingkird, Ketsarin; Zhou, Mo; Moumouni, Paul Franck Adjou; Terkawi, Mohamad Alaa; Masatani, Tatsunori; Nishikawa, Yoshifumi; Suzuki, Hiroshi; Fukumoto, Shinya; Xuan, Xuenan

    2013-12-01

    A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rvv) vectors expressing relevant antigens has been shown to induce effective immune responses against several infectious pathogens. In this study, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a recombinant plasmid followed by vaccinia virus, both of which expressed the glutamic acid-rich protein (BgGARP) of Babesia gibsoni. The dogs immunized with the prime-boost regime developed a significantly high level of specific antibodies against BgGARP when compared with the control groups. The antibody level was strongly increased after a booster immunization with a recombinant vaccinia virus. Two weeks after the booster immunization with a recombinant vaccinia virus expressing BgGARP, the dogs were challenged with B. gibsoni parasite. The dogs immunized with the prime-boost regime showed partial protection, manifested as a significantly low level of parasitemia. These results indicated that this type of DNA/rvv prime-boost immunization approach may have use against B. gibsoni infection in dogs. PMID:24338330

  11. Linear Epitopes in Vaccinia Virus A27 Are Targets of Protective Antibodies Induced by Vaccination against Smallpox

    PubMed Central

    Kaever, Thomas; Matho, Michael H.; Meng, Xiangzhi; Crickard, Lindsay; Schlossman, Andrew; Xiang, Yan; Crotty, Shane; Peters, Bjoern

    2016-01-01

    ABSTRACT Vaccinia virus (VACV) A27 is a target for viral neutralization and part of the Dryvax smallpox vaccine. A27 is one of the three glycosaminoglycan (GAG) adhesion molecules and binds to heparan sulfate. To understand the function of anti-A27 antibodies, especially their protective capacity and their interaction with A27, we generated and subsequently characterized 7 murine monoclonal antibodies (MAbs), which fell into 4 distinct epitope groups (groups I to IV). The MAbs in three groups (groups I, III, and IV) bound to linear peptides, while the MAbs in group II bound only to VACV lysate and recombinant A27, suggesting that they recognized a conformational and discontinuous epitope. Only group I antibodies neutralized the mature virion in a complement-dependent manner and protected against VACV challenge, while a group II MAb partially protected against VACV challenge but did not neutralize the mature virion. The epitope for group I MAbs was mapped to a region adjacent to the GAG binding site, a finding which suggests that group I MAbs could potentially interfere with the cellular adhesion of A27. We further determined the crystal structure of the neutralizing group I MAb 1G6, as well as the nonneutralizing group IV MAb 8E3, bound to the corresponding linear epitope-containing peptides. Both the light and the heavy chains of the antibodies are important in binding to their antigens. For both antibodies, the L1 loop seems to dominate the overall polar interactions with the antigen, while for MAb 8E3, the light chain generally appears to make more contacts with the antigen. IMPORTANCE Vaccinia virus is a powerful model to study antibody responses upon vaccination, since its use as the smallpox vaccine led to the eradication of one of the world's greatest killers. The immunodominant antigens that elicit the protective antibodies are known, yet for many of these antigens, little information about their precise interaction with antibodies is available. In an

  12. Extent of systemic spread determines CD8+ T cell immunodominance for laboratory strains, smallpox vaccines and zoonotic isolates of vaccinia virus1

    PubMed Central

    Flesch, Inge E.A.; Hollett, Natasha A.; Wong, Yik Chun; Quinan, Bárbara Resende; Howard, Debbie; da Fonseca, Flávio G.; Tscharke, David C.

    2015-01-01

    CD8+ T cells that recognize virus-derived peptides presented on MHC class I (pMHC) are vital anti-viral effectors. The pMHC presented by any given virus vary greatly in immunogenicity allowing them to be ranked in an immunodominance hierarchy. However, the full range of parameters that determine immunodominance and the underlying mechanisms remain unknown. Here we show across a range of vaccinia virus (VACV) strains, including the current clonal smallpox vaccine, that the ability of a strain to spread systemically correlated with reduced immunodominance. Reduction in immunodominance was observed both in the lymphoid system and at the primary site of infection. Mechanistically, reduced immunodominance was associated with more robust priming and especially priming in the spleen. Finally, we show this is not just a property of vaccine and laboratory strains of virus, because an association between virulence and immunodominance was also observed in isolates from an outbreak of zoonotic VACV that occurred in Brazil. PMID:26195812

  13. Measurements of vaccinia virus dissemination using whole body imaging: approaches for predicting of lethality in challenge models and testing of vaccines and antiviral treatments.

    PubMed

    Zaitseva, Marina; Kapnick, Senta; Golding, Hana

    2012-01-01

    Preclinical evaluation of novel anti-smallpox vaccines and antiviral treatments often rely on mouse -challenge models using pathogenic vaccinia virus, such as Western Reserve (WR) strain or other orthopoxviruses. Traditionally, efficacy of treatment is evaluated using various readouts, such as lethality (rare), measurements of body weight loss, pox lesion scoring, and determination of viral loads in internal organs by enumerating plaques in sensitive cell lines. These methodologies provide valuable information about the contribution of the treatment to protection from infection, yet all have similar limitations: they do not evaluate dissemination of the virus within the same animal and require large numbers of animals. These two problems prompted us to turn to a recently developed whole body imaging technology, where replication of recombinant vaccinia virus expressing luciferase enzyme (WRvFire) is sensed by detecting light emitted by the enzyme in the presence of D: -luciferin substrate administered to infected animal. Bioluminescence signals from infected organs in live animals are registered by the charge-coupled device camera in IVIS instrument developed by Caliper, and are converted into numerical values. This chapter describes whole body bioimaging methodology used to determine viral loads in normal live BALB/c mice infected with recombinant WRvFire vaccinia virus. Using Dryvax vaccination as a model, we show how bioluminescence data can be used to determine efficacy of treatment. In addition, we illustrate how bioluminescence and survival outcome can be combined in Receiver Operating Characteristic curve -analysis to develop predictive models of lethality that can be applied for testing of new therapeutics and second-generation vaccines.

  14. Neutrophil uptake of vaccinia virus in vitro

    SciTech Connect

    West, B.C.; Eschete, M.L.; Cox, M.E.; King, J.W.

    1987-10-01

    We studied human neutrophils for uptake of vaccinia virus. Uptake was determined radiometrically and by electron microscopy. Vaccinia virus was labeled with /sup 14/C or /sup 3/H, incubated with neutrophils, and quantified in neutrophil pellets in a new radiometric phagocytosis assay. Better results were obtained from assays of (/sup 3/H)thymidine-labeled virus; uptake increased through 1 hr and then plateaued. Phagocytosis of 3H-labeled Staphylococcus aureus was normal. Uptake of virus was serum dependent. Hexose monophosphate shunt activity was measured by two methods. No /sup 14/CO/sub 2/ from (/sup 14/C)1-glucose accompanied uptake of vaccinia virus, in contrast to the respiratory burst accompanying bacterial phagocytosis. Electron microscopy showed intact to slightly digested intraphagolysosomal vaccinia virus. Pock reduction assay showed a decrease in viral content due to neutrophils until 6 hr of incubation, when a modest but significant increase was observed. Thus, neutrophil uptake of vaccinia virus is distinguished from bacterial phagocytosis.

  15. Vaccination of mice against canine distemper virus-induced encephalitis with vaccinia virus recombinants encoding measles or canine distemper virus antigens.

    PubMed

    Wild, T F; Bernard, A; Spehner, D; Villeval, D; Drillien, R

    1993-01-01

    Measles and canine distemper are caused by serologically related viruses. Although dogs immunized with measles virus (MV) do not elicit canine distemper virus (CDV) neutralizing antibodies, they are protected against the fatal disease. To investigate the potential role of the MV antigens in protection against CDV, we have immunized mice with vaccinia virus (VV) recombinants expressing the MV haemagglutinin (HA), fusion (F), nucleoprotein (NP) and matrix (M) antigens and challenged them with CDV. A partial protection was observed with the VV recombinants expressing the F, NP and M antigens, but not the HA. In contrast, immunization with a VV recombinant expressing the CDV F protein completely protected mice from CDV. PMID:8470428

  16. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    NASA Astrophysics Data System (ADS)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  17. Use of vaccinia virus to express biopharmaceutical products.

    PubMed

    Hruby, D E; Thomas, G

    1987-04-01

    Recent technological advancements have fostered the continued development of vaccinia virus as an efficient eukaryotic cloning and expression vector system. Genetically engineered vaccinia virus strains have been constructed for use (i) as recombinant vaccines for the prophylaxis of infectious disease, (ii) in producing significant quantities of biologically active polypeptide factors or enzymes, and (iii) as basic research tools with which to investigate primary structure-function relationships between proteins and their catalytic activities. This review examines the basic vaccinia vector system, its advantages and limitations, and current areas of research. As a specific example of the power and utility of this approach, attention is focused on the application of this technology to the field of neurobiology, specifically the use of recombinant vaccinia to study the expression, processing, and transport of cellular neuropeptides.

  18. Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus.

    PubMed

    Chen, Zhaochun; Earl, Patricia; Americo, Jeffrey; Damon, Inger; Smith, Scott K; Zhou, Yi-Hua; Yu, Fujuan; Sebrell, Andrew; Emerson, Suzanne; Cohen, Gary; Eisenberg, Roselyn J; Svitel, Juraj; Schuck, Peter; Satterfield, William; Moss, Bernard; Purcell, Robert

    2006-02-01

    Chimpanzee Fabs against the B5 envelope glycoprotein of vaccinia virus were isolated and converted into complete mAbs with human gamma 1 heavy chain constant regions. The two mAbs (8AH8AL and 8AH7AL) displayed high binding affinities to B5 (Kd of 0.2 and 0.7 nM). The mAb 8AH8AL inhibited the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro, protected mice from subsequent intranasal challenge with virulent vaccinia virus, protected mice when administered 2 days after challenge, and provided significantly greater protection than that afforded by a previously isolated rat anti-B5 mAb (19C2) or by vaccinia immune globulin. The mAb bound to a conformational epitope between amino acids 20 and 130 of B5. These chimpanzee/human anti-B5 mAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox.

  19. Genomic Analysis, Phenotype, and Virulence of the Historical Brazilian Smallpox Vaccine Strain IOC: Implications for the Origins and Evolutionary Relationships of Vaccinia Virus

    PubMed Central

    Medaglia, Maria Luiza G.; Moussatché, Nissin; Nitsche, Andreas; Dabrowski, Pjotr Wojtek; Li, Yu; Damon, Inger K.; Lucas, Carolina G. O.; Arruda, Luciana B.

    2015-01-01

    ABSTRACT Smallpox was declared eradicated in 1980 after an intensive vaccination program using different strains of vaccinia virus (VACV; Poxviridae). VACV strain IOC (VACV-IOC) was the seed strain of the smallpox vaccine manufactured by the major vaccine producer in Brazil during the smallpox eradication program. However, little is known about the biological and immunological features as well as the phylogenetic relationships of this first-generation vaccine. In this work, we present a comprehensive characterization of two clones of VACV-IOC. Both clones had low virulence in infected mice and induced a protective immune response against a lethal infection comparable to the response of the licensed vaccine ACAM2000 and the parental strain VACV-IOC. Full-genome sequencing revealed the presence of several fragmented virulence genes that probably are nonfunctional, e.g., F1L, B13R, C10L, K3L, and C3L. Most notably, phylogenetic inference supported by the structural analysis of the genome ends provides evidence of a novel, independent cluster in VACV phylogeny formed by VACV-IOC, the Brazilian field strains Cantagalo (CTGV) and Serro 2 viruses, and horsepox virus, a VACV-like virus supposedly related to an ancestor of the VACV lineage. Our data strongly support the hypothesis that CTGV-like viruses represent feral VACV that evolved in parallel with VACV-IOC after splitting from a most recent common ancestor, probably an ancient smallpox vaccine strain related to horsepox virus. Our data, together with an interesting historical investigation, revisit the origins of VACV and propose new evolutionary relationships between ancient and extant VACV strains, mainly horsepox virus, VACV-IOC/CTGV-like viruses, and Dryvax strain. IMPORTANCE First-generation vaccines used to eradicate smallpox had rates of adverse effects that are not acceptable by current health care standards. Moreover, these vaccines are genetically heterogeneous and consist of a pool of quasispecies of VACV

  20. Deletion of the vaccinia virus F13L gene results in a highly attenuated virus that mounts a protective immune response against subsequent vaccinia virus challenge.

    PubMed

    Vliegen, Inge; Yang, Guang; Hruby, Dennis; Jordan, Robert; Neyts, Johan

    2012-01-01

    Vaccinia virus F13L encodes the envelope protein p37, which is the target of the anti-pox virus drug ST-246 (Yang et al., 2005) and that is required for production of extracellular vaccinia virus. The F13L (p37)-deleted (and ST-246 resistant) vaccinia virus recombinant (Vac-ΔF13L) produced smaller plaques than the wild-type vaccinia (Western Reserve vaccinia). In addition, Vac-ΔF13L proved, when inoculated either intravenously or intracutaneously in both immunocompetent and immunodeficient (athymic nude or SCID) mice, to be severely attenuated. Intravenous or intracutaneous inoculation of immunocompetent mice with the ΔF13L virus efficiently protected against a subsequent intravenous, intracutaneous or intranasal challenge with vaccinia WR (Western Reserve). This was corroborated by the observation that Vac-ΔF13L induced a humoral immune response against vaccinia following either intravenous or intracutaneous challenge. In conclusion, F13L-deleted vaccinia virus may have the potential to be developed as a smallpox vaccine.

  1. Preparation of cell cultures and vaccinia virus stocks.

    PubMed

    Earl, P L; Cooper, N; Wyatt, L S; Moss, B; Carroll, M W

    2001-05-01

    This unit describes the maintenance of cell lines used with vaccinia virus, both in monolayer cultures and in suspension. The suspended cell culture is then used in the preparation of vaccinia virus stocks. The preparation of chick embryo fibroblasts (CEF) is also presented for use in the production of the highly attenuated and host range-restricted modified vaccinia virus Ankara (MVA) strain of vaccinia virus. Additionally, support protocols are presented for the titration of standard and MVA vaccinia virus stocks.

  2. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses.

    PubMed

    Dowall, Stuart D; Graham, Victoria A; Rayner, Emma; Hunter, Laura; Watson, Robert; Taylor, Irene; Rule, Antony; Carroll, Miles W; Hewson, Roger

    2016-01-01

    Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge.

  3. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses

    PubMed Central

    Dowall, Stuart D.; Graham, Victoria A.; Rayner, Emma; Hunter, Laura; Watson, Robert; Taylor, Irene; Rule, Antony; Carroll, Miles W.; Hewson, Roger

    2016-01-01

    Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge. PMID:27272940

  4. Vaccination of mice with a modified Vaccinia Ankara (MVA) virus expressing the African horse sickness virus (AHSV) capsid protein VP2 induces virus neutralising antibodies that confer protection against AHSV upon passive immunisation.

    PubMed

    Calvo-Pinilla, Eva; de la Poza, Francisco; Gubbins, Simon; Mertens, Peter Paul Clement; Ortego, Javier; Castillo-Olivares, Javier

    2014-02-13

    In previous studies we showed that a recombinant Modified Vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 (MVA-VP2) induced virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR-/-) against challenge. We continued these studies and determined, in the IFNAR-/- mouse model, whether the antibody responses induced by MVA-VP2 vaccination play a key role in protection against AHSV. Thus, groups of mice were vaccinated with wild type MVA (MVA-wt) or MVA-VP2 and the antisera from these mice were used in a passive immunisation experiment. Donor antisera from (a) MVA-wt; (b) MVA-VP2 vaccinated; or (c) MVA-VP2 vaccinated and AHSV infected mice, were transferred to AHSV non-immune recipient mice. The recipients were challenged with virulent AHSV together with MVA-VP2 vaccinated and MVA-wt vaccinated control animals and the levels of protection against AHSV-4 were compared between all these groups. The results showed that following AHSV challenge, mice that were passively immunised with MVA-VP2 vaccinated antisera were highly protected against AHSV disease and had lower levels of viraemia than recipients of MVA-wt antisera. Our study indicates that MVA-VP2 vaccination induces a highly protective humoral immune response against AHSV.

  5. Protective efficacy of Modified Vaccinia virus Ankara in preclinical studies.

    PubMed

    Volz, Asisa; Sutter, Gerd

    2013-09-01

    Modified Vaccinia virus Ankara (MVA) is a tissue culture-derived, highly attenuated strain of vaccinia virus (VACV) exhibiting characteristic defective replication in cells from mammalian hosts. In the 1960s MVA was originally generated as a candidate virus for safer vaccination against smallpox. Now, MVA is widely used in experimental vaccine development targeting important infectious diseases and cancer. Versatile technologies for genetic engineering, large-scale production, and quality control facilitate R&D of recombinant and non-recombinant MVA vaccines matching today's requirements for new biomedical products. Such vaccines are attractive candidates for delivering antigens from pathogens against which no, or no effective vaccine is available, including emerging infections caused by highly pathogenic influenza viruses, chikungunya virus, West Nile virus or zoonotic orthopoxviruses. Other directions are seeking valuable vaccines against highly complex diseases such as AIDS, malaria, and tuberculosis. Here, we highlight examples of MVA candidate vaccines against infectious diseases, and review the efforts made to assess both the efficacy of vaccination and immune correlates of protection in preclinical studies.

  6. Immune control strategies for vaccinia virus-related laboratory-acquired infections.

    PubMed

    Wei, Qiang; Jiang, Meng Nan; Han, Jun; Wang, Zi Jun

    2014-02-01

    While presenting biological characteristics of vaccinia virus and laboratory-acquired infections during related research processes, this paper focuses on benefits and risks of vaccinia virus immunization in relation to laboratory-acquired infections, describes characteristics and the adaptation of vaccinia virus vaccine, analyses the role vaccinia virus immunization plays in the prevention and control of laboratory-acquired infections, and finally proposes solutions and countermeasures to further promote and implement immune control strategies. The problem related to immune strategy and laboratory- acquired infections which is being raised, analyzed and explored plays an active and instructive role in vaccinia virus related researches and laboratory- acquired infections, and also helps to recommend and develop relevant immune strategy for future vaccine control of such infections.

  7. A recombinant modified vaccinia Ankara vaccine encoding Epstein-Barr virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer

    PubMed Central

    Taylor, Graham S.; Jia, Hui; Harrington, Kevin; Lee, Lip Wai; Turner, James; Ladell, Kristin; Price, David A; Tanday, Manjit; Matthews, Jen; Roberts, Claudia; Edwards, Ceri; McGuigan, Lesley; Hartley, Andrew; Wilson, Steve; Hui, Edwin P.; Chan, Anthony T. C.; Rickinson, Alan B.; Steven, Neil M.

    2015-01-01

    Purpose Epstein-Barr virus (EBV) is associated with several cancers in which the tumour cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumour antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Experimental Design Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC), received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5×107 and 5×108 plaque forming units (pfu). Blood samples were taken at screening, after each vaccine cycle and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Results Vaccination was generally well-tolerated. Immunity increased after vaccination to at least one antigen in 8/14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments respectively. Conclusions MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South East Asia where NPC is most common. The highest dose (5×108 pfu) is recommended for investigation in current phase IB and II trials. PMID:25124688

  8. Highly immunogenic variant of attenuated vaccinia virus.

    PubMed

    Yakubitskyi, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2016-01-01

    The LIVPΔ6 strain of vaccinia virus (VACV) was created by genetic engineering on the basis of previously obtained attenuated 1421ABJCN strain by target deletion of the A35R gene encoding an inhibitor of antigen presentation by the major histocompatibility complex class II. 1421ABJCN is the LIVP strain of VACV with five inactivated virulence genes encoding hemagglutinin (A56R), γ-interferon-binding protein (B8R), thymidine kinase (J2R), complement-binding protein (C3L), and Bcl2-like inhibitor of apoptosis (N1L). The highly immunogenic LIVPΔ6 strain could be an efficient fourth-generation attenuated vaccine against smallpox and other orthopoxvirus infections. PMID:27025484

  9. Enhanced Immunogenicity of CD4+ T-Cell Responses and Protective Efficacy of a DNA-Modified Vaccinia Virus Ankara Prime-Boost Vaccination Regimen for Murine Tuberculosis

    PubMed Central

    McShane, Helen; Brookes, Roger; Gilbert, Sarah C.; Hill, Adrian V. S.

    2001-01-01

    DNA vaccines whose DNA encodes a variety of antigens from Mycobacterium tuberculosis have been evaluated for immunogenicity and protective efficacy. CD8+ T-cell responses and protection achieved in other infectious disease models have been optimized by using a DNA immunization to prime the immune system and a recombinant virus encoding the same antigen(s) to boost the response. A DNA vaccine (D) and recombinant modified vaccinia virus Ankara (M) in which the DNA encodes early secreted antigenic target 6 and mycobacterial protein tuberculosis 63 synthesized, and each was found to generate specific gamma interferon (IFN-γ)-secreting CD4+ T cells. Enhanced CD4+ IFN-γ T-cell responses were produced by both D-M and M-D immunization regimens. Significantly higher levels of IFN-γ were seen with a D-D-D-M immunization regimen. The most immunogenic regimens were assessed in a challenge study and found to produce protection equivalent to that produced by Mycobacterium bovis BCG. Thus, heterologous prime-boost regimens boost CD4+ as well as CD8+ T-cell responses, and the use of heterologous constructs encoding the same antigen(s) may improve the immunogenicity and protective efficacy of DNA vaccines against tuberculosis and other diseases. PMID:11159955

  10. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara.

    PubMed

    Schneider, J; Gilbert, S C; Blanchard, T J; Hanke, T; Robson, K J; Hannan, C M; Becker, M; Sinden, R; Smith, G L; Hill, A V

    1998-04-01

    Immunization with irradiated sporozoites can protect against malaria infection and intensive efforts are aimed at reproducing this effect with subunit vaccines. A particular sequence of subunit immunization with pre-erythrocytic antigens of Plasmodium berghei, consisting of single dose priming with plasmid DNA followed by a single boost with a recombinant modified vaccinia virus Ankara (MVA) expressing the same antigen, induced unprecedented complete protection against P. berghei sporozoite challenge in two strains of mice. Protection was associated with very high levels of splenic peptide-specific interferon-gamma-secreting CD8+ T cells and was abrogated when the order of immunization was reversed. DNA priming followed by MVA boosting may provide a general immunization regime for induction of high levels of CD8+ T cells.

  11. From Crescent to Mature Virion: Vaccinia Virus Assembly and Maturation

    PubMed Central

    Liu, Liang; Cooper, Tamara; Howley, Paul M.; Hayball, John D.

    2014-01-01

    Vaccinia virus (VACV) has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV) to mature virus (MV), and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions. PMID:25296112

  12. Preparation of Cell Cultures and Vaccinia Virus Stocks.

    PubMed

    Cotter, Catherine A; Earl, Patricia L; Wyatt, Linda S; Moss, Bernard

    2015-11-01

    The culturing of cell lines used with vaccinia virus, both as monolayer and in suspension, is described. The preparation of chick embryo fibroblasts (CEF) is presented for use in the production of the highly attenuated and host range-restricted modified vaccinia virus Ankara (MVA) strain of vaccinia virus. Protocols for the preparation, titration, and trypsinization of vaccinia virus stocks, as well as viral DNA preparation and virus purification methods are also included.

  13. A Modified Vaccinia Ankara Virus (MVA) Vaccine Expressing African Horse Sickness Virus (AHSV) VP2 Protects Against AHSV Challenge in an IFNAR −/− Mouse Model

    PubMed Central

    Castillo-Olivares, Javier; Calvo-Pinilla, Eva; Casanova, Isabel; Bachanek-Bankowska, Katarzyna; Chiam, Rachael; Maan, Sushila; Nieto, Jose Maria; Ortego, Javier; Mertens, Peter Paul Clement

    2011-01-01

    African horse sickness (AHS) is a lethal viral disease of equids, which is transmitted by Culicoides midges that become infected after biting a viraemic host. The use of live attenuated vaccines has been vital for the control of this disease in endemic regions. However, there are safety concerns over their use in non-endemic countries. Research efforts over the last two decades have therefore focused on developing alternative vaccines based on recombinant baculovirus or live viral vectors expressing structural components of the AHS virion. However, ethical and financial considerations, relating to the use of infected horses in high biosecurity installations, have made progress very slow. We have therefore assessed the potential of an experimental mouse-model for AHSV infection for vaccine and immunology research. We initially characterised AHSV infection in this model, then tested the protective efficacy of a recombinant vaccine based on modified vaccinia Ankara expressing AHS-4 VP2 (MVA-VP2). PMID:21298069

  14. Expansion and diversification of virus-specific T cells following immunization of human immunodeficiency virus type 1 (HIV-1)-infected individuals with a recombinant modified vaccinia virus Ankara/HIV-1 Gag vaccine.

    PubMed

    Dorrell, Lucy; Yang, Hongbing; Ondondo, Beatrice; Dong, Tao; di Gleria, Kati; Suttill, Annie; Conlon, Christopher; Brown, Denise; Williams, Patricia; Bowness, Paul; Goonetilleke, Nilu; Rostron, Tim; Rowland-Jones, Sarah; Hanke, Tomás; McMichael, Andrew

    2006-05-01

    Affordable therapeutic strategies that induce sustained control of human immunodeficiency virus type 1 (HIV-1) replication and are tailored to the developing world are urgently needed. Since CD8(+) and CD4(+) T cells are crucial to HIV-1 control, stimulation of potent cellular responses by therapeutic vaccination might be exploited to reduce antiretroviral drug exposure. However, therapeutic vaccines tested to date have shown modest immunogenicity. In this study, we performed a comprehensive analysis of the changes in virus-specific CD8(+) and CD4(+) T-cell responses occurring after vaccination of 16 HIV-1-infected individuals with a recombinant modified vaccinia virus Ankara-vectored vaccine expressing the consensus HIV-1 clade A Gag p24/p17 sequences and multiple CD8(+) T-cell epitopes during highly active antiretroviral therapy. We observed significant amplification and broadening of CD8(+) and CD4(+) gamma interferon responses to vaccine-derived epitopes in the vaccinees, without rebound viremia, but not in two unvaccinated controls followed simultaneously. Vaccine-driven CD8(+) T-cell expansions were also detected by tetramer reactivity, predominantly in the CD45RA(-) CCR7(+) or CD45RA(-) CCR7(-) compartments, and persisted for at least 1 year. Expansion was associated with a marked but transient up-regulation of CD38 and perforin within days of vaccination. Gag-specific CD8(+) and CD4(+) T-cell proliferation also increased postvaccination. These data suggest that immunization with MVA.HIVA is a feasible strategy to enhance potentially protective T-cell responses in individuals with chronic HIV-1 infection.

  15. Environmental persistence of vaccinia virus on materials.

    PubMed

    Wood, J P; Choi, Y W; Wendling, M Q; Rogers, J V; Chappie, D J

    2013-11-01

    Smallpox is caused by the variola virus, and ranks as one of the most serious diseases that could originate from a biological weapon. However, limited data exist on the persistence of variola and related viruses on materials (that may act as fomites), under controlled environmental conditions. To fill these data gaps, we determined the persistence of the vaccinia virus (an established surrogate for the variola virus) as a function of temperature, relative humidity and material. Experiments were conducted with vaccinia virus in a freeze-dried form, using four materials under four sets of environmental conditions. After elapsed times ranging from 1 to 56 days, the virus was extracted from small coupons and quantified via plaque-forming units (PFU). The vaccinia virus was most persistent at low temperature and low relative humidity, with greater than 10(4) PFU recovered from glass, galvanized steel and painted cinder block at 56 days (equivalent to only a c. 2 log reduction). Thus, vaccinia virus may persist from weeks to months, depending on the material and environmental conditions. This study may aid those responsible for infection control to make informed decisions regarding the need for environmental decontamination following the release of an agent such as variola.

  16. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model.

    PubMed

    Chen, Zhaochun; Earl, Patricia; Americo, Jeffrey; Damon, Inger; Smith, Scott K; Yu, Fujuan; Sebrell, Andrew; Emerson, Suzanne; Cohen, Gary; Eisenberg, Roselyn J; Gorshkova, Inna; Schuck, Peter; Satterfield, William; Moss, Bernard; Purcell, Robert

    2007-09-01

    Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human gamma 1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (K(d) of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.

  17. Easy and efficient protocols for working with recombinant vaccinia virus MVA.

    PubMed

    Kremer, Melanie; Volz, Asisa; Kreijtz, Joost H C M; Fux, Robert; Lehmann, Michael H; Sutter, Gerd

    2012-01-01

    Modified vaccinia virus Ankara (MVA) is a highly attenuated and replication-deficient strain of vaccinia virus that is increasingly used as vector for expression of recombinant genes in the research laboratory and in biomedicine for vaccine development. Major benefits of MVA include the clear safety advantage compared to conventional vaccinia viruses, the longstanding experience in the genetic engineering of the virus, and the availability of established procedures for virus production at an industrial scale. MVA vectors can be handled under biosafety level 1 conditions, and a multitude of recombinant MVA vaccines has proven to be immunogenic and protective when delivering various heterologous antigens in animals and humans. In this chapter we provide convenient state-of-the-art protocols for generation, amplification, and purification of recombinant MVA viruses. Importantly, we include methodology for rigid quality control to obtain best possible vector viruses for further investigations including clinical evaluation. PMID:22688761

  18. Protection of mice and swine from pseudorabies virus conferred by vaccinia virus-based recombinants.

    PubMed Central

    Riviere, M; Tartaglia, J; Perkus, M E; Norton, E K; Bongermino, C M; Lacoste, F; Duret, C; Desmettre, P; Paoletti, E

    1992-01-01

    Glycoproteins gp50, gII, and gIII of pseudorabies virus (PRV) were expressed either individually or in combination by vaccinia virus recombinants. In vitro analysis by immunoprecipitation and immunofluorescence demonstrated the expression of a gII protein of approximately 120 kDa that was proteolytically processed to the gIIb (67- to 74-kDa) and gIIc (58-kDa) mature protein species similar to those observed in PRV-infected cells. Additionally, the proper expression of the 90-kDa gIII and 50-kDa gp50 was observed. All three of these PRV-derived glycoproteins were detectable on the surface of vaccinia virus-PRV recombinant-infected cells. In vivo, mice were protected against a virulent PRV challenge after immunization with the PRV glycoprotein-expressing vaccinia virus recombinants. The coexpression of gII and gIII by a single vaccinia virus recombinant resulted in a significantly reduced vaccination dose required to protect mice against PRV challenge. Inoculation of piglets with the various vaccinia virus-PRV glycoprotein recombinants also resulted in protection against virulent PRV challenge as measured by weight gain. The simultaneous expression of gII and gp50 in swine resulted in a significantly enhanced level of protection as evaluated by weight evolution following challenge with live PRV. Images PMID:1316458

  19. An update on the vaccinia virus genome.

    PubMed

    Johnson, G P; Goebel, S J; Paoletti, E

    1993-10-01

    This communication is intended as a single source update of the initial report (Goebel et al., 1990a,b) which described the complete DNA sequence of the vaccinia virus genome. We have integrated published information as well as unpublished data. Our understanding of the complexities of the genetic functional organization of poxviruses is increasing at a remarkable rate. While some previously unknown identities have since been elucidated, the fact that the majority of vaccinia-encoded gene products still lack assigned functions lends excitement to the immediate future of poxvirus research.

  20. Vaccinia Virus Recombinants: Expression of VSV Genes and Protective Immunization of Mice and Cattle

    NASA Astrophysics Data System (ADS)

    Mackett, M.; Yilma, T.; Rose, J. K.; Moss, B.

    1985-01-01

    Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.

  1. Vaccinia recombinant virus expressing the rabies virus glycoprotein: safety and efficacy trials in Canadian wildlife.

    PubMed

    Artois, M; Charlton, K M; Tolson, N D; Casey, G A; Knowles, M K; Campbell, J B

    1990-10-01

    Twenty-six meadow voles (Microtus pennsylvanicus), ten woodchucks (Marmota monax), thirteen grey squirrels (Sciurus carolinensis), thirteen ring-billed gulls (Larus delawarensis), six red-tailed hawks (Buteo jamaicensis) and eight great horned owls (Bubo virginianus) received vaccinia virus recombinant expressing the rabies virus glycoprotein (V-RG) by direct instillation into the oral cavity. Each of ten coyotes (Canis latrans) received the virus in two vaccine-laden baits. Several voles and most of the gulls died from diseases unrelated to vaccination during the observation period, but all other animals remained healthy and survived. These deaths from causes other than vaccination and the absence of any lesions suggestive of vaccinia infection indicate that it is unlikely that any animal suffered or died as a result of V-RG administration. In addition several animals showed an unexpected high level of rabies neutralizing antibodies. PMID:2249183

  2. Vaccinia recombinant virus expressing the rabies virus glycoprotein: safety and efficacy trials in Canadian wildlife.

    PubMed Central

    Artois, M; Charlton, K M; Tolson, N D; Casey, G A; Knowles, M K; Campbell, J B

    1990-01-01

    Twenty-six meadow voles (Microtus pennsylvanicus), ten woodchucks (Marmota monax), thirteen grey squirrels (Sciurus carolinensis), thirteen ring-billed gulls (Larus delawarensis), six red-tailed hawks (Buteo jamaicensis) and eight great horned owls (Bubo virginianus) received vaccinia virus recombinant expressing the rabies virus glycoprotein (V-RG) by direct instillation into the oral cavity. Each of ten coyotes (Canis latrans) received the virus in two vaccine-laden baits. Several voles and most of the gulls died from diseases unrelated to vaccination during the observation period, but all other animals remained healthy and survived. These deaths from causes other than vaccination and the absence of any lesions suggestive of vaccinia infection indicate that it is unlikely that any animal suffered or died as a result of V-RG administration. In addition several animals showed an unexpected high level of rabies neutralizing antibodies. PMID:2249183

  3. Cultivation of vaccinia virus in sheep kidney cell cultures.

    PubMed

    SUBRAMANYAM, P; DIVAKARAN, S; VINODRAJ, P

    1961-01-01

    Attempts to find a suitable tissue for the preparation of cell monolayers for the cultivation of vaccinia virus and for the titration of this virus and its antibodies resulted in the use of sheep kidneys procured from freshly slaughtered healthy young sheep. The cultures are easy and economical to prepare and support the multiplication of the virus well. They can be used for the titration of the virus and its antibody and their sensitivity to virus is comparable to that of the chorio-allantoic membranes of chicken embryos. Preliminary trials indicate that the sheep kidney cell culture virus can be freeze-dried without suffering a significant loss in titre. Studies are in progress to determine the efficacy of a vaccine prepared from sheep kidney cell cultures.

  4. The complete DNA sequence of vaccinia virus.

    PubMed

    Goebel, S J; Johnson, G P; Perkus, M E; Davis, S W; Winslow, J P; Paoletti, E

    1990-11-01

    The complete DNA sequence of the genome of vaccinia virus has been determined. The genome consisted of 191,636 bp with a base composition of 66.6% A + T. We have identified 198 "major" protein-coding regions and 65 overlapping "minor" regions, for a total of 263 potential genes. Genes encoded by the virus were located by examination of DNA sequence characteristics and compared with existing vaccinia virus mapping analyses, sequence data, and transcription data. These genes were found to be compactly organized along the genome with relatively few regions of noncoding sequences. Whereas several similarities to proteins of known function were discerned, the function of the majority of proteins encoded by these open reading frames is as yet undetermined.

  5. A vaccinia virus double recombinant expressing the F and H genes of rinderpest virus protects cattle against rinderpest and causes no pock lesions.

    PubMed Central

    Giavedoni, L; Jones, L; Mebus, C; Yilma, T

    1991-01-01

    Rinderpest is a highly contagious viral disease of ruminants with greater than 95% morbidity and mortality. We have constructed an infectious vaccinia virus recombinant that expresses both the fusion (F) gene and the hemagglutinin (H) gene of rinderpest virus. The Wyeth strain of vaccinia virus was used for the construction of the recombinant. Cattle vaccinated with the recombinant virus were 100% protected from challenge inoculation with greater than 1000 times the lethal dose of rinderpest virus. No transmission of recombinant vaccinia virus from vaccinated animals to contact animals was observed. The lyophilized form of vaccinia virus is thermostable and allows circumvention of the logistical problems associated with the distribution and administration of vaccines in the arid and hot regions of Asia and Africa. The insertional inactivation of both the thymidine kinase and the hemagglutinin genes of vaccinia virus led to increased attenuation of the virus; this was manifested by the lack of detectable pock lesions in vaccinated animals. This approach may have wide application in the development of safe and efficacious recombinant vaccines for humans and animals. This becomes quite relevant with the concern of the use of vaccinia virus in a population with high incidence of the human immunodeficiency virus. Images PMID:1896447

  6. Evolution of and Evolutionary Relationships between Extant Vaccinia Virus Strains

    PubMed Central

    Qin, Li; Favis, Nicole; Famulski, Jakub

    2014-01-01

    ABSTRACT Although vaccinia virus (VACV) was once used as a vaccine to eradicate smallpox on a worldwide scale, the biological origins of VACV are uncertain, as are the historical relationships between the different strains once used as smallpox vaccines. Here, we sequenced additional VACV strains that either represent relatively pristine examples of old vaccines (e.g., Dryvax, Lister, and Tashkent) or have been subjected to additional laboratory passage (e.g., IHD-W and WR). These genome sequences were compared with those previously reported for other VACVs as well as other orthopoxviruses. These extant VACVs do not always cluster in simple phylogenetic trees that are aligned with the known historical relationships between these strains. Rather, the pattern of deletions suggests that all existing strains likely come from a complex stock of viruses that has been passaged, distributed, and randomly sampled over time, thus obscuring simple historical or geographic links. We examined surviving nonclonal vaccine stocks, like Dryvax, which continue to harbor larger and now rare variants, including one that we have designated “clone DPP25.” DPP25 encodes genes not found in most VACV strains, including an ankyrin-F-box protein, a homolog of the variola virus (Bangladesh) B18R gene which we show can be deleted without affecting virulence in mice. We propose a simple common mechanism by which recombination of a larger and hypothetical DPP25-like ancestral strain, combined with selection for retention of critically important genes near the terminal inverted repeat boundaries (vaccinia virus growth factor gene and an interferon alpha/beta receptor homolog), could produce all known VACV variants. IMPORTANCE Smallpox was eradicated by using a combination of intensive disease surveillance and vaccination using vaccinia virus (VACV). Interestingly, little is known about the historical relationships between different strains of VACV and how these viruses may have evolved from a

  7. Simultaneous expression of the Lassa virus N and GPC genes from a single recombinant vaccinia virus.

    PubMed

    Morrison, H G; Goldsmith, C S; Regnery, H L; Auperin, D D

    1991-03-01

    A new transfer vector was constructed that directs the insertion of two heterologous genes into the vaccinia virus thymidine kinase (TK) gene during a single recombination event. This vector, pDAVAC2, contains bidirectional vaccinia P7.5 early/late promoter elements and two unique cloning sites. cDNA clones containing the complete coding sequences for the Lassa virus (Josiah strain) nucleoprotein (N) and glycoprotein (GPC) genes were inserted into the vaccinia TK gene using this transfer vector. The recombinant virus, V-LSGN-II, expressed proteins in cell culture that appeared to be authentic with respect to electrophoretic mobility, glycosylation, and post-translational cleavage. Indirect immunofluorescence (IFA) of recombinant virus-infected cells demonstrated both the bright granular and diffuse patterns of staining characteristic of the Lassa nucleoprotein and glycoprotein, respectively. Electron-dense inclusion bodies typical of arenavirus-infected cells were observed by electron microscopy in V-LSN and V-LSGN-II-infected cells, but not in V-LSGPC-infected cells. Mice inoculated with V-LSGN-II by intraperitoneal injection developed serum antibodies that reacted with authentic Lassa proteins in immunofluorescence and radioimmune precipitation assays. This recombinant virus represents an additional candidate for a Lassa fever vaccine and demonstrates the feasibility of expressing any two genes of interest in a single recombinant vaccinia virus through the use of the transfer vector pDAVAC2.

  8. Antiserum from mice vaccinated with modified vaccinia Ankara virus expressing African horse sickness virus (AHSV) VP2 provides protection when it is administered 48h before, or 48h after challenge.

    PubMed

    Calvo-Pinilla, Eva; de la Poza, Francisco; Gubbins, Simon; Mertens, Peter Paul Clement; Ortego, Javier; Castillo-Olivares, Javier

    2015-04-01

    Previous studies show that a recombinant modified vaccinia Ankara (MVA) virus expressing VP2 of AHSV serotype 4 (MVA-VP2) induced virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against challenge. Follow up experiments indicated that passive transfer of antiserum, from MVA-VP2 immune donors to recipient mice 1h before challenge, conferred complete clinical protection and significantly reduced viraemia. These studies have been extended to determine the protective effect of MVA-VP2 vaccine-induced antiserum, when administered 48h before, or 48h after challenge. In addition, passive transfer of splenocytes was undertaken to assess if they confer any degree of immunity to immunologically naïve recipient mice. Thus, antisera and splenocytes were collected from groups of mice that had been vaccinated with MVA-VP2, or wild type MVA (MVA-wt), for passive immunisation of recipient mice. The latter were subsequently challenged with AHSV-4 (together with appropriate vaccinated or unvaccinated control animals) and protection was assessed by comparing clinical signs, lethality and viraemia between treated and control groups. All antiserum recipients showed high protection against disease (100% survival rates even in mice that were immunised 48h after challenge) and statistically significant reduction or viraemia in comparison with the control groups. The mouse group receiving splenocytes from MVA-VP2 vaccinates, showed only a 40% survival rate, with a small reduction in viraemia, compared to those mice that had received splenocytes from MVA-wt vaccinates. These results confirm the primarily humoral nature of protective immunity conferred by MVA-VP2 vaccination and show the potential of administering MVA-VP2 specific antiserum as an emergency treatment for AHSV.

  9. Outbreak of severe zoonotic vaccinia virus infection, Southeastern Brazil.

    PubMed

    Abrahão, Jônatas Santos; Campos, Rafael Kroon; Trindade, Giliane de Souza; Guimarães da Fonseca, Flávio; Ferreira, Paulo César Peregrino; Kroon, Erna Geessien

    2015-04-01

    In 2010, a vaccinia virus isolate caused an atypically severe outbreak that affected humans and cattle in Brazil. Of 26 rural workers affected, 12 were hospitalized. Our data raise questions about the risk factors related to the increasing number and severity of vaccinia virus infections.

  10. Safety and Tolerability of Conserved Region Vaccines Vectored by Plasmid DNA, Simian Adenovirus and Modified Vaccinia Virus Ankara Administered to Human Immunodeficiency Virus Type 1-Uninfected Adults in a Randomized, Single-Blind Phase I Trial

    PubMed Central

    Hayton, Emma-Jo; Rose, Annie; Ibrahimsa, Umar; Del Sorbo, Mariarosaria; Capone, Stefania; Crook, Alison; Black, Antony P.; Dorrell, Lucy; Hanke, Tomáš

    2014-01-01

    Trial Design HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee) adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported. Methods Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination. Results Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1) and predominantly transient (<48 hours). Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range) of 633 (231-1533) post-vaccination, which is of no safety concern. Conclusions These data demonstrate safety and good

  11. A tetrazolium-based colorimetric assay for titration of neutralizing antibodies against vaccinia virus.

    PubMed

    Ifrah, M; Stienlauf, S; Shoresh, M; Katz, E

    1998-01-01

    A colorimetric assay for titration of neutralizing antibodies against vaccinia virus was developed. The test is based on the ability of live cells in culture to reduce the yellow tetrazolium salt MTT (thiazolyl-blue), to its blue formazan derivative. Antisera from individuals vaccinated with vaccinia virus against smallpox were serially diluted, incubated with 100 plaque-forming units (PFU) of vaccinia virus for 1 hour at 37 degrees C, and then transferred to a 96-well plate containing monolayers of B-SC-1 cells. After incubation for 3 to 4 days at 37 degrees C, when more than 80% of the control infected cultures exhibited high degree of cytopathogenic effect, MTT was added. The absorbance of the formazan formed and extracted by dimethylsulfoxide was read at 492 nm by an automatic microplate spectrophotometer. A good correlation was found between the results obtained using this newly developed method and those of the plaque-reduction assay.

  12. Structure of vaccinia virus early promoters.

    PubMed

    Davison, A J; Moss, B

    1989-12-20

    Functional elements of a vaccinia virus early promoter were characterized by making a complete set of single nucleotide substitutions, as well as more complex mutations, and assaying their effects on gene expression. Synthetic oligonucleotides, based primarily on the sequence of the 7.5-kD early promoter, were inserted into a plasmid vector containing the lacZ gene of Escherichia coli flanked by sequences from the thymidine kinase (TK) gene of vaccinia virus. The lacZ gene, under control of the synthetic promoter, was introduced into the vaccinia virus genome at the TK locus by homologous recombination, and each of the 331 different recombinant viruses thus obtained was assayed for beta-galactosidase expression. The relative amounts and precise 5' ends of lacZ mRNAs specified by a subset of the recombinants were determined by primer extension. Many promoters were tested for their ability to direct specific transcription in vitro. A generally good correlation was noted between measurements of promoter strength estimated by beta-galactosidase expression, primer extension of in vivo mRNA and transcription in vitro. A relatively simple picture emerged from the analysis. The early promoter consists of a 16 base-pair critical region, in which most single nucleotide substitutions have a major effect on expression, separated by 11 base-pairs of a less critical T-rich sequence from a seven base-pair region within which initiation with a purine usually occurs. For the critical region of the 7.5-kD promoter, AAAAgTaGAAAataTA, any substitution of an upper-case nucleotide reduced expression, usually drastically, whereas certain substitutions of lower-case nucleotides maintained or significantly enhanced expression. On the basis of this analysis, the wide range of activities of natural promoters could be attributed to the presence of one or more non-optimal nucleotides in the critical region. Moreover, single nucleotide substitutions in such promoters had the predicted enhancing

  13. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    NASA Astrophysics Data System (ADS)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  14. Vaccinia virus recombinants expressing either the measles virus fusion or hemagglutinin glycoprotein protect dogs against canine distemper virus challenge.

    PubMed

    Taylor, J; Pincus, S; Tartaglia, J; Richardson, C; Alkhatib, G; Briedis, D; Appel, M; Norton, E; Paoletti, E

    1991-08-01

    cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge. PMID:1830113

  15. Vaccinia virus recombinants expressing either the measles virus fusion or hemagglutinin glycoprotein protect dogs against canine distemper virus challenge.

    PubMed Central

    Taylor, J; Pincus, S; Tartaglia, J; Richardson, C; Alkhatib, G; Briedis, D; Appel, M; Norton, E; Paoletti, E

    1991-01-01

    cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge. Images PMID:1830113

  16. Development of a novel, guinea pig-specific IFN-γ ELISPOT assay and characterization of guinea pig cytomegalovirus GP83-specific cellular immune responses following immunization with a modified vaccinia virus Ankara (MVA)-vectored GP83 vaccine

    PubMed Central

    Gillis, Peter A.; Hernandez-Alvarado, Nelmary; Gnanandarajah, Josephine S.; Wussow, Felix; Diamond, Don J.; Schleiss, Mark R.

    2014-01-01

    The guinea pig (Cavia porcellus) provides a useful animal model for studying the pathogenesis of many infectious diseases, and for preclinical evaluation of vaccines. However, guinea pig models are limited by the lack of immunological reagents required for characterization and quantification of antigen-specific T cell responses. To address this deficiency, an enzyme-linked immunospot (ELISPOT) assay for guinea pig interferon (IFN)-γ was developed to measure antigen/epitope-specific T cell responses to guinea pig cytomegalovirus (GPCMV) vaccines. Using splenocytes harvested from animals vaccinated with a modified vaccinia virus Ankara (MVA) vector encoding the GPCMV GP83 (homolog of human CMV pp65 [gpUL83]) protein, we were able to enumerate and map antigen-specific responses, both in vaccinated as well as GPCMV-infected animals, using a panel of GP83-specific peptides. Several potential immunodominant GP83-specific peptides were identified, including one epitope, LGIVHFFDN, that was noted in all guinea pigs that had a detectable CD8+ response to GP83. Development of a guinea pig IFN-γ ELISPOT should be useful in characterization of additional T cell-specific responses to GPCMV, as well as other pathogens. This information in turn can help focus future experimental evaluation of immunization strategies, both for GPCMV as well as for other vaccine-preventable illnesses studied in the guinea pig model. PMID:24856783

  17. Development of a novel, guinea pig-specific IFN-γ ELISPOT assay and characterization of guinea pig cytomegalovirus GP83-specific cellular immune responses following immunization with a modified vaccinia virus Ankara (MVA)-vectored GP83 vaccine.

    PubMed

    Gillis, Peter A; Hernandez-Alvarado, Nelmary; Gnanandarajah, Josephine S; Wussow, Felix; Diamond, Don J; Schleiss, Mark R

    2014-06-30

    The guinea pig (Cavia porcellus) provides a useful animal model for studying the pathogenesis of many infectious diseases, and for preclinical evaluation of vaccines. However, guinea pig models are limited by the lack of immunological reagents required for characterization and quantification of antigen-specific T cell responses. To address this deficiency, an enzyme-linked immunospot (ELISPOT) assay for guinea pig interferon (IFN)-γ was developed to measure antigen/epitope-specific T cell responses to guinea pig cytomegalovirus (GPCMV) vaccines. Using splenocytes harvested from animals vaccinated with a modified vaccinia virus Ankara (MVA) vector encoding the GPCMV GP83 (homolog of human CMV pp65 [gpUL83]) protein, we were able to enumerate and map antigen-specific responses, both in vaccinated as well as GPCMV-infected animals, using a panel of GP83-specific peptides. Several potential immunodominant GP83-specific peptides were identified, including one epitope, LGIVHFFDN, that was noted in all guinea pigs that had a detectable CD8+ response to GP83. Development of a guinea pig IFN-γ ELISPOT should be useful in characterization of additional T cell-specific responses to GPCMV, as well as other pathogens. This information in turn can help focus future experimental evaluation of immunization strategies, both for GPCMV as well as for other vaccine-preventable illnesses studied in the guinea pig model.

