Sample records for vacuolar proton pump

  1. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.

    PubMed

    Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano

    2010-05-08

    The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.

  2. A thermo-physical analysis of the proton pump vacuolar-ATPase: the constructal approach.

    PubMed

    Lucia, Umberto; Ponzetto, Antonio; Deisboeck, Thomas S

    2014-10-24

    Pumping protons across a membrane was a critical step at the origin of life on earth, and it is still performed in all living organisms, including in human cells. Proton pumping is paramount to keep normal cells alive, e.g. for lysosomal digestion and for preparing peptides for immune recognition, but it goes awry in cancer cells. They acidify their microenvironment hence membrane voltage is lowered, which in turn induces cell proliferation, a hallmark of cancer. Proton pumping is achieved by means of rotary motors, namely vacuolar ATPases (V-ATPase), which are present at many of the multiple cellular interfaces. Therefore, we undertook an examination of the thermodynamic properties of V-ATPases. The principal result is that the V-ATPase-mediated control of the cell membrane potential and the related and consequent environmental pH can potentially represent a valuable support strategy for anticancer therapies. A constructal theory approach is used as a new viewpoint to study how V-ATPase can be modulated for therapeutic purposes. In particular, V-ATPase can be regulated by using external fields, such as electromagnetic fields, and a theoretical approach has been introduced to quantify the appropriate field strength and frequency for this new adjuvant therapeutic strategy.

  3. Fe deficiency differentially affects the vacuolar proton pumps in cucumber and soybean roots

    PubMed Central

    Dell’Orto, Marta; Nisi, Patrizia De; Vigani, Gianpiero; Zocchi, Graziano

    2013-01-01

    Iron uptake in dicots depends on their ability to induce a set of responses in root cells including rhizosphere acidification through H+ extrusion and apoplastic Fe(III) reduction by Fe(III)-chelate reductase. These responses must be sustained by metabolic rearrangements aimed at providing the required NAD(P)H, ATP and H+. Previous results in Fe-deficient cucumber roots showed that high H+ extrusion is accompanied by increased phosphoenolpyruvate carboxylase (PEPC) activity, involved in the cytosol pH-stat; moreover 31P-NMR analysis revealed increased vacuolar pH and decreased vacuolar [inorganic phosphate (Pi)]. The opposite was found in soybean: low rhizosphere acidification, decreased PEPC activity, vacuole acidification, and increased vacuolar [Pi]. These findings, highlighting a different impact of the Fe deficiency responses on cytosolic pH in the two species, lead to hypothesize different roles for H+ and Pi movements across the tonoplast in pH homeostasis. The role of vacuole in cytosolic pH-stat involves the vacuolar H+-ATPase (V-ATPase) and vacuolar H+-pyrophosphatase (V-PPase) activities, which generating the ΔpH and ΔΨ, mediate the transport of solutes, among which Pi, across the tonoplast. Fluxes of Pi itself in its two ionic forms, H2PO4- predominating in the vacuole and HPO42- in the cytosol, may be involved in pH homeostasis owing to its pH-dependent protonation/deprotonation reactions. Tonoplast enriched fractions were obtained from cucumber and soybean roots grown with or without Fe. Both V-ATPase and V-PPase activities were analyzed and the enrichment and localization of the corresponding proteins in root tissues were determined by Western blot and immunolocalization. V-ATPase did not change its activity and expression level in response to Fe starvation in both species. V-PPase showed a different behavior: in cucumber roots its activity and abundance were decreased, while in Fe-deficient soybean roots they were increased. The distinct role of

  4. Regulatory assembly of the vacuolar proton pump VoV1-ATPase in yeast cells by FLIM-FRET

    NASA Astrophysics Data System (ADS)

    Ernst, Stefan; Batisse, Claire; Zarrabi, Nawid; Böttcher, Bettina; Börsch, Michael

    2010-02-01

    We investigate the reversible disassembly of VOV1-ATPase in life yeast cells by time resolved confocal FRET imaging. VOV1-ATPase in the vacuolar membrane pumps protons from the cytosol into the vacuole. VOV1-ATPase is a rotary biological nanomotor driven by ATP hydrolysis. The emerging proton gradient is used for secondary transport processes as well as for pH and Ca2+ homoeostasis in the cell. The activity of the VOV1-ATPase is regulated through assembly / disassembly processes. During starvation the two parts of VOV1-ATPase start to disassemble. This process is reversed after addition of glucose. The exact mechanisms are unknown. To follow the disassembly / reassembly in vivo we tagged two subunits C and E with different fluorescent proteins. Cellular distributions of C and E were monitored using a duty cycle-optimized alternating laser excitation scheme (DCO-ALEX) for time resolved confocal FRET-FLIM measurements.

  5. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+ -pumping pyrophosphatase in pepper plants.

    PubMed

    Vigani, Gianpiero; Rolli, Eleonora; Marasco, Ramona; Dell'Orto, Marta; Michoud, Grégoire; Soussi, Asma; Raddadi, Noura; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2018-05-22

    It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H + -ATPase (V-ATPase) and H + -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H + -ATPase (V-ATPase) and H + -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1)

    PubMed Central

    Pizzio, Gaston A.; Hirschi, Kendal D.; Gaxiola, Roberto A.

    2017-01-01

    Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational research, information regarding the intracellular localization and functional plasticity of the pump remain largely enigmatic. Using computer modeling several putative phosphorylation, ubiquitination and sumoylation target sites were identified that may regulate Arabidopsis H+-PPase (AVP1- Arabidopsis Vacuolar Proton-pump 1) subcellular trafficking and activity. These putative regulatory sites will direct future research that specifically addresses the partitioning and transport characteristics of this pump. We posit that fine-tuning H+-PPases activity and cellular distribution will facilitate rationale strategies for further genetic improvements in crop productivity. PMID:28955362

  7. Job Sharing in the Endomembrane System: Vacuolar Acidification Requires the Combined Activity of V-ATPase and V-PPase.

    PubMed

    Kriegel, Anne; Andrés, Zaida; Medzihradszky, Anna; Krüger, Falco; Scholl, Stefan; Delang, Simon; Patir-Nebioglu, M Görkem; Gute, Gezahegn; Yang, Haibing; Murphy, Angus S; Peer, Wendy Ann; Pfeiffer, Anne; Krebs, Melanie; Lohmann, Jan U; Schumacher, Karin

    2015-12-01

    The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH. © 2015 American Society of Plant Biologists. All rights reserved.

  8. Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.

    PubMed

    Hsiao, Yi Y; Van, Ru C; Hung, Shu H; Lin, Hsin H; Pan, Rong L

    2004-02-15

    Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. Alignment analysis on amino acid sequence demonstrates that vacuolar H(+)-PPase of mung bean contains six highly conserved histidine residues. Previous evidence indicated possible involvement of histidine residue(s) in enzymatic activity and H(+)-translocation of vacuolar H(+)-PPase as determined by using histidine specific modifier, diethylpyrocarbonate [J. Protein Chem. 21 (2002) 51]. In this study, we further attempted to identify the roles of histidine residues in mung bean vacuolar H(+)-PPase by site-directed mutagenesis. A line of mutants with histidine residues singly replaced by alanine was constructed, over-expressed in Saccharomyces cerevisiae, and then used to determine their enzymatic activities and proton translocations. Among the mutants scrutinized, only the mutation of H716 significantly decreased the enzymatic activity, the proton transport, and the coupling ratio of vacuolar H(+)-PPase. The enzymatic activity of H716A is relatively resistant to inhibition by diethylpyrocarbonate as compared to wild-type and other mutants, indicating that H716 is probably the target residue for the attack by this modifier. The mutation at H716 of V-PPase shifted the optimum pH value but not the T(1/2) (pretreatment temperature at which half enzymatic activity is observed) for PP(i) hydrolytic activity. Mutation of histidine residues obviously induced conformational changes of vacuolar H(+)-PPase as determined by immunoblotting analysis after limited trypsin digestion. Furthermore, mutation of these histidine residues modified the inhibitory effects of F(-) and Na(+), but not that of Ca(2+). Single substitution of H704, H716 and H758 by alanine partially released the effect of K(+) stimulation, indicating possible location of K(+) binding in the vicinity of domains

  9. Expression of an arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabid...

  10. Expression of an Arabidopsis Vacuolar H+-pyrophosphatase Gene (AVP1) in Cotton Improves Drought- and Salt Tolerance and Increases Fibre Yield in the Field Conditions.

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+PPase from Arabido...

  11. Characterization of Avt1p as a vacuolar proton/amino acid antiporter in Saccharomyces cerevisiae.

    PubMed

    Tone, Junichi; Yoshimura, Ayumi; Manabe, Kunio; Murao, Nami; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2015-01-01

    Several genes for vacuolar amino acid transport were reported in Saccharomyces cerevisiae, but have not well been investigated. We characterized AVT1, a member of the AVT vacuolar transporter family, which is reported to be involved in lifespan of yeast. ATP-dependent uptake of isoleucine and histidine by the vacuolar vesicles of an AVT exporter mutant was lost by introducing avt1∆ mutation. Uptake activity was inhibited by the V-ATPase inhibitor: concanamycin A and a protonophore. Isoleucine uptake was inhibited by various neutral amino acids and histidine, but not by γ-aminobutyric acid, glutamate, and aspartate. V-ATPase-dependent acidification of the vesicles was declined by the addition of isoleucine or histidine, depending upon Avt1p. Taken together with the data of the amino acid contents of vacuolar fractions in cells, the results suggested that Avt1p is a proton/amino acid antiporter important for vacuolar compartmentalization of various amino acids.

  12. Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue.

    PubMed

    Hsiao, Yi Yuong; Van, Ru Chuan; Hung, Hsiao Hui; Pan, Rong Long

    2002-01-01

    Vacuolar proton pumping pyrophosphatase (H+-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PPi hydrolysis. A histidine-specific modifier, diethylpyrocarbonate (DEPC), could substantially inhibit enzymic activity and H+-translocation of vacuolar H+-PPase in a concentration-dependent manner. Absorbance of vacuolar H+-PPase at 240 nm was increased upon incubation with DEPC, demonstrating that an N-carbethoxyhistidine moiety was probably formed. On the other hand, hydroxylamine, a reagent that can deacylate N-carbethoxyhistidine, could reverse the absorption change at 240 nm and partially restore PPi hydrolysis activity as well. The pKa of modified residues of the enzyme was determined to be 6.4, a value close to that of histidine. Thus, we speculate that inhibition of vacuolar H+-PPase by DEPC possibly could be attributed to the modification of histidyl residues on the enzyme. Furthermore, inhibition of vacuolar H+-PPase by DEPC follows pseudo-first-order rate kinetics. A reaction order of 0.85 was calculated from a double logarithmic plot of the apparent reaction constant against DEPC concentration, suggesting that the modification of one single histidine residue on the enzyme suffices to inhibit vacuolar H+-PPase. Inhibition of vacuolar H+-PPase by DEPC changes Vmax but not Km values. Moreover, DEPC inhibition of vacuolar H+-PPase could be substantially protected against by its physiological substrate, Mg2+-PPi. These results indicated that DEPC specifically competes with the substrate at the active site and the DEPC-labeled histidine residue might locate in or near the catalytic domain of the enzyme. Besides, pretreatment of the enzyme with N-ethylmaleimide decreased the degree of subsequent labeling of H+-PPase by DEPC. Taken together, we suggest that vacuolar H+-PPase likely contains a substrate-protectable histidine residue contributing to the inhibition of its activity by

  13. Protons and how they are transported by proton pumps.

    PubMed

    Buch-Pedersen, M J; Pedersen, B P; Veierskov, B; Nissen, P; Palmgren, M G

    2009-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK(a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires.

  14. The emerging structure of vacuolar ATPases.

    PubMed

    Drory, Omri; Nelson, Nathan

    2006-10-01

    Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research.

  15. Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae.

    PubMed

    Beutler, Martin; Milucka, Jana; Hinck, Susanne; Schreiber, Frank; Brock, Jörg; Mussmann, Marc; Schulz-Vogt, Heide N; de Beer, Dirk

    2012-11-01

    We show that the nitrate storing vacuole of the sulfide-oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase.

    PubMed

    Manolson, M F; Proteau, D; Preston, R A; Stenbit, A; Roberts, B T; Hoyt, M A; Preuss, D; Mulholland, J; Botstein, D; Jones, E W

    1992-07-15

    Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.

  17. Inhibitors of Proton Pumping

    PubMed Central

    Bisson, Mary A.

    1986-01-01

    Reported inhibitors of the Characean plasmalemma proton pump were tested for their ability to inhibit the passive H+ conductance which develops in Chara corallina Klein ex Willd. at high pH. Diethylstilbestrol inhibits the proton pump and the passive H+ conductance with about the same time course, at concentrations that have no effect on cytoplasmic streaming. N-Ethylmaleimide, a sulfhydryl reagent which is small and relatively nonpolar, also inhibits both pumping and passive conductance of H+. However, it also inhibits cytoplasmic streaming with about the same time course, and therefore could not be considered a specific ATPase inhibitor. p-Chloromercuribenzene sulfonate (PCMBS), a sulfhydryl reagent which is large and charged and hence less able to penetrate the membrane, does not inhibit pumping or conductance at low concentration. At high concentration, PCMBS sometimes inhibits pumping without affecting H+ conductance, but since streaming is also inhibited, the effect on the pump cannot be said to be specific. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, a water soluble carbodiimide, weakly inhibits both pump and conductance, apparently specifically. PMID:16664807

  18. A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification.

    PubMed

    Sun-Wada, Ge-Hong; Imai-Senga, Yoko; Yamamoto, Akitsugu; Murata, Yoshiko; Hirata, Tomoyuki; Wada, Yoh; Futai, Masamitsu

    2002-05-17

    The vacuolar-type H(+)-ATPases (V-ATPases) are a family of multimeric proton pumps involved in a wide variety of physiological processes. We have identified two novel mouse genes, Atp6e1 and Atp6e2, encoding testis-specific (E1) and ubiquitous (E2) V-ATPase subunit E isoforms, respectively. The E1 transcript appears about 3 weeks after birth, corresponding to the start of meiosis, and is expressed specifically in round spermatids in seminiferous tubules. Immunohistochemistry with isoform-specific antibodies revealed that the V-ATPase with E1 and a2 isoforms is located specifically in developing acrosomes of spermatids and acrosomes in mature sperm. In contrast, the E2 isoform was expressed in all tissues examined and present in the perinuclear compartments of spermatocytes. The E1 isoform exhibits 70% identity with the E2, and both isoforms functionally complemented a null mutation of the yeast counterpart VMA4, indicating that they are bona fide V-ATPase subunits. The chimeric enzymes showed slightly lower K(m)(ATP) than yeast V-ATPase. Consistent with the temperature-sensitive growth of Deltavma4-expressing E1 isoform, vacuolar membrane vesicles exhibited temperature-sensitive coupling between ATP hydrolysis and proton transport. These results suggest that E1 isoform is essential for energy coupling involved in acidification of acrosome.

  19. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification.

    PubMed

    Li, Yanbang; Provenzano, Sofia; Bliek, Mattijs; Spelt, Cornelis; Appelhagen, Ingo; Machado de Faria, Laura; Verweij, Walter; Schubert, Andrea; Sagasser, Martin; Seidel, Thorsten; Weisshaar, Bernd; Koes, Ronald; Quattrocchio, Francesca

    2016-08-01

    Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes. © 2016 European Union. New Phytologist © 2016 New Phytologist Trust.

  20. Exploring the proton pump and exit pathway for pumped protons in cytochrome ba3 from Thermus thermophilus

    PubMed Central

    Chang, Hsin-Yang; Choi, Sylvia K.; Vakkasoglu, Ahmet Selim; Chen, Ying; Hemp, James; Fee, James A.; Gennis, Robert B.

    2012-01-01

    The heme-copper oxygen reductases are redox-driven proton pumps. In the current work, the effects of mutations in a proposed exit pathway for pumped protons are examined in the ba3-type oxygen reductase from Thermus thermophilus, leading from the propionates of heme a3 to the interface between subunits I and II. Recent studies have proposed important roles for His376 and Asp372, both of which are hydrogen-bonded to propionate-A of heme a3, and for Glu126II (subunit II), which is hydrogen-bonded to His376. Based on the current results, His376, Glu126II, and Asp372 are not essential for either oxidase activity or proton pumping. In addition, Tyr133, which is hydrogen-bonded to propionate-D of heme a3, was also shown not to be essential for function. However, two mutations of the residues hydrogen-bonded to propionate-A, Asp372Ile and His376Asn, retain high electron transfer activity and normal spectral features but, in different preparations, either do not pump protons or exhibit substantially diminished proton pumping. It is concluded that either propionate-A of heme a3 or possibly the cluster of groups centered about the conserved water molecule that hydrogen-bonds to both propionates-A and -D of heme a3 is a good candidate to be the proton loading site. PMID:22431640

  1. Exploring the proton pump and exit pathway for pumped protons in cytochrome ba3 from Thermus thermophilus.

    PubMed

    Chang, Hsin-Yang; Choi, Sylvia K; Vakkasoglu, Ahmet Selim; Chen, Ying; Hemp, James; Fee, James A; Gennis, Robert B

    2012-04-03

    The heme-copper oxygen reductases are redox-driven proton pumps. In the current work, the effects of mutations in a proposed exit pathway for pumped protons are examined in the ba(3)-type oxygen reductase from Thermus thermophilus, leading from the propionates of heme a(3) to the interface between subunits I and II. Recent studies have proposed important roles for His376 and Asp372, both of which are hydrogen-bonded to propionate-A of heme a(3), and for Glu126(II) (subunit II), which is hydrogen-bonded to His376. Based on the current results, His376, Glu126(II), and Asp372 are not essential for either oxidase activity or proton pumping. In addition, Tyr133, which is hydrogen-bonded to propionate-D of heme a(3), was also shown not to be essential for function. However, two mutations of the residues hydrogen-bonded to propionate-A, Asp372Ile and His376Asn, retain high electron transfer activity and normal spectral features but, in different preparations, either do not pump protons or exhibit substantially diminished proton pumping. It is concluded that either propionate-A of heme a(3) or possibly the cluster of groups centered about the conserved water molecule that hydrogen-bonds to both propionates-A and -D of heme a(3) is a good candidate to be the proton loading site.

  2. Salinity Tolerance of Two Potato Cultivars (Solanum tuberosum) Correlates With Differences in Vacuolar Transport Activity

    PubMed Central

    Jaarsma, Rinse; de Boer, Albertus H.

    2018-01-01

    Potato is an important cultivated crop species and since it is moderately salt sensitive there is a need to develop more salt tolerant cultivars. A high activity of Na+ transport across the tonoplast in exchange for H+ is essential to reduce Na+ toxicity. The proton motive force (PMF) generated by the V-H+-ATPase and the V-H+-PPase energizes the Na+(K+)/H+ antiport. We compared the activity, gene expression, and protein levels of the vacuolar proton pumps and the Na+/H+ antiporters in two potato cultivars (Solanum tuberosum) contrasting in their salt tolerance (cv. Desiree; tolerant and Mozart; sensitive) grown at 0 and 60 mM NaCl. Tonoplast-enriched vesicles were used to study the pump activity and protein levels of the V-H+-ATPase and the V-H+-PPase and the activity of the Na+/H+ antiporter. Although salt stress reduced the V-H+-ATPase and the V-H+-PPase activity in both cultivars, the decline in H+ pump activity was more severe in the salt-sensitive cultivar Mozart. After salt treatment, protein amounts of the vacuolar H+ pumps decreased in Mozart but remained unchanged in the cultivar Desiree. Decreased protein amounts of the V-H+-PPase found in Mozart may explain the reduced V-H+-PPase activity found for Mozart after salt stress. Under non-stress conditions, protein amounts of V-H+-PPase were equal in both cultivars while the V-H+-PPase activity was already twice as high and remained higher after salt treatment in the cultivar Desiree as compared to Mozart. This cultivar-dependent V-H+-PPase activity may explain the higher salt tolerance of Desiree. Moreover, combined with reduced vacuolar H+ pump activity, Mozart showed a lower Na+/H+ exchange activity and the Km for Na+ is at least twofold lower in tonoplast vesicles from Desiree, what suggests that NHXs from Desiree have a higher affinity for Na+ as compared to Mozart. From these results, we conclude that the higher capacity in combination with the higher affinity for Na+ uptake can be an important factor

  3. Salinity Tolerance of Two Potato Cultivars (Solanum tuberosum) Correlates With Differences in Vacuolar Transport Activity.

    PubMed

    Jaarsma, Rinse; de Boer, Albertus H

    2018-01-01

    Potato is an important cultivated crop species and since it is moderately salt sensitive there is a need to develop more salt tolerant cultivars. A high activity of Na + transport across the tonoplast in exchange for H + is essential to reduce Na + toxicity. The proton motive force (PMF) generated by the V-H + -ATPase and the V-H + -PPase energizes the Na + (K + )/H + antiport. We compared the activity, gene expression, and protein levels of the vacuolar proton pumps and the Na + /H + antiporters in two potato cultivars ( Solanum tuberosum ) contrasting in their salt tolerance (cv. Desiree; tolerant and Mozart; sensitive) grown at 0 and 60 mM NaCl. Tonoplast-enriched vesicles were used to study the pump activity and protein levels of the V-H + -ATPase and the V-H + -PPase and the activity of the Na + /H + antiporter. Although salt stress reduced the V-H + -ATPase and the V-H + -PPase activity in both cultivars, the decline in H + pump activity was more severe in the salt-sensitive cultivar Mozart. After salt treatment, protein amounts of the vacuolar H + pumps decreased in Mozart but remained unchanged in the cultivar Desiree. Decreased protein amounts of the V-H + -PPase found in Mozart may explain the reduced V-H + -PPase activity found for Mozart after salt stress. Under non-stress conditions, protein amounts of V-H + -PPase were equal in both cultivars while the V-H + -PPase activity was already twice as high and remained higher after salt treatment in the cultivar Desiree as compared to Mozart. This cultivar-dependent V-H + -PPase activity may explain the higher salt tolerance of Desiree. Moreover, combined with reduced vacuolar H + pump activity, Mozart showed a lower Na + /H + exchange activity and the K m for Na + is at least twofold lower in tonoplast vesicles from Desiree, what suggests that NHXs from Desiree have a higher affinity for Na + as compared to Mozart. From these results, we conclude that the higher capacity in combination with the higher

  4. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.

    PubMed

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2015-03-03

    Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohio, Hinissan P.; Adamson, Amy L., E-mail: aladamso@uncg.edu

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transportmore » activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells.« less

  6. Vacuolar H(+)-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast.

    PubMed

    Hernández, Agustín; Herrera-Palau, Rosana; Madroñal, Juan M; Albi, Tomás; López-Lluch, Guillermo; Perez-Castiñeira, José R; Navas, Plácido; Valverde, Federico; Serrano, Aurelio

    2016-01-01

    Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.

  7. Targeting vacuolar H+-ATPases as a new strategy against cancer.

    PubMed

    Fais, Stefano; De Milito, Angelo; You, Haiyan; Qin, Wenxin

    2007-11-15

    Growing evidence suggests a key role of tumor acidic microenvironment in cancer development, progression, and metastasis. As a consequence, the need for compounds that specifically target the mechanism(s) responsible for the low pH of tumors is increasing. Among the key regulators of the tumor acidic microenvironment, vacuolar H(+)-ATPases (V-ATPases) play an important role. These proteins cover a number of functions in a variety of normal as well as tumor cells, in which they pump ions across the membranes. We discuss here some recent results showing that a molecular inhibition of V-ATPases by small interfering RNA in vivo as well as a pharmacologic inhibition through proton pump inhibitors led to tumor cytotoxicity and marked inhibition of human tumor growth in xenograft models. These results propose V-ATPases as a key target for new strategies in cancer treatment.

  8. Loss of G2 subunit of vacuolar-type proton transporting ATPase leads to G1 subunit upregulation in the brain

    PubMed Central

    Kawamura, Nobuyuki; Sun-Wada, Ge-Hong; Wada, Yoh

    2015-01-01

    Vacuolar-type ATPase (V-ATPase) is a primary proton pump with versatile functions in various tissues. In nerve cells, V-ATPase is required for accumulation of neurotransmitters into secretory vesicles and subsequent release at the synapse. Neurons express a specific isoform (G2) of the G subunit of V-ATPase constituting the catalytic sector of the enzyme complex. Using gene targeting, we generated a mouse lacking functional G2 (G2 null), which showed no apparent disorders in architecture and behavior. In the G2-null mouse brain, a G1 subunit isoform, which is ubiquitously expressed in neuronal and non-neuronal tissues, accumulated more abundantly than in wild-type animals. This G1 upregulation was not accompanied by an increase in mRNA. These results indicate that loss of function of neuron-specific G2 isoform was compensated by an increase in levels of the G1 isoform without apparent upregulation of the G1 mRNA. PMID:26353914

  9. Crystal structure of the plasma membrane proton pump.

    PubMed

    Pedersen, Bjørn P; Buch-Pedersen, Morten J; Morth, J Preben; Palmgren, Michael G; Nissen, Poul

    2007-12-13

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi, and Na+,K+-ATPase (the sodium-potassium pump) in animals. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II. Electron microscopy has revealed the overall shape of proton pumps, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.

  10. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  11. Biological proton pumping in an oscillating electric field.

    PubMed

    Kim, Young C; Furchtgott, Leon A; Hummer, Gerhard

    2009-12-31

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological "fuel cell," we show that the proton pumping efficiency and the electronic currents in steady state depend significantly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant reaction steps consistent with an electron-gated pumping mechanism.

  12. Correlation between proton pump inhibitors and risk of pyogenic liver abscess.

    PubMed

    Lin, Hsien-Feng; Liao, Kuan-Fu; Chang, Ching-Mei; Lin, Cheng-Li; Lai, Shih-Wei

    2017-08-01

    Little is known about the relationship between proton pump inhibitors use and pyogenic liver abscess. The objective of this study was to evaluate the correlation between proton pump inhibitors use and pyogenic liver abscess in Taiwan. This was a population-based case-control study using the database of the Taiwan National Health Insurance Program since 2000 to 2011. Subjects aged 20 to 84 who experienced their first episode of pyogenic liver abscess were enrolled as the case group (n = 1372). Randomly selected subjects aged 20 to 84 without pyogenic liver abscess were enrolled as the control group (n = 1372). Current use, early use, and late use of proton pump inhibitors was defined as subjects whose last one tablet for proton pump inhibitors was noted ≤30 days, between 31 to 90 days and ≥91 days before the date of admission for pyogenic liver abscess. Subjects who never received a prescription for proton pump inhibitors were defined as nonusers of proton pump inhibitors. A multivariable unconditional logistic regression model was used to measure the odds ratio and 95% confidence interval to evaluate the correlation between proton pump inhibitors use and pyogenic liver abscess. After adjusting for confounders, the adjusted odds ratio of pyogenic liver abscess was 7.59 for subjects with current use of proton pump inhibitors (95% confidence interval 5.05, 11.4), when compared with nonusers. Current use of proton pump inhibitors is associated with a greater risk of pyogenic liver abscess.

  13. Biological proton pumping in an oscillating electric field

    PubMed Central

    Kim, Young C.; Furchtgott, Leon A.; Hummer, Gerhard

    2010-01-01

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological “fuel cell,” we show that the proton pumping efficiency and the electronic currents in steady state both depend significantly and distinctly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant kinetic modes that show reaction steps consistent with an electron-gated pumping mechanism. PMID:20366348

  14. Multimorbidities and Overprescription of Proton Pump Inhibitors in Older Patients.

    PubMed

    Delcher, Anne; Hily, Sylvie; Boureau, Anne Sophie; Chapelet, Guillaume; Berrut, Gilles; de Decker, Laure

    2015-01-01

    To determine whether there is an association between overprescription of proton pump inhibitors (PPIs) and multimorbidities in older patients. Multicenter prospective study. Acute geriatric medicine at the University Hospital of Nantes and the Hospital of Saint-Nazaire. Older patients aged 75 and over hospitalized in acute geriatric medicine. Older patients in acute geriatric medicine who received proton pump inhibitors. Variables studied were individual multimorbidities, the burden of multimorbidity evaluated by the Cumulative Illness Rating Scale, age, sex, type of residence (living in nursing home or not), functional abilities (Lawton and Katz scales), nutritional status (Body Mass Index), and the type of concomitant medications (antiaggregant, corticosteroids', or anticoagulants). Overprescription of proton pump inhibitors was found in 73.9% older patients. In the full model, cardiac diseases (odds ratio [OR] = 4.17, p = 0.010), metabolic diseases (OR = 2.14, p = 0.042) and corticosteroids (OR = 5.39, p = 0.028) were significantly associated with overprescription of proton pump inhibitors. Esogastric diseases (OR = 0.49, p = 0.033) were negatively associated with overprescription of proton pump inhibitors. Cardiac diseases and metabolic diseases were significantly associated with overprescription of proton pump inhibitors.

  15. Multimorbidities and Overprescription of Proton Pump Inhibitors in Older Patients

    PubMed Central

    Delcher, Anne; Hily, Sylvie; Boureau, Anne Sophie; Chapelet, Guillaume; Berrut, Gilles; de Decker, Laure

    2015-01-01

    Objectives To determine whether there is an association between overprescription of proton pump inhibitors (PPIs) and multimorbidities in older patients. Design Multicenter prospective study. Setting Acute geriatric medicine at the University Hospital of Nantes and the Hospital of Saint-Nazaire. Participants Older patients aged 75 and over hospitalized in acute geriatric medicine. Measurements Older patients in acute geriatric medicine who received proton pump inhibitors. Variables studied were individual multimorbidities, the burden of multimorbidity evaluated by the Cumulative Illness Rating Scale, age, sex, type of residence (living in nursing home or not), functional abilities (Lawton and Katz scales), nutritional status (Body Mass Index), and the type of concomitant medications (antiaggregant, corticosteroids’, or anticoagulants). Results Overprescription of proton pump inhibitors was found in 73.9% older patients. In the full model, cardiac diseases (odds ratio [OR] = 4.17, p = 0.010), metabolic diseases (OR = 2.14, p = 0.042) and corticosteroids (OR = 5.39, p = 0.028) were significantly associated with overprescription of proton pump inhibitors. Esogastric diseases (OR = 0.49, p = 0.033) were negatively associated with overprescription of proton pump inhibitors. Conclusion Cardiac diseases and metabolic diseases were significantly associated with overprescription of proton pump inhibitors. PMID:26535585

  16. Proton pumping accompanies calcification in foraminifera.

    PubMed

    Toyofuku, Takashi; Matsuo, Miki Y; de Nooijer, Lennart Jan; Nagai, Yukiko; Kawada, Sachiko; Fujita, Kazuhiko; Reichart, Gert-Jan; Nomaki, Hidetaka; Tsuchiya, Masashi; Sakaguchi, Hide; Kitazato, Hiroshi

    2017-01-27

    Ongoing ocean acidification is widely reported to reduce the ability of calcifying marine organisms to produce their shells and skeletons. Whereas increased dissolution due to acidification is a largely inorganic process, strong organismal control over biomineralization influences calcification and hence complicates predicting the response of marine calcifyers. Here we show that calcification is driven by rapid transformation of bicarbonate into carbonate inside the cytoplasm, achieved by active outward proton pumping. Moreover, this proton flux is maintained over a wide range of pCO 2 levels. We furthermore show that a V-type H + ATPase is responsible for the proton flux and thereby calcification. External transformation of bicarbonate into CO 2 due to the proton pumping implies that biomineralization does not rely on availability of carbonate ions, but total dissolved CO 2 may not reduce calcification, thereby potentially maintaining the current global marine carbonate production.