  18. Construction of chimeric vaccinia viruses by molecular cloning and packaging.

    PubMed Central

    Scheiflinger, F; Dorner, F; Falkner, F G

    1992-01-01

    Foreign DNA was inserted into unique restriction endonuclease cleavage sites (Sma I or Not I) of the 200,000-base-pair vaccinia virus genome by direct molecular cloning. The modified vaccinia virus DNA was packaged in fowlpox virus-infected avian cells, and chimeric vaccinia virus was isolated from mammalian cells not supporting the growth of the fowlpox helper virus. In contrast to the classical "in vivo" recombination technique, chimeric viruses with inserts in both possible orientations and families of chimeras with multiple inserts were obtained. The different genomic configurations of chimeric viruses provide a broader basis for screening of optimal viruses. In addition to packaging in avian cells, a second packaging procedure for vaccinia DNA, based on the abortive infection of mammalian cells with the fowlpox helper virus, was developed. This procedure permits simultaneous packaging and host-range selection for the packaged virus. The cloning/packaging procedure allows the direct insertion of foreign DNA without the need for plasmids having flanking regions homologous to viral nonessential regions and is independent of inefficient in vivo recombination events. By direct cloning and packaging, about 5-10% of the total vaccinia virus yield consisted of chimeras. The procedure is, therefore, a useful tool in molecular virology. Images PMID:1438247

  19. Comparison of the genetic maps of variola and vaccinia viruses.

    PubMed

    Shchelkunov, S N; Resenchuk, S M; Totmenin, A V; Blinov, V M; Marennikova, S S; Sandakhchiev, L S

    1993-08-01

    The complete genetic map of the variola major virus strain India-1967 is built basing on the sequence data. The suggested map is compared with the maps of the sequenced genomic regions of Copenhagen and Western Reserve strains of vaccinia virus and Harvey strain of variola major virus. The principle differences revealed in the genomic organization of these viruses are discussed.

  20. Protection of sheep against bovine leukemia virus (BLV) infection by vaccination with recombinant vaccinia viruses expressing BLV envelope glycoproteins: correlation of protection with CD4 T-cell response to gp51 peptide 51-70.

    PubMed

    Gatei, M H; Naif, H M; Kumar, S; Boyle, D B; Daniel, R C; Good, M F; Lavin, M F

    1993-04-01

    We have previously constructed vaccinia virus (VV) recombinants containing a complete or truncated envelope (env) gene of bovine leukemia virus (BLV). Only recombinants carrying the complete env gene (VV-BLV2 and VV-BLV3) expressed env glycoprotein on the surface of virus-infected cells and produced an antibody response in rabbits. In the present study, these VV recombinants were used to immunize sheep prior to challenge with BLV-infected peripheral blood mononuclear cells. Both humoral and cell-mediated immunity were monitored in infected animals. Sheep inoculated with recombinants containing the complete env gene showed a CD4 response to a defined epitope of gp51, but this response was absent 4 months postchallenge. Anti-gp51 antibodies appeared in animals inoculated with complete env 2 weeks after challenge, reached a peak at 4 weeks, and subsequently declined over 16 months. No CD4 response was recorded in animals inoculated with recombinants containing truncated env gene (VV-BLV1). BLV-infected control animals and those animals receiving VV-BLV1 were slower to develop antibodies postchallenge, and the titers of anti-gp51 antibodies continued to increase over 16 months. Proviral DNA was detected by the polymerase chain reaction in the four groups at 6 weeks after challenge. However, it could not be detected 4 months postinfection in the VV groups inoculated with complete env. Provirus was present in the VV-BLV1 and control groups over the 16-month trial period. These results demonstrate that vaccination with VV recombinants containing the complete env gene of BLV protects sheep against infection and that protection correlated with a CD4 T-cell response to a defined epitope.

  1. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    PubMed Central

    2010-01-01

    Background Vaccinia virus strain Lister Elstree (VACV) is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA) was studied by testing the activity of different chemical biocides in three German laboratories. Methods The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols) were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. Results The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v) ethanol and 30% (v/v) isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Conclusions Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers. PMID:20573218

  2. Modified Vaccinia Virus Ankara Encoding Influenza Virus Hemagglutinin Induces Heterosubtypic Immunity in Macaques

    PubMed Central

    Florek, Nicholas W.; Weinfurter, Jason T.; Jegaskanda, Sinthujan; Brewoo, Joseph N.; Powell, Tim D.; Young, Ginger R.; Das, Subash C.; Hatta, Masato; Broman, Karl W.; Hungnes, Olav; Dudman, Susanne G.; Kawaoka, Yoshihiro; Kent, Stephen J.; Stinchcomb, Dan T.

    2014-01-01

    ABSTRACT Current influenza virus vaccines primarily aim to induce neutralizing antibodies (NAbs). Modified vaccinia virus Ankara (MVA) is a safe and well-characterized vector for inducing both antibody and cellular immunity. We evaluated the immunogenicity and protective efficacy of MVA encoding influenza virus hemagglutinin (HA) and/or nucleoprotein (NP) in cynomolgus macaques. Animals were given 2 doses of MVA-based vaccines 4 weeks apart and were challenged with a 2009 pandemic H1N1 isolate (H1N1pdm) 8 weeks after the last vaccination. MVA-based vaccines encoding HA induced potent serum antibody responses against homologous H1 or H5 HAs but did not stimulate strong T cell responses prior to challenge. However, animals that received MVA encoding influenza virus HA and/or NP had high frequencies of virus-specific CD4+ and CD8+ T cell responses within the first 7 days of H1N1pdm infection, while animals vaccinated with MVA encoding irrelevant antigens did not. We detected little or no H1N1pdm replication in animals that received vaccines encoding H1 (homologous) HA, while a vaccine encoding NP from an H5N1 isolate afforded no protection. Surprisingly, H1N1pdm viral shedding was reduced in animals vaccinated with MVA encoding HA and NP from an H5N1 isolate. This reduced shedding was associated with cross-reactive antibodies capable of mediating antibody-dependent cellular cytotoxicity (ADCC) effector functions. Our results suggest that ADCC plays a role in cross-protective immunity against influenza. Vaccines optimized to stimulate cross-reactive antibodies with ADCC function may provide an important measure of protection against emerging influenza viruses when NAbs are ineffective. IMPORTANCE Current influenza vaccines are designed to elicit neutralizing antibodies (NAbs). Vaccine-induced NAbs typically are effective but highly specific for particular virus strains. Consequently, current vaccines are poorly suited for preventing the spread of newly emerging

  3. Cryo-electron tomography of vaccinia virus

    PubMed Central

    Cyrklaff, Marek; Risco, Cristina; Fernández, Jose Jesús; Jiménez, Maria Victoria; Estéban, Mariano; Baumeister, Wolfgang; Carrascosa, José L.

    2005-01-01

    The combination of cryo-microscopy and electron tomographic reconstruction has allowed us to determine the structure of one of the more complex viruses, intracellular mature vaccinia virus, at a resolution of 4–6 nm. The tomographic reconstruction allows us to dissect the different structural components of the viral particle, avoiding projection artifacts derived from previous microscopic observations. A surface-rendering representation revealed brick-shaped viral particles with slightly rounded edges and dimensions of ≈360 × 270 × 250 nm. The outer layer was consistent with a lipid membrane (5–6 nm thick), below which usually two lateral bodies were found, built up by a heterogeneous material without apparent ordering or repetitive features. The internal core presented an inner cavity with electron dense coils of presumptive DNA–protein complexes, together with areas of very low density. The core was surrounded by two layers comprising an overall thickness of ≈18–19 nm; the inner layer was consistent with a lipid membrane. The outer layer was discontinuous, formed by a periodic palisade built by the side interaction of T-shaped protein spikes that were anchored in the lower membrane and were arranged into small hexagonal crystallites. It was possible to detect a few pore-like structures that communicated the inner side of the core with the region outside the layer built by the T-shaped spike palisade. PMID:15699328

  4. Secondary and tertiary transfer of vaccinia virus among U.S. military personnel--United States and worldwide, 2002-2004.

    PubMed

    2004-02-13

    In December 2002, the Department of Defense (DoD) began vaccinating military personnel as part of the pre-event vaccination program. Because vaccinia virus is present on the skin at the site of vaccination, it can spread to other parts of the body (i.e., autoinoculation) or to contacts of vaccinees (i.e., contact transfer). To prevent autoinoculation and contact transfer, DoD gave vaccinees printed information that focused on hand washing, covering the vaccination site, and limiting contact with infants (1,2). This report describes cases of contact transfer of vaccinia virus among vaccinated military personnel since December 2002; findings indicate that contact transfer of vaccinia virus is rare. Continued efforts are needed to educate vaccinees about the importance of proper vaccination-site care in preventing contact transmission, especially in household settings.

  5. Development of a highly efficacious vaccinia-based dual vaccine against smallpox and anthrax, two important bioterror entities.

    PubMed

    Merkel, Tod J; Perera, Pin-Yu; Kelly, Vanessa K; Verma, Anita; Llewellyn, Zara N; Waldmann, Thomas A; Mosca, Joseph D; Perera, Liyanage P

    2010-10-19

    Bioterrorism poses a daunting challenge to global security and public health in the 21st century. Variola major virus, the etiological agent of smallpox, and Bacillus anthracis, the bacterial pathogen responsible for anthrax, remain at the apex of potential pathogens that could be used in a bioterror attack to inflict mass casualties. Although licensed vaccines are available for both smallpox and anthrax, because of inadequacies associated with each of these vaccines, serious concerns remain as to the deployability of these vaccines, especially in the aftermath of a bioterror attack involving these pathogens. We have developed a single vaccine (Wyeth/IL-15/PA) using the licensed Wyeth smallpox vaccine strain that is efficacious against both smallpox and anthrax due to the integration of immune-enhancing cytokine IL-15 and the protective antigen (PA) of B. anthracis into the Wyeth vaccinia virus. Integration of IL-15 renders Wyeth vaccinia avirulent in immunodeficient mice and enhances anti-vaccinia immune responses. Wyeth/IL-15/PA conferred sterile protection against a lethal challenge of B. anthracis Ames strain spores in rabbits. A single dose of Wyeth/IL-15/PA protected 33% of the vaccinated A/J mice against a lethal spore challenge 72 h later whereas a single dose of licensed anthrax vaccine protected only 10%. Our dual vaccine Wyeth/IL-15/PA remedies the inadequacies associated with the licensed vaccines, and the inherent ability of Wyeth vaccinia virus to be lyophilized without loss of potency makes it cold-chain independent, thus simplifying the logistics of storage, stockpiling, and field delivery in the event of a bioterror attack involving smallpox or anthrax. PMID:20921397

  6. Hepatitis B virus large surface protein is not secreted but is immunogenic when selectively expressed by recombinant vaccinia virus.

    PubMed Central

    Cheng, K C; Smith, G L; Moss, B

    1986-01-01

    The envelope region of the hepatitis B virus (HBV) genome contains an open reading frame that begins upstream of the major surface protein gene. The two minor proteins that are initiated within this pre-s segment are immunogenic and may be involved in virus attachment to hepatocytes. We have constructed a recombinant vaccinia virus that contains the predicted coding segment for the large surface protein (LS) under control of a vaccinia virus that contains the predicted coding segment for the large surface protein (LS) under control of a vaccinia virus promoter. Cells infected with the recombinant virus synthesized HBV polypeptides of 39 and 42 kilodaltons, corresponding to the unglycosylated and glycosylated forms of LS, respectively. The presence of pre-s epitopes in the 39- and 42-kilodalton polypeptides was demonstrated by binding of antibody prepared against a synthetic peptide. Synthesis of the 42-kilodalton species was specifically inhibited by tunicamycin, suggesting that it is N-glycosylated. Despite apparent glycosylation, LS was not secreted into the medium of infected cells. Nevertheless, rabbits vaccinated with the purified recombinant virus made antibodies that recognized s and pre-s epitopes. Antibody to the NH2 terminus of LS appeared before or simultaneously with antibody that bound to the major surface protein. The additional immunogenicity provided by expression of LS may be advantageous for the development of an HBV vaccine. Images PMID:2430108

  7. A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis.

    PubMed

    Carson, Connor; Antoniou, Maria; Ruiz-Argüello, Maria Begoña; Alcami, Antonio; Christodoulou, Vasiliki; Messaritakis, Ippokratis; Blackwell, Jenefer M; Courtenay, Orin

    2009-02-11

    Previous studies demonstrated safety, immunogenicity and efficacy of DNA/modified vaccinia virus Ankara (MVA) prime/boost vaccines expressing tryparedoxin peroxidase (TRYP) and Leishmania homologue of the mammalian receptor for activated C kinase (LACK) against Leishmania major challenge in mice, which was consistent with results from TRYP protein/adjuvant combinations in non-human primates. This study aimed to conduct safety and immunogenicity trials of these DNA/MVA vaccines in dogs, the natural reservoir host of Leishmania infantum, followed-up for 4 months post-vaccination. In a cohort of 22 uninfected outbred dogs, blinded randomised administration of 1000 microg (high dose) or 100 microg (low dose) DNA prime (day 0) and 1x10(8)pfu MVA boost (day 28) was shown to be safe and showed no clinical side effects. High dose DNA/MVA vaccinated TRYP dogs produced statistically higher mean levels of the type-1 pro-inflammatory cytokine IFN-gamma than controls in whole blood assays (WBA) stimulated with the recombinant vaccine antigen TRYP, up to the final sampling at day 126, and in the absence of challenge with Leishmania. TRYP vaccinated dogs also demonstrated significantly higher TRYP-specific total IgG and IgG2 subtype titres than in controls, and positive in vivo intradermal reactions at day 156 in the absence of natural infection, observed in 6/8 TRYP vaccinated dogs. No significant increases in IFN-gamma in LACK-stimulated WBA, or in LACK-specific IgG levels, were detected in LACK vaccinated dogs compared to controls, and only 2/9 LACK vaccinated dogs demonstrated DTH responses at day 156. In all groups, IgG1 subclass responses and antigen-specific stimulation of IL-10 were similar to controls demonstrating an absence of Th2/T(reg) response, as expected in the absence of in vivo restimulation or natural/experimental challenge with Leishmania. These collective results indicate significant antigen-specific type-1 responses and in vivo memory phase cellular immune

  8. Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways.

    PubMed

    García-Arriaza, Juan; Arnáez, Pilar; Gómez, Carmen E; Sorzano, Carlos Óscar S; Esteban, Mariano

    2013-01-01

    Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4(+) and CD8(+) T cell adaptive and memory immune responses, which were mostly mediated by CD8(+) T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4(+) T cell responses were mainly directed against Env, while GPN-specific CD8(+) T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity

  9. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian Tan strain Guang9.

    PubMed

    Deng, Lili; Fan, Jun; Guo, Mingming; Huang, Biao

    2016-03-28

    Targeted oncolytic vaccinia viruses are being developed as a novel strategy in cancer therapy. Arming vaccinia viruses with immunostimulatory cytokines can enhance antitumor efficacy. Such engineered oncolytic viruses, like JX-594, a Wyeth strain vaccinia virus modified with human granulocyte-macrophage colony-stimulating factor (GM-CSF), have shown promising results and have proceeded rapidly in clinical trials. However, the oncolytic potential of the Chinese vaccine strain Tian Tan (VTT) has not been explored. In this study, we constructed a targeted oncolytic vaccinia virus of Tian Tan strain Guang9 (VG9) expressing murine GM-CSF (VG9-GMCSF) and evaluated the antitumor effect of this recombinant vaccinia virus in a murine melanoma model. In vitro, viral replication and cytotoxicity of VG9-GMCSF was as potent as VG9; in vivo, VG9-GMCSF significantly inhibited the growth of subcutaneously implanted melanoma tumors, prolonged the survival of tumor-bearing mice, and produced an antitumor cytotoxic response. Such antitumor effect may be due to the lytic nature of virus as well as the stimulation of immune activity by GM-CSF production. Our results indicate that VG9-GMCSF induces strong tumoricidal activity, providing a potential therapeutic strategy for combating cancer.

  10. Use of Reporter Genes in the Generation of Vaccinia Virus-Derived Vectors

    PubMed Central

    Al Ali, Sally; Baldanta, Sara; Fernández-Escobar, Mercedes; Guerra, Susana

    2016-01-01

    Vaccinia virus (VACV) is one of the most extensively-studied viruses of the Poxviridae family. It is easy to genetically modify, so it has become a key tool for many applications. In this context, reporter genes facilitate the study of the role of foreign genes introduced into the genome of VACV. In this review, we describe the type of reporter genes that have been used to generate reporter-expressing VACV and the applications of the recombinant viruses obtained. Reporter-expressing VACV are currently employed in basic and immunology research, in the development of vaccines and cancer treatment. PMID:27213433

  11. Use of Reporter Genes in the Generation of Vaccinia Virus-Derived Vectors.

    PubMed

    Al Ali, Sally; Baldanta, Sara; Fernández-Escobar, Mercedes; Guerra, Susana

    2016-01-01

    Vaccinia virus (VACV) is one of the most extensively-studied viruses of the Poxviridae family. It is easy to genetically modify, so it has become a key tool for many applications. In this context, reporter genes facilitate the study of the role of foreign genes introduced into the genome of VACV. In this review, we describe the type of reporter genes that have been used to generate reporter-expressing VACV and the applications of the recombinant viruses obtained. Reporter-expressing VACV are currently employed in basic and immunology research, in the development of vaccines and cancer treatment. PMID:27213433

  12. Glycosylated and nonglycosylated complement control protein of the lister strain of vaccinia virus.

    PubMed

    Meseda, Clement A; Kuhn, Jordan; Atukorale, Vajini; Campbell, Joseph; Weir, Jerry P

    2014-09-01

    The vaccinia virus complement control protein (VCP) is a secreted viral protein that binds the C3b and C4b complement components and inhibits the classic and alternative complement pathways. Previously, we reported that an attenuated smallpox vaccine, LC16m8, which was derived from the Lister strain of vaccinia virus (VV-Lister), expressed a glycosylated form of VCP, whereas published sequence data at that time indicated that the VV-Lister VCP has no motif for N-linked glycosylation. We were interested in determining whether the glycosylation of VCP impairs its biological activity, possibly contributing to the attenuation of LC16m8, and the likely origin of the glycosylated VCP. Expression analysis indicated that VV-Lister contains substrains expressing glycosylated VCP and substrains expressing nonglycosylated VCP. Other strains of smallpox vaccine, as well as laboratory strains of vaccinia virus, all expressed nonglycosylated VCP. Individual Lister virus clones expressing either the glycosylated VCP or the nonglycosylated species were isolated, and partially purified VCP from the isolates were found to be functional equivalents in binding human C3b and C4b complement proteins and inhibiting hemolysis and in immunogenicity. Recombinant vaccinia viruses expressing FLAG-tagged glycosylated VCP (FLAG-VCPg) and nonglycosylated VCP (FLAG-VCP) were constructed based on the Western Reserve strain. Purified FLAG-VCP and FLAG-VCPg bind human C3b and C4b and blocked complement-mediated hemolysis. Our data suggest that glycosylation did not affect the biological activity of VCP and thus may not have contributed to the attenuation of LC16m8. In addition, the LC16m8 virus likely originated from a substrain of VV-Lister that expresses glycosylated VCP.

  13. Vaccinia Virus Induces Programmed Necrosis in Ovarian Cancer Cells

    PubMed Central

    Whilding, Lynsey M; Archibald, Kyra M; Kulbe, Hagen; Balkwill, Frances R; Öberg, Daniel; McNeish, Iain A

    2013-01-01

    The mechanisms by which oncolytic vaccinia virus induces tumor cell death are poorly understood. We have evaluated cell death pathways following infection of ovarian cancer cells with both wild-type and thymidine kinase-deleted (dTK) Lister strain vaccinia. We show that death does not rely upon classical apoptosis despite the appearances of some limited apoptotic features, including phosphatidylserine externalization and appearance of sub-G1 DNA populations. Vaccinia infection induces marked lipidation of LC3 proteins, but there is no general activation of the autophagic process and cell death does not rely upon autophagy induction. We show that vaccinia induces necrotic morphology on transmission electron microscopy, accompanied by marked by reductions in intracellular adenosine triphosphate, altered mitochondrial metabolism, and release of high mobility group box 1 (HMGB1) protein. This necrotic cell death appears regulated, as infection induces formation of a receptor interacting protein (RIP1)/caspase-8 complex. In addition, pharmacological inhibition of both RIP1 and substrates downstream of RIP1, including MLKL, significantly attenuate cell death. Blockade of TNF-α, however, does not alter virus efficacy, suggesting that necrosis does not result from autocrine cytokine release. Overall, these results show that, in ovarian cancer cells, vaccinia virus causes necrotic cell death that is mediated through a programmed series of events. PMID:23985697

  14. A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA).

    PubMed

    Kaufman, H; Schlom, J; Kantor, J

    1991-07-30

    Carcinoembryonic antigen (CEA) is a 180-kDa glycoprotein expressed on most gastrointestinal carcinomas. A 2.4-kb cDNA clone, containing the complete coding sequence, was isolated from a human colon tumor cell library and inserted into a vaccinia virus genome. This newly developed construct was characterized by Southern blotting, DNA hybridization studies, and polymerase chain reaction analysis. The CEA gene was stably integrated into the vaccinia virus thymidine kinase gene. The recombinant was efficiently replicated upon serial passages in cell cultures and in animals. The recombinant virus expresses on the surface of infected cells a protein product recognized by a monoclonal antibody (COL-I) directed against CEA. Immunization of mice with the vaccinia construct elicited a humoral immune response against CEA. Pilot studies also showed that administration of the recombinant CEA vaccinia construct was able to greatly reduce the growth in mice of a syngeneic murine colon adenocarcinoma which had been transduced with the human CEA gene. The use of this new recombinant CEA vaccinia construct may thus provide an approach in the specific active immunotherapy of human GI cancer and other CEA expressing carcinoma types.

  15. Resistance to Human Respiratory Syncytial Virus (RSV) Infection Induced by Immunization of Cotton Rats with a Recombinant Vaccinia Virus Expressing the RSV G Glycoprotein

    NASA Astrophysics Data System (ADS)

    Elango, Narayanasamy; Prince, Gregory A.; Murphy, Brian R.; Venkatesan, Sundararajan; Chanock, Robert M.; Moss, Bernard

    1986-03-01

    A cDNA copy of the G glycoprotein gene of human respiratory syncytial virus (RSV) was placed under control of a vaccinia virus promoter and inserted into the thymidine kinase locus of the vaccinia virus genome. The recombinant vaccinia virus retained infectivity and expressed a 93-kDa protein that migrated with the authentic RSV G glycoprotein upon polyacrylamide gel electrophoresis. Glycosylation of the expressed protein and transport to the cell surface were demonstrated in the absence of other RSV proteins. Cotton rats that were inoculated intradermally with the infectious recombinant virus produced serum antibody to the G glycoprotein that neutralized RSV in vitro. Furthermore, the vaccinated animals were resistant to lower respiratory tract infection upon intranasal inoculation with RSV and had reduced titers of RSV in the nose.

  16. Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara

    PubMed Central

    Jordan, Ingo; Lohr, Verena; Genzel, Yvonne; Reichl, Udo; Sandig, Volker

    2013-01-01

    The production of several viral vaccines depends on chicken embryo fibroblasts or embryonated chicken eggs. To replace this logistically demanding substrate, we created continuous anatine suspension cell lines (CR and CR.pIX), developed chemically-defined media, and established production processes for different vaccine viruses. One of the processes investigated in greater detail was developed for modified vaccinia virus Ankara (MVA). MVA is highly attenuated for human recipients and an efficient vector for reactogenic expression of foreign genes. Because direct cell-to-cell spread is one important mechanism for vaccinia virus replication, cultivation of MVA in bioreactors is facilitated if cell aggregates are induced after infection. This dependency may be the mechanism behind our observation that a novel viral genotype (MVA-CR) accumulates with serial passage in suspension cultures. Sequencing of a major part of the genomic DNA of the new strain revealed point mutations in three genes. We hypothesize that these changes confer an advantage because they may allow a greater fraction of MVA-CR viruses to escape the host cells for infection of distant targets. Production and purification of MVA-based vaccines may be simplified by this combination of designed avian cell line, chemically defined media and the novel virus strain.

  17. Electrocardiography Screening for Cardiotoxicity after Modified Vaccinia Ankara Vaccination

    PubMed Central

    Sano, Junko; Chaitman, Bernard R.; Swindle, Jason; Frey, Sharon E.

    2009-01-01

    Background Recently, symptomatic myopericarditis has been described following smallpox vaccination using replication-competent vaccinia strains. Methods We examined the incidence of new electrocardiogram (ECG) abnormalities and evaluated the safety and immunogenicity related to vaccination. Volunteer subjects (n=90) aged 18–32 years were enrolled in a National Institutes of Health (NIH) sponsored phase I smallpox vaccination trial (DMID 02-017) and observed over a 26-week period following 2 injections of IMVAMUNE®, Modified Vaccinia Ankara vaccine, (Bavarian Nordic A/S, Copenhagen, DK) followed by scarification with Dryvax®. Diagnostic computer-derived ECG statements were available to the clinical study team and compared to those of a board certified cardiologist who independently read the ECG tracings. Results Serial ECG tracings available for 89 of the subjects revealed new ST segment abnormalities in 2.2% and new T wave abnormalities in 15.7%; the majority (71.4%) resolved on subsequent tracings. Cardiologist over-read of computer statements resulted in frequent changes in readings, particularly negation of cardiac arrhythmias. A cardiology consultation was requested in 17 subjects for nonspecific cardiac symptoms or new abnormal ECG findings. Echocardiograms were performed in 12 of the 17 subjects and were normal except for 1 subject with possible myopericarditis after receiving Dryvax®. Conclusions New minor ECG abnormalities are common in apparently young healthy volunteers considered for smallpox vaccination trials. Cardiologist over-read of computer generated ECG statements in vaccine trials using ECG as a screening tool for safety can reduce false positive computer determined ECG diagnoses and reduce the need for inappropriate cardiology referral and additional non-invasive testing. PMID:19114175

  18. Use of a recombinant vaccinia virus expressing interferon gamma for post-exposure protection against vaccinia and ectromelia viruses.

    PubMed

    Holechek, Susan A; Denzler, Karen L; Heck, Michael C; Schriewer, Jill; Buller, R Mark; Legrand, Fatema A; Verardi, Paulo H; Jones, Leslie A; Yilma, Tilahun; Jacobs, Bertram L

    2013-01-01

    Post-exposure vaccination with vaccinia virus (VACV) has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several attenuated recombinant VACV in a mouse model. A recombinant VACV expressing murine interferon gamma (IFN-γ) was most effective for post-exposure protection of mice infected with VACV and ectromelia virus (ECTV). Untreated animals infected with VACV exhibited severe weight loss and morbidity leading to 100% mortality by 8 to 10 days post-infection. Animals treated one day post-infection had milder symptoms, decreased weight loss and morbidity, and 100% survival. Treatment on days 2 or 3 post-infection resulted in 40% and 20% survival, respectively. Similar results were seen in ECTV-infected mice. Despite the differences in survival rates in the VACV model, the viral load was similar in both treated and untreated mice while treated mice displayed a high level of IFN-γ in the serum. These results suggest that protection provided by IFN-γ expressed by VACV may be mediated by its immunoregulatory activities rather than its antiviral effects. These results highlight the importance of IFN-γ as a modulator of the immune response for post-exposure prophylaxis and could be used potentially as another post-exposure prophylaxis tool to prevent morbidity following infection with smallpox and other orthopoxviruses.

  19. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    SciTech Connect

    Slabaugh, M.B.; Mathews, C.K.

    1986-11-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using (/sup 35/S)methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated (/sup 3/H)thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.

  20. GMCSF-armed vaccinia virus induces an antitumor immune response.

    PubMed

    Parviainen, Suvi; Ahonen, Marko; Diaconu, Iulia; Kipar, Anja; Siurala, Mikko; Vähä-Koskela, Markus; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli

    2015-03-01

    Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials.

  1. Construction and Characterization of an Infectious Vaccinia Virus Recombinant That Expresses the Influenza Hemagglutinin Gene and Induces Resistance to Influenza Virus Infection in Hamsters

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Murphy, Brian R.; Moss, Bernard

    1983-12-01

    A DNA copy of the influenza virus hemagglutinin gene, derived from influenza virus A/Jap/305/57 (H2N2) was inserted into the genome of vaccinia virus under the control of an early vaccinia virus promoter. Tissue culture cells infected with the purified recombinant virus synthesized influenza hemagglutinin, which was glycosylated and transported to the cell surface where it could be cleaved with trypsin into HA1 and HA2 subunits. Rabbits and hamsters inoculated intradermally with recombinant virus produced circulating antibodies that inhibited hemagglutination by influenza virus. Furthermore, vaccinated hamsters achieved levels of antibody similar to those obtained upon primary infection with influenza virus and were protected against respiratory infection with the A/Jap/305/57 influenza virus.

  2. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization.

    PubMed

    Vennema, H; de Groot, R J; Harbour, D A; Dalderup, M; Gruffydd-Jones, T; Horzinek, M C; Spaan, W J

    1990-03-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis was recombined into the genome of vaccinia virus. The recombinant induced spike-protein-specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with feline infectious peritonitis virus, these animals succumbed earlier than did the control group immunized with wild-type vaccinia virus (early death syndrome).

  3. Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling.

    PubMed

    Izmailyan, Roza; Hsao, Jye-Chian; Chung, Che-Sheng; Chen, Chein-Hung; Hsu, Paul Wei-Che; Liao, Chung-Lin; Chang, Wen

    2012-06-01

    Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin β1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin β1 in lipid rafts on the cell surface, and the knockdown of integrin β1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin β1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin β1-dependent manner, suggesting that integrin β1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin β1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.

  4. Comparison of the replication characteristics of vaccinia virus strains Guang 9 and Tian Tan in vivo and in vitro.

    PubMed

    Zhu, Rong; Liu, Qiang; Huang, Weijin; Yu, Yongxin; Wang, Youchun

    2014-10-01

    Vaccinia virus is widely used as a vector in the development of recombinant vaccines. Vaccinia virus strain Guang 9 (VG9), which was derived from vaccinia virus strain Tian Tan (VTT) by successive plaque-cloning purification, was more attenuated than VTT. In this study, the host cell range and the growth and replication of VG9 were compared with those of VTT. The results showed that both VG9 and VTT could infect permissive cells (Vero, TK-143 and CEF) and semipermissive cells PK (15) and induced a visible cytopathic effect (CPE). Both strains could infect nonpermissive CHO-K1 cells but neither was able to reproduce. The replicative ability of VG9 was a little lower than that of VTT. Additionally, recombinant vaccinia viruses containing a firefly luciferase gene (VG9-L and VTT-L) were constructed, and their expression in vitro and replication and spread in vivo were compared. The expression ability of VG9-L was lower than that of VTT-L. Whole-animal imaging data indicated that VG9-L could reproduce quickly and express the exogenous protein at the site of inoculation, regardless of whether the intramuscular, intracutaneous, subcutaneous or celiac inoculation route was used. VG9-L was better in its ability to express a foreign protein than VTT-L, but the time during which expression occurred was shorter. There was no dissemination of virus in mice inoculated with either strain. In summary, this study demonstrates the possibility of using VG9 for the production of smallpox vaccines or the construction of recombinant vaccinia virus vaccines.

  5. Smallpox vaccination and bioterrorism with pox viruses.

    PubMed

    Mayr, Anton

    2003-10-01

    Bioterrorist attacks occupy a special place amongst the innumerable potential types of terrorist attack, with the intentional release of pox viruses being especially feared in this connection. Apart from the variola virus, the agent responsible for smallpox in humans, the monkeypox virus and numerous other animal pox viruses pose potential risks for humans and animals. This risk scenario also includes recombinations between the various pox viruses, changes in hosts and genetically engineered manipulations of pox viruses. For over 200 years, the method of choice for combatting smallpox was via vaccination with a reproductive, original vaccinia virus. Worldwide eradication of smallpox at the end of the 1970s and the discontinuation of routine smallpox vaccination in 1980 can be credited to such vaccination. Unfortunately, these vaccinations were associated with a large number of postvaccinal impairments, sometimes resulting in death (e.g. postvaccinal encephalitis). The only way to restrict such postvaccinal complications was to carry out initial vaccination within the first 2 postnatal years. Initial vaccination at a later age led to such a sharp increase in the number of vaccines with complications that vaccination had to be discouraged. The dilemma of the smallpox vaccine stocks stems from the fact that a large portion of these stocks are produced with the same vaccinia strains as before. This is irresponsible, especially as the percentage of immune-suppressed persons in the population, for whom vaccination-related complications pose an especial threat, is increasing. One solution to the dilemma of the smallpox vaccine stocks is the MVA strain. It is harmless, protects humans and animals equally well against smallpox and can be applied parenterally. PMID:12818626

  6. Characterization of an attenuated TE3L-deficient vaccinia virus Tian Tan strain.

    PubMed

    Wang, Yuhang; Kan, Shifu; Du, Shouwen; Qi, Yanxin; Wang, Jinhui; Liu, Liming; Ji, Huifan; He, Dongyun; Wu, Na; Li, Chang; Chi, Baorong; Li, Xiao; Jin, Ningyi

    2012-12-01

    An attenuated vaccinia virus (VACV), TE3L(-)VTT, was evaluated for virulence and safety to determine its potential use as a vaccine or as a recombinant virus vector to express foreign genes. The virulence of TE3L(-)VTT was compared with that of the wild-type VTT both in vivo and in vitro. The humoral and cellular immune responses were detected in a mouse model to test the vaccine efficacy of the TE3L mutant. The results suggested that deletion of the TE3L gene decreased the virulence and neurovirulence significantly in mice and rabbit models, yet retained the immunogenicity. Thus, the deletion of TE3L improved the safety of the VTT vector; this approach may yield a valuable resource for studies of recombinant VACV-vectored vaccines.

  7. Expression of functional Bunyamwera virus L protein by recombinant vaccinia viruses.

    PubMed

    Jin, H; Elliott, R M

    1991-08-01

    A cDNA containing the complete coding sequence of the Bunyamwera virus (family Bunyaviridae) L genome segment has been constructed and cloned into two recombinant vaccinia virus expression systems. In the first, the L gene is under control of vaccinia virus P7.5 promoter; in the second, the L gene is under control of the bacteriophage T7 phi 10 promoter, and expression of the L gene requires coinfection with a second recombinant vaccinia virus which synthesizes T7 RNA polymerase. Both systems express a protein which is the same size as the Bunyamwera virus L protein and is recognized by a monospecific L antiserum. The expressed L protein was shown to be functional in synthesizing Bunyamwera virus RNA in a nucleocapsid transfection assay: recombinant vaccinia virus-infected cells were transfected with purified Bunyamwera virus nucleocapsids, and subsequently, total cellular RNA was analyzed by Northern (RNA) blotting. No Bunyamwera virus RNA was detected in control transfections, but in cells which had previously been infected with recombinant vaccinia viruses expressing the L protein, both positive- and negative-sense Bunyamwera virus S segment RNA was detected. The suitability of this system to delineate functional domains within the Bunyamwera virus L protein is discussed.

  8. Phosphorylation of vaccinia virus core proteins during transcription in vitro.

    PubMed Central

    Moussatche, N; Keller, S J

    1991-01-01

    The phosphorylation of vaccinia virus core proteins has been studied in vitro during viral transcription. The incorporation of [gamma-32P]ATP into protein is linear for the first 2 min of the reaction, whereas incorporation of [3H]UTP into RNA lags for 1 to 2 min before linear synthesis. At least 12 different proteins are phosphorylated on autoradiograms of acrylamide gels, and the majority of label is associated with low-molecular-weight proteins. If the transcription reaction is reduced by dropping the pH to 7 from its optimal of 8.5, two proteins (70 and 80 kDa) are no longer phosphorylated. RNA isolated from the pH 7 transcription reaction hybridized primarily to the vaccinia virus HindIII DNA fragments D to F, whereas the transcripts synthesized at pH 8.5 hybridized to almost all of the HindIII-digested vaccinia virus DNA fragments. The differences between the pH 7.0 and 8.5 transcription reactions in phosphorylation and transcription could be eliminated by preincubating the viral cores with 2 mM ATP. In sum, the results suggest that the phosphorylation of the 70- and 80-kDa peptides may contribute to the regulation of early transcription. Images PMID:2016772

  9. Protein Composition of the Vaccinia Virus Mature Virion

    SciTech Connect

    Resch, Wolfgang; Hixson, Kim K.; Moore, Ronald J.; Lipton, Mary S.; Moss, Bernard

    2007-02-05

    The protein content of vaccinia virus mature virions, purified by rate zonal and isopycnic centrifugation and solubilized by SDS or a solution of urea and thiourea, was determined by the accurate mass and time tag technology which uses both tandem mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry to detect tryptic peptides separated by high-resolution liquid chromatography. Eighty vaccinia virus-encoded proteins representing 37% of the 218 genes annotated in the complete genome sequence were detected in at least three analyses. Ten proteins accounted for approximately 80% of the mass, while the least abundant proteins made up 1% or less of the mass. Thirteen identified proteins were not previously reported as components of virions. On the other hand, 8 previously described virion proteins were not detected here, presumably due to technical reasons including small size and hydrophobicity. In addition to vaccinia virus-encoded proteins, 24 host proteins omitting isoforms were detected. The most abundant of these were cytoskeletal proteins, heat shock proteins, and proteins involved in translation.

  10. Smallpox Vaccine Injury Compensation Program: Smallpox (Vaccinia) Vaccine Injury Table. Interim final rule.

    PubMed

    2003-08-27

    The Smallpox Emergency Personnel Protection Act of 2003 (SEPPA), Public Law 108-20, 117 Stat. 638, authorized the Secretary of Health and Human Services (the Secretary), through the establishment of the Smallpox Vaccine Injury Compensation Program (the Program), to provide benefits and/or compensation to certain persons who have sustained injuries as a result of the administration of smallpox covered countermeasures (including the smallpox vaccine) or as a result of vaccinia contracted through accidental vaccinia inoculations. The SEPPA directed the Secretary to establish, by interim final rule, a table identifying adverse effects (including injuries, disabilities, conditions, and deaths) that shall be presumed to result from the administration of or exposure to the smallpox vaccine, and the time interval in which the first symptom or manifestation of each listed injury must manifest in order for such presumption to apply. As mandated by law, the Secretary is establishing such a Smallpox (Vaccinia) Vaccine Injury Table (the Table) through this interim final rule. The Secretary is also establishing a set of Table Definitions and Requirements, which define the terms and conditions included on the Table and are to be read in conjunction with the Table. The Secretary is seeking public comment on the Table established through this interim final rule. At a later date, the Secretary will publish a companion final rule setting forth the administrative implementation of the Program. The public will then be afforded an additional opportunity to comment on the procedures set forth therein.

  11. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  12. Modified Vaccinia virus Ankara: innate immune activation and induction of cellular signalling.

    PubMed

    Price, Philip J R; Torres-Domínguez, Lino E; Brandmüller, Christine; Sutter, Gerd; Lehmann, Michael H

    2013-09-01

    Attenuated poxviruses are currently under development as vaccine vectors against a number of diseases including, influenza, HIV, malaria and tuberculosis. Modified Vaccinia virus Ankara (MVA) is an attenuated, replication deficient vaccinia virus (VACV) strain which, similar to replication competent VACV, is highly immunogenic. The lack of productive viral replication further improves the safety profile of MVA as a vector, minimizing the potential for reversion to virulent forms particularly if used in immunocompromised individuals. Despite its inability to replicate in most mammalian cells, MVA still efficiently expresses viral and recombinant genes making it a potent antigen delivery platform. Moreover, due to the loss of various immunomodulatory factors MVA infection leads to rapid local immune responses, fulfilling a requirement of an adjuvant. In this review we take a look at the immunostimulatory properties of MVA, paying particular attention to the signalling of the innate immune system in response to MVA and VACV infection. Understanding the cellular and molecular mechanisms modulated by VACV will help in the future design and engineering of new vaccines and may provide insight into previously unknown mechanisms of dominant virus-host interactions.

  13. Generation of Recombinant Modified Vaccinia Virus Ankara Encoding VP2, NS1, and VP7 Proteins of Bluetongue Virus.

    PubMed

    Marín-López, Alejandro; Ortego, Javier

    2016-01-01

    Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental vaccine vector for its lack of replication in mammalian cells and high expression level of foreign/heterologous genes. Recombinant MVAs (rMVAs) are used as platforms for protein production as well as vectors to generate vaccines against a high number of infectious diseases and other pathologies. The portrait of the virus combines desirable elements such as high-level biological safety, the ability to activate appropriate innate immune mediators upon vaccination, and the capacity to deliver substantial amounts of heterologous antigens. Recombinant MVAs encoding proteins of bluetongue virus (BTV), an Orbivirus that infects domestic and wild ruminants transmitted by biting midges of the Culicoides species, are excellent vaccine candidates against this virus. In this chapter we describe the methods for the generation of rMVAs encoding VP2, NS1, and VP7 proteins of bluetongue virus as a model example for orbiviruses. The protocols included cover the cloning of VP2, NS1, and VP7 BTV-4 genes in a transfer plasmid, the construction of recombinant MVAs, the titration of virus working stocks and the protein expression analysis by immunofluorescence and radiolabeling of rMVA infected cells as well as virus purification.

  14. Evaluation of modified vaccinia virus Ankara expressing VP2 protein of infectious bursal disease virus as an immunogen in chickens

    PubMed Central

    Zajac, María Paula Del Médico; Taboga, Oscar Alberto; Calamante, Gabriela

    2012-01-01

    A recombinant modified vaccinia Ankara (MVA) virus expressing mature viral protein 2 (VP2) of the infectious bursal disease virus (IBDV) was constructed to develop MVA-based vaccines for poultry. We demonstrated that this recombinant virus was able to induce a specific immune response by observing the production of anti-IBDV-seroneutralizing antibodies in specific pathogen-free chickens. Besides, as the epitopes of VP2 responsible to induce IBDV-neutralizing antibodies are discontinuous, our results suggest that VP2 protein expressed from MVA-VP2 maintained the correct conformational structure. To our knowledge, this is the first report on the usefulness of MVA-based vectors for developing recombinant vaccines for poultry. PMID:22705743

  15. Vaccinia virus-induced smallpox postvaccinal encephalitis in case of blood-brain barrier damage.

    PubMed

    Garcel, Aude; Fauquette, William; Dehouck, Marie-Pierre; Crance, Jean-Marc; Favier, Anne-Laure

    2012-02-01

    Smallpox vaccination is the only currently effective mean to combat the threat of variola virus used as a bioterrorism agent, although it is responsible for a rare but serious complication, the postvaccinal encephalitis (PVE). Development of safer vaccines therefore is a high priority as the PVE physiopathology is not well understood to date. If vaccinia virus (VACV) is responsible for PVE by central nervous system (CNS) dissemination, trans-migration of the VACV across the blood-brain barrier (BBB) would be supposed to be essential. Given the complexity of the pathogenesis of vaccinia neurovirulence, an in vitro BBB model was used to explore the mechanism of VACV to induce BBB permeability. Two VACV strains were studied, the neurovirulent Western Reserve strain (VACV-WR) and the vaccine reference Lister strain (VACV-List). A mouse model was also developed to study the ability of these two viral strains to propagate in the brain from the blood compartment, their neurovirulence and their neuropathogenesis. In vitro, the loss of permeability resulted from the tight-junctions disruption was induced by virus replication. The ability of VACV to release infectious particles at the abluminal side suggests the capacity of both VACV strains to migrate across the BBB from the blood to the CNS. In vivo, the virus replication in mice CNS was strain-dependent. The VACV-WR laboratory strain proved to be neuroinvasive and neurovirulent, whereas the VACV-List strain is safe in physiological conditions. Mice PVE was observed only with VACV-WR in the co-infection model, when BBB opening was obtained by lipopolysaccharide (LPS) treatment. This study suggests that VACV is able to cross the BBB but encephalitis occurs only in the presence of a co-infection by bacteria. So, a model of co-infection, mimicked by LPS treatment, could have important implication towards the assessment of neurovirulence of new vaccines.

  16. [Hypoparathyroidismus following L-asparaginase and vaccinia virus infection. Effect of hypocalcemia on phagocytosis and the function of lymphocytes].

    PubMed

    Ricken, K H

    1975-11-21

    Rabbits, treated with injections of 4000 IU of L-Asparaginase, develop the clinical and chemical signs of hypoparathyroidism. A simultaneous vaccination with vaccinia virus (strain "Elstree") markedly increase the tetanic symptoms ("conditioned deficiency"). L-Asparaginase may influence the cellular immunity by hypocalcemia. Two mechanisms are discussed: 1. the suppression of the phagocytosis, recognizable by the absence of signs for vaccinal allergy by deficiency of macrophages in the intradermal test with inactivated small-pox vaccine. 2. the inhibition of the PHA-induced lymphocyte transformation caused by deficiency of calcium ions.

  17. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy.

    PubMed Central

    Dubochet, J; Adrian, M; Richter, K; Garces, J; Wittek, R

    1994-01-01

    Intracellular mature vaccinia virus, also called intracellular naked virus, and its core envelope have been observed in their native, unfixed, unstained, hydrated states by cryoelectron microscopy of vitrified samples. The virion appears as a smooth rounded rectangle of ca. 350 by 270 nm. The core seems homogeneous and is surrounded by a 30-nm-thick surface domain delimited by membranes. We show that surface tubules and most likely also the characteristic dumbbell-shaped core with the lateral bodies which are generally observed in negatively stained or conventionally embedded samples are preparation artifacts. Images PMID:8107253

  18. Expression of the structural proteins of dengue 2 virus and yellow fever virus by recombinant vaccinia viruses.

    PubMed

    Hahn, Y S; Lenches, E M; Galler, R; Rice, C M; Dalrymple, J; Strauss, J H

    1990-01-01

    Vaccinia virus recombinants were constructed which contained cDNA sequences encoding the structural region of dengue 2 virus (PR159/S1 strain) or yellow fever virus (17D strain). The flavivirus cDNA sequences were expressed under the control of the vaccinia 7.5k early/late promotor. Cultured cells infected with these recombinants expressed immunologically reactive flavivirus structural proteins, precursor prM and E. These proteins appeared to be cleaved and glycosylated properly since they comigrated with the authentic proteins from dengue 2 virus- and yellow fever virus-infected cells. Mice immunized with the dengue/vaccinia recombinant showed a dengue-specific immune response that included low levels of neutralizing antibodies. Immunization of mice with the yellow fever/vaccinia recombinant was less effective at inducing an immune response to yellow fever virus and in only some of the mice were low titers of neutralizing antibodies produced.

  19. Strong HIV-specific CD4+ and CD8+ T-lymphocyte proliferative responses in healthy individuals immunized with an HIV-1 DNA vaccine and boosted with recombinant modified vaccinia virus ankara expressing HIV-1 genes.

    PubMed

    Aboud, Said; Nilsson, Charlotta; Karlén, Katarina; Marovich, Mary; Wahren, Britta; Sandström, Eric; Gaines, Hans; Biberfeld, Gunnel; Godoy-Ramirez, Karina

    2010-07-01

    We investigated HIV-1 vaccine-induced lymphoproliferative responses in healthy volunteers immunized intradermally or intramuscularly (with or without adjuvant granulocyte-macrophage colony-stimulating factor [GM-CSF] protein) with DNA expressing HIV-1 gag, env, rev, and rt at months 0, 1, and 3 using a Biojector and boosted at 9 months with modified vaccinia virus Ankara (MVA) expressing heterologous HIV-1 gag, env, and pol (HIV-MVA). Lymphoproliferative responses to aldrithiol-2 (AT-2)-inactivated-HIV-1 antigen were tested by a [(3)H]thymidine uptake assay and a flow-cytometric assay of specific cell-mediated immune response in activated whole blood (FASCIA-WB) 2 weeks after the HIV-MVA boost (n = 38). A FASCIA using peripheral blood mononuclear cells (FASCIA-PBMC) was also employed (n = 14). Thirty-five of 38 (92%) vaccinees were reactive by the [(3)H]thymidine uptake assay. Thirty-two of 38 (84%) vaccinees were reactive by the CD4(+) T-cell FASCIA-WB, and 7 of 38 (18%) also exhibited CD8(+) T-cell responses. There was strong correlation between the proliferative responses measured by the [(3)H]thymidine uptake assay and CD4(+) T-cell FASCIA-WB (r = 0.68; P < 0.01). Fourteen vaccinees were analyzed using all three assays. Ten of 14 (71%) and 11/14 (79%) demonstrated CD4(+) T-cell responses in FASCIA-WB and FASCIA-PBMC, respectively. CD8(+) T-cell reactivity was observed in 3/14 (21%) and 7/14 (50%) using the FASCIA-WB and FASCIA-PBMC, respectively. All 14 were reactive by the [(3)H]thymidine uptake assay. The overall HIV-specific T-cell proliferative response in the vaccinees employing any of the assays was 100% (38/38). A standardized FASCIA-PBMC, which allows simultaneous phenotyping, may be an option to the [(3)H]thymidine uptake assay for assessment of vaccine-induced T-cell proliferation, especially in isotope-restricted settings.

  20. A New Inhibitor of Apoptosis from Vaccinia Virus and Eukaryotes

    PubMed Central

    Gubser, Caroline; Bergamaschi, Daniele; Hollinshead, Michael; Lu, Xin; van Kuppeveld, Frank J. M; Smith, Geoffrey L

    2007-01-01

    A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein). Stable expression of both viral GAAP (v-GAAP) and human GAAP (h-GAAP), which is expressed in all human tissues tested, inhibited apoptosis induced by intrinsic and extrinsic apoptotic stimuli. Conversely, knockout of h-GAAP by siRNA induced cell death by apoptosis. v-GAAP and h-GAAP display overlapping functions as shown by the ability of v-GAAP to complement for the loss of h-GAAP. Lastly, deletion of the v-GAAP gene from vaccinia virus did not affect virus replication in cell culture, but affected virus virulence in a murine infection model. This study identifies a new regulator of cell death that is highly conserved in evolution from plants to insects, amphibians, mammals, and poxviruses. PMID:17319741

  1. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate.

    PubMed

    Chung, C S; Hsiao, J C; Chang, Y S; Chang, W

    1998-02-01

    Vaccinia virus has a wide host range and infects mammalian cells of many different species. This suggests that the cell surface receptors for vaccinia virus are ubiquitously expressed and highly conserved. Alternatively, different receptors are used for vaccinia virus infection of different cell types. Here we report that vaccinia virus binds to heparan sulfate, a glycosaminoglycan (GAG) side chain of cell surface proteoglycans, during virus infection. Soluble heparin specifically inhibits vaccinia virus binding to cells, whereas other GAGs such as condroitin sulfate or dermantan sulfate have no effect. Heparin also blocks infections by cowpox virus, rabbitpox virus, myxoma virus, and Shope fibroma virus, suggesting that cell surface heparan sulfate could be a general mediator of the entry of poxviruses. The biochemical nature of the heparin-blocking effect was investigated. Heparin analogs that have acetyl groups instead of sulfate groups also abolish the inhibitory effect, suggesting that the negative charges on GAGs are important for virus infection. Furthermore, BSC40 cells treated with sodium chlorate to produce undersulfated GAGs are more refractory to vaccinia virus infection. Taken together, the data support the notion that cell surface heparan sulfate is important for vaccinia virus infection. Using heparin-Sepharose beads, we showed that vaccinia virus virions bind to heparin in vitro. In addition, we demonstrated that the recombinant A27L gene product binds to the heparin beads in vitro. This recombinant protein was further shown to bind to cells, and such interaction could be specifically inhibited by soluble heparin. All the data together indicated that A27L protein could be an attachment protein that mediates vaccinia virus binding to cell surface heparan sulfate during viral infection.

  2. A recombinant vaccinia virus containing the papilloma E2 protein promotes tumor regression by stimulating macrophage antibody-dependent cytotoxicity.

    PubMed

    Rosales, C; Graham, V V; Rosas, G A; Merchant, H; Rosales, R

    2000-09-01

    Human papillomavirus infection is associated with cervical cancer. The E6 and E7 papillomavirus proteins are normally required for the maintenance of the malignant phenotype. Expression of these proteins in infected cells is negatively regulated by the binding of the papilloma E2 protein to the long terminal control region of the papilloma virus genome. The E2 protein can also promote cell arrest and apoptosis in HeLa cells. Therefore, it is clear that this protein has the potential of inhibiting the malignant phenotype. Because, anticancer vaccines based in vaccinia viruses have recently been shown to be an effective way to treat and to eradicate tumors, a recombinant vaccinia virus expressing the E2 gene of bovine papilloma virus (Modified Vaccinia Ankara, MVA E2) was created, to explore further the antitumor potential of the E2 protein. A series of rabbits, containing the VX2 transplantable papilloma carcinoma, were treated with MVA E2. An impressive tumor regression, up to a complete disappearance of tumor, was observed in most animals (80%). In contrast, very little or no regression was detected if the normal vaccinia virus was used. Lymphocytes isolated from MVA E2-treated rabbits did not show cytotoxic activity against tumor cells. However, in these animals a humoral immune response against tumor cells was observed. These antitumor antibodies were capable of activating macrophages to destroy tumor cells efficiently. These data indicate that injecting the MVA E2 recombinant vaccinia virus directly into the tumor results in a robust and long-lasting tumor regression. Data also suggest that antitumor antibodies are responsible, at least in part, for eliminating tumors by activating macrophage antibody-dependent cytotoxicity.

  3. Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity.

    PubMed

    Smith, Geoffrey L; Benfield, Camilla T O; Maluquer de Motes, Carlos; Mazzon, Michela; Ember, Stuart W J; Ferguson, Brian J; Sumner, Rebecca P

    2013-11-01

    Virus infection of mammalian cells is sensed by pattern recognition receptors and leads to an innate immune response that restricts virus replication and induces adaptive immunity. In response, viruses have evolved many countermeasures that enable them to replicate and be transmitted to new hosts, despite the host innate immune response. Poxviruses, such as vaccinia virus (VACV), have large DNA genomes and encode many proteins that are dedicated to host immune evasion. Some of these proteins are secreted from the infected cell, where they bind and neutralize complement factors, interferons, cytokines and chemokines. Other VACV proteins function inside cells to inhibit apoptosis or signalling pathways that lead to the production of interferons and pro-inflammatory cytokines and chemokines. In this review, these VACV immunomodulatory proteins are described and the potential to create more immunogenic VACV strains by manipulation of the gene encoding these proteins is discussed.

  4. Applications of pox virus vectors to vaccination: an update.

    PubMed

    Paoletti, E

    1996-10-15

    Recombinant pox viruses have been generated for vaccination against heterologous pathogens. Amongst these, the following are notable examples. (i) The engineering of the Copenhagen strain of vaccinia virus to express the rabies virus glycoprotein. When applied in baits, this recombinant has been shown to vaccinate the red fox in Europe and raccoons in the United States, stemming the spread of rabies virus infection in the wild. (ii) A fowlpox-based recombinant expressing the Newcastle disease virus fusion and hemagglutinin glycoproteins has been shown to protect commercial broiler chickens for their lifetime when the vaccine was administered at 1 day of age, even in the presence of maternal immunity against either the Newcastle disease virus or the pox vector. (iii) Recombinants of canarypox virus, which is restricted for replication to avian species, have provided protection against rabies virus challenge in cats and dogs, against canine distemper virus, feline leukemia virus, and equine influenza virus disease. In humans, canarypox virus-based recombinants expressing antigens from rabies virus, Japanese encephalitis virus, and HIV have been shown to be safe and immunogenic. (iv) A highly attenuated vaccinia derivative, NYVAC, has been engineered to express antigens from both animal and human pathogens. Safety and immunogenicity of NYVAC-based recombinants expressing the rabies virus glycoprotein, a polyprotein from Japanese encephalitis virus, and seven antigens from Plasmodium falciparum have been demonstrated to be safe and immunogenic in early human vaccine studies. PMID:8876138

  5. Increased attenuation but decreased immunogenicity by deletion of multiple vaccinia virus immunomodulators.

    PubMed

    Sumner, Rebecca P; Ren, Hongwei; Ferguson, Brian J; Smith, Geoffrey L

    2016-09-14

    Vaccinia virus (VACV)-derived vectors are popular candidates for vaccination against diseases such as HIV-1, malaria and tuberculosis. However, their genomes encode a multitude of proteins with immunomodulatory functions, several of which reduce the immunogenicity of these vectors. Hitherto only limited studies have investigated whether the removal of these immunomodulatory genes in combination can increase vaccine efficacy further. To this end we constructed viruses based on VACV strain Western Reserve (WR) lacking up to three intracellular innate immunomodulators (N1, C6 and K7). These genes were selected because the encoded proteins had known functions in innate immunity and the deletion of each gene individually had caused a decrease in virus virulence in the murine intranasal and intradermal models of infection and an increase in immunogenicity. Data presented here demonstrate that deletion of two, or three of these genes in combination attenuated the virus further in an incremental manner. However, when vaccinated mice were challenged with VACV WR the double and triple gene deletion viruses provided weaker protection against challenge. This was accompanied by inferior memory CD8(+) T cell responses and lower neutralising antibody titres. This study indicates that, at least for the three genes studied in the context of VACV WR, the single gene deletion viruses are the best vaccine vectors, and that increased attenuation induced by deletion of additional genes decreased immunogenicity. These data highlight the fine balance and complex relationship between viral attenuation and immunogenicity. Given that the proteins encoded by the genes examined in this study are known to affect specific aspects of innate immunity, the set of viruses constructed here are interesting tools to probe the role of the innate immune response in influencing immune memory and vaccine efficacy. PMID:27544585

  6. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    SciTech Connect

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee; Schriewer, Jill; Evans, David H.; Buller, R. Mark; Barry, Michele

    2014-05-15

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus.

  7. Environmental risk assessment of clinical trials involving modified vaccinia virus Ankara (MVA)-based vectors.

    PubMed

    Goossens, Martine; Pauwels, Katia; Willemarck, Nicolas; Breyer, Didier

    2013-12-01

    The modified vaccinia virus Ankara (MVA) strain, which has been developed as a vaccine against smallpox, is since the nineties widely tested in clinical trials as recombinant vector for vaccination or gene therapy applications. Although MVA is renowned for its safety, several biosafety aspects need to be considered when performing the risk assessment of a recombinant MVA (rMVA). This paper presents the biosafety issues and the main lessons learned from the evaluation of the clinical trials with rMVA performed in Belgium. Factors such as the specific characteristics of the rMVA, the inserted foreign sequences/transgene, its ability for reconversion, recombination and dissemination in the population and the environment are the main points of attention. Measures to prevent or manage identified risks are also discussed.

  8. Nucleotide sequence of the vaccinia virus hemagglutinin gene.

    PubMed

    Shida, H

    1986-04-30

    Vaccinia virus hemagglutinin (HA) is expressed at late time of infection cycle, and it is nonessential for virus growth. Location of the HA structural gene was determined by hybrid-arrested and hybrid-selected translation methods at the right terminus of the HindIII A fragment. The position of the HA gene was confirmed by the production of the complete HA protein in the cells transfected with the plasmid containing that region. Examination of this nucleotide sequence revealed the positions of cleavage sites for a number of restriction endonucleases. The deduced amino acid sequence revealed that the HA protein is a member of typical surface membrane glycoproteins. Comparison of the nucleotide sequence upstream of the HA coding region with corresponding region of other late genes suggested the existence of the consensus decanucleotides TTCATTTa/tGT between 34 to 18 bp upstream to the initiation codon followed by a cluster of A or T, a unique feature of the late genes of vaccinia virus. These results in conjunction with the ease of isolating HA- mutants provide a basis for a new site suitable for inserting foreign genes.

  9. Generation of an attenuated Tiantan vaccinia virus by deletion of the ribonucleotide reductase large subunit.

    PubMed

    Kan, Shifu; Jia, Peng; Sun, Lili; Hu, Ningning; Li, Chang; Lu, Huijun; Tian, Mingyao; Qi, Yanxin; Jin, Ningyi; Li, Xiao

    2014-09-01

    Attenuation of the virulence of vaccinia Tiantan virus (VTT) underlies the strategy adopted for mass vaccination campaigns. This strategy provides advantages of safety and efficacy over traditional vaccines and is aimed at minimization of adverse health effects. In this study, a mutant form of the virus, MVTT was derived from VTT by deletion of the ribonucleotide reductase large subunit (R1) (TI4L). Compared to wild-type parental (VTT) and revertant (VTT-rev) viruses, virulence of the mutant MVTT was reduced by 100-fold based on body weight reduction and by 3,200-fold based on determination of the intracranial 50% lethal infectious dose. However, the immunogenicity of MVTT was equivalent to that of the parental VTT. We also demonstrated that the TI4L gene is not required for efficient replication. These data support the conclusion that MVTT can be used as a replicating virus vector or as a platform for the development of vaccines against infectious diseases and for cancer therapy.

  10. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  11. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. PMID:26535889

  12. Field use of a vaccinia-rabies recombinant vaccine for the control of sylvatic rabies in Europe and North America.

    PubMed

    Brochier, B; Aubert, M F; Pastoret, P P; Masson, E; Schon, J; Lombard, M; Chappuis, G; Languet, B; Desmettre, P

    1996-09-01

    During recent years, most research on the control of sylvatic rabies has concentrated on developing methods of oral vaccination of wild rabies vectors. To improve both the safety and the stability of the vaccine used, a recombinant vaccinia virus, which expresses the immunising glycoprotein of rabies virus (VRG), has been developed and tested extensively in the laboratory as well as in the field. From 1989 to 1995, approximately 8.5 million VRG vaccine doses were dispersed in Western Europe to vaccinate red foxes (Vulpes vulpes), and in the United States of America (USA) to vaccinate raccoons (Procyon lotor) and coyotes (Canis latrans). In Europe, the use of VRG has led to the elimination of sylvatic rabies from large areas of land, which have consequently been freed from the need for vaccination. Nevertheless, despite very good examples of cross-border cooperation, reinfections have occurred in some regions, due to the difficulty of co-ordinating vaccination plans among neighbouring countries. In the USA, preliminary data from field trails indicate a significant reduction in the incidence of rabies in vaccinated areas. PMID:9025144

  13. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity

    PubMed Central

    Hirvinen, Mari; Capasso, Cristian; Guse, Kilian; Garofalo, Mariangela; Vitale, Andrea; Ahonen, Marko; Kuryk, Lukasz; Vähä-Koskela, Markus; Hemminki, Akseli; Fortino, Vittorio; Greco, Dario; Cerullo, Vincenzo

    2016-01-01

    In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI) to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate—and eventually the long-lasting adaptive immunity against cancer. PMID:27626058

  14. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity.

    PubMed

    Hirvinen, Mari; Capasso, Cristian; Guse, Kilian; Garofalo, Mariangela; Vitale, Andrea; Ahonen, Marko; Kuryk, Lukasz; Vähä-Koskela, Markus; Hemminki, Akseli; Fortino, Vittorio; Greco, Dario; Cerullo, Vincenzo

    2016-01-01

    In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI) to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate-and eventually the long-lasting adaptive immunity against cancer. PMID:27626058

  15. Development and in vitro characterization of recombinant vaccinia viruses expressing bovine leukemia virus gp51 in combination with bovine IL4 or IL12.

    PubMed

    Von Beust, B R; Brown, W C; Estes, D M; Zarlenga, D S; McElwain, T F; Palmer, G H

    1999-01-28

    Type 1 and type 2 immune responses are modulated by IL12 or IL4, respectively, at the time of lymphocyte priming. Importantly, type 1 responses have been associated with resistance to retroviral infection in mice, humans, and ruminants. Specifically, vaccination of sheep with vaccinia virus expressing bovine leukemia virus (BLV) gp51 resulted in protective immunity with the characteristics of a type 1 response, whereas vaccination of cattle resulted in a non-protective type 2 response. In order to test the hypothesis that cattle inoculated with BLV gp51 and IL12 will respond with a type 1 response, a recombinant vaccinia virus expressing BLV gp51 together with bovine IL12 was developed and characterized in vitro. For induction of type 2 responses a recombinant vaccinia virus expressing gp51 with bovine IL4 was similarly constructed and characterized. In this study recombinant cassettes were developed containing either the BLVenv gene alone or in combination with bovine IL4 or the two genes, p35 and p40, encoding bovine IL12. Correct alignment with p7.5 or p11 vaccinia promoters and orientation was confirmed by complete sequencing. Recombinant vaccinia viruses were generated by homologous recombination, selected based on large plaque formation due to reconstitution of the vp37 gene, and structurally confirmed by Southern blotting. Transcription of recombinant BLVenv, bovine IL4, p35 and p40 was demonstrated by RT-PCR. Expression of BLVenv gp51 protein and bovine IL4 was shown by immunofluorescence and immunoblotting. Biologically active bovine IL4 expressed by vaccinia virus stimulated lymphoblast proliferation, B lymphocyte proliferation in the presence of CD40L, and inhibited IFN gamma secretion from PHA activated PBMC in a dose dependent fashion. Finally, bovine IL12 expression and biological function was confirmed by dose dependent induction of IFN gamma secretion by PHA activated PBMC and the moderate enhancement of lymphoblast proliferation. In conclusion

  16. Vaccinia virus recombinants expressing an 11-kilodalton beta-galactosidase fusion protein incorporate active beta-galactosidase in virus particles.

    PubMed

    Huang, C; Samsonoff, W A; Grzelecki, A

    1988-10-01

    Recombinant plasmids in which vaccinia virus transcriptional regulatory sequences were fused to the Escherichia coli lacZ gene were constructed for insertion of the lacZ gene into the vaccinia virus genome. beta-Galactosidase (beta-gal) was found in some purified recombinant vaccinia virions. By enzyme activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and microscopic techniques, the evidence suggested that beta-gal accounted for 5% of the total protein in the virion. These recombinant viruses were constructed so that a portion of the coding sequences of a late vaccinia virus structural polypeptide was fused to the amino terminus of beta-gal to produce the fusion protein. Removal of the coding sequences resulted in the complete loss of beta-gal activity. This demonstrated that a vaccinia virus DNA segment from a late structural gene is responsible for the incorporation of beta-gal into the virion.

  17. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants.

    PubMed

    Melamed, Sharon; Wyatt, Linda S; Kastenmayer, Robin J; Moss, Bernard

    2013-09-23

    Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production.

  18. Theranostic Potential of Oncolytic Vaccinia Virus

    PubMed Central

    Rojas, Juan J; Thorne, Steve H

    2012-01-01

    Biological cancer therapies, such as oncolytic, or replication-selective viruses have advantages over traditional therapeutics as they can employ multiple different mechanisms to target and destroy cancers (including direct cell lysis, immune activation and vascular collapse). This has led to their rapid recent clinical development. However this also makes their pre-clinical and clinical study complex, as many parameters may affect their therapeutic potential and so defining reason for treatment failure or approaches that might enhance their therapeutic activity can be complicated. The ability to non-invasively image viral gene expression in vivo both in pre-clinical models and during clinical testing will considerably enhance the speed of oncolytic virus development as well as increasing the level and type of useful data produced from these studies. Further, subsequent to future clinical approval, imaging of reporter gene expression might be used to evaluate the likelihood of response to oncolytic viral therapy prior to changes in tumor burden. Here different reporter genes used in conjunction with oncolytic viral therapy are described, along with the imaging modalities used to measure their expression, while their applications both in pre-clinical and clinical testing are discussed. Possible future applications for reporter gene expression from oncolytic viruses in the phenotyping of tumors and the personalizing of treatment regimens are also discussed. PMID:22509200

  19. THE FATE OF VACCINIA VIRUS ON CULTIVATION IN VITRO WITH KUPFFER CELLS (RETICULO-ENDOTHELIAL CELLS)

    PubMed Central

    Beard, Joseph W.; Rous, Peyton

    1938-01-01

    The pathogenic activity of vaccinia virus is in large part suppressed when it is mixed with living Kupffer cells or clasmatocytes in the test-tube and injected intradermally. Vaccinia increases in quantity when introduced into cultures of Kupffer cells in vitro, and survives in immediate association with these elements. No antiviral principle is elaborated by them under such conditions. PMID:19870763

  20. The NYCBH vaccinia virus deleted for the innate immune evasion gene, E3L, protects rabbits against lethal challenge by rabbitpox virus.

    PubMed

    Denzler, Karen L; Rice, Amanda D; MacNeill, Amy L; Fukushima, Nobuko; Lindsey, Scott F; Wallace, Greg; Burrage, Andrew M; Smith, Andrew J; Manning, Brandi R; Swetnam, Daniele M; Gray, Stacey A; Moyer, R W; Jacobs, Bertram L

    2011-10-13

    Vaccinia virus deleted for the innate immune evasion gene, E3L, has been shown to be highly attenuated and yet induces a protective immune response against challenge by homologous virus in a mouse model. In this manuscript the NYCBH vaccinia virus vaccine strain was compared to NYCBH vaccinia virus deleted for E3L (NYCBHΔE3L) in a rabbitpox virus (RPV) challenge model. Upon scarification, both vaccines produced a desired skin lesion, although the lesion produced by NYCBHΔE3L was smaller. Both vaccines fully protected rabbits against lethal challenge by escalating doses of RPV, from 10LD(50) to 1000LD(50). A single dose of NYCBHΔE3L protected rabbits from weight loss, fever, and clinical symptoms following the lowest dose challenge of 10LD(50), however it allowed a moderate level of RPV replication at the challenge site, some spread to external skin and mucosal surfaces, and increased numbers of secondary lesions as compared to vaccination with NYCBH. Alternately, two doses of NYCBHΔE3L fully protected rabbits from weight loss, fever, and clinical symptoms, following challenge with 100-1000LD(50) RPV, and it prevented development of secondary lesions similar to protection seen with NYCBH. Finally, vaccination with either one or two doses of NYCBHΔE3L resulted in similar neutralizing antibody titers following RPV challenge as compared to titers obtained by vaccination with NYCBH. These results support the efficacy of the attenuated NYCBHΔE3L in protection against an orthologous poxvirus challenge.

  1. Vaccinia virus strain differences in cell attachment and entry

    SciTech Connect

    Bengali, Zain; Townsley, Alan C.; Moss, Bernard

    2009-06-20

    Vaccinia virus (VACV) strain WR can enter cells by a low pH endosomal pathway or direct fusion with the plasma membrane at neutral pH. Here, we compared attachment and entry of five VACV strains in six cell lines and discovered two major patterns. Only WR exhibited pH 5-enhanced rate of entry following neutral pH adsorption to cells, which correlated with sensitivity to bafilomycin A1, an inhibitor of endosomal acidification. Entry of IHD-J, Copenhagen and Elstree strains were neither accelerated by pH 5 treatment nor prevented by bafilomycin A1. Entry of the Wyeth strain, although not augmented by pH 5, was inhibited by bafilomycin A1. WR and Wyeth were both relatively resistant to the negative effects of heparin on entry, whereas the other strains were extremely sensitive due to inhibition of cell binding. The relative sensitivities of individual vaccinia virus strains to heparin correlated inversely with their abilities to bind to and enter glycosaminoglycan-deficient sog9 cells but not other cell lines tested. These results suggested that that IHD-J, Copenhagen and Elstree have a more limited ability than WR and Wyeth to use the low pH endosomal pathway and are more dependent on binding to glycosaminoglycans for cell attachment.

  2. Semliki Forest virus and Sindbis virus, but not vaccinia virus, require glycolysis for optimal replication.

    PubMed

    Findlay, James S; Ulaeto, David

    2015-09-01

    Viruses are obligate intracellular pathogens which rely on the cell's machinery to produce the energy and macromolecules required for replication. Infection is associated with a modified metabolic profile and one pathway which can be modified is glycolysis. In this study, we investigated if the glycolysis pathway is required for alphavirus replication. Pre-treatment of Vero cells with three different glycolysis inhibitors (2-deoxyglucose, lonidamine and oxamate) resulted in a significant reduction (but not abrogation) of Semliki Forest virus and Sindbis virus replication, but not of the unrelated virus, vaccinia virus. Reduced virus yield was not associated with any significant cytotoxic effect and delayed treatment up to 3 h post-infection still resulted in a significant reduction. This suggested that glycolysis is required for optimal replication of alphaviruses by supporting post-entry life cycle steps.

  3. Expression of Herpes Simplex Virus 1 Glycoprotein B by a Recombinant Vaccinia Virus and Protection of Mice against Lethal Herpes Simplex Virus 1 Infection

    NASA Astrophysics Data System (ADS)

    Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry

    1987-08-01

    The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.

  4. Spread of vaccinia virus through shaving during military training, Joint Base San Antonio-Lackland, TX, June 2014.

    PubMed

    Webber, Bryant J; Montgomery, Jay R; Markelz, Ana E; Allen, Kahtonna C; Hunninghake, John C; Ritchie, Simon A; Pawlak, Mary T; Johnston, Lindsay A; Oliver, Tiffany A; Winterton, Brad S

    2014-08-01

    Although naturally occurring smallpox virus was officially declared eradicated in 1980, concern for biological warfare prompted the U.S. Government in 2002 to recommend smallpox vaccination for select individuals. Vaccinia, the smallpox vaccine virus, is administered into the skin, typically on the upper arm, where the virus remains viable and infectious until the scab falls off and the epidermis is fully intact - typically 2-4 weeks. Adverse events following smallpox vaccination may occur in the vaccinee, in individuals who have contact with the vaccinee (i.e., secondary transmission), or in individuals who have contact with the vaccinee's contact (i.e., tertiary transmission). In June 2014 at Joint Base San Antonio-Lackland, TX, two cases of inadvertent inoculation of vaccinia and one case of a non-viral reaction following vaccination occurred in the security forces training squadron. This includes the first reported case of shaving as the likely source of autoinoculation after contact transmission. This paper describes the diagnosis and treatment of these cases, the outbreak investigation, and steps taken to prevent future transmission.

  5. Domain Organization of Vaccinia Virus Helicase-Primase D5

    PubMed Central

    Hutin, Stephanie; Ling, Wai Li; Round, Adam; Effantin, Gregory; Reich, Stefan; Iseni, Frédéric; Tarbouriech, Nicolas; Schoehn, Guy

    2016-01-01

    ABSTRACT Poxviridae are viruses with a large linear double-stranded DNA genome coding for up to 250 open reading frames and a fully cytoplasmic replication. The double-stranded DNA genome is covalently circularized at both ends. Similar structures of covalently linked extremities of the linear DNA genome are found in the African swine fever virus (asfarvirus) and in the Phycodnaviridae. We are studying the machinery which replicates this peculiar genome structure. From our work with vaccinia virus, we give first insights into the overall structure and function of the essential poxvirus virus helicase-primase D5 and show that the active helicase domain of D5 builds a hexameric ring structure. This hexamer has ATPase and, more generally, nucleoside triphosphatase activities that are indistinguishable from the activities of full-length D5 and that are independent of the nature of the base. In addition, hexameric helicase domains bind tightly to single- and double-stranded DNA. Still, the monomeric D5 helicase construct truncated within the D5N domain leads to a well-defined structure, but it does not have ATPase or DNA-binding activity. This shows that the full D5N domain has to be present for hexamerization. This allowed us to assign a function to the D5N domain which is present not only in D5 but also in other viruses of the nucleocytoplasmic large DNA virus (NCLDV) clade. The primase domain and the helicase domain were structurally analyzed via a combination of small-angle X-ray scattering and, when appropriate, electron microscopy, leading to consistent low-resolution models of the different proteins. IMPORTANCE Since the beginning of the 1980s, research on the vaccinia virus replication mechanism has basically stalled due to the absence of structural information. As a result, this important class of pathogens is less well understood than most other viruses. This lack of information concerns in general viruses of the NCLDV clade, which use a superfamily 3 helicase

  6. Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies.

    PubMed

    Golden, Joseph W; Josleyn, Matthew D; Hooper, Jay W

    2008-06-25

    The current live-orthopoxvirus vaccine is associated with minor to serious adverse affects, and is contraindicated for use in a significant portion of the population. As an alternative vaccine, we have previously shown that a DNA subunit vaccine (4pox) based on four orthopoxvirus immunogens (L1R, B5R, A27L and A33R) can produce protective immunity against lethal orthopoxvirus challenges in mice and nonhuman primates. Because antibodies are critical for protection against secondary orthopoxvirus infections, we are now interested in strategies that will enhance the humoral immune response against vaccine targets. Here, we tested the immunogenicity of an L1R construct to which a tissue plasminogen activator signal sequence was placed in frame with the full-length L1R gene. The tPA-L1R construct produced a more robust neutralizing antibody response in vaccinated mice when the DNA vaccine was administered by gene-gun as a prime/single boost. When the tPA-L1R construct was substituted for the unmodified L1R gene in the 4pox vaccine, given as a prime and single boost, animals were better protected from lethal challenge with vaccinia virus (VACV). These findings indicate that adding a tPA-leader sequence can enhance the immunogenicity of the L1R gene when given as a DNA vaccine. Furthermore, our results demonstrate that a DNA-based vaccine is capable of establishing protection from lethal orthopoxvirus challenges when administered as a prime and single boost without requiring adjuvant. PMID:18485547

  7. Antigen profiling analysis of vaccinia virus injected canine tumors: oncolytic virus efficiency predicted by boolean models.

    PubMed

    Cecil, Alexander; Gentschev, Ivaylo; Adelfinger, Marion; Nolte, Ingo; Dandekar, Thomas; Szalay, Aladar A

    2014-01-01

    Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for cancer therapy. In this study we describe for the first time the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus GLV-1h68-injected canine tumors including canine mammary adenoma (ZMTH3), canine mammary carcinoma (MTH52c), canine prostate carcinoma (CT1258), and canine soft tissue sarcoma (STSA-1). Additionally, the STSA-1 xenografted mice were injected with either LIVP 1.1.1 or LIVP 5.1.1 vaccinia virus strains.   Antigen profiling data of the four different vaccinia virus-injected canine tumors were obtained, analyzed and used to calculate differences in the tumor growth signaling network by type and tumor type. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, TK cell, Interferon, and Interleukin signaling networks. The in silico findings conform with in vivo findings of tumor growth. Boolean modeling describes tumor growth and remission semi-quantitatively with a good fit to the data obtained for all cancer type variants. At the same time it monitors all signaling activities as a basis for treatment planning according to antigen levels. Mitigation and elimination of VACV- susceptible tumor types as well as effects on the non-susceptible type CT1258 are predicted correctly. Thus the combination of Antigen profiling and semi-quantitative modeling optimizes the therapy already before its start.

  8. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased.

  9. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. PMID:26474845

  10. Standardization of a neutralizing anti-vaccinia antibodies titration method: an essential step for titration of vaccinia immunoglobulins and smallpox vaccines evaluation.

    PubMed

    Leparc-Goffart, Isabelle; Poirier, Bertrand; Garin, Daniel; Tissier, Marie-Hélène; Fuchs, Florence; Crance, Jean-Marc

    2005-01-01

    The possibility of mass population vaccination with smallpox vaccine implies the development of anti-vaccinia immunoglobulins for the treatment of severe side effects following vaccination. We have chosen to develop and validate the "gold standard method" (plaque reduction neutralization assay) to titrate neutralizing anti-vaccinia antibodies in two different French laboratories belonging to the Department of Defense (CRSSA) and to the French Health Products Safety Agency (Afssaps). The results of precision, linearity and accuracy of the method led to consider the method as validated. In parallel, we have prepared and lyophilized a pool of anti-vaccinia plasma samples issued from a unique donor and qualified this preparation versus the first British standard to use it as an in-house standard with a titer of 25 international units (IU). This work will allow to titrate, in IU, sera from vaccinated persons in order (i) to titrate purified anti-vaccinia immunoglobulin preparations for vaccine severe side effect treatments; (ii) to investigate the level of neutralizing antibodies in the general population; and (iii) to investigate clinical trials of new generation smallpox vaccines. In the future, this will allow comparability of studies on either smallpox vaccines or on the serological status of the population.

  11. Construction of Poxviruses as Cloning Vectors: Insertion of the Thymidine Kinase Gene from Herpes Simplex Virus into the DNA of Infectious Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Panicali, Dennis; Paoletti, Enzo

    1982-08-01

    We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.

  12. Transcriptional mapping of the DNA polymerase gene of vaccinia virus

    SciTech Connect

    Traktman, P.; Sridhar, P.; Condit, R.C.; Roberts, B.E.

    1984-01-01

    Vaccinia virus DNA polymerase, a single-subunit enzyme of 110,000 molecular weight, is induced early after infection. Genetic analysis suggests that the gene encoding the enzyme maps within a 15-kilobase HindIII fragment located 45 kilobases from the left-hand end of the genome. The authors identified the in vitro translation product with these propeties and mapped the transcript by hybrid selection, RNA filter hybridization, and S1 nuclease mapping. Two mRNAs from this region, 3.4 and 3.9 kilobases in size, could be translated in vitro to yield a 110K polypeptide. The two RNAs shared a common 5' terminus and had staggered 3' ends. Sequences mapping entirely within the gene were shown to be biologically active in rescuing mutants with temperature-sensitive or drug-resistant polymerase activity to the wild-type phenotype.

  13. Features of the Antitumor Effect of Vaccinia Virus Lister Strain.

    PubMed

    Zonov, Evgeniy; Kochneva, Galina; Yunusova, Anastasiya; Grazhdantseva, Antonina; Richter, Vladimir; Ryabchikova, Elena

    2016-01-01

    Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however, "natural" oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain of VACV produces its antitumor effect. Human A431 carcinoma xenografts in nude mice and murine Ehrlich carcinoma in C57Bl mice were used as targets for VACV, which was injected intratumorally. A set of virological methods, immunohistochemistry, light and electron microscopy was used in the study. We found that in mice bearing A431 carcinoma, the L-IVP strain was observed in visceral organs within two weeks, but rapidly disappeared from the blood. The L-IVP strain caused decrease of sizes in both tumors, however, in different ways. Direct cell destruction by replicating virus plays a main role in regression of A431 carcinoma xenografts, while in Ehrlich carcinoma, which poorly supported VACV replication, the virus induced decrease of mitoses by pushing tumor cells into S-phase of cell cycle. Our study showed that genetically unmodified VACV possesses at least two mechanisms of antitumor effect: direct destruction of tumor cells and suppression of mitoses in tumor cells. PMID:26771631

  14. Features of the Antitumor Effect of Vaccinia Virus Lister Strain.

    PubMed

    Zonov, Evgeniy; Kochneva, Galina; Yunusova, Anastasiya; Grazhdantseva, Antonina; Richter, Vladimir; Ryabchikova, Elena

    2016-01-12

    Oncolytic abilities of vaccinia virus (VACV) served as a basis for the development of various recombinants for treating cancer; however, "natural" oncolytic properties of the virus are not examined in detail. Our study was conducted to know how the genetically unmodified L-IVP strain of VACV produces its antitumor effect. Human A431 carcinoma xenografts in nude mice and murine Ehrlich carcinoma in C57Bl mice were used as targets for VACV, which was injected intratumorally. A set of virological methods, immunohistochemistry, light and electron microscopy was used in the study. We found that in mice bearing A431 carcinoma, the L-IVP strain was observed in visceral organs within two weeks, but rapidly disappeared from the blood. The L-IVP strain caused decrease of sizes in both tumors, however, in different ways. Direct cell destruction by replicating virus plays a main role in regression of A431 carcinoma xenografts, while in Ehrlich carcinoma, which poorly supported VACV replication, the virus induced decrease of mitoses by pushing tumor cells into S-phase of cell cycle. Our study showed that genetically unmodified VACV possesses at least two mechanisms of antitumor effect: direct destruction of tumor cells and suppression of mitoses in tumor cells.

  15. High level protein expression in mammalian cells using a safe viral vector: modified vaccinia virus Ankara.

    PubMed

    Hebben, Matthias; Brants, Jan; Birck, Catherine; Samama, Jean-Pierre; Wasylyk, Bohdan; Spehner, Danièle; Pradeau, Karine; Domi, Arban; Moss, Bernard; Schultz, Patrick; Drillien, Robert

    2007-12-01

    Vaccinia virus vectors are attractive tools to direct high level protein synthesis in mammalian cells. In one of the most efficient strategies developed so far, the gene to be expressed is positioned downstream of a bacteriophage T7 promoter within the vaccinia genome and transcribed by the T7 RNA polymerase, also encoded by the vaccinia virus genome. Tight regulation of transcription and efficient translation are ensured by control elements of the Escherichia coli lactose operon and the encephalomyocarditis virus leader sequence, respectively. We have integrated such a stringently controlled expression system, previously used successfully in a standard vaccinia virus backbone, into the modified vaccinia virus Ankara strain (MVA). In this manner, proteins of interest can be produced in mammalian cells under standard laboratory conditions because of the inherent safety of the MVA strain. Using this system for expression of beta-galactosidase, about 15 mg protein could be produced from 10(8) BHK21 cells over a 24-h period, a value 4-fold higher than the amount produced from an identical expression system based on a standard vaccinia virus strain. In another application, we employed the MVA vector to produce human tubulin tyrosine ligase and demonstrate that this protein becomes a major cellular protein upon induction conditions and displays its characteristic enzymatic activity. The MVA vector should prove useful for many other applications in which mammalian cells are required for protein production. PMID:17892951

  16. What to Do After You've Gotten the Smallpox Vaccine

    MedlinePlus

    ... to Do After You’ve Gotten the Smallpox Vaccine The smallpox vaccine contains a live virus called vaccinia. After vaccination, this live virus is present at the vaccine site and can be spread to other parts ...

  17. Single-particle characterization of oncolytic vaccinia virus by flow virometry.

    PubMed

    Tang, Vera A; Renner, Tyler M; Varette, Oliver; Le Boeuf, Fabrice; Wang, Jiahu; Diallo, Jean-Simon; Bell, John C; Langlois, Marc-André

    2016-09-30

    Vaccinia virus (VV) is an oncolytic virus that is currently being evaluated as a promising cancer vaccine in several phase I, II and III clinical trials. Although several quality control tests are performed on each new batch of virus, these do not routinely include a systematic characterization of virus particle homogeneity, or relate the infectious titer to the total number of submicron sized particles (SSPs) present in the sample. SSPs are comprised of infectious virus and non-infectious viral particles, but also cell contaminants derived from the virus isolation procedures, such as cellular vesicles and debris. Here we have employed flow virometry (FV) analysis and sorting to isolate and characterize distinct SSP populations in therapeutic oncolytic VV preparations. We show that VV preparations contain SSPs heterogeneous in size and include large numbers of non-infectious VV particles. Furthermore, we used FV to illustrate how VV has a propensity to aggregate over time and under various handling and storage procedures. Accordingly, we find that together the infectious titer, the total number of SSPs, the number of viral genomes and the level of particle aggregation in a sample constitute useful parameters that greatly facilitate inter-sample assessment of physical quality, and also provides a means to monitor sample deterioration over time. Additionally, we have successfully employed FV sorting to further isolate virus from other particles by identifying a lipophilic dye that preferentially stains VV over other SSPs in the sample. Overall, we demonstrate that FV is a fast and effective tool that can be used to perform quality, and consistency control assessments of oncolytic VV vaccine preparations.

  18. Single-particle characterization of oncolytic vaccinia virus by flow virometry.

    PubMed

    Tang, Vera A; Renner, Tyler M; Varette, Oliver; Le Boeuf, Fabrice; Wang, Jiahu; Diallo, Jean-Simon; Bell, John C; Langlois, Marc-André

    2016-09-30

    Vaccinia virus (VV) is an oncolytic virus that is currently being evaluated as a promising cancer vaccine in several phase I, II and III clinical trials. Although several quality control tests are performed on each new batch of virus, these do not routinely include a systematic characterization of virus particle homogeneity, or relate the infectious titer to the total number of submicron sized particles (SSPs) present in the sample. SSPs are comprised of infectious virus and non-infectious viral particles, but also cell contaminants derived from the virus isolation procedures, such as cellular vesicles and debris. Here we have employed flow virometry (FV) analysis and sorting to isolate and characterize distinct SSP populations in therapeutic oncolytic VV preparations. We show that VV preparations contain SSPs heterogeneous in size and include large numbers of non-infectious VV particles. Furthermore, we used FV to illustrate how VV has a propensity to aggregate over time and under various handling and storage procedures. Accordingly, we find that together the infectious titer, the total number of SSPs, the number of viral genomes and the level of particle aggregation in a sample constitute useful parameters that greatly facilitate inter-sample assessment of physical quality, and also provides a means to monitor sample deterioration over time. Additionally, we have successfully employed FV sorting to further isolate virus from other particles by identifying a lipophilic dye that preferentially stains VV over other SSPs in the sample. Overall, we demonstrate that FV is a fast and effective tool that can be used to perform quality, and consistency control assessments of oncolytic VV vaccine preparations. PMID:27614781

  19. Bioluminescent imaging of vaccinia virus infection in immunocompetent and immunodeficient rats as a model for human smallpox

    PubMed Central

    Liu, Qiang; Fan, Changfa; Zhou, Shuya; Guo, Yanan; Zuo, Qin; Ma, Jian; Liu, Susu; Wu, Xi; Peng, Zexu; Fan, Tao; Guo, Chaoshe; Shen, Yuelei; Huang, Weijin; Li, Baowen; He, Zhengming; Wang, Youchun

    2015-01-01

    Due to the increasing concern of using smallpox virus as biological weapons for terrorist attack, there is renewed interest in studying the pathogenesis of human smallpox and development of new therapies. Animal models are highly demanded for efficacy and safety examination of new vaccines and therapeutic drugs. Here, we demonstrated that both wild type and immunodeficient rats infected with an engineered vaccinia virus carrying Firefly luciferase reporter gene (rTV-Fluc) could recapitulate infectious and clinical features of human smallpox. Vaccinia viral infection in wild type Sprague-Dawley (SD) rats displayed a diffusible pattern in various organs, including liver, head and limbs. The intensity of bioluminescence generated from rTV-Fluc correlated well with viral loads in tissues. Moreover, neutralizing antibodies had a protective effect against virus reinfection. The recombination activating gene 2 (Rag2) knockout rats generated by transcription activator-like effector nucleases (TALENs) technology were further used to examine the infectivity of the rTV-Fluc in immunodeficient populations. Here we demonstrated that Rag2-/- rats were more susceptible to rTV-Fluc than SD rats with a slower virus clearance rate. Therefore, the rTV-Fluc/SD rats and rTV-Fluc/Rag2-/- rats are suitable visualization models, which recapitulate wild type or immunodeficient populations respectively, for testing human smallpox vaccine and antiviral drugs. PMID:26235050

  20. Bioluminescent imaging of vaccinia virus infection in immunocompetent and immunodeficient rats as a model for human smallpox.

    PubMed

    Liu, Qiang; Fan, Changfa; Zhou, Shuya; Guo, Yanan; Zuo, Qin; Ma, Jian; Liu, Susu; Wu, Xi; Peng, Zexu; Fan, Tao; Guo, Chaoshe; Shen, Yuelei; Huang, Weijin; Li, Baowen; He, Zhengming; Wang, Youchun

    2015-01-01

    Due to the increasing concern of using smallpox virus as biological weapons for terrorist attack, there is renewed interest in studying the pathogenesis of human smallpox and development of new therapies. Animal models are highly demanded for efficacy and safety examination of new vaccines and therapeutic drugs. Here, we demonstrated that both wild type and immunodeficient rats infected with an engineered vaccinia virus carrying Firefly luciferase reporter gene (rTV-Fluc) could recapitulate infectious and clinical features of human smallpox. Vaccinia viral infection in wild type Sprague-Dawley (SD) rats displayed a diffusible pattern in various organs, including liver, head and limbs. The intensity of bioluminescence generated from rTV-Fluc correlated well with viral loads in tissues. Moreover, neutralizing antibodies had a protective effect against virus reinfection. The recombination activating gene 2 (Rag2) knockout rats generated by transcription activator-like effector nucleases (TALENs) technology were further used to examine the infectivity of the rTV-Fluc in immunodeficient populations. Here we demonstrated that Rag2-/- rats were more susceptible to rTV-Fluc than SD rats with a slower virus clearance rate. Therefore, the rTV-Fluc/SD rats and rTV-Fluc/Rag2-/- rats are suitable visualization models, which recapitulate wild type or immunodeficient populations respectively, for testing human smallpox vaccine and antiviral drugs. PMID:26235050

  1. Bioluminescent imaging of vaccinia virus infection in immunocompetent and immunodeficient rats as a model for human smallpox.

    PubMed

    Liu, Qiang; Fan, Changfa; Zhou, Shuya; Guo, Yanan; Zuo, Qin; Ma, Jian; Liu, Susu; Wu, Xi; Peng, Zexu; Fan, Tao; Guo, Chaoshe; Shen, Yuelei; Huang, Weijin; Li, Baowen; He, Zhengming; Wang, Youchun

    2015-08-03

    Due to the increasing concern of using smallpox virus as biological weapons for terrorist attack, there is renewed interest in studying the pathogenesis of human smallpox and development of new therapies. Animal models are highly demanded for efficacy and safety examination of new vaccines and therapeutic drugs. Here, we demonstrated that both wild type and immunodeficient rats infected with an engineered vaccinia virus carrying Firefly luciferase reporter gene (rTV-Fluc) could recapitulate infectious and clinical features of human smallpox. Vaccinia viral infection in wild type Sprague-Dawley (SD) rats displayed a diffusible pattern in various organs, including liver, head and limbs. The intensity of bioluminescence generated from rTV-Fluc correlated well with viral loads in tissues. Moreover, neutralizing antibodies had a protective effect against virus reinfection. The recombination activating gene 2 (Rag2) knockout rats generated by transcription activator-like effector nucleases (TALENs) technology were further used to examine the infectivity of the rTV-Fluc in immunodeficient populations. Here we demonstrated that Rag2-/- rats were more susceptible to rTV-Fluc than SD rats with a slower virus clearance rate. Therefore, the rTV-Fluc/SD rats and rTV-Fluc/Rag2-/- rats are suitable visualization models, which recapitulate wild type or immunodeficient populations respectively, for testing human smallpox vaccine and antiviral drugs.

  2. Immunogenicity and virulence of attenuated vaccinia virus Tian Tan encoding HIV-1 muti-epitope genes, p24 and cholera toxin B subunit in mice.

    PubMed

    Du, Shouwen; Wang, Yuhang; Liu, Cunxia; Wang, Maopeng; Zhu, Yilong; Tan, Peng; Ren, Dayong; Li, Xiao; Tian, Mingyao; Yin, Ronglan; Li, Chang; Jin, Ningyi

    2015-07-01

    No effective prophylactic or therapeutic vaccine against HIV-1 in humans is currently available. This study analyzes the immunogenicity and safety of a recombinant attenuated vaccinia virus. A chimeric gene of HIV-1 multi-epitope genes containing CpG ODN and cholera toxin B subunit (CTB) was inserted into Chinese vaccinia virus Tian Tan strain (VTT) mutant strain. The recombinant virus rddVTT(-CCMp24) was assessed for immunogenicity and safety in mice. Results showed that the protein CCMp24 was expressed stably in BHK-21 infected with rddVTT(-CCMp24). And the recombinant virus induced the production of HIV-1 p24 specific immunoglobulin G (IgG), IL-2 and IL-4. The recombinant vaccine induced γ-interferon secretion against HIV peptides, and elicited a certain levels of immunological memory. Results indicated that the recombinant virus had certain immunogenicity to HIV-1. Additionally, the virulence of the recombinant virus was been attenuated in vivo of mice compared with wild type VTT (wtVTT), and the introduction of CTB and HIV Mp24 did not alter the infectivity and virulence of defective vaccinia virus.

  3. Vaccinia virus leads to ATG12–ATG3 conjugation and deficiency in autophagosome formation.

    PubMed

    Moloughney, Joseph G; Monken, Claude E; Tao, Hanlin; Zhang, Haiyan; Thomas, Janice D; Lattime, Edmund C; Jin, Shengkan

    2011-12-01

    The interactions between viruses and cellular autophagy have been widely reported. On the one hand, autophagy is an important innate immune response against viral infection. On the other hand, some viruses exploit the autophagy pathway for their survival and proliferation in host cells. Vaccinia virus is a member of the family of Poxviridae which includes the smallpox virus. The biogenesis of vaccinia envelopes, including the core envelope of the immature virus (IV), is not fully understood. In this study we investigated the possible interaction between vaccinia virus and the autophagy membrane biogenesis machinery. Massive LC3 lipidation was observed in mouse fibroblast cells upon vaccinia virus infection. Surprisingly, the vaccinia virus induced LC3 lipidation was shown to be independent of ATG5 and ATG7, as the atg5 and atg7 null mouse embryonic fibroblasts (MEFs) exhibited the same high levels of LC3 lipidation as compared with the wild-type MEFs. Mass spectrometry and immunoblotting analyses revealed that the viral infection led to the direct conjugation of ATG3, which is the E2-like enzyme required for LC3-phosphoethanonamine conjugation, to ATG12, which is a component of the E3-like ATG12–ATG5-ATG16 complex for LC3 lipidation. Consistently, ATG3 was shown to be required for the vaccinia virus induced LC3 lipidation. Strikingly, despite the high levels of LC3 lipidation, subsequent electron microscopy showed that vaccinia virus-infected cells were devoid of autophagosomes, either in normal growth medium or upon serum and amino acid deprivation. In addition, no autophagy flux was observed in virus-infected cells. We further demonstrated that neither ATG3 nor LC3 lipidation is crucial for viral membrane biogenesis or viral proliferation and infection. Together, these results indicated that vaccinia virus does not exploit the cellular autophagic membrane biogenesis machinery for their viral membrane production. Moreover, this study demonstrated that vaccinia

  4. VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone

    PubMed Central

    Moise, Leonard; Buller, R. Mark; Schriewer, Jill; Lee, Jinhee; Frey, Sharon; Martin, William; De Groot, Anne S.

    2011-01-01

    The potential for smallpox to be disseminated in a bioterror attack has prompted development of new, safer smallpox vaccination strategies. We designed and evaluated immunogenicity and efficacy of a T-cell epitope vaccine based on conserved and antigenic vaccinia/variola sequences, identified using bioinformatics and immunological methods. Vaccination in HLA transgenic mice using a DNA-prime/peptide-boost strategy elicited significant T cell responses to multiple epitopes. No antibody response pre-challenge was observed, neither against whole vaccinia antigens nor vaccine epitope peptides. Remarkably, 100% of vaccinated mice survived lethal vaccinia challenge, demonstrating that protective immunity to vaccinia does not require B cell priming. PMID:21055490

  5. Expression of the synthetic gene for human angiogenin in recombinant vaccinia virus

    SciTech Connect

    Netesova, N.A.; Petrov, V.S.; Cheshenko, N.V.

    1995-08-01

    The gene for angiogenin was cloned into vaccinia virus genome. The recombinant virus expressing angiogenin was obtained. The level of protein synthesis directed by the recombinant virus was analyzed by immunoblotting using monoclonal antibodies against human angiogenin. 15 refs., 2 figs.

  6. Live-Cell Imaging of Vaccinia Virus Recombination

    PubMed Central

    Paszkowski, Patrick; Noyce, Ryan S.; Evans, David H.

    2016-01-01

    Recombination between co-infecting poxviruses provides an important mechanism for generating the genetic diversity that underpins evolution. However, poxviruses replicate in membrane-bound cytoplasmic structures known as factories or virosomes. These are enclosed structures that could impede DNA mixing between co-infecting viruses, and mixing would seem to be essential for this process. We hypothesize that virosome fusion events would be a prerequisite for recombination between co-infecting poxviruses, and this requirement could delay or limit viral recombination. We have engineered vaccinia virus (VACV) to express overlapping portions of mCherry fluorescent protein fused to a cro DNA-binding element. In cells also expressing an EGFP-cro fusion protein, this permits live tracking of virus DNA and genetic recombination using confocal microscopy. Our studies show that different types of recombination events exhibit different timing patterns, depending upon the relative locations of the recombining elements. Recombination between partly duplicated sequences is detected soon after post-replicative genes are expressed, as long as the reporter gene sequences are located in cis within an infecting genome. The same kinetics are also observed when the recombining elements are divided between VACV and transfected DNA. In contrast, recombination is delayed when the recombining sequences are located on different co-infecting viruses, and mature recombinants aren’t detected until well after late gene expression is well established. The delay supports the hypothesis that factories impede inter-viral recombination, but even after factories merge there remain further constraints limiting virus DNA mixing and recombinant gene assembly. This delay could be related to the continued presence of ER-derived membranes within the fused virosomes, membranes that may once have wrapped individual factories. PMID:27525721

  7. Live-Cell Imaging of Vaccinia Virus Recombination.

    PubMed

    Paszkowski, Patrick; Noyce, Ryan S; Evans, David H

    2016-08-01

    Recombination between co-infecting poxviruses provides an important mechanism for generating the genetic diversity that underpins evolution. However, poxviruses replicate in membrane-bound cytoplasmic structures known as factories or virosomes. These are enclosed structures that could impede DNA mixing between co-infecting viruses, and mixing would seem to be essential for this process. We hypothesize that virosome fusion events would be a prerequisite for recombination between co-infecting poxviruses, and this requirement could delay or limit viral recombination. We have engineered vaccinia virus (VACV) to express overlapping portions of mCherry fluorescent protein fused to a cro DNA-binding element. In cells also expressing an EGFP-cro fusion protein, this permits live tracking of virus DNA and genetic recombination using confocal microscopy. Our studies show that different types of recombination events exhibit different timing patterns, depending upon the relative locations of the recombining elements. Recombination between partly duplicated sequences is detected soon after post-replicative genes are expressed, as long as the reporter gene sequences are located in cis within an infecting genome. The same kinetics are also observed when the recombining elements are divided between VACV and transfected DNA. In contrast, recombination is delayed when the recombining sequences are located on different co-infecting viruses, and mature recombinants aren't detected until well after late gene expression is well established. The delay supports the hypothesis that factories impede inter-viral recombination, but even after factories merge there remain further constraints limiting virus DNA mixing and recombinant gene assembly. This delay could be related to the continued presence of ER-derived membranes within the fused virosomes, membranes that may once have wrapped individual factories.