  17. Proton pumping accompanies calcification in foraminifera

    NASA Astrophysics Data System (ADS)

    Toyofuku, Takashi; Matsuo, Miki Y.; de Nooijer, Lennart Jan; Nagai, Yukiko; Kawada, Sachiko; Fujita, Kazuhiko; Reichart, Gert-Jan; Nomaki, Hidetaka; Tsuchiya, Masashi; Sakaguchi, Hide; Kitazato, Hiroshi

    2017-01-01

    Ongoing ocean acidification is widely reported to reduce the ability of calcifying marine organisms to produce their shells and skeletons. Whereas increased dissolution due to acidification is a largely inorganic process, strong organismal control over biomineralization influences calcification and hence complicates predicting the response of marine calcifyers. Here we show that calcification is driven by rapid transformation of bicarbonate into carbonate inside the cytoplasm, achieved by active outward proton pumping. Moreover, this proton flux is maintained over a wide range of pCO2 levels. We furthermore show that a V-type H+ ATPase is responsible for the proton flux and thereby calcification. External transformation of bicarbonate into CO2 due to the proton pumping implies that biomineralization does not rely on availability of carbonate ions, but total dissolved CO2 may not reduce calcification, thereby potentially maintaining the current global marine carbonate production.

  18. F"orster-type mechanism of the redox-driven proton pump

    NASA Astrophysics Data System (ADS)

    Mourokh, Lev; Smirnov, Anatoly; Nori, Franco

    2007-03-01

    We propose a model to describe an electronically-driven proton pump in the cytochrome c oxidase (CcO). We examine the situation when the electron transport between the two sites embedded into the inner membrane of the mitochondrion occurs in parallel with the proton transfer from the protonable site that is close to the negative (inner) side of the membrane to the other protonable site located nearby the positive (outer) surface of the membrane. In addition to the conventional electron and proton tunnelings between the sites, the Coulomb interaction between electrons and protons localized on the corresponding sites leads to so-called F"orster transfer, i.e. to the process when the simultaneous electron and proton tunnelings are accompanied by the resonant energy transfer between the electrons and protons. Our calculations based on reasonable parameters have demonstrated that the F"orster process facilitates the proton pump at physiological temperatures. We have examined the effects of an electron voltage build-up, external temperature, and molecular electrostatics driving the electron and proton energies to the resonant conditions, and have shown that these parameters can control the proton pump operation.

  19. Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase.

    PubMed

    Yang, Su J; Jiang, Shih S; Hsiao, Yi Y; Van, Ru C; Pan, Yih J; Pan, Rong L

    2004-06-07

    Vacuolar H(+)-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) catalyzes both the hydrolysis of PP(i) and the electrogenic translocation of proton from the cytosol to the lumen of the vacuole. Vacuolar H(+)-PPase, purified from etiolated hypocotyls of mung bean (Vigna radiata L.), is a homodimer with a molecular mass of 145 kDa. To investigate the relationship between structure and function of this H(+)-translocating enzyme, thermoinactivation analysis was employed. Thermoinactivation studies suggested that vacuolar H(+)-PPase consists of two distinct states upon heat treatment and exhibited different transition temperatures in the presence and absence of ligands (substrate and inhibitors). Substrate protection of H(+)-PPase stabilizes enzyme structure by increasing activation energy from 54.9 to 70.2 kJ/mol. We believe that the conformation of this enzyme was altered in the presence of substrate to protect against the thermoinactivation. In contrast, the modification of H(+)-PPase by inhibitor (fluorescein 5'-isothiocyanate; FITC) augmented the inactivation by heat treatment. The native, substrate-bound, and FITC-labeled vacuolar H(+)-PPases possess probably distinct conformation and show different modes of susceptibility to thermoinactivation. Our results also indicate that the structure of one subunit of this homodimer exerts long distance effect on the other, suggesting a specific subunit-subunit interaction in vacuolar H(+)-PPase. A working model was proposed to interpret the relationship of the structure and function of vacuolar H(+)-PPase.

  20. Recent advances in chirally pure proton pump inhibitors.

    PubMed

    Pai, Vikas; Pai, Nitin

    2007-08-01

    Chirality is a ubiquitous natural phenomenon resulting because of a differential spatial orientation of molecules around its chiral centre. This leads to the existence of two or more spatially dissimilar forms, known as stereoisomers or enantiomers, which are non-superimposable images of each other and may significantly differ from each other with respect to pharmacokinetic and pharmacodynamic properties and molecular interaction. Thus one isomer may offer significant pharmacokinetic and therapeutic advantages as compared to the other isomer or the racemic mixture (mixture containing both enantiomers). Proton pump inhibitors are a class of drugs which have been very effective in the management of acid-related disorders. The proton pumps currently available in the market including omeprazole, pantoprazole, rabeprazole and lansoprazole are racemic mixtures of the S and R isomers. Chirally pure forms of proton pump inhibitors show a superior metabolic and pharmacokinetic profile as compared to their racemates. The therapeutic efficacy is also superior to the parent racemate. This has been clearly demonstrated with the development of esomeprazole- the S-isomer of omeprazole. S-pantoprazole and dexrabeprazole also offer therapeutic advantages as compared to racemic pantoprazole and racemic rabeprazole respectively. This article reviews the chiral developments in the proton pump inhibitors and their clinical applications.

  1. Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells.

    PubMed

    Ripple, Maureen O; Kim, Namjoon; Springett, Roger

    2013-02-22

    Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H(+)/2e(-)) but it has been suggested that stoichiometry may be 3H(+)/2e(-) based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD(+) and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc(1) complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H(+)/2e(-) in mouse and human cells at high and physiological proton motive force.

  2. Mammalian Complex I Pumps 4 Protons per 2 Electrons at High and Physiological Proton Motive Force in Living Cells*

    PubMed Central

    Ripple, Maureen O.; Kim, Namjoon; Springett, Roger

    2013-01-01

    Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H+/2e−) but it has been suggested that stoichiometry may be 3H+/2e− based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD+ and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc1 complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H+/2e− in mouse and human cells at high and physiological proton motive force. PMID:23306206

  3. Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase

    PubMed Central

    Sharma, Vivek; Enkavi, Giray; Vattulainen, Ilpo; Róg, Tomasz; Wikström, Mårten

    2015-01-01

    Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradient, which drives the synthesis of ATP. Based on kinetic experiments on the O–O bond splitting transition of the catalytic cycle (A → PR), it has been proposed that the electron transfer to the binuclear iron–copper center of O2 reduction initiates the proton pump mechanism. This key electron transfer event is coupled to an internal proton transfer from a conserved glutamic acid to the proton-loading site of the pump. However, the proton may instead be transferred to the binuclear center to complete the oxygen reduction chemistry, which would constitute a short-circuit. Based on atomistic molecular dynamics simulations of cytochrome c oxidase in an explicit membrane–solvent environment, complemented by related free-energy calculations, we propose that this short-circuit is effectively prevented by a redox-state–dependent organization of water molecules within the protein structure that gates the proton transfer pathway. PMID:25646428

  4. Endoscopic and histopathologic gastric changes in chronic users of proton-pump inhibitors.

    PubMed

    Camilo, Sílvia Maria Perrone; Almeida, Élia Cláudia de Souza; Miranzi, Benito André Silveira; Silva, Juliano Carvalho; Nomelini, Rosemary Simões; Etchebehere, Renata Margarida

    2015-01-01

    Proton-pump inhibitors have been used for at least two decades. They are among the most commonly sold drugs in the world. However, some controversy remains about the indications for their use and the consequences of their prolonged use. To evaluate and compare the endoscopic and histopathologic gastric changes in chronic users of proton-pump inhibitors to changes in non-users. A prospective study performed at a tertiary Public Hospital involving 105 patients undergoing upper-gastrointestinal endoscopy. Subjects included 81 proton-pump inhibitor users and 24 non-users (control group). Biopsies of the antral-type mucosa, the antral-fundic transition, and the fundus were evaluated by the Sydney System. The presence of erosion or ulceration, lymphatic follicles, reactive gastropathy, and polypoid or epithelial hyperplasia was also determined. Serum levels of gastrin were measured. We found two polyps, one in each group, both of which were negative for Helicobacter pylori. There were two cases of parietal cell hyperplasia in users of proton-pump inhibitors. Gastrin was elevated in 28 users of proton-pump inhibitors and in four members of the control group. We did not find statistically significant differences in the endoscopic or histopathologic findings between the two groups. Chronic use of proton-pump inhibitors for the duration examined was not associated with significant gastric changes. An interesting finding was that the 4 chronic users of proton-pump inhibitors who had serum gastrin levels above 500 pg/mL also had positive serology for Chagas disease.

  5. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    PubMed Central

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  6. Proton Pumps: Mechanism of Action and Applications

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent progress in understanding molecular structures and mechanisms of action of proton pumps has paved the way to their novel applications in biotechnology. Proton pumps, in particular bacteriorhodopsin and ATP synthases, are capable of continuous, renewable conversion of light to chemical, mechanical or electrical energy, which can be used in macro- or nano-scale devices. The capability of protein systems incorporated into liposomes to generate ATP, which can be further used to drive chemical reactions, and to act as molecular motors has been already demonstrated. Other possible applications of such biochemical devices include targeted drug delivery and biocatalytic re actors. All these devices might prove superior to their inorganic alternatives.

  7. Proton-pumping mechanism of cytochrome c oxidase: A kinetic master-equation approach

    PubMed Central

    Kim, Young C.; Hummer, Gerhard

    2011-01-01

    Cytochrome c oxidase (CcO) is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, CcO translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in CcO. Basic principles of the CcO proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the ative-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for CcO provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. PMID:21946020

  8. Rabeprazole: the role of proton pump inhibitors in Helicobacter pylori eradication.

    PubMed

    Sharara, Ala I

    2005-12-01

    Proton pump inhibitors have become one of the cornerstones in the treatment of Helicobacter pylori infection. Rabeprazole (Pariet) is a substituted benzimidazole proton pump inhibitor with potent gastric acid suppression properties. Its high acid-base dissociation constant allows activation over a broader pH range, resulting in quick, irreversible binding to the H+/K+-ATPase pump, and a more rapid onset of action compared with omeprazole, lansoprazole and pantoprazole. Unlike other proton pump inhibitors, the metabolism of rabeprazole is primarily via a nonenzymatic reduction to the thioether derivative, and the cytochrome P450 isoenzyme 2C19 is only partly involved in its metabolism. The effect of genetic polymorphism in cytochrome P450 isoenzyme 2C19 on the pharmacokinetics and pharmacodynamics of rabeprazole is therefore limited. In humans, once-daily dosing of 5-40 mg of rabeprazole inhibits gastric acid secretion in a dose-dependent manner. In vitro studies have shown that rabeprazole possesses more potent antibacterial properties against the growth of H. pylori than other proton pump inhibitors. Furthermore, its thioether derivative has more potent inhibitory in vitro activity against the growth and motility of clarithromycin-resistant H. pylori than other proton pump inhibitors or commonly used antimicrobials. Despite these inherent favorable characteristics of rabeprazole, randomized controlled trials have largely shown equivalence amongst proton pump inhibitors when used with two antibiotics in the eradication of H. pylori, with cure rates of 75-89% on an intent-to-treat basis. However, rabeprazole appears to consistently achieve such comparable eradication rates even when used at reduced doses (10 mg twice daily) as part of clarithromycin-based triple therapy.

  9. [Influence of proton pump inhibitors on intestinal fermentative profile: a case-control study].

    PubMed

    Senderovky, Melisa; Lasa, Juan; Dima, Guillermo; Peralta, Daniel; Argüello, Mariano; Soifer, Luis

    2014-01-01

    Proton pump inhibitors could have an impact on the results of breath tests performed in patients with irritable bowel syndrome. This impact could be due to the development of small intestine bacterial overgrowth. To compare the prevalence of fermentative profile alterations of irritable bowel syndrome patients exposed and not-exposed to proton pump inhibitor therapy. Subjects with irritable bowel syndrome were enrolled. A validated questionnaire assessing symptom severity as well as proton pump inhibitor treatment was delivered. A lactulose breath test was undertaken by each enrolled subject. Fermentative profile (area under the curve of hydrogen excretion/time) was compared between proton pump inhibitors consumers and non-consumers. Furthermore, small intestine bacterial overgrowth prevalence was compared. Two hundred and twenty five patients were enrolled. No significant differences were found on the fermentative profile between groups [AUC mediana 3,776 (rango 2,124-5,571) vs 4,347 (rango 2,038-5,481), P = 0.3]. Small intestine bacterial overgrowth prevalence was similar as well [33% vs 27.5%]. These differences remained non-significant after adjusting for proton pump inhibitor dose and treatment time. Surprisingly, symptom score was significantly higher in those patients under proton pump inhibitor therapy [28.5 (23-26) vs 23 (15-29), P = 0.01]. Proton pump inhibitors have no significant influence on lactulose breath tests, regardless of the dosage and time of administration.

  10. High V-PPase activity is beneficial under high salt loads, but detrimental without salinity.

    PubMed

    Graus, Dorothea; Konrad, Kai R; Bemm, Felix; Patir Nebioglu, Meliha Görkem; Lorey, Christian; Duscha, Kerstin; Güthoff, Tilman; Herrmann, Johannes; Ferjani, Ali; Cuin, Tracey Ann; Roelfsema, M Rob G; Schumacher, Karin; Neuhaus, H Ekkehard; Marten, Irene; Hedrich, Rainer

    2018-06-25

    The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H + -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP i hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na + sequestration. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. [Pharmacogenic osteoporosis beyond cortisone. Proton pump inhibitors, glitazones and diuretics].

    PubMed

    Kann, P H; Hadji, P; Bergmann, R S

    2014-05-01

    [corrected] There are many drugs which can cause osteoporosis or at least favor its initiation. The effect of hormones and drugs with antihormonal activity, such as glucocorticoids and aromatase inhibitors, on initiation of osteoporosis is well known. In addition, proton pump inhibitors, glitazones and diuretics also influence the formation of osteoporosis. The results of currently available studies on the correlation between proton pump inhibitors, glitazones and diuretics on formation of osteoporosis were evaluated and summarized. Proton pump inhibitors and glitazones increase the risk for osteoporotic fractures. Loop diuretics may slightly increase fracture risk, whereas thiazides were shown to be osteoprotective by reducing fracture probability on a relevant scale. Proton pump inhibitors should not be prescribed without serious consideration and then only as long as necessary. Alternatively, the administration of the less effective H2 antagonists should be considered when possible due to the reduction of acid secretion. Because the long-term intake of thiazides is associated with a clinically relevant reduction in the risk of fractures and they are economic and well-tolerated, prescription can be thoroughly recommended within the framework of differential diagnostic considerations in an appropriate clinical context. The briefly increased risk of falling immediately after starting diuretic therapy is the only point which needs to be considered.

  12. Expanding the View of Proton Pumping in Cytochrome c Oxidase through Computer Simulation

    PubMed Central

    Peng, Yuxing; Voth, Gregory A.

    2011-01-01

    In cytochrome c oxidase (CcO), a redox-driven proton pump, protons are transported by the Grotthuss shuttling via hydrogen-bonded water molecules and protonatable residues. Proton transport through the D-pathway is a complicated process that is highly sensitive to alterations in the amino acids or the solvation structure in the channel, both of which can inhibit proton pumping and enzymatic activity. Simulations of proton transport in the hydrophobic cavity showed a clear redox state dependence. To study the mechanism of proton pumping in CcO, multi-state empirical valence bond (MS-EVB) simulations have been conducted, focusing on the proton transport through the D-pathway and the hydrophobic cavity next to the binuclear center. The hydration structures, transport pathways, effects of residues, and free energy surfaces of proton transport were revealed in these MS-EVB simulations. The mechanistic insight gained from them is herein reviewed and placed in context for future studies. PMID:22178790

  13. Pantoprazole: a new proton pump inhibitor.

    PubMed

    Jungnickel, P W

    2000-11-01

    This paper reviews the pharmacology, clinical efficacy, and tolerability of pantoprazole in comparison with those of other available proton pump inhibitors (PPIs). Relevant English-language research and review articles were identified by database searches of MEDLINE, International Pharmaceutical Abstracts, and UnCover, and by examining the reference lists of the articles so identified. In selecting data for inclusion, the author gave preference to full-length articles published in peer-reviewed journals. Like other PPIs, pantoprazole exerts its pharmacodynamic actions by binding to the proton pump (H+,K+ -adenosine triphosphatase) in the parietal cells, but, compared with other PPIs, its binding may be more specific for the proton pump. Pantoprazole is well absorbed when administered as an enteric-coated, delayed-release tablet, with an oral bioavailability of approximately 77%. It is hepatically metabolized via cytochrome P2C19 to hydroxypantoprazole, an inactive metabolite that subsequently undergoes sulfate conjugation. The elimination half-life ranges from 0.9 to 1.9 hours and is independent of dose. Pantoprazole has similar efficacy to other PPIs in the healing of gastric and duodenal ulcers, as well as erosive esophagitis, and as part of triple-drug regimens for the eradication of Helicobacter pylori from the gastric mucosa. It is well tolerated, with the most common adverse effects being headache, diarrhea, flatulence, and abdominal pain. In clinical studies, it has been shown to have no interactions with various other agents, including carbamazepine, cisapride, cyclosporine, digoxin, phenytoin, theophylline, and warfarin. Pantoprazole appears to be as effective as other PPIs. Its low potential for drug interactions may give it an advantage in patients taking other drugs.

  14. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.

    PubMed

    Pietrobon, D; Zoratti, M; Azzone, G F; Caplan, S R

    1986-02-25

    The thermodynamic and kinetic properties associated with intrinsic uncoupling in a six-state model of a redox proton pump have been studied by computing the flow-force relations for different degrees of coupling. Analysis of these relations shows the regulatory influence of the thermodynamic forces on the extent and relative contributions of redox slip and proton slip. Inhibition has been introduced into the model in two different ways, corresponding to possible modes of action of experimental inhibitors. Experiments relating the rate of electron transfer to delta microH at static head upon progressive inhibition of the pumps have been simulated considering (1) the limiting case that the nonzero rate of electron transfer at static head is only due to intrinsic uncoupling (no leaks) and (2) the experimentally observed case that about 30% of the nonzero rate of electron transfer at static head is due to a constant proton leakage conductance in parallel with the pumps, the rest being due to intrinsic uncoupling. The same simulations have been performed for experiments in which the rate of electron transfer is varied by varying the substrate concentration rather than by using an inhibitor. The corresponding experimental results obtained by measuring delta microH and the rate of electron transfer at different succinate concentrations in rat liver mitochondria are presented. Comparison between simulated behavior and experimental results leads to the general conclusion that the typical relationship between rate of electron transfer and delta microH found in mitochondria at static head could certainly be a manifestation of some degree of intrinsic uncoupling in the redox proton pumps.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Piston-assisted proton pumping in Complex I of mitochondria membranes

    NASA Astrophysics Data System (ADS)

    Mourokh, Lev; Filonenko, Ilan

    2014-03-01

    Proton-pumping mechanism of Complex I remains mysterious because its electron and proton paths are well separated and the direct Coulomb interaction seems to be negligible. The structure of this enzyme was resolved very recently and its functionality was connected the shift of the helix HL. We model the helix as a piston oscillating between the protons and electrons. We assume that positive charges are accumulated near the edges of the helix. In the oxidized state, the piston is attracted to electrons, so its distance to the proton sites increases, the energy of these sites decreases and the sites can be populated. When electrons proceed to the drain, elastic forces return the piston to the original position and the energies of populated proton sites increase, so the protons can be transferred to the positive site of the membrane. In this work, we explore a simplified model when the interaction of the piston with electrons is replaced by a periodic force. We derive quantum Heisenberg equations for the proton operators and solve them jointly with the Langevin equation for the piston position. We show that the proton pumping is possible in such structure with parameters closely resembling the real system. We also address the feasibility of using such mechanism in nanoelectronics.

  16. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Bradford, C. Samuel; Cooley, Ben; Yoshinaga, Allen S.; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H.; Bakalinsky, Alan T.

    2017-01-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  17. Gene expression of H+-pumps in plasma and vacuolar membranes of corn root cells under the effect of sodium ions and bioactive preparations.

    PubMed

    Kovalenko, N O; Palladina, T A

    2016-01-01

    Four isoforms of H+-ATPase of plasma membrane: MHA1, MHA2, MHA3, MHA4 are expressed in the corn seedling roots with prevalence of genes MHA3 і MHA4. The exposure of seedlings in the presence of 0.1 M NaCl activated the expression of MHA4 gene isoform, that demonstrates its important role in the processes of adaptation to salinization conditions. In vacuolar membrane, where potential is created by two Н+-pumps, sodium ions activated gene expression of only Н+-АТРase of V-type, taking no effect on the expression of Н+-pyrophosphatase. The seeds pretreatment by synthetic preparations Methyure and Ivine did not affect gene expression of Н+-pumps. Thus we can suppose that the ability of the above preparations to activate functioning of Н+-pumps in the presence of sodium ions is realized at the post-tranlation level.

  18. Proton Gradient-Driven Nickel Uptake by Vacuolar Membrane Vesicles of Saccharomyces cerevisiae

    PubMed Central

    Nishimura, Ken; Igarashi, Kazuei; Kakinuma, Yoshimi

    1998-01-01

    A vacuolar H+-ATPase-negative mutant of Saccharomyces cerevisiae was highly sensitive to nickel ion. Accumulation of nickel ion in the cells of this mutant of less than 60% of the value for the parent strain arrested growth, suggesting a role for this ATPase in sequestering nickel ion into vacuoles. An artificially imposed pH gradient (interior acid) induced transient nickel ion uptake by vacuolar membrane vesicles, which was inhibited by collapse of the pH difference but not of the membrane potential. Nickel ion transport into vacuoles in a pH gradient-dependent manner is thus important for its detoxification in yeast. PMID:9537401

  19. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.

    PubMed

    Ehrenfeld, J; Garcia-Romeu, F; Harvey, B J

    1985-02-01

    Kinetic and electrophysiological studies were carried out in the in vitro Rana esculenta skin, bathed in dilute sodium solution, to characterize the proton pump and coupling between sodium absorption (JNa+n) and proton excretion (JH+n). JNa+n and JH+n were both dependent on transepithelial potential (psi ms); hyperpolarizing the skin decreased JNa+n and increased JH+n; depolarization produced the opposite effects. Amiloride (5 X 10(-5) M) at a clamped psi ms of +50 mV inhibited JNa+n without affecting JH+n. Variations of psi ms or pH had identical effects on JH+n. Ethoxzolamide inhibited JH+n and simultaneously increased psi ms by 15-30 mV. These changes were accompanied by depolarization of the apical membrane potential psi mc from -47 to -25 mV and an increase in apical membrane resistance of 30%; no significant effects on basolateral membrane potential (psi cs) and resistance (Rb) nor on shunt resistance (Rj) were observed. The proton pump appears to be localized at the apical membrane. The proton pump was also inhibited by deoxygenation, oligomycin, dicyclohexylcarbodiimide and vanadate (100, 78, 83 and 100% inhibition respectively). The variations of JH+n and of the measured electrical currents were significantly correlated. These findings are supportive evidence of a primary active proton pump, electrogenic and strictly linked to aerobic metabolism. The current-voltage (I-V) relation of the proton pump was obtained as the difference in the I-V curves of the apical membrane extracted before and after proton-pump inhibition by ethoxzolamide during amiloride block of sodium transport. The proton-pump current (IP) was best described by a saturable exponential function of psi mc. Maximal pump current (ImaxP) was calculated to be 200 nequiv h-1 cm-2 at a psi mc of +50 mV and the pump reversal potential ERP was -130 mV. The effect of ethoxzolamide to depolarize psi mc was dependent on the relation between psi mc and ERP. Maximal induced depolarization occurred at a

  20. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.

    PubMed Central

    Ehrenfeld, J; Garcia-Romeu, F; Harvey, B J

    1985-01-01

    Kinetic and electrophysiological studies were carried out in the in vitro Rana esculenta skin, bathed in dilute sodium solution, to characterize the proton pump and coupling between sodium absorption (JNa+n) and proton excretion (JH+n). JNa+n and JH+n were both dependent on transepithelial potential (psi ms); hyperpolarizing the skin decreased JNa+n and increased JH+n; depolarization produced the opposite effects. Amiloride (5 X 10(-5) M) at a clamped psi ms of +50 mV inhibited JNa+n without affecting JH+n. Variations of psi ms or pH had identical effects on JH+n. Ethoxzolamide inhibited JH+n and simultaneously increased psi ms by 15-30 mV. These changes were accompanied by depolarization of the apical membrane potential psi mc from -47 to -25 mV and an increase in apical membrane resistance of 30%; no significant effects on basolateral membrane potential (psi cs) and resistance (Rb) nor on shunt resistance (Rj) were observed. The proton pump appears to be localized at the apical membrane. The proton pump was also inhibited by deoxygenation, oligomycin, dicyclohexylcarbodiimide and vanadate (100, 78, 83 and 100% inhibition respectively). The variations of JH+n and of the measured electrical currents were significantly correlated. These findings are supportive evidence of a primary active proton pump, electrogenic and strictly linked to aerobic metabolism. The current-voltage (I-V) relation of the proton pump was obtained as the difference in the I-V curves of the apical membrane extracted before and after proton-pump inhibition by ethoxzolamide during amiloride block of sodium transport. The proton-pump current (IP) was best described by a saturable exponential function of psi mc. Maximal pump current (ImaxP) was calculated to be 200 nequiv h-1 cm-2 at a psi mc of +50 mV and the pump reversal potential ERP was -130 mV. The effect of ethoxzolamide to depolarize psi mc was dependent on the relation between psi mc and ERP. Maximal induced depolarization occurred at a

  1. Review article: relationship between the metabolism and efficacy of proton pump inhibitors--focus on rabeprazole.

    PubMed

    Horn, J

    2004-11-01

    Proton pump inhibitors are now considered the mainstay of treatment for acid-related disease. Although all proton pump inhibitors are highly effective, the antisecretory effects of different drugs in this class are not completely consistent across patients. One reason for this is the acid-suppressing effect of Helicobacter pylori infection, which may augment the actions of proton pump inhibitors. A second important reason for interpatient variability of the effects of proton pump inhibitors on acid secretion involves genetically determined differences in the metabolism of these drugs. This article focuses on the impact of genetic polymorphism of cytochrome P450 (CYP)2C19 on the pharmacokinetics and pharmacodynamics of proton pump inhibitors, particularly rabeprazole. Results reviewed indicate that the metabolism and pharmacokinetics of rabeprazole differ significantly from those of other proton pump inhibitors. Most importantly, the clearance of rabeprazole is largely nonenzymatic and less dependent on CYP2C19 than other drugs in its class. This results in greater consistency of pharmacokinetics for rabeprazole across a wide range of patients with acid-related disease, particularly those with different CYP2C19 genotypes. The pharmacodynamic profile for rabeprazole is also characterized by more rapid suppression of gastric acid secretion than with other proton pump inhibitors, which is also independent of CYP2C19 genotype. The favourable pharmacokinetic/pharmacodynamic profile for rabeprazole has been shown to result in high eradication rates for H. pylori in both normal and poor metabolizers. Pharmacodynamic results have also suggested that rabeprazole may be better suited than omeprazole as on-demand therapy for symptomatic gastro-oesophageal reflux disease. Finally, the use of rabeprazole is not complicated by clinically significant drug-drug interactions of the type that have been reported for omeprazole.

  2. Biolayer interferometry of lipid nanodisc-reconstituted yeast vacuolar H+ -ATPase.

    PubMed

    Sharma, Stuti; Wilkens, Stephan

    2017-05-01

    Vacuolar H + -ATPase (V-ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V-ATPase activity is regulated by reversible disassembly, resulting in cytosolic V 1 -ATPase and membrane-integral V 0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein-protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein-protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc-reconstituted V-ATPase (V 1 V 0 ND). We show that V 1 V 0 ND can be immobilized on streptavidin-coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation. © 2017 The Protein Society.

  3. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca exchangers.

    PubMed

    Barkla, Bronwyn J; Hirschi, Kendal D; Pittman, Jon K

    2008-05-01

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+)exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H(+)-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca(2+)/H(+) exchangers and H(+) pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca(2+) flux. These results suggest cautious interpretation of mutant Ca(2+)/H(+) exchanger phenotypes that may be due to either perturbed Ca(2+) or H(+) transport.

  4. Low-dose or standard-dose proton pump inhibitors for maintenance therapy of gastro-oesophageal reflux disease: a cost-effectiveness analysis.

    PubMed

    You, J H S; Lee, A C M; Wong, S C Y; Chan, F K L

    2003-03-15

    Studies on the use of low-dose proton pump inhibitor for the maintenance therapy of gastro-oesophageal reflux disease have shown that it might be comparable with standard-dose proton pump inhibitor treatment and superior to standard-dose histamine-2 receptor antagonist therapy. To compare the impact of standard-dose histamine-2 receptor antagonist, low-dose proton pump inhibitor and standard-dose proton pump inhibitor treatment for the maintenance therapy of gastro-oesophageal reflux disease on symptom control and health care resource utilization from the perspective of a public health organization in Hong Kong. A Markov model was designed to simulate, over 12 months, the economic and clinical outcomes of gastro-oesophageal reflux disease patients treated with standard-dose histamine-2 receptor antagonist, low-dose proton pump inhibitor and standard-dose proton pump inhibitor. The transition probabilities were derived from the literature. Resource utilization was retrieved from a group of gastro-oesophageal reflux disease patients in Hong Kong. Sensitivity analysis was conducted to examine the robustness of the model. The standard-dose proton pump inhibitor strategy was associated with the highest numbers of symptom-free patient-years (0.954 years) and quality-adjusted life-years gained (0.999 years), followed by low-dose proton pump inhibitor and standard-dose histamine-2 receptor antagonist. The direct medical cost per patient in the standard-dose proton pump inhibitor group (904 US dollars) was lower than those of the low-dose proton pump inhibitor and standard-dose histamine-2 receptor antagonist groups. The standard-dose proton pump inhibitor strategy appears to be the most effective and least costly for the maintenance management of patients with gastro-oesophageal reflux disease in Hong Kong.

  5. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins

    DOE PAGES

    Bondar, Ana-Nicoleta; Smith, Jeremy C.