  8. Locally Produced IL-10 Limits Cutaneous Vaccinia Virus Spread.

    PubMed

    Cush, Stephanie S; Reynoso, Glennys V; Kamenyeva, Olena; Bennink, Jack R; Yewdell, Jonathan W; Hickman, Heather D

    2016-03-01

    Skin infection with the poxvirus vaccinia (VV) elicits a powerful, inflammatory cellular response that clears virus infection in a coordinated, spatially organized manner. Given the high concentration of pro-inflammatory effectors at areas of viral infection, it is unclear how tissue pathology is limited while virus-infected cells are being eliminated. To better understand the spatial dynamics of the anti-inflammatory response to a cutaneous viral infection, we first screened cytokine mRNA expression levels after epicutaneous (ec.) VV infection and found a large increase the anti-inflammatory cytokine IL-10. Ex vivo analyses revealed that T cells in the skin were the primary IL-10-producing cells. To understand the distribution of IL-10-producing T cells in vivo, we performed multiphoton intravital microscopy (MPM) of VV-infected mice, assessing the location and dynamic behavior of IL-10 producing cells. Although virus-specific T cells were distributed throughout areas of the inflamed skin lacking overt virus-infection, IL-10+ cells closely associated with large keratinocytic foci of virus replication where they exhibited similar motility patterns to bulk antigen-specific CD8+ T cells. Paradoxically, neutralizing secreted IL-10 in vivo with an anti-IL-10 antibody increased viral lesion size and viral replication. Additional analyses demonstrated that IL-10 antibody administration decreased recruitment of CCR2+ inflammatory monocytes, which were important for reducing viral burden in the infected skin. Based upon these findings, we conclude that spatially concentrated IL-10 production limits cutaneous viral replication and dissemination, likely through modulation of the innate immune repertoire at the site of viral growth.

  9. Multiple Viral Ligands Naturally Presented by Different Class I Molecules in Transporter Antigen Processing-Deficient Vaccinia Virus-Infected Cells

    PubMed Central

    Lorente, Elena; Infantes, Susana; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Vilches, Carlos; Lemonnier, François A.; Admon, Arie

    2012-01-01

    The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease. PMID:22031944

  10. Multiple viral ligands naturally presented by different class I molecules in transporter antigen processing-deficient vaccinia virus-infected cells.

    PubMed

    Lorente, Elena; Infantes, Susana; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Vilches, Carlos; Lemonnier, François A; Admon, Arie; López, Daniel

    2012-01-01

    The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease.

  11. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    SciTech Connect

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-11-07

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.

  12. Intrafamilial Transmission of Vaccinia virus during a Bovine Vaccinia Outbreak in Brazil: A New Insight in Viral Transmission Chain

    PubMed Central

    Pereira Oliveira, Graziele; Tavares Silva Fernandes, André; Lopes de Assis, Felipe; Augusto Alves, Pedro; Moreira Franco Luiz, Ana Paula; Barcelos Figueiredo, Leandra; Costa de Almeida, Cláudia Maria; Pires Ferreira Travassos, Carlos Eurico; de Souza Trindade, Giliane; Santos Abrahão, Jônatas; Geessien Kroon, Erna

    2014-01-01

    Bovine vaccinia (BV) is an emerging zoonosis caused by the Vaccinia virus (VACV), genus Orthopoxvirus (OPV), Poxviridae family. In general, human cases are related to direct contact with sick cattle but there is a lack of information about human-to-human transmission of VACV during BV outbreaks. In this study, we epidemiologically and molecularly show a case of VACV transmission between humans in São Francisco de Itabapoana County, Rio de Janeiro state. Our group collected samples from the patients, a 49-year-old patient and his son. Our results showed that patients had developed anti-OPV IgG or IgM antibodies and presented neutralizing antibodies against OPV. The VACV isolates displayed high identity (99.9%) and were grouped in the same phylogenetic tree branch. Our data indicate that human-to-human VACV transmission occurred during a BV outbreak, raising new questions about the risk factors of the VACV transmission chain. PMID:24615135

  13. Intrafamilial transmission of Vaccinia virus during a bovine Vaccinia outbreak in Brazil: a new insight in viral transmission chain.

    PubMed

    Pereira Oliveira, Graziele; Tavares Silva Fernandes, André; Lopes de Assis, Felipe; Augusto Alves, Pedro; Moreira Franco Luiz, Ana Paula; Barcelos Figueiredo, Leandra; Costa de Almeida, Cláudia Maria; Pires Ferreira Travassos, Carlos Eurico; de Souza Trindade, Giliane; Santos Abrahão, Jônatas; Geessien Kroon, Erna

    2014-06-01

    Bovine vaccinia (BV) is an emerging zoonosis caused by the Vaccinia virus (VACV), genus Orthopoxvirus (OPV), Poxviridae family. In general, human cases are related to direct contact with sick cattle but there is a lack of information about human-to-human transmission of VACV during BV outbreaks. In this study, we epidemiologically and molecularly show a case of VACV transmission between humans in São Francisco de Itabapoana County, Rio de Janeiro state. Our group collected samples from the patients, a 49-year-old patient and his son. Our results showed that patients had developed anti-OPV IgG or IgM antibodies and presented neutralizing antibodies against OPV. The VACV isolates displayed high identity (99.9%) and were grouped in the same phylogenetic tree branch. Our data indicate that human-to-human VACV transmission occurred during a BV outbreak, raising new questions about the risk factors of the VACV transmission chain.

  14. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection.

    PubMed

    Meseda, Clement A; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M; Dhawan, Subhash

    2014-11-01

    Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection. PMID:25450361

  15. One time intranasal vaccination with a modified vaccinia Tiantan strain MVTT(ZCI) protects animals against pathogenic viral challenge.

    PubMed

    Yu, Wenbo; Fang, Qing; Zhu, Weijun; Wang, Haibo; Tien, Po; Zhang, Linqi; Chen, Zhiwei

    2010-02-25

    To combat variola virus in bioterrorist attacks, it is desirable to develop a noninvasive vaccine. Based on the vaccinia Tiantan (VTT) strain, which was historically used to eradicate the smallpox in China, we generated a modified VTT (MVTT(ZCI)) by removing the hemagglutinin gene and an 11,944bp genomic region from HindIII fragment C2L to F3L. MVTT(ZCI) was characterized for its host cell range in vitro and preclinical safety and efficacy profiles in mice. Despite replication-competency in some cell lines, unlike VTT, MVTT(ZCI) did not cause death after intracranial injection or body weight loss after intranasal inoculation. MVTT(ZCI) did not replicate in mouse brain and was safe in immunodeficient mice. MVTT(ZCI) induced neutralizing antibodies via the intranasal route of immunization. One time intranasal immunization protected animals from the challenge of the pathogenic vaccinia WR strain. This study established proof-of-concept that the attenuated replicating MVTT(ZCI) may serve as a safe noninvasive smallpox vaccine candidate.

  16. Redundancy complicates the definition of essential genes for vaccinia virus.

    PubMed

    Dobson, Bianca M; Tscharke, David C

    2015-11-01

    Vaccinia virus (VACV) genes are characterized as either essential or non-essential for growth in culture. It seems intuitively obvious that if a gene can be deleted without imparting a growth defect in vitro it does not have a function related to basic replication or spread. However, this interpretation relies on the untested assumption that there is no redundancy across the genes that have roles in growth in cell culture. First, we provide a comprehensive summary of the literature that describes the essential genes of VACV. Next, we looked for interactions between large blocks of non-essential genes located at the ends of the genome by investigating sets of VACVs with large deletions at the genomic termini. Viruses with deletions at either end of the genome behaved as expected, exhibiting only mild or host-range defects. In contrast, combining deletions at both ends of the genome for the VACV Western Reserve (WR) strain caused a devastating growth defect on all cell lines tested. Unexpectedly, we found that the well-studied VACV growth factor homologue encoded by C11R has a role in growth in vitro that is exposed when 42 genes are absent from the left end of the VACV WR genome. These results demonstrate that some non-essential genes contribute to basic viral growth, but redundancy means these functions are not revealed by single-gene-deletion mutants.

  17. Interactions of the vaccinia virus A19 protein.

    PubMed

    Satheshkumar, P S; Olano, L Renee; Hammer, Carl H; Zhao, Ming; Moss, Bernard

    2013-10-01

    The A19 protein of vaccinia virus (VACV) is conserved among chordopoxviruses, expressed late in infection, packaged in the virus core, and required for a late step in morphogenesis. Multiple-sequence alignments of A19 homologs indicated conservation of a series of lysines and arginines, which could represent a nuclear localization or nucleic acid binding motif, and a pair of CXXC motifs that suggested a zinc finger or redox active sites. The importance of the CXXC motif was confirmed by cysteine-to-serine substitutions, which rendered the altered protein unable to trans-complement infectivity of a null mutant. Nevertheless, the cysteines were not required for function of the poxvirus-specific redox pathway. Epitope-tagged A19 proteins were detected in the nucleus and cytoplasm in both infected and uninfected cells, but this distribution was unaffected by alanine substitutions of the arginine residues, which only partially reduced the ability of the mutated protein to trans-complement infectivity. Viral proteins specifically associated with affinity-purified A19 were identified by mass spectrometry as components of the transcription complex, including RNA polymerase subunits, RAP94 (RNA polymerase-associated protein 94), early transcription factors, capping enzyme, and nucleoside triphosphate phosphohydrolase I, and two core proteins required for morphogenesis. Further studies suggested that the interaction of A19 with the RNA polymerase did not require RAP94 or other intermediate or late viral proteins but was reduced by mutation of cysteines in the putative zinc finger domain. Although A19 was not required for incorporation of the transcription complex in virus particles, the transcriptional activity of A19-deficient virus particles was severely reduced.

  18. Enhanced expression of the Epstein-Barr virus latent membrane protein by a recombinant vaccinia virus.

    PubMed

    Stewart, J P; Hampson, I N; Heinrich, H W; Mackett, M; Arrand, J R

    1989-05-01

    The complete coding sequence of the Epstein-Barr virus strain B95-8 latent membrane protein (LMP) was cloned using a Raji cell cDNA library and genomic B95-8 DNA. The clone was characterized by sequencing and then used to make a recombinant vaccinia virus. This virus (VLMP) was shown to express a relatively high level of LMP in an authentic fashion. Antisera raised in rabbits against VLMP were shown to react with B95-8 LMP as well as cross-reacting with a 50K cellular protein.

  19. Nigericin is a potent inhibitor of the early stage of vaccinia virus replication.

    PubMed

    Myskiw, Chad; Piper, Jessica; Huzarewich, Rhiannon; Booth, Tim F; Cao, Jingxin; He, Runtao

    2010-12-01

    Poxviruses remain a significant public health concern due to their potential use as bioterrorist agents and the spread of animal borne poxviruses, such as monkeypox virus, to humans. Thus, the identification of small molecule inhibitors of poxvirus replication is warranted. Vaccinia virus is the prototypic member of the Orthopoxvirus genus, which also includes variola and monkeypox virus. In this study, we demonstrate that the carboxylic ionophore nigericin is a potent inhibitor of vaccinia virus replication in several human cell lines. In HeLa cells, we found that the 50% inhibitory concentration of nigericin against vaccinia virus was 7.9 nM, with a selectivity index of 1038. We present data demonstrating that nigericin targets vaccinia virus replication at a post-entry stage. While nigericin moderately inhibits both early vaccinia gene transcription and translation, viral DNA replication and intermediate and late gene expression are severely compromised in the presence of nigericin. Our results demonstrate that nigericin has the potential to be further developed into an effective antiviral to treat poxvirus infections. PMID:20951746

  20. Initial characterization of vaccinia virus B4 suggests a role in virus spread.

    PubMed

    Burles, Kristin; Irwin, Chad R; Burton, Robyn-Lee; Schriewer, Jill; Evans, David H; Buller, R Mark; Barry, Michele

    2014-05-01

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus.

  1. Expanding the Repertoire of Modified Vaccinia Ankara-Based Vaccine Vectors via Genetic Complementation Strategies

    PubMed Central

    Garber, David A.; O'Mara, Leigh A.; Zhao, Jun; Gangadhara, Sailaja; An, InChul; Feinberg, Mark B.

    2009-01-01

    Background Modified Vaccinia virus Ankara (MVA) is a safe, highly attenuated orthopoxvirus that is being developed as a recombinant vaccine vector for immunization against a number of infectious diseases and cancers. However, the expression by MVA vectors of large numbers of poxvirus antigens, which display immunodominance over vectored antigens-of-interest for the priming of T cell responses, and the induction of vector-neutralizing antibodies, which curtail the efficacy of subsequent booster immunizations, remain as significant impediments to the overall utility of such vaccines. Thus, genetic approaches that enable the derivation of MVA vectors that are antigenically less complex may allow for rational improvement of MVA-based vaccines. Principal Findings We have developed a genetic complementation system that enables the deletion of essential viral genes from the MVA genome, thereby allowing us to generate MVA vaccine vectors that are antigenically less complex. Using this system, we deleted the essential uracil-DNA-glycosylase (udg) gene from MVA and propagated this otherwise replication-defective variant on a complementing cell line that constitutively expresses the poxvirus udg gene and that was derived from a newly identified continuous cell line that is permissive for growth of wild type MVA. The resulting virus, MVAΔudg, does not replicate its DNA genome or express late viral gene products during infection of non-complementing cells in culture. As proof-of-concept for immunological ‘focusing’, we demonstrate that immunization of mice with MVAΔudg elicits CD8+ T cell responses that are directed against a restricted repertoire of vector antigens, as compared to immunization with parental MVA. Immunization of rhesus macaques with MVAΔudg-gag, a udg− recombinant virus that expresses an HIV subtype-B consensus gag transgene, elicited significantly higher frequencies of Gag-specific CD8 and CD4 T cells following both primary (2–4-fold) and booster (2

  2. Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent

    PubMed Central

    Kirscher, Lorenz; Deán-Ben, Xosé Luis; Scadeng, Miriam; Zaremba, Angelika; Zhang, Qian; Kober, Christina; Fehm, Thomas Felix; Razansky, Daniel; Ntziachristos, Vasilis; Stritzker, Jochen; Szalay, Aladar A.

    2015-01-01

    We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system. PMID:26199644

  3. Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent.

    PubMed

    Kirscher, Lorenz; Deán-Ben, Xosé Luis; Scadeng, Miriam; Zaremba, Angelika; Zhang, Qian; Kober, Christina; Fehm, Thomas Felix; Razansky, Daniel; Ntziachristos, Vasilis; Stritzker, Jochen; Szalay, Aladar A

    2015-01-01

    We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.

  4. Dengue virus vaccine development.

    PubMed

    Yauch, Lauren E; Shresta, Sujan

    2014-01-01

    Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches.

  5. Effects of poliovirus 2A(pro) on vaccinia virus gene expression.

    PubMed

    Feduchi, E; Aldabe, R; Novoa, I; Carrasco, L

    1995-12-15

    The effects of transient expression of poliovirus 2A(pro) on p220 cleavage in COS cells have been analyzed. When 2A(pro) was cloned in plasmid pTM1 and transiently expressed in COS cells, efficient cleavage of p220 occurred after infection of these cells with a recombinant vaccinia virus bearing phage T7 RNA polymerase. High numbers of COS cells were transfected with pTM1-2A, as judged by p220 cleavage, thereby allowing an analysis of the effects of poliovirus 2A(pro) on vaccinia virus gene expression. A 40-50% cleavage of p220 by transfected poliovirus 2A(pro) was observed ten hours post infection and cleavage was almost complete (80-90%) 20-25 hours post infection with vaccinia virus. Profound inhibition of vaccinia virus protein synthesis was detectable ten hours post infection and was maximal 20-25 hours post infection. This inhibition resulted from neither a blockade of transcription of vaccinia virus nor a lack of translatability of the mRNAs present in cells that synthesize poliovirus 2A(pro). Addition of ara-C inhibited the replication of vaccinia virus and allowed the continued synthesis of cellular proteins. Under these conditions, 2A(pro) is expressed and blocks cellular translation. Finally, p220 cleavage by 2A(pro) did not inhibit the translation of a mRNA encoding poliovirus protein 2C, as directed by the 5' leader sequences of encephalomiocarditis virus. Therefore, these findings show a correlation between p220 cleavage and inhibition of translation from newly made mRNAs. Our results are discussed in the light of present knowledge of p220 function, and new approaches are considered that might provide further insights into the function(s) of initiation factor eIF-4F.

  6. Broad Protection against Avian Influenza Virus by Using a Modified Vaccinia Ankara Virus Expressing a Mosaic Hemagglutinin Gene

    PubMed Central

    Kamlangdee, Attapon; Kingstad-Bakke, Brock; Anderson, Tavis K.; Goldberg, Tony L.

    2014-01-01

    ABSTRACT A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection postvaccination. Both neutralizing antibodies and antigen-specific CD4+ and CD8+ T cells were still detected at 5 months postvaccination, suggesting that MVA-H5M provides long-lasting immunity. IMPORTANCE Influenza viruses infect a billion people and cause up to 500,000 deaths every year. A major problem in combating influenza is the lack of broadly effective vaccines. One solution from the field of human immunodeficiency virus vaccinology involves a novel in silico mosaic approach that has been shown to provide broad and robust protection against highly variable viruses. Unlike a consensus algorithm which picks the most frequent residue at each position, the mosaic method chooses the most frequent T-cell epitopes and combines them to form a synthetic antigen. These studies demonstrated that a mosaic influenza virus H5 hemagglutinin expressed by a viral vector can elicit full protection against diverse H5N1 challenges as well as induce broader immunity than a wild-type hemagglutinin. PMID:25210173

  7. Smallpox Vaccine Overview

    MedlinePlus

    ... complications from the vaccinia virus can be severe. Benefit of Vaccine Following Exposure Vaccination within 3 days ... Policies About CDC.gov Link to Us All Languages Contact CDC Centers for Disease Control and Prevention ...

  8. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    PubMed Central

    Condit, Richard C.; Moussatche, Nissin

    2015-01-01

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. PMID:25863879

  9. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  10. Horizontal study of vaccinia virus infections in an endemic area: epidemiologic, phylogenetic and economic aspects.

    PubMed

    Assis, Felipe L; Franco-Luiz, Ana Paula M; Paim, Luis M; Oliveira, Graziele P; Pereira, Alexandre F; de Almeida, Gabriel M F; Figueiredo, Leandra B; Tanus, Adriano; Trindade, Giliane S; Ferreira, Paulo P; Kroon, Erna G; Abrahão, Jônatas S

    2015-11-01

    Vaccinia virus (VACV), the etiological agent of bovine vaccinia (BV), is widespread in Brazil and present in most of the milk-producing regions. We conducted a horizontal study of BV in Bahia, a state of Brazil in which the production of milk is increasing. During 2011, human and bovine clinical samples were collected during outbreaks for BV diagnosis, virus isolation and molecular analysis. We collected data for epidemiological inferences. Vaccinia virus was detected in 87.7% of the analyzed outbreaks, highlighting the effective circulation of VACV in Bahia. The molecular data showed the spreading of group 1 Brazilian VACV to Bahia. We observed a seasonal profile of BV, with its peak in the drier and cooler season. Manual milking was observed in 96 % of the visited properties, showing its importance to viral spread in herds. Under-notification of BV, ineffective animal trade surveillance, and bad milking practices have contributed to the spread of VACV in Brazil.

  11. Biochemical and biophysical properties of a putative hub protein expressed by vaccinia virus.

    PubMed

    Kay, Nicole E; Bainbridge, Travis W; Condit, Richard C; Bubb, Michael R; Judd, Reuben E; Venkatakrishnan, Balasubramanian; McKenna, Robert; D'Costa, Susan M

    2013-04-19

    H5 is a constitutively expressed, phosphorylated vaccinia virus protein that has been implicated in viral DNA replication, post-replicative gene expression, and virus assembly. For the purpose of understanding the role of H5 in vaccinia biology, we have characterized its biochemical and biophysical properties. Previously, we have demonstrated that H5 is associated with an endoribonucleolytic activity. In this study, we have shown that this cleavage results in a 3'-OH end suitable for polyadenylation of the nascent transcript, corroborating a role for H5 in vaccinia transcription termination. Furthermore, we have shown that H5 is intrinsically disordered, with an elongated rod-shaped structure that preferentially binds double-stranded nucleic acids in a sequence nonspecific manner. The dynamic phosphorylation status of H5 influences this structure and has implications for the role of H5 in multiple processes during virus replication. PMID:23476017

  12. Biochemical and Biophysical Properties of a Putative Hub Protein Expressed by Vaccinia Virus*

    PubMed Central

    Kay, Nicole E.; Bainbridge, Travis W.; Condit, Richard C.; Bubb, Michael R.; Judd, Reuben E.; Venkatakrishnan, Balasubramanian; McKenna, Robert; D'Costa, Susan M.

    2013-01-01

    H5 is a constitutively expressed, phosphorylated vaccinia virus protein that has been implicated in viral DNA replication, post-replicative gene expression, and virus assembly. For the purpose of understanding the role of H5 in vaccinia biology, we have characterized its biochemical and biophysical properties. Previously, we have demonstrated that H5 is associated with an endoribonucleolytic activity. In this study, we have shown that this cleavage results in a 3′-OH end suitable for polyadenylation of the nascent transcript, corroborating a role for H5 in vaccinia transcription termination. Furthermore, we have shown that H5 is intrinsically disordered, with an elongated rod-shaped structure that preferentially binds double-stranded nucleic acids in a sequence nonspecific manner. The dynamic phosphorylation status of H5 influences this structure and has implications for the role of H5 in multiple processes during virus replication. PMID:23476017

  13. West Nile virus vaccine.

    PubMed

    Monath, T P; Arroyo, J; Miller, C; Guirakhoo, F

    2001-05-01

    Within the past 5 years, West Nile encephalitis has emerged as an important disease of humans and horses in Europe. In 1999, the disease appeared for the first time in the northeastern United States. West Nile virus (a mosquito-borne flavivirus) has flourished in the North American ecosystem and is expected to expand its geographic range. In this review, the rationale for a human and veterinary vaccine is presented and a novel approach for rapid development of a molecularly-defined, live, attenuated vaccine is described. The technology (ChimeriVax) is applicable to the development of vaccines against all flaviviruses, and products against Japanese encephalitis (a close relative of West Nile) and dengue are in or are nearing clinical trials, respectively. ChimeriVax vaccines utilize the safe and effective vaccine against the prototype flavivirus -yellow fever 17D- as a live vector. Infectious clone technology is used to replace the genes encoding the pre-membrane (prM) and envelope (E) protein of yellow fever 17D vaccine with the corresponding genes of the target virus (e.g., West Nile). The resulting chimeric virus contains the antigens responsible for protection against West Nile but retains the replication efficiency of yellow fever 17D. The ChimeriVax technology is well-suited to the rapid development of a West Nile vaccine, and clinical trials could begin as early as mid-2002. Other approaches to vaccine development are briefly reviewed. The aim of this brief review is to describe the features of West Nile encephalitis, a newly introduced infectious disease affecting humans, horses and wildlife in the United States; the rationale for rapid development of vaccines; and approaches to the development of vaccines against the disease.

  14. Major neutralizing sites on vaccinia virus glycoprotein B5 are exposed differently on variola virus ortholog B6.

    PubMed

    Aldaz-Carroll, Lydia; Xiao, Yuhong; Whitbeck, J Charles; de Leon, Manuel Ponce; Lou, Huan; Kim, Mikyung; Yu, Jessica; Reinherz, Ellis L; Isaacs, Stuart N; Eisenberg, Roselyn J; Cohen, Gary H

    2007-08-01

    Immunization against smallpox (variola virus) with Dryvax, a live vaccinia virus (VV), was effective, but now safety is a major concern. To overcome this issue, subunit vaccines composed of VV envelope proteins from both forms of infectious virions, including the extracellular enveloped virion (EV) protein B5, are being developed. However, since B5 has 23 amino acid differences compared with its B6 variola virus homologue, B6 might be a better choice for such a strategy. Therefore, we compared the properties of both proteins using a panel of monoclonal antibodies (MAbs) to B5 that we had previously characterized and grouped according to structural and functional properties. The B6 gene was obtained from the Centers for Disease Control and Prevention, and the ectodomain was cloned and expressed in baculovirus as previously done with B5, allowing us to compare the antigenic properties of the proteins. Polyclonal antibodies to B5 or B6 cross-reacted with the heterologous protein, and 16 of 26 anti-B5 MAbs cross-reacted with B6. Importantly, 10 anti-B5 MAbs did not cross-react with B6. Of these, three have important anti-VV biologic properties, including their ability to neutralize EV infectivity and block comet formation. Here, we found that one of these three MAbs protected mice from a lethal VV challenge by passive immunization. Thus, epitopes that are present on B5 but not on B6 would generate an antibody response that would not recognize B6. Assuming that B6 contains similar variola virus-specific epitopes, our data suggest that a subunit vaccine using the variola virus homologues might exhibit improved protective efficacy against smallpox.

  15. Vaccinia Virus Telomeres: Interaction with the Viral I1, I6, and K4 Proteins

    PubMed Central

    DeMasi, Joseph; Du, Shan; Lennon, David; Traktman, Paula

    2001-01-01

    The 192-kb linear DNA genome of vaccinia virus has covalently closed hairpin termini that are extremely AT rich and contain 12 extrahelical bases. Vaccinia virus telomeres have previously been implicated in the initiation of viral genome replication; therefore, we sought to determine whether the telomeres form specific protein-DNA complexes. Using an electrophoretic mobility shift assay, we found that extracts prepared from virions and from the cytoplasm of infected cells contain telomere binding activity. Four shifted complexes were detected using hairpin probes representing the viral termini, two of which represent an interaction with the “flip” isoform and two with the “flop” isoform. All of the specificity for protein binding lies within the terminal 65-bp hairpin sequence. Viral hairpins lacking extrahelical bases cannot form the shifted complexes, suggesting that DNA structure is crucial for complex formation. Using an affinity purification protocol, we purified the proteins responsible for hairpin-protein complex formation. The vaccinia virus I1 protein was identified as being necessary and sufficient for the formation of the upper doublet of shifted complexes, and the vaccinia virus I6 protein was shown to form the lower doublet of shifted complexes. Competition and challenge experiments confirmed that the previously uncharacterized I6 protein binds tightly and with great specificity to the hairpin form of the viral telomeric sequence. Incubation of viral hairpins with extracts from infected cells also generates a smaller DNA fragment that is likely to reflect specific nicking at the apex of the hairpin; we show that the vaccinia virus K4 protein is necessary and sufficient for this reaction. We hypothesize that these telomere binding proteins may play a role in the initiation of vaccinia virus genome replication and/or genome encapsidation. PMID:11581377

  16. Expression of the F and HN glycoproteins of human parainfluenza virus type 3 by recombinant vaccinia viruses: contributions of the individual proteins to host immunity.

    PubMed

    Spriggs, M K; Murphy, B R; Prince, G A; Olmsted, R A; Collins, P L

    1987-11-01

    cDNA clones containing the complete coding sequences for the human parainfluenza virus type 3 (PIV3) fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein genes were inserted into the thymidine kinase gene of vaccinia virus (WR strain) under the control of the P7.5 early-late vaccinia virus promotor. The recombinant vaccinia viruses, designated vaccinia-F and vaccinia-HN, expressed glycoproteins in cell culture that appeared to be authentic with respect to glycosylation, disulfide linkage, electrophoretic mobility, cell surface expression, and, in the case of the HN protein, biological activity. Cotton rats inoculated intradermally with vaccinia-HN developed serum neutralizing antibody titers equal to that induced by respiratory tract infection with PIV3, whereas animals receiving vaccinia-F had threefold lower neutralizing antibody titers. A single immunization with either recombinant vaccinia virus induced nearly complete resistance in the lower respiratory tract of these animals. With regard to protection in the upper respiratory tract, animals immunized with vaccinia-HN or vaccinia-F exhibited reductions in PIV3 replication of greater than 3,000-fold and 6-fold, respectively. This large difference (greater than 500-fold) in reduction of PIV3 replication in the upper respiratory tract was in contrast to the relatively modest difference (3-fold) in serum neutralizing antibody titers induced by vaccinia-HN versus vaccinia-F. This dissociation between the level of neutralizing antibodies and protection suggested that immunity to PIV3 is complex, and that immune mechanisms other than serum neutralizing antibodies make important contributions to resistance to infection. Overall, under these experimental conditions, vaccinia-HN induced a substantially more protective immune response than did vaccinia-F.

  17. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus.

    PubMed Central

    Janknecht, R; de Martynoff, G; Lou, J; Hipskind, R A; Nordheim, A; Stunnenberg, H G

    1991-01-01

    Vaccinia virus has been used as a vector to express foreign genes for the production of functional and posttranslationally modified proteins. A procedure is described here that allows the rapid native purification of vaccinia-expressed proteins fused to an amino-terminal tag of six histidines. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni2+.nitrilotriacetic acid (Ni2+.NTA)-agarose and histidine-tagged proteins are selectively eluted with imidazole-containing buffers. In the case of the human serum response factor (SRF), a transcription factor involved in the regulation of the c-fos protooncogene, the vaccinia-expressed histidine-tagged SRF (SRF-6His) could be purified solely by this step to greater than 95% purity. SRF-6His was shown to resemble authentic SRF by functional criteria: it was transported to the nucleus, bound specifically the c-fos serum response element, interacted with the p62TCF protein to form a ternary complex, and stimulated in vitro transcription from the serum response element. Thus, the combination of vaccinia virus expression and affinity purification by Ni2+.NTA chromatography promises to be useful for the production of proteins in a functional and posttranslationally modified form. Images PMID:1924358

  18. Relationship between RNA polymerase II and efficiency of vaccinia virus replication

    SciTech Connect

    Wilton, S.; Dales, S.

    1989-04-01

    It is clear from previous studies that host transcriptase or RNA polymerase II (pol II) has a role in poxvirus replication. To elucidate the participation of this enzyme further, in this study the authors examined several parameters related to pol II during the cycle of vaccinia virus infection in L-strain fibroblasts, HeLa cells, and L/sub 6/H/sub 9/ rat myoblasts. Nucleocytoplasmic transposition of pol II into virus factories and virions was assessed by immunofluorescence and immunoblotting by using anti-pol II immunoglobulin G. RNA polymerase activities were compared in nuclear extracts containing cured enzyme preparations. Rates of translation into cellular or viral polypeptides were ascertained by labeling with (/sup 35/S)methionine. In L and HeLa cells, which produced vaccinia virus more abundantly, the rate of RNA polymerase and translation in controls and following infection were higher than in myoblasts. The data on synthesis and virus formation could be correlated with observations on transmigration of pol II, which was more efficient and complete in L and HeLa cells. The stimulus for pol II to leave the nucleus required the expression of both early and late viral functions. On the basis of current and past information, the authors suggest that mobilization of pol II depends on the efficiency of vaccinia virus replication and furthermore that control over vaccinia virus production by the host is related to the content or availability (or both) of pol II in different cell types.

  19. Selecting Viruses for the Seasonal Influenza Vaccine

    MedlinePlus

    ... which viruses are selected for use in vaccine production? The influenza viruses in the seasonal flu vaccine ... to get a good vaccine virus for vaccine production? There are a number of factors that can ...

  20. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    SciTech Connect

    Condit, Richard C. Moussatche, Nissin

    2015-08-15

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. - Highlights: • Mutation of E6 disrupts association of viral membranes with viral core proteins • Mutation of E6 does not perturb viral membrane biosynthesis • Mutation of E6 does not perturb localization of viral transcription enzymes • Mutation of E6 causes mis-localization and aggregation of viral core proteins • Vaccinia assembly uses three subassemblies: membranes, viroplasm, prenucleocapsid.

  1. Antibiotic-dependent expression of early transcription factor subunits leads to stringent control of vaccinia virus replication.

    PubMed

    Hagen, Caitlin J; Titong, Allison; Sarnoski, Ethan A; Verardi, Paulo H

    2014-03-01

    The use of vaccinia virus (VACV) as the vaccine against variola virus resulted in the eradication of smallpox. VACV has since been used in the development of recombinant vaccine and therapeutic vectors, but complications associated with uncontrolled viral replication have constrained its use as a live viral vector. We propose to improve the safety of VACV as a live-replicating vector by using elements of the tet operon to control the transcription of genes that are essential for viral growth. Poxviruses encode all enzymes and factors necessary for their replication within the host cell cytoplasm. One essential VACV factor is the vaccinia early transcription factor (VETF) packaged into the viral core. This heterodimeric protein is required for expression of early VACV genes. VETF is composed of a large subunit encoded by the A7L gene and a small subunit encoded by the D6R gene. Two recombinant VACVs were generated in which either the A7L or D6R gene was placed under the control of tet operon elements to allow their transcription, and therefore viral replication, to be dependent on tetracycline antibiotics such as doxycycline. In the absence of inducers, no plaques were produced but abortively infected cells could be identified by expression of a reporter gene. In the presence of doxycycline, both recombinant viruses replicated indistinguishably from the wild-type strain. This stringent control of VACV replication can be used for the development of safer, next-generation VACV vaccines and therapeutic vectors. Such replication-inducible VACVs would only replicate when administered with tetracycline antibiotics, and if adverse events were to occur, treatment would be as simple as antibiotic cessation.

  2. Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus.

    PubMed

    Myers, Rachel; Coviello, Christian; Erbs, Philippe; Foloppe, Johann; Rowe, Cliff; Kwan, James; Crake, Calum; Finn, Seán; Jackson, Edward; Balloul, Jean-Marc; Story, Colin; Coussios, Constantin; Carlisle, Robert

    2016-09-01

    Oncolytic viruses (OV) could become the most powerful and selective cancer therapies. However, the limited transport of OV into and throughout tumors following intravenous injection means their clinical administration is often restricted to direct intratumoral dosing. Application of physical stimuli, such as focused ultrasound, offers a means of achieving enhanced mass transport. In particular, shockwaves and microstreaming resulting from the instigation of an ultrasound-induced event known as inertial cavitation can propel OV hundreds of microns. We have recently developed a polymeric cup formulation which, when delivered intravenously, provides the nuclei for instigation of sustained inertial cavitation events within tumors. Here we report that exposure of tumors to focused ultrasound after intravenous coinjection of cups and oncolytic vaccinia virus , leads to substantial and significant increases in activity. When cavitation was instigated within SKOV-3 or HepG2 xenografts, reporter gene expression from vaccinia virus was enhanced 1,000-fold (P < 0.0001) or 10,000-fold (P < 0.001), respectively. Similar increases in the number of vaccinia virus genomes recovered from tumors were also observed. In survival studies, the application of cup mediated cavitation to a vaccinia virus expressing a prodrug converting enzyme provided significant (P < 0.05) retardation of tumor growth. This technology could improve the clinical utility of all biological therapeutics including OV. PMID:27375160

  3. Mechanism of Poly (A) Synthesis by Vaccinia Virus

    PubMed Central

    Sheldon, Robert; Kates, Joseph

    1974-01-01

    Data are presented which indicate that vaccinia DNA does not contain poly(dT) sequences the size of poly(A) sequences (50 to 200 nucleotides in length) found in vaccinia RNA. A hybridization experiment and polyacrylamide gel electrophoresis and DEAE-Sephadex chromatography of pyrimidine tracts show that poly(dT) sequences can account for no more than 0.1% of vaccinia DNA. Ultraviolet irradiation (which causes thymine dimer formation) and phleomycin (which binds to thymidine) both inhibit RNA synthesis but not poly(A) synthesis by vaccinia cores. These data are consistent with a nontranscriptive mechanism for vaccinia poly(A) synthesis. Both trypsin and 50 C heat treatment inhibit RNA synthesis more than poly(A) synthesis by cores, suggesting that separate enzymes may be involved in these syntheses. When the rate of core RNA synthesis is reduced by lowering the UTP and GTP concentrations, the size of the poly(A) sequences increase. These and other data suggest that transcription is involved in the termination of poly(A) synthesis in cores. This might be due to the displacement of growing poly(A) chains by recently completed RNA 3′ termini which have not yet acquired poly(A) sequences. PMID:4847326

  4. In vitro inhibition of protein synthesis by purified cores from vaccinia virus.

    PubMed Central

    Ben-Hamida, F; Beaud, G

    1978-01-01

    The mechanism of the shutoff of cellular protein synthesis in vaccinia virus-infected cells has been investigated by using in vitro systems. Purified vaccinia cores cause inhibition of endogenous mRNA translation in nonpreincubated reticulocyte lysates and Ehrlich ascites tumor cell-free systems. Translation of viral mRNA from turnip yellow mosaic virus is also impaired in wheat germ cell-free extracts. The block induced by vaccinia cores in protein synthesis is not due to a decrease in the availability of mRNA but rather to an alteration of the cellular translational machinery. No nucleolytic activity able of digesting mRNA could be detected in purified vaccinia cores with three sensitive tests. There is a lack of inhibition in the poly(Phe)-poly(U) system, which bypasses the normal initiation process. An almost complete disaggregation of polyribosomes in the reticulocyte lysate appears when vaccinia cores are present. These results indicate that mRNA translation in a cell-free system is affected predominantly at the level of polypeptide chain initiation. PMID:272632

  5. Ultraviolet-irradiated vaccinia virus recombinants, exposing HIV-envelope on their outer membrane, induce antibodies against this antigen in rabbits.

    PubMed

    Loewinger, M; Katz, E

    2002-01-01

    The construction and isolation of recombinants of vaccinia virus (IHD-J strain), bearing on their outer membrane a chimeric protein consisting of the cytoplasmic and transmembrane domains of vaccinia B5R protein and the external domain of HIV envelope, has been previously described by us. The present study aimed to investigate the potential use of such recombinants as a vaccine, following inactivation of their infectivity by ultraviolet (UV) irradiation. The minimal dose of UV irradiation, required for the complete inactivation of the infectivity of these recombinants, was determined. Injections of rabbits with the irradiated noninfectious recombinant viruses successfully induced specific antibodies against the HIV envelope antigen, in addition to those against the poxvirus. PMID:12479396

  6. Mucosal immunization induces a higher level of lasting neutralizing antibody response in mice by a replication-competent smallpox vaccine: vaccinia Tiantan strain.

    PubMed

    Lu, Bin; Yu, Wenbo; Huang, Xiaoxing; Wang, Haibo; Liu, Li; Chen, Zhiwei

    2011-01-01

    The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity.

  7. The role of vaccinia termination factor and cis-acting elements in vaccinia virus early gene transcription termination.

    PubMed

    Tate, Jessica; Gollnick, Paul

    2015-11-01

    Vaccinia virus early gene transcription termination requires the virion form of the viral RNA polymerase (vRNAP), Nucleoside Triphosphate Phosphohydrolase I (NPHI), ATP, the vaccinia termination factor (VTF), and a U5NU termination signal in the nascent transcript. VTF, also the viral mRNA capping enzyme, binds U5NU, and NPHI hydrolyzes ATP to release the transcript. NPHI can release transcripts independent of VTF and U5NU if vRNAP is not actively elongating. However, VTF and U5NU are required for transcript release from an elongating vRNAP, suggesting that the function of VTF and U5NU may be to stall the polymerase. Here we demonstrate that VTF inhibits transcription elongation by enhancing vRNAP pausing. Hence VTF provides the connection between the termination signal in the RNA transcript and viral RNA polymerase to initiate transcription termination. We also provide evidence that a second cis-acting element downstream of U5NU influences the location and efficiency of early gene transcription termination.

  8. Shaping the tumor microenvironment with Modified Vaccinia Virus Ankara and TLR9 ligand

    PubMed Central

    Préville, Xavier; Rittner, Karola; Fend, Laetitia

    2015-01-01

    Our preclinical data demonstrate that an intravenous injection of Modified Vaccinia virus Ankara induces CD8+ lymphocytes to infiltrate organs to control the growth of orthotopic renal carcinoma upon combination with a toll-like receptor 9 agonist. Such shaping of the tumor microenvironment could constitute the basis of more effective clinical protocols of tumor immunotherapy. PMID:26155396

  9. Novel vaccines against influenza viruses

    PubMed Central

    Kang, Sang-Moo; Song, Jae-Min; Compans, Richard W.

    2011-01-01

    Killed and live attenuated influenza virus vaccines are effective in preventing and curbing the spread of influenza epidemics when the strains present in the vaccines are closely matched with the predicted epidemic strains. These vaccines are primarily targeted to induce immunity to the variable major target antigen, hemagglutinin (HA) of influenza virus. However, current vaccines are not effective in preventing the emergence of new pandemic or highly virulent viruses. New approaches are being investigated to develop universal influenza virus vaccines as well as to apply more effective vaccine delivery methods. Conserved vaccine targets including the influenza M2 ion channel protein and HA stalk domains are being developed using recombinant technologies to improve the level of cross protection. In addition, recent studies provide evidence that vaccine supplements can provide avenues to further improve current vaccination. PMID:21968298

  10. Enhancement of CD8(+) T-cell memory by removal of a vaccinia virus nuclear factor-κB inhibitor.

    PubMed

    Ren, Hongwei; Ferguson, Brian J; Maluquer de Motes, Carlos; Sumner, Rebecca P; Harman, Laura E R; Smith, Geoffrey L

    2015-05-01

    Factors influencing T-cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8(+) T cells and this correlates with its inhibition of nuclear factor-κB (NF-κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF-κB resulted in increased central and memory CD8(+) T-cell populations, increased CD8(+) T-cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8(+) memory T-cell function was increased following infection with vN1.I6E, with more interferon-γ production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8(+) T cells from mice infected with wild-type virus (vN1.WT). This demonstrates the importance of NF-κB activation within infected cells for long-term CD8(+) T-cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8(+) T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety.

  11. Modified vaccinia virus Ankara as a vector for suicide gene therapy.

    PubMed

    Erbs, P; Findeli, A; Kintz, J; Cordier, P; Hoffmann, C; Geist, M; Balloul, J-M

    2008-01-01

    Modified vaccinia virus Ankara (MVA) has been used successfully to express various antigens for the development of vaccines. Here we show that MVA can also be used as an efficient vector for the transfer of suicide genes to cancer cells. We have generated a new and highly potent suicide gene, FCU1, which encodes a fusion protein derived from the yeast cytosine deaminase and uracil phosphoribosyltransferase genes. We now describe the therapeutic benefit of using MVA to deliver and express the FCU1 gene in cancer cells. MVA-mediated transfer of the FCU1 gene to various human tumor cells results in the production of a bifunctional intracellular enzyme, such that exposure to the prodrug 5-FC suppresses the growth of the tumor cells both in vitro and in vivo. Moreover, we report a more potent tumor growth delay at lower doses of 5-FC using MVA-FCU1 in comparison to adenovirus encoding FCU1. Prolonged therapeutic levels of cytotoxic 5-FU were detected in tumors in mice treated with both MVA-FCU1 and 5-FC while no detectable 5-FU was found in the circulation. This original combination between MVA and FCU1 represents a potentially safe and attractive therapeutic option to test in man. PMID:17992203

  12. Delivery of Echinococcus granulosus antigen EG95 to mice and sheep using recombinant vaccinia virus.

    PubMed

    Dutton, S; Fleming, S B; Ueda, N; Heath, D D; Hibma, M H; Mercer, A A

    2012-06-01

    The tapeworm Echinococcus granulosus is the causative agent of hydatid disease and affects sheep, cattle, dogs and humans worldwide. It has a two-stage life cycle existing as worms in the gut of infected dogs (definitive host) and as cysts in herbivores and humans (intermediate host). The disease is debilitating and can be life threatening where the cysts interfere with organ function. Interruption of the hydatid life cycle in the intermediate host by vaccination may be a way to control the disease, and a protective oncosphere antigen EG95 has been shown to protect animals against challenge with E. granulosus eggs. We explored the use of recombinant vaccinia virus as a delivery vehicle for EG95. Mice and sheep were immunized with the recombinant vector, and the result monitored at the circulating antibody level. In addition, sera from immunized mice were assayed for the ability to kill E. granulosus oncospheres in vitro. Mice immunized once intranasally developed effective oncosphere-killing antibody by day 42 post-infection. Antibody responses and oncosphere killing were correlated and were significantly enhanced by boosting mice with either EG95 protein or recombinant vector. Sheep antibody responses to the recombinant vector or to EG95 protein mirrored those in mice.

  13. Oral Immunization with Recombinant Vaccinia Virus Prime and Intramuscular Protein Boost Provides Protection against Intrarectal Simian-Human Immunodeficiency Virus Challenge in Macaques

    PubMed Central

    Thippeshappa, Rajesh; Tian, Baoping; Cleveland, Brad; Guo, Wenjin; Polacino, Patricia

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 108 PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4. PMID:26718849

  14. A loss of function analysis of host factors influencing Vaccinia virus replication by RNA interference.

    PubMed

    Beard, Philippa M; Griffiths, Samantha J; Gonzalez, Orland; Haga, Ismar R; Pechenick Jowers, Tali; Reynolds, Danielle K; Wildenhain, Jan; Tekotte, Hille; Auer, Manfred; Tyers, Mike; Ghazal, Peter; Zimmer, Ralf; Haas, Jürgen

    2014-01-01

    Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics.

  15. The Immunological Relationship of the Vaccinia and Pig Pox Viruses demonstrated by Gel Diffusion

    PubMed Central

    Datt, N. S.; Orlans, E. S.

    1958-01-01

    The Ouchterlony double diffusion method in agar gel has been used to study the antigens of the vaccinia and pig pox viruses and their corresponding antibodies. The existence of a common antigenic constituent in the two viruses has been demonstrated. The sensitivity of the method was found to be adequate for sera giving complement fixation titres of 1/80. The complications arising from the presence of antibodies to heterologous (host) antigens are illustrated. ImagesFIG. 6FIG. 7 PMID:13513144

  16. Relationship between RNA polymerase II and efficiency of vaccinia virus replication.

    PubMed Central

    Wilton, S; Dales, S

    1989-01-01

    It is clear from previous studies that host transcriptase or RNA polymerase II (pol II) has a role in poxvirus replication. To elucidate the participation of this enzyme further, in this study we examined several parameters related to pol II during the cycle of vaccinia virus infection in L-strain fibroblasts, HeLa cells, and L6H9 rat myoblasts. Nucleocytoplasmic transposition of pol II into virus factories and virions was assessed by immunofluorescence and immunoblotting by using anti-pol II immunoglobulin G. RNA polymerase activities were compared in nuclear extracts containing crude enzyme preparations. Rates of translation into cellular or viral polypeptides were ascertained by labeling with [35S]methionine. In L and HeLa cells, which produced vaccinia virus more abundantly, the rates of RNA polymerase and translation in controls and following infection were higher than in myoblasts. The data on synthesis and virus formation could be correlated with observations on transmigration of pol II, which was more efficient and complete in L and HeLa cells. The stimulus for pol II to leave the nucleus required the expression of both early and late viral functions. On the basis of current and past information, we suggest that mobilization of pol II depends on the efficiency of vaccina virus replication and furthermore that control over vaccinia virus production by the host is related to the content or availability (or both) of pol II in different cell types. Images PMID:2648021

  17. The vaccinia virus-encoded Bcl-2 homologues do not act as direct Bax inhibitors.

    PubMed

    Postigo, Antonio; Way, Michael

    2012-01-01

    Many viruses, including members of several poxvirus genera, encode inhibitors that block apoptosis by simultaneously binding the proapoptotic Bcl-2 proteins Bak and Bax. The Orthopoxvirus vaccinia virus encodes the Bcl-2-like F1 protein, which sequesters Bak but not Bax. However, N1, a potent virulence factor, is reported to be antiapoptotic and to interact with Bax. Here we investigated whether vaccinia virus inhibits Bak/Bax-dependent apoptosis via the cooperative action of F1 and N1. We found that Western Reserve (WR) and ΔN1L viruses inhibited drug- and infection-induced apoptosis equally. Meanwhile, infections with ΔF1L or ΔN1L/F1L virus resulted in similar levels of Bax activation and apoptosis. Outside the context of infection, N1 did not block drug- or Bax-induced cell death or interact with Bax. In addition to F1 and N1, vaccinia virus encodes further structural homologs of Bcl-2 proteins that are conserved in orthopoxviruses, including A46, A52, B14, C1, C6, C16/B22, K7, and N2. However, we found that these do not associate with Bax or inhibit drug-induced cell death. Based on our findings that N1 is not an antiapoptotic protein, we propose that the F1 orthologs represent the only orthopoxvirus Bcl-2 homolog to directly inhibit the Bak/Bax checkpoint.

  18. Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors.

    PubMed

    Falkner, F G; Moss, B

    1988-06-01

    Mycophenolic acid, an inhibitor of purine metabolism, was shown to block the replication of vaccinia virus in normal cell lines. This observation led to the development of a dominant one-step plaque selection system, based on expression of the Escherichia coli gpt gene, for the isolation of recombinant vaccinia viruses. Synthesis of xanthine-guanine phosphoribosyltransferase enabled only the recombinant viruses to form large plaques in a selective medium containing mycophenolic acid, xanthine, and hypoxanthine. To utilize the selection system efficiently, we constructed a series of plasmids that contain the E. coli gpt gene and allow insertion of foreign genes into multiple unique restriction endonuclease sites in all three reading frames between the translation initiation codon of a strong late promoter and synthetic translation termination sequences. The selection-expression cassette is flanked by vaccinia virus DNA that directs homologous recombination into the virus genome. The new vectors allow high-level expression of complete or partial open reading frames and rapid construction of recombinant viruses by facilitating the cloning steps and by simplifying their isolation. The system was tested by cloning the E. coli beta-galactosidase gene; in 24 h, this enzyme accounted for approximately 3.5% of the total infected-cell protein.

  19. Apoptosis and necrosis in vaccinia virus-infected HeLa G and BSC-40 cells.

    PubMed

    Liskova, Jana; Knitlova, Jarmila; Honner, Richard; Melkova, Zora

    2011-09-01

    In most cells, vaccinia virus (VACV) infection is considered to cause a lytic cell death, an equivalent of necrosis. However, upon infection of the epithelial cell lines HeLa G and BSC-40 with VACV strain Western Reserve (WR), we have previously observed an increased activation of and activity attributable to caspases, a typical sign of apoptosis. In this paper, we have further analyzed the type of cell death in VACV-infected cells HeLa G and BSC-40. In a cell-based flow cytometric assay, we showed a specific activation of caspase-2 and 4 in HeLa G and BSC-40 cells infected with VACV, strain WR, while we did not find any effects of inhibitors of calpain and cathepsin D and E. The actual activity of the two caspases, but also of caspase-3, was then confirmed in lysates of infected HeLa G, but not in BSC-40 cells. Accordingly, poly(ADP)-ribose polymerase (PARP) cleavage was found increased only in infected HeLa G cells. Consequently, we have determined morphological features of apoptosis and/or activity of the executioner caspase-3 in infected HeLa G cells in situ, while only a background apoptosis was observed in infected BSC-40 cells. Finally, vaccination strains Dryvax and Praha were found to induce apoptosis in both HeLa G and BSC-40 cells, as characterized morphologically and by PARP cleavage. These findings may be important for understanding the differences in VACV-host interactions and post-vaccination complications in different individuals.

  20. IL-18 Expression Results in a Recombinant Vaccinia Virus That Is Highly Attenuated and Immunogenic

    PubMed Central

    Verardi, Paulo H.; Legrand, Fatema A.; Chan, Kenneth S.; Peng, Yue; Jones, Leslie A.

    2014-01-01

    Interferon-γ (IFN-γ) is an attenuating factor for vaccinia virus (VACV), decreasing its virulence in vivo by more than a million fold. It is also a highly effective adjuvant when administered at the time of immunization with protein antigens. However, recombinant VACV (rVACV) vaccines expressing IFN-γ do not induce enhanced immune responses. It is possible that the IFN-γ expressed by rVACVs induces both an antiviral state and increased immunological clearance, thus resulting in decreased levels of antigen expression due to reduced viral replication and spread. We conjectured that delaying expression of IFN-γ would result in enhanced production of antigens by rVACVs thus resulting in increased immune responses to foreign antigens. Interleukin (IL)-18, also known as IFN-γ inducing factor, is a cytokine that induces T and NK cells to produce IFN-γ. In this study, we demonstrated that an rVACV expressing bioactive murine IL-18 replicated to low but detectable levels in vivo, unlike an rVACV expressing IFN-γ. Moreover, the rVACV expressing IL-18 was significantly attenuated in both immunocompromised and immunocompetent mice. This attenuation was dependent on IFN-γ, as IL-18 expression failed to attenuate VACV in IFN-γ knock-out mice. Cytotoxic T-cell (CTL) and anamnestic antibody responses were slightly increased in animals vaccinated with the rVACV expressing IL-18. Thus, induction of IFN-γ because of IL-18 expression resulted in an rVACV that replicated to low but detectable levels in vivo, yet elicited slightly better CTL and anamnestic humoral immune responses. PMID:24168450

  1. Protection of mice from respiratory Sendai virus infections by recombinant vaccinia viruses.

    PubMed

    Takao, S I; Kiyotani, K; Sakaguchi, T; Fujii, Y; Seno, M; Yoshida, T

    1997-01-01

    Mechanisms of protection of mice from Sendai virus, which is exclusively pneumotropic and causes a typical respiratory disease, by immunization with recombinant vaccinia viruses (RVVs) were investigated. Although the RVV carrying a hemagglutinin-neuraminidase gene of Sendai virus (Vac-HN) propagated in the noses and lungs of mice by either intranasal (i.n.) or intraperitoneal (i.p.) inoculation, no vaccinia virus antigens were detected in the mucosal layer of upper and lower airways of the i.p.-inoculated mice. The mice immunized i.n. with Vac-HN or Vac-F (the RVV carrying a fusion protein gene of Sendai virus) demonstrated the strong resistance to Sendai virus challenge both in the lung and in the nose, whereas the i.p.-immunized mice showed almost no resistance in the nose but showed a partial resistance in the lung. Titration of Sendai virus-specific antibodies in the nasal wash (NW), bronchoalveolar lavage (BAL), and serum collected from the Vac-F-immunized mice showed that the NW from the i.n.-immunized mice contained immunoglobulin A (IgA) antibodies but no IgG and the BAL from the mice contained both IgA and IgG antibodies. On the other hand, neither IgA nor IgG antibodies were detected in the NW from the i.p.-immunized mice and only IgG antibodies were detected in the BAL, although both i.n.- and i.p.-immunized mice exhibited similar levels of serum IgG, IgA, and neutralizing antibodies. The resistance to Sendai virus in the noses of i.n.-immunized mice could be abrogated by the intranasal instillation of anti-mouse IgA but not of anti-IgG antiserum, while the resistance in the lung was not significantly abrogated by such treatments. These results demonstrate that IgA is a major mediator for the immunity against Sendai virus induced by the RVVs and IgG is a supplementary one, especially in the lung, and that the RVV should be intranasally inoculated to induce an efficient mucosal immunity even if it has a pantropic nature.

  2. Characterization of a molluscum contagiosum virus homolog of the vaccinia virus p37K major envelope antigen.

    PubMed

    Blake, N W; Porter, C D; Archard, L C

    1991-07-01

    We present the first nucleotide sequence data for molluscum contagiosum virus (MCV), an unclassified poxvirus. A 2,276-bp XhoI fragment from a near left-terminal fragment of MCV subtype I (MCVI) and a 1,920-bp XhoI fragment from the corresponding locus of MCV subtype II (MCVII) were sequenced and analyzed for open reading frames (ORFs). A large, complete ORF of 1,167 bp was present in both fragments. The putative polypeptide has a calculated molecular mass of 43 kDa (p43K protein) and was shown to have a high degree of homology to the vaccinia virus p37K major envelope antigen (40% amino acid identity and 22% conservative changes). The nucleotide content of the MCV fragments sequenced was 66% G or C. The codon usage within the gene for p43K reflected this high G + C content, with position 3 of codons being predominantly G or C (82 and 87% for MCVI and MCVII, respectively). The MCV p43K-encoding gene has motifs immediately upstream which are similar to those required for vaccinia virus late gene expression. The location and direction of transcription of the MCV p43K-encoding gene were equivalent to those of the vaccinia virus p37K gene, revealing similarity in genetic organization between MCV and vaccinia virus. Another, incomplete ORF was identified downstream of the p43K-encoding gene in both MCVI and MCVII. The sequence immediately upstream of this ORF overlapped the termination codon of the p43K-encoding gene and contained a motif which had homology to the derived consensus sequence for vaccinia virus early gene promoters.

  3. Myristoylation increases the CD8+T-cell response to a GFP prototype antigen delivered by modified vaccinia virus Ankara.

    PubMed

    Marr, Lisa; Lülf, Anna-Theresa; Freudenstein, Astrid; Sutter, Gerd; Volz, Asisa

    2016-04-01

    Activation of CD8(+)T-cells is an essential part of immune responses elicited by recombinant modified vaccinia virus Ankara (MVA). Strategies to enhance T-cell responses to antigens may be particularly necessary for broadly protective immunization against influenza A virus infections or for candidate vaccines targeting chronic infections and cancer. Here, we tested recombinant MVAs that targeted a model antigen, GFP, to different localizations in infected cells. In vitro characterization demonstrated that GFP accumulated in the nucleus (MVA-nls-GFP), associated with cellular membranes (MVA-myr-GFP) or was equally distributed throughout the cell (MVA-GFP). On vaccination, we found significantly higher levels of GFP-specific CD8(+)T-cells in MVA-myr-GFP-vaccinated BALB/c mice than in those immunized with MVA-GFP or MVA-nls-GFP. Thus, myristoyl modification may be a useful strategy to enhance CD8(+)T-cell responses to MVA-delivered target antigens. PMID:26864442

  4. Production and characterisation of a monoclonal antibody to human papillomavirus type 16 using recombinant vaccinia virus.

    PubMed

    McLean, C S; Churcher, M J; Meinke, J; Smith, G L; Higgins, G; Stanley, M; Minson, A C

    1990-06-01

    A monoclonal antibody was raised against the major capsid protein L1 of human papillomavirus type 16, using a recombinant vaccinia virus that expresses the L1 protein, as a target for screening. This antibody, designated CAMVIR-1, reacted with a 56 kilodalton protein in cells infected with L1-vaccinia virus, and the protein was present in a predominantly nuclear location. The antibody also detects the HPV-16 L1 antigen in formalin fixed, paraffin wax embedded biopsy specimens and on routine cervical smears. The antibody reacts strongly and consistently with biopsy specimens containing HPV-16 or HPV-33, but very weak reactions were occasionally observed with biopsy specimens or smears containing HPV-6 or HPV-11. The potential advantages of using a vaccinia recombinant are (i) the target protein is synthesised in a eukoryotic cell so that its "processing" and location are normal; (ii) cells infected with vaccinia recombinants can be subjected to various fixing procedures similar to those used for routine clinical material. This greatly increases the probability that an identified antibody will be useful in a clinical setting.

  5. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces.

    PubMed

    Sagripanti, Jose-Luis; Lytle, C David

    2011-03-01

    Germicidal UV (also known as UVC) provides a means to decontaminate infected environments as well as a measure of viral sensitivity to sunlight. The present study determined UVC inactivation slopes (and derived D(37) values) of viruses dried onto nonporous (glass) surfaces. The data obtained indicate that the UV resistance of Lassa virus is higher than that of Ebola virus. The UV sensitivity of vaccinia virus (a surrogate for variola virus) appeared intermediate between that of the two virulent viruses studied. In addition, the three viruses dried on surfaces showed a relatively small but significant population of virions (from 3 to 10 % of virus in the inoculum) that appeared substantially more protected by their environment from the effect of UV than the majority of virions tested. The findings reported in this study should assist in estimating the threat posed by the persistence of virus in environments contaminated during epidemics or after an accidental or intentional release. PMID:21104283

  6. Mutagenesis of the palmitoylation site in vaccinia virus envelope glycoprotein B5.

    PubMed

    Lorenzo, María M; Sánchez-Puig, Juana M; Blasco, Rafael

    2012-04-01

    The outer envelope of vaccinia virus extracellular virions is derived from intracellular membranes that, at late times in infection, are enriched in several virus-encoded proteins. Although palmitoylation is common in vaccinia virus envelope proteins, little is known about the role of palmitoylation in the biogenesis of the enveloped virus. We have studied the palmitoylation of B5, a 42 kDa type I transmembrane glycoprotein comprising a large ectodomain and a short (17 aa) cytoplasmic tail. Mutation of two cysteine residues located in the cytoplasmic tail in close proximity to the transmembrane domain abrogated palmitoylation of the protein. Virus mutants expressing non-palmitoylated versions of B5 and/or lacking most of the cytoplasmic tail were isolated and characterized. Cell-to-cell virus transmission and extracellular virus formation were only slightly affected by those mutations. Notably, B5 versions lacking palmitate showed decreased interactions with proteins A33 and F13, but were still incorporated into the virus envelope. Expression of mutated B5 by transfection into uninfected cells showed that both the cytoplasmic tail and palmitate have a role in the intracellular transport of B5. These results indicate that the C-terminal portion of protein B5, while involved in protein transport and in protein-protein interactions, is broadly dispensable for the formation and egress of infectious extracellular virus and for virus transmission.

  7. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine

    SciTech Connect

    Holzer, Georg W. . E-mail: falknef@baxter.com

    2005-07-05

    The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes.

  8. [Gene technology in the diagnosis of viruses and vaccine development].

    PubMed

    Löwer, J

    1988-03-01

    The development of genetechnological methods since the beginning of the 1970's allowed the molecular cloning of partial or complete viral genomes and the sequencing of their nucleic acids. On this basis, new tools for viral diagnostics are available: molecular probes for hybridization techniques and synthetic peptides or highly purified proteins for the specific detection of antibodies. While the role of synthetic peptides as vaccines seems to be limited, complete viral surface proteins produced by gene technological methods are already used for vaccination in man. The advantages and disadvantages of production in bacteria, in yeast and in higher eukaryotic cells of polypeptides designed as subunit vaccines are discussed. An additional, attractive model is the synthesis of antigens immediately in the host, directed by a recombinant vaccinia virus. Another promising approach is the establishment of potent and safe live vaccines by the introduction of defined mutations or deletions into a viral genome, based on the previous elucidation of the molecular mechanism of attenuation.

  9. Expression of African swine fever virus envelope protein j13L inhibits vaccinia virus morphogenesis.

    PubMed

    Jacobs, S C; Dixon, L K; Brookes, S M; Smith, G L

    1998-05-01

    The African swine fever virus (ASFV) strain Malawi LIL20/1 open reading frame (ORF) j13L was expressed in vaccinia virus (VV) from a strong synthetic late promoter as either a complete ORF (vSJ1) or lacking codons 1-31 (vSJ2). Each recombinant VV produced a small plaque which rapidly reverted to a normal size upon passage. The yield of infectious virus from a single cycle infection with vSJ1 or vSJ2 was reduced 50- to 100-fold compared to wild-type (wt) and a revertant virus (vSJ5) in which the j13L ORF was removed and the VV thymidine kinase gene restored. PCR analysis of nine spontaneous large plaque revertant viruses, recovered after passage of vSJ1 in BSC-40 cells, showed that six had lost the j13L ORF and the co-inserted beta-galactosidase gene. Three viruses retained the j13L and beta-galactosidase genes, but in each case the j13L protein was not expressed due to a different single base deletion near the 5' end of the j13L coding region which introduced a stop codon a short distance downstream. The formation of intracellular mature virus (IMV) and extracellular enveloped virus was reduced 50- to 75-fold in cells infected with vSJ1 compared to wt VV and revertant vSJ5. Electron microscopy showed aberrant IMV precursor structures in vSJ1-infected cells, and immunoelectron microscopy demonstrated that these structures contained j13L protein. These results indicate that expression of the j13L protein is toxic for VV replication due to interference with VV morphogenesis prior to IMV formation.

  10. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis.

    PubMed

    Drillien, R; Spehner, D; Kirn, A

    1978-12-01

    Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by UV irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective.

  11. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer

    PubMed Central

    Mansfield, D C; Kyula, J N; Rosenfelder, N; Chao-Chu, J; Kramer-Marek, G; Khan, A A; Roulstone, V; McLaughlin, M; Melcher, A A; Vile, R G; Pandha, H S; Khoo, V; Harrington, K J

    2016-01-01

    Oncolytic strains of vaccinia virus are currently in clinical development with clear evidence of safety and promising signs of efficacy. Addition of therapeutic genes to the viral genome may increase the therapeutic efficacy of vaccinia. We evaluated the therapeutic potential of vaccinia virus expressing the sodium iodide symporter (NIS) in prostate cancer models, combining oncolysis, external beam radiotherapy and NIS-mediated radioiodide therapy. The NIS-expressing vaccinia virus (VV-NIS), GLV-1h153, was tested in in vitro analyzes of viral cell killing, combination with radiotherapy, NIS expression, cellular radioiodide uptake and apoptotic cell death in PC3, DU145, LNCaP and WPMY-1 human prostate cell lines. In vivo experiments were carried out in PC3 xenografts in CD1 nude mice to assess NIS expression and tumor radioiodide uptake. In addition, the therapeutic benefit of radioiodide treatment in combination with viral oncolysis and external beam radiotherapy was measured. In vitro viral cell killing of prostate cancers was dose- and time-dependent and was through apoptotic mechanisms. Importantly, combined virus therapy and iodizing radiation did not adversely affect oncolysis. NIS gene expression in infected cells was functional and mediated uptake of radioiodide both in vitro and in vivo. Therapy experiments with both xenograft and immunocompetent Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mouse models showed that the addition of radioiodide to VV-NIS-infected tumors was more effective than each single-agent therapy, restricting tumor growth and increasing survival. In conclusion, VV-NIS is effective in prostate cancer models. This treatment modality would be an attractive complement to existing clinical radiotherapy practice. PMID:26814609

  12. Characterization of a New Vaccinia virus Isolate Reveals the C23L Gene as a Putative Genetic Marker for Autochthonous Group 1 Brazilian Vaccinia virus

    PubMed Central

    Oliveira, Danilo B.; Franco-Luiz, Ana P. M.; Campos, Rafael K.; Guedes, Maria I. M.; Fonseca, Flávio G.; Trindade, Giliane S.; Drumond, Betânia P.; Kroon, Erna G.; Abrahão, Jônatas S.

    2012-01-01

    Since 1999, several Vaccinia virus (VACV) isolates, the etiological agents of bovine vaccinia (BV), have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV) and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005) molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates. PMID:23189200

  13. Characterization of a new Vaccinia virus isolate reveals the C23L gene as a putative genetic marker for autochthonous Group 1 Brazilian Vaccinia virus.

    PubMed

    Assis, Felipe L; Almeida, Gabriel M F; Oliveira, Danilo B; Franco-Luiz, Ana P M; Campos, Rafael K; Guedes, Maria I M; Fonseca, Flávio G; Trindade, Giliane S; Drumond, Betânia P; Kroon, Erna G; Abrahão, Jônatas S

    2012-01-01

    Since 1999, several Vaccinia virus (VACV) isolates, the etiological agents of bovine vaccinia (BV), have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV) and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005) molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates.

  14. Enteric Immunization of Mice Against Influenza with Recombinant Vaccinia

    NASA Astrophysics Data System (ADS)

    Meitin, Catherine A.; Bender, Bradley S.; Small, Parker A., Jr.

    1994-11-01

    Intrajejunal administration to mice of a recombinant vaccinia virus containing the influenza virus hemagglutinin gene induced IgA antibody in nasal, gut, and vaginal secretions. It also induced IgG antibody in serum and cell-mediated immunity. The immunization provided significant protection against an influenza virus challenge. This work suggests that enteric-coated recombinant vaccinia could be an orally administered, inexpensive, multivalent, temperature-stable, safe, and effective vaccine for children that could be particularly useful in developing nations, where multiple injections are not easily administered. Oral administration of vaccines should also reduce children's fear of shots at the doctor's office.

  15. Advances in virus research

    SciTech Connect

    Maramorosch, K. ); Murphy, F.A. ); Shatkin, A.J. )

    1988-01-01

    This book contains eight chapters. Some of the titles are: Initiation of viral DNA replication; Vaccinia: virus, vector, vaccine; The pre-S region of hepadnavirus envelope proteins; and Archaebacterial viruses.

  16. Sequence and transcriptional analysis of the vaccinia virus HindIII I fragment.

    PubMed

    Schmitt, J F; Stunnenberg, H G

    1988-06-01

    The complete sequence of the vaccinia virus HindIII I fragment, which is composed of 6,498 base pairs, encodes six complete and two incomplete open reading frames (ORFs). Computer analysis revealed an amino acid sequence homology between ORF I 4 and the large subunit of the ribonucleotide reductase complex. The two small polypeptides derived from ORFs I 2 and I 5, with molecular weights of 8,500 and 8,700, respectively, have a very high hydrophobic amino acid sequence composition. S1 analysis revealed that ORF I 4 is expressed at early stages of infection, ORFs I 1, I 2, I 5, and I 7 are expressed in the late phase of infection, and ORF I 3 is constitutively expressed. Screening a vaccinia virus genomic library revealed a large vaccinia virus insert overlapping the HindIII I and O fragments which contains a previously undetected HindIII P fragment of approximately 300 base pairs. S1 analysis revealed an early (O1) and a late (O2) start site of transcription initiation located within the HindIII O fragment.

  17. Potent and Broadly Reactive HIV-2 Neutralizing Antibodies Elicited by a Vaccinia Virus Vector Prime-C2V3C3 Polypeptide Boost Immunization Strategy▿ †

    PubMed Central

    Marcelino, José Maria; Borrego, Pedro; Rocha, Cheila; Barroso, Helena; Quintas, Alexandre; Novo, Carlos; Taveira, Nuno

    2010-01-01

    Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism. PMID:20844029

  18. Potent and broadly reactive HIV-2 neutralizing antibodies elicited by a vaccinia virus vector prime-C2V3C3 polypeptide boost immunization strategy.

    PubMed

    Marcelino, José Maria; Borrego, Pedro; Rocha, Cheila; Barroso, Helena; Quintas, Alexandre; Novo, Carlos; Taveira, Nuno

    2010-12-01

    Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism. PMID:20844029

  19. Seven major genomic deletions of vaccinia virus Tiantan strain are sufficient to decrease pathogenicity.

    PubMed

    Li, Yiquan; Sheng, Yuan; Chu, Yunjie; Ji, Huifan; Jiang, Shuang; Lan, Tian; Li, Min; Chen, Shuang; Fan, Yuanyuan; Li, Wenjie; Li, Xiao; Sun, Lili; Jin, Ningyi

    2016-05-01

    Attenuated strain TTVAC7, as a multi-gene-deleted vaccinia virus Tiantan strain (VTT), was constructed by knocking out parts of non-essential genes related to virulence, host range and immunomodulation of VTT, and by combining double marker screening with exogenous selectable marker knockout techniques. In this study, shuttle vector plasmids pTC-EGFP, pTA35-EGFP, pTA66-EGFP, pTE-EGFP, pTB-EGFP, pTI-EGFP and pTJ-EGFP were constructed, which contained seven pairs of recombinant arms linked to the early and late strong promoter pE/L, as well as to enhanced green fluorescent protein (EGFP) as an exogenous selectable marker. BHK cells were co-transfected/infected successively with the above plasmids and VTT or gene-deleted VTT, and homologous recombination and fluorescence plaque screening methods were used to knock out the gene fragments (TC: TC7L ∼ TK2L; TA35: TA35L; TA66: TA66R; TE: TE3L ∼ TE4L; TB: TB13R; TI: TI4L; TJ: TJ2R). The Cre/LoxP system was then applied to knock out the exogenous selectable marker, and ultimately the gene-deleted attenuated strain TTVAC7 was obtained. A series of in vivo and in vitro experiments demonstrated that not only the host range of TTVAC7 could be narrowed and its toxicity weakened significantly, but its high immunogenicity was maintained at the same time. These results support the potential of TTVAC7 to be developed as a safe viral vector or vaccine. PMID:26821204

  20. Seven major genomic deletions of vaccinia virus Tiantan strain are sufficient to decrease pathogenicity.

    PubMed

    Li, Yiquan; Sheng, Yuan; Chu, Yunjie; Ji, Huifan; Jiang, Shuang; Lan, Tian; Li, Min; Chen, Shuang; Fan, Yuanyuan; Li, Wenjie; Li, Xiao; Sun, Lili; Jin, Ningyi

    2016-05-01

    Attenuated strain TTVAC7, as a multi-gene-deleted vaccinia virus Tiantan strain (VTT), was constructed by knocking out parts of non-essential genes related to virulence, host range and immunomodulation of VTT, and by combining double marker screening with exogenous selectable marker knockout techniques. In this study, shuttle vector plasmids pTC-EGFP, pTA35-EGFP, pTA66-EGFP, pTE-EGFP, pTB-EGFP, pTI-EGFP and pTJ-EGFP were constructed, which contained seven pairs of recombinant arms linked to the early and late strong promoter pE/L, as well as to enhanced green fluorescent protein (EGFP) as an exogenous selectable marker. BHK cells were co-transfected/infected successively with the above plasmids and VTT or gene-deleted VTT, and homologous recombination and fluorescence plaque screening methods were used to knock out the gene fragments (TC: TC7L ∼ TK2L; TA35: TA35L; TA66: TA66R; TE: TE3L ∼ TE4L; TB: TB13R; TI: TI4L; TJ: TJ2R). The Cre/LoxP system was then applied to knock out the exogenous selectable marker, and ultimately the gene-deleted attenuated strain TTVAC7 was obtained. A series of in vivo and in vitro experiments demonstrated that not only the host range of TTVAC7 could be narrowed and its toxicity weakened significantly, but its high immunogenicity was maintained at the same time. These results support the potential of TTVAC7 to be developed as a safe viral vector or vaccine.

  1. Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence.

    PubMed

    Ember, Stuart W J; Ren, Hongwei; Ferguson, Brian J; Smith, Geoffrey L

    2012-10-01

    Vaccinia virus (VACV) strain Western Reserve protein C4 has been characterized and its function and contribution to virus virulence assessed. Bioinformatic analysis showed that C4 is conserved in six orthopoxvirus species and shares 43 % amino acid identity with VACV protein C16, a known virulence factor. A recombinant VACV expressing a C-terminally tagged version of C4 showed that, like C16, this 37 kDa protein is expressed early during infection and localizes to both the cytoplasm and the nucleus. Functional assays using a firefly luciferase reporter plasmid under the control of a nuclear factor kappa B (NF-κB)-dependent promoter demonstrated that C4 inhibits NF-κB activation at, or downstream of, the inhibitor of kappa kinase (IKK) complex. Consistent with this, C4 inhibited interleukin-1β-induced translocation of p65 into the nucleus. A VACV lacking the C4L gene (vΔC4) showed no significant differences from wild-type virus in growth kinetics or spread in cell culture, but had reduced virulence in a murine intranasal model of infection. vΔC4-infected mice exhibited fewer symptoms, lost less weight and recovered 7 days earlier than animals infected with control viruses expressing C4. Furthermore, bronchoalveolar lavage fluid from vΔC4-infected mice had increased cell numbers at day 5 post-infection, which correlated with reduced lung virus titres from this time onward. C4 represents the ninth VACV protein to inhibit NF-κB activation and remarkably, in every case examined, loss of each protein individually caused an alteration in virus virulence, despite the presence of other NF-κB inhibitors. PMID:22791606

  2. Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence.

    PubMed

    Ember, Stuart W J; Ren, Hongwei; Ferguson, Brian J; Smith, Geoffrey L

    2012-10-01

    Vaccinia virus (VACV) strain Western Reserve protein C4 has been characterized and its function and contribution to virus virulence assessed. Bioinformatic analysis showed that C4 is conserved in six orthopoxvirus species and shares 43 % amino acid identity with VACV protein C16, a known virulence factor. A recombinant VACV expressing a C-terminally tagged version of C4 showed that, like C16, this 37 kDa protein is expressed early during infection and localizes to both the cytoplasm and the nucleus. Functional assays using a firefly luciferase reporter plasmid under the control of a nuclear factor kappa B (NF-κB)-dependent promoter demonstrated that C4 inhibits NF-κB activation at, or downstream of, the inhibitor of kappa kinase (IKK) complex. Consistent with this, C4 inhibited interleukin-1β-induced translocation of p65 into the nucleus. A VACV lacking the C4L gene (vΔC4) showed no significant differences from wild-type virus in growth kinetics or spread in cell culture, but had reduced virulence in a murine intranasal model of infection. vΔC4-infected mice exhibited fewer symptoms, lost less weight and recovered 7 days earlier than animals infected with control viruses expressing C4. Furthermore, bronchoalveolar lavage fluid from vΔC4-infected mice had increased cell numbers at day 5 post-infection, which correlated with reduced lung virus titres from this time onward. C4 represents the ninth VACV protein to inhibit NF-κB activation and remarkably, in every case examined, loss of each protein individually caused an alteration in virus virulence, despite the presence of other NF-κB inhibitors.

  3. Non-essential genes in the vaccinia virus HindIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen.

    PubMed

    Boursnell, M E; Foulds, I J; Campbell, J I; Binns, M M

    1988-12-01

    The complete nucleotide sequence of a cloned copy of the HindIII K fragment of the WR strain of vaccinia virus has been determined. Eight open reading frames (ORFs) have been identified, on the basis of size and codon usage. The predicted amino acid sequences of the putative genes have been compared to the Protein Identification Resource and to published vaccinia virus sequences. One gene, predicted to encode a 42.2K protein, is highly related to the family of serine protease inhibitors. It shows approximately 25% identity to human antithrombin III and 19% identity to the cowpox virus 38K protein gene which is also related to serine protease inhibitors. The product of another gene shows a similar high level of identity to the 37K vaccinia virus major envelope antigen. The existence of viable deletion mutants and recombinants containing foreign DNA inserted into both these genes indicates that they are non-essential.

  4. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence

    PubMed Central

    Strnadova, Pavla; Ren, Hongwei; Valentine, Robert; Mazzon, Michela; Sweeney, Trevor R.; Brierley, Ian; Smith, Geoffrey L.

    2015-01-01

    Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity. PMID:26334635

  5. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence.

    PubMed

    Strnadova, Pavla; Ren, Hongwei; Valentine, Robert; Mazzon, Michela; Sweeney, Trevor R; Brierley, Ian; Smith, Geoffrey L

    2015-09-01

    Vaccinia virus (VACV) is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169) replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity.

  6. New vaccines against influenza virus

    PubMed Central

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  7. New vaccines against influenza virus.

    PubMed

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong; Kang, Sang-Moo

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs.

  8. Computer Bytes, Viruses and Vaccines.

    ERIC Educational Resources Information Center

    Palmore, Teddy B.

    1989-01-01

    Presents a history of computer viruses, explains various types of viruses and how they affect software or computer operating systems, and describes examples of specific viruses. Available vaccines are explained, and precautions for protecting programs and disks are given. (nine references) (LRW)

  9. Determination of the promoter region of an early vaccinia virus gene encoding thymidine kinase.

    PubMed

    Weir, J P; Moss, B

    1987-05-01

    Nine recombinant vaccinia viruses that contain overlapping segments of the putative promoter region of the vaccinia virus thymidine kinase (TK) gene linked to DNA coding for the prokaryotic enzyme chloramphenicol acetyltransferase (CAT) were constructed. In each case, the RNA start site and 5 bp of DNA downstream were retained. No significant difference in CAT expression occurred as the deletion was extended from 352 to 32 bp before the RNA start site. Deletion of a further 10 bp, however, led to complete cessation of early promoter activity. Primer extension analysis of the 5' ends of the transcripts verified that the natural TK RNA start site was still used when only 32 bp of upstream DNA remained. Loss of early promoter activity was previously found when deletions were extended from 31 to 24 bp before the RNA start site of another vaccinia gene that is expressed constitutively throughout infection (M.A. Cochran, C. Puckett, and B. Moss, 1985, Proc. Natl. Acad. Sci. USA 82, 19-23). Sequence similarities in the promoter regions of these two genes were noted.

  10. Induction of neutralizing antibodies by varicella-zoster virus gpII glycoprotein expressed from recombinant vaccinia virus.

    PubMed

    Massaer, M; Haumont, M; Place, M; Bollen, A; Jacobs, P

    1993-03-01

    The gpII glycoprotein of varicella-zoster virus (VZV) was produced in CV1 cells via vaccinia virus recombinants. Two different DNA constructs were expressed: the first one encodes the complete gpII protein (gpII s+a+) and the second a truncated species lacking the membrane anchorage domain (gpII s+a-). To achieve expression both coding sequences had to be engineered at the 5' end by substituting the unusually short (24 bp) natural signal sequence by a more conventional one encoding 29 amino acids. Recombinant gpII proteins were detected in vaccinia virus-infected cells by ELISA and immunoprecipitation. Both forms of recombinant gpII proteins were produced as glycosylated single-chain molecules of respectively 110K and 90K. Upon reduction these were only partially converted into subunits. A rabbit infected with the vaccinia virus recombinant expressing the complete gpII produced antibodies which recognized VZV antigens and neutralized VZV infectivity in vitro, independent of complement.

  11. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    PubMed

    Sánchez-Puig, Juana M; Lorenzo, María M; Blasco, Rafael

    2013-01-01

    Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  12. A Vaccinia Virus Recombinant Transcribing an Alphavirus Replicon and Expressing Alphavirus Structural Proteins Leads to Packaging of Alphavirus Infectious Single Cycle Particles

    PubMed Central

    Sánchez-Puig, Juana M.; Lorenzo, María M.; Blasco, Rafael

    2013-01-01

    Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses. PMID:24130722

  13. Titration of vaccinia virus by intravenous injection of chick embryos.

    PubMed

    KAPLAN, C

    1960-01-01

    The final test of a smallpox vaccine is its capacity to prevent the disease from developing in inoculated individuals. This capacity, however, cannot be measured directly, so that other methods of assessing the efficacy of vaccine have had to be developed. A laboratory method-pock counting on the chorio-allantoic membrane of chick embryos-has recently been shown to provide a reasonably reliable estimate of the number of infective units in a given vaccine. In this paper, the author compares this pock-counting method with another method-titration by intravenous injection of chick embryos. He concludes that, although the reproducibility of titrations by intravenous injection compares very favourably with that obtained by chorio-allantoic inoculation, the former method would not be advantageous for the assay of vaccines, since it is very time-consuming and since differences in virulence might obscure comparisons between the efficacy of vaccines.

  14. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    SciTech Connect

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.

  15. Bovine respiratory syncytial virus nucleocapsid protein: mRNA sequence analysis and expression from recombinant vaccinia virus vectors.

    PubMed

    Amann, V L; Lerch, R A; Anderson, K; Wertz, G W

    1992-04-01

    The nucleotide sequence of the mRNA encoding the nucleocapsid (N) protein of bovine respiratory syncytial (BRS) virus, strain 391-2, was determined. Recombinant vectors containing a cDNA of the complete N gene were constructed, and expression of the N protein in eukaryotic cells was demonstrated using two different vector systems. The BRS virus N mRNA was 1197 nucleotides in length, exclusive of poly(A), and had a single major open reading frame that encoded a polypeptide of 391 amino acids with a calculated M(r) of 42.6K. The nucleotide and amino acid sequences of the BRS virus N gene were compared to those of human respiratory syncytial (HRS) virus strains A2 and 18537, and to BRS virus strain A51908. The level of nucleic acid identity between the N mRNA of BRS virus 391-2 and both HRS virus subtypes was 80 to 81%, whereas the identity between the two BRS virus strains was 97%. A 93 to 94% level of identity was observed between the deduced amino acid sequences of the N protein of BRS virus 391-2 and the corresponding sequences of the two HRS virus strains. The two BRS virus N proteins differed in amino acid sequence at only three positions. Recombinant BRS virus N protein was expressed using two different vector systems: in cells from a plasmid using the vaccinia virus/T7 polymerase expression system or from a recombinant vaccinia virus. N proteins synthesized by the two vector systems migrated with an electrophoretic mobility identical to that of authentic BRS virus N protein, and were precipitated by anti-BRS virus antibodies.

  16. RNA capping by the vaccinia virus guanylyltransferase. Structure of enzyme-guanylate intermediate.

    PubMed

    Roth, M J; Hurwitz, J

    1984-11-10

    GTP:RNA guanylyltransferase isolated from vaccinia virus catalyzes the transfer of GMP from GTP to the 5' terminus of RNA via an enzyme-guanylate intermediate. Incubation of the purified vaccinia RNA guanylyltransferase with [alpha- 32P]GTP and MgCl2 yields [32P]GMP covalently linked to the Mr = 95,000 subunit. The bond involves the phosphate moiety of GMP and the Ne-amino group of lysine. This was verified by treatment of the isolated 95-kDa subunit-[32P]GMP complex with sodium periodate, followed by methylamine-catalyzed beta-elimination. The product was then hydrolyzed by alkali producing 32P-labeled lysine (Ne-P)phosphate.

  17. Construction and Characterization of a Triple-Recombinant Vaccinia Virus Encoding B7-1, Interleukin 12, and a Model Tumor Antigen

    PubMed Central

    Carroll, Miles W.; Overwijk, Willem W.; Surman, Deborah R.; Tsung, Kangla; Moss, Bernard; Restifo, Nicholas P.

    2008-01-01

    Background: Construction of recombinant viruses that can serve as vaccines for the treatment of experimental murine tumors has recently been achieved. The cooperative effects of immune system modulators, including cytokines such as interleukin 12 (IL-12) and costimulatory molecules such as B7-1, may be necessary for activation of cytotoxic T lymphocytes. Thus, we have explored the feasibility and the efficacy of inclusion of these immunomodulatory molecules in recombinant virus vaccines in an experimental antitumor model in mice that uses Escherichia coli β-galactosidase as a target antigen. Methods: We developed a “cassette” system in which three loci of the vaccinia virus genome were used for homologous recombination. A variety of recombinant vaccinia viruses were constructed, including one virus, vB7/β/IL-12, that contains the following five transgenes: murine B7-1, murine IL-12 subunit p35, murine IL-12 subunit p40, E. coli lacZ (encodes β-galactosidase, the model antigen), and E. coli gpt (xanthine-guanine phosphoribosyltransferase, a selection gene). The effects of the recombinant viruses on lung metastases and survival were tested in animals that had been given an intravenous injection of β-galactosidase-expressing murine colon carcinoma cells 3 days before they received the recombinant virus by intravenous inoculation. Results: Expression of functional B7-1 and IL-12 by virally infected cells was demonstrated in vitro. Lung tumor nodules (i.e., metastases) were reduced in mice by more than 95% after treatment with the virus vB7/β/IL-12; a further reduction in lung tumor nodules was observed when exogenous IL-12 was also given. Greatest survival of tumor-bearing mice was observed in those treated with viruses encoding β-galactosidase and B7-1 plus exogenous IL-12. Conclusion: This study shows the feasibility of constructing vaccinia viruses that express tumor antigens and multiple immune cofactors to create unique immunologic microenvironments that

  18. Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses.

    PubMed

    Snyder, James T; Belyakov, Igor M; Dzutsev, Amiran; Lemonnier, François; Berzofsky, Jay A

    2004-07-01

    CD8(+) T lymphocytes have been shown to be involved in controlling poxvirus infection, but no protective cytotoxic T-lymphocyte (CTL) epitopes are defined for variola virus, the causative agent of smallpox, or for vaccinia virus. Of several peptides in vaccinia virus predicted to bind HLA-A2.1, three, VETFsm(498-506), A26L(6-14), and HRP2(74-82), were found to bind HLA-A2.1. Splenocytes from HLA-A2.1 transgenic mice immunized with vaccinia virus responded only to HRP2(74-82) at 1 week and to all three epitopes by ex vivo enzyme-linked immunosorbent spot (ELISPOT) assay at 4 weeks postimmunization. To determine if these epitopes could elicit a protective CD8(+) T-cell response, we challenged peptide-immunized HLA-A2.1 transgenic mice intranasally with a lethal dose of the WR strain of vaccinia virus. HRP2(74-82) peptide-immunized mice recovered from infection, while naïve mice died. Depletion of CD8(+) T cells eliminated protection. Protection of HHD-2 mice, lacking mouse class I major histocompatibility complex molecules, implicates CTLs restricted by human HLA-A2.1 as mediators of protection. These results suggest that HRP2(74-82), which is shared between vaccinia and variola viruses, may be a CD8(+) T-cell epitope of vaccinia virus that will provide cross-protection against smallpox in HLA-A2.1-positive individuals, representing almost half the population.

  19. Non-replicating recombinant vaccinia virus expressing CD80 to enhance T-cell stimulation.

    PubMed

    Zajac, Paul

    2009-01-01

    The following method describes the generation of a recombinant vaccinia virus expressing a costimulatory molecule (human CD80 or B7.1).The procedure first requires the cloning, by classical methods not described here, of the gene of interest, e.g. CD80, into a vaccinia shuttle plasmid under the control of a virus-specific promoter enabling a transcription during the early phase of infection. Flanking the insert, the plasmid contains viral sequences and a selection maker needed for the insertion into the viral genome. The successive plaque isolation of recombinant virus on cell monolayer described here is based on the transient "gpt" selection system which enables other insertions in different loci of the same virus. Finally, after verification amplification and titration of the recombinant vector, replication will be impaired by a psoralen-UV treatment in order to produce a non-replicating virus. Expression and function of inserts, following infection of cells, are verified by specific phenotypic and functional assays.

  20. Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22

    PubMed Central

    Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen

    2015-01-01

    ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex

  1. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen

    PubMed Central

    Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano

    2015-01-01

    In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive

  2. Distinct Gene Expression Profiles in Peripheral Blood Mononuclear Cells from Patients Infected with Vaccinia Virus, Yellow Fever 17D Virus, or Upper Respiratory Infections Running Title: PBMC Expression Response to Viral Agents

    PubMed Central

    Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.

    2007-01-01

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872

  3. Vaccination of chimpanzees against infection by the hepatitis C virus.

    PubMed Central

    Choo, Q L; Kuo, G; Ralston, R; Weiner, A; Chien, D; Van Nest, G; Han, J; Berger, K; Thudium, K; Kuo, C

    1994-01-01

    A high incidence of community-acquired hepatitis C virus infection that can lead to the progressive development of chronic active hepatitis, liver cirrhosis, and primary hepatocellular carcinoma occurs throughout the world. A vaccine to control the spread of this agent that represents a major cause of chronic liver disease is therefore needed. Seven chimpanzees (Pan troglodytes) have been immunized with both putative envelope glycoproteins [E1 (gp33) and E2 (gp72)] that were copurified from HeLa cells infected with a recombinant vaccinia virus expression vector. Despite the induction of a weak humoral immune response to these viral glycoproteins in experimentally infected chimpanzees, a strong humoral immune response was obtained in all vaccines. The five highest responders showed complete protection against an i.v. challenge with homologous hepatitis C virus 1. The remaining two vaccines became infected, but both infection and disease may have been ameliorated in comparison with four similarly challenged control chimpanzees, all of which developed acute hepatitis and chronic infections. These results provide considerable encouragement for the eventual control of hepatitis C virus infection by vaccination. PMID:7509068

  4. Efficient cleavage of p220 by poliovirus 2Apro expression in mammalian cells: effects on vaccinia virus.

    PubMed

    Aldabe, R; Feduchi, E; Novoa, I; Carrasco, L

    1995-10-24

    Poliovirus protease 2A cleaves p220, a component of initiation factor eIF-4F. Polyclonal antibodies that recognize p220 and the cleaved products from different species have been raised. Transfection of several cell lines with poliovirus 2Apro cloned in different plasmids leads to efficient cleavage of p220 upon infection with VT7, a recombinant vaccinia virus that expresses the T7 RNA polymerase. Under these conditions vaccinia virus protein synthesis is severely inhibited, while expression of poliovirus protein 2C from a similar plasmid has no effect. These results show by the first time the effects of p220 cleavage on vaccinia virus translation in the infected cells.

  5. An improved high pressure freezing and freeze substitution method to preserve the labile vaccinia virus nucleocapsid.

    PubMed

    Jesus, Desyree Murta; Moussatche, Nissin; Condit, Richard C

    2016-07-01

    In recent years, high pressure freezing and freeze substitution have been widely used for electron microscopy to reveal viral and cellular structures that are difficult to preserve. Vaccinia virus, a member of the Poxviridae family, presents one of the most complex viral structures. The classical view of vaccinia virus structure consists of an envelope surrounding a biconcave core, with a lateral body in each concavity of the core. This classical view was challenged by Peters and Muller (1963), who demonstrated the presence of a folded tubular structure inside the virus core and stated the difficulty in visualizing this structure, possibly because it is labile and cannot be preserved by conventional sample preparation. Therefore, this tubular structure, now called the nucleocapsid, has been mostly neglected over the years. Earlier studies were able to preserve the nucleocapsid, but with low efficiency. In this study, we report the protocol (and troubleshooting) that resulted in preservation of the highest numbers of nucleocapsids in several independent preparations. Using this protocol, we were able to demonstrate an interdependence between the formation of the virus core wall and the nucleocapsid, leading to the hypothesis that an interaction exists between the major protein constituents of these compartments, A3 (core wall) and L4 (nucleocapsid). Our results show that high pressure freezing and freeze substitution can be used in more in-depth studies concerning the nucleocapsid structure and function.

  6. Granzyme B Inhibits Vaccinia Virus Production through Proteolytic Cleavage of Eukaryotic Initiation Factor 4 Gamma 3

    PubMed Central

    Marcet-Palacios, Marcelo; Duggan, Brenda Lee; Shostak, Irene; Barry, Michele; Geskes, Tracy; Wilkins, John A.; Yanagiya, Akiko; Sonenberg, Nahum; Bleackley, R. Chris

    2011-01-01

    Cytotoxic T lymphocytes (CTLs) are the major killer of virus-infected cells. Granzyme B (GrB) from CTLs induces apoptosis in target cells by cleavage and activation of substrates like caspase-3 and Bid. However, while undergoing apoptosis, cells are still capable of producing infectious viruses unless a mechanism exists to specifically inhibit viral production. Using proteomic approaches, we identified a novel GrB target that plays a major role in protein synthesis: eukaryotic initiation factor 4 gamma 3 (eIF4G3). We hypothesized a novel role for GrB in translation of viral proteins by targeting eIF4G3, and showed that GrB cleaves eIF4G3 specifically at the IESD1408S sequence. Both GrB and human CTL treatment resulted in degradation of eIF4G3 and reduced rates of translation. When Jurkat cells infected with vaccinia virus were treated with GrB, there was a halt in viral protein synthesis and a decrease in production of infectious new virions. The GrB-induced inhibition of viral translation was independent of the activation of caspases, as inhibition of protein synthesis still occurred with addition of the pan-caspase inhibitor zVAD-fmk. This demonstrated for the first time that GrB prevents the production of infectious vaccinia virus by targeting the host translational machinery. PMID:22194691

  7. Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene.

    PubMed Central

    Rodriguez, J F; Kahn, J S; Esteban, M

    1986-01-01

    A rabbit poxvirus genomic library contained within the expression vector lambda gt11 was screened with polyclonal antiserum prepared against vaccinia virus nucleic acid-dependent nucleoside triphosphatase (NTPase)-I enzyme. Five positive phage clones containing from 0.72- to 2.5-kilobase-pair (kbp) inserts expressed a beta-galactosidase fusion protein that was reactive by immunoblotting with the NTPase-I antibody. Hybridization analysis allowed the location of this gene within the vaccinia HindIIID restriction fragment. From the known nucleotide sequence of the 16-kbp vaccinia HindIIID fragment, we identified a region that contains a 1896-base open reading frame coding for a 631-amino acid protein. Analysis of the complete sequence revealed a highly basic protein, with hydrophilic COOH and NH2 termini, various hydrophobic domains, and no significant homology to other known proteins. Translational studies demonstrate that NTPase-I belongs to a late class of viral genes. This protein is highly conserved among Orthopoxviruses. Images PMID:3025846

  8. Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene.

    PubMed

    Rodriguez, J F; Kahn, J S; Esteban, M

    1986-12-01

    A rabbit poxvirus genomic library contained within the expression vector lambda gt11 was screened with polyclonal antiserum prepared against vaccinia virus nucleic acid-dependent nucleoside triphosphatase (NTPase)-I enzyme. Five positive phage clones containing from 0.72- to 2.5-kilobase-pair (kbp) inserts expressed a beta-galactosidase fusion protein that was reactive by immunoblotting with the NTPase-I antibody. Hybridization analysis allowed the location of this gene within the vaccinia HindIIID restriction fragment. From the known nucleotide sequence of the 16-kbp vaccinia HindIIID fragment, we identified a region that contains a 1896-base open reading frame coding for a 631-amino acid protein. Analysis of the complete sequence revealed a highly basic protein, with hydrophilic COOH and NH2 termini, various hydrophobic domains, and no significant homology to other known proteins. Translational studies demonstrate that NTPase-I belongs to a late class of viral genes. This protein is highly conserved among Orthopoxviruses.

  9. RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection.

    PubMed

    Mercer, Jason; Snijder, Berend; Sacher, Raphael; Burkard, Christine; Bleck, Christopher Karl Ernst; Stahlberg, Henning; Pelkmans, Lucas; Helenius, Ari

    2012-10-25

    A two-step, automated, high-throughput RNAi silencing screen was used to identify host cell factors required during vaccinia virus infection. Validation and analysis of clustered hits revealed previously unknown processes during virus entry, including a mechanism for genome uncoating. Viral core proteins were found to be already ubiquitinated during virus assembly. After entering the cytosol of an uninfected cell, the viral DNA was released from the core through the activity of the cell's proteasomes. Next, a Cullin3-based ubiquitin ligase mediated a further round of ubiquitination and proteasome action. This was needed in order to initiate viral DNA replication. The results accentuate the value of large-scale RNAi screens in providing directions for detailed cell biological investigation of complex pathways. The list of cell functions required during poxvirus infection will, moreover, provide a resource for future virus-host cell interaction studies and for the discovery of antivirals. PMID:23084750

  10. Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant.

    PubMed

    Kotwal, G J; Moss, B

    1988-12-01

    The principal objectives of this study were to analyze the structure and coding potential of a long segment of DNA missing from a previously isolated (B. Moss, E. Winters, and J. A. Cooper (1981) J. Virol. 40, 387-395) attenuated variant of vaccinia virus strain WR and to examine the precise changes in the genome accompanying the deletion. The sequences of a 14.5-kbp region located at the left end of the standard vaccinia virus genome, extending from within the inverted terminal repetition (ITR) of the HindIII C fragment to the end of the HindIII N fragment, and of a 3-kbp segment from a corresponding region of the variant genome were determined. A comparison of these sequences revealed that the variant contained a deletion of 12 kbp and an insertion of 2.1 kbp. The origin of the inserted DNA was traced to the HindIII B region by using oligonucleotide probes indicating that a transposition of unique DNA located adjacent to the right ITR had occurred. Structural analysis indicated no extensive homologies, nucleotide substitutions, additions, or deletions at the boundaries of the transposed DNA. Examination of the right end of the variant genome indicated that a copy of the transposed DNA was still present and, therefore, the length of the ITR had been increased by 2.1 kbp. The variant genome could have formed by a mechanism that resulted in the replacement of a 22-kbp left-terminal fragment with a 12-kbp right-terminal fragment. The DNA missing from the variant and contained within the standard vaccinia virus WR genome contains 17 contiguous open reading frames (ORFs), all of which are directed leftward and apparently not required for replication in cultured cells. One deleted ORF has a 60% sequence similarity to another gene encoding a 42,000-Da protein present within the ITR suggesting that duplications have previously occurred during the evolution of vaccinia virus. Another deleted ORF has a 39% sequence similarity to a complement 4b binding protein. The

  11. Membrane-bound complement regulatory activity is decreased on vaccinia virus-infected cells.

    PubMed Central

    Baranyi, L; Okada, N; Baranji, K; Takizawa, H; Okada, H

    1994-01-01

    Decay accelerating factor (DAF), membrane cofactor protein (MCP), complement receptor 1 and mouse Crry are cell surface-bound complement regulatory proteins capable of inhibiting C3 convertase activity on cell membranes, and therefore provide a substantial protection from attack by homologous complement activated either by the classical or by the alternative pathway. Decrease in complement regulatory activity might lead to spontaneous complement deposition and subsequent cell injury. MoAb 5I2 can inhibit the complement regulatory activity of molecules on rat cells, resulting in deposition of homologous complement. The antigen recognized by 5I2 MoAb in rats is homologous to mouse Crry. Fifteen to 20 h after infection with vaccinia virus, in vitro cultured KDH-8 rat hepatoma cells show a strong decrease in expression of Crry-like antigen, and proved to be sensitive to complement deposition when 1:5 diluted normal rat serum was added to the culture medium as a source of complement. Addition of complement to the cultured KDH-8 cells infected with a very low dose of vaccinia virus (1 plaque-forming unit (PFU)/1000 cells) substantially reduced spreading of virus infection in the cell culture, while inactivation of complement by heat or zymosan treatment abrogated the protective effect. PMID:7923872

  12. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    SciTech Connect

    Zheng Min; Jin Ningyi; Liu Qi; Huo Xiaowei; Li Yang; Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze

    2009-08-15

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  13. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide

    SciTech Connect

    Altmann, S.E.; Jones, J.C.; Schultz-Cherry, S.; Brandt, C.R.

    2009-06-05

    Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC{sub 50} of 15 muM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC{sub 50} > 200 muM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption was unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC{sub 50} of 45 muM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p < 0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.

  14. Vaccinia virus recombinant expressing an 87-kilodalton polyprotein that is sufficient to form astrovirus-like particles.

    PubMed

    Dalton, Rosa M; Pastrana, Esperanza P; Sánchez-Fauquier, Alicia

    2003-08-01

    Human astrovirus is an important cause of acute gastroenteritis. We have generated, for the first time, a vaccinia virus recombinant expressing the astrovirus 87-kDa structural polyprotein. The results demonstrate that this expression results in the formation of virus-like particles in the absence of other astrovirus proteins and genomic RNA. The purified trypsin-activated virus-like particles strongly resemble the complete astrovirus particles.