    2017-07-25

    Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less

  6. Protonation-state-Coupled Conformational Dynamics in Reaction Mechanisms of Channel and Pump Rhodopsins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondar, Ana-Nicoleta; Smith, Jeremy C.

    Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less

  7. Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity.

    PubMed

    Etienne, Audrey; Génard, Michel; Lobit, Philippe; Bugaud, Christophe

    2014-11-18

    Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free

  8. Surgery and proton pump inhibitors for treatment of vocal process granulomas.

    PubMed

    Hong-Gang, Duan; He-Juan, Jin; Chun-Quan, Zheng; Guo-Kang, Fan

    2013-11-01

    The aim of this study was to analyze the outcomes of vocal process granulomas treated with surgery and proton pump inhibitors and to specify related factors of recurrence. The medical records of patients with diagnosis of vocal process granuloma between 2000 and 2012 were reviewed. All patients were treated with surgery and proton pump inhibitors for at least 1 month. Forty-one patients were reviewed; mean follow-up time was 45 months. There was no recurrence among the patients who had a recent history of intubation. The recurrence rates of contact granuloma was 38.7 %, and significantly related to the frequency of surgery (P = 0.042), but was not significantly associated with the history of acid reflux (P = 0.676) and vocal abuse (P = 0.447), lesion size (P = 0.203) or surgical techniques (P = 0.331). Surgery combined with proton pump inhibitors was partially effective for the vocal process granulomas, especially with intubated patients. However, repeat surgery for recurrent contact granuloma should be preceded with caution due to high recurrence rates.

  9. Pathways of proton transfer in the light-driven pump bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1993-01-01

    The mechanism of proton transport in the light-driven pump bacteriorhodopsin is beginning to be understood. Light causes the all-trans to 13-cis isomerization of the retinal chromophore. This sets off a sequential and directed series of transient decreases in the pKa's of a) the retinal Schiff base, b) an extracellular proton release complex which includes asp-85, and c) a cytoplasmic proton uptake complex which includes asp-96. The timing of these pKa changes during the photoreaction cycle causes sequential proton transfers which result in the net movement of a proton across the protein, from the cytoplasmic to the extracellular surface.

  10. Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism.

    PubMed

    Fais, S

    2010-05-01

    This review presents a possible new approach against cancer, as represented by inhibition of proton pumps, a mechanism used by tumour cells to avoid intracellular accumulation of toxic substances. Proton pump inhibitors (PPIs) belong to a family of pro-drugs that are currently used in the treatment of peptic diseases needing acidity to be activated. PPIs target the acidic tumour mass, where they are metabolized, thus blocking proton traffic. Proton pump inhibition triggers a rapid cell death as a result of intracellular acidification, caspase activation and early accumulation of reactive oxygen species into tumour cells. As a whole, the devastating effect of PPIs on tumour cells suggest the triggering of a fatal cell toxification. Many human tumours, including melanoma, osteosarcoma, lymphomas and various adenocarcinomas are responsive to PPIs. This appears highly conceivable, in as much as almost all human tumours are acidic and express high levels of proton pumps. Paradoxically, metastatic tumours appear to be more responsive to PPIs being more acidic than the majority of primary tumours. However, two clinical trials test the effectiveness of PPIs in chemosensitizing melanoma and osteosarcoma patients. Indeed, tumour acidity represents a very potent mechanism of chemoresistance. A majority of cytotoxic agents, being weak bases, are quickly protonated outside and do not enter the cells, thus preventing drugs to reach specific cellular targets. Clinical data will provide the proof of concept on the use of PPIs as a new class of antitumour agent with a very low level of systemic toxicity as compared with standard chemotherapeutic agents.

  11. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species.

    PubMed

    De Milito, Angelo; Iessi, Elisabetta; Logozzi, Mariantonia; Lozupone, Francesco; Spada, Massimo; Marino, Maria Lucia; Federici, Cristina; Perdicchio, Maurizio; Matarrese, Paola; Lugini, Luana; Nilsson, Anna; Fais, Stefano

    2007-06-01

    Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.

  12. [Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations].

    PubMed

    Rybchenko, Zh I; Palladina, T O

    2011-01-01

    Participations of electrogenic H+-pumps of plasma and vacuolar membranes represented by E1-E2 and V-type H+-ATPases in plant cell adaptation to salt stress conditions has been studied by determination of their transport activities. Experiments were carried out on corn seedlings exposed during 1 or 10 days at 0.1 M NaCl. Preparations Methyure and Ivine were used by seed soaking at 10(-7) M. Plasma and vacuolar membrane fractions were isolated from corn seedling roots. In variants without NaCl a hydrolytical activity of plasma membrane H+-ATPase was increased with seedling age and its transport one was changed insignificantly, wherease the response of the weaker vacuolar H+-ATPase was opposite. NaCl exposition decreased hydrolytical activities of both H+-ATPases and increased their transport ones. These results demonstrated amplification of H+-pumps function especially represented by vacuolar H+-ATPase. Both preparations, Methyure mainly, caused a further increase of transport activity which was more expressed in NaCl variants. Obtained results showed the important role of these H+-pumps in plant adaptation under salt stress conditions realized by energetical maintenance of the secondary active Na+/H+ -antiporters which remove Na+ from cytoplasm.

  13. Proton electrochemical gradient: Driving and regulating neurotransmitter uptake.

    PubMed

    Farsi, Zohreh; Jahn, Reinhard; Woehler, Andrew

    2017-05-01

    Accumulation of neurotransmitters in the lumen of synaptic vesicles (SVs) relies on the activity of the vacuolar-type H + -ATPase. This pump drives protons into the lumen, generating a proton electrochemical gradient (Δμ H+ ) across the membrane. Recent work has demonstrated that the balance between the chemical (ΔpH) and electrical (ΔΨ) components of Δμ H+ is regulated differently by some distinct vesicle types. As different neurotransmitter transporters use ΔpH and ΔΨ with different relative efficiencies, regulation of this gradient balance has the potential to influence neurotransmitter uptake. Nevertheless, the underlying mechanisms responsible for this regulation remain poorly understood. In this review, we provide an overview of current neurotransmitter uptake models, with a particular emphasis on the distinct roles of the electrical and chemical gradients and current hypotheses for regulatory mechanisms. © 2017 WILEY Periodicals, Inc.

  14. Biolayer interferometry of lipid nanodisc‐reconstituted yeast vacuolar H+‐ATPase

    PubMed Central

    Sharma, Stuti

    2017-01-01

    Abstract Vacuolar H+‐ATPase (V‐ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V‐ATPase activity is regulated by reversible disassembly, resulting in cytosolic V 1‐ATPase and membrane‐integral V 0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein‐protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein–protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc‐reconstituted V‐ATPase (V 1 V 0ND). We show that V 1 V 0ND can be immobilized on streptavidin‐coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation. PMID:28241399

  15. The role of the pharmacist in the selection and use of over-the-counter proton-pump inhibitors.

    PubMed

    Boardman, Helen F; Heeley, Gordon

    2015-10-01

    Heartburn and other symptoms of gastro-oesophageal reflux occur in ~30% of survey respondents in multiple countries worldwide. Heartburn and acid regurgitation are common complaints in the pharmacy, where patients frequently seek relief through medication and advice. The growing number of proton-pump inhibitors available in the over-the-counter setting provides an efficacious choice to patients experiencing frequent heartburn. Pharmacists can assist patients in their treatment decisions whilst inquiring about alarm symptoms that should prompt a physician referral. Aim of the review Provide pharmacists with a review of current clinical research and expert guidelines on use of over-the-counter proton-pump inhibitors. This narrative review was conducted to identify publications relevant to the following themes: overview of available treatments for frequent episodes of heartburn/acid regurgitation; treatment algorithms providing guidance on when to use over-the-counter proton-pump inhibitors; and the role of the pharmacist in the use of over-the-counter proton-pump inhibitors. Frequent symptoms of acid reflux, such as heartburn and acid regurgitation, can interfere substantially with daily life activities. Proton-pump inhibitors are the most efficacious treatment for frequent reflux symptoms and are recommended as an appropriate initial treatment in uncomplicated cases. Proton-pump inhibitors have varying pharmacokinetics and pharmacodynamics across the class; 20 mg esomeprazole has higher bioavailability and exposure than over-the-counter omeprazole, for example. However, differences in clinical efficacy for symptom relief have not been demonstrated. The safety and tolerability of proton-pump inhibitors have been well established in clinical trial and post-marketing settings, and use of a short regimen is associated with a very low likelihood of missing a more serious condition. Pharmacists can assist patients with accurate self-diagnosis by asking short, simple

  16. Conformational change during photocycle of bacteriorhodopsin and its proton-pumping mechanism.

    PubMed

    Chou, K C

    1993-06-01

    Based on the recent finding on the structural difference of seven helix bundles in the all-trans and 13-cis bacteriorhodopsins, the distances among the key groups performing the function of proton translocation as well as their microenvironments have been investigated. Consequently, a pore-gated model was proposed for the light-driven proton-pumping mechanism of bacteriorhodopsin. According to this model, the five double-bounded polyene chain in retinal chromophore can be phenomenologically likened to a molecular "lever," whose one end links to a "piston" (the beta-ionone ring) and the other end to a pump "relay station" (the Schiff base). During the photocycle of bacteriorhodopsin, the molecular "lever" is moving up and down as marked by the position change of the "piston," so as to trigger the gate of pore to open and close alternately. When the "piston" is up, the pore-controlled gate is open so that the water channel from Asp-96 to the Schiff base and that from the Schiff base to Asp-85 is established; when the "piston" is down, the pore-controlled gate is closed and the water channels for proton transportation in both the cytoplasmic half and extracellular half are blocked. The current model allows a consistent interpretation of a great deal of experimental data and also provides a useful basis for further investigating the mechanism of proton pumping by bacteriorhodopsin.

  17. Are higher doses of proton pump inhibitors better in acute peptic bleeding?

    PubMed

    Villalón, Alejandro; Olmos, Roberto; Rada, Gabriel

    2016-06-24

    Although there is broad consensus about the benefits of proton pump inhibitors in acute upper peptic bleeding, there is still controversy over their optimal dosing. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified six systematic reviews including 27 randomized trials addressing this question. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded high-dose proton pump inhibitors probably result in little or no difference in re-bleeding rate or mortality. The risk/benefit and cost/benefit balance probably favor use of low-doses.

  18. Proton Pump Inhibitors: Risk for Myopathy?

    PubMed

    Colmenares, Evan W; Pappas, Ashley L

    2017-01-01

    The purpose of this article is to describe the relationship between proton pump inhibitors (PPIs) and symptoms of myopathy based on case reports. A literature search was conducted in PubMed (1946 to June 2016) using MeSH terms proton pump inhibitors, omeprazole, esomeprazole, lansoprazole, dexlansoprazole, rabeprazole, pantoprazole, and muscular diseases. Additionally, a search was conducted in ToxNet and EMBASE using similar search criteria. The resulting articles were scanned to assess relevance to the review. Bibliographies of all relevant articles were evaluated for additional sources; 26 articles resulted from the search of PubMed, ToxNet, and EMBASE; articles that involved medications typically considered to have myalgia-like side effects (eg, statins), or included patients who presented with a confounding disease state (eg, Guillain-Barré) were excluded. In total, 11 case reports as well as a review of an adverse event reporting database that included 292 cases were evaluated. Association of PPI use and myopathy symptoms does not have a clear etiology. Overall, the available published data do not show a high risk of myopathy with PPI use but should be considered if a patient presents with myopathy symptoms and concurrent PPI use. A limited body of published data suggests that PPI use has been associated with myopathy-like symptoms without long-term effects following discontinuation. Although myopathy is a rare adverse effect observed with PPIs, it can be a serious side effect to be considered when starting a patient on acid suppression therapy.

  19. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps

    PubMed Central

    Vedovato, Natascia

    2014-01-01

    A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified. PMID

  20. [Proton pump inhibitors in gastro-oesophageal reflux disease: what is the further step?].

    PubMed

    Simon, Mireille; Zerbib, Frank

    2013-01-01

    Optimisation of proton pump inhibitors use may improve reflux symptoms in 20-25% of the patients. Pathological gastro-oesophageal reflux should be documented in a patient with refractory reflux symptoms using upper endoscopy and/or pH testing. While on proton pump inhibitors twice daily, persistent symptoms are not related to gastro-oesophageal refluxdisease(GERD) in 50% of the patients. The new anti-reflux compounds have yet a limited efficacy and side effects that currently limit their development. Copyright © 2012. Published by Elsevier Masson SAS.

  1. Involvement of Vacuolar Sequestration and Active Transport in Tolerance of Saccharomyces cerevisiae to Hop Iso-α-Acids▿ † ¶

    PubMed Central

    Hazelwood, Lucie A.; Walsh, Michael C.; Pronk, Jack T.; Daran, Jean-Marc

    2010-01-01

    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop α-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-α-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-α-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-α-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-α-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-α-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-α-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-α-acids across the plasma membrane. Furthermore, iso-α-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators. PMID:19915041

  2. 1-Arylsulfonyl-2-(Pyridylmethylsulfinyl) Benzimidazoles as New Proton Pump Inhibitor Prodrugs

    PubMed Central

    Shin, Jai Moo; Sachs, George; Cho, Young-moon; Garst, Michael

    2010-01-01

    New arylsulfonyl proton pump inhibitor (PPI) prodrug forms were synthesized. These prodrugs provided longer residence time of an effective PPI plasma concentration, resulting in better gastric acid inhibition. PMID:20032890

  3. Potential of proton-pumping rhodopsins: engineering photosystems into microorganisms.

    PubMed

    Claassens, Nico J; Volpers, Michael; dos Santos, Vitor A P Martins; van der Oost, John; de Vos, Willem M

    2013-11-01

    A wide range of proton-pumping rhodopsins (PPRs) have been discovered in recent years. Using a synthetic biology approach, PPR photosystems with different features can be easily introduced in nonphotosynthetic microbial hosts. PPRs can provide hosts with the ability to harvest light and drive the sustainable production of biochemicals or biofuels. PPRs use light energy to generate an outward proton flux, and the resulting proton motive force can subsequently power cellular processes. Recently, the introduction of PPRs in microbial production hosts has successfully led to light-driven biotechnological conversions. In this review, we discuss relevant features of natural PPRs, evaluate reported biotechnological applications of microbial production hosts equipped with PPRs, and provide an outlook on future developments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A population-based study of the drug interaction between proton pump inhibitors and clopidogrel

    PubMed Central

    Juurlink, David N.; Gomes, Tara; Ko, Dennis T.; Szmitko, Paul E.; Austin, Peter C.; Tu, Jack V.; Henry, David A.; Kopp, Alex; Mamdani, Muhammad M.

    2009-01-01

    Background Most proton pump inhibitors inhibit the bioactivation of clopidogrel to its active metabolite. The clinical significance of this drug interaction is unknown. Methods We conducted a population-based nested case–control study among patients aged 66 years or older who commenced clopidogrel between Apr. 1, 2002, and Dec. 31, 2007, following hospital discharge after treatment of acute myocardial infarction. The cases in our study were those readmitted with acute myocardial infarction within 90 days after discharge. We performed a secondary analysis considering events within 1 year. Event-free controls (at a ratio of 3:1) were matched to cases on age, percutaneous coronary intervention and a validated risk score. We categorized exposure to proton pump inhibitors before the index date as current (within 30 days), previous (31–90 days) or remote (91–180 days). Results Among 13 636 patients prescribed clopidogrel following acute myocardial infarction, we identified 734 cases readmitted with myocardial infarction and 2057 controls. After extensive multivariable adjustment, current use of proton pump inhibitors was associated with an increased risk of reinfarction (adjusted odds ratio [OR] 1.27, 95% confidence interval [CI] 1.03–1.57). We found no association with more distant exposure to proton pump inhibitors or in multiple sensitivity analyses. In a stratified analysis, pantoprazole, which does not inhibit cytochrome P450 2C19, had no association with readmission for myocardial infarction (adjusted OR 1.02, 95% CI 0.70–1.47). Interpretation Among patients receiving clopidogrel following acute myocardial infarction, concomitant therapy with proton pump inhibitors other than pantoprazole was associated with a loss of the beneficial effects of clopidogrel and an increased risk of reinfarction. PMID:19176635

  5. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Blomberg, Margareta R. A.; Siegbahn, Per E. M.

    2010-10-01

    The proton pumping mechanism in cytochrome c oxidase, the terminal enzyme in the respiratory chain, has been investigated using hybrid DFT with large chemical models. In previous studies, a gating mechanism was suggested based on electrostatic interpretations of kinetic experiments. The predictions from that analysis are tested here. The main result is that the suggestion of a positively charged transition state for proton transfer is confirmed, while some other suggestions for the gating are not supported. It is shown that a few critical relative energy values from the earlier studies are reproduced with quite high accuracy using the present model calculations. Examples are the forward barrier for proton transfer from the N-side of the membrane to the pump-loading site when the heme a cofactor is reduced, and the corresponding back leakage barrier when heme a is oxidised. An interesting new finding is an unexpected double-well potential for proton transfer from the N-side to the pump-loading site. In the intermediate between the two transition states found, the proton is bound to PropD on heme a. A possible purpose of this type of potential surface is suggested here. The accuracy of the present values are discussed in terms of their sensitivity to the choice of dielectric constant. Only one energy value, which is not critical for the present mechanism, varies significantly with this choice and is therefore less certain.

  6. Proton Pump Inhibition Increases Rapid Eye Movement Sleep in the Rat

    PubMed Central

    Jha, Sushil K.

    2014-01-01

    Increased bodily CO2 concentration alters cellular pH as well as sleep. The proton pump, which plays an important role in the homeostatic regulation of cellular pH, therefore, may modulate sleep. We investigated the effects of the proton pump inhibitor “lansoprazole” on sleep-wakefulness. Male Wistar rats were surgically prepared for chronic polysomnographic recordings. Two different doses of lansoprazole (low: 1 mg/kg; high: 10 mg/kg) were injected intraperitoneally in the same animal (n = 7) and sleep-wakefulness was recorded for 6 hrs. The changes in sleep-wakefulness were compared statistically. Percent REM sleep amount in the vehicle and lansoprazole low dose groups was 9.26 ± 1.03 and 9.09 ± 0.54, respectively, which increased significantly in the lansoprazole high dose group by 31.75% (from vehicle) and 34.21% (from low dose). Also, REM sleep episode numbers significantly increased in lansoprazole high dose group. Further, the sodium-hydrogen exchanger blocker “amiloride” (10 mg/kg; i.p.) (n = 5) did not alter sleep-wake architecture. Our results suggest that the proton pump plays an important role in REM sleep modulation and supports our view that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep. PMID:24701564

  7. Effect of proton pump inhibitors on markers of risk for high-grade dysplasia and oesophageal cancer in Barrett's oesophagus.

    PubMed

    Hillman, L C; Chiragakis, L; Shadbolt, B; Kaye, G L; Clarke, A C

    2008-02-15

    It has been shown that the presence on diagnosis of endoscopic macroscopic markers indicates a high-risk group for Barrett's oesophagus. To determine whether proton pump inhibitor therapy prior to diagnosis of Barrett's oesophagus influences markers for risk development of subsequent high-grade dysplasia/adenocarcinoma. A review of all patients with Barrett's oesophagus entering a surveillance programme was undertaken. Five hundred and two patients diagnosed with Barrett's oesophagus were assessed on diagnosis for endoscopic macroscopic markers or low-grade dysplasia. Subsequent development of high-grade dysplasia/adenocarcinoma was documented. The relationship between the initiation of proton pump inhibitor therapy prior to the diagnosis of BE and the presence of macroscopic markers or low-grade dysplasia at entry was determined. Fourteen patients developed high-grade dysplasia/adenocarcinoma during surveillance. Patients who entered without prior proton pump inhibitor therapy were 3.4 times (95% CI: 1.98-5.85) more likely to have a macroscopic marker or low-grade dysplasia than those patients already on a proton pump inhibitor. Use of proton pump inhibitor therapy prior to diagnosis of Barrett's oesophagus significantly reduced the presence of markers used to stratify patient risk. Widespread use of proton pump inhibitors will confound surveillance strategies for patients with Barrett's oesophagus based on entry characteristics but is justified because of the lower risk of neoplastic progression.

  8. Respiratory Complex I in Bos taurus and Paracoccus denitrificans Pumps Four Protons across the Membrane for Every NADH Oxidized.

    PubMed

    Jones, Andrew J Y; Blaza, James N; Varghese, Febin; Hirst, Judy

    2017-03-24

    Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I ( i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus ) and from the bacterium Paracoccus denitrificans , we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Decrease in Switches to 'Unsafe' Proton Pump Inhibitors After Communications About Interactions with Clopidogrel.

    PubMed

    Kruik-Kollöffel, Willemien J; van der Palen, Job; van Herk-Sukel, Myrthe P P; Kruik, H Joost; Movig, Kris L L

    2017-08-01

    In 2009 and 2010 medicines regulatory agencies published official safety statements regarding the concomitant use of proton pump inhibitors and clopidogrel. We wanted to investigate a change in prescription behaviour in prevalent gastroprotective drug users (2008-2011). Data on drug use were retrieved from the Out-patient Pharmacy Database of the PHARMO Database Network. We used interrupted time series analyses (ITS) to estimate the impact of each safety statement on the number of gastroprotective drug switches around the start of clopidogrel and during clopidogrel use. After the first statement (June 2009), significantly fewer patients switched from another proton pump inhibitor to (es)omeprazole (-14.9%; 95% CI -22.6 to -7.3) at the moment they started clopidogrel compared to the period prior to this statement. After the adjusted statement in February 2010, the switch percentage to (es)omeprazole decreased further (-4.5%; 95% CI -8.1 to -0.9). We observed a temporary increase in switches from proton pump inhibitors to histamine 2-receptor antagonists after the first statement; the decrease in the reverse switch was statistically significant (-23.0%; 95% CI -43.1 to -2.9). With ITS, we were able to demonstrate a decrease in switches from other proton pump inhibitors to (es)omeprazole and an increase of the reverse switch to almost 100%. We observed a partial and temporary switch to histamine 2-receptor antagonists. This effect of safety statements was shown for gastroprotective drug switches around the start of clopidogrel treatment.

  10. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway.

    PubMed

    Boursiac, Yann; Lee, Sang Min; Romanowsky, Shawn; Blank, Robert; Sladek, Chris; Chung, Woo Sik; Harper, Jeffrey F

    2010-11-01

    Calcium (Ca(2+)) signals regulate many aspects of plant development, including a programmed cell death pathway that protects plants from pathogens (hypersensitive response). Cytosolic Ca(2+) signals result from a combined action of Ca(2+) influx through channels and Ca(2+) efflux through pumps and cotransporters. Plants utilize calmodulin-activated Ca(2+) pumps (autoinhibited Ca(2+)-ATPase [ACA]) at the plasma membrane, endoplasmic reticulum, and vacuole. Here, we show that a double knockout mutation of the vacuolar Ca(2+) pumps ACA4 and ACA11 in Arabidopsis (Arabidopsis thaliana) results in a high frequency of hypersensitive response-like lesions. The appearance of macrolesions could be suppressed by growing plants with increased levels (greater than 15 mm) of various anions, providing a method for conditional suppression. By removing plants from a conditional suppression, lesion initials were found to originate primarily in leaf mesophyll cells, as detected by aniline blue staining. Initiation and spread of lesions could also be suppressed by disrupting the production or accumulation of salicylic acid (SA), as shown by combining aca4/11 mutations with a sid 2 (for salicylic acid induction-deficient2) mutation or expression of the SA degradation enzyme NahG. This indicates that the loss of the vacuolar Ca(2+) pumps by itself does not cause a catastrophic defect in ion homeostasis but rather potentiates the activation of a SA-dependent programmed cell death pathway. Together, these results provide evidence linking the activity of the vacuolar Ca(2+) pumps to the control of a SA-dependent programmed cell death pathway in plants.

  11. Head-to-head comparison of H2-receptor antagonists and proton pump inhibitors in the treatment of erosive esophagitis: A meta-analysis

    PubMed Central

    Wang, Wei-Hong; Huang, Jia-Qing; Zheng, Ge-Fan; Xia, Harry Hua-Xiang; Wong, Wai-Man; Lam, Shiu-Kum; Wong, Benjamin Chun-Yu

    2005-01-01

    AIM: To systematically evaluate the efficacy of H2-receptor antagonists (H2RAs) and proton pump inhibitors in healing erosive esophagitis (EE). METHODS: A meta-analysis was performed. A literature search was conducted in PubMed, Medline, Embase, and Cochrane databases to include randomized controlled head-to-head comparative trials evaluating the efficacy of H2RAs or proton pump inhibitors in healing EE. Relative risk (RR) and 95% confidence interval (CI) were calculated under a random-effects model. RESULTS: RRs of cumulative healing rates for each comparison at 8 wk were: high dose vs standard dose H2RAs, 1.17 (95%CI, 1.02-1.33); standard dose proton pump inhibitors vs standard dose H2RAs, 1.59 (95%CI, 1.44-1.75); standard dose other proton pump inhibitors vs standard dose omeprazole, 1.06 (95%CI, 0.98-1.06). Proton pump inhibitors produced consistently greater healing rates than H2RAs of all doses across all grades of esophagitis, including patients refractory to H2RAs. Healing rates achieved with standard dose omeprazole were similar to those with other proton pump inhibitors in all grades of esophagitis. CONCLUSION: H2RAs are less effective for treating patients with erosive esophagitis, especially in those with severe forms of esophagitis. Standard dose proton pump inhibitors are significantly more effective than H2RAs in healing esophagitis of all grades. Proton pump inhibitors given at the recommended dose are equally effective for healing esophagitis. PMID:15996033

  12. A Conserved Asparagine in a P-type Proton Pump Is Required for Efficient Gating of Protons*

    PubMed Central

    Ekberg, Kira; Wielandt, Alex G.; Buch-Pedersen, Morten J.; Palmgren, Michael G.

    2013-01-01

    The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H+-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H+-ATPases. In the crystal structure of the plant plasma membrane H+-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane. PMID:23420846

  13. A conserved asparagine in a P-type proton pump is required for efficient gating of protons.

    PubMed

    Ekberg, Kira; Wielandt, Alex G; Buch-Pedersen, Morten J; Palmgren, Michael G

    2013-04-05

    The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.

  14. Vacuolar ATPase in Phagosome-Lysosome Fusion

    PubMed Central

    Kissing, Sandra; Hermsen, Christina; Repnik, Urska; Nesset, Cecilie Kåsi; von Bargen, Kristine; Griffiths, Gareth; Ichihara, Atsuhiro; Lee, Beth S.; Schwake, Michael; De Brabander, Jef; Haas, Albert; Saftig, Paul

    2015-01-01

    The vacuolar H+-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes. PMID:25903133

  15. Vacuolar ATPase in phagosome-lysosome fusion.

    PubMed

    Kissing, Sandra; Hermsen, Christina; Repnik, Urska; Nesset, Cecilie Kåsi; von Bargen, Kristine; Griffiths, Gareth; Ichihara, Atsuhiro; Lee, Beth S; Schwake, Michael; De Brabander, Jef; Haas, Albert; Saftig, Paul

    2015-05-29

    The vacuolar H(+)-ATPase (v-ATPase) complex is instrumental in establishing and maintaining acidification of some cellular compartments, thereby ensuring their functionality. Recently it has been proposed that the transmembrane V0 sector of v-ATPase and its a-subunits promote membrane fusion in the endocytic and exocytic pathways independent of their acidification functions. Here, we tested if such a proton-pumping independent role of v-ATPase also applies to phagosome-lysosome fusion. Surprisingly, endo(lyso)somes in mouse embryonic fibroblasts lacking the V0 a3 subunit of the v-ATPase acidified normally, and endosome and lysosome marker proteins were recruited to phagosomes with similar kinetics in the presence or absence of the a3 subunit. Further experiments used macrophages with a knockdown of v-ATPase accessory protein 2 (ATP6AP2) expression, resulting in a strongly reduced level of the V0 sector of the v-ATPase. However, acidification appeared undisturbed, and fusion between latex bead-containing phagosomes and lysosomes, as analyzed by electron microscopy, was even slightly enhanced, as was killing of non-pathogenic bacteria by V0 mutant macrophages. Pharmacologically neutralized lysosome pH did not affect maturation of phagosomes in mouse embryonic cells or macrophages. Finally, locking the two large parts of the v-ATPase complex together by the drug saliphenylhalamide A did not inhibit in vitro and in cellulo fusion of phagosomes with lysosomes. Hence, our data do not suggest a fusion-promoting role of the v-ATPase in the formation of phagolysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Halorhodopsin pumps Cl– and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions

    PubMed Central

    Gunner, M. R.

    2014-01-01

    Key mutations differentiate the functions of homologous proteins. One example compares the inward ion pump halorhodopsin (HR) and the outward proton pump bacteriorhodopsin (BR). Of the nine essential buried ionizable residues in BR, six are conserved in HR. However, HR changes three BR acids, D85 in a central cluster of ionizable residues, D96, nearer the intracellular, and E204, nearer the extracellular side of the membrane to the small, neutral amino acids T111, V122, and T230, respectively. In BR, acidic amino acids are stationary anions whose proton affinity is modulated by conformational changes, establishing a sequence of directed binding and release of protons. Multiconformation continuum electrostatics calculations of chloride affinity and residue protonation show that, in reaction intermediates where an acid is ionized in BR, a Cl– is bound to HR in a position near the deleted acid. In the HR ground state, Cl– binds tightly to the central cluster T111 site and weakly to the extracellular T230 site, recovering the charges on ionized BR-D85 and neutral E204 in BR. Imposing key conformational changes from the BR M intermediate into the HR structure results in the loss of Cl– from the central T111 site and the tight binding of Cl– to the extracellular T230 site, mirroring the changes that protonate BR-D85 and ionize E204 in BR. The use of a mobile chloride in place of D85 and E204 makes HR more susceptible to the environmental pH and salt concentrations than BR. These studies shed light on how ion transfer mechanisms are controlled through the interplay of protein and ion electrostatics. PMID:25362051

  17. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples1[OPEN

    PubMed Central

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H+-pumping activities of vacuolar H+-ATPase (VHA) and/or vacuolar H+-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H+-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants. PMID:26637549

  18. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples.

    PubMed

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Cheng, Lailiang; Hao, Yu-Jin

    2016-03-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H(+)-pumping activities of vacuolar H(+)-ATPase (VHA) and/or vacuolar H(+)-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H(+)-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. [Proton pump inhibitor - side effects and complications of long-term proton pump inhibitor administration].