  15. CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging.

    PubMed

    Parviainen, S; Ahonen, M; Diaconu, I; Hirvinen, M; Karttunen, Å; Vähä-Koskela, M; Hemminki, A; Cerullo, V

    2014-02-01

    Oncolytic vaccinia virus is an attractive platform for immunotherapy. Oncolysis releases tumor antigens and provides co-stimulatory danger signals. However, arming the virus can improve efficacy further. CD40 ligand (CD40L, CD154) can induce apoptosis of tumor cells and it also triggers several immune mechanisms. One of these is a T-helper type 1 (Th1) response that leads to activation of cytotoxic T-cells and reduction of immune suppression. Therefore, we constructed an oncolytic vaccinia virus expressing hCD40L (vvdd-hCD40L-tdTomato), which in addition features a cDNA expressing the tdTomato fluorochrome for detection of virus, potentially important for biosafety evaluation. We show effective expression of functional CD40L both in vitro and in vivo. In a xenograft model of bladder carcinoma sensitive to CD40L treatment, we show that growth of tumors was significantly inhibited by the oncolysis and apoptosis following both intravenous and intratumoral administration. In a CD40-negative model, CD40L expression did not add potency to vaccinia oncolysis. Tumors treated with vvdd-mCD40L-tdtomato showed enhanced efficacy in a syngenic mouse model and induced recruitment of antigen-presenting cells and lymphocytes at the tumor site. In summary, oncolytic vaccinia virus coding for CD40L mediates multiple antitumor effects including oncolysis, apoptosis and induction of Th1 type T-cell responses.

  16. Crystallization and preliminary X-ray diffraction analysis of vaccinia virus H1L phosphatase

    SciTech Connect

    Roces, Laura; Knowles, Phillip P.; Fox, Gavin; Juanhuix, Jordi; Scaplehorn, Nicki; Way, Michael; McDonald, Neil Q.

    2008-03-01

    A catalytically inactive mutant of the dual-specificity phosphatase H1L from vaccinia virus was expressed recombinantly, purified and crystallized by the microbatch method. The crystals belong to the tetragonal space group P422 and diffraction data were collected to 2.1 Å resolution using a synchrotron-radiation source. Attempts to derivatize these crystals with xenon gas lead to a space-group change to I422 with a smaller unit cell and a diffraction limit of 3.0 Å. The cysteine-based protein phosphatase H1L was the first reported dual-specificity protein phosphatase. H1L is encapsidated within the vaccinia virus and is required for successful host infection and for the production of viable vaccinia progeny. H1L has therefore been proposed as a target candidate for antiviral compounds. Recombinant H1L has been expressed in a catalytically inactive form using an Escherichia coli host, leading to purification and crystallization by the microbatch method. The crystals diffract to 2.1 Å resolution using synchrotron radiation. These crystals belong to space group P422, with unit-cell parameters a = b = 98.31, c = 169.15 Å, and are likely to contain four molecules in the asymmetric unit. A sulfur SAD data set was collected to 2.8 Å resolution on beamline BM14 at the ESRF to facilitate structure determination. Attempts to derivatize these crystals with xenon gas changed the space group to I422, with unit-cell parameters a = b = 63.28, c = 169.68 Å and a single molecule in the asymmetric unit. The relationship between these two crystal forms is discussed.

  17. Intracellular forms of pox viruses as shown by the electron microscope (Vaccinia, Ectromelia, Molluscum Contagiosum).

    PubMed

    GAYLORD, W H; MELNICK, J L

    1953-08-01

    The intracellular development of three pox viruses has been studied with the electron microscope using thin sections of infected tissue. Cells infected with vaccinia, ectromelia, and molluscum contagiosum viruses all form developmental bodies preliminary to the production of mature virus. Developmental bodies, believed to be virus precursors, are round to oval, slightly larger than mature virus particles, less dense to electrons, and have a more varied morphology. It is suggested as a working hypothesis that the process of maturation of a virus particle takes place as follows. In the earliest form the developmental bodies appear as hollow spheres, imbedded in a very dense cytoplasmic mass constituting an inclusion body, or in a less dense matrix near the nucleus in cells without typical inclusion bodies. The spheres become filled with a homogeneous material of low electron density. A small, dense granule appears in each developmental body and grows in size at the expense of the low density material. Following growth of the granule, particles are found with the dimensions of mature virus and having complex internal structure resembling bars or dumbells. Mature virus is ovoid and very dense to electrons. An "empty" interior may be found within its thick walls.

  18. Human immunodeficiency virus vaccines.

    PubMed

    Goepfert, Paul; Bansal, Anju

    2014-12-01

    Although some success was achieved in recent years in HIV prevention, an effective vaccine remains the means with the most potential of curtailing HIV-1 infections worldwide. Despite multiple failed attempts, a recent HIV vaccine regimen demonstrated modest protection from infection. Although the protective efficacy in this trial was not sufficient to warrant licensure, it spurred renewed optimism in the field and has provided valuable insights for improving future vaccine designs. This review summarizes the pertinent details of vaccine development and discusses ways the field is moving forward to develop a vaccine to prevent HIV infection and disease progression.

  19. A source of glycosylated human T-cell lymphotropic virus type 1 envelope protein: expression of gp46 by the vaccinia virus/T7 polymerase system.

    PubMed Central

    Arp, J; LeVatte, M; Rowe, J; Perkins, S; King, E; Leystra-Lantz, C; Foung, S K; Dekaban, G A

    1996-01-01

    Heterologous expression of the human T-cell lymphotropic virus type 1 (HTLV-1) envelope surface glycoprotein (gp46) in a vaccinia virus/T7 polymerase system resulted in the production of authentic recombinant gp46. Five differentially glycosylated forms of the surface envelope protein were produced by this mammalian system, as demonstrated by tunicamycin inhibition of N-glycosylation and N-glycan removal with endoglycosidase H and glycopeptidase F. These studies revealed that all four potential N-glycosylation sites in gp46 were used for oligosaccharide modification and that the oligosaccharides were mannose-rich and/or hybrid in composition. Conformational integrity of the recombinant HTLV-1 envelope protein was determined by the ability to bind to various HTLV-1-infected human sera and a panel of conformational-dependent human monoclonal antibodies under nondenaturing conditions. Furthermore, this recombinant gp46 was recognized by a series of HTLV-2-infected human sera and sera from a Pan paniscus chimpanzee infected with the distantly related simian T-cell lymphotropic virus STLVpan-p. Maintenance of highly conserved conformational epitopes in the recombinant HTLV-1 envelope protein structure suggests that it may serve as a useful diagnostic reagent and an effective vaccine candidate. PMID:8892853

  20. The vaccinia virus I1 protein is essential for the assembly of mature virions.

    PubMed Central

    Klemperer, N; Ward, J; Evans, E; Traktman, P

    1997-01-01

    The product of the vaccinia virus I1 gene was characterized biochemically and genetically. This 35-kDa protein is conserved in diverse members of the poxvirus family but shows no homology to nonviral proteins. We show that recombinant I1 binds to both single-stranded and double-stranded DNA in a sequence-nonspecific manner in an electrophoretic mobility shift assay. The protein is expressed at late times during infection, and approximately 700 copies are encapsidated within the virion core. To determine the role of the I1 protein during the viral life cycle, a inducible viral recombinant in which the I1 gene was placed under the regulation of the Escherichia coli lac operator/repressor was constructed. In the absence of isopropyl-beta-D-thiogalactopyranoside, plaque formation was abolished and yields of infectious, intracellular virus were dramatically reduced. Although all phases of gene expression and DNA replication proceeded normally during nonpermissive infections, no mature virions were produced. Electron microscopic analysis confirmed the absence of mature virion assembly but revealed that apparently normal immature virions accumulated. Thus, I1 is an encapsidated DNA-binding protein required for the latest stages of vaccinia virion morphogenesis. PMID:9371587

  1. Directed cytokine expression in tumour cells in vivo using recombinant vaccinia virus.

    PubMed

    Acres, B; Dott, K; Stefani, L; Kieny, M P

    1994-01-01

    Athymic (Swiss nude) and euthymic (DBA) tumour-bearing mice were injected intravenously with various vaccinia virus (Copenhagen strain) recombinants. Several days after inoculation, tumour cells were found to be well infected with infective vaccinia particles, while organs such as liver, spleen, brain and bone marrow showed barely detectable levels or no signs at all of virus infection. Injection of tumour bearing mice with recombinant VV harbouring the cDNA for either huIL-2 or muIL-6 resulted in detectable lymphokine in the sera of injected animals. Injection of tumour-bearing nude mice with VV-IL-6, but not with VV-IL-2, resulted in significant reduction in growth rate of the tumour, and in some cases, complete rejection of the tumour. Tumour-bearing euthymic mice responded differently. Intravenous injection of VV-IL-2, but not VV-IL-6 resulted in reduced growth rate of 50% of tumours and complete rejection of 17% of tumours. PMID:7584475

  2. Microbiota is an essential element for mice to initiate a protective immunity against Vaccinia virus.

    PubMed

    Lima, Maurício T; Andrade, Ana C S P; Oliveira, Graziele P; Calixto, Rafael S; Oliveira, Danilo B; Souza, Éricka L S; Trindade, Giliane S; Nicoli, Jacques R; Kroon, Erna G; Martins, Flaviano S; Abrahão, Jônatas S

    2016-02-01

    The gastrointestinal tract of vertebrates harbors one of the most complex ecosystems known in microbial ecology and this indigenous microbiota almost always has a profound influence on host-parasite relationships, which can enhance or reduce the pathology of the infection. In this context, the impact of the microbiota during the infection of several viral groups remains poorly studied, including the family Poxviridae. Vaccinia virus (VACV) is a member of this family and is the causative agent of bovine vaccinia, responsible for outbreaks that affect bovines and humans. To determine the influence of the microbiota in the development of the disease caused by VACV, a comparative study using a murine model was performed. Germ-free and conventional, 6- to 7-week-old Swiss NIH mice were infected by tail scarification and intranasally with VACV. Moreover, immunosuppression and microbiota reposition were performed, to establish the interactions among the host's immune system, microbiota and VACV. The data demonstrate that the microbiota is essential for the effective immune response of mice against VACV in intranasal inoculation and to control the virus at the primary site of infection. Furthermore, this study is the first to show that Swiss conventional mice are refractory to the intranasal infection of VACV.

  3. Detection of Vaccinia virus in blood and faeces of experimentally infected cows.

    PubMed

    Guedes, M I M C; Rehfeld, I S; de Oliveira, T M L; Assis, F L; Matos, A C D; Abrahão, J S; Kroon, E G; Lobato, Z I P

    2013-12-01

    Bovine vaccinia (BV), a zoonosis caused by Vaccinia virus (VACV), affects dairy cattle and milkers, causing economic, veterinary and human health impacts. Despite such impacts, there are no experimental studies about the pathogenesis of BV in cows to assess whether there is a systemic spread of the virus and whether there are different ways of VACV shedding. Trying to answer some of these questions, a study was proposed using experimental inoculation of VACV in cows. All experimentally infected cows developed lesions compatible with VACV infection in cattle. Two of the six animals presented VACV DNA in blood and faecal samples, starting at the 2nd and the 3rd day post-infection (d.p.i.), respectively, and lasting until the 36th d.p.i., in an intermittent way. This study provides new evidence that VACV can be detected in blood and faeces of infected cows, suggesting that BV could be a systemic disease, and also bringing new information about the epidemiology and pathogenesis of BV.

  4. Molecular genetic analysis of a vaccinia virus gene with an essential role in DNA replication

    SciTech Connect

    Evans, E.V.A.

    1989-01-01

    The poxvirus, vaccinia, is large DNA virus which replicates in the cytoplasma of the host cell. The virus is believed to encode most or all of the functions required for the temporally regulated transcription and replication of its 186 kilobase genome. Physical and genetic autonomy from the host make vaccinia a useful eukaryotic organism in which to study replication genes and proteins, using a combination of biochemical and genetic techniques. Essential viral functions for replication are identified by conditional lethal mutants that fail to synthesize DNA at the non-permissive temperatures. One such group contains the non-complementing alleles ts17, ts24, ts69 (WR strain). Studies were undertaken to define the phenotype of ts mutants, and to identify and characterize the affected gene and protein. Mutant infection was essentially normal at 32{degree}C, but at 39{degree}C the mutants did not incorporate {sup 3}H-thymidine into nascent viral DNA or synthesize late viral proteins. If mutant cultures were shifted to non-permissive conditions at the height of replication, DNA synthesis was halted rapidly, implying that the mutants are defective in DNA elongation. The gene affected in the WR mutants and in ts6389, a DNA-minus mutant of the IHD strain, was mapped by marker rescue and corresponds to open reading frame 5 (orfD5) of the viral HindIII D fragment.

  5. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan.

    PubMed

    Liu, Zheng; Wang, Shuhui; Zhang, Qicheng; Tian, Meijuan; Hou, Jue; Wang, Rongmin; Liu, Chang; Ji, Xu; Liu, Ying; Shao, Yiming

    2013-01-01

    The vaccinia virus TianTan (VTT) has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.

  6. Dogs and Opossums Positive for Vaccinia Virus during Outbreak Affecting Cattle and Humans, São Paulo State, Brazil.

    PubMed

    Peres, Marina G; Barros, Claudenice B; Appolinário, Camila M; Antunes, João M A P; Mioni, Mateus S R; Bacchiega, Thais S; Allendorf, Susan D; Vicente, Acácia F; Fonseca, Clóvis R; Megid, Jane

    2016-02-01

    During a vaccinia virus (VACV) outbreak in São Paulo State, Brazil, blood samples were collected from cows, humans, other domestic animals, and wild mammals. Samples from 3 dogs and 3 opossums were positive for VACV by PCR. Results of gene sequencing yielded major questions regarding other mammalian species acting as reservoirs of VACV. PMID:26812352

  7. Analysis of the L1 gene product of human papillomavirus type 16 by expression in a vaccinia virus recombinant.

    PubMed

    Browne, H M; Churcher, M J; Stanley, M A; Smith, G L; Minson, A C

    1988-06-01

    The L1 open reading frame of human papillomavirus type 16 (HPV16) has been expressed in vaccinia virus under the control of both the 7.5K early and late promoter, and the 4b major late promoter. Antibodies to a beta-galactosidase fusion protein containing a C-terminal portion of the HPV16 L1 gene product were used to compare the levels of L1 expression in the two recombinants, and showed that greater levels of expression were obtained when the gene was placed under the control of the 4b late promoter. Immunofluorescence studies revealed a nuclear location of the L1 gene product when expressed in vaccinia virus. Antibodies to the beta-galactosidase fusion protein detected a major polypeptide species of 57K and a minor species of 64K in Western blots of recombinant-infected cell lysates. The 64K species was not detected when cells were infected in the presence of tunicamycin, indicating that the primary translation product of the HPV16 L1 open reading frame is modified by N-linked glycosylation when expressed in vaccinia virus. Whereas antibodies to HPV16 L1 fusion proteins and to a peptide containing amino acids from the C terminus of HPV16 L1 reacted well in Western blots with the HPV16 L1 target expressed in vaccinia virus, no reactivity was observed with antibodies to bovine papillomavirus type 1 particles or to a HPV6b fusion protein.

  8. Dogs and Opossums Positive for Vaccinia Virus during Outbreak Affecting Cattle and Humans, São Paulo State, Brazil

    PubMed Central

    Peres, Marina G.; Barros, Claudenice B.; Appolinário, Camila M.; Antunes, João M.A.P.; Mioni, Mateus S.R.; Bacchiega, Thais S.; Allendorf, Susan D.; Vicente, Acácia F.; Fonseca, Clóvis R.

    2016-01-01

    During a vaccinia virus (VACV) outbreak in São Paulo State, Brazil, blood samples were collected from cows, humans, other domestic animals, and wild mammals. Samples from 3 dogs and 3 opossums were positive for VACV by PCR. Results of gene sequencing yielded major questions regarding other mammalian species acting as reservoirs of VACV. PMID:26812352

  9. Dogs and Opossums Positive for Vaccinia Virus during Outbreak Affecting Cattle and Humans, São Paulo State, Brazil.

    PubMed

    Peres, Marina G; Barros, Claudenice B; Appolinário, Camila M; Antunes, João M A P; Mioni, Mateus S R; Bacchiega, Thais S; Allendorf, Susan D; Vicente, Acácia F; Fonseca, Clóvis R; Megid, Jane

    2016-02-01

    During a vaccinia virus (VACV) outbreak in São Paulo State, Brazil, blood samples were collected from cows, humans, other domestic animals, and wild mammals. Samples from 3 dogs and 3 opossums were positive for VACV by PCR. Results of gene sequencing yielded major questions regarding other mammalian species acting as reservoirs of VACV.

  10. A36-dependent actin filament nucleation promotes release of vaccinia virus.

    PubMed

    Horsington, Jacquelyn; Lynn, Helena; Turnbull, Lynne; Cheng, Delfine; Braet, Filip; Diefenbach, Russell J; Whitchurch, Cynthia B; Karupiah, Guna; Newsome, Timothy P

    2013-03-01

    Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36(YdF) virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36(YdF) infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36(YdF) extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S), another virus envelope protein. We found that the B5(P189S) mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either through the force

  11. Expression of the E3L Gene of Vaccinia Virus in Transgenic Mice Decreases Host Resistance to Vaccinia Virus and Leishmania major Infections▿

    PubMed Central

    Domingo-Gil, Elena; Pérez-Jiménez, Eva; Ventoso, Iván; Nájera, José L.; Esteban, Mariano

    2008-01-01

    The E3L gene of vaccinia virus (VACV) encodes the E3 protein that in cultured cells inhibits the activation of interferon (IFN)-induced proteins, double-stranded RNA-dependent protein kinase (PKR), 2′-5′-oligoadenylate synthetase/RNase L (2-5A system) and adenosine deaminase (ADAR-1), thus helping the virus to evade host responses. Here, we have characterized the in vivo E3 functions in a murine inducible cell culture system (E3L-TetOFF) and in transgenic mice (TgE3L). Inducible E3 expression in cultured cells conferred on cells resistance to the antiviral action of IFN against different viruses, while expression of the E3L gene in TgE3L mice triggered enhanced sensitivity of the animals to pathogens. Virus infection monitored in TgE3L mice by different inoculation routes (intraperitoneal and tail scarification) showed that transgenic mice became more susceptible to VACV infection than control mice. TgE3L mice were also more susceptible to Leishmania major infection, leading to an increase in parasitemia compared to control mice. The enhanced sensitivity of TgE3L mice to VACV and L. major infections occurred together with alterations in the host immune system, as revealed by decreased T-cell responses to viral antigens in the spleen and lymph nodes and by differences in the levels of specific innate cell populations. These results demonstrate that expression of the E3L gene in transgenic mice partly reverses the resistance of the host to viral and parasitic infections and that these effects are associated with immune alterations. PMID:17959665

  12. Induction of anti-tumor immunity elicited by tumor cells expressing a murine LFA-3 analog via a recombinant vaccinia virus.

    PubMed

    Lorenz, M G; Kantor, J A; Schlom, J; Hodge, J W

    1999-03-01

    T cell activation requires binding of the T cell receptor to the major histocompatibility molecule-peptide complex in the presence of adhesion and/or costimulatory molecules such as B7-1 (CD80), B7-2 (CD86), ICAM-1 (CD54), and LFA-3 [corrected]. The major ligand of CD2 is CD48, the murine analog of human leukocyte function-associated antigen 3 (LFA-3). To determine the effect of LFA-3 expression on the immunogenicity of tumor cells, we constructed a recombinant vaccinia virus containing the murine LFA-3 gene (designated rV-LFA-3). rV-LFA-3 was shown to be functional in vitro in terms of expression of LFA-3, T cell proliferation, adhesion, and cytotoxicity. Subcutaneous inoculation of rV-LFA-3-infected murine colon adenocarcinoma tumor cells (MC38) into immunocompetent syngeneic C57BL/6 mice resulted in complete lack of tumor growth. Inoculation of MC38 cells infected with equal doses of control wild-type vaccinia virus resulted in tumor growth in all animals. In addition, partial immunological protection was demonstrated against subsequent challenge with uninfected parental tumor cells up to 56 days after vaccination with rV-LFA-3-infected cells. Anti-tumor memory was also demonstrated by using gamma-irradiated MC38 cells and cells from another carcinoma model (CT26). These studies demonstrate that expression of LFA-3 via a poxvirus vector can be used to induce anti-tumor immunity.

  13. The E6 protein from vaccinia virus is required for the formation of immature virions

    SciTech Connect

    Boyd, Olga; Turner, Peter C.; Moyer, Richard W.; Condit, Richard C.; Moussatche, Nissin

    2010-04-10

    An IPTG-inducible mutant in the E6R gene of vaccinia virus was used to study the role of the E6 virion core protein in viral replication. In the absence of the inducer, the mutant exhibited a normal pattern DNA replication, concatemer resolution and late gene expression, but it showed an inhibition of virion structural protein processing it failed to produce infectious particles. Electron microscopic analysis showed that in the absence of IPTG viral morphogenesis was arrested before IV formation: crescents, aberrant or empty IV-like structures, and large aggregated virosomes were observed throughout the cytoplasm. The addition of IPTG to release a 12-h block showed that virus infectious particles could be formed in the absence of de novo DNA synthesis. Our observations show that in the absence of E6 the association of viroplasm with viral membrane crescents is impaired.

  14. Expression of the highly conserved vaccinia virus E6 protein is required for virion morphogenesis

    SciTech Connect

    Resch, Wolfgang; Weisberg, Andrea S.; Moss, Bernard

    2009-04-10

    The vaccinia virus E6R gene (VACVWR062) is conserved in all members of the poxvirus family and encodes a protein associated with the mature virion. We confirmed this association and provided evidence for an internal location. An inducible mutant that conditionally expresses E6 was constructed. In the absence of inducer, plaque formation and virus production were severely inhibited in several cell lines, whereas some replication occurred in others. This difference could be due to variation in the stringency of repression, since we could not isolate a stable deletion mutant even in the more 'permissive' cells. Under non-permissive conditions, viral late proteins were synthesized but processing of core proteins was inefficient, indicative of an assembly block. Transmission electron microscopy of sections of cells infected with the mutant in the absence of inducer revealed morphogenetic defects with crescents and empty immature virions adjacent to dense inclusions of viroplasm. Mature virions were infrequent and cores appeared to have lucent centers.

  15. The Florey lecture, 1986. Vaccine prevention of virus-induced human cancers.

    PubMed

    Epstein, M A

    1987-03-23

    Carcinogenic viruses have been discovered in numerous animal species over the last 80 years but their role in human cancer has only recently become an important issue. With EB virus involved with endemic Burkitt's lymphoma and undifferentiated nasopharyngeal carcinoma, hepatitis B virus with primary liver cancer, papilloma viruses with carcinoma of the cervix, and T-cell leukaemia virus with adult T leukaemia, 20-25% of all human cancer appears to have a virus component in its causation. By analogy with certain virus-induced animal cancers, vaccine prevention of infection should greatly reduce subsequent tumour development; vaccines against hepatitis B virus are already on trial for this purpose in populations at risk. Experiments are described in which an EB virus subunit vaccine consisting of the virus-determined membrane antigen glycoprotein molecule of molecular mass 340 kDa (MA gp340) has been prepared by two purification methods. Material from one of these has successfully protected cotton-top tamarins against a 100% lymphomagenic dose of challenge virus and investigations are under way to identify an immunogen, based on MA gp340, suitable for use in man. Genetically engineered bacterial, yeast, and mammalian cells expressing the gp340 gene are already available; this gene has also been inserted into vaccinia and varicella virus vectors. Powerful new adjuvants are also considered, together with future strategies for human vaccine studies. PMID:2884667

  16. Vaccinia virus gene H5R encodes a protein that is phosphorylated by the multisubstrate vaccinia virus B1R protein kinase.

    PubMed Central

    Beaud, G; Beaud, R; Leader, D P

    1995-01-01

    Vaccinia virus gene B1R encodes a protein kinase, the previously identified substrates of which include the proteins S2 and Sa of 40S ribosomal subunits. This work characterizes another substrate of the B1R kinase: a 36-kDa protein induced at the early stage of infection. Partially purified 36-kDa protein, eluted from a single-stranded DNA-cellulose column by 0.5 M NaCl, was separated by two-dimensional gel electrophoresis. Phosphorylation in vitro yielded multiple forms of the 36-kDa protein with approximate isoelectric points (pI) of 5.5, 5.7, 5.9, and 6.3, in addition to the apparently unphosphorylated form with a pI of approximately 6.8. The tryptic peptides derived from 36-kDa proteins with pI values of 5.7, 5.9, and 6.3 yielded almost identical high-pressure liquid chromatography profiles, strongly suggesting that the 36-kDa protein was modified by the phosphorylation of at least four sites, which were characterized as threonine residues. The amino acid sequence of several tryptic peptides derived from the 36-kDa protein showed that the 36-kDa protein was encoded by gene H5R of vaccinia virus. Consistent with this, the B1R kinase--either expressed in Escherichia coli or highly purified from HeLa cells--phosphorylated a recombinant trpE-H5R fusion protein in vitro. Fingerprints of the trpE-H5R and 36-kDa proteins phosphorylated by recombinant B1R kinase revealed common sites of phosphorylation, although some tryptic peptides were specific to either protein. Comparison was made of fingerprints of tryptic phosphopeptides derived from 36-kDa single-stranded DNA-binding protein labelled in vivo or in vitro. A common subset of peptides was observed, suggesting that some sites on H5R protein are phosphorylated by the B1R kinase in infected cells. These results suggest that some of the multiple threonine sites in the H5R protein are phosphorylated in vivo by the B1R protein kinase. PMID:7853522

  17. Long-lasting stability of Vaccinia virus strains in murine feces: implications for virus circulation and environmental maintenance.

    PubMed

    Abrahão, Jônatas S; Trindade, Giliane de Souza; Ferreira, Jaqueline M Siqueira; Campos, Rafael K; Bonjardim, Cláudio A; Ferreira, Paulo C Peregrino; Kroon, Erna Geessien

    2009-01-01

    Vaccinia virus (VACV) has been associated with several bovine vaccinia outbreaks in Brazil, causing exanthematic lesions in dairy cattle and humans. The way that VACV circulates in the environment is unknown, as is the way that this virus is transferred from wildlife to farms. Rodents are hypothetical VACV reservoirs, and murine feces has been identified as a potential source of viral shedding and transmission. In this work, we analyzed the stability of VACV infectious particles and DNA in feces from intranasally infected mice, exposed to environmental temperature and humidity, by titration assays and PCR, respectively. The results showed that VACV infectious particles were still detected at 20 days post-environmental-exposure (d.p.e.), while viral DNA was detected until 60 d.p.e. A gradual decrease in fecal viral load could be detected in all analyzed VACV strains. This work indicates long-lasting stability of VACV in murine feces and reinforces the idea that fecal matter may represent a potential source of circulating virus among rodents.

  18. Assessing the variability of Brazilian Vaccinia virus isolates from a horse exanthematic lesion: coinfection with distinct viruses.

    PubMed

    Campos, Rafael K; Brum, Mário C S; Nogueira, Carlos E W; Drumond, Betânia P; Alves, Pedro A; Siqueira-Lima, Larissa; Assis, Felipe L; Trindade, Giliane S; Bonjardim, Cláudio A; Ferreira, Paulo C; Weiblen, Rudi; Flores, Eduardo F; Kroon, Erna G; Abrahão, Jônatas S

    2011-02-01

    During the last bovine vaccinia (BV) outbreaks, several Vaccinia virus (VACV) strains were isolated and characterised, revealing significant polymorphisms between strains, even within conserved genes. Although the epidemiology of VACV has been studied in BV outbreaks, there is little data about the circulation of the Brazilian VACV isolates. This study describes the genetic and biological characterisation of two VACV isolates, Pelotas 1 virus (P1V) and Pelotas 2 virus (P2V), which were obtained concomitantly from a horse affected by severe cutaneous disease. Despite being isolated from the same exanthematic clinical sample, P1V and P2V showed differences in their plaque phenotype and in one-step growth curves. Moreover, P1V and P2V presented distinct virulence profiles in a BALB/c mouse model, as observed with other Brazilian VACV isolates. Sequencing and phylogenetic analysis of four different genes demonstrated that the isolates are segregated in different VACV clusters. Our results raise interesting questions about the diversity of VACV isolates in Brazil.

  19. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial.

    PubMed

    Amato, Robert J; Drury, Noel; Naylor, Stuart; Jac, Jaroslaw; Saxena, Somya; Cao, Amy; Hernandez-McClain, Joan; Harrop, Richard

    2008-01-01

    The attenuated vaccinia virus, modified vaccinia Ankara, has been engineered to deliver the tumor antigen 5T4 (TroVax). TroVax has been evaluated in an open-label phase 2 trial in hormone refractory prostate cancer patients in which the vaccine was administered either alone or in combination with granulocyte macrophage-colony stimulating factor (GM-CSF). The comparative safety and immunologic and clinical efficacy of TroVax alone or in combination with GM-CSF was determined. Twenty-seven patients with metastatic hormone refractory prostate cancer were treated with TroVax alone (n=14) or TroVax+GM-CSF (n=13). 5T4-specific cellular and humoral responses were monitored throughout the study. Clinical responses were assessed by quantifying prostate-specific antigen concentrations and measuring changes in tumor burden by computer-assisted tomography scan. TroVax was well tolerated in all patients with no serious adverse events attributed to vaccination. Of 24 immunologically evaluable patients, all mounted 5T4-specific antibody responses. Periods of disease stabilization from 2 to >10 months were observed. Time to progression was significantly greater in patients who mounted 5T4-specific cellular responses compared with those who did not (5.6 vs. 2.3 mo, respectively). There were no objective clinical responses seen in this study. In this study, the combination of GM-CSF with TroVax showed similar clinical and immunologic responses to TroVax alone. The high frequency of 5T4-specific immune responses and relationship with enhanced time to progression is encouraging and warrants further investigation.

  20. Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates

    PubMed Central

    Flynn, Barbara J.; Kastenmüller, Kathrin; Wille-Reece, Ulrike; Tomaras, Georgia D.; Alam, Munir; Lindsay, Ross W.; Salazar, Andres M.; Perdiguero, Beatriz; Gomez, Carmen E.; Wagner, Ralf; Esteban, Mariano; Park, Chae G.; Trumpfheller, Christine; Keler, Tibor; Pantaleo, Giuseppe; Steinman, Ralph M.; Seder, Robert

    2011-01-01

    Protein vaccines, if rendered immunogenic, would facilitate vaccine development against HIV and other pathogens. We compared in nonhuman primates (NHPs) immune responses to HIV Gag p24 within 3G9 antibody to DEC205 (“DEC-HIV Gag p24”), an uptake receptor on dendritic cells, to nontargeted protein, with or without poly ICLC, a synthetic double stranded RNA, as adjuvant. Priming s.c. with 60 μg of both HIV Gag p24 vaccines elicited potent CD4+ T cells secreting IL-2, IFN-γ, and TNF-α, which also proliferated. The responses increased with each of three immunizations and recognized multiple Gag peptides. DEC-HIV Gag p24 showed better cross-priming for CD8+ T cells, whereas the avidity of anti-Gag antibodies was ∼10-fold higher with nontargeted Gag 24 protein. For both protein vaccines, poly ICLC was essential for T- and B-cell immunity. To determine whether adaptive responses could be further enhanced, animals were boosted with New York vaccinia virus (NYVAC)-HIV Gag/Pol/Nef. Gag-specific CD4+ and CD8+ T-cell responses increased markedly after priming with both protein vaccines and poly ICLC. These data reveal qualitative differences in antibody and T-cell responses to DEC-HIV Gag p24 and Gag p24 protein and show that prime boost with protein and adjuvant followed by NYVAC elicits potent cellular immunity. PMID:21467219

  1. Crystallization and preliminary X-ray diffraction analysis of vaccinia virus H1L phosphatase

    PubMed Central

    Roces, Laura; Knowles, Phillip P.; Fox, Gavin; Juanhuix, Jordi; Scaplehorn, Nicki; Way, Michael; McDonald, Neil Q.

    2008-01-01

    The cysteine-based protein phosphatase H1L was the first reported dual-specificity protein phosphatase. H1L is encapsidated within the vaccinia virus and is required for successful host infection and for the production of viable vaccinia progeny. H1L has therefore been proposed as a target candidate for antiviral compounds. Recombinant H1L has been expressed in a catalytically inactive form using an Escherichia coli host, leading to purification and crystallization by the microbatch method. The crystals diffract to 2.1 Å resolution using synchrotron radiation. These crystals belong to space group P422, with unit-cell parameters a = b = 98.31, c = 169.15 Å, and are likely to contain four molecules in the asymmetric unit. A sulfur SAD data set was collected to 2.8 Å resolution on beamline BM14 at the ESRF to facilitate structure determination. Attempts to derivatize these crystals with xenon gas changed the space group to I422, with unit-cell parameters a = b = 63.28, c = 169.68 Å and a single molecule in the asymmetric unit. The relationship between these two crystal forms is discussed. PMID:18323605

  2. Clinical, hematological and biochemical parameters of dairy cows experimentally infected with Vaccinia virus.

    PubMed

    Rehfeld, Izabelle S; Guedes, Maria Isabel M C; Matos, Ana Carolina D; de Oliveira, Tércia M L; Rivetti, Anselmo V; Moura, Ana Carolina J; Paes, Paulo Ricardo O; do Lago, Luiz Alberto; Kroon, Erna G; Lobato, Zélia Inês P

    2013-10-01

    Vaccinia virus (VACV) is the etiological agent of bovine vaccinia (BV), an important zoonosis that affects dairy cattle. There are many aspects of the disease that remain unknown, and aiming to answer some of these questions, the clinical, hematological, and biochemical parameters of VACV experimentally infected cows were evaluated. In the first part of the study, lactating cows were infected with VACV-GP2 strain. In the second part, animals previously infected with VACV-GP2 were divided into two treatment groups: Group 1, immunosuppressed cows; and Group 2, re-infected cows. In this study, BV could be experimentally reproduced, with similar lesions as observed in natural infections. Moreover, a short incubation period and local lymphadenopathy were also observed. VACV could be detected by PCR and isolated from scabs taken from teat lesions of all inoculated and re-inoculated animals. Lymphocytosis and neutrophilia were observed in all animals from the first part of the experiment, and lymphopenia and relative neutrophilia were observed in the immunosuppressed animals. Detection of viral DNA in oral mucosa lesions suggests that viral reactivation might occur in immunosuppressed animals. Moreover, clinical disease with teat lesions may occur in previously VACV-infected cows under the experimental conditions of the present study.

  3. Comparative analysis of poxvirus orthologues of the vaccinia virus E3 protein: modulation of protein kinase R activity, cytokine responses, and virus pathogenicity.

    PubMed

    Myskiw, Chad; Arsenio, Janilyn; Hammett, Craig; van Bruggen, Rebekah; Deschambault, Yvon; Beausoleil, Nicole; Babiuk, Shawn; Cao, Jingxin

    2011-12-01

    Poxviruses are important human and animal pathogens that have evolved elaborate strategies for antagonizing host innate and adaptive immunity. The E3 protein of vaccinia virus, the prototypic member of the orthopoxviruses, functions as an inhibitor of innate immune signaling and is essential for vaccinia virus replication in vivo and in many human cell culture systems. However, the function of orthologues of E3 expressed by poxviruses of other genera with different host specificity remains largely unknown. In the present study, we characterized the E3 orthologues from sheeppox virus, yaba monkey tumor virus, swinepox virus, and myxoma virus for their ability to modulate protein kinase R (PKR) function, cytokine responses and virus pathogenicity. We found that the E3 orthologues of myxoma virus and swinepox virus could suppress PKR activation and interferon (IFN)-induced antiviral activities and restore the host range function of E3 in HeLa cells. In contrast, the E3 orthologues from sheeppox virus and yaba monkey tumor virus were unable to inhibit PKR activation. While the sheeppox orthologue was unable to restore the host range function of E3, the yaba monkey tumor virus orthologue partially restored E3-deficient vaccinia virus replication in HeLa cells, correlated with its ability to suppress IFN-induced antiviral activities. Moreover, poxvirus E3 orthologues show varying ability to inhibit the induction of antiviral and proinflammatory cytokines. Despite these in vitro results, none of the E3 orthologues tested was capable of restoring pathogenicity to E3-deficient vaccinia virus in vivo.

  4. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes

    PubMed Central

    2013-01-01

    Background Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors encoded by each virus. In this study, we analysed the specific modulation of the host cell’s gene expression profile by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in host cell gene expression of HeLa cells in response to infection with cowpox, monkeypox and vaccinia virus, using whole-genome gene expression microarrays, and compared these to each other and to non-infected cells. Results Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences being observed in immune response genes. Most noticeable was an induction of genes involved in leukocyte migration and activation in cowpox and monkeypox virus-infected cells, which was not observed following vaccinia virus infection. Conclusion Despite their close genetic relationship, the expression profiles induced by infection with different orthopoxviruses vary significantly. It may be speculated that these differences at the cellular level contribute to the individual characteristics of cowpox, monkeypox and vaccinia virus

  5. Recent advances in the development of vaccines for Ebola virus disease.

    PubMed

    Ohimain, Elijah Ige

    2016-01-01

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines.

  6. Recent advances in the development of vaccines for Ebola virus disease.

    PubMed

    Ohimain, Elijah Ige

    2016-01-01

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. PMID:26596227

  7. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer.

    PubMed

    Stritzker, Jochen; Kirscher, Lorenz; Scadeng, Miriam; Deliolanis, Nikolaos C; Morscher, Stefan; Symvoulidis, Panagiotis; Schaefer, Karin; Zhang, Qian; Buckel, Lisa; Hess, Michael; Donat, Ulrike; Bradley, William G; Ntziachristos, Vasilis; Szalay, Aladar A

    2013-02-26

    We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin production also facilitated deep tissue optoacoustic imaging as well as MRI. In addition, melanin was shown to be a suitable target for laser-induced thermotherapy and enhanced oncolytic viral therapy. In conclusion, melanin as a mediator for thermotherapy and reporter for different imaging modalities may soon become a versatile alternative to replace fluorescent proteins also in other biological systems. After ongoing extensive preclinical studies, melanin overproducing oncolytic virus strains might be used in clinical trials in patients with cancer.

  8. Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA

    SciTech Connect

    Jones, E.V.; Moss, B.

    1984-01-01

    The previous demonstration that a phosphonoacetate (PAA)-resistant (PAA/sup r/) vaccinia virus mutant synthesized an altered DNA polymerase provided the key to mapping this gene. Marker rescue was performed in cells infected with wild-type PAA-sensitive (PAA/sup s/) vaccinia by transfecting with calcium phosphate-precipitated DNA from a PAA/sup r/ mutant virus. Formation of PAA/sup r/ recombinants was measured by plaque assay in the presence of PAA. Of the 12 HindIII fragments cloned in plasmid or cosmid vectors, only fragment E conferred the PAA/sup r/ phenotype. Successive subcloning of the 15-kilobase HindIII fragment E localized the marker within a 7.5-kilobase BamHI-HindIII fragment and then within a 2.9-kilobase EcoRI fragment. The location of the DNA polymerase gene, about 57 kilobases from the left end of the genome, was confirmed by cell-free translation of mRNA selected by hybridization to plasmids containing regions of PAA/sup r/ vaccinia DNA active in marker rescue. A 100,000-dalton polypeptide that comigrated with authentic DNA polymerase was synthesized. Correspondence of the in vitro translation product with purified vaccinia DNA polymerase was established by peptide mapping.

  9. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  10. Vaccinia Virus A35R Inhibits MHC Class II Antigen Presentation

    PubMed Central

    Rehm, Kristina E.; Connor, Ramsey F.; Jones, Gwendolyn J.B.; Yimbu, Kenneth; Roper, Rachel L.

    2009-01-01

    The Vaccinia virus gene A35R (Copenhagen designation) is highly conserved in mammalian-tropic poxviruses and is an important virulence factor, but its function was unknown. We show herein that A35 does not affect viral infectivity, apoptosis induction, or replication; however, we found that A35 significantly inhibited MHC class II-restricted antigen presentation, immune priming of T lymphocytes, and subsequent chemokine and cytokine synthesis. A35 localized to endosomes and reduced the amount of a model antigenic peptide displayed in the cleft of class II MHC. In addition, A35 decreased VV specific T cell responses in vivo. Thus, this is the first report identifying a function for the A35 protein in virulence as well as the first report identifying a VV gene that inhibits peptide antigen presentation. PMID:19954808

  11. Vaccinia virus binds to the scavenger receptor MARCO on the surface of keratinocytes.

    PubMed

    MacLeod, Daniel T; Nakatsuji, Teruaki; Wang, Zhenping; di Nardo, Anna; Gallo, Richard L

    2015-01-01

    Patients with altered skin immunity, such as individuals with atopic dermatitis (AD), can have a life-threatening disruption of the epidermis known as eczema vaccinatum after vaccinia virus (VV) infection of the skin. Here, we sought to better understand the mechanism(s) by which VV associates with keratinocytes. The class A scavenger receptor known as MARCO (macrophage receptor with collagenous structure) is expressed on human and mouse keratinocytes and found to be abundantly expressed in the skin of patients with AD. VV bound directly to MARCO, and overexpression of MARCO increased susceptibility to VV infection. Furthermore, ligands with affinity for MARCO, or excess soluble MARCO, competitively inhibited VV infection. These findings indicate that MARCO promotes VV infection and highlights potential new therapeutic strategies for prevention of VV infection in the skin.

  12. Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells

    SciTech Connect

    Villa, Nancy Y.; Bartee, Eric; Mohamed, Mohamed R.; Rahman, Masmudur M.; Barrett, John W.; McFadden, Grant

    2010-06-05

    Myxoma (MYXV) and vaccinia (VACV) viruses have recently emerged as potential oncolytic agents that can infect and kill different human cancer cells. Although both are structurally similar, it is unknown whether the pathway(s) used by these poxviruses to enter and cause oncolysis in cancer cells are mechanistically similar. Here, we compared the entry of MYXV and VACV-WR into various human cancer cells and observed significant differences: 1 - low-pH treatment accelerates fusion-mediated entry of VACV but not MYXV, 2 - the tyrosine kinase inhibitor genistein inhibits entry of VACV, but not MYXV, 3 - knockdown of PAK1 revealed that it is required for a late stage event downstream of MYXV entry into cancer cells, whereas PAK1 is required for VACV entry into the same target cells. These results suggest that VACV and MYXV exploit different mechanisms to enter into human cancer cells, thus providing some rationale for their divergent cancer cell tropisms.

  13. Immunological Characterization of a Modified Vaccinia Virus Ankara Vector Expressing the Human Papillomavirus 16 E1 Protein

    PubMed Central

    Remy-Ziller, Christelle; Germain, Claire; Spindler, Anita; Hoffmann, Chantal; Silvestre, Nathalie; Rooke, Ronald; Bonnefoy, Jean-Yves

    2014-01-01

    Women showing normal cytology but diagnosed with a persistent high-risk human papillomavirus (HR-HPV) infection have a higher risk of developing high-grade cervical intraepithelial neoplasia and cervical cancer than noninfected women. As no therapeutic management other than surveillance is offered to these women, there is a major challenge to develop novel targeted therapies dedicated to the treatment of these patients. As such, E1 and E2 antigens, expressed early in the HPV life cycle, represent very interesting candidates. Both proteins are necessary for maintaining coordinated viral replication and gene synthesis during the differentiation process of the epithelium and are essential for the virus to complete its normal and propagative replication cycle. In the present study, we evaluated a new active targeted immunotherapeutic, a modified vaccinia virus Ankara (MVA) vector containing the E1 sequence of HPV16, aimed at inducing cellular immune responses with the potential to help and clear persistent HPV16-related infection. We carried out an extensive comparative time course analysis of the cellular immune responses induced by different schedules of immunization in C57BL/6 mice. We showed that multiple injections of MVA-E1 allowed sustained HPV16 E1-specific cellular immune responses in vaccinated mice and had no impact on the exhaustion phenotype of the generated HPV16 E1-specific CD8+ T cells, but they led to the differentiation of multifunctional effector T cells with high cytotoxic capacity. This study provides proof of concept that an MVA expressing HPV16 E1 can induce robust and long-lasting E1-specific responses and warrants further development of this candidate. PMID:24307238

  14. siRNA targeting vaccinia virus double-stranded RNA binding protein [E3L] exerts potent antiviral effects.

    PubMed

    Dave, Rajnish S; McGettigan, James P; Qureshi, Tazeen; Schnell, Matthias J; Nunnari, Giuseppe; Pomerantz, Roger J

    2006-05-10

    The Vaccinia virus gene, E3L, encodes a double-stranded RNA [dsRNA]-binding protein. We hypothesized that, owing to the critical nature of dsRNA in triggering host innate antiviral responses, E3L-specific small-interfering RNAs [siRNAs] should be effective antiviral agents against pox viruses, for which Vaccinia virus is an appropriate surrogate. In this study, we have utilized two human cell types, namely, HeLa and 293T, one which responds to interferon [IFN]-beta and the other produces and responds to IFN-beta, respectively. The antiviral effects were equally robust in HeLa and 293T cells. However, in the case of 293T cells, several distinct features were observed, when IFN-beta is activated in these cells. Vaccinia virus replication was inhibited by 97% and 98% as compared to control infection in HeLa and 293T cells transfected with E3L-specific siRNAs, respectively. These studies demonstrate the utility of E3L-specific siRNAs as potent antiviral agents for small pox and related pox viruses.

  15. Vaccinia virus A19 protein participates in the transformation of spherical immature particles to barrel-shaped infectious virions.

    PubMed

    Satheshkumar, P S; Weisberg, Andrea S; Moss, Bernard

    2013-10-01

    The A19L open reading frame of vaccinia virus encodes a 9-kDa protein that is conserved in all sequenced chordopoxviruses, yet until now it has not been specifically characterized in any species. We appended an epitope tag after the start codon of the A19L open reading frame without compromising infectivity. The protein was synthesized after viral DNA replication and was phosphorylated independently of the vaccinia virus F10 kinase. The A19 protein was present in purified virions and was largely resistant to nonionic detergent extraction, suggesting a location within the core. A conditional lethal mutant virus was constructed by placing the A19 open reading frame under the control of the Escherichia coli lac repressor system. A19 synthesis and infectious virus formation were dependent on inducer. In the absence of inducer, virion morphogenesis was interrupted, and spherical dense particles that had greatly reduced amounts of the D13 scaffold accumulated in place of barrel-shaped mature virions. The infectivity of purified A19-deficient particles was more than 2 log units less than that of A19-containing virions. Nevertheless, the A19-deficient particles contained DNA, and except for the absence of A19 and decreased core protein processing, they appeared to have a similar protein composition as A19-containing virions. Thus, the A19 protein participates in the maturation of immature vaccinia virus virions to infectious particles.

  16. A PCR-based method for manipulation of the vaccinia virus genome that eliminates the need for cloning.

    PubMed

    Turner, P C; Moyer, R W

    1992-11-01

    A general method is described for altering specific genes of vaccinia virus (VV). We demonstrate and evaluate the procedure by gene inactivation, using a dominant selectable marker in conjunction with recombinant polymerase chain reaction (PCR). Primers based on the sequence of the target gene enable amplification of flanking arms and their subsequent attachment to the gpt cassette that confers resistance to mycophenolic acid. Linear PCR constructs are transfected into cells infected with wild-type vaccinia virus. Mutant viruses with gpt inserted into the target gene by homologous recombination are then selected by growth in the presence of MPA. This technique was applied to the vaccinia virus thymidine kinase gene and compared to the traditional method of constructing gpt-containing plasmids by cloning. The PCR scheme was found to be highly efficient and could theoretically be used to insert any foreign DNA element into any nonessential target gene for which partial or complete sequence information is available. The procedure can potentially be used for a wide variety of genetic modifications, including the insertion of foreign genes, with poxviruses and other DNA viruses. Genomes of microorganisms, such as bacteria and yeast that can be transformed with linear DNA, are also candidates for manipulation by this methodology.

  17. Nucleotide sequence of XhoI O fragment of ectromelia virus DNA reveals significant differences from vaccinia virus.

    PubMed

    Senkevich, T G; Muravnik, G L; Pozdnyakov, S G; Chizhikov, V E; Ryazankina, O I; Shchelkunov, S N; Koonin, E V; Chernos, V I

    1993-10-01

    The nucleotide sequence of the 3913 base pair XhoI O fragment located in an evolutionary variable region adjacent to the right end of the genome of ectromelia virus (EMV) was determined. The sequence contains two long open reading frames coding for putative proteins of 559 amino acid residues (p65) and 344 amino acid residues (p39). Amino acid database searches showed that p39 is closely related to vaccinia virus (VV), strain WR, B22R gene product (C12L gene product of strain Copenhagen), which belongs to the family of serine protease inhibitors (serpins). Despite the overall high conservation, differences were observed in the sequences of p39, B22R, and C12L in the site known to interact with proteases in other serpins, suggesting that the serpins of EMV and two strains of VV may all inhibit proteases with different specificities. The gene coding for the ortholog of p65 is lacking in the Copenhagen strain of vaccinia virus; the WR strain contains a truncated variant of this gene (B21R) potentially coding for a small protein (p16) corresponding to the C-terminal region of p65. p65 is a new member of the family of poxvirus proteins including vaccinia virus proteins A55R, C2L and F3L, and a group of related proteins of leporipoxviruses, Shope fibroma and myxoma viruses (T6, T8, T9, M9). These proteins are homologous to the Drosophila protein Kelch involved in egg development. Both Kelch protein and the related poxvirus proteins contain two distinct domains. The N-terminal domain is related to the similarly located domains of transcription factors Ttk, Br-C (Drosophila), and KUP (human), and GCL protein involved in early development in Drosophila. The C-terminal domain consists of an array of four to five imperfect repeats and is related to human placental protein MIPP. Phylogenetic analysis of the family of poxvirus proteins showed that their genes have undergone a complex succession of duplications, and complete or partial deletions.

  18. Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus

    SciTech Connect

    Morgan, J.R.; Cohen, L.K.; Roberts, B.E.

    1984-10-01

    The DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus were located on the viral genome. The formation of an enzyme-guanylate covalent intermediate labeled with (alpha-/sup 32/P)GTP allowed the identification of the large subunit of the capping enzyme and was used to monitor the appearance of the enzyme during the infectious cycle. This assay confirmed that after vaccinia infection, a novel 84,000-molecular-weight polypeptide corresponding to the large subunit was rapidly synthesized before viral DNA replication. Hybrid-selected cell-free translation of early viral mRNA established that vaccinia virus encoded a polypeptide identical in molecular weight with the /sup 32/P-labeled 84,000-molecular-weight polypeptide found in vaccinia virions. Like the authentic capping enzyme, this virus-encoded cell-free translation product bound specifically to DNA-cellulose. A comparison of the partial proteolytic digestion fragments generated by V8 protease, chymotrypsin, and trypsin demonstrated that the /sup 32/P-labeled large subunit and the (/sup 35/S)methionine-labeled cell-free translation product were identical. The mRNA encoding the large subunit of the capping enzyme was located 3.1 kilobase pairs to the left of the HindIII D restriction fragment of the vaccinia genome. Furthermore, the mRNA was determined to be 3.0 kilobases in size, and its 5 and 3 termini were precisely located by S1 nuclease analysis.