    PubMed

    Ueberschaer, Hendrik; Allescher, Hans-Dieter

    2017-01-01

    Proton Pump Inhibitors are among the most common drugs taken. The indication is for treatment of heartburn, reflux disease, prophylaxis and treatment of peptic ulcers, in combination with NSAIDs and steroids as well as H. pylori-eradication. PPI's are widely used, even with non-specific symptoms. This certainly has to do with good tolerability and a previously considered low side effect profile. At the moment, there is growing evidence that the long-term intake of PPI's may not be as safe as assumed. In addition to interactions with some drugs, including platelet aggregation inhibitors, recent studies have shown an increased risk of myocardial infarction, interstitial nephritis, chronic renal injury, infections, vitamin deficiencies and electrolyte shifts as well developing dementia. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Identification of proton-pump inhibitor drugs that inhibit Trichomonas vaginalis uridine nucleoside ribohydrolase.

    PubMed

    Shea, Tara A; Burburan, Paola J; Matubia, Vivian N; Ramcharan, Sandy S; Rosario, Irving; Parkin, David W; Stockman, Brian J

    2014-02-15

    Trichomonas vaginalis continues to be a major health problem with drug-resistant strains increasing in prevalence. Novel antitrichomonal agents that are mechanistically distinct from current therapies are needed. The NIH Clinical Compound Collection was screened to find inhibitors of the uridine ribohydrolase enzyme required by the parasite to scavenge uracil for its growth. The proton-pump inhibitors omeprazole, pantoprazole, and rabeprazole were identified as inhibitors of this enzyme, with IC50 values ranging from 0.3 to 14.5 μM. This suggests a molecular mechanism for the in vitro antitrichomonal activity of these proton-pump inhibitors, and may provide important insights toward structure-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A rationale for the use of proton pump inhibitors as antineoplastic agents.

    PubMed

    De Milito, Angelo; Marino, Maria Lucia; Fais, Stefano

    2012-01-01

    It is becoming increasingly acknowledged that tumorigenesis is not simply characterized by the accumulation of rapidly proliferating, genetically mutated cells. Microenvironmental biophysical factors like hypoxia and acidity dramatically condition cancer cells and act as selective forces for malignant cells, adapting through metabolic reprogramming towards aerobic glycolysis. Avoiding intracellular accumulation of lactic acid and protons, otherwise detrimental to cell survival is crucial for malignant cells to maintain cellular pH homeostasis. As a consequence of the upregulated expression and/or function of several pH-regulating systems, cancer cells display an alkaline intracellular pH (pHi) and an acidic extracellular pH (pHe). Among the pH-regulating proteins, proton pumps play an important role in both drug-resistance and metastatic spread, thus representing a suitable therapeutic target. Proton pump inhibitors (PPI) have been reported as cytotoxic drugs active against several human tumor cells and preclinical data have prompted the investigation of PPI as anticancer agents in humans. This review will update the current knowledge on the antitumor activities of PPI and their potential applications.

  2. Proton pump inhibitors and the risk of pneumonia: a comparison of cohort and self-controlled case series designs

    PubMed Central

    2013-01-01

    Background To compare the results of a new-user cohort study design and the self-controlled case series (SCCS) design using the risk of hospitalisation for pneumonia in those dispensed proton pump inhibitors compared to those unexposed as a case study. Methods The Australian Government Department of Veterans’ Affairs administrative claims database was used. Exposure to proton pump inhibitors and hospitalisations for pneumonia were identified over a 4 year study period 01 Jul 2007 -30 Jun 2011. The same inclusion and exclusion criteria were applied to both studies, however, the SCCS study included subjects with a least one hospitalisation for pneumonia. Results There were 105,467 subjects included in the cohort study and 6775 in the SCCS. Both studies showed an increased risk of hospitalisations for pneumonia in the three defined risk periods following initiation of proton pump inhibitors compared to baseline. With the highest risk in the first 1 to 7 days (Cohort RR, 3.24; 95% CI (2.50, 4.19): SCCS: RR, 3.07; 95% CI (2.69, 3.50)). Conclusions This study has shown that the self-controlled case series method produces similar risk estimates to a new-users cohort study design when applied to the association of proton pump inhibitors and pneumonia. Exposure to a proton pump inhibitor increases the likelihood of being admitted to hospital for pneumonia, with the risk highest in the first week of treatment. PMID:23800078

  3. Effects of membrane curvature and pH on proton pumping activity of single cytochrome bo3 enzymes.

    PubMed

    Li, Mengqiu; Khan, Sanobar; Rong, Honglin; Tuma, Roman; Hatzakis, Nikos S; Jeuken, Lars J C

    2017-09-01

    The molecular mechanism of proton pumping by heme-copper oxidases (HCO) has intrigued the scientific community since it was first proposed. We have recently reported a novel technology that enables the continuous characterisation of proton transport activity of a HCO and ubiquinol oxidase from Escherichia coli, cytochrome bo 3 , for hundreds of seconds on the single enzyme level (Li et al. J Am Chem Soc 137 (2015) 16055-16063). Here, we have extended these studies by additional experiments and analyses of the proton transfer rate as a function of proteoliposome size and pH at the N- and P-side of single HCOs. Proton transport activity of cytochrome bo 3 was found to decrease with increased curvature of the membrane. Furthermore, proton uptake at the N-side (proton entrance) was insensitive to pH between pH6.4-8.4, while proton release at the P-side had an optimum pH of ~7.4, suggesting that the pH optimum is related to proton release from the proton exit site. Our previous single-enzyme experiments identified rare, long-lived conformation states of cytochrome bo 3 where protons leak back under turn-over conditions. Here, we analyzed and found that ~23% of cytochrome bo 3 proteoliposomes show ΔpH half-lives below 50s after stopping turnover, while only ~5% of the proteoliposomes containing a non-pumping mutant, E286C cytochrome bo 3 exhibit such fast decays. These single-enzyme results confirm our model in which HCO exhibit heterogeneous pumping rates and can adopt rare leak states in which protons are able to rapidly flow back. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. HOW MAY PROTON PUMP INHIBITORS IMPAIR CARDIOVASCULAR HEALTH?

    PubMed Central

    Sukhovershin, Roman A.; Cooke, John P.

    2016-01-01

    Proton pump inhibitors (PPIs) are among the most widely used drugs worldwide. They are used to treat a number of gastro-esophageal disorders and usually prescribed as a long-term medication or even taken without a prescription. There are a number of clinical studies that associate PPI use with an increased cardiovascular risk. In this article we review the clinical evidence for adverse cardiovascular effects of PPIs, and we discuss possible biological mechanisms by which PPIs can impair cardiovascular health. PMID:26817947

  5. Meta-analysis: comparative efficacy of different proton-pump inhibitors in triple therapy for Helicobacter pylori eradication.

    PubMed

    Vergara, M; Vallve, M; Gisbert, J P; Calvet, X

    2003-09-15

    It is not known whether certain proton-pump inhibitors are more efficacious than others when used in triple therapy for Helicobacter pylori eradication. To compare the efficacy of different proton-pump inhibitors in triple therapy by performing a meta-analysis. A MEDLINE search was performed. Abstracts of the European Helicobacter pylori Study Group and the American Gastroenterological Association congresses from 1996 to 2002 were also examined. Randomized studies with at least two branches of triple therapy that differed only in terms of type of proton-pump inhibitor were included in a meta-analysis using Review Manager 4.1. Fourteen studies were included. Intention-to-treat cure rates were similar for omeprazole and lansoprazole: 74.7% vs. 76%, odds ratio (OR) 0.91 [95% confidence interval (CI) 0.69-1.21] in a total of 1085 patients; for omeprazole and rabeprazole: 77.9% vs. 81.2%, OR 0.81 (95% CI 0.58-1.15) in a total of 825 patients; for omeprazole and esomeprazole: 87.7% vs. 89%, OR 0.89 (95% CI 0.58-1.35) in 833 patients; and for lansoprazole and rabeprazole: 81% vs. 85.7%, OR 0.77 (95% CI 0.48-1.22) in 550 patients. The efficacy of various proton-pump inhibitors seems to be similar when used for H. pylori eradication in standard triple therapy.

  6. Circulating aldosterone induces the apical accumulation of the proton pumping V-ATPase and increases proton secretion in clear cells in the caput epididymis.

    PubMed

    Roy, Jeremy W; Hill, Eric; Ruan, Ye Chun; Vedovelli, Luca; Păunescu, Teodor G; Brown, Dennis; Breton, Sylvie

    2013-08-15

    Clear cells express the vacuolar proton-pumping H(+)-ATPase (V-ATPase) and acidify the lumen of the epididymis, a process that is essential for male fertility. The renin-angiotensin-aldosterone system (RAAS) regulates fluid and electrolyte balance in the epididymis, and a previous study showed binding of aldosterone exclusively to epididymal clear cells (Hinton BT, Keefer DA. Steroid Biochem 23: 231-233, 1985). We examined here the role of aldosterone in the regulation of V-ATPase in the epididymis. RT-PCR showed expression of the mineralocorticoid receptor [MR; nuclear receptor subfamily 3, group C member 2 (NR3C2)] and 11-β-dehydrogenase isozyme 2 (HSD11β2) mRNAs specifically in clear cells, isolated by fluorescence-activated cell sorting from B1-enhanced green fluorescent protein (EGFP) mice. Tail vein injection of adult rats with aldosterone, 1,2-dioctanoyl-sn-glycerol (DOG), or 8-(4-chlorophenylthio)-cAMP (cpt-cAMP) induced V-ATPase apical membrane accumulation and extension of V-ATPase-labeled microvilli in clear cells in the caput epididymis but not in the cauda. V-ATPase activity was measured in EGFP-expressing clear cells using the intracellular pH (pHi)-sensing dye seminaphthorhodafluor-5F-5-(and 6)-carboxylic acid, acetoxymethyl ester acetate (SNARF-5F). Aldosterone induced a rapid increase in the rate of Na(+)- and bicarbonate-independent pHi recovery following an NH4Cl-induced acid load in clear cells isolated from the caput but not the cauda. This effect was abolished by concanamycin A, spironolactone, and chelerythrine but not myristoylated-protein kinase inhibitor (mPKI) or mifepristone. Thus aldosterone increases V-ATPase-dependent proton secretion in clear cells in the caput epididymis via MR/NR3C2 and PKC activation. This study, therefore, identifies aldosterone as an active member of the RAAS for the regulation of luminal acidification in the proximal epididymis.

  7. Cyanobacterial Light-Driven Proton Pump, Gloeobacter Rhodopsin: Complementarity between Rhodopsin-Based Energy Production and Photosynthesis

    PubMed Central

    Choi, Ah Reum; Shi, Lichi; Brown, Leonid S.; Jung, Kwang-Hwan

    2014-01-01

    A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax  = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids. PMID:25347537

  8. Constitutive and Companion Cell-Specific Overexpression of AVP1, Encoding a Proton-Pumping Pyrophosphatase, Enhances Biomass Accumulation, Phloem Loading, and Long-Distance Transport1[OPEN

    PubMed Central

    Shulaev, Vladimir; Paez-Valencia, Julio

    2016-01-01

    Plant productivity is determined in large part by the partitioning of assimilates between the sites of production and the sites of utilization. Proton-pumping pyrophosphatases (H+-PPases) are shown to participate in many energetic plant processes, including general growth and biomass accumulation, CO2 fixation, nutrient acquisition, and stress responses. H+-PPases have a well-documented role in hydrolyzing pyrophosphate (PPi) and capturing the released energy to pump H+ across the tonoplast and endomembranes to create proton motive force (pmf). Recently, an additional role for H+-PPases in phloem loading and biomass partitioning was proposed. In companion cells (CCs) of the phloem, H+-PPases localize to the plasma membrane rather than endomembranes, and rather than hydrolyzing PPi to create pmf, pmf is utilized to synthesize PPi. Additional PPi in the CCs promotes sucrose oxidation and ATP synthesis, which the plasma membrane P-type ATPase in turn uses to create more pmf for phloem loading of sucrose via sucrose-H+ symporters. To test this model, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated with constitutive and CC-specific overexpression of AVP1, encoding type 1 ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1. Plants with both constitutive and CC-specific overexpression accumulated more biomass in shoot and root systems. 14C-labeling experiments showed enhanced photosynthesis, phloem loading, phloem transport, and delivery to sink organs. The results obtained with constitutive and CC-specific promoters were very similar, such that the growth enhancement mediated by AVP1 overexpression can be attributed to its role in phloem CCs. This supports the model for H+-PPases functioning as PPi synthases in the phloem by arguing that the increases in biomass observed with AVP1 overexpression stem from improved phloem loading and transport. PMID:26530315

  9. Effect of the Prophylactic Use of Proton-Pump Inhibitors on the Pattern of Gastrointestinal Symptoms in Patients Late After Kidney Transplant.

    PubMed

    Królikowski, Jerzy; Pawłowicz, Ewa; Budzisz, Ewa; Nowicki, Michał

    2016-10-01

    Although immunosuppressive drugs have been recognized as leading causes of gastrointestinal symptoms after kidney transplant, other widely used medications such as proton-pump inhibitors recently have been implicated. Our aim was to study the effects of chronic proton-pump inhibitor therapy on gastrointestinal symptoms in clinically stable patients late after kidney transplant. The study comprised 100 kidney transplant recipients (66 men and 34 women, mean age of 49 ± 12 y, mean time after transplant of 56 ± 46 mo). All patients completed the Gastrointestinal Symptoms Rating Scale and the Quality of Life Questionnaire SF-8 surveys. The most commonly reported symptoms included borborygmus (27%), flatulence (23%), abdominal distension (18%), urgent need of defecation (17%), and heartburn, acid reflux, and eructation (13%). Proton-pump inhibitors were chronically used by 50% of patients and sporadically by 33%. Gastrointestinal Symptoms Rating Scale scores were higher in patients who used proton-pump inhibitors (mean score of 7.8 ± 5.5 vs 4.6 ± 3.0; P = .013). Total score of items representing diarrhea in the Gastrointestinal Symptoms Rating Scale (increased passage of stools, loose stools, urgent need of defecation, incomplete evacuation) was higher in patients treated with proton-pump inhibitors than in those not treated (2.3 ± 2.2 vs 1.3 ± 1.9; P = .04). Chronic use of proton-pump inhibitors may increase the prevalence of gastrointestinal symptoms, particularly diarrhea, in patients late after kidney transplant.

  10. Prescribing patterns and economic costs of proton pump inhibitors in Colombia

    PubMed Central

    Fernández, Alejandra; Castrillón, Juan Daniel; Campo, Carlos Felipe; Echeverri, Luis Felipe; Gaviria, Andrés; Londoño, Manuel José; Ochoa, Sergio Andrés; Ruíz, Joaquín Octavio

    2013-01-01

    Objective: To determine the prescribing patterns for proton pump inhibitors and to estimate the economic cost of their use in a group of patients affiliated with the Colombian Health System. Methods: This is a descriptive observational study. Data for analysis consisted of prescriptions dispensed between October 1st, 2010 and October 31st, 2010 and were collected from a systematic database of 4.2 million members. Socio-demographic variables were considered along with the defined daily dose,comedication, convenience of the indication for proton pump inhibitor use and costs. Results: In this study, 113,560 prescriptions were dispensed in 89 cities, mostly to women (57.6%) with a mean age of 54.4 ± 18.7 years; the drugs were omeprazole (n= 111.294; 97.81%),esomeprazole (n= 1.378; 1.2%), lansoprazole (n= 524; 0.4%), pantoprazole and rabeprazole. The indication for 87.349 of the formulas (76.9%) was justified and statistically associated with the use of NSAIDs, antithrombotics, corticosteroids, anti-ulcer, antibiotics and prokinetics. No justification was found for 26.211 (23.1%) of the prescriptions, which were associated with antidiabetics, antihypertensives, hypolipidemics and others (p <0.001).The annual justified cost was estimated to be US$ 1,654,701 and the unjustified cost was estimated to be U.S. $2,202,590, as calculated using the minimum reference prices. Discussion: Each month, the Colombian health system is overloaded by unjustified costs that include payments for non-approved indications of proton pump inhibitors and for drugs outside the list of essential medications. This issue is contributing to rising costs of healthcare in Colombia. PMID:24892316

  11. Proton pump inhibitors and the risk of severe adverse events - a cardiovascular bomb?

    PubMed

    Cunha, Nelson; Machado, António Pedro

    2018-05-24

    Proton pump inhibitors are currently one of the most prescribed pharmacological classes in developed countries, given their effectiveness and safety profile previously considered favourable. However, over the last few years, several papers have been published that associate prolonged use of these drugs with a wide range of adverse effects, posing doubts about their safety. Among the adverse effects described, one should emphasize the increased risk of cardiovascular events. This relationship was first described in subjects after acute coronary syndrome by the interference of proton pump inhibitors in cytochrome P450 2C19 and the conversion of clopidogrel to active metabolite. However, more recent studies describe this relationship also with the use of antiplatelet agents that do not depend on cytochrome P450 2C19 activation. The proposed mechanism is by inhibiting dimethylarginine dimethylaminohydrolase, a physiological inhibitor of asymmetric dimethylarginine, thus increasing the plasma concentrations of the latter enzyme and in turn translating into lower levels of nitric oxide. The authors reviewing in this article the relationship between the use of proton pump inhibitors and the increased risk of cardio and cerebrovascular events, are intended to alert the scientific community to the potentially harmful effects of these drugs and recommend the setting of a moratorium on their prolonged use. Copyright © 2018 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle*

    PubMed Central

    Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya

    2016-01-01

    Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O+ through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3. To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu198, which bridges the Mg2+ and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu198-Mg2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg2+-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO. PMID:27605664

  13. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle.

    PubMed

    Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya

    2016-11-11

    Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H 3 O + through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O 2 bound to heme a 3 To block backward proton movement, the water channel remains closed after O 2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O 2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg 2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu 198 , which bridges the Mg 2+ and Cu A (the initial electron acceptor from cytochrome c) sites, suggest that the Cu A -Glu 198 -Mg 2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg 2+ -containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Functional Expression and Characterization of Schizosaccharomyces pombe Avt3p as a Vacuolar Amino Acid Exporter in Saccharomyces cerevisiae.

    PubMed

    Chardwiriyapreecha, Soracom; Manabe, Kunio; Iwaki, Tomoko; Kawano-Kawada, Miyuki; Sekito, Takayuki; Lunprom, Siriporn; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2015-01-01

    In Saccharomyces cerevisiae, Avt3p and Avt4p mediate the extrusion of several amino acids from the vacuolar lumen into the cytosol. SpAvt3p of Schizosaccharomyces pombe, a homologue of these vacuolar amino acid transporters, has been indicated to be involved in spore formation. In this study, we confirmed that GFP-SpAvt3p localized to the vacuolar membrane in S. pombe. The amounts of various amino acids increased significantly in the vacuolar pool of avt3Δ cells, but decreased in that of avt3+-overexpressing avt3Δ cells. These results suggest that SpAvt3p participates in the vacuolar compartmentalization of amino acids in S. pombe. To examine the export activity of SpAvt3p, we expressed the avt3+ gene in S. cerevisiae cells. We found that the heterologously overproduced GFP-SpAvt3p localized to the vacuolar membrane in S. cerevisiae. Using the vacuolar membrane vesicles isolated from avt3+-overexpressing S. cerevisiae cells, we detected the export activities of alanine and tyrosine in an ATP-dependent manner. These activities were inhibited by the addition of a V-ATPase inhibitor, concanamycin A, thereby suggesting that the activity of SpAvt3p is dependent on a proton electrochemical gradient generated by the action of V-ATPase. In addition, the amounts of various amino acids in the vacuolar pools of S. cerevisiae cells were decreased by the overproduction of SpAvt3p, which indicated that SpAvt3p was functional in S. cerevisiae cells. Thus, SpAvt3p is a vacuolar transporter that is involved in the export of amino acids from S. pombe vacuoles.

  15. Association Between Proton Pump Inhibitors and Microscopic Colitis.

    PubMed

    Law, Ernest H; Badowski, Melissa; Hung, Yu-Ting; Weems, Kimberly; Sanchez, Angelica; Lee, Todd A

    2017-03-01

    Microscopic colitis (MC) is a chronic inflammatory disease of the colon that is characterized by chronic, watery, nonbloody diarrhea. Concern regarding a potential association between proton-pump inhibitors (PPIs) and MC has recently emerged. We sought to systematically review and summarize the evidence for the potential association between PPIs and MC. We systematically searched EMBASE, MEDLINE, Cochrane Database of Systematic Reviews, International Pharmaceutical Abstracts, and Google Scholar using the terms proton-pump inhibitors (omeprazole, lansoprazole, dexlansoprazole, rabeprazole, pantoprazole, or esomeprazole), microscopic colitis, collagenous colitis, and lymphocytic colitis. Full-text, English-language reports of case reports/series, observational studies, experimental studies, and systematic reviews/meta-analyses published between January 2000 to August 2016 were included. Bibliographies from pertinent publications were reviewed for additional references. Outcome was defined as the development of biopsy-confirmed MC. A total of 19 publications were identified: 5 case control studies and 14 case reports/series (encompassing a total of 32 cases). All studies were limited by small sample sizes. Risk of MC by dose or specific PPI agent was not investigated in any of the studies. A review of the current body of evidence reveals a possible association between PPIs and MC. There is a need for large observational studies of high quality to examine the differential effect of specific PPIs and whether the magnitude of association is dose dependent. Given their widespread use, clinicians should routinely question whether patients are receiving unnecessary treatment with PPIs and discontinue therapy where appropriate.

  16. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3more » in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.« less

  17. Vba4p, a vacuolar membrane protein, is involved in the drug resistance and vacuolar morphology of Saccharomyces cerevisiae.

    PubMed

    Kawano-Kawada, Miyuki; Pongcharoen, Pongsanat; Kawahara, Rieko; Yasuda, Mayu; Yamasaki, Takashi; Akiyama, Koichi; Sekito, Takayuki; Kakinuma, Yoshimi

    2016-01-01

    In the vacuolar basic amino acid (VBA) transporter family of Saccharomyces cerevisiae, VBA4 encodes a vacuolar membrane protein with 14 putative transmembrane helices. Transport experiments with isolated vacuolar membrane vesicles and estimation of the amino acid contents in vacuoles showed that Vba4p is not likely involved in the transport of amino acids. We found that the vba4Δ cells, as well as vba1Δ and vba2Δ cells, showed increased susceptibility to several drugs, particularly to azoles. Although disruption of the VBA4 gene did not affect the salt tolerance of the cells, vacuolar fragmentation observed under high salt conditions was less prominent in vba4Δ cells than in wild type, vba1Δ, and vba2Δ cells. Vba4p differs from Vba1p and Vba2p as a vacuolar transporter but is important for the drug resistance and vacuolar morphology of S. cerevisiae.

  18. Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi.

    PubMed

    Scott, D A; de Souza, W; Benchimol, M; Zhong, L; Lu, H G; Moreno, S N; Docampo, R

    1998-08-21

    The vacuolar-type proton-translocating pyrophosphatase (V-H+-PPase) is an enzyme previously described in detail only in plants. This paper demonstrates its presence in the trypanosomatid Trypanosoma cruzi. Pyrophosphate promoted organellar acidification in permeabilized amastigotes, epimastigotes, and trypomastigotes of T. cruzi. This activity was stimulated by K+ ions and was inhibited by Na+ ions and pyrophosphate analogs, as is the plant activity. Separation of epimastigote extracts on Percoll gradients yielded a dense fraction that contained H+-PPase activity measured both by proton uptake and phosphate release but lacked markers for mitochondria, lysosomes, glycosomes, cytosol, and plasma membrane. Antiserum raised against specific sequences of the plant V-H+-PPase cross-reacted with a T. cruzi protein, which was also detectable in the dense Percoll fraction. The organelles in this fraction appeared by electron microscopy to consist mainly of acidocalcisomes (acidic calcium storage organelles). This identification was confirmed by x-ray microanalysis. Immunofluorescence and immunoelectron microscopy indicated that the V-H+-PPase was located in the plasma membrane and acidocalcisomes of the three different forms of the parasite. Pyrophosphate was able to drive calcium uptake in permeabilized T. cruzi. This uptake depended upon a proton gradient and was reversed by a specific V-H+-PPase inhibitor. Our results imply that the phylogenetic distribution of V-H+-PPases is much wider than previously perceived but that the enzyme has a unique subcellular location in trypanosomes.

  19. Voltage Dependence of Proton Pumping by Bacteriorhodopsin Mutants with Altered Lifetime of the M Intermediate

    PubMed Central

    Geibel, Sven; Lörinczi, Èva; Bamberg, Ernst; Friedrich, Thomas

    2013-01-01

    The light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum is tightly regulated by the [H+] gradient and transmembrane potential. BR exhibits optoelectric properties, since spectral changes during the photocycle are kinetically controlled by voltage, which predestines BR for optical storage or processing devices. BR mutants with prolonged lifetime of the blue-shifted M intermediate would be advantageous, but the optoelectric properties of such mutants are still elusive. Using expression in Xenopus oocytes and two-electrode voltage-clamping, we analyzed photocurrents of BR mutants with kinetically destabilized (F171C, F219L) or stabilized (D96N, D96G) M intermediate in response to green light (to probe H+ pumping) and blue laser flashes (to probe accumulation/decay of M). These mutants have divergent M lifetimes. As for BR-WT, this strictly correlates with the voltage dependence of H+ pumping. BR-F171C and BR-F219L showed photocurrents similar to BR-WT. Yet, BR-F171C showed a weaker voltage dependence of proton pumping. For both mutants, blue laser flashes applied during and after green-light illumination showed reduced M accumulation and shorter M lifetime. In contrast, BR-D96G and BR-D96N exhibited small photocurrents, with nonlinear current-voltage curves, which increased strongly in the presence of azide. Blue laser flashes showed heavy M accumulation and prolonged M lifetime, which accounts for the strongly reduced H+ pumping rate. Hyperpolarizing potentials augmented these effects. The combination of M-stabilizing and -destabilizing mutations in BR-D96G/F171C/F219L (BR-tri) shows that disruption of the primary proton donor Asp-96 is fatal for BR as a proton pump. Mechanistically, M destabilizing mutations cannot compensate for the disruption of Asp-96. Accordingly, BR-tri and BR-D96G photocurrents were similar. However, BR-tri showed negative blue laser flash-induced currents even without actinic green light, indicating that Schiff base

  20. Cost-effectiveness of histamine receptor-2 antagonist versus proton pump inhibitor for stress ulcer prophylaxis in critically ill patients*.

    PubMed

    MacLaren, Robert; Campbell, Jon

    2014-04-01

    To examine the cost-effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Decision analysis model examining costs and effectiveness of using histamine receptor-2 antagonist or proton pump inhibitor for stress ulcer prophylaxis. Costs were expressed in 2012 U.S. dollars from the perspective of the institution and included drug regimens and the following outcomes: clinically significant stress-related mucosal bleed, ventilator-associated pneumonia, and Clostridium difficile infection. Effectiveness was the mortality risk associated with these outcomes and represented by survival. Costs, occurrence rates, and mortality probabilities were extracted from published data. A simulation model. A mixed adult ICU population. Histamine receptor-2 antagonist or proton pump inhibitor for 9 days of stress ulcer prophylaxis therapy. Output variables were expected costs, expected survival rates, incremental cost, and incremental survival rate. Univariate sensitivity analyses were conducted to determine the drivers of incremental cost and incremental survival. Probabilistic sensitivity analysis was conducted using second-order Monte Carlo simulation. For the base case analysis, the expected cost of providing stress ulcer prophylaxis was $6,707 with histamine receptor-2 antagonist and $7,802 with proton pump inhibitor, resulting in a cost saving of $1,095 with histamine receptor-2 antagonist. The associated mortality probabilities were 3.819% and 3.825%, respectively, resulting in an absolute survival benefit of 0.006% with histamine receptor-2 antagonist. The primary drivers of incremental cost and survival were the assumptions surrounding ventilator-associated pneumonia and bleed. The probabilities that histamine receptor-2 antagonist was less costly and provided favorable survival were 89.4% and 55.7%, respectively. A secondary analysis assuming equal rates of C. difficile infection showed a cost saving of $908 with histamine

  1. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Sugiyama, T.

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of themore » proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.« less

  2. Occupational Airborne Contact Dermatitis From Proton Pump Inhibitors.

    PubMed

    DeKoven, Joel G; Yu, Ashley M

    2015-01-01

    Few published reports have described occupational contact dermatitis from proton pump inhibitor (PPI) exposure in the literature. We present an additional case of a 58-year-old male pharmaceutical worker with an occupational airborne allergic contact dermatitis to PPIs confirmed by patch testing. This is a novel report of workplace exposure to dexlansoprazole and esomeprazole PPIs with resultant clinical contact allergy and relevant positive patch test results to these 2 agents. A literature review of all previously reported cases of occupational contact dermatitis to PPI is summarized. The case also emphasizes the importance of even minute exposures when considering workplace accommodation.

  3. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    PubMed

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I).

    PubMed

    Ohnishi, S Tsuyoshi; Salerno, John C; Ohnishi, Tomoko

    2010-12-01

    In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc(1)-complex (complex III) and E. coli quinol oxidase (cytochrome bo(3) complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQ(Nf) (fast relaxing semiquinone) and SQ(Ns) (slow relaxing semiquinone). It was proposed that Q(Nf) serves as a "direct" proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while Q(Ns) works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which Q(Nf) plays a role in a "direct" redox-driven proton pump, while Q(Ns) triggers an "indirect" conformation-driven proton pump. Q(Nf) and Q(Ns) together serve as (1e(-)/2e(-)) converter, for the transfer of reducing equivalent to the Q-pool. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH

    USDA-ARS?s Scientific Manuscript database

    Cation exchangers CAX1 and CAX3 are vacuolar ion transporters involved in ion homeostasis in plants. Widely expressed in the plant, they mediate calcium transport from the cytosol to the vacuole lumen using the proton gradient across the tonoplast. Here, we report an unexpected role of CAX1 and CAX3...

  6. Genes Required for Vacuolar Acidity in Saccharomyces Cerevisiae

    PubMed Central

    Preston, R. A.; Reinagel, P. S.; Jones, E. W.

    1992-01-01

    Mutations that cause loss of acidity in the vacuole (lysosome) of Saccharomyces cerevisiae were identified by screening colonies labeled with the fluorescent, pH-sensitive, vacuolar labeling agent, 6-carboxyfluorescein. Thirty nine vacuolar pH (Vph(-)) mutants were identified. Four of these contained mutant alleles of the previously described PEP3, PEP5, PEP6 and PEP7 genes. The remaining mutants defined eight complementation groups of vph mutations. No alleles of the VAT2 or TFP1 genes (known to encode subunits of the vacuolar H(+)-ATPase) were identified in the Vph(-) screen. Strains bearing mutations in any of six of the VPH genes failed to grow on medium buffered at neutral pH; otherwise, none of the vph mutations caused notable growth inhibition on standard yeast media. Expression of the vacuolar protease, carboxypeptidase Y, was defective in strains bearing vph4 mutations but was apparently normal in strains bearing any of the other vph mutations. Defects in vacuolar morphology at the light microscope level were evident in all Vph(-) mutants. Strains that contained representative mutant alleles of the 17 previously described PEP genes were assayed for vacuolar pH; mutations in seven of the PEP genes (including PEP3, PEP5, PEP6 and PEP7) caused loss of vacuolar acidity. PMID:1628805

  7. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors.