  19. The Vaccinia Virus H3 Envelope Protein, a Major Target of Neutralizing Antibodies, Exhibits a Glycosyltransferase Fold and Binds UDP-Glucose

    PubMed Central

    Gittis, Apostolos G.; Gitti, Rossitza K.; Ostazeski, Stanley A.; Su, Hua-Poo

    2016-01-01

    ABSTRACT The highly conserved H3 poxvirus protein is a major target of the human antibody response against poxviruses and is likely a key contributor to protection against infection. Here, we present the crystal structure of H3 from vaccinia virus at a 1.9-Å resolution. H3 looks like a glycosyltransferase, a family of enzymes that transfer carbohydrate molecules to a variety of acceptor substrates. Like glycosyltransferases, H3 binds UDP-glucose, as shown by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, and this binding requires Mg2+. Mutation of the glycosyltransferase-like metal ion binding motif in H3 greatly diminished its binding to UDP-glucose. We found by flow cytometry that H3 binds to the surface of human cells but does not bind well to cells that are deficient in surface glycosaminoglycans. STD NMR experiments using a heparin sulfate decasaccharide confirmed that H3 binds heparin sulfate. We propose that a surface of H3 with an excess positive charge may be the binding site for heparin. Heparin binding and glycosyltransferase activity may be involved in the function of H3 in the poxvirus life cycle. IMPORTANCE Poxviruses are under intense research because of bioterrorism concerns, zoonotic infections, and the side effects of existing smallpox vaccines. The smallpox vaccine using vaccinia virus has been highly successful, but it is still unclear why the vaccine is so effective. Studying the antigens that the immune system recognizes may allow a better understanding of how the vaccine elicits immunity and how improved vaccines can be developed. Poxvirus protein H3 is a major target of the immune system. The H3 crystal structure shows that it has a glycosyltransferase protein fold. We demonstrate that H3 binds the sugar nucleotide UDP-glucose, as do glycosyltransferases. Our experiments also reveal that H3 binds cell surface molecules that are involved in the attachment of poxviruses to cells. These structural and

  20. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model

    PubMed Central

    Rehfeld, Izabelle Silva; Guedes, Maria Isabel Maldonado Coelho; Fraiha, Ana Luiza Soares; Costa, Aristóteles Gomes; Matos, Ana Carolina Diniz; Fiúza, Aparecida Tatiane Lino; Lobato, Zélia Inês Portela

    2015-01-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV), which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs) were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT), viral isolation, histopathology, and immunohistochemistry (IHC) methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral mucosa, albeit

  1. From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus

    PubMed Central

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Neto, José Diomedes; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-01-01

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

  2. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model.

    PubMed

    Rehfeld, Izabelle Silva; Guedes, Maria Isabel Maldonado Coelho; Fraiha, Ana Luiza Soares; Costa, Aristóteles Gomes; Matos, Ana Carolina Diniz; Fiúza, Aparecida Tatiane Lino; Lobato, Zélia Inês Portela

    2015-01-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV), which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs) were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT), viral isolation, histopathology, and immunohistochemistry (IHC) methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral mucosa, albeit

  3. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA.

    PubMed

    Burmeister, Wim P; Tarbouriech, Nicolas; Fender, Pascal; Contesto-Richefeu, Céline; Peyrefitte, Christophe N; Iseni, Frédéric

    2015-07-17

    Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.

  4. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles.

    PubMed

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification.

  5. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    PubMed Central

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092

  6. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles.

    PubMed

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092

  7. Efficacy and bait acceptance of vaccinia vectored rabies glycoprotein vaccine in captive foxes (Vulpes vulpes), raccoon dogs (Nyctereutes procyonoides) and dogs (Canis familiaris).

    PubMed

    Cliquet, F; Barrat, J; Guiot, A L; Caël, N; Boutrand, S; Maki, J; Schumacher, C L

    2008-08-26

    The red fox, dog, and raccoon dog are known to play a major role in the global epidemiology of rabies. These three canid species were used to compare the appetency and efficacy of two commercial bait formats, each containing a single dose of vaccinia-rabies glycoprotein (V-RG) vaccine. Square and rectangular RABORAL V-RG baits were fed to individual caged animal, and results were evaluated using three parameters: bait consumption, induction of rabies virus neutralizing antibodies and protection after a virulent rabies challenge. The rectangular and square RABORAL V-RG baits were found to deliver the oral rabies vaccine in a similar manner to all three species resulting in acceptable seroconversion and effective protection levels after the rabies challenge. Appetency of each bait type was measured by bait consumption and found to be similar for both RABORAL V-RG bait formats in the fox and dog. The square RABORAL V-RG bait, however, was consumed more effectively than the rectangular RABORAL V-RG bait by the raccoon dog. PMID:18620017

  8. Efficacy of a Plasmodium vivax malaria vaccine using ChAd63 and modified vaccinia Ankara expressing thrombospondin-related anonymous protein as assessed with transgenic Plasmodium berghei parasites.

    PubMed

    Bauza, Karolis; Malinauskas, Tomas; Pfander, Claudia; Anar, Burcu; Jones, E Yvonne; Billker, Oliver; Hill, Adrian V S; Reyes-Sandoval, Arturo

    2014-03-01

    Plasmodium vivax is the world's most widely distributed malaria parasite and a potential cause of morbidity and mortality for approximately 2.85 billion people living mainly in Southeast Asia and Latin America. Despite this dramatic burden, very few vaccines have been assessed in humans. The clinically relevant vectors modified vaccinia virus Ankara (MVA) and the chimpanzee adenovirus ChAd63 are promising delivery systems for malaria vaccines due to their safety profiles and proven ability to induce protective immune responses against Plasmodium falciparum thrombospondin-related anonymous protein (TRAP) in clinical trials. Here, we describe the development of new recombinant ChAd63 and MVA vectors expressing P. vivax TRAP (PvTRAP) and show their ability to induce high antibody titers and T cell responses in mice. In addition, we report a novel way of assessing the efficacy of new candidate vaccines against P. vivax using a fully infectious transgenic Plasmodium berghei parasite expressing P. vivax TRAP to allow studies of vaccine efficacy and protective mechanisms in rodents. Using this model, we found that both CD8+ T cells and antibodies mediated protection against malaria using virus-vectored vaccines. Our data indicate that ChAd63 and MVA expressing PvTRAP are good preerythrocytic-stage vaccine candidates with potential for future clinical application.

  9. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus.

    PubMed

    Parker, Scott; Crump, Ryan; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Lanier, E Randall; Painter, George; Schriewer, Jill; Trost, Lawrence C; Buller, R Mark

    2014-11-01

    Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus's broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV's mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered

  10. A Randomized, Double-Blind, Placebo-Controlled Phase II Trial Investigating the Safety and Immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN®) in 56-80-Year-Old Subjects

    PubMed Central

    Greenberg, Richard N.; Hay, Christine M.; Stapleton, Jack T.; Marbury, Thomas C.; Wagner, Eva; Kreitmeir, Eva; von Krempelhuber, Alfred; Young, Philip; Nichols, Richard; Meyer, Thomas P.; Weigl, Josef; Virgin, Garth; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2016-01-01

    Background Modified Vaccinia Ankara MVA-BN® is a live, highly attenuated, viral vaccine under advanced development as a non-replicating smallpox vaccine. In this Phase II trial, the safety and immunogenicity of Modified Vaccinia Ankara MVA-BN® (MVA) was assessed in a 56–80 years old population. Methods MVA with a virus titer of 1 x 108 TCID50/dose was administered via subcutaneous injection to 56–80 year old vaccinia-experienced subjects (N = 120). Subjects received either two injections of MVA (MM group) or one injection of Placebo and one injection of MVA (PM group) four weeks apart. Safety was evaluated by assessment of adverse events (AE), focused physical exams, electrocardiogram recordings and safety laboratories. Solicited AEs consisted of a set of pre-defined expected local reactions (erythema, swelling, pain, pruritus, and induration) and systemic symptoms (body temperature, headache, myalgia, nausea and fatigue) and were recorded on a memory aid for an 8-day period following each injection. The immunogenicity of the vaccine was evaluated in terms of humoral immune responses measured with a vaccinia-specific enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT) before and at different time points after vaccination. Results Vaccinations were well tolerated by all subjects. No serious adverse event related to MVA and no case of myopericarditis was reported. The overall incidence of unsolicited AEs was similar in both groups. For both groups immunogenicity responses two weeks after the final vaccination (i.e. Visit 4) were as follows: Seroconversion (SC) rates (doubling of titers from baseline) in vaccine specific antibody titers measured by ELISA were 83.3% in Group MM and 82.8% in Group PM (difference 0.6% with 95% exact CI [-13.8%, 15.0%]), and 90.0% for Group MM and 77.6% for Group PM measured by PRNT (difference 12.4% with 95% CI of [-1.1%, 27.0%]). Geometric mean titers (GMT) measured by ELISA two weeks after

  11. Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.

    PubMed

    Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard

    2013-04-01

    Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections.

  12. RAB1A promotes Vaccinia virus replication by facilitating the production of intracellular enveloped virions

    SciTech Connect

    Pechenick Jowers, Tali; Featherstone, Rebecca J.; Reynolds, Danielle K.; Brown, Helen K.; James, John; Prescott, Alan; Haga, Ismar R.; Beard, Philippa M.

    2015-01-15

    Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore be added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. - Highlights: • Characterisation of the role of the small GTPase RAB1A in VACV replication. • RAB1A is not required for production of the primary virion form (IMV). • RAB1A is required for production of processed virion forms (IEVs, CEVs and EEVs). • Consistent with known role of RAB1A in ER to Golgi transport.

  13. Protein B5 is required on extracellular enveloped vaccinia virus for repulsion of superinfecting virions.

    PubMed

    Doceul, Virginie; Hollinshead, Michael; Breiman, Adrien; Laval, Kathlyn; Smith, Geoffrey L

    2012-09-01

    Vaccinia virus (VACV) spreads across cell monolayers fourfold faster than predicted from its replication kinetics. Early after infection, infected cells repulse some superinfecting extracellular enveloped virus (EEV) particles by the formation of actin tails from the cell surface, thereby causing accelerated spread to uninfected cells. This strategy requires the expression of two viral proteins, A33 and A36, on the surface of infected cells and upon contact with EEV this complex induces actin polymerization. Here we have studied this phenomenon further and investigated whether A33 and A36 expression in cell lines causes an increase in VACV plaque size, whether these proteins are able to block superinfection by EEV, and which protein(s) on the EEV surface are required to initiate the formation of actin tails from infected cells. Data presented show that VACV plaque size was not increased by expression of A33 and A36, and these proteins did not block entry of the majority of EEV binding to these cells. In contrast, expression of proteins A56 and K2 inhibited entry of both EEV and intracellular mature virus. Lastly, VACV protein B5 was required on EEV to induce the formation of actin tails at the surface of cells expressing A33 and A36, and B5 short consensus repeat 4 is critical for this induction.

  14. The orthopoxvirus 68-kilodalton ankyrin-like protein is essential for DNA replication and complete gene expression of modified vaccinia virus Ankara in nonpermissive human and murine cells.

    PubMed

    Sperling, Karin M; Schwantes, Astrid; Staib, Caroline; Schnierle, Barbara S; Sutter, Gerd

    2009-06-01

    Modified vaccinia virus Ankara (MVA) is a highly attenuated and replication-deficient vaccinia virus (VACV) that is being evaluated as replacement smallpox vaccine and candidate viral vector. MVA lacks many genes associated with virulence and/or regulation of virus tropism. The 68-kDa ankyrin-like protein (68k-ank) is the only ankyrin repeat-containing protein that is encoded by the MVA genome and is highly conserved throughout the Orthopoxvirus genus. We showed previously that 68k-ank is composed of ankyrin repeats and an F-box-like domain and forms an SCF ubiquitin ligase complex together with the cellular proteins Skp1a and Cullin-1. We now report that 68k-ank (MVA open reading frame 186R) is an essential factor for completion of the MVA intracellular life cycle in nonpermissive human and murine cells. Infection of mouse NIH 3T3 and human HaCaT cells with MVA with a deletion of the 68k-ank gene (MVA-Delta68k-ank) was characterized by an extensive reduction of viral intermediate RNA and protein, as well as late transcripts and drastically impaired late protein synthesis. Furthermore, infections with MVA-Delta68k-ank failed to induce the host protein shutoff that is characteristic of VACV infections. Although we demonstrated that proteasome function in general is essential for the completion of the MVA molecular life cycle, we found that a mutant 68k-ank protein with a deletion of the F-box-like domain was able to fully complement the deficiency of MVA-Delta68k-ank to express all classes of viral genes. Thus, our data demonstrate that the 68k-ank protein contains another critical domain that may function independently of SCF ubiquitin ligase complex formation, suggesting multiple activities of this interesting regulatory protein.

  15. Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo.

    PubMed Central

    Sambhi, S K; Kohonen-Corish, M R; Ramshaw, I A

    1991-01-01

    Tumor necrosis factor (TNF) has pleiotropic effects on a wide variety of cell types. In vitro studies have demonstrated that TNF has antiviral properties and is induced in response to viral infections. However, a role for TNF in the antiviral immune response of the host has yet to be demonstrated. Here we describe the construction of and studies using a recombinant vaccinia virus that encodes the gene for murine TNF-alpha. By comparing the replication of and immune responses elicited by the TNF-encoding virus to a similarly constructed control virus, we hoped to observe immunobiological effects of TNF in the host. The in vivo experiments with this recombinant virus demonstrate that the localized production of TNF-alpha during a viral infection leads to the rapid and efficient clearance of the virus in normal mice and attenuates the otherwise lethal pathogenicity of the virus in immunodeficient animals. This attenuation occurs early in the infection (by postinfection hour 24) and is not due to the enhancement of cellular or antibody responses by the vaccinia virus-encoded TNF. This evidence suggests that attenuation of the recombinant virus is due to a direct antiviral effect of TNF on cells at the site of infection. Therefore, these results support the suggestion that TNF produced by immune cells may be an important effector mechanism of viral clearance in vivo. Images PMID:2023951

  16. Local Production of Tumor Necrosis Factor Encoded by Recombinant Vaccinia Virus is Effective in Controlling Viral Replication in vivo

    NASA Astrophysics Data System (ADS)

    Sambhi, Sharan K.; Kohonen-Corish, Maija R. J.; Ramshaw, Ian A.

    1991-05-01

    Tumor necrosis factor (TNF) has pleiotropic effects on a wide variety of cell types. In vitro studies have demonstrated that TNF has antiviral properties and is induced in response to viral infections. However, a role for TNF in the antiviral immune response of the host has yet to be demonstrated. Here we describe the construction of and studies using a recombinant vaccinia virus that encodes the gene for murine TNF-α. By comparing the replication of and immune responses elicited by the TNF-encoding virus to a similarly constructed control virus, we hoped to observe immunobiological effects of TNF in the host. The in vivo experiments with this recombinant virus demonstrate that the localized production of TNF-α during a viral infection leads to the rapid and efficient clearance of the virus in normal mice and attenuates the otherwise lethal pathogenicity of the virus in immunodeficient animals. This attenuation occurs early in the infection (by postinfection hour 24) and is not due to the enhancement of cellular or antibody responses by the vaccinia virus-encoded TNF. This evidence suggests that attenuation of the recombinant virus is due to a direct antiviral effect of TNF on cells at the site of infection. Therefore, these results support the suggestion that TNF produced by immune cells may be an important effector mechanism of viral clearance in vivo.

  17. Nuclear localization of a double-stranded RNA-binding protein encoded by the vaccinia virus E3L gene.

    PubMed

    Yuwen, H; Cox, J H; Yewdell, J W; Bennink, J R; Moss, B

    1993-08-01

    We produced a B cell hybridoma (TW2.3) from vaccinia virus-infected mice that secreted a monoclonal antibody (MAb) reactive with a 25-kDA early viral protein that was localized by laser scanning confocal microscopy to the nucleus and cytoplasmic viral factory regions of infected cells. By cell-free translation of mRNA selected by hybridization to a complete library of vaccinia virus DNA fragments, the immunoreactive polypeptide was mapped to open reading frame E3L. The RNA start site of an early promoter was located 26 nucleotides upstream of the first methionine codon of E3L. Evidence was obtained that translation initiation occurs in vivo and in vitro at both the first and second methionine codons to produce major and minor polypeptides of 25 and 19 kDa, respectively. Both polypeptides bound double-stranded RNA, confirming the recent report of H.-W. Chang, J. C. Watson, and B. L. Jacobs (Proc. Natl. Acad. Sci. USA 89, 4825-4829, 1992). Other vaccinia virus proteins were not required for the nuclear localization of the E3L protein, since MAb TW2.3 bound to the nuclei of uninfected cells that were transfected with the E3L gene under the control of the SV40 early promoter. We also demonstrated that the E3L protein can bind to nuclei of aldehyde fixed and detergent permeabilized uninfected cells. This binding was abrogated by treatment of the cells with RNase but not DNase. The nuclear and cytoplasmic locations of the double-stranded RNA binding protein are consistent with multiple functions in the vaccinia virus infectious cycle.

  18. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has...

  19. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has...

  20. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has...

  1. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has...

  2. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Wart Vaccine, Killed Virus. 113.206... Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared... content as prescribed in § 113.200(f). (d) Potency and efficacy. The efficacy of wart vaccine has...

  3. Extracts from rabbit skin inflamed by the vaccinia virus attenuate bupivacaine-induced spinal neurotoxicity in pregnant rats☆

    PubMed Central

    Cui, Rui; Xu, Shiyuan; Wang, Liang; Lei, Hongyi; Cai, Qingxiang; Zhang, Hongfei; Wang, Dongmei

    2013-01-01

    Extracts from rabbit skin inflamed by the vaccinia virus can relieve pain and promote repair of nerve injury. The present study intraperitoneally injected extracts from rabbit skin inflamed by the vaccinia virus for 3 and 4 days prior to and following intrathecal injection of bupivacaine into pregnant rats. The pain threshold test after bupivacaine injection showed that the maximum possible effect of tail-flick latency peaked 1 day after intrathecal injection of bupivacaine in the extract-pretreatment group, and gradually decreased, while the maximum possible effect in the bupivacaine group continued to increase after intrathecal injection of bupivacaine. Histological observation showed that after 4 days of intrathecal injection of bupivacaine, the number of shrunken, vacuolated, apoptotic and caspase-9-positive cells in the dorsal root ganglion in the extract-pretreatment group was significantly reduced compared with the bupivacaine group. These findings indicate that extracts from rabbit skin inflamed by the vaccinia virus can attenuate neurotoxicity induced by intrathecal injection of bupivacaine in pregnant rats, possibly by inhibiting caspase-9 protein expression and suppressing nerve cell apoptosis. PMID:25206391

  4. NFκB activation by modified vaccinia virus as a novel strategy to enhance neutrophil migration and HIV-specific T-cell responses.

    PubMed

    Di Pilato, Mauro; Mejías-Pérez, Ernesto; Zonca, Manuela; Perdiguero, Beatriz; Gómez, Carmen Elena; Trakala, Marianna; Nieto, Jacobo; Nájera, José Luis; Sorzano, Carlos Oscar S; Combadière, Christophe; Pantaleo, Giuseppe; Planelles, Lourdes; Esteban, Mariano

    2015-03-17

    Neutrophils are antigen-transporting cells that generate vaccinia virus (VACV)-specific T-cell responses, yet how VACV modulates neutrophil recruitment and its significance in the immune response are unknown. We generated an attenuated VACV strain that expresses HIV-1 clade C antigens but lacks three specific viral genes (A52R, K7R, and B15R). We found that these genes act together to inhibit the NFκB signaling pathway. Triple ablation in modified virus restored NFκB function in macrophages. After virus infection of mice, NFκB pathway activation led to expression of several cytokines/chemokines that increased the migration of neutrophil populations (Nα and Nβ) to the infection site. Nβ cells displayed features of antigen-presenting cells and activated virus-specific CD8 T cells. Enhanced neutrophil trafficking to the infection site correlated with an increased T-cell response to HIV vector-delivered antigens. These results identify a mechanism for poxvirus-induced immune response and alternatives for vaccine vector design.

  5. Vaccination against Fowlpox virus via drinking water.

    PubMed

    Ariyoshi, Rikako; Takase, Kozo; Matsuura, Yuichi; Deguchi, Kazuhiro; Ginnaga, Akihiro; Fujikawa, Hideo

    2003-10-01

    The oral vaccination against Fowlpox was investigated via drinking water containing the F132-c strain of Fowlpox virus to be effective even though the vaccine virus-titer was 10(4) TCID (50)/dose each time. When the virus-titer of the F132-c strain was 10(4-5 )TCID(50)/dose per single drinking water vaccination, 90% or more of chickens were not protected, however, they were protected when vaccinated twice via drinking water. A weak immune response occurred by a slight infection after the first vaccination, and due to memory cells, a booster could work well after the second vaccination. These results suggest the possibility of reducing both the amount of virus required for a vaccine via drinking water and the labor cost in the field.

  6. Comparing adjuvanted H28 and modified vaccinia virus ankara expressingH28 in a mouse and a non-human primate tuberculosis model.

    PubMed

    Billeskov, Rolf; Christensen, Jan P; Aagaard, Claus; Andersen, Peter; Dietrich, Jes

    2013-01-01

    Here we report for the first time on the immunogenicity and protective efficacy of a vaccine strategy involving the adjuvanted fusion protein "H28" (consisting of Ag85B-TB10.4-Rv2660c) and Modified Vaccinia Virus Ankara expressing H28. We show that a heterologous prime-boost regimen involving priming with H28 in a Th1 adjuvant followed by boosting with H28 expressed by MVA (H28/MVA28) induced the highest percentage of IFN-γ expressing T cells, the highest production of IFN-γ per single cell and the highest induction of CD8 T cells compared to either of the vaccines given alone. In contrast, in mice vaccinated with adjuvanted recombinant H28 alone (H28/H28) we observed the highest production of IL-2 per single cell and the highest frequency of antigen specific TNF-α/IL-2 expressing CD4 T cells pre and post infection. Interestingly, TNF-α/IL-2 expressing central memory-like CD4 T cells showed a significant positive correlation with protection at week 6 post infection, whereas the opposite was observed for post infection CD4 T cells producing only IFN-γ. Moreover, as a BCG booster vaccine in a clinically relevant non-human primate TB model, the H28/H28 vaccine strategy induced a slightly more prominent reduction of clinical disease and pathology for up to one year post infection compared to H28/MVA28. Taken together, our data showed that the adjuvanted subunit and MVA strategies led to different T cell subset combinations pre and post infection and that TNF-α/IL-2 double producing but not IFN-γ single producing CD4 T cell subsets correlated with protection in the mouse TB model. Moreover, our data demonstrated that the H28 vaccine antigen was able to induce strong protection in both a mouse and a non-human primate TB model.

  7. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  8. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  9. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  10. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  11. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus.

    PubMed

    Foloppe, J; Kintz, J; Futin, N; Findeli, A; Cordier, P; Schlesinger, Y; Hoffmann, C; Tosch, C; Balloul, J-M; Erbs, P

    2008-10-01

    We have generated a thymidine kinase gene-deleted vaccinia virus (VV) (Copenhagen strain) that expressed the fusion suicide gene FCU1 derived from the yeast cytosine deaminase and uracil phosphoribosyltransferase genes. Intratumoral inoculation of this thymidine kinase gene-deleted VV encoding FCU1 (VV-FCU1) in the presence of systemically administered prodrug 5-fluorocytosine (5-FC) produced statistically significant reductions in the growth of subcutaneous human colon cancer in nude mice compared with thymidine kinase gene-deleted VV treatments or with control 5-fluorouracil alone. A limitation of prodrug therapies has often been the requirement for the direct injection of the virus into relatively large, accessible tumors. Here we demonstrate vector targeting of tumors growing subcutaneously following systemic administration of VV-FCU1. More importantly we also demonstrate that the systemic injection of VV-FCU1 in nude mice bearing orthotopic liver metastasis of a human colon cancer, with concomitant administration of 5-FC, leads to substantial tumor growth retardation. In conclusion, the insertion of the fusion FCU1 suicide gene potentiates the oncolytic efficiency of the thymidine kinase gene-deleted VV and represents a potentially efficient means for gene therapy of distant metastasis from colon and other cancers. PMID:18480846

  12. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway.

    PubMed

    Dai, Peihong; Wang, Weiyi; Cao, Hua; Avogadri, Francesca; Dai, Lianpan; Drexler, Ingo; Joyce, Johanna A; Li, Xiao-Dong; Chen, Zhijian; Merghoub, Taha; Shuman, Stewart; Deng, Liang

    2014-04-01

    Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs), but not in plasmacytoid dendritic cells (pDCs). Transcription factors IRF3 (IFN regulatory factor 3) and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1), are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes) and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase). MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1) and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.

  13. Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence.

    PubMed

    Ferguson, Brian J; Benfield, Camilla T O; Ren, Hongwei; Lee, Vivian H; Frazer, Gordon L; Strnadova, Pavla; Sumner, Rebecca P; Smith, Geoffrey L

    2013-09-01

    Vaccinia virus (VACV) expresses many proteins that are non-essential for virus replication but promote virulence by inhibiting components of the host immune response to infection. These immunomodulators include a family of proteins that have, or are predicted to have, a structure related to the B-cell lymphoma (Bcl)-2 protein. Five members of the VACV Bcl-2 family (N1, B14, A52, F1 and K7) have had their crystal structure solved, others have been characterized and a function assigned (C6, A46), and others are predicted to be Bcl-2 proteins but are uncharacterized hitherto (N2, B22, C1). Data presented here show that N2 is a nuclear protein that is expressed early during infection and inhibits the activation of interferon regulatory factor (IRF)3. Consistent with its nuclear localization, N2 inhibits IRF3 downstream of the TANK-binding kinase (TBK)-1 and after IRF3 translocation into the nucleus. A mutant VACV strain Western Reserve lacking the N2L gene (vΔN2) showed normal replication and spread in cultured cells compared to wild-type parental (vN2) and revertant (vN2-rev) viruses, but was attenuated in two murine models of infection. After intranasal infection, the vΔN2 mutant induced lower weight loss and signs of illness, and virus was cleared more rapidly from the infected tissue. In the intradermal model of infection, vΔN2 induced smaller lesions that were resolved more rapidly. In summary, the N2 protein is an intracellular virulence factor that inhibits IRF3 activity in the nucleus.

  14. Vaccinia Virus Protein Synthesis Has a Low Requirement for the Intact Translation Initiation Factor eIF4F, the Cap-Binding Complex, within Infected Cells

    PubMed Central

    Mulder, Jacqueline; Robertson, Morwenna E. M.; Seamons, Rachael A.; Belsham, Graham J.

    1998-01-01

    The role of the cap-binding complex, eIF4F, in the translation of vaccinia virus mRNAs has been analyzed within infected cells. Plasmid DNAs, which express dicistronic mRNAs containing a picornavirus internal ribosome entry site, produced within vaccinia virus-infected cells both β-glucuronidase and a cell surface-targeted single-chain antibody (sFv). Cells expressing sFv were selected from nonexpressing cells, enabling analysis of protein synthesis specifically within the transfected cells. Coexpression of poliovirus 2A or foot-and-mouth disease virus Lb proteases, which cleaved translation initiation factor eIF4G, greatly inhibited cap-dependent protein (β-glucuronidase) synthesis. Under these conditions, internal ribosome entry site-directed expression of sFv continued and cell selection was maintained. Furthermore, vaccinia virus protein synthesis persisted in the selected cells containing cleaved eIF4G. Thus, late vaccinia virus protein synthesis has a low requirement for the intact cap-binding complex eIF4F. This may be attributed to the short unstructured 5′ noncoding regions of the vaccinia virus mRNAs, possibly aided by the presence of poly(A) at both 5′ and 3′ termini. PMID:9765426

  15. A Novel Recombinant Vaccinia Virus Expressing the Human Norepinephrine Transporter Retains Oncolytic Potential and Facilitates Deep-Tissue Imaging

    PubMed Central

    Chen, Nanhai; Zhang, Qian; Yu, Yong A; Stritzker, Jochen; Brader, Peter; Schirbel, Andreas; Samnick, Samuel; Serganova, Inna; Blasberg, Ronald; Fong, Yuman; Szalay, Aladar A

    2009-01-01

    Noninvasive and repetitive monitoring of a virus in target tissues and/or specific organs of the body is highly desirable for the development of safe and efficient cancer virotherapeutics. We have previously shown that the oncolytic vaccinia virus GLV-1h68 can target and eradicate human tumors in mice and that its therapeutic effects can be monitored by using optical imaging. Here, we report on the development of a derivative of GLV-1h68, a novel recombinant vaccinia virus (VACV) GLV-1h99, which was constructed to carry the human norepinephrine transporter gene (hNET) under the VACV synthetic early promoter placed at the F14.5L locus for deep-tissue imaging. The hNET protein was expressed at high levels on the membranes of cells infected with this virus. Expression of the hNET protein did not negatively affect virus replication, cytolytic activity in cell culture, or in vivo virotherpeutic efficacy. GLV-1h99–mediated expression of the hNET protein in infected cells resulted in specific uptake of the radiotracer [131I]-meta-iodobenzylguanidine (MIBG). In mice, GLV-1h99–infected tumors were readily imaged by [124I]-MIBG positron emission tomography. To our knowledge, GLV-1h99 is the first oncolytic virus expressing the hNET protein that can efficiently eliminate tumors and simultaneously allow deep-tissue imaging of infected tumors. PMID:19287510

  16. A Vesicular Stomatitis Virus-Based Hepatitis B Virus Vaccine Vector Provides Protection against Challenge in a Single Dose ▿

    PubMed Central

    Cobleigh, Melissa A.; Buonocore, Linda; Uprichard, Susan L.; Rose, John K.; Robek, Michael D.

    2010-01-01

    As one of the world's most common infectious diseases, hepatitis B virus (HBV) is a serious worldwide public health problem, with HBV-associated liver disease accounting for more than half a million deaths each year. Although there is an effective prophylactic vaccine currently available to prevent infection, it has a number of characteristics that are suboptimal: multiple doses are needed to induce long-lasting immunity, immunity declines over time, it does not elicit protection in some individuals, and it is not effective therapeutically. We produced a recombinant vesicular stomatitis virus (VSV)-based vaccine vector expressing the HBV middle envelope surface protein (MS) and found that this vector was able to efficiently generate a strong HBs-specific antibody response following a single immunization in mice. A single immunization with the VSV-MS vector also induced robust CD8 T-cell activation. The CD8 T-cell response was greater in magnitude and broader in specificity than the response generated by a vaccinia virus-based vaccine vector or by recombinant protein immunization. Furthermore, a single VSV-MS immunization provided protection against virus challenge in mice. Given the similar antibody titers and superior T-cell responses elicited from a single immunization, a VSV-based HBV vaccine may have advantages over the current recombinant protein vaccine. PMID:20504927

  17. [Protein subunit vaccines: example of vaccination against hepatitis B virus].

    PubMed

    Degos, F

    1995-06-15

    Hepatitis B vaccine has been used for over 10 years. It is efficient and safe. Protection of risk groups against hepatitis B virus infection is now achieved and vaccination of newborns and adolescents is a main public health problem. Bad responders are well characterized and immunomodulatory interventions (cytokines) must be tested in these patients. Response to hepatitis B vaccine is genetically determined and the possibility of vaccine induced escape mutants should lead to careful epidemiological studies of the spread of hepatitis B virus infection.

  18. Vaccine Therapy, Oncolytic Viruses, and Gliomas.

    PubMed

    Desjardins, Annick; Vlahovic, Gordana; Friedman, Henry S

    2016-03-01

    After years of active research and refinement, vaccine therapy and oncolytic viruses are becoming part of the arsenal in the treatment of gliomas. In contrast to standard treatment with radiation therapy and chemotherapy, vaccines are more specific to the patient and the tumor. The majority of ongoing vaccine trials are investigating peptide, heat shock protein, and dendritic cell vaccines. The immunosuppression triggered by the tumor itself and by its treatment is a major obstacle to vaccine and oncolytic virus therapy. Thus, combination therapy with different agents that affect the immune system will probably be necessary. PMID:26984213

  19. Chemical inactivation of recombinant vaccinia viruses and the effects on antigenicity and immunogenicity of recombinant simian immunodeficiency virus envelope glycoproteins.

    PubMed

    Hulskotte, E G; Dings, M E; Norley, S G; Osterhaus, A D

    1997-12-01

    The efficiency of paraformaldehyde (PFA) and binary ethylenimine (BEI) in inactivating recombinant vaccinia virus (rVV), present in baby hamster kidney cells expressing simian immunodeficiency virus envelope glycoproteins (SIV-Env), was measured in a series of inactivation studies. Both compounds were shown to be effective in reducing rVV titres. The use of standard 3-day titration assays proved to be inadequate to measure PFA inactivation, since upon prolonged incubation, residual rVV infectivity was detected in cultures negative at 3 days. Different procedures using PFA or BEI were selected to assess their influence on the antigenicity and immunogenicity or rVV expressed SIV-Env. Antigenicity, as defined by the ability to react with a panel of monoclonal antibodies recognizing major antigenic sites, and immunogenicity, as defined by the ability to induce SIV envelope specific and virus neutralizing serum antibodies in rats, proved to be preserved after either inactivation procedure. These data show that both protocols using PFA or BEI can be used successfully as part of the procedures to remove residual rVV infectivity.

  20. Azathioprine inhibits vaccinia virus replication in both BSC-40 and RAG cell lines acting on different stages of virus cycle.

    PubMed

    Damaso, Clarissa R A; Oliveira, Marcus F; Massarani, Susana M; Moussatché, Nissin

    2002-08-15

    In the present study we demonstrate that azathioprine (AZA) inhibits vaccinia virus (VV) replication in both BSC-40 and RAG cell lines, acting on different stages of virus cycle. In BSC-40 cells, early protein synthesis was not significantly affected, but late gene expression was severely impaired. In RAG cells all stages of gene expression were completed during synchronous infection in the presence of the drug. The onset of DNA replication was not affected in RAG cells, but a severe inhibition was observed in BSC-40 cells. Electron microscopic analysis of VV-infected RAG cells treated with AZA revealed brick-shaped particles presenting abnormal definition of the internal structure. Purified virions from AZA-treated RAG cells presented several modifications of the protein content, a lesser amount of DNA, and a lower PFU:particle ratio. Our results suggest that in VV-infected RAG cells AZA interfered with virus morphogenesis, whereas in BSC-40 cells the replicative cycle was inhibited at the DNA replication stage.

  1. Increased antibody responses to human papillomavirus type 16 L1 protein expressed by recombinant vaccinia virus lacking serine protease inhibitor genes.

    PubMed

    Zhou, J; Crawford, L; McLean, L; Sun, X Y; Stanley, M; Almond, N; Smith, G L

    1990-09-01

    The L1 gene of human papillomavirus type 16 (HPV-16) driven by the vaccinia virus major late 4b gene promoter has been inserted into three different sites of the vaccinia virus genome. Insertion into the thymidine kinase (TK) gene was achieved by selection of TK- mutants in BUdR on TK- cells. Insertion into two vaccinia virus serine protease inhibitor (serpin) genes was achieved by co-insertion of the Escherichia coli xanthine guanine phosphoribosyltransferase gene linked to the vaccinia virus 7.5K promoter and selection of mycophenolic acid-resistant recombinant viruses. Each recombinant virus expressed a 57K L1 protein at similar levels and with similar kinetics. However, immunization of mice with these recombinant viruses induced different levels of antibody to the L1 protein. Viruses lacking serpin genes B13R and B24R induced significantly higher antibody levels than did viruses lacking the TK gene. The presence of functional B13R and B24R gene products is therefore somehow immunosuppressive at least for antibody responses to the L1 protein of HPV-16.

  2. Vaccinia virus inhibits NF-κB-dependent gene expression downstream of p65 translocation.

    PubMed

    Sumner, Rebecca P; Maluquer de Motes, Carlos; Veyer, David L; Smith, Geoffrey L

    2014-03-01

    The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-κB activation that target multiple points in the signaling pathway. A derivative of VACV strain Copenhagen, called vv811, lacking 55 open reading frames in the left and right terminal regions of the genome was reported to still inhibit NF-κB activation downstream of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), suggesting the presence of one or more additional inhibitors. In this study, we constructed a recombinant vv811 lacking the recently described NF-κB inhibitor A49 (vv811ΔA49), yielding a virus that lacked all currently described inhibitors downstream of TNF-α and IL-1β. Unlike vv811, vv811ΔA49 no longer inhibited degradation of the phosphorylated inhibitor of κBα and p65 translocated into the nucleus. However, despite this translocation, vv811ΔA49 still inhibited TNF-α- and IL-1β-induced NF-κB-dependent reporter gene expression and the transcription and production of cytokines induced by these agonists. This inhibition did not require late viral gene expression. These findings indicate the presence of another inhibitor of NF-κB that is expressed early during infection and acts by a novel mechanism downstream of p65 translocation into the nucleus.

  3. Evaluation of swinepox virus as a vaccine vector in pigs using an Aujeszky's disease (pseudorabies) virus gene insert coding for glycoproteins gp50 and gp63.

    PubMed

    van der Leek, M L; Feller, J A; Sorensen, G; Isaacson, W; Adams, C L; Borde, D J; Pfeiffer, N; Tran, T; Moyer, R W; Gibbs, E P

    1994-01-01

    Pigs were vaccinated by scarification or intramuscular injection with a swinepox virus-Aujeszky's disease (pseudorabies) recombinant (rSPV-AD) constructed by inserting the linked Aujeszky's disease virus genes coding for glycoproteins gp50 and gp63, attached to a vaccinia virus p7.5 promoter, into the thymidine kinase gene of swinepox virus. By 21 days after vaccination, 90 and 100 per cent of the animals vaccinated by scarification or intramuscular injection, respectively, had developed serum neutralising antibodies to Aujeszky's disease virus. Upon challenge with virulent virus, significantly fewer vaccinated pigs developed clinical Aujeszky's disease, nasal shedding of challenge virus was markedly reduced, and the vaccinated groups of pigs maintained or gained weight during the week after challenge whereas the unvaccinated control group lost weight. No transmission of rSPV-AD to in-contact controls was detected during the three weeks before challenge. In a second experiment, serum neutralising antibodies to Aujeszky's disease virus persisted for 150 days after the pigs were vaccinated with rSPV-AD by scarification or intramuscular injection and all the pigs showed an anamnestic response when they were revaccinated. PMID:8128561

  4. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    SciTech Connect

    Satheshkumar, P.S.; Chavre, James; Moss, Bernard

    2013-09-15

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. - Highlights: • The 35 amino acid O3 protein is required for efficient vaccinia virus entry. • The transmembrane domain of O3 is necessary and sufficient for entry. • Mutagenesis demonstrated extreme sequence flexibility compatible with function.

  5. High cytokine production and effective antitumor activity of a recombinant vaccinia virus encoding murine interleukin 12.

    PubMed

    Meko, J B; Yim, J H; Tsung, K; Norton, J A

    1995-11-01

    We have constructed a recombinant vaccinia virus (recVV), vKT0334 mIL-12, containing the genes encoding the p35 and p40 subunits of murine interleukin-12 (mIL-12). In vitro experiments demonstrated that vKT0334 mIL-12 efficiently infected a variety of murine and human tumor cell lines and produced very high amounts (1.5 micrograms/10(6) cells/24 h) of biologically active mIL-12. Mice injected s.c. with 10(6) MCA 105 sarcoma cells, followed by injection at the same site with saline or a control recVV, vKT033, containing no mIL-12 genes, all developed progressively growing tumor, whereas 60% of animals injected with vKT0334 mIL-12 remained tumor free (P < 0.0005). Furthermore, tumor growth was significantly reduced in the remaining mice treated with vKT0334 mIL-12 that did develop tumor compared with mice treated with vKT033 (P < 0.03) or saline (P < 0.0001). We conclude that recVV expressing high levels of mIL-12 offers an effective in vivo method of cytokine gene delivery and expression in tumors with subsequent antitumor effect.

  6. Validation of an immunoperoxidase monolayer assay for total anti-Vaccinia virus antibody titration.

    PubMed

    Gerber, Priscilla F; Matos, Ana Carolina D; Guedes, Maria Isabel M C; Madureira, Marieta C; Silva, Marcos X; Lobato, Zélia I P

    2012-03-01

    Vaccinia virus (VACV) has been associated with zoonotic exanthemic outbreaks affecting bovids and human beings, with significant public health and economic impacts. Rapid and reliable diagnostic methods are needed to detect and epidemiologically monitor antibodies to VACV. The current study describes the development of an immunoperoxidase monolayer assay (IPMA) for detection of total VACV antibodies in bovine serum. The assay was validated by comparison with a plaque reduction neutralization test (PRNT). Kappa index of agreement, diagnostic sensitivity, specificity, and accuracy of the IPMA were -1.008, 100%, 96%, and 98%, respectively, when compared with PRNT on 148 field bovine sera. Repeatability tests on 32 field-positive serum samples revealed that intraclass coefficient correlation was 0.86. In experimentally infected cattle, VACV antibodies were detectable by IPMA 4 days postinfection, which was more than 2 weeks earlier than with the PRNT, indicating that IPMA could be a more sensitive test than the latter. In 4 naturally VACV-diseased cows monitored for 13 months, IPMA could detect VACV antibodies up to 13 months, a longer time than PRNT. The IPMA is simpler to produce and perform when compared with PRNT and is time saving and suitable for large-scale surveys of VACV infection in bovine.

  7. Study of Vaccinia and Cowpox viruses' replication in Rac1-N17 dominant-negative cells

    PubMed Central

    Salgado, Ana Paula Carneiro; Soares-Martins, Jamária Adriana Pinheiro; Andrade, Luciana Garcia; Albarnaz, Jonas Dutra; Ferreira, Paulo César Peregrino; Kroon, Erna Geessien; Bonjardim, Cláudio Antônio

    2013-01-01

    Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV) and Cowpox (CPXV) and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN) Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication. PMID:23903969

  8. Structural analysis of point mutations at the Vaccinia virus A20/D4 interface.

    PubMed

    Contesto-Richefeu, Céline; Tarbouriech, Nicolas; Brazzolotto, Xavier; Burmeister, Wim P; Peyrefitte, Christophe N; Iseni, Frédéric

    2016-09-01

    The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil-DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201-50) revealed the importance of three residues, forming a cation-π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4-R167A/A201-50, D4-P173G/A201-50 and D4/A201-50-W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation-π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface. PMID:27599859

  9. Products and substrate/template usage of vaccinia virus DNA primase

    SciTech Connect

    De Silva, Frank S.; Paran, Nir; Moss, Bernard

    2009-01-05

    Vaccinia virus encodes a 90-kDa protein conserved in all poxviruses, with DNA primase and nucleoside triphosphatase activities. DNA primase products, synthesized with a single stranded {phi}X174 DNA template, were resolved as dinucleotides and long RNAs on denaturing polyacrylamide and agarose gels. Following phosphatase treatment, the dinucleotides GpC and ApC in a 4:1 ratio were identified by nearest neighbor analysis in which {sup 32}P was transferred from [{alpha}-{sup 32}P]CTP to initiating purine nucleotides. Differences in the nucleotide binding sites for initiation and elongation were suggested by the absence of CpC and UpC dinucleotides as well as the inability of deoxynucleotides to mediate primer synthesis despite their incorporation into mixed RNA/DNA primers. Strong primase activity was detected with an oligo(dC) template. However, there was only weak activity with an oligo(dT) template and none with oligo(dA) or oligo(dG). The absence of stringent template specificity is consistent with a role for the enzyme in priming DNA synthesis at the replication fork.

  10. A tandemly-oriented late gene cluster within the vaccinia virus genome.

    PubMed

    Weinrich, S L; Hruby, D E

    1986-04-11

    The nucleotide sequence of a 5.1 kilobase-pair fragment from the central portion of the vaccinia virus genome has been determined. Within this region, five complete and two incomplete open reading frames (orfs) are tightly-clustered, tandemly-oriented, and read in the leftward direction. Late mRNA start sites for the five complete orfs and one incomplete orf were determined by S1 nuclease mapping. The two leftmost complete orfs correlated with late polypeptides of 65,000 and 32,000 molecular weight previously mapped to this region. When compared with each other and with sequences present in protein data banks, the five complete orfs showed no significant homology matches amongst themselves or any previously reported sequence. The six putative promoters were aligned with three previously sequenced late gene promoters. While all of the nine are A-T rich, the only apparent consensus sequence is TAA immediately preceeding the initiator ATG. Identification of this tandemly-oriented late gene cluster suggests local organization of the viral genome.

  11. 9 CFR 113.214 - Parvovirus Vaccine, Killed Virus (Canine).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Parvovirus Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.214 Parvovirus Vaccine, Killed Virus (Canine). Parvovirus Vaccine... established as follows: (1) Twenty-five parvovirus susceptible dogs (20 vaccinates and 5 controls) shall...

  12. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... postvaccination, challenge 20 vaccinates and 10 controls by eyedrop with a virulent infectious bursal...

  13. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... postvaccination, challenge 20 vaccinates and 10 controls by eyedrop with a virulent infectious bursal...

  14. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... postvaccination, challenge 20 vaccinates and 10 controls by eyedrop with a virulent infectious bursal...

  15. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... postvaccination, challenge 20 vaccinates and 10 controls by eyedrop with a virulent infectious bursal...

  16. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mink Enteritis Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis Vaccine... prior to challenge. If unfavorable reactions attributable to the vaccine occur, the serial...

  17. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mink Enteritis Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis Vaccine... prior to challenge. If unfavorable reactions attributable to the vaccine occur, the serial...

  18. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Mink Enteritis Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis Vaccine... prior to challenge. If unfavorable reactions attributable to the vaccine occur, the serial...

  19. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Mink Enteritis Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis Vaccine... prior to challenge. If unfavorable reactions attributable to the vaccine occur, the serial...

  20. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mink Enteritis Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis Vaccine... prior to challenge. If unfavorable reactions attributable to the vaccine occur, the serial...

  1. RNA virus reverse genetics and vaccine design.

    PubMed

    Stobart, Christopher C; Moore, Martin L

    2014-06-25

    RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines.

  2. RNA Virus Reverse Genetics and Vaccine Design

    PubMed Central

    Stobart, Christopher C.; Moore, Martin L.

    2014-01-01

    RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines. PMID:24967693

  3. Specific proliferative T cell responses and antibodies elicited by vaccination with simian immunodeficiency virus Nef do not confer protection against virus challenge.

    PubMed

    Wade-Evans, A M; Stott, J; Hanke, T; Stebbings, R; Berry, N; Lines, J; Sangster, R; Silvera, P; Walker, B; MacManus, S; Davis, G; Cowie, J; Arnold, C; Hull, R; Almond, N

    2001-11-01

    The efficacy of immunizing with a combination of simian immunodeficiency virus (SIV) Nef vaccines was evaluated. Four vaccinates received three intradermal immunizations with recombinant vaccinia virus that expressed SIV Nef, followed by three intramuscular immunizations with rDNA also expressing SIV Nef. Finally, the four vaccinates received two subcutaneous boosts with recombinant SIV Nef protein. This immunization protocol elicited anti-Nef antibodies in all of the vaccinates as well as specific proliferative responses. However, specific cytotoxic T cell responses were not detected before virus challenge. All vaccinates were challenged intravenously with 10 MID(50) of SIVmacJ5 along with four controls. All eight subjects became infected after SIV challenge and there were no group-specific differences in virus load as measured by virus titration and vRNA analysis. The results of this study support indirectly the report from Gallimore and colleagues (Nat Med 1995;1:1667) suggesting that CD8(+) T lymphocyte responses are required for Nef-based vaccines to restrict SIV infection. If Nef-based vaccines are to be beneficial in controlling infection with immunodeficiency viruses, then it will be necessary to develop more effective immunization protocols that elicit potent CD8(+) cell responses reproducibly.

  4. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master...

  5. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master...

  6. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Avian Encephalomyelitis Vaccine... STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian Encephalomyelitis Vaccine (Killed Virus) shall be prepared from virus-bearing tissues or fluids obtained...

  7. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Avian Encephalomyelitis Vaccine... STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian Encephalomyelitis Vaccine (Killed Virus) shall be prepared from virus-bearing tissues or fluids obtained...

  8. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  9. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master...

  10. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  11. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  12. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  13. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Avian Encephalomyelitis Vaccine... STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian Encephalomyelitis Vaccine (Killed Virus) shall be prepared from virus-bearing tissues or fluids obtained...

  14. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  15. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  16. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master...

  17. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master...

  18. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master...

  19. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  20. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master...

  1. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  2. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master...

  3. The cytolytic activity of pulmonary CD8+ lymphocytes, induced by infection with a vaccinia virus recombinant expressing the M2 protein of respiratory syncytial virus (RSV), correlates with resistance to RSV infection in mice.