    PubMed

    Shin, Jai Moo; Kim, Nayoung

    2013-01-01

    Proton pump inhibitor (PPI) is a prodrug which is activated by acid. Activated PPI binds covalently to the gastric H(+), K(+)-ATPase via disulfide bond. Cys813 is the primary site responsible for the inhibition of acid pump enzyme, where PPIs bind. Omeprazole was the first PPI introduced in market, followed by pantoprazole, lansoprazole and rabeprazole. Though these PPIs share the core structures benzimidazole and pyridine, their pharmacokinetics and pharmacodynamics are a little different. Several factors must be considered in understanding the pharmacodynamics of PPIs, including: accumulation of PPI in the parietal cell, the proportion of the pump enzyme located at the canaliculus, de novo synthesis of new pump enzyme, metabolism of PPI, amounts of covalent binding of PPI in the parietal cell, and the stability of PPI binding. PPIs have about 1hour of elimination half-life. Area under the plasmic concentration curve and the intragastric pH profile are very good indicators for evaluating PPI efficacy. Though CYP2C19 and CYP3A4 polymorphism are major components of PPI metabolism, the pharmacokinetics and pharmacodynamics of racemic mixture of PPIs depend on the CYP2C19 genotype status. S-omeprazole is relatively insensitive to CYP2C19, so better control of the intragastric pH is achieved. Similarly, R-lansoprazole was developed in order to increase the drug activity. Delayed-release formulation resulted in a longer duration of effective concentration of R-lansoprazole in blood, in addition to metabolic advantage. Thus, dexlansoprazole showed best control of the intragastric pH among the present PPIs. Overall, PPIs made significant progress in the management of acid-related diseases and improved health-related quality of life.

  8. Aspartate-Histidine Interaction in the Retinal Schiff Base Counterion of the Light-Driven Proton Pump of Exiguobacterium sibiricum†

    PubMed Central

    Balashov, S.P.; Petrovskaya, L.E.; Lukashev, E.P.; Imasheva, E.S.; Dioumaev, A.K.; Wang, J.M.; Sychev, S.V.; Dolgikh, D.A.; Rubin, A.B.; Kirpichnikov, M.P.; Lanyi, J.K.

    2012-01-01

    One of the distinctive features of eubacterial retinal based proton pumps, proteorhodopsins, xanthorhodopsin and others, is hydrogen bonding of the key aspartate residue, the counterion to the retinal Schiff base, to a histidine. We describe properties of the recently found eubacterium proton pump from Exiguobacterium sibiricum (named ESR) expressed in E. coli, especially features that depend on Asp-His interaction, the protonation state of the key aspartate, Asp85, and its ability to accept proton from the Schiff base during the photocycle. Proton pumping by liposomes and E. coli cells containing ESR occurs in a broad pH range above pH 4.5. Large light-induced pH changes indicate that ESR is a potent proton pump. Replacement of His57 with methionine or asparagine strongly affects the pH dependent properties of ESR. In the H57M mutant a dramatic decrease in the quantum yield of chromophore fluorescence emission and a 45 nm blue shift of the absorption maximum upon raising the pH from 5 to 8 indicates deprotonation of the counterion with a pKa of 6.3, which is also the pKa at which the M intermediate is observed in the photocycle of the protein solubilized in detergent (DDM). This is in contrast with the wild type protein, in which the same experiments show that the major fraction of Asp85 is deprotonated at pH > 3 and that it protonates only at low pH, with a pKa of 2.3. The M intermediate in the wild type photocycle accumulates only at high pH, with an apparent pKa of 9 from deprotonation of a residue interacting with Asp85, presumably His57. In liposomes reconstituted with ESR the pKas for M formation and spectral shifts are 2–3 pH units lower than in DDM. The distinctively different pH dependencies of the protonation of Asp85 and the accumulation of the M intermediate in the wild type protein vs. the H57M mutant indicate that there is strong Asp-His interaction, which substantially lowers the pKa of Asp85 by stabilizing its deprotonated state. PMID:22738070

  9. Systematic review: proton pump inhibitors (PPIs) for the healing of reflux oesophagitis - a comparison of esomeprazole with other PPIs.

    PubMed

    Edwards, S J; Lind, T; Lundell, L

    2006-09-01

    No randomized controlled trial has compared all the licensed standard dose proton pump inhibitors in the healing of reflux oesophagitis. To compare the effectiveness of esomeprazole with licensed standard dose proton pump inhibitors for healing of reflux oesophagitis (i.e. lansoprazole 30 mg, omeprazole 20 mg, pantoprazole 40 mg and rabeprazole 20 mg). Systematic review of CENTRAL, BIOSIS, EMBASE and MEDLINE for randomized controlled trials in patients with reflux oesophagitis. Searching was completed in February 2005. Data on endoscopic healing rates at 4 and 8 weeks were extracted and re-analysed if not analysed by intention-to-treat. Meta-analysis was conducted using a fixed effects model. Of 133 papers identified in the literature search, six were of sufficient quality to be included in the analysis. No studies were identified comparing rabeprazole with esomeprazole. A meta-analysis of healing rates of esomeprazole 40 mg compared with standard dose proton pump inhibitors gave the following results: at 4 weeks [relative risk (RR) 0.92; 95% CI: 0.90, 0.94; P < 0.00001], and 8 weeks (RR 0.95; 95% CI: 0.94, 0.97; P < 0.00001). Publication bias did not have a significant impact on the results. The results were robust to changes in the inclusion/exclusion criteria and using a random effects model. Esomeprazole consistently demonstrates higher healing rates when compared with standard dose proton pump inhibitors.

  10. Qualitative analysis of anatomopathological changes of gastric mucosa due to long term therapy with proton pump inhibitors: experimental studies x clinical studies.

    PubMed

    de Souza, Iure Kalinine Ferraz; da Silva, Alcino Lázaro; de Araújo, Alex; Santos, Fernanda Carolina Barbosa; Mendonça, Bernardo Pinto Coelho Keuffer

    2013-01-01

    For a few decades the long-term use of proton pump inhibitors has had wide application in the treatment of several gastrointestinal diseases. Since then, however, several studies have called attention to the possible development of anatomical and pathological changes of gastric mucosa, resulting from the long term use of this therapeutic modality. Recent experimental and clinical studies suggest that these changes have connection not only to the development of precancerous lesions, but also of gastric tumors. To present a qualitative analysis of anatomical and pathological changes of gastric mucosa resulting from the long-term use of proton pump inhibitors. The headings used were: proton pump inhibitors, precancerous lesions and gastric neoplasms for a non systematic review of the literature, based on Medline, Lillacs and Scielo. Twelve articles were selected from clinical (9) and experimental (3) studies, for qualitative analysis of the results. The gastric acid suppression by high doses of proton pump inhibitors induces hypergastrinemia and the consequent emergence of neuroendocrine tumors in animal models. Morphological changes most often found in these experimental studies were: enterochromaffin-like cell hyperplasia, neuroendocrine tumor, atrophy, metaplasia and adenocarcinoma. In the studies in humans, however, despite enterochromaffin-like cell hyperplasia, the other effects, neuroendocrine tumor and gastric atrophy, gastric metaplasia and or adenocarcinoma, were not identified. Although it is not possible to say that the long-term treatment with proton pump inhibitors induces the appearance or accelerates the development of gastric cancer in humans, several authors have suggested that prolonged administration of this drug could provoke the development of gastric cancer. Thus, the evidence demonstrated in the animal model as well as the large number of patients who do or will do a long-term treatment with proton pump inhibitors, justifies the maintenance of

  11. Proton pump inhibitors are associated with accelerated development of cirrhosis, hepatic decompensation and hepatocellular carcinoma in noncirrhotic patients with chronic hepatitis C infection: results from ERCHIVES.

    PubMed

    Li, D K; Yan, P; Abou-Samra, A-B; Chung, R T; Butt, A A

    2018-01-01

    Proton pump inhibitors are among the most commonly prescribed medications in the United States. Their safety in cirrhosis has recently been questioned, but their overall effect on disease progression in noncirrhotic patients with chronic liver disease remains unclear. To determine the impact of proton pump inhibitors on the progression of liver disease in noncirrhotic patients with hepatitis C virus (HCV) infection. Using the electronically retrieved cohort of HCV-infected veterans (ERCHIVES) database, we identified all subjects who received HCV treatment and all incident cases of cirrhosis, hepatic decompensation and hepatocellular carcinoma. Proton pump inhibitor use was measured using cumulative defined daily dose. Multivariate Cox regression analysis was performed after adjusting univariate predictors of cirrhosis and various indications for proton pump inhibitor use. Among 11 526 eligible individuals, we found that exposure to proton pump inhibitors was independently associated with an increased risk of developing cirrhosis (hazard ratio [HR]: 1.32; 95% confidence interval: [1.17, 1.49]). This association remained robust to sensitivity analysis in which only patients who achieved sustained virologic response were analysed as well as analysis excluding those with alcohol abuse/dependence. Proton pump inhibitor exposure was also independently associated with an increased risk of hepatic decompensation (HR: 3.79 [2.58, 5.57]) and hepatocellular carcinoma (HR: 2.01 [1.50, 2.70]). In patients with chronic HCV infection, increasing proton pump inhibitor use is associated with a dose-dependent risk of progression of chronic liver disease to cirrhosis, as well as an increased risk of hepatic decompensation and hepatocellular carcinoma. © 2017 John Wiley & Sons Ltd.

  12. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity*

    PubMed Central

    Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H.-J.

    2015-01-01

    Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. PMID:26483542

  13. Proton pump inhibitors and symptomatic hypomagnesemic hypoparathyroidism.

    PubMed

    Fatuzzo, P; Portale, G; Scollo, V; Zanoli, L; Granata, Antonio

    2017-04-01

    Hypomagnesemia is a common but often overlooked problem in hospitalized patients. Unrecognized hypomagnesemia can cause serious complications. The association of hypokalemia and hypocalcemia is strongly evocative of a magnesium deficiency. Research into the causes of hypomagnesemia is imperative, as it will definitely change the approach, treatment and prognosis. We report the case of a 65-year-old man with chronic hypocalcemia and hypokalemia associated with cerebellar syndrome, a solitary seizure and cerebellar hyperintensities on magnetic resonance imaging. After the detection and treatment of hypomagnesemia with oral supplements of magnesium and the replacement of pantoprazole with ranitidine, we observed immediate relief of the symptoms. In conclusion, in clinical practice, magnesium depletion should be investigated in elderly patients with hypocalcemia treated with proton pump inhibitors for many years, in particular in the presence of neurological disorders.

  14. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels.

    PubMed

    Miles, Anna L; Burr, Stephen P; Grice, Guinevere L; Nathan, James A

    2017-03-15

    Hypoxia Inducible transcription Factors (HIFs) are principally regulated by the 2-oxoglutarate and Iron(II) prolyl hydroxylase (PHD) enzymes, which hydroxylate the HIFα subunit, facilitating its proteasome-mediated degradation. Observations that HIFα hydroxylation can be impaired even when oxygen is sufficient emphasise the importance of understanding the complex nature of PHD regulation. Here, we use an unbiased genome-wide genetic screen in near-haploid human cells to uncover cellular processes that regulate HIF1α. We identify that genetic disruption of the Vacuolar H+ ATPase (V-ATPase), the key proton pump for endo-lysosomal acidification, and two previously uncharacterised V-ATPase assembly factors, TMEM199 and CCDC115, stabilise HIF1α in aerobic conditions. Rather than preventing the lysosomal degradation of HIF1α, disrupting the V-ATPase results in intracellular iron depletion, thereby impairing PHD activity and leading to HIF activation. Iron supplementation directly restores PHD catalytic activity following V-ATPase inhibition, revealing important links between the V-ATPase, iron metabolism and HIFs.

  15. How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient.

    PubMed

    Blomberg, Margareta R A; Siegbahn, Per E M

    2015-03-01

    Experiments have shown that the A-family cytochrome c oxidases pump four protons per oxygen molecule, also at a high electrochemical gradient. This has been considered a puzzle, since two of the reduction potentials involved, Cu(II) and Fe(III), were estimated from experiments to be too low to afford proton pumping at a high gradient. The present quantum mechanical study (using hybrid density functional theory) suggests a solution to this puzzle. First, the calculations show that the charge compensated Cu(II) potential for CuB is actually much higher than estimated from experiment, of the same order as the reduction potentials for the tyrosyl radical and the ferryl group, which are also involved in the catalytic cycle. The reason for the discrepancy between theory and experiment is the very large uncertainty in the experimental observations used to estimate the equilibrium potentials, mainly caused by the lack of methods for direct determination of reduced CuB. Second, the calculations show that a high energy metastable state, labeled EH, is involved during catalytic turnover. The EH state mixes the low reduction potential of Fe(III) in heme a3 with another, higher potential, here suggested to be that of the tyrosyl radical, resulting in enough exergonicity to allow proton pumping at a high gradient. In contrast, the corresponding metastable oxidized state, OH, is not significantly higher in energy than the resting state, O. Finally, to secure the involvement of the high energy EH state it is suggested that only one proton is taken up via the K-channel during catalytic turnover. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The Chemically Elegant Proton Pump Inhibitors

    PubMed Central

    Roche, Victoria F.

    2006-01-01

    Medicinal chemistry instruction at Creighton University is designed to provide an in-depth scientifically grounded and clinically relevant learning experience for pharmacy students. Each topic covered in the 2-semester required course sequence is selected based on the general utility of the compounds in question and/or the therapeutic importance of the drugs in treating life-threatening diseases. All lessons provided to campus- and Web-based students by the author are in the form of a descriptive and conversational narrative and course requirements are in place to assure that students read the lesson prior to the class period in which it is discussed. Learning tools and aids are provided to help students more readily discern the most critical aspects of each lesson, to practice required critical thinking and structure analysis skills, and to self-assess competency in meeting specific learning objectives. This manuscript illustrates this approach by sharing a lesson on the chemistry and clinically relevant structure-activity relationships of proton pump inhibitors. PMID:17149430

  17. Proton-pump inhibitors in patients requiring antiplatelet therapy: new FDA labeling.

    PubMed

    Johnson, David A; Chilton, Robert; Liker, Harley R

    2014-05-01

    Proton-pump inhibitors (PPIs) are recommended for patients who require antiplatelet therapy and have a history of upper gastrointestinal bleeding. Proton-pump inhibitors should also be considered for patients receiving antiplatelet therapy who have other risk factors for gastrointestinal bleeding, including use of aspirin. Thus, evidence of pharmacokinetic and pharmacodynamic interactions between PPIs and consequent impaired effectiveness of the antiplatelet agent clopidogrel has caused concern. Here, we discuss comparative studies suggesting that the extent to which a PPI reduces exposure to the active metabolite of clopidogrel and attenuates its antithrombotic effect differs among PPIs. Although a clinically meaningful effect of the interaction between PPIs and clopidogrel on cardiovascular outcomes has not been established, these studies provided the basis for recent changes in US Food and Drug Administration (FDA) labeling for several PPIs and clopidogrel. New labeling suggests that PPI use among patients taking clopidogrel be limited to pantoprazole, rabeprazole, lansoprazole, or dexlansoprazole. Because comparative studies indicate that omeprazole and esomeprazole have a greater effect on the CYP2C19-mediated conversion of clopidogrel to its active metabolite and, consequently, clopidogrel's effect on platelet reactivity, FDA labeling recommends avoiding omeprazole and esomeprazole in patients taking clopidogrel. Even a 12-hour separation of dosing does not appear to prevent drug interactions between omeprazole and clopidogrel.

  18. Fluoroquinolone resistance of Serratia marcescens: involvement of a proton gradient-dependent efflux pump.

    PubMed

    Kumar, Ayush; Worobec, Elizabeth A

    2002-10-01

    To determine the presence of a proton gradient-dependent efflux of fluoroquinolone drugs in Serratia marcescens. Thirteen clinical isolates of S. marcescens were screened for resistance to four fluoroquinolones: ofloxacin, ciprofloxacin, norfloxacin and nalidixic acid by determining MICs. The presence of a proton gradient-dependent efflux mechanism was assessed using ethidium bromide accumulation assays. Drug accumulation studies for norfloxacin, ciprofloxacin and ofloxacin were performed to determine the drug specificity of efflux. Western transfer of cellular proteins, followed by immunodetection using anti-AcrA (Escherichia coli) antibodies were used to demonstrate the presence of a resistance-nodulation-cell division (RND) pump protein. PCR was used to identify a RND pump-encoding gene using primers for two conserved motifs within inner membrane components of RND proteins. A mutant strain of S. marcescens, UOC-67WL, was isolated by culturing the wild-type strain in the presence of ciprofloxacin in T-soy media and was subjected to the same studies as described above for the clinical isolates. Ethidium bromide accumulation assays confirmed the presence of a proton gradient-dependent efflux mechanism in S. marcescens. One clinical isolate, T-861, and the mutant strain, UOC-67WL, were found to efflux ciprofloxacin and ofloxacin. Western immunoblot results confirmed overexpression of an AcrA-like protein in T-861 and UOC-67WL. Sequencing of the PCR product showed the presence of a mexF-like gene, which is overexpressed in nfxC mutants of Pseudomonas aeruginosa. This study reports the presence of a proton gradient-dependent efflux mechanism in S. marcescens.

  19. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity.

    PubMed

    Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H-J

    2015-12-04

    Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg(82) and Thr(201), linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg(82)-Thr(201) hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Conjecture regarding posttranslational modifications to the arabidopsis type I proton-pumping pyrophosphatase (AVP1)

    USDA-ARS?s Scientific Manuscript database

    Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational resear...

  1. A vacuolar H(+)-pyrophosphatase differential activation and energy coupling integrate the responses of weeds and crops to drought stress.

    PubMed

    Venancio, Josimara Barcelos; Catunda, Michelle Guedes; Ogliari, Juarez; Rima, Janaína Aparecida Hottz; Okorokova-Facanha, Anna Lvovna; Okorokov, Lev Alexandrovitich; Facanha, Arnoldo Rocha

    2014-06-01

    Cyperus rotundus L. is a C4 weed of large vegetative and reproductive vigor endowed with competitive advantages over most crop species mainly under adverse environmental conditions. Vacuole functions are critical for the mechanisms of drought resistance, and here the modulation of the primary system of vacuolar ion transport is investigated during a transient water stress imposed to this weed and to C4 crop species (Zea mays L.). The vacuolar H(+) pumps, the H(+)-ATPase and H(+)-PPiase, expression, activities and the energy coupling were spectrophotometrically investigated as key elements in the differential drought-resistance mechanisms developed by weeds and crops. In C. rotundus tonoplasts, ATP hydrolysis was more sensitive to drought than its coupled H(+) transport, which was in turn at least 3-folds faster than that mediated by the H(+)-PPiase. Its PPi hydrolysis was only slightly affected by severe water deficit, contrasting with the disruption induced in the PPi-dependent H(+)-gradient. This effect was antagonized by plant rehydration as the H(+)-PPiase activity was highly stimulated, reassuming a coupled PPi-driven H(+) pumping. Maize tonoplasts exhibited 2-4 times lower hydrolytic activities than that of C. rotundus, but were able to overactivate specifically PPi-dependent H(+) pumping in response to stress relief, resulting in an enhanced H(+)-pumps coupling efficiency. These results together with immunoanalysis revealed profiles consistent with pre- and post-translational changes occurring on the tonoplast H(+)-pumps, which differ between weeds and crops upon water deficit. The evidences highlight an unusual modulation of the H(+)-PPiase energy coupling as a key biochemical change related to environmental stresses adaptive capacity of plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    PubMed Central

    2011-01-01

    Background Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular "volutin granules (polyphosphate bodies)" in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-translocating pyrophosphatases (V-H+PPases) are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya). Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. Using Protein family (Pfam) database, we found a domain in the protein, PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA). Conclusion The importance of the V-H+PPase function and the evolutionary dynamics of these

  3. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.

    PubMed

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-08-08

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1.

  4. Recent effectiveness of proton pump inhibitors for severe reflux esophagitis: the first multicenter prospective study in Japan.

    PubMed

    Mizuno, Hideki; Matsuhashi, Nobuyuki; Sakaguchi, Masahiro; Inoue, Syuji; Nakada, Koji; Higuchi, Kazuhide; Haruma, Ken; Joh, Takashi

    2015-11-01

    Proton pump inhibitors are the first-line treatment for reflux esophagitis. Because severe reflux esophagitis has very low prevalence in Japan, little is known about the effectiveness of proton pump inhibitors in these patients. This prospective multicenter study assessed the effectiveness of proton pump inhibitors for severe reflux esophagitis in Japan. Patients with modified Los Angeles grade C or D reflux esophagitis were treated with daily omeprazole (10 or 20 mg), lansoprazole (15 or 30 mg), or rabeprazole (10, 20, or 40 mg) for 8 weeks. Healing was assessed endoscopically, with questionnaires administered before and after treatment to measure the extent of reflux and dyspepsia symptoms. Factors affecting healing rates, including patient characteristics and endoscopic findings, were analyzed. Of the 115 patients enrolled, 64 with grade C and 19 with grade D reflux esophagitis completed the study. The healing rate was 67.5% (56/83), with 15 of the other 27 patients (55.6%) improving to grade A or B. No patient characteristic or endoscopic comorbidity was significantly associated with healing rate. Reflux and dyspepsia symptoms improved significantly with treatment. The low healing rate suggests the need of endoscopic examination to assess healing of reflux esophagitis at the end of therapy. (UMIN000005271).

  5. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping.

    PubMed

    Johnson, Ethan T; Baron, Daniel B; Naranjo, Belén; Bond, Daniel R; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A

    2010-07-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.

  6. Proton pump inhibitors are associated with increased risk of development of chronic kidney disease.

    PubMed

    Arora, Pradeep; Gupta, Anu; Golzy, Mojgan; Patel, Nilang; Carter, Randolph L; Jalal, Kabir; Lohr, James W

    2016-08-03

    Acute interstitial nephritis secondary to proton pump inhibitors (PPIs) frequently goes undiagnosed due to its subacute clinical presentation, which may later present as chronic kidney disease (CKD). We investigated the association of PPI use with the development of CKD and death. Two separate retrospective case-control study designs were employed with a prospective logistic regression analysis of data to evaluate the association of development of CKD and death with PPI use. The population included 99,269 patients who were seen in primary care VISN2 clinics from 4/2001 until 4/2008. For evaluation of the CKD outcome, 22,807 with preexisting CKD at the first observation in Veterans Affairs Health Care Upstate New York (VISN2) network data system were excluded. Data obtained included use of PPI (Yes/No), demographics, laboratory data, pre-PPI comorbidity variables. A total of 19,311/76,462 patients developed CKD. Of those who developed CKD 24.4 % were on PPI. Patients receiving PPI were less likely to have vascular disease, COPD, cancer and diabetes. Of the total of 99,269 patients analyzed for mortality outcome, 11,758 died. A prospective logistic analysis of case-control data showed higher odds for development of CKD (OR 1.10 95 % CI 1.05-1.16) and mortality (OR 1.76, 95 % CI 1.67-1.84) among patients taking PPIs versus those not on PPIs. Use of proton pump inhibitors is associated with increased risk of development of CKD and death. With the large number of patients being treated with proton pump inhibitors, healthcare providers need to be better educated about the potential side effects of these medications.

  7. The Proton Pump Inhibitor Non-Responder: A Clinical Conundrum

    PubMed Central

    Hussain, Zilla H; Henderson, Emily E; Maradey-Romerao, Carla; George, Nina; Fass, Ronnie; Lacy, Brian E

    2015-01-01

    Gastroesophageal reflux disease (GERD) is a highly prevalent chronic condition where in stomach contents reflux into the esophagus causing symptoms, esophageal injury, and subsequent complications. Proton pump inhibitors (PPI) remain the mainstay of therapy for acid suppression. Despite their efficacy, significant proportions of GERD patients are either partial or non-responders to PPI therapy. Patients should be assessed for mechanisms that can lead to PPI failure and may require further evaluation to investigate for alternative causes. This monograph will outline a diagnostic approach to the PPI non-responder, review mechanisms associated with PPI failure, and discuss therapeutic options for those who fail to respond to PPI therapy. PMID:26270485

  8. The vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein.

    PubMed

    Meléndez-Hernández, Mayra Gisela; Barrios, María Luisa Labra; Orozco, Esther; Luna-Arias, Juan Pedro

    2008-12-23

    Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the

  9. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    PubMed Central

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  10. The plant vacuolar Na+/H+ antiport.

    PubMed

    Barkla, B J; Apse, M P; Manolson, M F; Blumwald, E

    1994-01-01

    Salt stress imposes severe limitations on plant growth, however, the extent of growth reduction depends upon the soil salinity level and the plant species. One of the mechanisms employed by salt tolerant plants is the effective vacuolar compartmentalization of sodium. The sequestration of sodium into the vacuole occurs by the operation of a Na+/H+ antiport located at the tonoplast. Evidence for a plant vacuolar Na+/H+ antiport has been demonstrated in tissues, intact vacuoles and isolated tonoplast vesicles. In sugar beet cell suspensions, the activity of the vacuolar Na+/H+ antiport increased with increasing NaCl concentrations in the growth medium. This increased activity was correlated with the increased synthesis of a 170 kDa tonoplast polypeptide. In vivo labelling of tonoplast proteins showed the enhanced synthesis of the 170 kDa polypeptide not only upon exposure of the cells to salt, but also when the cells were grown in the presence of amiloride. Exposure of the cells to amiloride also resulted in increased vacuolar Na+/H+ antiport activity. Polyclonal antibodies raised against the 170 kDa polypeptide almost completely inhibited the antiport activity, suggesting the association of this protein with the plant vacuolar Na+/H+ antiport. Antibodies against the Na+/H+ antiport-associated polypeptide were used to screen a Beta lambda ZAP expression library. A partial clone of 1.65 kb was sequenced and found to encode a polypeptide with a putative transmembrane domain and a large hydrophilic C terminus. This clone showed no homology to any previously cloned gene at either the nucleic acid or the amino acid level.

  11. Vacuolar Transporters – Companions on a Longtime Journey[OPEN

    PubMed Central

    2018-01-01

    Biochemical and electrophysiological studies on plant vacuolar transporters became feasible in the late 1970s and early 1980s, when methods to isolate large quantities of intact vacuoles and purified vacuolar membrane vesicles were established. However, with the exception of the H+-ATPase and H+-PPase, which could be followed due to their hydrolytic activities, attempts to purify tonoplast transporters were for a long time not successful. Heterologous complementation, T-DNA insertion mutants, and later proteomic studies allowed the next steps, starting from the 1990s. Nowadays, our knowledge about vacuolar transporters has increased greatly. Nevertheless, there are several transporters of central importance that have still to be identified at the molecular level or have even not been characterized biochemically. Furthermore, our knowledge about regulation of the vacuolar transporters is very limited, and much work is needed to get a holistic view about the interplay of the vacuolar transportome. The huge amount of information generated during the last 35 years cannot be summarized in such a review. Therefore, I decided to concentrate on some aspects where we were involved during my research on vacuolar transporters, for some our laboratories contributed more, while others contributed less. PMID:29295940

  12. The relationship between long-term proton pump inhibitor therapy and skeletal frailty.

    PubMed

    Lau, Arthur N; Tomizza, Michael; Wong-Pack, Matthew; Papaioannou, Alexandra; Adachi, Jonathan D

    2015-08-01

    Proton pump inhibitors (PPIs) are a commonly prescribed class of medications. Their use has been associated with an increased rate of fractures, most notably hip fractures. However, there does not seem to be a clear association between PPI use and bone mineral density measurements, assessed by dual X-ray absorptiometry. The mechanism by which PPI use increases the risk of fractures remains unclear. This review will summarize the current evidence on this topic.

  13. Why are patients prescribed proton pump inhibitors? Retrospective analysis of link between morbidity and prescribing in the General Practice Research Database

    PubMed Central

    Bashford, James N R; Norwood, Jeff; Chapman, Stephen R

    1998-01-01

    Objectives: To establish the relation between new prescriptions for proton pump inhibitors and recorded upper gastrointestinal morbidity within a large computerised general practitioner database. Design: Retrospective survey of morbidity and prescribing data linked to new prescriptions for proton pump inhibitors and comparison with licensed indications between 1991 and 1995. Setting: General Practice Research Database and prescribing analysis and cost (PACT) data for the former West Midlands region. Subjects: Information for 612 700 patients in the General Practice Research Database. Anonymous PACT data for all general practitioners in West Midlands region. Main outcome measures: Diagnostic codes linked to the first prescriptions issued for proton pump inhibitors; relation between new prescriptions and licensed indications; yearly change in ratio of new to repeat prescriptions and prescribing volumes measured as defined daily doses. Results: Oesophagitis was the commonest recorded indication in 1991, accounting for 31% of new prescriptions, but was third in 1995 (14%). During the study new prescriptions increased substantially, especially for duodenal disease (780%) and non-ulcer dyspepsia (690%). In 1995 non-specific morbidity accounted for 46% of new prescriptions. The total volume of prescribing rose 10-fold between 1991 and 1995, when repeat prescribing accounted for 77% of the total. Conclusions: Changes in recorded morbidity associated with new prescriptions of proton pump inhibitors did not necessarily reflect changes in licensed indications. Although general practitioners seemed to respond to changes in licensing, particularly for duodenal and gastric disease, prescribing for unlicensed indications non-ulcer dyspepsia and non-specific abdominal pain increased. Key messages There has been much speculation about the reasons behind the substantial rise in prescribing of proton pump inhibitors, especially their use for minor symptoms. We used the General

  14. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration.

    PubMed

    Yamaguchi, T; Fukada-Tanaka, S; Inagaki, Y; Saito, N; Yonekura-Sakakibara, K; Tanaka, Y; Kusumi, T; Iida, S

    2001-05-01

    Vacuolar pH plays an important role in flower coloration: an increase in the vacuolar pH causes blueing of flower color. In the Japanese morning glory (Ipomoea nil or Pharbitis nil), a shift from reddish-purple buds to blue open flowers correlates with an increase in the vacuolar pH. We describe details of the characterization of a mutant that carries a recessive mutation in the Purple (Pr) gene encoding a vacuolar Na+/H+ exchanger termed InNHX1. The genome of I. nil carries one copy of the Pr (or InNHX1) gene and its pseudogene, and it showed functional complementation to the yeast nhx1 mutation. The mutant of I. nil, called purple (pr), showed a partial increase in the vacuolar pH during flower-opening and its reddish-purple buds change into purple open flowers. The vacuolar pH in the purple open flowers of the mutant was significantly lower than that in the blue open flowers. The InNHX1 gene is most abundantly expressed in the petals at around 12 h before flower-opening, accompanying the increase in the vacuolar pH for the blue flower coloration. No such massive expression was observed in the petunia flowers. Since the NHX1 genes that promote the transport of Na+ into the vacuoles have been regarded to be involved in salt tolerance by accumulating Na+ in the vacuoles, we can add a new biological role for blue flower coloration in the Japanese morning glory by the vacuolar alkalization.