    PubMed Central

    Kulkarni, A B; Connors, M; Firestone, C Y; Morse, H C; Murphy, B R

    1993-01-01

    Previous studies demonstrated that the pulmonary resistance to respiratory syncytial virus (RSV) challenge induced by immunization with a recombinant vaccinia virus expressing the M2 protein of RSV (vac-M2) was significantly greater 9 days after immunization than at 28 days and was mediated predominantly by CD8+ T cells. In this study, we have extended these findings and sought to determine whether the level of CD8+ cytotoxic T-lymphocyte (CTL) activity measured in vitro correlates with the resistance to RSV challenge in vivo. Three lines of evidence documented an association between the presence of pulmonary CTL activity and resistance to RSV challenge. First, vac-M2 immunization induced pulmonary CD8+ CTL activity and pulmonary resistance to RSV infection in BALB/c (H-2d) mice, whereas significant levels of pulmonary CTL activity and resistance to RSV infection were not seen in BALB.K (H-2k) or BALB.B (H-2b) mice. Second, pulmonary CD8+ CTL activity was not induced by infection with other vaccinia virus-RSV recombinants that did not induce resistance to RSV challenge. Third, the peak of pulmonary CTL activity correlated with the peak of resistance to RSV replication (day 6), with little resistance being observed 45 days after immunization. An accelerated clearance of virus was not observed when mice were challenged with RSV 45 days after immunization with vac-M2. The results indicate that resistance to RSV induced by immunization with vac-M2 is mainly mediated by primary pulmonary CTLs and that this resistance decreases to very low levels within 2 months following immunization. The implications for inclusion of CTL epitopes into RSV vaccines are discussed in the context of these observations. PMID:8419638

  4. Vaccinia Virus Morphogenesis: A13 Phosphoprotein Is Required for Assembly of Mature Virions

    PubMed Central

    Unger, Bethany; Traktman, Paula

    2004-01-01

    The 70-amino-acid A13L protein is a component of the vaccinia virus membrane. We demonstrate here that the protein is expressed at late times of infection, undergoes phosphorylation at a serine residue(s), and becomes encapsidated in a monomeric form. Phosphorylation is dependent on Ser40, which lies within the proline-rich motif SPPP. Because phosphorylation of the A13 protein is only minimally affected by disruption of the viral F10 kinase or H1 phosphatase, a cellular kinase is likely to be involved. We generated an inducible recombinant in which A13 protein expression is dependent upon the inclusion of tetracycline in the culture medium. Repression of the A13L protein spares the biochemical progression of the viral life cycle but arrests virion morphogenesis. Virion assembly progresses through the formation of immature virions (IVs); however, these virions do not acquire nucleoids, and DNA crystalloids accumulate in the cytoplasm. Further development into intracellular mature virions is blocked, causing a 1,000-fold decrease in the infectious virus yield relative to that obtained in the presence of the inducer. We also determined that the temperature-sensitive phenotype of the viral mutant Cts40 is due to a nucleotide transition within the A13L gene that causes a Thr48→Ile substitution. This substitution disrupts the function of the A13 protein but does not cause thermolability of the protein; at the nonpermissive temperature, virion morphogenesis arrests at the stage of IV formation. The A13L protein, therefore, is part of a newly recognized group of membrane proteins that are dispensable for the early biogenesis of the virion membrane but are essential for virion maturation. PMID:15280497

  5. Photodynamic therapy augments the efficacy of oncolytic vaccinia virus against primary and metastatic tumours in mice

    PubMed Central

    Gil, M; Bieniasz, M; Seshadri, M; Fisher, D; Ciesielski, M J; Chen, Y; Pandey, R K; Kozbor, D

    2011-01-01

    Background: Therapies targeted towards the tumour vasculature can be exploited for the purpose of improving the systemic delivery of oncolytic viruses to tumours. Photodynamic therapy (PDT) is a clinically approved treatment for cancer that is known to induce potent effects on tumour vasculature. In this study, we examined the activity of PDT in combination with oncolytic vaccinia virus (OVV) against primary and metastatic tumours in mice. Methods: The effect of 2-[1-hexyloxyethyl-]-2-devinyl pyropheophorbide-a (HPPH)-sensitised-PDT on the efficacy of oncolytic virotherapy was investigated against subcutaneously implanted syngeneic murine NXS2 neuroblastoma and human FaDu head and neck squamous cell carcinoma xenografts in nude mice. Treatment efficacy was evaluated by monitoring tumour growth and survival. The effects of combination treatment on vascular function were examined using magnetic resonance imaging (MRI) and immunohistochemistry, whereas viral replication in tumour cells was analysed by a standard plaque assay. Normal tissue phototoxicity following PDT-OV treatment was studied using the mouse foot response assay. Results: Combination of PDT with OVV resulted in inhibition of primary and metastatic tumour growth compared with either monotherapy. PDT-induced vascular disruption resulted in higher intratumoural viral titres compared with the untreated tumours. Five days after delivery of OVV, there was a loss of blood flow to the interior of tumour that was associated with infiltration of neutrophils. Administration of OVV did not result in any additional photodynamic damage to normal mouse foot tissue. Conclusion: These results provide evidence into the usefulness of PDT as a means of enhancing intratumoural replication and therapeutic efficacy of OV. PMID:21989183

  6. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei.

    PubMed

    Tolonen, N; Doglio, L; Schleich, S; Krijnse Locker, J

    2001-07-01

    Vaccinia virus (vv), a member of the poxvirus family, is unique among most DNA viruses in that its replication occurs in the cytoplasm of the infected host cell. Although this viral process is known to occur in distinct cytoplasmic sites, little is known about its organization and in particular its relation with cellular membranes. The present study shows by electron microscopy (EM) that soon after initial vv DNA synthesis at 2 h postinfection, the sites become entirely surrounded by membranes of the endoplasmic reticulum (ER). Complete wrapping requires ~45 min and persists until virion assembly is initiated at 6 h postinfection, and the ER dissociates from the replication sites. [(3)H]Thymidine incorporation at different infection times shows that efficient vv DNA synthesis coincides with complete ER wrapping, suggesting that the ER facilitates viral replication. Proteins known to be associated with the nuclear envelope in interphase cells are not targeted to these DNA-surrounding ER membranes, ruling out a role for these molecules in the wrapping process. By random green fluorescent protein-tagging of vv early genes of unknown function with a putative transmembrane domain, a novel vv protein, the gene product of E8R, was identified that is targeted to the ER around the DNA sites. Antibodies raised against this vv early membrane protein showed, by immunofluorescence microscopy, a characteristic ring-like pattern around the replication site. By electron microscopy quantitation the protein concentrated in the ER surrounding the DNA site and was preferentially targeted to membrane facing the inside of this site. These combined data are discussed in relation to nuclear envelope assembly/disassembly as it occurs during the cell cycle.

  7. Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein

    PubMed Central

    Julien, Perino; Thielens, Nicole M.; Crouch, Erika; Spehner, Danièle; Crance, Jean-Marc; Favier, Anne-Laure

    2013-01-01

    Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27. PMID:23518578

  8. Protective effect of surfactant protein d in pulmonary vaccinia virus infection: implication of A27 viral protein.

    PubMed

    Perino, Julien; Thielens, Nicole M; Crouch, Erika; Spehner, Danièle; Crance, Jean-Marc; Favier, Anne-Laure

    2013-03-21

    Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.

  9. Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1996-10-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

  10. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens.

    PubMed

    Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John

    2009-12-30

    In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.

  11. An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels.

    PubMed

    Haagmans, Bart L; van den Brand, Judith M A; Raj, V Stalin; Volz, Asisa; Wohlsein, Peter; Smits, Saskia L; Schipper, Debby; Bestebroer, Theo M; Okba, Nisreen; Fux, Robert; Bensaid, Albert; Solanes Foz, David; Kuiken, Thijs; Baumgärtner, Wolfgang; Segalés, Joaquim; Sutter, Gerd; Osterhaus, Albert D M E

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections have led to an ongoing outbreak in humans, which was fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. In addition to the implementation of hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here we show that a modified vaccinia virus Ankara (MVA) vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Compared with results for control animals, we observed a significant reduction of excreted infectious virus and viral RNA transcripts in vaccinated animals upon MERS-CoV challenge. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus would also provide protection against camelpox.

  12. Immunization with vaccinia virus recombinants that express the surface glycoproteins of human parainfluenza virus type 3 (PIV3) protects patas monkeys against PIV3 infection.

    PubMed Central

    Spriggs, M K; Collins, P L; Tierney, E; London, W T; Murphy, B R

    1988-01-01

    Patas monkeys (Eryphrocebus patas) were immunized intradermally with two vaccinia virus recombinants that individually express the hemagglutinin-neuraminidase glycoprotein or the fusion glycoprotein of human parainfluenza virus type 3 (PIV3). These immunizations induced a high titer of PIV3 serum-neutralizing antibodies. At 1 month after immunization, monkeys were challenged intratracheally with PIV3. Subsequent virus replication was reduced in these monkeys by 3.2 log10 and 1.9 log10 (mean peak virus titers) in the upper and lower respiratory tracts, respectively, compared with control animals. The average duration of virus shedding was also reduced from 9.0 to 3.4 days in the upper respiratory tract and from 5.3 to 1.2 days in the lower respiratory tract. These findings demonstrate that a single intradermal dose of live recombinant vaccinia viruses can significantly restrict the replication of a virus which primarily infects the epithelial cells of the respiratory tract. PMID:2831389

  13. Identification of viral membrane proteins required for cell fusion and viral dissemination that are modified during vaccinia virus persistence.

    PubMed

    Ortiz, M A; Paez, E

    1994-01-01

    Wild-type vaccinia virus WR strain forms non-fusogenic (F-) large plaques and is hemagglutinin positive (HA+) under normal conditions of virus infection. We have analyzed a collection of spontaneous, highly attenuated mutants of vaccinia virus isolated from persistently infected Friend erythroleukemia cells (E. Paez, S. Dallo, and M. Esteban, J. Virol. 61, 2642-2647, 1987) for the ability to express HA during virus infection. After 14 cell passages, all the mutants isolated were hemadsorption negative (HAD-) and did not synthesize a HA that could be recognized by anti-HA monoclonal antibodies. All these HA- mutants induced extensive cell-cell fusion (F+), with the exception of two mutants (65-16 and 101-14) isolated from late cell passages. Nucleotide sequence analysis of the HA gene in these two mutants confirmed the HA- phenotype. A frameshift mutation very close to the initiation codon resulted in premature translational termination. The truncated gene now only encodes the first 25 amino acids. Analysis of progeny from "wild-type," like early serial passage virus (5-3) X mutant back crosses, shows that for one late passage non-fusogenic small-plaque mutant (101-14) among large plaque progeny there is good correspondence between the ability to fuse and the absence of a viral HA and that each large plaque mutant contains a normal 14 kDa membrane protein. However, with a second serial passage mutant 65-16, which, like 101-14, is a nonfusogenic small-plaque variant, there is again an excellent correlation between the inability to synthesize HA and the ability to fuse, but there is no correlation of plaque size with a normal 14 kDa viral membrane protein, as most large plaque mutants encode a larger, i.e., 17 kDa protein. Rescue experiments of 65-16 with bona fide cloned 14 kDa protein gene confirm that the ability to regulate plaque size and cell fusion in this mutant is due to a protein other than the 14 kDa protein. Marker rescue experiments indicated that the map

  14. Administration of vaccinia virus complement control protein shows significant cognitive improvement in a mild injury model.

    PubMed

    Pillay, Nirvana S; Kellaway, Laurie A; Kotwal, Girish J

    2005-11-01

    Previous studies have shown that traumatic mild brain injury in a rat model is accompanied by breakdown of the blood brain barrier and the accumulation of inflammatory cells. A therapeutic agent, vaccinia virus complement control protein (VCP), inhibits both the classic and the alternative pathways of the complement system and, in so doing, prevents cell death and inflammation. With the use of a rat mild injury model, the effects of VCP on spatial learning and memory were tested. Training in a Morris water maze consisted of a total of 16 trials over a 2-day period before rats were anesthetized and subjected to mild (1.0-1.1 atm) lateral fluid percussion injury (FPI) 3.0 mm lateral to the sagittal suture and 4.5 mm posterior to bregma. Ten microl of VCP (1.7 mg/ml) was injected into the injury site immediately after FPI. Two weeks post-FPI the rats were assessed in the Morris water maze for spatial learning and memory. Neurologic motor function tests were carried out after FPI for 14 consecutive days and again after 28 days. The Morris water maze data show that FPI plus saline-injected rats spent a significantly (P <0.05) larger amount of time in one of the incorrect quadrants than did the FPI plus VCP-injected group. Neurologic evaluations 24 hours postinjury revealed differences in sensorimotor function between groups. The results suggest that in a mild injury model, VCP influences neurologic outcome and offers some enhancement in spatial memory and learning.

  15. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    SciTech Connect

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.

  16. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE PAGES

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; Chattopadhyay, Debasish

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  17. Cleavage of Dicer protein by I7 protease during vaccinia virus infection.

    PubMed

    Chen, Jhih-Si; Li, Hui-Chun; Lin, Shu-I; Yang, Chee-Hing; Chien, Wan-Yu; Syu, Ciao-Ling; Lo, Shih-Yen

    2015-01-01

    Dicer is the key component in the miRNA pathway. Degradation of Dicer protein is facilitated during vaccinia virus (VV) infection. A C-terminal cleaved product of Dicer protein was detected in the presence of MG132 during VV infection. Thus, it is possible that Dicer protein is cleaved by a viral protease followed by proteasome degradation of the cleaved product. There is a potential I7 protease cleavage site in the C-terminus of Dicer protein. Indeed, reduction of Dicer protein was detected when Dicer was co-expressed with I7 protease but not with an I7 protease mutant protein lack of the protease activity. Mutation of the potential I7 cleavage site in the C-terminus of Dicer protein resisted its degradation during VV infection. Furthermore, Dicer protein was reduced dramatically by recombinant VV vI7Li after the induction of I7 protease. If VV could facilitate the degradation of Dicer protein, the process of miRNA should be affected by VV infection. Indeed, accumulation of precursor miR122 was detected after VV infection or I7 protease expression. Reduction of miR122 would result in the suppression of HCV sub-genomic RNA replication, and, in turn, the amount of viral proteins. As expected, significant reduction of HCVNS5A protein was detected after VV infection and I7 protease expression. Therefore, our results suggest that VV could cleave Dicer protein through I7 protease to facilitate Dicer degradation, and in turn, suppress the processing of miRNAs. Effect of Dicer protein on VV replication was also studied. Exogenous expression of Dicer protein suppresses VV replication slightly while knockdown of Dicer protein does not affect VV replication significantly.

  18. Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition.

    PubMed

    Venkatesan, S; Gershowitz, A; Moss, B

    1982-11-01

    The proximal part of the 10,000-base pair (bp) inverted terminal repetition of vaccinia virus DNA encodes at least three early mRNAs. A 2,236-bp segment of the repetition was sequenced to characterize two of the genes. This task was facilitated by constructing a series of recombinants containing overlapping deletions; oligonucleotide linkers with synthetic restriction sites provided points for radioactive labeling before sequencing by the chemical degradation method of Maxam and Gilbert (Methods Enzymol. 65:499-560, 1980). The ends of the transcripts were mapped by hybridizing labeled DNA fragments to early viral RNA and resolving nuclease S1-protected fragments in sequencing gels, by sequencing cDNA clones, and from the lengths of the RNAs. The nucleotide sequences for at least 60 bp upstream of both transcriptional initiation sites are more than 80% adenine . thymine rich and contain long runs of adenines and thymines with some homology to procaryotic and eucaryotic consensus sequences. The gene transcribed in the rightward direction encodes an RNA of approximately 530 nucleotides with a single open reading frame of 420 nucleotides. Preceding the first AUG, there is a heptanucleotide that can hybridize to the 3' end of 18S rRNA with only one mismatch. The derived amino acid sequence of the protein indicated a molecular weight of 15,500. The gene transcribed in the leftward direction encodes an RNA 1,000 to 1,100 nucleotides long with an open reading frame of 996 nucleotides and a leader sequence of only 5 to 6 nucleotides. The derived amino acid sequence of this protein indicated a molecular weight of 38,500. The 3' ends of the two transcripts were located within 100 bp of each other. Although there are adenine . thymine-rich clusters near the putative transcriptional termination sites, specific AATAAA polyadenylic acid signal sequences are absent.

  19. Evaluation of smallpox vaccines using variola neutralization.

    PubMed

    Damon, Inger K; Davidson, Whitni B; Hughes, Christine M; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Frey, Sharon E; Newman, Frances; Belshe, Robert B; Yan, Lihan; Karem, Kevin

    2009-08-01

    The search for a 'third'-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific 'in vitro' activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

  20. Clinical experience with respiratory syncytial virus vaccines.

    PubMed

    Piedra, Pedro A

    2003-02-01

    Respiratory syncytial virus (RSV) infection is at times associated with life-threatening lower respiratory tract illness in infancy. Severe infection during the first year of life may be an important risk factor or indicator for the development of asthma in early childhood. Severe infections primarily occur in healthy infants, and young infants and children with specific risk factors. However, RSV causes respiratory infections in all age groups. Indeed it is now recognized that RSV disease is responsible for significant morbidity and mortality in the geriatric population. RSV infection remains difficult to treat, and prevention is a worldwide goal. For this reason there has been an intensive effort to develop an effective and safe RSV vaccine. Initial infection with RSV affords limited protection to reinfection, yet repeated episodes decrease the risk for lower respiratory tract illness. In the 20 years from 1960 to 1980, trials of several candidate RSV vaccines failed to attain the desired safety and protection against natural infection. Some vaccine types either failed to elicit immunogenicity, as with the live subcutaneous vaccine, or resulted in exaggerated disease on natural exposure to the virus, as with the formalin-inactivated (FI) type. Currently vaccine candidates are being developed based on the molecular virology of RSV. Recent formulations of candidate RSV vaccines have focused on subunit vaccines [such as purified fusion protein (PFP)], subunit vaccines combined with nonspecific immune activating adjuvants, live attenuated vaccines (including cold passaged, temperature-sensitive or cpts mutants), genetically engineered live attenuated vaccines and polypeptide vaccines. PMID:12671459

  1. 9 CFR 113.214 - Parvovirus Vaccine, Killed Virus (Canine).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Parvovirus Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.214 Parvovirus Vaccine, Killed Virus (Canine). Parvovirus Vaccine... Master Seed which has been established as pure, safe, and immunogenic shall be used for...

  2. 9 CFR 113.214 - Parvovirus Vaccine, Killed Virus (Canine).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Parvovirus Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.214 Parvovirus Vaccine, Killed Virus (Canine). Parvovirus Vaccine... Master Seed which has been established as pure, safe, and immunogenic shall be used for...

  3. 9 CFR 113.214 - Parvovirus Vaccine, Killed Virus (Canine).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Parvovirus Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.214 Parvovirus Vaccine, Killed Virus (Canine). Parvovirus Vaccine... Master Seed which has been established as pure, safe, and immunogenic shall be used for...

  4. 9 CFR 113.214 - Parvovirus Vaccine, Killed Virus (Canine).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Parvovirus Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.214 Parvovirus Vaccine, Killed Virus (Canine). Parvovirus Vaccine... Master Seed which has been established as pure, safe, and immunogenic shall be used for...

  5. Equine vaccine for West Nile virus.

    PubMed

    Ng, T; Hathaway, D; Jennings, N; Champ, D; Chiang, Y W; Chu, H J

    2003-01-01

    To meet the urgent need of controlling West Nile virus (WNV) infection in the equine population, we have developed a killed WNV vaccine. A dose titration study in horses was first conducted to evaluate serum neutralization antibody responses against WNV in these animals. Horses were vaccinated intramuscularly twice with the test vaccine at low, medium and high dose, three weeks apart. Serum samples were collected periodically and were measured for serum neutralizing antibody using a plaque reduction neutralization test. Significant increases in serum neutralizing antibody were detected in all three dosage groups 14 days post the second vaccination. Twelve months after the second vaccination, horses vaccinated with the medium dose of WNV vaccine and non-vaccinated control horses were experimentally challenged with WNV. Nine out of 11 (81.8%) controls developed viraemia after challenge while only one out of 19 (5.3%) vaccinates had transient viraemia, representing a 94% preventable fraction. In a separate study, the safety of the killed WNV vaccine was demonstrated under field conditions. A total of 648 horses, including 32 pregnant mares, were enrolled in the study. During the two weeks post vaccination period, no local or systemic adverse reactions were observed following 96% of the vaccinations administered while mild, transient injection site reactions were noted in a small number of horses. These results indicate that the killed WNV vaccine developed by Fort Dodge Animal Health is safe and efficacious.

  6. Zika Virus: Immunity and Vaccine Development.

    PubMed

    Pierson, Theodore C; Graham, Barney S

    2016-10-20

    The emergence of Zika virus in the Americas and Caribbean created an urgent need for vaccines to reduce transmission and prevent disease, particularly the devastating neurodevelopmental defects that occur in utero. Rapid advances in Zika immunity and the development of vaccine candidates provide cautious optimism that preventive measures are possible.

  7. Vaccines in development against West Nile virus.

    PubMed

    Brandler, Samantha; Tangy, Frederic

    2013-10-01

    West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV) disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV) vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine.

  8. Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes.

    PubMed

    Gherardi, M Magdalena; Nájera, José Luis; Pérez-Jiménez, Eva; Guerra, Susana; García-Sastre, Adolfo; Esteban, Mariano

    2003-06-01

    Vaccines that elicit systemic and mucosal immune responses should be the choice to control human immunodeficiency virus (HIV) infections. We have previously shown that prime-boost immunizations with influenza virus Env and vaccinia virus (VV) WR Env recombinants induced an enhanced systemic CD8(+) T-cell response against HIV-1 Env antigen. In this report, we analyzed in BALB/c mice after priming with influenza virus Env the ability of two VV recombinants expressing HIV-1 Env B (VV WR Env and the highly attenuated modified VV Ankara [MVA] Env) to boost cellular immune responses in the spleen and in the lymph nodes draining the genital and rectal tracts. Groups of mice were primed by the intranasal route with 10(4) PFU of influenza virus Env and boosted 14 days later by the intraperitoneal or intranasal route with 10(7) PFU of MVA Env or VV WR Env, while the control group received two immunizations with influenza virus Env. We found that the combined immunization (Flu/VV) increased more than 60 times the number of gamma interferon-specific CD8(+) T cells compared to the Flu/Flu scheme. Significantly, boosting with MVA Env by the intraperitoneal route induced a response 1.25 or 2.5 times (spleen or genital lymph nodes) higher with respect to that found after the boost with VV WR Env. Mice with an enhanced CD8(+) T-cell response also had an increased Th1/Th2 ratio, evaluated by the cytokine pattern secreted following in vitro restimulation with gp160 protein and by the specific immunoglobulin G2a (IgG2a)/IgG1 ratio in serum. By the intranasal route recombinant WR Env booster gave a more efficient immune response (10 and 1.3 times in spleen and genital lymph nodes, respectively) than recombinant MVA Env. However, the scheme influenza virus Env/MVA Env increased four times the response in the spleen, giving a low but significant response in the genital lymph nodes compared with a single intranasal immunization with MVA Env. These results demonstrate that the combination

  9. Clinical development of Ebola vaccines.

    PubMed

    Sridhar, Saranya

    2015-09-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines.

  10. Clinical development of Ebola vaccines

    PubMed Central

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  11. Protein of macaques against infection with simian type D retrovirus (SRV-1) by immunization with recombinant vaccinia virus expressing the envelope glycoproteins of either SRV-1 or Mason-Pfizer monkey virus (SRV-3).

    PubMed Central

    Brody, B A; Hunter, E; Kluge, J D; Lasarow, R; Gardner, M; Marx, P A

    1992-01-01

    Rhesus macaques were immunized with live vaccinia virus recombinants expressing the envelope glycoproteins (gp70 and gp22) of simian type D retrovirus (SRV), serotype 1 or 3. All of the animals immunized with either the SRV-1 env or the SRV-3 env vaccinia virus recombinant developed neutralizing antibodies against the homologous SRV. In addition, both groups developed cross-reactive antibodies and were protected against an intravenous live-virus challenge with SRV-1. The four control animals immunized with a vaccinia virus recombinant expressing the G protein of respiratory syncytial virus were not protected against the same SRV-1 challenge. Although SRV-1 and SRV-3 immune sera showed cross-neutralization, they failed to neutralize a separate, more distantly related serotype, SRV-2, in an in vitro assay. These findings are consistent with the known degree of serologic and genetic relatedness of these three SRV strains. Images PMID:1316495

  12. Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis.

    PubMed

    Rodríguez, D; Esteban, M; Rodríguez, J R

    1995-08-01

    Vaccinia virus (VV) A17L gene encodes a 23-kDa protein that is proteolytically cleaved to generate a 21-kDa product that is incorporated into the viral particles. We have previously shown that the 21-kDa protein forms a stable complex with the VV 14-kDa envelope protein and suggested that the 21-kDa protein may serve to anchor the 14-kDa protein to the envelope of the virion (D. Rodríguez, J. R. Rodríguez, and M. Esteban, J. Virol. 67:3435-3440, 1993). To study the role of the 21-kDa protein in virion assembly, in this investigation we generated a VV recombinant, VVindA17L, that contains an inducible A17L gene regulated by the E. coli repressor/operator system. In the absence of the inducer, shutoff of the A17L gene was complete, and this shutoff correlated with a reduction in virus yields of about 3 log units. Although early and late viral polypeptides are normally synthesized in the absence of the A17L gene product, proteolytic processing of the major p4a and p4b core proteins was clearly impaired under these conditions. Electron microscopy examination of cells infected in the absence of isopropylthiogalactopyranoside (IPTG) revealed that virion morphogenesis was completely arrested at a very early stage, even prior to the formation of crescent-shaped membranes, which are the first distinguishable viral structures. Only electron-dense structures similar to rifampin bodies, but devoid of membranes, could be observed in the cytoplasm of cells infected with VVindA17L under nonpermissive conditions. Considering the most recent assembly model presented by Sodeik et al. (B. Sodeik, R. W. Doms, M. Ericsson, G. Hiller, C. E. Machamer, W. van't Hof, G. van Meer, B. Moss, and G. Griffiths, J. Cell Biol. 121:521-541, 1993), we propose that this protein is targeted to the intermediate compartment and is involved in the recruitment of these membranes to the viral factories, where it forms the characteristic crescent structures that subsequently result in the formation of

  13. Functional analysis of N-linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors.

    PubMed Central

    Alkhatib, G; Shen, S H; Briedis, D; Richardson, C; Massie, B; Weinberg, R; Smith, D; Taylor, J; Paoletti, E; Roder, J

    1994-01-01

    The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes. Images PMID:8107215

  14. Insertion of Vaccinia Virus C7L Host Range Gene into NYVAC-B Genome Potentiates Immune Responses against HIV-1 Antigens

    PubMed Central

    Nájera, José Luis; Gómez, Carmen Elena; García-Arriaza, Juan; Sorzano, Carlos Oscar; Esteban, Mariano

    2010-01-01

    Background The highly attenuated vaccinia virus strain NYVAC expressing HIV-1 components has been evaluated as a vaccine candidate in preclinical and clinical trials with encouraging results. We have previously described that the presence of C7L in the NYVAC genome prevents the induction of apoptosis and renders the vector capable of replication in human and murine cell lines while maintaining an attenuated phenotype in mice. Methodology/Principal Findings In an effort to improve the immunogenicity of NYVAC, we have developed a novel poxvirus vector by inserting the VACV host-range C7L gene into the genome of NYVAC-B, a recombinant virus that expresses four HIV-1 antigens from clade B (Env, Gag, Pol and Nef) (referred as NYVAC-B-C7L). In the present study, we have compared the in vitro and in vivo behavior of NYVAC-B and NYVAC-B-C7L. In cultured cells, NYVAC-B-C7L expresses higher levels of heterologous antigen than NYVAC-B as determined by Western blot and fluorescent-activated cell sorting to score Gag expressing cells. In a DNA prime/poxvirus boost approach with BALB/c mice, both recombinants elicited robust, broad and multifunctional antigen-specific T-cell responses to the HIV-1 immunogens expressed from the vectors. However, the use of NYVAC-B-C7L as booster significantly enhanced the magnitude of the T cell responses, and induced a more balanced cellular immune response to the HIV-1 antigens in comparison to that elicited in animals boosted with NYVAC-B. Conclusions/Significance These findings demonstrate the possibility to enhance the immunogenicity of the highly attenuated NYVAC vector by the insertion of the host-range gene C7L and suggest the use of this modified vector as an improved vaccine candidate against HIV/AIDS. PMID:20613977

  15. Vaccinia virus entry/fusion complex subunit A28 is a target of neutralizing and protective antibodies

    SciTech Connect

    Nelson, Gretchen E.; Sisler, Jerry R.; Chandran, Dev; Moss, Bernard

    2008-10-25

    The vaccinia virus entry/fusion complex (EFC) is comprised of at least eight transmembrane proteins that are conserved in all poxviruses. However, neither the physical structure of the EFC nor the immunogenicity of the individual components has been determined. We prepared soluble forms of two EFC components, A28 and H2, by replacing the transmembrane domain with a signal peptide and adding a polyhistidine tail. The proteins were expressed by baculoviruses, secreted from insect cells, purified by affinity chromatography and used to raise antibodies in rabbits. The antibodies recognized the viral proteins but only the antibody to recombinant A28 bound intact virions and neutralized infectivity. Analyses with a set of overlapping peptides revealed a neutralizing epitope between residues 73 and 92 of A28. Passive immunization of mice with IgG purified from the anti-A28 serum provided partial protection against a vaccinia virus intranasal challenge, whereas IgG from the anti-H2 serum did not.

  16. Genetic Analysis of the Vaccinia Virus I6 Telomere-Binding Protein Uncovers a Key Role in Genome Encapsidation

    PubMed Central

    Grubisha, Olivera; Traktman, Paula

    2003-01-01

    The linear, double-stranded DNA genome of vaccinia virus contains covalently closed hairpin termini. These hairpin termini comprise a terminal loop and an A+T-rich duplex stem that has 12 extrahelical bases. DeMasi et al. have shown previously that proteins present in infected cells and in virions form distinct complexes with the telomeric hairpins and that these interactions require the extrahelical bases. The vaccinia virus I6 protein was identified as the protein showing the greatest specificity and affinity for interaction with the viral hairpins (J. DeMasi, S. Du, D. Lennon, and P. Traktman, J. Virol. 75:10090-10105, 2001). To gain insight into the role of I6 in vivo, we generated eight recombinant viruses bearing altered alleles of I6 in which clusters of charged amino acids were changed to alanine residues. One allele (temperature-sensitive I6-12 [tsI6-12]) conferred a tight ts phenotype and was used to examine the stage(s) of the viral life cycle that was affected at the nonpermissive temperature. Gene expression, DNA replication, and genome resolution proceeded normally in this mutant. However, proteolytic processing of structural proteins, which accompanies virus maturation, was incomplete. Electron microscopic studies confirmed a severe block in morphogenesis in which immature, but no mature, virions were observed. Instead, aberrant spherical virions and large crystalloids were seen. When purified, these aberrant virions were found to have normal protein content but to be devoid of viral DNA. We propose that the binding of I6 to viral telomeres directs genome encapsidation into the virus particle. PMID:14512543

  17. The appearance of escape variants in vivo does not account for the failure of recombinant envelope vaccines to protect against simian immunodeficiency virus.

    PubMed

    Almond, N; Jenkins, A; Jones, S; Arnold, C; Silvera, P; Kent, K; Mills, K H; Stott, E J

    1999-09-01

    The presence or evolution of immune escape variants has been proposed to account for the failure of recombinant envelope vaccines to protect macaques against challenge with simian immunodeficiency virus (SIVmac). To address this issue, two groups of three cynomolgus macaques were immunized with recombinant SIV Env vaccines using two different vaccine schedules. One group of macaques received four injections of recombinant SIV gp120 in SAF-1 containing threonyl muramyl dipeptide as adjuvant. A second group were primed twice with recombinant vaccinia virus expressing SIV gp160 and then boosted twice with recombinant SIV gp120. Both vaccine schedules elicited neutralizing antibodies to Env. However, on the day of challenge, titres of anti-Env antibodies measured by ELISA were higher in macaques primed with recombinant vaccinia virus. Following intravenous challenge with 10 monkey infectious doses of the SIVmac J5M challenge stock, five of the six immunized macaques and all four naive controls became infected. The virus burdens in PBMC of macaques that were primed with recombinant vaccinia virus were lower than those of naive controls, as determined by virus titration and quantitative DNA PCR. Sequence analysis was performed on SIV env amplified from the blood of immunized and naive infected macaques. No variation of SIV env sequence was observed, even in macaques with a reduced virus load, suggesting that the appearance of immune escape variants does not account for the incomplete protection observed. In addition, this study indicates that the measurement of serum neutralizing antibodies may not provide a useful correlate for protection elicited by recombinant envelope vaccines.

  18. Zika Virus: Diagnosis, Therapeutics, and Vaccine.

    PubMed

    Shan, Chao; Xie, Xuping; Barrett, Alan D T; Garcia-Blanco, Mariano A; Tesh, Robert B; Vasconcelos, Pedro Fernando da Costa; Vasilakis, Nikos; Weaver, Scott C; Shi, Pei-Yong

    2016-03-11

    The current explosive epidemic of Zika virus in South and Central America, as well as the Caribbean, poses a global public health emergency. Here we comment on the challenges on development of better diagnosis and potential therapeutics and vaccine for Zika virus. PMID:27623030

  19. Zika Virus: Diagnosis, Therapeutics, and Vaccine.

    PubMed

    Shan, Chao; Xie, Xuping; Barrett, Alan D T; Garcia-Blanco, Mariano A; Tesh, Robert B; Vasconcelos, Pedro Fernando da Costa; Vasilakis, Nikos; Weaver, Scott C; Shi, Pei-Yong

    2016-03-11

    The current explosive epidemic of Zika virus in South and Central America, as well as the Caribbean, poses a global public health emergency. Here we comment on the challenges on development of better diagnosis and potential therapeutics and vaccine for Zika virus.

  20. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    SciTech Connect

    Gates, Sean Damien

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  1. NPF motifs in the vaccinia virus protein A36 recruit intersectin-1 to promote Cdc42:N-WASP-mediated viral release from infected cells.

    PubMed

    Snetkov, Xenia; Weisswange, Ina; Pfanzelter, Julia; Humphries, Ashley C; Way, Michael

    2016-01-01

    During its egress, vaccinia virus transiently recruits AP-2 and clathrin after fusion with the plasma membrane. This recruitment polarizes the viral protein A36 beneath the virus, enhancing actin polymerization and the spread of infection. We now demonstrate that three NPF motifs in the C-terminus of A36 recruit AP-2 and clathrin by interacting directly with the Epsin15 homology domains of Eps15 and intersectin-1. A36 is the first identified viral NPF motif containing protein shown to interact with endocytic machinery. Vaccinia still induces actin tails in the absence of the A36 NPF motifs. Their loss, however, reduces the cell-to-cell spread of vaccinia. This is due to a significant reduction in virus release from infected cells, as the lack of intersectin-1 recruitment leads to a loss of Cdc42 activation, impairing N-WASP-driven Arp2/3-mediated actin polymerization. Our results suggest that initial A36-mediated virus release plays a more important role than A36-driven super-repulsion in promoting the cell-to-cell spread of vaccinia. PMID:27670116

  2. Gold nanorod vaccine for respiratory syncytial virus

    NASA Astrophysics Data System (ADS)

    Stone, John W.; Thornburg, Natalie J.; Blum, David L.; Kuhn, Sam J.; Wright, David W.; Crowe, James E., Jr.

    2013-07-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response.

  3. Emerging Respiratory Viruses: Challenges and Vaccine Strategies

    PubMed Central

    Gillim-Ross, Laura; Subbarao, Kanta

    2006-01-01

    The current threat of avian influenza to the human population, the potential for the reemergence of severe acute respiratory syndrome (SARS)-associated coronavirus, and the identification of multiple novel respiratory viruses underline the necessity for the development of therapeutic and preventive strategies to combat viral infection. Vaccine development is a key component in the prevention of widespread viral infection and in the reduction of morbidity and mortality associated with many viral infections. In this review we describe the different approaches currently being evaluated in the development of vaccines against SARS-associated coronavirus and avian influenza viruses and also highlight the many obstacles encountered in the development of these vaccines. Lessons learned from current vaccine studies, coupled with our increasing knowledge of the host and viral factors involved in viral pathogenesis, will help to increase the speed with which efficacious vaccines targeting newly emerging viral pathogens can be developed. PMID:17041137

  4. New approaches to chikungunya virus vaccine development.

    PubMed

    Garcia, Alexis; Diego, Lema; Judith, Barroso

    2015-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne human pathogen that affects millions of individuals each year by causing non-specific flu-like symptoms, with a characteristic rash accompanied by joint pain that may last for a long time after the resolution of the infection. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. This review is based on articles retrieved by PubMed and clinical trials since 1980 to present. Virus complexity, protective and non-protective immune responses against the virus, and the most important a new patented approaches for Chikungunya vaccine development are discussed.

  5. Vaccinia viruses isolated from skin infection in horses produced cutaneous and systemic disease in experimentally infected rabbits.

    PubMed

    Cargnelutti, Juliana Felipetto; Schmidt, Candice; Masuda, Eduardo Kenji; Nogueira, Paula Rochelle Kurrle; Weiblen, Rudi; Flores, Eduardo Furtado

    2012-10-01

    The susceptibility of rabbits to two isolates of Vaccinia virus (VACV) recovered from cutaneous disease in horses in Southern Brazil was investigated. Rabbits were inoculated in the ear skin with both VACV isolates, either in single or mixed infection. All inoculated animals presented local skin lesions characterized by hyperaemia, papules, vesicles, pustules and ulcers. Infectious virus was detected in the lungs and intestine of rabbits that died during acute disease. Histological examination of the skin revealed changes characteristic of those associated with members of the genus Orthopoxvirus. These results demonstrate that rabbits develop skin disease accompanied by systemic signs upon intradermal inoculation of these two equine VACV isolates, either alone or in combination, opening the way for using rabbits to study selected aspects of the biology and pathogenesis of VACV infection.

  6. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  7. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-02-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines. PMID:8995676

  8. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection.

    PubMed Central

    Stephensen, C B; Welter, J; Thaker, S R; Taylor, J; Tartaglia, J; Paoletti, E

    1997-01-01

    Canine distemper virus (CDV) infection of ferrets causes an acute systemic disease involving multiple organ systems, including the respiratory tract, lymphoid system, and central nervous system (CNS). We have tested candidate CDV vaccines incorporating the fusion (F) and hemagglutinin (HA) proteins in the highly attenuated NYVAC strain of vaccinia virus and in the ALVAC strain of canarypox virus, which does not productively replicate in mammalian hosts. Juvenile ferrets were vaccinated twice with these constructs, or with an attenuated live-virus vaccine, while controls received saline or the NYVAC and ALVAC vectors expressing rabies virus glycoprotein. Control animals did not develop neutralizing antibody and succumbed to distemper after developing fever, weight loss, leukocytopenia, decreased activity, conjunctivitis, an erythematous rash typical of distemper, CNS signs, and viremia in peripheral blood mononuclear cells (as measured by reverse transcription-PCR). All three CDV vaccines elicited neutralizing titers of at least 1:96. All vaccinated ferrets survived, and none developed viremia. Both recombinant vaccines also protected against the development of symptomatic distemper. However, ferrets receiving the live-virus vaccine lost weight, became lymphocytopenic, and developed the erythematous rash typical of CDV. These data show that ferrets are an excellent model for evaluating the ability of CDV vaccines to protect against symptomatic infection. Because the pathogenesis and clinical course of CDV infection of ferrets is quite similar to that of other Morbillivirus infections, including measles, this model will be useful in testing new candidate Morbillivirus vaccines. PMID:8995676

  9. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.

    PubMed

    Huang, Xiaoxing; Lu, Bin; Yu, Wenbo; Fang, Qing; Liu, Li; Zhuang, Ke; Shen, Tingting; Wang, Haibo; Tian, Po; Zhang, Linqi; Chen, Zhiwei

    2009-01-01

    Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels ( approximately 2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (approximately 10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.

  10. The 32-kilodalton envelope protein of vaccinia virus synthesized in Escherichia coli binds with specificity to cell surfaces.

    PubMed Central

    Lai, C F; Gong, S C; Esteban, M

    1991-01-01

    The nature of interaction between vaccinia virus and the surface of host cells as the first step in virus infection is undefined. A 32-kDa virus envelope protein has been identified as a cell surface binding protein (J.-S. Maa, J. F. Rodriguez, and M. Esteban, J. Biol. Chem. 265:1569-1577, 1990). To carry out studies on the structure-function relationship of this protein, the 32-kDa protein was obtained from Escherichia coli cells harboring the expression plasmid pT7Ek32. The recombinant polypeptide was found to have structural properties similar to those of the native virus envelope protein. Binding studies of 125I-labeled 32-kDa protein to cultured cells of various origins revealed that the E. coli-produced 32-kDa protein exhibited selectivity, specificity, and saturability. Scatchard analysis indicated about 4.5 x 10(4) sites per cell with a high affinity (Kd = 1.8 x 10(-9) M), suggesting interaction of the 32-kDa protein with a specific receptor. The availability of large quantities of the 32-kDa virus protein in bacteria will permit further structural and functional studies of this virus envelope protein and facilitate identification of the specific cell surface receptor. Images PMID:1985213

  11. Resistance of mice vaccinated with rabies virus internal structural proteins to lethal infection.

    PubMed

    Takita-Sonoda, Y; Fujii, H; Mifune, K; Ito, Y; Hiraga, M; Nishizono, A; Mannen, K; Minamoto, N

    1993-01-01

    Mice were vaccinated with recombinant vaccinia virus (rVac) expressing the glycoprotein (G), nucleoprotein (N), phosphoprotein (NS) or matrix protein (M) of rabies virus and their resistance to peripheral lethal infection with street rabies virus was examined. Mice vaccinated with rVac-G or rVac-N developed strong antibody responses to the corresponding proteins and essentially all mice survived challenge infection. Mice vaccinated with rVac-NS or rVac-M developed only a slight antibody response, however, a significant protection (59%) was observed in the rVac-NS-vaccinated mice, whereas rVac-M-vaccinated mice were not protected. No anti-G antibodies were detected in the sera of mice which has been vaccinated with rVac-N or rVac-NS and survived challenge infection. Passive transfer of anti-N monoclonal antibodies (MAbs) recognizing an epitope located on amino acids 1-224 of the protein prior to challenge resulted in significant protection, although the protection was not complete even with a high amount of antibodies. In contrast, none of the mice given MAbs recognizing an epitope of amino acids 247-415 or F(ab')2 fragments from a protective MAb IgG were protected. Administration of anti-CD 8 MAb to rVac-N-vaccinated mice showed no significant effect on protection. Our observations suggest that a considerable part of the protection achieved by the vaccination with rVac-N can be ascribed to the intact anti-N antibodies recognizing an epitope located on amino acids 1-224 of the protein.

  12. Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy

    PubMed Central

    2012-01-01

    Background Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects. PMID:22236378

  13. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens.

    PubMed

    Vennema, H; de Groot, R J; Harbour, D A; Horzinek, M C; Spaan, W J

    1991-03-01

    Feline infectious peritonitis virus (FIPV) causes a mostly fatal, immunologically mediated disease in cats. Previously, we demonstrated that immunization with a recombinant vaccinia virus expressing the FIPV spike protein (S) induced early death after challenge with FIPV (Vennema et al., 1990, J. Virol. 64, 1407-1409). In this paper we describe similar immunizations with the FIPV membrane (M) and nucleocapsid (N) proteins. The genes encoding these proteins were cloned and sequenced. Comparison of the amino acid sequences with the corresponding sequences of porcine transmissible gastroenteritis virus revealed 84.7 and 77% identity for M and N, respectively. Vaccinia virus recombinants expressing the cloned genes induced antibodies in immunized kittens. Immunization with neither recombinant induced early death after challenge with FIPV, strongly suggesting that antibody-dependent enhancement is mediated by antibodies against S only. Immunization with the N protein recombinant had no apparent effect on the outcome of challenge. However, three of eight kittens immunized with the M protein recombinant survived the challenge, as compared to one of eight kittens of the control group.

  14. Respiratory syncytial virus vaccines for otitis media.

    PubMed

    Anderson, L J

    2000-12-01

    RSV is a high priority for vaccine development because of its propensity to cause pneumonia and bronchiolitis in the infant and young child. Since RSV infection is likely to be a substantial contributor to otitis media, a vaccine could also decrease rates of this disease. No vaccine has yet been developed but it is hoped that the availability of an RSV infectious clone will make it possible to develop a live virus vaccine for the infant and young child. Subunit RSV vaccines are being developed for previously infected persons, i.e. in older children at high risk for RSV disease and the elderly. An effective RSV vaccine for the infant and young child could markedly decrease otitis media disease.

  15. Vaccinia virus F5 is required for normal plaque morphology in multiple cell lines but not replication in culture or virulence in mice.

    PubMed

    Dobson, Bianca M; Procter, Dean J; Hollett, Natasha A; Flesch, Inge E A; Newsome, Timothy P; Tscharke, David C

    2014-05-01

    Vaccinia virus (VACV) gene F5L was recently identified as a determinant of plaque morphology that is truncated in Modified Vaccinia virus Ankara (MVA). Here we show that F5L also affects plaque morphology of the virulent VACV strain Western Reserve (WR) in some, but not all cell lines, and not via previously described mechanisms. Further, despite a reduction in plaque size for VACV WR lacking F5L there was no evidence of reduced virus replication or spread in vitro or in vivo. In vivo we examined two mouse models, each with more than one dose and measured signs of disease and virus burden. These data provide an initial characterization of VACV F5L in a virulent strain of VACV. Further they show the necessity of testing plaque phenotypes in more than one cell type and provide an example of a VACV gene required for normal plaque morphology but not replication and spread.

  16. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients.

    PubMed

    Cripe, Timothy P; Ngo, Minhtran C; Geller, James I; Louis, Chrystal U; Currier, Mark A; Racadio, John M; Towbin, Alexander J; Rooney, Cliona M; Pelusio, Adina; Moon, Anne; Hwang, Tae-Ho; Burke, James M; Bell, John C; Kirn, David H; Breitbach, Caroline J

    2015-03-01

    Pexa-Vec (pexastimogene devacirepvec, JX-594) is an oncolytic and immunotherapeutic vaccinia virus designed to destroy cancer cells through viral lysis and induction of granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven tumor-specific immunity. Pexa-Vec has undergone phase 1 and 2 testing alone and in combination with other therapies in adult patients, via both intratumoral and intravenous administration routes. We sought to determine the safety of intratumoral administration in pediatric patients. In a dose-escalation study using either 10(6) or 10(7) plaque-forming units per kilogram, we performed one-time injections in up to three tumor sites in five pediatric patients and two injections in one patient. Ages at study entry ranged from 4 to 21 years, and their cancer diagnoses included neuroblastoma, hepatocellular carcinoma, and Ewing sarcoma. All toxicities were ≤ grade 3. The most common side effects were sinus fever and sinus tachycardia. All three patients at the higher dose developed asymptomatic grade 1 treatment-related skin pustules that resolved within 3-4 weeks. One patient showed imaging evidence suggestive of antitumor biological activity. The two patients tested for cellular immunoreactivity to vaccinia antigens showed strong responses. Overall, our study suggests Pexa-Vec is safe to administer to pediatric patients by intratumoral administration and could be studied further in this patient population.

  17. Type I interferon mimetics bypass vaccinia virus decoy receptor virulence factor for protection of mice against lethal infection.

    PubMed

    Ahmed, Chulbul M; Johnson, Howard M

    2014-08-01

    The canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors which, according to the model, are initiated by the singular event of cross-linkage of the receptor extracellular domain by the IFN. The IFN has no further function beyond this. The model thus provides no approach to circumventing poxviruses decoy receptors that compete with the IFN receptors for IFNs. This simple event has allowed smallpox virus to decimate human populations throughout the ages. We have developed a noncanonical model of IFN signaling that has resulted in the development of small peptide mimetics to both types I and II IFNs. In this report, we focus on a type I IFN mimetic at positions 152 to 189, IFN-α1(152-189), which corresponds to the C terminus of human IFN-α1. This mimetic functions intracellularly and is thus not recognized by the B18R vaccinia virus decoy receptor. Mimetic synthesized with an attached palmitate (lipo-) for cell penetration protects mice from a lethal dose of vaccinia virus, while the parent IFN-α1 is ineffective. Unlike IFN-α1, the mimetic does not bind to the B18R decoy receptor. It further differs from the parent IFN in that it lacks the toxicity of weight loss and bone marrow suppression in mice while at the same time possessing a strong adjuvant effect on the immune system. The mimetic is thus an innate and adaptive immune regulator that is evidence of the dynamic nature of the noncanonical model of IFN signaling, in stark contrast to the canonical or classical model of signaling.

  18. Vaccination of renal cell cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) alone or administered in combination with interferon-alpha (IFN-alpha): a phase 2 trial.

    PubMed

    Amato, Robert J; Shingler, William; Goonewardena, Madusha; de Belin, Jackie; Naylor, Stuart; Jac, Jaroslaw; Willis, James; Saxena, Somyata; Hernandez-McClain, Joan; Harrop, Richard

    2009-09-01

    Attenuated vaccinia virus, modified vaccinia Ankara (MVA) has been engineered to deliver the tumor antigen 5T4 (TroVax). MVA-5T4 has been evaluated in an open-label phase 2 trial in metastatic renal cell cancer patients in which the vaccine was administered alone or in combination with interferon-alpha-2b (IFN-alpha). The safety, immunologic, and clinical efficacy of MVA-5T4 with or without IFN-alpha was determined. Twenty-eight patients with metastatic renal cell cancer were treated with MVA-5T4 alone (13) or plus IFN-alpha (15). The 5T4-specific cellular and humoral responses were monitored throughout the study. Clinical responses were assessed by measuring changes in tumor burden by computed tomography or magnetic resonance imaging scan. MVA-5T4 was well tolerated with no serious adverse event attributed to vaccination. Of 23 intent-to-treat patients tested for immune responses postvaccination, 22 (96%) mounted 5T4-specific antibody and/or cellular responses. One patient treated with MVA-5T4 plus IFN-alpha showed a partial response for >7 months, whereas an additional 14 patients (7 receiving MVA-5T4 plus IFN and 7 receiving MVA-5T4 alone) showed periods of disease stabilization ranging from 1.73 to 9.60 months. Median progression free survival and overall survival for all intent-to-treat patients was 3.8 months (range: 1 to 11.47 mo) and 12.1 months (range: 1 to 27 mo), respectively. MVA-5T4 administered alone or in combination with IFN-alpha was well tolerated in all patients. Despite the high frequency of 5T4-specific immune responses, it is not possible to conclude that patients are receiving clinical benefit. The results are encouraging and warrant further investigation.

  19. The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.

    PubMed

    Gammon, Don B; Evans, David H

    2009-05-01

    Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.

  20. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    PubMed

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  1. Development of high-yield influenza A virus vaccine viruses

    PubMed Central

    Ping, Jihui; Lopes, Tiago J.S.; Nidom, Chairul A.; Ghedin, Elodie; Macken, Catherine A.; Fitch, Adam; Imai, Masaki; Maher, Eileen A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin–Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development. PMID:26334134

  2. Vaccine protection against Zika virus from Brazil.

    PubMed

    Larocca, Rafael A; Abbink, Peter; Peron, Jean Pierre S; Zanotto, Paolo M de A; Iampietro, M Justin; Badamchi-Zadeh, Alexander; Boyd, Michael; Ng'ang'a, David; Kirilova, Marinela; Nityanandam, Ramya; Mercado, Noe B; Li, Zhenfeng; Moseley, Edward T; Bricault, Christine A; Borducchi, Erica N; Giglio, Patricia B; Jetton, David; Neubauer, George; Nkolola, Joseph P; Maxfield, Lori F; De La Barrera, Rafael A; Jarman, Richard G; Eckels, Kenneth H; Michael, Nelson L; Thomas, Stephen J; Barouch, Dan H

    2016-08-25

    Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.

  3. Vaccine protection against Zika virus from Brazil.

    PubMed

    Larocca, Rafael A; Abbink, Peter; Peron, Jean Pierre S; Zanotto, Paolo M de A; Iampietro, M Justin; Badamchi-Zadeh, Alexander; Boyd, Michael; Ng'ang'a, David; Kirilova, Marinela; Nityanandam, Ramya; Mercado, Noe B; Li, Zhenfeng; Moseley, Edward T; Bricault, Christine A; Borducchi, Erica N; Giglio, Patricia B; Jetton, David; Neubauer, George; Nkolola, Joseph P; Maxfield, Lori F; De La Barrera, Rafael A; Jarman, Richard G; Eckels, Kenneth H; Michael, Nelson L; Thomas, Stephen J; Barouch, Dan H

    2016-08-25

    Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in