  15. A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I)

    PubMed Central

    Ohnishi, Tomoko; Nakamaru-Ogiso, Eiko; Ohnishi, S. Tsuyoshi

    2010-01-01

    Recently, Sazanov’s group reported the X-ray structure of whole complex I [Nature, 465, 441 (2010)], which presented a strong clue for a “piston-like” structure as a key element in an “indirect” proton pump. We have studied the NuoL subunit which has a high sequence similarity to Na+/H+ antiporters, as do the NuoM and N subunits. We constructed 27 site-directed NuoL mutants. Our data suggest that the H+/e− stoichiometry seems to have decreased from (4H+/2e−) in the wild-type to approximately (3H+/2e−) in NuoL mutants. We propose a revised hypothesis that each of the “direct” and the “indirect” proton pumps transports 2H+ per 2e−. PMID:20816962

  16. Long-term safety concerns with proton pump inhibitors.

    PubMed

    Ali, Tauseef; Roberts, David Neil; Tierney, William M

    2009-10-01

    Proton pump inhibitors (PPIs) are among the most widely prescribed medications worldwide. Their use has resulted in dramatic improvements in treatment of peptic ulcer disease and gastroesophageal reflux disease. Despite an acceptable safety profile, mounting data demonstrate concerns about the long-term use of PPIs. To provide a comprehensive review regarding the concerns of long-term PPI use, a literature search was performed to identify pertinent original and review articles. Despite study shortcomings, the collective body of information overwhelmingly suggests an increased risk of infectious complications and nutritional deficiencies. Data regarding any increased risk in gastric or colon malignancy are less convincing. PPIs have revolutionized the management and complications of acid-related disorders with a high margin of safety; however, with the data available, efforts to reduce the dosing of or discontinue the use of PPIs must be reassessed frequently.

  17. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yiling; Jayaram, Hariharan; Shane, Tania

    2009-09-15

    To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein biochemistry. This multiprotein system keeps the cytoplasm above pH 5 during acid challenge by continually pumping protons out of the cell using the free energy of arginine decarboxylation. At the heart of the process is a 'virtual proton pump' in the inner membrane, called AdiC, that imports L-arginine from themore » gastric juice and exports its decarboxylation product agmatine. AdiC belongs to the APC superfamily of membrane proteins, which transports amino acids, polyamines and organic cations in a multitude of biological roles, including delivery of arginine for nitric oxide synthesis, facilitation of insulin release from pancreatic {beta}-cells, and, when inappropriately overexpressed, provisioning of certain fast-growing neoplastic cells with amino acids. High-resolution structures and detailed transport mechanisms of APC transporters are currently unknown. Here we describe a crystal structure of AdiC at 3.2 {angstrom} resolution. The protein is captured in an outward-open, substrate-free conformation with transmembrane architecture remarkably similar to that seen in four other families of apparently unrelated transport proteins.« less

  18. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    PubMed

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  19. Hypomagnesaemia associated with long-term use of proton pump inhibitors

    PubMed Central

    Toh, James Wei Tatt; Ong, Evonne; Wilson, Robert

    2015-01-01

    Hypomagnesaemia and associated hypocalcaemia and hypoparathyroidism have been increasingly recognised as rare long-term side-effects of proton pump inhibitors (PPIs). The PPIs may inhibit active magnesium (Mg) absorption by interfering with transcellular transient receptor potential melastatin-6 and -7 (TRPM 6 and 7) channels. More recent cell culture studies have suggested concomitant inhibition of passive Mg absorption by omeprazole. After being treated with a range of PPIs, the four patients in our case series developed hypomagnesaemia, which responded to withdrawal of therapy and initiation of Mg replacement. Their clinical course and management demonstrate key aspects of hypomagnesaemia associated with long-term use of PPIs. PMID:25138239

  20. Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction.

    PubMed

    Liu, Yilin; Steinbusch, Laura K M; Nabben, Miranda; Kapsokalyvas, Dimitris; van Zandvoort, Marc; Schönleitner, Patrick; Antoons, Gudrun; Simons, Peter J; Coumans, Will A; Geomini, Amber; Chanda, Dipanjan; Glatz, Jan F C; Neumann, Dietbert; Luiken, Joost J F P

    2017-06-01

    Dietary fat overconsumption leads to myocardial lipid accumulation through mechanisms that are incompletely resolved. Previously, we identified increased translocation of the fatty acid transporter CD36 from its endosomal storage compartment to the sarcolemma as the primary mechanism of excessive myocellular lipid import. Here, we show that increased CD36 translocation is caused by alkalinization of endosomes resulting from inhibition of proton pumping activity of vacuolar-type H + -ATPase (v-ATPase). Endosomal alkalinization was observed in hearts from rats fed a lard-based high-fat diet and in rodent and human cardiomyocytes upon palmitate overexposure, and appeared as an early lipid-induced event preceding the onset of insulin resistance. Either genetic or pharmacological inhibition of v-ATPase in cardiomyocytes exposed to low palmitate concentrations reduced insulin sensitivity and cardiomyocyte contractility, which was rescued by CD36 silencing. The mechanism of palmitate-induced v-ATPase inhibition involved its dissociation into two parts: the cytosolic V 1 and the integral membrane V 0 subcomplex. Interestingly, oleate also inhibits v-ATPase function, yielding triacylglycerol accumulation but not insulin resistance. In conclusion, lipid oversupply increases CD36-mediated lipid uptake that directly impairs v-ATPase function. This feeds forward to enhanced CD36 translocation and further increased lipid uptake. In the case of palmitate, its accelerated uptake ultimately precipitates into cardiac insulin resistance and contractile dysfunction. © 2017 by the American Diabetes Association.

  1. Proton pump inhibitors versus histamine 2 receptor antagonists for stress ulcer prophylaxis in critically ill patients: a systematic review and meta-analysis.

    PubMed

    Alhazzani, Waleed; Alenezi, Farhan; Jaeschke, Roman Z; Moayyedi, Paul; Cook, Deborah J

    2013-03-01

    Critically ill patients may develop bleeding caused by stress ulceration. Acid suppression is commonly prescribed for patients at risk of stress ulcer bleeding. Whether proton pump inhibitors are more effective than histamine 2 receptor antagonists is unclear. To determine the efficacy and safety of proton pump inhibitors vs. histamine 2 receptor antagonists for the prevention of upper gastrointestinal bleeding in the ICU. We searched Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, ACPJC, CINHAL, online trials registries (clinicaltrials.gov, ISRCTN Register, WHO ICTRP), conference proceedings databases, and reference lists of relevant articles. Randomized controlled parallel group trials comparing proton pump inhibitors to histamine 2 receptor antagonists for the prevention of upper gastrointestinal bleeding in critically ill patients, published before March 2012. Two reviewers independently applied eligibility criteria, assessed quality, and extracted data. The primary outcomes were clinically important upper gastrointestinal bleeding and overt upper gastrointestinal bleeding; secondary outcomes were nosocomial pneumonia, ICU mortality, ICU length of stay, and Clostridium difficile infection. Trial authors were contacted for additional or clarifying information. Fourteen trials enrolling a total of 1,720 patients were included. Proton pump inhibitors were more effective than histamine 2 receptor antagonists at reducing clinically important upper gastrointestinal bleeding (relative risk 0.36; 95% confidence interval 0.19-0.68; p = 0.002; I = 0%) and overt upper gastrointestinal bleeding (relative risk 0.35; 95% confidence interval 0.21-0.59; p < 0.0001; I = 15%). There were no differences between proton pump inhibitors and histamine 2 receptor antagonists in the risk of nosocomial pneumonia (relative risk 1.06; 95% confidence interval 0.73-1.52; p = 0.76; I = 0%), ICU mortality (relative risk 1.01; 95% confidence interval 0.83-1.24; p = 0.91; I = 0

  2. Defining Appropriate Use of Proton-Pump Inhibitors Among Medical Inpatients.

    PubMed

    Pappas, Matt; Jolly, Sanjay; Vijan, Sandeep

    2016-04-01

    Proton-pump inhibitors (PPIs) are commonly used among medical inpatients, both for prophylaxis against upper gastrointestinal bleeding (UGIB) and continuation of outpatient use. While PPIs reduce the risk of UGIB, they also appear to increase the risk of hospital-acquired pneumonia (HAP) and Clostridium difficile infection (CDI). Depending upon the underlying risks of these conditions and the changes in those risks with PPIs, use of proton-pump inhibitors may lead to a net benefit or net harm among medical inpatients. We aimed to determine the net impact of PPIs on hospital mortality among medical inpatients. A microsimulation model, using literature-derived estimates of the risks of UGIB, HAP, and CDI among medical inpatients, along with the changes in risk associated with PPI use for each of these outcomes. The primary outcome was change in inpatient mortality. Simulated general medical inpatients outside the intensive care unit (ICU). Change in overall mortality during hospitalization. New initiation of PPI therapy led to an increase in hospital mortality in about 90% of simulated patients. Continuation of outpatient PPI therapy on admission led to net increase in hospital mortality in 79% of simulated patients. Results were robust to both one-way and multivariate sensitivity analyses, with net harm occurring in at least two-thirds of patients in all scenarios. For the majority of medical inpatients outside the ICU, use of PPIs likely leads to a net increase in hospital mortality. Even in patients at particularly high risk of UGIB, only those at the very lowest risk of HCAP and CDI should be considered for prophylactic PPI use. Continuation of outpatient PPIs may also increase expected hospital mortality. Apart from patients with active UGIB, use of PPIs in hospitalized patients should be discouraged.

  3. Comparison of p.o. or i.v. proton pump inhibitors on 72-h intragastric pH in bleeding peptic ulcer.

    PubMed

    Javid, Gul; Zargar, Showkat Ali; U-Saif, Riyaz-; Khan, Bashir Ahmad; Yatoo, Ghulam Nabi; Shah, Altaf Hussain; Gulzar, Ghulam Mohammad; Sodhi, Jaswinder Singh; Khan, Mushtaq Ahmad

    2009-07-01

    After successful endoscopic hemostasis in bleeding peptic ulcer, addition of proton pump inhibitors reduce the rate of recurrent bleeding by maintaining intragastric pH at neutral level. The aim of the present study was to evaluate the effect of various proton pump inhibitors given through different routes on intragastric pH over 72 h after endoscopic hemostasis in bleeding peptic ulcer. Ninety consecutive patients who had successful endoscopic therapy of bleeding peptic ulcer underwent 72-h continuous ambulatory intragastric pH study, were randomly assigned to receive p.o. omeprazole 80 mg bolus followed by 40 mg every 12 h for 72 h or i.v. 80 mg omeprazole followed by infusion 8 mg/h for 72 h. Oral pantoprazole 80 mg bolus followed by 80 mg every 12 h for 72 h or i.v. 80 mg pantoprazole followed by infusion of 8 mg/h for 72 h. Oral rabeprazole 80 mg bolus followed by 40 mg every 12 h for 72 h or i.v. 80 mg rabeprazole followed by infusion 8 mg/h for 72 h. Five patients received no treatment after successful endoscopic therapy and underwent 72-h pH study. Mean 72-h intragastric pH for p.o. omeprazole was 6.56 versus 6.93 for omeprazole infusion (P = 0.48). Mean 72-h intragastric pH for p.o. pantoprazole was 6.34 versus 6.32 for pantoprazole infusion (P = 0.62). Mean 72-h intragastric pH for rabeprazole p.o. was 6.11 versus 6.18 rabeprazole i.v. (P = 0.55). Mean 72-h pH for the no proton pump inhibitor group was 2.04. There was no significant difference among various proton pump inhibitors given through different routes on raising intragastric pH above 6 for 72 h after successful endoscopic hemostasis in bleeding peptic ulcer.

  4. Persistent gastro-oesophageal reflux symptoms despite proton pump inhibitor therapy

    PubMed Central

    Ang, Daphne; How, Choon How; Ang, Tiing Leong

    2016-01-01

    About one-third of patients with suspected gastro-oesophageal reflux disease (GERD) do not respond symptomatically to proton pump inhibitors (PPIs). Many of these patients do not suffer from GERD, but may have underlying functional heartburn or atypical chest pain. Other causes of failure to respond to PPIs include inadequate acid suppression, non-acid reflux, oesophageal hypersensitivity, oesophageal dysmotility and psychological comorbidities. Functional oesophageal tests can exclude cardiac and structural causes, as well as help to confi rm or exclude GERD. The use of PPIs should only be continued in the presence of acid reflux or oesophageal hypersensitivity for acid reflux-related events that is proven on functional oesophageal tests. PMID:27779277

  5. Persistent gastro-oesophageal reflux symptoms despite proton pump inhibitor therapy.

    PubMed

    Ang, Daphne; How, Choon How; Ang, Tiing Leong

    2016-10-01

    About one-third of patients with suspected gastro-oesophageal reflux disease (GERD) do not respond symptomatically to proton pump inhibitors (PPIs). Many of these patients do not suffer from GERD, but may have underlying functional heartburn or atypical chest pain. Other causes of failure to respond to PPIs include inadequate acid suppression, non-acid reflux, oesophageal hypersensitivity, oesophageal dysmotility and psychological comorbidities. Functional oesophageal tests can exclude cardiac and structural causes, as well as help to confi rm or exclude GERD. The use of PPIs should only be continued in the presence of acid reflux or oesophageal hypersensitivity for acid reflux-related events that is proven on functional oesophageal tests. Copyright: © Singapore Medical Association.

  6. Prolonged utilization of proton pump inhibitors in patients with ischemic and valvular heart disease is associated with surgical treatments, weight loss and aggravates anemia.

    PubMed

    Boban, Marko; Zulj, Marinko; Persic, Viktor; Medved, Igor; Zekanovic, Drazen; Vcev, Aleksandar

    2016-09-15

    Proton pump inhibitors (PPIs) are among the commonest drugs used nowadays. The aim of our study was to analyze prolonged utilization of proton pump inhibitors in medical therapy of patients with ischemic and valvular heart disease. Secondly, profile of utilization was scrutinized to patient characteristics and type of cardiovascular treatments. The study included consecutive patients scheduled for cardiovascular rehabilitation 2-6months after index cardiovascular treatment. Two hundred ninety-four patients (n=294/604; 48.7%) have been using proton pump inhibitor in their therapy after index cardiovascular treatment. Cardiovascular treatments were powerfully connected with utilization of PPIs; surgery 5.77 (95%-confidence intervals [CI]: 4.05-8.22; p<0.001) and PCI 0.15 (CI: 0.10-0.22; p<0.001). The odds for having proton pump inhibitor in their chronic therapy were increased for atrial fibrillation 1.87 (CI: 1.08-3.23; p=0.025) and decreased for obesity 0.65 (CI: 0.45-0.96; p=0.035); surviving myocardial infarction 0.49 (CI: 0.29-0.83; p=0.035). Multinomial logistic regression controlled for existence of chronic renal disease found no significant association of renal dysfunction and PPI therapy. The existence of anemia was significantly increased in patients taking PPIs than controls; 6.00 (CI: 3.85-9.33; p<0.001). The use of PPI was also associated with worsening of metabolic profile, in part due to decreased utilization of ACE-inhibitors and statins. PPI consumption correlated with age of patients (Rho=0.216; p<0.001). High proportion of cardiovascular, particularly surgical patients with ischemic and valvular heart disease utilized proton pump inhibitor in prolonged courses. Prolonged courses of PPIs were connected with existence and worsening of red blood count indexes, older age, lesser weight of patients and underutilization of cardioprotective drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Inward H+ pump xenorhodopsin: Mechanism and alternative optogenetic approach.

    PubMed

    Shevchenko, Vitaly; Mager, Thomas; Kovalev, Kirill; Polovinkin, Vitaly; Alekseev, Alexey; Juettner, Josephine; Chizhov, Igor; Bamann, Christian; Vavourakis, Charlotte; Ghai, Rohit; Gushchin, Ivan; Borshchevskiy, Valentin; Rogachev, Andrey; Melnikov, Igor; Popov, Alexander; Balandin, Taras; Rodriguez-Valera, Francisco; Manstein, Dietmar J; Bueldt, Georg; Bamberg, Ernst; Gordeliy, Valentin

    2017-09-01

    Generation of an electrochemical proton gradient is the first step of cell bioenergetics. In prokaryotes, the gradient is created by outward membrane protein proton pumps. Inward plasma membrane native proton pumps are yet unknown. We describe comprehensive functional studies of the representatives of the yet noncharacterized xenorhodopsins from Nanohaloarchaea family of microbial rhodopsins. They are inward proton pumps as we demonstrate in model membrane systems, Escherichia coli cells, human embryonic kidney cells, neuroblastoma cells, and rat hippocampal neuronal cells. We also solved the structure of a xenorhodopsin from the nanohalosarchaeon Nanosalina ( Ns XeR) and suggest a mechanism of inward proton pumping. We demonstrate that the Ns XeR is a powerful pump, which is able to elicit action potentials in rat hippocampal neuronal cells up to their maximal intrinsic firing frequency. Hence, inwardly directed proton pumps are suitable for light-induced remote control of neurons, and they are an alternative to the well-known cation-selective channelrhodopsins.

  8. Coprescribing proton-pump inhibitors with nonsteroidal anti-inflammatory drugs: risks versus benefits

    PubMed Central

    Gwee, Kok Ann; Goh, Vernadine; Lima, Graca

    2018-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are often coadministered with proton-pump inhibitors (PPIs) to reduce NSAID-induced gastrointestinal (GI) adverse events. This coadministration is generally regarded as safe, and is included in many of the guidelines on NSAID prescription. However, recent evidence indicates that the GI risks associated with NSAIDs can be potentiated when they are combined with PPIs. This review discusses the GI effects and complications of NSAIDs and how PPIs may potentiate these effects, options for prevention of GI side effects, and appropriate use of PPIs in combination with NSAIDs. PMID:29491719

  9. Coprescribing proton-pump inhibitors with nonsteroidal anti-inflammatory drugs: risks versus benefits.

    PubMed

    Gwee, Kok Ann; Goh, Vernadine; Lima, Graca; Setia, Sajita

    2018-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are often coadministered with proton-pump inhibitors (PPIs) to reduce NSAID-induced gastrointestinal (GI) adverse events. This coadministration is generally regarded as safe, and is included in many of the guidelines on NSAID prescription. However, recent evidence indicates that the GI risks associated with NSAIDs can be potentiated when they are combined with PPIs. This review discusses the GI effects and complications of NSAIDs and how PPIs may potentiate these effects, options for prevention of GI side effects, and appropriate use of PPIs in combination with NSAIDs.

  10. A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I).

    PubMed

    Ohnishi, Tomoko; Nakamaru-Ogiso, Eiko; Ohnishi, S Tsuyoshi

    2010-10-08

    Recently, Sazanov's group reported the X-ray structure of whole complex I [Nature, 465, 441 (2010)], which presented a strong clue for a "piston-like" structure as a key element in an "indirect" proton pump. We have studied the NuoL subunit which has a high sequence similarity to Na(+)/H(+) antiporters, as do the NuoM and N subunits. We constructed 27 site-directed NuoL mutants. Our data suggest that the H(+)/e(-) stoichiometry seems to have decreased from (4H(+)/2e(-)) in the wild-type to approximately (3H(+)/2e(-)) in NuoL mutants. We propose a revised hypothesis that each of the "direct" and the "indirect" proton pumps transports 2H(+) per 2e(-). Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. EFFECT OF CYP2C19 GENETIC POLYMORPHISMS ON THE EFFICACY OF PROTON PUMP INHIBITOR-BASED TRIPLE ERADICATION THERAPY IN SLAVIC PATIENTS WITH PEPTIC ULCERS: A META-ANALYSIS.

    PubMed

    Denisenko, N P; Sychev, D A; Sizova, Zh M; Rozhkov, A V; Kondrashov, A V

    Several meta-analyzes reported the effect of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple therapy for Helicobacter pylori eradication. Most of the studies which were included in these meta-analyzes were held on Asian population. Thus, there is lack of information about the effect of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple eradication therapy in Slavic patients with peptic ulcers. The aim of the study - to determine whether CYP2C19 affect the efficacy of proton pump inhibitor-based triple eradica- tion therapy in Slavic patients with peptic ulcers. Data search was performed using Russian index of scientific citation database, Google Scholar and MEDLINE PubMed. Statistics was held in Review Manager v 5.3. The odds ratio (OR) and 95% confidence interval (95% Cl) for eradication of H.pylori was estimated in a fixed-effect model when no heterogeneity across the studies was indicated. Four articles published between 2008 and 2015 were included in meta-analysis (three Russian studies, one Polish study). Eradication rates were significantly lower in CYP2C19 extensive metabolizers of proton pump inhibitors than in a combined group of intermediate and poor metabolizers (OR = 1,90, CI-95% 1,08-3,34, p = 0,03; heterogeneity: 12= 0%, p = 0,74). We also found that proton pump inhibitor-based triple eradication therapy achieved higher rates in poor metabolizers than in a combined group of intermediate and extensive metabolizers of CYP2C19 (OR= 5,48 CI-95% 1,51-19,93, p = 0,01; heterogeneity: F= 0%, p = 0,66). The impact of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple eradication therapy in Slavic patients appears significant.

  12. The frequency of CYP2C19 genetic polymorphisms in Russian patients with peptic ulcers treated with proton pump inhibitors.

    PubMed

    Sychev, D A; Denisenko, N P; Sizova, Z M; Grachev, A V; Velikolug, K A

    2015-01-01

    Proton pump inhibitors, which are widely used as acid-inhibitory agents for the treatment of peptic ulcers, are mainly metabolized by 2C19 isoenzyme of cytochrome P450 (CYP2C19). CYP2C19 has genetic polymorphisms, associated with extensive, poor, intermediate or ultra-rapid metabolism of proton pump inhibitors. Genetic polymorphisms of CYP2C19 could be of clinical concern in the treatment of peptic ulcers with proton pump inhibitors. To investigate the frequencies of CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles and genotypes in Russian patients with peptic ulcers. We retrospectively reviewed the cases of 971 patients of Caucasian origin with Russian nationality from Moscow region with endoscopically and histologically proven ulcers, 428 males (44%) and 543 females (56%). The mean age was 44.6±11.9 years (range: 15-88 years). DNA was extracted from ethylenediaminetetraacetic acid whole blood samples (10 mL). The polymorphisms CYP2C19 681G.A (CYP2C19*2, rs4244285), CYP2C19 636 G.A (CYP2C19*3, rs4986893) and CYP2C19 -806 C.T (CYP2C19*17, rs12248560) were evaluated using real-time polymerase chain reaction. Regarding CYP2C19 genotype, 317 patients (32.65%) out of 971 were CYP2C19*1/*1 carriers classified as extensive metabolizers. Three hundred and eighty-six (39.75%) with CYP2C19*1/*17 or CYP2C19*17/*17 genotype were ultra-rapid metabolizers. Two hundred and fifty-one people (25.85%) were intermediate metabolizers with CYP2C19*1/*2, CYP2C19*2/*17, CYP2C19*1/*3, CYP2C19*3/*17 genotypes. Seventeen patients (1.75%) with CYP2C19*2/*2, CYP2C19*3/*3, CYP2C19*2/*3 genotypes were poor metabolizers. The allele frequencies were the following: CYP2C19*2 - 0.140, CYP2C19*3 - 0.006, CYP2C19*17 - 0.274. There is a high frequency of CYP2C19 genotypes associated with modified response to proton pump inhibitors in Russian patients with peptic ulcers. Genotyping for CYP2C19 polymorphisms is suggested to be a useful tool for personalized dosing of proton pump inhibitors.

  13. Proton Pump Inhibitors Inhibit Pancreatic Secretion: Role of Gastric and Non-Gastric H+/K+-ATPases

    PubMed Central

    Tozzi, Marco; Giannuzzo, Andrea; Sørensen, Christiane E.; Novak, Ivana

    2015-01-01

    The mechanism by which pancreas secretes high HCO3 - has not been fully resolved. This alkaline secretion, formed in pancreatic ducts, can be achieved by transporting HCO3 - from serosa to mucosa or by moving H+ in the opposite direction. The aim of the present study was to determine whether H+/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar localizations in duct cell monolayers (Capan-1) and human pancreas, and notably the gastric pumps are localized on the luminal membranes. In Capan-1 cells, PPIs inhibited recovery of intracellular pH from acidosis. Furthermore, in rats treated with PPIs, pancreatic secretion was inhibited but concentrations of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3 -, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3 - secretion. We propose that proton transport is driving secretion, and that in addition it may provide a protective pH buffer zone and K+ recirculation. Furthermore, it seems relevant to re-evaluate whether PPIs should be used in treatment therapies where pancreatic functions are already compromised. PMID:25993003

  14. Proton-pump inhibitors: understanding the complications and risks.

    PubMed

    Malfertheiner, Peter; Kandulski, Arne; Venerito, Marino

    2017-12-01

    Proton-pump inhibitors (PPIs) are the most effective therapy for the full spectrum of gastric-acid-related diseases. However, in the past decade, a steadily increasing list of complications following long-term use of PPIs has been reported. Their potent acid-suppressive action induces several structural and functional changes within the gastric mucosa, including fundic gland polyps, enterochromaffin-like cell hyperplasia and hypergastrinaemia, which can be exaggerated in the presence of Helicobacter pylori infection. As discussed in this Review, most associations of PPIs with severe adverse events are not based on sufficient evidence because of confounding factors and a lack of plausible mechanisms. Thus, a causal relationship remains unproven in most associations, and further studies are needed. Awareness of PPI-associated risks should not lead to anxiety in patients but rather should induce the physician to consider the appropriate dosing and duration of PPI therapy, including long-term monitoring strategies in selected groups of patients because of their individual comorbidities and risk factors.

  15. Proton-pump inhibitors and risk of fractures: an update meta-analysis.

    PubMed

    Zhou, B; Huang, Y; Li, H; Sun, W; Liu, J

    2016-01-01

    To identify the relationship between proton-pump inhibitors (PPIs) and the risk of fracture, we conducted an update meta-analysis of observational studies. Results showed that PPI use was associated with a modestly increased risk of hip, spine, and any-site fracture. Many studies have investigated the association of proton-pump inhibitors (PPIs) with fracture risk, but the results have been inconsistent. To evaluate this question, we performed a meta-analysis of relevant observational studies. A systematic literature search up to February 2015 was performed in PubMed. We combined relative risks (RRs) for fractures using random-effects models and conducted subgroup and stratified analyses. Eighteen studies involving a total of 244,109 fracture cases were included in this meta-analysis. Pooled analysis showed that PPI use could moderately increase the risk of hip fracture [RR = 1.26, 95 % confidence intervals (CIs) 1.16–1.36]. There was statistically significant heterogeneity among studies (p < 0.001; I 2 = 71.9 %). After limiting to cohort studies, there was also a moderate increase in hip fracture risk without evidence of study heterogeneity. Pooling revealed that short-term use (<1 year) and longer use (>1 year) were similarly associated with increased risk of hip fracture. Furthermore, a moderately increased risk of spine (RR = 1.58, 95 % CI 1.38–1.82) and any-site fracture (RR = 1.33, 95 % CI 1.15–1.54) was also found among PPI users. In this update meta-analysis of observational studies, PPI use modestly increased the risk of hip, spine, and any-site fracture, but no evidence of duration effect in subgroup analysis.

  16. Clopidogrel and proton pump inhibitors - where do we stand in 2012?

    PubMed Central

    Drepper, Michael D; Spahr, Laurent; Frossard, Jean Louis

    2012-01-01

    Clopidogrel in association with aspirine is considered state of the art of medical treatment for acute coronary syndrome by reducing the risk of new ischemic events. Concomitant treatment with proton pump inhibitors in order to prevent gastrointestinal side effects is recommended by clinical guidelines. Clopidogrel needs metabolic activation predominantly by the hepatic cytochrome P450 isoenzyme Cytochrome 2C19 (CYP2C19) and proton pump inhibitors (PPIs) are extensively metabolized by the CYP2C19 isoenzyme as well. Several pharmacodynamic studies investigating a potential clopidogrel-PPI interaction found a significant decrease of the clopidogrel platelet antiaggregation effect for omeprazole, but not for pantoprazole. Initial clinical cohort studies in 2009 reported an increased risk for adverse cardiovascular events, when under clopidogrel and PPI treatment at the same time. These observations led the United States Food and Drug Administration and the European Medecines Agency to discourage the combination of clopidogrel and PPI (especially omeprazole) in the same year. In contrast, more recent retrospective cohort studies including propensity score matching and the only existing randomized trial have not shown any difference concerning adverse cardiovascular events when concomitantly on clopidogrel and PPI or only on clopidogrel. Three meta-analyses report an inverse correlation between clopidogrel-PPI interaction and study quality, with high and moderate quality studies not reporting any association, rising concern about unmeasured confounders biasing the low quality studies. Thus, no definite evidence exists for an effect on mortality. Because PPI induced risk reduction clearly overweighs the possible adverse cardiovascular risk in patients with high risk of gastrointestinal bleeding, combination of clopidogrel with the less CYP2C19 inhibiting pantoprazole should be recommended. PMID:22611308

  17. Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism

    PubMed Central

    Chanoca, Alexandra; Ueda, Takashi; Grotewold, Erich

    2015-01-01

    Anthocyanins are flavonoid pigments synthesized in the cytoplasm and stored inside vacuoles. Many plant species accumulate densely packed, 3- to 10-μm diameter anthocyanin deposits called anthocyanin vacuolar inclusions (AVIs). Despite their conspicuousness and importance in organ coloration, the origin and nature of AVIs have remained controversial for decades. We analyzed AVI formation in cotyledons of different Arabidopsis thaliana genotypes grown under anthocyanin inductive conditions and in purple petals of lisianthus (Eustoma grandiorum). We found that cytoplasmic anthocyanin aggregates in close contact with the vacuolar surface are directly engulfed by the vacuolar membrane in a process reminiscent of microautophagy. The engulfed anthocyanin aggregates are surrounded by a single membrane derived from the tonoplast and eventually become free in the vacuolar lumen like an autophagic body. Neither endosomal/prevacuolar trafficking nor the autophagy ATG5 protein is involved in the formation of AVIs. In Arabidopsis, formation of AVIs is promoted by both an increase in cyanidin 3-O-glucoside derivatives and by depletion of the glutathione S-transferase TT19. We hypothesize that this novel microautophagy mechanism also mediates the transport of other flavonoid aggregates into the vacuole. PMID:26342015

  18. Protonation of key acidic residues is critical for the K+-selectivity of the Na/K pump

    PubMed Central

    Yu, Haibo; Ratheal, Ian; Artigas, Pablo; Roux, Benoît

    2011-01-01

    The sodium-potassium (Na/K) pump is a P-type ATPase that generates Na+ and K+ concentration gradients across the cell membrane. For each ATP molecule, the pump extrudes three Na+ and imports two K+ by alternating between outward- and inward-facing conformations that preferentially bind K+ or Na+, respectively. Remarkably, the selective K+ and Na+ binding sites share several residues, and how the pump is able to achieve the selectivity required for the functional cycle is unclear. Here, free energy perturbation molecular dynamics (FEP/MD) simulations based on the crystal structures of the Na/K pump in a K+-loaded state (E2·Pi) reveal that protonation of the high-field acidic side-chains involved in the binding sites is critical to achieve the proper K+ selectivity. This prediction is tested with electrophysiological experiments showing that the selectivity of the E2P state for K+ over Na+ is affected by extracellular pH. PMID:21909093

  19. [New-generation proton pump inhibitors: progress in the treatment of peptic acid diseases?].

    PubMed

    de Korwin, Jean-Dominique; Ducrotté, Philippe; Vallot, Thierry

    2004-06-19

    EFFECTS AND INCONVENIENCIES OF THE OLDER PRODUCTS: The proton pump inhibitors (PPIs) are now universally considered the treatment of choice for management of gastric-acid-related diseases, mainly gastro-oesophageal reflux disease (GERD). These drugs share similar properties: general structure, acid-activation step, covalent binding to the proton pump of the gastric parietal cell via the production of covalent disulphide bonds, relatively stable inhibition of H+,K+-ATPase. However, the older PPIs (omeprazole, lansoprazole et pantoprazole) have notable limitations. These drugs exhibit substantial interpatient variability and may have significant interactions with other drugs. These first-generation PPIs also do not achieve a rapid and sustained suppression of gastric acid, leading to the development of new acid-pump antagonists. The new-generation PPIs, esomeprazole and rabeprazole, offer several pharmacokinetic advantages: lower oxidative hepatic metabolism rate via the CYP 2C19 reducing the activity variations due to genetic polymorphisms and decreasing the risk of significant drug-drug interactions (advantages mainly for rabeprazole), lower metabolic clearance of esomeprazole (S-enantiomer of omeprazole) increasing plasma concentrations and acid suppression of this new PPI, higher accumulation of rabeprazole in the parietal cell due to its higher pKa. Gastric pH studies and therapeutic trials have demonstrated significant advantages of esomeprazole and rabeprazole compared with the older PPIs, which omeprazole is the prototype: a greater inhibition of acid secretion, a more rapid onset of action to provide reflux symptoms relief over 24 hours with lower GERD-related cost for rabeprazole, a sustained acid suppression, cost-effectiveness advantages for esomeprazole in the healing and maintenance of erosive esophagitis compared with lansoprazole, reduced potential for clinically significant drug-drug interactions with rabeprazole compared with omeprazole and

  20. The impact of proton pump inhibitors on the human gastrointestinal microbiome.

    PubMed

    Freedberg, Daniel E; Lebwohl, Benjamin; Abrams, Julian A

    2014-12-01

    Potent gastric acid suppression using proton pump inhibitors (PPIs) is common in clinical practice but may have important effects on human health that are mediated through changes in the gastrointestinal microbiome. In the esophagus, PPIs change the normal bacterial milieu to decrease distal esophageal exposure to inflammatory gram-negative bacteria. In the stomach, PPIs alter the abundance and location of gastric Helicobacter pylori and other bacteria. In the small bowel, PPIs cause polymicrobial small bowel bacterial overgrowth and have been associated with the diagnosis of celiac disease. In the colon, PPIs associate with incident but not recurrent Clostridium difficile infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi.

    PubMed

    Montalvetti, Andrea; Rohloff, Peter; Docampo, Roberto

    2004-09-10

    We cloned an aquaporin gene from Trypanosoma cruzi (TcAQP) that encodes a protein of 231 amino acids, which is highly hydrophobic. The protein has six putative transmembrane domains and the two signature motifs asparagine-proline-alanine (NPA) which have been shown, in other aquaporins, to be involved in the formation of an aqueous channel spanning the bilayer. TcAQP was sensitive to endo H treatment, suggesting that the protein is N-glycosylated. Oocytes of Xenopus laevis expressing TcAQP swelled under hyposmotic conditions indicating water permeability, which was abolished after preincubating oocytes with very low concentrations of the AQP inhibitors HgCl(2) and AgNO(3). glycerol transport was detected. No Immunofluorescence microscopy of T. cruzi expressing GFP-TcAQP showed co-localization of TcAQP with the vacuolar proton pyrophosphatase (V-H(+)-PPase), a marker of acidocalcisomes. This localization was confirmed by Western blotting and immunofluorescence staining using polyclonal antibodies against a C-terminal peptide of TcAQP. In addition, there was a strong anterior labeling in a vacuole, close to the flagellar pocket, that was distinct from the acidocalcisomes and that was identified by immunogold electron microscopy as the contractile vacuole complex. Taking together, the presence of an aquaporin in acidocalcisomes and the contractile vacuole complex of T. cruzi, provides support for the role of these organelles in osmotic adaptations of these parasites.

  2. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    PubMed Central

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  3. Proton pumping in the bc1 complex: a new gating mechanism that prevents short circuits.

    PubMed

    Crofts, Antony R; Lhee, Sangmoon; Crofts, Stephanie B; Cheng, Jerry; Rose, Stuart

    2006-08-01

    The Q-cycle mechanism of the bc1 complex explains how the electron transfer from ubihydroquinone (quinol, QH2) to cytochrome (cyt) c (or c2 in bacteria) is coupled to the pumping of protons across the membrane. The efficiency of proton pumping depends on the effectiveness of the bifurcated reaction at the Q(o)-site of the complex. This directs the two electrons from QH2 down two different pathways, one to the high potential chain for delivery to an electron acceptor, and the other across the membrane through a chain containing heme bL and bH to the Qi-site, to provide the vectorial charge transfer contributing to the proton gradient. In this review, we discuss problems associated with the turnover of the bc1 complex that center around rates calculated for the normal forward and reverse reactions, and for bypass (or short-circuit) reactions. Based on rate constants given by distances between redox centers in known structures, these appeared to preclude conventional electron transfer mechanisms involving an intermediate semiquinone (SQ) in the Q(o)-site reaction. However, previous research has strongly suggested that SQ is the reductant for O2 in generation of superoxide at the Q(o)-site, introducing an apparent paradox. A simple gating mechanism, in which an intermediate SQ mobile in the volume of the Q(o)-site is a necessary component, can readily account for the observed data through a coulombic interaction that prevents SQ anion from close approach to heme bL when the latter is reduced. This allows rapid and reversible QH2 oxidation, but prevents rapid bypass reactions. The mechanism is quite natural, and is well supported by experiments in which the role of a key residue, Glu-295, which facilitates proton transfer from the site through a rotational displacement, has been tested by mutation.

  4. Proton transfer mediated by the vibronic coupling in oxygen core ionized states of glyoxalmonoxime studied by infrared-X-ray pump-probe spectroscopy.

    PubMed

    Felicíssimo, V C; Guimarães, F F; Cesar, A; Gel'mukhanov, F; Agren, H

    2006-11-30

    The theory of IR-X-ray pump-probe spectroscopy beyond the Born-Oppenheimer approximation is developed and applied to the study of the dynamics of intramolecular proton transfer in glyoxalmonoxime leading to the formation of the tautomer 2-nitrosoethenol. Due to the IR pump pulses the molecule gains sufficient energy to promote a proton to a weakly bound well. A femtosecond X-ray pulse snapshots the wave packet route and, hence, the dynamics of the proton transfer. The glyoxalmonoxime molecule contains two chemically nonequivalent oxygen atoms that possess distinct roles in the hydrogen bond, a hydrogen donor and an acceptor. Core ionizations of these form two intersecting core-ionized states, the vibronic coupling between which along the OH stretching mode partially delocalizes the core hole, resulting in a hopping of the core hole from one site to another. This, in turn, affects the dynamics of the proton transfer in the core-ionized state. The quantum dynamical simulations of X-ray photoelectron spectra of glyoxalmonoxime driven by strong IR pulses demonstrate the general applicability of the technique for studies of intramolecular proton transfer in systems with vibronic coupling.

  5. Proton pump inhibitor use and risk of adverse cardiovascular events in aspirin treated patients with first time myocardial infarction: nationwide propensity score matched study

    PubMed Central

    Grove, Erik L; Hansen, Peter Riis; Olesen, Jonas B; Ahlehoff, Ole; Selmer, Christian; Lindhardsen, Jesper; Madsen, Jan Kyst; Køber, Lars; Torp-Pedersen, Christian; Gislason, Gunnar H

    2011-01-01

    Objective To examine the effect of proton pump inhibitors on adverse cardiovascular events in aspirin treated patients with first time myocardial infarction. Design Retrospective nationwide propensity score matched study based on administrative data. Setting All hospitals in Denmark. Participants All aspirin treated patients surviving 30 days after a first myocardial infarction from 1997 to 2006, with follow-up for one year. Patients treated with clopidogrel were excluded. Main outcome measures The risk of the combined end point of cardiovascular death, myocardial infarction, or stroke associated with use of proton pump inhibitors was analysed using Kaplan-Meier analysis, Cox proportional hazard models, and propensity score matched Cox proportional hazard models. Results 3366 of 19 925 (16.9%) aspirin treated patients experienced recurrent myocardial infarction, stroke, or cardiovascular death. The hazard ratio for the combined end point in patients receiving proton pump inhibitors based on the time dependent Cox proportional hazard model was 1.46 (1.33 to 1.61; P<0.001) and for the propensity score matched model based on 8318 patients it was 1.61 (1.45 to 1.79; P<0.001). A sensitivity analysis showed no increase in risk related to use of H2 receptor blockers (1.04, 0.79 to 1.38; P=0.78). Conclusion In aspirin treated patients with first time myocardial infarction, treatment with proton pump inhibitors was associated with an increased risk of adverse cardiovascular events. PMID:21562004

  6. Delirium in the geriatric unit: proton-pump inhibitors and other risk factors.

    PubMed

    Otremba, Iwona; Wilczyński, Krzysztof; Szewieczek, Jan

    2016-01-01

    Delirium remains a major nosocomial complication of hospitalized elderly. Predictive models for delirium may be useful for identification of high-risk patients for implementation of preventive strategies. Evaluate specific factors for development of delirium in a geriatric ward setting. Prospective cross-sectional study comprised 675 consecutive patients aged 79.2±7.7 years (66% women and 34% men), admitted to the subacute geriatric ward of a multiprofile university hospital after exclusion of 113 patients treated with antipsychotic medication because of behavioral disorders before admission. Comprehensive geriatric assessments including a structured interview, physical examination, geriatric functional assessment, blood sampling, ECG, abdominal ultrasound, chest X-ray, Confusion Assessment Method for diagnosis of delirium, Delirium-O-Meter to assess delirium severity, Richmond Agitation-Sedation Scale to assess sedation or agitation, visual analog scale and Doloplus-2 scale to assess pain level were performed. Multivariate logistic regression analysis revealed five independent factors associated with development of delirium in geriatric inpatients: transfer between hospital wards (odds ratio [OR] =2.78; confidence interval [CI] =1.54-5.01; P=0.001), preexisting dementia (OR =2.29; CI =1.44-3.65; P<0.001), previous delirium incidents (OR =2.23; CI =1.47-3.38; P<0.001), previous fall incidents (OR =1.76; CI =1.17-2.64; P=0.006), and use of proton-pump inhibitors (OR =1.67; CI =1.11-2.53; P=0.014). Transfer between hospital wards, preexisting dementia, previous delirium incidents, previous fall incidents, and use of proton-pump inhibitors are predictive of development of delirium in the geriatric inpatient setting.

  7. Proton Pump Inhibitor Use and the Risk of Chronic Kidney Disease.

    PubMed

    Lazarus, Benjamin; Chen, Yuan; Wilson, Francis P; Sang, Yingying; Chang, Alex R; Coresh, Josef; Grams, Morgan E

    2016-02-01

    Proton pump inhibitors (PPIs) are among the most commonly used drugs worldwide and have been linked to acute interstitial nephritis. Less is known about the association between PPI use and chronic kidney disease (CKD). To quantify the association between PPI use and incident CKD in a population-based cohort. In total, 10,482 participants in the Atherosclerosis Risk in Communities study with an estimated glomerular filtration rate of at least 60 mL/min/1.73 m(2) were followed from a baseline visit between February 1, 1996, and January 30, 1999, to December 31, 2011. The data was analyzed from May 2015 to October 2015. The findings were replicated in an administrative cohort of 248,751 patients with an estimated glomerular filtration rate of at least 60 mL/min/1.73 m(2) from the Geisinger Health System. Self-reported PPI use in the Atherosclerosis Risk in Communities study or an outpatient PPI prescription in the Geisinger Health System replication cohort. Histamine2 (H2) receptor antagonist use was considered a negative control and active comparator. Incident CKD was defined using diagnostic codes at hospital discharge or death in the Atherosclerosis Risk in Communities Study, and by a sustained outpatient estimated glomerular filtration rate of less than 60 mL/min/1.73 m(2) in the Geisinger Health System replication cohort. Among 10,482 participants in the Atherosclerosis Risk in Communities study, the mean (SD) age was 63.0 (5.6) years, and 43.9% were male. Compared with nonusers, PPI users were more often of white race, obese, and taking antihypertensive medication. Proton pump inhibitor use was associated with incident CKD in unadjusted analysis (hazard ratio [HR], 1.45; 95% CI, 1.11-1.90); in analysis adjusted for demographic, socioeconomic, and clinical variables (HR, 1.50; 95% CI, 1.14-1.96); and in analysis with PPI ever use modeled as a time-varying variable (adjusted HR, 1.35; 95% CI, 1.17-1.55). The association persisted when baseline PPI users were

  8. Proton Pump Inhibitors and Risk of Rhabdomyolysis.

    PubMed

    Duncan, Scott J; Howden, Colin W

    2017-01-01

    Proton pump inhibitors (PPIs) have been associated with a variety of adverse events, although the level of evidence for many of these is weak at best. Recently, one national regulatory authority has mandated a change to the labeling of one PPI based on reports of possible associated rhabdomyolysis. Thus, in this review we summarize the available evidence linking PPI use with rhabdomyolysis. The level of evidence is insufficient to establish a causal relationship and is largely based on sporadic case reports. In general, patients with suspected PPI-associated rhabdomyolysis have not been re-challenged with a PPI after recovery. The mechanism whereby PPIs might have been associated with rhabdomyolysis is unclear but possibly related to interaction with concomitantly administered drugs such as HMG-CoA reductase inhibitors (statins). For patients with rhabdomyolysis, a careful search must be made for possible etiological factors. In patients who recover from an episode of possible PPI-related rhabdomyolysis but do not have a genuine requirement for PPI treatment, the PPI should not be re-introduced. For those with a definite indication for ongoing PPI treatment, the PPI can be re-introduced but should preferably not be administered with a statin.

  9. Proton pump inhibitors are associated with lower gastrointestinal tract bleeding in low-dose aspirin users with ischaemic heart disease.

    PubMed

    Miyake, Kazumasa; Akimoto, Teppei; Hanada, Yuriko; Nagoya, Hiroyuki; Kodaka, Yasuhiro; Ueki, Nobue; Kusunoki, Masafumi; Kawagoe, Tetsuro; Futagami, Seiji; Takahashi, Yasuhiro; Takano, Hitoshi; Sakamoto, Choitsu

    2015-09-01

    Impact of acid suppressants on lower gastrointestinal bleeding remains unclear in low-dose aspirin users; we aimed to investigate this relationship. Retrospective cohort study of low-dose aspirin users who underwent coronary angiography for ischaemic heart disease in our institution between October 2005 and December 2006; patients were evaluated for upper or lower gastrointestinal bleedings within 3 years post-angiography. 538 patients were enrolled (males, 74.4%; mean age 67.4±10.6 years). Risk for upper gastrointestinal bleeding decreased with concomitant use of statins (HR, 0.37; 95% CI, 0.15-0.89), calcium channel blockers (HR, 0.29; 95% CI, 0.10-0.85), and histamine-2 receptor antagonists (HR, 0.26; 95% CI, 0.08-0.89). Concomitant use of proton pump inhibitors tended to decrease risk of upper gastrointestinal bleeding (HR, 0.27; 95% CI, 0.06-1.18). Risk for lower gastrointestinal bleeding increased with both concomitant use of warfarin (HR, 15.68; 95% CI, 4.43-55.53) and proton pump inhibitors (HR, 6.55; 95% CI, 2.01-21.32), but not with histamine-2 receptor antagonists. Hyperuricemia lowered risk for lower gastrointestinal bleeding (HR, 0.12; 95% CI, 0.02-0.88). In low-dose aspirin users, concomitant use of proton pump inhibitors increased lower gastrointestinal bleeding risk, independent from effects on upper gastrointestinal bleeding. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase.

    PubMed

    Van, Ru C; Pan, Yih J; Hsu, Shen H; Huang, Yun T; Hsiao, Yi Y; Pan, Rong L

    2005-08-15

    Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton translocase consisting of a single type of polypeptide with a molecular mass of approximately 81 kDa. Topological analysis tentatively predicts that mung bean V-PPase contains 14 transmembrane domains. Alignment analysis of V-PPase demonstrated that the transmembrane domain 5 (TM5) of the enzyme is highly conserved in plants and located at the N-terminal side of the putative substrate-binding loop. The hydropathic analysis of V-PPase showed a relatively lower degree of hydrophobicity in the TM5 region as compared to other domains. Accordingly, it appears that TM5 is probably involved in the proton translocation of V-PPase. In this study, we used site-directed mutagenesis to examine the functional role of amino acid residues in TM5 of V-PPase. A series of mutants singly replaced by alanine residues along TM5 were constructed and over-expressed in Saccharomyces cerevisiae; they were then used to determine their enzymatic activities and proton translocations. Our results indicate that several mutants displayed minor variations in enzymatic properties, while others including those mutated at E225, a GYG motif (residues from 229 to 231), A238, and R242, showed a serious decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase. Moreover, the mutation at Y230 relieved several cation effects on the V-PPase. The GYG motif presumably plays a significant role in maintaining structure and function of V-PPase.

  11. ATP-dependent export of neutral amino acids by vacuolar membrane vesicles of Saccharomyces cerevisiae.

    PubMed

    Ishimoto, Masaya; Sugimoto, Naoko; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2012-01-01

    Amino acid analysis of Saccharomyces cerevisiae cells indicated that neutral amino acids such as glycine and alanine were probably excluded from the vacuoles, and that vacuolar H(+)-ATPase (V-ATPase) was involved in the vacuolar compartmentalization of these amino acids. We found that vacuolar membrane vesicles export neutral amino acids in an ATP-dependent manner. This is important in identifying vacuolar transporters for neutral amino acids.

  12. A randomized controlled trial of laparoscopic nissen fundoplication versus proton pump inhibitors for treatment of patients with chronic gastroesophageal reflux disease: One-year follow-up.

    PubMed

    Anvari, Mehran; Allen, Christopher; Marshall, John; Armstrong, David; Goeree, Ron; Ungar, Wendy; Goldsmith, Charles

    2006-12-01

    A randomized controlled trial conducted in patients with gastroesophageal reflux disease compared optimized medical therapy using proton pump inhibitor (n = 52) with laparoscopic Nissen fundoplication (n = 52). Patients were monitored for 1 year. The primary end point was frequency of gastroesophageal reflux dis-ease symptoms. Surgical patients had improved symptoms, pH control, and overall quality of life health index after surgery at 1 year compared with the medical group. The overall gastroesophageal reflux disease symptom score at 1 year was unchanged in the medical patients, but improved in the surgical patients. Fourteen patients in the medical arm experienced symptom relapse requiring titration of the proton pump inhibitor dose, but 6 had satisfactory symptom remission. No surgical patients required additional treatment for symptom control. Patients controlled on long-term proton pump inhibitor therapy for chronic gastroesophageal reflux disease are excellent surgical candidates and should experience improved symptom control after surgery at 1 year.

  13. Proton Pump Inhibitors and Risk of Mild Cognitive Impairment and Dementia.

    PubMed

    Goldstein, Felicia C; Steenland, Kyle; Zhao, Liping; Wharton, Whitney; Levey, Allan I; Hajjar, Ihab

    2017-09-01

    To examine the risk associated with the use of proton pump inhibitors (PPIs) of conversion to mild cognitive impairment (MCI), dementia, and specifically Alzheimer's disease (AD). Observational, longitudinal study. Tertiary academic Alzheimer's Disease Centers funded by the National Institute on Aging. Research volunteers aged 50 and older with two to six annual visits; 884 were taking PPIs at every visit, 1,925 took PPIs intermittently, and 7,677 never reported taking PPIs. All had baseline normal cognition or MCI. Multivariable Cox regression analyses evaluated the association between PPI use and annual conversion of baseline normal cognition to MCI or dementia or annual conversion of baseline MCI to dementia, controlling for demographic characteristics, vascular comorbidities, mood, and use of anticholinergics and histamine-2 receptor antagonists. Continuous (always vs never) PPI use was associated with lower risk of decline in cognitive function (hazard ratio (HR) = 0.78, 95% confidence interval (CI) =0.66-0.93, P = .005) and lower risk of conversion to MCI or AD (HR = 0.82, 95% CI = 0.69-0.98, P = .03). Intermittent use was also associated with lower risk of decline in cognitive function (HR = 0.84, 95% CI = 0.76-0.93, P = .001) and risk of conversion to MCI or AD (HR = 0.82, 95% CI = 0.74-0.91, P = .001). This lower risk was found for persons with normal cognition or MCI. Proton pump inhibitors were not associated with greater risk of dementia or of AD, in contrast to recent reports. Study limitations include reliance on self-reported PPI use and lack of dispensing data. Prospective studies are needed to confirm these results to guide empirically based clinical treatment recommendations. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  14. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined With Metabolomics Provide a Novel Insight for an Orange Mutant

    PubMed Central

    Guo, Ling-Xia; Shi, Cai-Yun; Liu, Xiao; Ning, Dong-Yuan; Jing, Long-Fei; Yang, Huan; Liu, Yong-Zhong

    2016-01-01

    ‘Hong Anliu’ (HAL, Citrus sinensis cv. Hong Anliu) is a bud mutant of ‘Anliu’ (AL), characterized by a comprehensive metabolite alteration, such as lower accumulation of citrate, high accumulation of lycopene and soluble sugars in fruit juice sacs. Due to carboxylic acid metabolism connects other metabolite biosynthesis and/or catabolism networks, we therefore focused analyzing citrate accumulation-related gene expression profiles and/or enzyme activities, along with metabolic fingerprinting between ‘HAL’ and ‘AL’. Compared with ‘AL’, the transcript levels of citrate biosynthesis- and utilization-related genes and/or the activities of their respective enzymes such as citrate synthase, cytosol aconitase and ATP-citrate lyase were significantly higher in ‘HAL’. Nevertheless, the mitochondrial aconitase activity, the gene transcript levels of proton pumps, including vacuolar H+-ATPase, vacuolar H+-PPase, and the juice sac-predominant p-type proton pump gene (CsPH8) were significantly lower in ‘HAL’. These results implied that ‘HAL’ has higher abilities for citrate biosynthesis and utilization, but lower ability for the citrate uptake into vacuole compared with ‘AL’. Combined with the metabolites-analyzing results, a model was then established and suggested that the reduction in proton pump activity is the key factor for the low citrate accumulation and the comprehensive metabolite alterations as well in ‘HAL’. PMID:27385485

  15. Proton pump inhibitors and potential interactions with clopidogrel: an update.

    PubMed

    Gerson, Lauren B

    2013-06-01

    Clopidogrel, an antiplatelet agent, is increasingly prescribed for patients with recent stroke, myocardial infarction, acute coronary syndrome, and/or patients post-coronary stent insertion to prevent recurrent cardiovascular events. Since clopidogrel can increase the risk of gastrointestinal hemorrhage, co-administration of proton pump inhibitors (PPIs) has been recommended, particularly in patients at high risk. In 2009, the FDA issued warnings about potential interactions between clopidogrel and PPIs, given the fact that both drugs are metabolized via the cytochrome P450 pathway. Prior studies have demonstrated significant reduction in platelet inhibition when PPI therapy is administered to subjects on clopidogrel therapy. Two meta-analyses were published in 2010 and 2011, the first suggesting association of PPIs with adverse cardiovascular events when observational studies were examined, but noting that the results were limited by the presence of significant heterogeneity. The second meta-analysis did not find a significant increase in the risk of adverse primary events (which included all cause mortality, cardiovascular death, myocardial infarction, or stroke), and concluded that analysis of the data from two randomized controlled trials yielded a risk difference of zero. An updated literature search was performed to assess clinical studies describing interactions between PPIs and clopidogrel published from 2011-2012. The majority of these studies did not show significant interactions when primary cardiac outcomes were considered. More importantly, the newer data demonstrated that PPI usage independently was a risk factor for adverse CV outcomes, since most PPI users were older patients who were more likely to have concomitant co-morbid conditions. Two updated reviews also concluded that the presence of confounding factors likely explained differences in results between studies, and that there were no significant differences in effects on clopidogrel between

  16. 25 Years of Proton Pump Inhibitors: A Comprehensive Review.

    PubMed

    Strand, Daniel S; Kim, Daejin; Peura, David A

    2017-01-15

    Proton pump inhibitors (PPIs) were clinically introduced more than 25 years ago and have since proven to be invaluable, safe, and effective agents for the management of a variety of acid-related disorders. Although all members in this class act in a similar fashion, inhibiting active parietal cell acid secretion, there are slight differences among PPIs relating to their pharmacokinetic properties, metabolism, and Food and Drug Administration (FDA)-approved clinical indications. Nevertheless, each is effective in managing gastroesophageal reflux disease and uncomplicated or complicated peptic ulcer disease. Despite their overall efficacy, PPIs do have some limitations related to their short plasma half-lives and requirement for meal-associated dosing, which can lead to breakthrough symptoms in some individuals, especially at night. Longer-acting PPIs and technology to prolong conventional PPI activity have been developed to specifically address these limitations and may improve clinical outcomes.

  17. 25 Years of Proton Pump Inhibitors: A Comprehensive Review

    PubMed Central

    Strand, Daniel S.; Kim, Daejin; Peura, David A.

    2017-01-01

    Proton pump inhibitors (PPIs) were clinically introduced more than 25 years ago and have since proven to be invaluable, safe, and effective agents for the management of a variety of acid-related disorders. Although all members in this class act in a similar fashion, inhibiting active parietal cell acid secretion, there are slight differences among PPIs relating to their pharmacokinetic properties, metabolism, and Food and Drug Administration (FDA)-approved clinical indications. Nevertheless, each is effective in managing gastroesophageal reflux disease and uncomplicated or complicated peptic ulcer disease. Despite their overall efficacy, PPIs do have some limitations related to their short plasma half-lives and requirement for meal-associated dosing, which can lead to breakthrough symptoms in some individuals, especially at night. Longer-acting PPIs and technology to prolong conventional PPI activity have been developed to specifically address these limitations and may improve clinical outcomes. PMID:27840364

  18. Pth1/Vam3p is the syntaxin homolog at the vacuolar membrane of Saccharomyces cerevisiae required for the delivery of vacuolar hydrolases.

    PubMed Central

    Srivastava, A; Jones, E W

    1998-01-01

    The PEP12 homolog Pth1p (Pep twelve homolog 1) is predicted to be similar in size to Pep12p, the endosomal syntaxin homolog that mediates docking of Golgi-derived transport vesicles and, like other members of the syntaxin family, is predicted to be a cytoplasmically oriented, integral membrane protein with a C-terminal transmembrane domain. Kinetic analyses indicate that deltapth1/vam3 mutants fail to process the soluble vacuolar hydrolase precursors and that PrA, PrB and most of CpY accumulate within the cell in their Golgi-modified P2 precursor forms. This is in contrast to a pep12 mutant in which P2CpY is secreted from the cell. Furthermore, pep12 is epistatic to pth1/vam3 with respect to the CpY secretion phenotype. Alkaline phosphatase, a vacuolar membrane hydrolase, accumulates in its precursor form in the deltapth1/vam3 mutant. Maturation of pro-aminopeptidase I, a hydrolase precursor delivered directly to the vacuole from the cytoplasm, is also blocked in the deltapth1/vam3 mutant. Subcellular fractionation localizes Pth1/Vam3p to vacuolar membranes. Based on these data, we propose that Pth1/Vam3p is the vacuolar syntaxin/t-SNARE homolog that participates in docking of transport vesicles at the vacuolar membrane and that the function of Pth1/Vam3p impinges on at least three routes of protein delivery to the yeast vacuole. PMID:9475723

  19. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V0 subunit a (Vph1p).

    PubMed

    Chan, Chun-Yuan; Prudom, Catherine; Raines, Summer M; Charkhzarrin, Sahba; Melman, Sandra D; De Haro, Leyma P; Allen, Chris; Lee, Samuel A; Sklar, Larry A; Parra, Karlett J

    2012-03-23

    Vacuolar ATPases (V-ATPases) are important for many cellular processes, as they regulate pH by pumping cytosolic protons into intracellular organelles. The cytoplasm is acidified when V-ATPase is inhibited; thus we conducted a high-throughput screen of a chemical library to search for compounds that acidify the yeast cytosol in vivo using pHluorin-based flow cytometry. Two inhibitors, alexidine dihydrochloride (EC(50) = 39 μM) and thonzonium bromide (EC(50) = 69 μM), prevented ATP-dependent proton transport in purified vacuolar membranes. They acidified the yeast cytosol and caused pH-sensitive growth defects typical of V-ATPase mutants (vma phenotype). At concentrations greater than 10 μM the inhibitors were cytotoxic, even at the permissive pH (pH 5.0). Membrane fractions treated with alexidine dihydrochloride and thonzonium bromide fully retained concanamycin A-sensitive ATPase activity despite the fact that proton translocation was inhibited by 80-90%, indicating that V-ATPases were uncoupled. Mutant V-ATPase membranes lacking residues 362-407 of the tether of Vph1p subunit a of V(0) were resistant to thonzonium bromide but not to alexidine dihydrochloride, suggesting that this conserved sequence confers uncoupling potential to V(1)V(0) complexes and that alexidine dihydrochloride uncouples the enzyme by a different mechanism. The inhibitors also uncoupled the Candida albicans enzyme and prevented cell growth, showing further specificity for V-ATPases. Thus, a new class of V-ATPase inhibitors (uncouplers), which are not simply ionophores, provided new insights into the enzyme mechanism and original evidence supporting the hypothesis that V-ATPases may not be optimally coupled in vivo. The consequences of uncoupling V-ATPases in vivo as potential drug targets are discussed.

  20. Proton pump inhibitor-refractory gastroesophageal reflux disease: challenges and solutions

    PubMed Central

    Mermelstein, Joseph; Chait Mermelstein, Alanna; Chait, Maxwell M

    2018-01-01

    A significant percentage of patients with gastroesophageal reflux disease (GERD) will not respond to proton pump inhibitor (PPI) therapy. The causes of PPI-refractory GERD are numerous and diverse, and include adherence, persistent acid, functional disorders, nonacid reflux, and PPI bioavailability. The evaluation should start with a symptom assessment and may progress to imaging, endoscopy, and monitoring of esophageal pH, impedance, and bilirubin. There are a variety of pharmacologic and procedural interventions that should be selected based on the underlying mechanism of PPI failure. Pharmacologic treatments can include antacids, prokinetics, alginates, bile acid binders, reflux inhibitors, and antidepressants. Procedural options include laparoscopic fundoplication and LINX as well as endoscopic procedures, such as transoral incisionless fundoplication and Stretta. Several alternative and complementary treatments of possible benefit also exist. PMID:29606884

  1. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase.

    PubMed

    Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano

    2017-01-17

    Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth.This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors.

  2. Antitumor effect of combination of the inhibitors of two new oncotargets: proton pumps and reverse transcriptase

    PubMed Central

    Lugini, Luana; Sciamanna, Ilaria; Federici, Cristina; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Fais, Stefano

    2017-01-01

    Tumor therapy needs new approaches in order to improve efficacy and reduce toxicity of the current treatments. The acidic microenvironment and the expression of high levels of endogenous non-telomerase reverse transcriptase (RT) are common features of malignant tumor cells. The anti-acidic proton pump inhibitor Lansoprazole (LAN) and the non-nucleoside RT inhibitor Efavirenz (EFV) have shown independent antitumor efficacy. LAN has shown to counteract drug tumor resistance. We tested the hypothesis that combination of LAN and EFV may improve the overall antitumor effects. We thus pretreated human metastatic melanoma cells with LAN and then with EFV, both in 2D and 3D spheroid models. We evaluated the treatment effect by proliferation and cell death/apoptosis assays in classical and in pulse administration experiments. The action of EFV was negatively affected by the tumor microenvironmental acidity, and LAN pretreatment overcame the problem. LAN potentiated the cytotoxicity of EFV to melanoma cells and, when administered during the drug interruption period, prevented the replacement of tumor cell growth. This study supports the implementation of the current therapies with combination of Proton Pumps and Reverse Transcriptase inhibitors. PMID:27926505

  3. Air swallowing can be responsible for non-response of heartburn to high-dose proton pump inhibitor.

    PubMed

    Zentilin, P; Accornero, L; Dulbecco, P; Savarino, E; Savarino, V

    2005-06-01

    Intraluminal electrical impedance is a novel technique, which is able for the first time to provide a qualitative assessment of refluxed material moving from the stomach to the oesophagus. In other words, the presence of air can be differentiated from that of liquid, because the former is characterised by high and the latter by low impedance compared with baseline. Moreover, the combined measurement of electrical impedance and pH-metry permits to distinguish acid from non-acid liquid reflux. One of the most important clinical applications of this method is to assess the reasons for poor response of GORD patients to high-dose proton pump inhibitors. This case report describes the results of impedance in the evaluation of a young woman, who did not respond to twice-daily doses of rabeprazole. She continued to complain of heartburn as major symptom and impedance allowed us to clarify that it was not related to acid or non-acid reflux, but to air swallowing. Therefore, this technique identified aerophagia to be responsible for persistent heartburn despite high-dose proton pump inhibitor and prevented the adoption of more aggressive, but probably unuseful therapies, such as the surgical one.

  4. Flexibility within the rotor and stators of the vacuolar H+-ATPase.

    PubMed

    Song, Chun Feng; Papachristos, Kostas; Rawson, Shaun; Huss, Markus; Wieczorek, Helmut; Paci, Emanuele; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2013-01-01

    The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.

  5. The Evolution of Ion Pumps.

    ERIC Educational Resources Information Center

    Maloney, Peter C.; Wilson, T. Hastings

    1985-01-01

    Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)

  6. [Do opioids, sedatives and proton-pump inhibitors increase the risk of fractures?

    PubMed

    Thorsdottir, Gudlaug; Benedikz, Elisabet; Thorgeirsdottir, Sigridur A; Johannsson, Magnus

    2017-01-01

    A pharmacoepidemiological study was conducted to analyse the relationship between bone fracture and the use of certain drugs. The study includes patients 40 years and older, diagnosed with bone fractures in the Emergency Department of Landspitali University Hospital in Reykjavik, Iceland, during a 10-year period (2002-2011). Also were included those who picked up from a pharmacy 90 DDD or more per year of the drugs included in the study in the capital region of Iceland during same period. Opiates, benzodiazepines/hypnotics (sedatives) were compared with HMG-CoA reductase inhibitors (statins), non-steroid anti-inflammatory drugs (NSAID) and beta blockers. Proton-pump inhibitors (PPI) and histamine H2-antagonists were also examined. To examine the association between above drugs and fractures the data from electronic hospital database were matched to the prescription database run by the Directorate of Health. A total of 29,056 fractures in 22,891 individuals were identified. The females with fractures were significantly older and twice as many, compared to males. The odds ratio (OR) for fractures was not significantly different between the NSAID, statins and beta blockers. OR for opiates showed almost double increased risk of fractures, 40% increased risk for sedatives and 30% increased risk for PPIs compared to beta blockers. No increased fracture-risk was noted in patients taking H2 antagonists. This study shows a relationship between the use of opiates, sedatives and bone fractures. The incidence of fractures was also increased in patients taking PPIs which is interesting in the light of the wide-spread use of PPIs in the community. Key words: Opiates, sedatives, proton- pump inhibitors, fractures. Correspondence: Magnus Johannsson, magjoh@hi.is.

  7. Novel families of vacuolar amino acid transporters.

    PubMed

    Sekito, Takayuki; Fujiki, Yuki; Ohsumi, Yoshinori; Kakinuma, Yoshimi

    2008-08-01

    Amino acids are compartmentalized in the vacuoles of microorganisms and plants. In Saccharomyces cerevisiae, basic amino acids accumulate preferentially into vacuoles but acidic amino acids are almost excluded from them. This indicates that selective machineries operate at the vacuolar membrane. The members of the amino acid/auxin permease family and the major facilitator superfamily involved in the vacuolar compartmentalization of amino acids have been recently identified in studies using S. cerevisiae. Homologous genes for these transporters are also found in plant and mammalian genomes. The physiological significance in response to nitrogen starvation can now be discussed. (c) 2008 IUBMB

  8. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants.

    PubMed

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-05-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  9. Proton Pump Inhibitor use in Hospitalized Patients: Is Overutilization Becoming a Problem?

    PubMed Central

    Durand, Cheryl; Willett, Kristine C.; Desilets, Alicia R.

    2012-01-01

    Proton pump inhibitors (PPIs) are among the most common classes of medications prescribed. Though they were previously thought of as safe, recent literature has shown risks associated with their use including increased risk for Clostridium difficile infection, pneumonia, and fractures. Due to these risks, it is important to determine if PPIs are being used appropriately. This review evaluates seven studies in hospitalized patients. Additionally, this review evaluates literature pertaining to recently discovered adverse reactions; all studies found PPIs are being overutilized. Findings highlight the importance of evaluating appropriate therapy with these agents and recommending discontinuation if a proper indication does not exist. PMID:24833936

  10. TOPPITS: Trial Of Proton Pump Inhibitors in Throat Symptoms. Study protocol for a randomised controlled trial.

    PubMed

    Watson, Gillian; O'Hara, James; Carding, Paul; Lecouturier, Jan; Stocken, Deborah; Fouweather, Tony; Wilson, Janet

    2016-04-01

    Persistent throat symptoms and Extra Oesophageal Reflux (EOR) are among the commonest reasons for attendance at a secondary care throat or voice clinic. There is a growing trend to treat throat symptom patients with proton pump inhibitors (PPIs) to suppress stomach acid, but most controlled studies fail to demonstrate a significant benefit of PPI over placebo. In addition, patient views on PPI use vary widely. A UK multi-centre, randomised, controlled trial for adults with persistent throat symptoms to compare the effectiveness of treatment with the proton pump inhibitor (PPI) lansoprazole versus placebo. The trial includes a six-month internal pilot, during which three sites will recruit 30 participants in total, to assess the practicality of the trial and assess the study procedures and willingness of the patient population to participate. If the pilot is successful, three additional sites will be opened to recruitment, and a further 302 participants recruited across the six main trial sites. Further trial sites may be opened, as necessary. The main trial will continue for a further 18 months. Participants will be followed up for 12 months from randomisation, throughout which both primary and secondary outcome data will be collected. The primary outcome is change in Reflux Symptom Index (RSI) score, the 'area standard' for this type of assessment, after 16 weeks (four months) of treatment. Secondary outcomes are RSI changes at 12 months after randomisation, Quality of Life assessment at four and 12 months, laryngeal mucosal changes, assessments of compliance and side effects, and patient-reported satisfaction. TOPPITS is designed to evaluate the relative effectiveness of treatment with a proton pump inhibitor versus placebo in patients with persistent throat symptoms. This will provide valuable information to clinicians and GPs regarding the treatment and management of care for these patients, on changes in symptoms, and in Quality of Life, over time. ISRCTN

  11. Association of Proton Pump Inhibitors and Capecitabine Efficacy in Advanced Gastroesophageal Cancer

    PubMed Central

    Chu, Michael P.; Hecht, J. Randolph; Slamon, Dennis; Wainberg, Zev A.; Bang, Yung-Jue; Hoff, Paulo M.; Sobrero, Alberto; Qin, Shukui; Afenjar, Karen; Houe, Vincent; King, Karen; Koski, Sheryl; Mulder, Karen; Hiller, Julie Price; Scarfe, Andrew; Spratlin, Jennifer; Huang, Yingjie J.; Khan-Wasti, Saba; Chua, Neil

    2016-01-01

    Importance Capecitabine is an oral cytotoxic chemotherapeutic commonly used across cancer subtypes. As with other oral medications though, it may suffer from drug interactions that could impair its absorption. Objective To determine if gastric acid suppressants such as proton pump inhibitors (PPIs) may impair capecitabine efficacy. Design, Setting, and Participants This secondary analysis of TRIO-013, a phase III randomized trial, compares capecitabine and oxaliplatin (CapeOx) with or without lapatinib in 545 patients with ERBB2/HER2-positive metastatic gastroesophageal cancer (GEC); patients were randomized 1:1 between CapeOx with or without lapatinib. Proton pump inhibitor use was identified by medication records. Progression-free survival (PFS) and overall survival (OS) were compared between patients treated with PPIs vs patients who were not. Specific subgroups were accounted for, such as younger age (<60 years), Asian ethnicity, female sex, and disease stage (metastatic/advanced) in multivariate Cox proportional hazards modeling. The TRIO-013 trial accrued and randomized patients between June 2008 and January 2012; this analysis took place in January 2014. Interventions Patients were divided based on PPI exposure. Main Outcomes and Measures Primary study outcome was PFS and OS between patients treated with PPIs vs patients who were not. Secondary outcomes included disease response rates and toxicities. Results Of the 545 patients with GEC (median age, 60 years; 406 men [74%]) included in the study, 229 received PPIs (42.0%) and were evenly distributed between arms. In the placebo arm, PPI-treated patients had poorer median PFS, 4.2 vs 5.7 months (hazard ratio [HR], 1.55; 95% CI, 1.29-1.81, P < .001); OS, 9.2 vs 11.3 months (HR, 1.34; 95% CI, 1.06-1.62; P = .04); and disease control rate (72% vs 83%; P = .02) vs patients not treated with PPIs. In multivariate analysis considering age, race, disease stage, and sex, PPI-treated patients had poorer PFS

  12. Teaching the Fundamentals of Biological Research with Primary Literature: Learning from the Discovery of the Gastric Proton Pump

    ERIC Educational Resources Information Center

    Zhu, Lixin

    2011-01-01

    For the purpose of teaching collegians the fundamentals of biological research, literature explaining the discovery of the gastric proton pump was presented in a 50-min lecture. The presentation included detailed information pertaining to the discovery process. This study was chosen because it demonstrates the importance of having a broad range of…

  13. Vacuolar transport of the glutathione conjugate of trans-cinnamic acid.

    PubMed

    Walczak, H A; Dean, J V

    2000-02-01

    Red beet (Beta vulgaris L.) tonoplast membrane vesicles and [14C]trans-cinnamic acid-glutatione were used to study the vacuolar transport of phynylpropanoid-glutathione conjugates which are formed in peroxidase-mediated reactions. It was determined that the uptake of [14C]trans-cinnamic acid-glutathione into the tonoplast membrane vesicles was MgATP dependent and was 10-fold faster than the uptake of non-conjugated [14C]trans-cinnamic acid. Uptake of the conjugate in the presence of MgATP was not dependent on a trans-tonoblast H+-electrochemical gradient, because uptake was not affected by the addition of NH4Cl (1 mM; 0% inhibition) and was only slightly affected by gramicidin-D (5 microM; 14% inhibition). Uptake of the conjugate was inhibited 92% by the addition of vanadate (1 mM) and 71% by the addition of the model substrate S-(2,4-dinitrophenyl) glutathione (500 microM). Uptake did not occur when a nonhydrolyzable analog of ATP was used in place of MgATP. The calculated Km and Vmax values for uptake were 142 microM amd 5.95 nmol mg(-1) min(-1), respectively. Based on these results, phenylpropanoid-glutation conjugates formed in peroxidase-mediated reactions appear to be transported into the vacuole by the glutathione S-conjugate pump(s) located in the tonoplast membrane.

  14. Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates.

    PubMed

    Rodriguez, Juan D; Haq, Saddef; Bachvaroff, Tsvetan; Nowak, Kristine F; Nowak, Scott J; Morgan, Deri; Cherny, Vladimir V; Sapp, Maredith M; Bernstein, Steven; Bolt, Andrew; DeCoursey, Thomas E; Place, Allen R; Smith, Susan M E

    2017-01-01

    In 1972, J. Woodland Hastings and colleagues predicted the existence of a proton selective channel (HV1) that opens in response to depolarizing voltage across the vacuole membrane of bioluminescent dinoflagellates and conducts protons into specialized luminescence compartments (scintillons), thereby causing a pH drop that triggers light emission. HV1 channels were subsequently identified and demonstrated to have important functions in a multitude of eukaryotic cells. Here we report a predicted protein from Lingulodinium polyedrum that displays hallmark properties of bona fide HV1, including time-dependent opening with depolarization, perfect proton selectivity, and characteristic ΔpH dependent gating. Western blotting and fluorescence confocal microscopy of isolated L. polyedrum scintillons immunostained with antibody to LpHV1 confirm LpHV1's predicted organellar location. Proteomics analysis demonstrates that isolated scintillon preparations contain peptides that map to LpHV1. Finally, Zn2+ inhibits both LpHV1 proton current and the acid-induced flash in isolated scintillons. These results implicate LpHV1 as the voltage gated proton channel that triggers bioluminescence in L. polyedrum, confirming Hastings' hypothesis. The same channel likely mediates the action potential that communicates the signal along the tonoplast to the scintillon.

  15. Effect of long-term proton pump inhibitor administration on gastric mucosal atrophy: A meta-analysis

    PubMed Central

    Li, Zhong; Wu, Cong; Li, Ling; Wang, Zhaoming; Xie, Haibin; He, Xiaozhou; Feng, Jin

    2017-01-01

    Background/Aims: Proton pump inhibitors (PPIs) are widely used for the treatment of acid-related gastrointestinal diseases. Recently, some studies have reported that PPIs can alter the gastric mucosal architecture; however, the relationship remains controversial. This meta-analysis study was designed to quantify the association between long-term PPI administration and gastric atrophy. Materials and Methods: A PubMed search was conducted to identify studies using the keywords proton pump inhibitors or PPI and gastric atrophy or atrophic gastritis; the timeframe of publication searched was up to May 2016. Heterogeneity among studies was tested with the Q test; odds ratios (OR) and 95% confidence intervals (CI) were calculated. P values were calculated by I2 tests and regarded as statistically significant when <0.05. Results: We identified 13 studies that included 1465 patients under long-term PPI therapy and 1603 controls, with a total gastric atrophy rate of 14.50%. There was a higher presence of gastric atrophy (15.84%; statistically significant) in PPI group compared to the control group (13.29%) (OR: 1.55, 95% CI: 1.00–2.41). Conclusions: The pooled data suggest that long-term PPI use is associated with increased rates of gastric atrophy. Large-scale multicenter studies should be conducted to further investigate the relationship between acid suppressants and precancerous diseases. PMID:28721975

  16. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations.

    PubMed

    Yang, Longhua; Skjevik, Åge A; Han Du, Wen-Ge; Noodleman, Louis; Walker, Ross C; Götz, Andreas W

    2016-09-01

    Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Lactobacillus paracasei F19 versus placebo for the prevention of proton pump inhibitor-induced bowel symptoms: a randomized clinical trial.

    PubMed

    Compare, Debora; Rocco, Alba; Sgamato, Costantino; Coccoli, Pietro; Campo, Salvatore Maria Antonio; Nazionale, Immacolata; Larussa, Tiziana; Luzza, Francesco; Chiodini, Paolo; Nardone, Gerardo

    2015-04-01

    Proton pump inhibitors may foster intestinal dysbiosis and related bowel symptoms. To evaluate the effect of Lactobacillus paracasei F19 on bowel symptom onset in patients on long-term proton pump inhibitors. In this randomized, double-blind, placebo-controlled study, patients with typical gastroesophageal reflux disease symptoms receiving pantoprazole 40 mg/d for six months were randomly assigned to receive: (A) Lactobacillus paracasei F19 bid for three days/week for six months; (B) placebo bid for three days/week for six months; (C) Lactobacillus paracasei F19 bid for three days/week for three months and placebo bid for three days/week for the following three months; (D) placebo bid for three days/week for three months and Lactobacillus paracasei F19 bid for three days/week for the following three months. Bloating, flatulence, abdominal pain and bowel habit were assessed monthly. 100/312 patients were enrolled. In the parallel groups, the treatment-by-time interaction affected bloating (p = 0.015), while Lactobacillus paracasei F19 treatment alone affected flatulence (p = 0.011). Moreover, the treatment-by-time interaction significantly affected the mean score of bloating (p = 0.01) and flatulence (p < 0.0001), the mean stool form (p = 0.03) and mean stool frequency/week (p = 0.016). Analysis of the cross-over groups, limited to the first three months because of carry-over effect, confirmed these results. Lactobacillus paracasei F19 supplementation prevents bowel symptom onset in patients on long-term proton pump inhibitors. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Proton Pump Inhibitors in Gastroesophageal Reflux Disease: Friend or Foe.

    PubMed

    Gyawali, C Prakash

    2017-09-01

    Proton pump inhibitor (PPI) use in gastroesophageal reflux disease (GERD) has been redefined, in light of recent advances highlighting GERD phenotypes that respond to PPIs, and fresh revelations of potential risks of long-term PPI therapy. Erosive esophagitis predicts excellent response to PPI therapy, but non-erosive reflux disease (NERD) with abnormal reflux parameters on ambulatory reflux monitoring also demonstrates a similar response. In contrast, response is suboptimal in the absence of abnormal reflux parameters. In this setting, if an alternate appropriate indication for PPI therapy does not coexist, risks may outweigh benefits of PPI therapy. Adverse events from long-term PPI therapy continue to be reported, most based on association rather than cause-and-effect. Appropriate indications need to be established before embarking on long-term PPI therapy. Future research will define true risks of long-term PPI therapy, and develop alternate management options for acid peptic diseases.

  19. Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates

    PubMed Central

    Rodriguez, Juan D.; Haq, Saddef; Bachvaroff, Tsvetan; Nowak, Kristine F.; Nowak, Scott J.; Morgan, Deri; Cherny, Vladimir V.; Sapp, Maredith M.; Bernstein, Steven; Bolt, Andrew; DeCoursey, Thomas E.; Place, Allen R.; Smith, Susan M. E.

    2017-01-01

    In 1972, J. Woodland Hastings and colleagues predicted the existence of a proton selective channel (HV1) that opens in response to depolarizing voltage across the vacuole membrane of bioluminescent dinoflagellates and conducts protons into specialized luminescence compartments (scintillons), thereby causing a pH drop that triggers light emission. HV1 channels were subsequently identified and demonstrated to have important functions in a multitude of eukaryotic cells. Here we report a predicted protein from Lingulodinium polyedrum that displays hallmark properties of bona fide HV1, including time-dependent opening with depolarization, perfect proton selectivity, and characteristic ΔpH dependent gating. Western blotting and fluorescence confocal microscopy of isolated L. polyedrum scintillons immunostained with antibody to LpHV1 confirm LpHV1’s predicted organellar location. Proteomics analysis demonstrates that isolated scintillon preparations contain peptides that map to LpHV1. Finally, Zn2+ inhibits both LpHV1 proton current and the acid-induced flash in isolated scintillons. These results implicate LpHV1 as the voltage gated proton channel that triggers bioluminescence in L. polyedrum, confirming Hastings’ hypothesis. The same channel likely mediates the action potential that communicates the signal along the tonoplast to the scintillon. PMID:28178296

  20. Hypoalbuminemia is a predictor of mortality and rebleeding in peptic ulcer bleeding under proton pump inhibitor use.

    PubMed

    Cheng, Hsiu-Chi; Yang, Er-Hsiang; Wu, Chung-Tai; Wang, Wen-Lun; Chen, Po-Jun; Lin, Meng-Ying; Sheu, Bor-Shyang

    2018-04-01

    Peptic ulcer bleeding remains a deadly disease, and a simple indicator of long-term outcomes is crucial. This study validated whether hypoalbuminemia and its related factors in patients with peptic ulcer bleeding can indicate long-term mortality and rebleeding under proton pump inhibitor use. The prospective cohort study enrolled 426 patients with peptic ulcer bleeding who had high risk stigmata at endoscopy and had received endoscopic hemostasis. They were divided into 79 patients in the hypoalbuminemia group (Hypo-AG, serum albumin <28 g/L), 135 in the marginal hypoalbuminemia group (Margin-AG, serum albumin 28-34.9 g/L), and 212 in the normal albuminemia group (Normal-AG, serum albumin ≥35 g/L). Each subject received 72-h of intravenous infusion and then the oral form of proton pump inhibitors and were monitored for 84 days to assess all-cause mortality and recurrent bleeding. The primary outcome of all-cause mortality rates were increased in a stepwise fashion in a trend from Normal-AG, Margin-AG, to Hypo-AG (0-28th day: 1.9%, 2.2%, 12.8%, p < 0.001; 29th-84th day: 2.5%, 8.0%, 10.6%, p < 0.01). The secondary outcome of recurrent bleeding rates were also increased in the same fashion (0-28th day: 6.4%, 15.4%, 24.6%, p < 0.001; 29th-84th day: 0%, 3.0%, 4.2%, p = 0.01). Abnormal albuminemia was <30 g/L related to hemoglobin levels <70 g/L, nosocomial bleeding, cirrhosis, age ≥70 years, shock, and ulcer size ≥1.0 cm independently (p < 0.05). Hypoalbuminemia in patients with peptic ulcer bleeding can be an alarm indicator of all-cause mortality and recurrent bleeding in a long-term follow-up situation under proton pump inhibitor use (NCT01591083). Copyright © 2017. Published by Elsevier B.V.

  1. Antiplatelet drug interactions with proton pump inhibitors

    PubMed Central

    Scott, Stuart A; Obeng, Aniwaa Owusu; Hulot, Jean-Sébastien

    2014-01-01

    Introduction Non-aspirin antiplatelet agents (e.g., clopidogrel, prasugrel, ticagrelor) are commonly prescribed for the prevention of recurrent cardiovascular events among patients with acute coronary syndromes (ACS) and/or those undergoing percutaneous coronary intervention (PCI). In addition, combination therapy with proton pump inhibitors (PPIs) is often recommended to attenuate gastrointestinal bleeding risk, particularly during dual antiplatelet therapy (DAPT) with clopidogrel and aspirin. Importantly, a pharmacological interaction between clopidogrel and some PPIs has been proposed based on mutual CYP450-dependent metabolism, but available evidence is inconsistent. Areas covered This article provides an overview of the currently approved antiplatelet agents and PPIs, including their metabolic pathways. Additionally, the CYP450 isoenzyme at the center of the drug interaction, CYP2C19, is described in detail, and the available evidence on both the potential pharmacological interaction and influence on clinical outcomes are summarized and evaluated. Expert opinion Although concomitant DAPT and PPI use reduces clopidogrel active metabolite levels and ex vivo-measured platelet inhibition, the influence of the drug interaction on clinical outcomes has been conflicting and largely reported from non-randomized observational studies. Despite this inconsistency, a clinically important interaction cannot be definitively excluded, particularly among patient subgroups with higher overall cardiovascular risk and potentially among CYP2C19 loss-of-function allele carriers. PMID:24205916

  2. Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase.

    PubMed

    Lin, Hsin Hung; Pan, Yih Jiuan; Hsu, Shen Hsing; Van, Ru Chuan; Hsiao, Yi Yuong; Chen, Jiun Hsien; Pan, Rong Long

    2005-10-15

    Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.

  3. [Effects of exogenous spermidine on lipid peroxidation and membrane proton pump activity of cucumber seedling leaves under high temperature stress].

    PubMed

    Tian, Jing; Guo, Shi-Rong; Sun, Jin; Wang, Li-Ping; Yang, Yan-Juan; Li, Bin

    2011-12-01

    Taking a relatively heat-resistant cucumber (Cucumis sativus) cultivar 'Jinchun No. 4' as test material, a sand culture experiment was conducted in growth chamber to investigate the effects of foliar spraying spermidine (Spd) on the lipid peroxidation, membrane proton pump activity, and corresponding gene expression of cucumber seedling leaves under high temperature stress. Compared with the control, foliar spraying Spd increased the plant height, stem diameter, dry and fresh mass, and leaf area significantly, and inhibited the increase of leaf relative conductivity, malondialdehyde (MDA) content, and lipoxygenase (LOX) activity effectively. Foliar spraying Spd also helped to the increase of leaf plasma membrane- and tonoplast H(+)-ATPase activity, but no significant difference was observed in the gene expression levels. These results suggested that exogenous Spd could significantly decrease the leaf lipid peroxidation and increase the proton pump activity, and thus, stabilize the leaf membrane structure and function, alleviate the damage induced by high temperature stress, and enhance the heat tolerance of cucumber seedlings.

  4. Practical considerations in the management of proton-pump inhibitors.

    PubMed

    Aguilera-Castro, Lara; Martín-de-Argila-dePrados, Carlos; Albillos-Martínez, Agustín

    2016-03-01

    Proton-pump inhibitors (PPIs) are one of the most active ingredients prescribed in Spain. In recent decades there has been an overuse of these drugs in both outpatient clinics and hospitals that has lead to a significant increase in healthcare spending and to an increase in the risk of possible side effects. It is important for health professionals to know the accepted indications and the correct doses for the use of these drugs. On the market there are different types of PPI: omeprazole, pantoprazole, lansoprazole, rabeprazole and esomeprazole. Omeprazole is the oldest and most used PPI, being also the cheapest. Although there are no important differences between PPIs in curing diseases, esomeprazole, a new-generation PPI, has proved to be more effective in eradicating H. pylori and in healing severe esophagitis compared to other PPIs. In recent years the use of generic drugs has spread; these drugs have the same bioavailability than the original drugs. In the case of PPIs, the few comparative studies available in the literature between original and generic drugs have shown no significant differences in clinical efficacy.

  5. Pancreatic bicarbonate secretion involves two proton pumps.

    PubMed

    Novak, Ivana; Wang, Jing; Henriksen, Katrine L; Haanes, Kristian A; Krabbe, Simon; Nitschke, Roland; Hede, Susanne E

    2011-01-07

    Pancreas secretes fluid rich in digestive enzymes and bicarbonate. The alkaline secretion is important in buffering of acid chyme entering duodenum and for activation of enzymes. This secretion is formed in pancreatic ducts, and studies to date show that plasma membranes of duct epithelium express H(+)/HCO(3)(-) transporters, which depend on gradients created by the Na(+)/K(+)-ATPase. However, the model cannot fully account for high-bicarbonate concentrations, and other active transporters, i.e. pumps, have not been explored. Here we show that pancreatic ducts express functional gastric and non-gastric H(+)-K(+)-ATPases. We measured intracellular pH and secretion in small ducts isolated from rat pancreas and showed their sensitivity to H(+)-K(+) pump inhibitors and ion substitutions. Gastric and non-gastric H(+)-K(+) pumps were demonstrated on RNA and protein levels, and pumps were localized to the plasma membranes of pancreatic ducts. Quantitative analysis of H(+)/HCO(3)(-) and fluid transport shows that the H(+)-K(+) pumps can contribute to pancreatic secretion in several species. Our results call for revision of the bicarbonate transport physiology in pancreas, and most likely other epithelia. Furthermore, because pancreatic ducts play a central role in several pancreatic diseases, it is of high relevance to understand the role of H(+)-K(+) pumps in pathophysiology.

  6. Linking Chemical Electron–Proton Transfer to Proton Pumping in Cytochrome c Oxidase: Broken-Symmetry DFT Exploration of Intermediates along the Catalytic Reaction Pathway of the Iron–Copper Dinuclear Complex

    PubMed Central

    2015-01-01

    After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3–CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185–190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment. PMID:24960612

  7. A rapid Fourier transform infrared spectroscopic method for analysis of certain proton pump inhibitors in binary and ternary mixtures

    NASA Astrophysics Data System (ADS)

    Khashaba, Pakinaz Y.; Ali, Hassan Refat H.; El-Wekil, Mohamed M.

    2018-02-01

    A simple and non-destructive FTIR method was used to determine certain proton pump inhibitors (PPIs) in binary and ternary mixtures. Proton pump inhibitors (PPIs); omeprazole (OMZ), esomeprazole (EZM), lansoprazole (LAN), pantoprazole sodium (PAN sodium) and rabeprazole sodium (RAB sodium) in binary mixture with domperidone (DOM) and ternary mixture of OMZ, clarithromycin (CLM) and tinidazole (TNZ) were determined in the solid-state by FTIR spectroscopy for the first time. The method was validated according to ICH-guidelines where linearity was ranged from 20 to 850 μg/g and 20-360 μg/g for PPIs and DOM, respectively in binary mixtures and 10-400, 100-8000 and 150-14,000 μg/g for OMZ, CLM and TNZ, respectively. Limits of detection were found to be 6-100 and 9-100 μg/g for PPIs and DOM, respectively and 4, 40 and 50 μg/g for OMZ, CLM and TNZ, respectively. The method was applied successfully for determination of the cited drugs in their respective pharmaceutical dosage forms.

  8. Evidence-based assessment of proton-pump inhibitors in Helicobacter pylori eradication: a systematic review.

    PubMed

    Nagaraja, Vinayak; Eslick, Guy D

    2014-10-28

    Peptic ulcer disease continues to be issue especially due to its high prevalence in the developing world. Helicobacter pylori (H. pylori) infection associated duodenal ulcers should undergo eradication therapy. There are many regimens offered for H. pylori eradication which include triple, quadruple, or sequential therapy regimens. The central aim of this systematic review is to evaluate the evidence for H. pylori therapy from a meta-analytical outlook. The consequence of the dose, type of proton-pump inhibitor, and the length of the treatment will be debated. The most important risk factor for eradication failure is resistance to clarithromycin and metronidazole.

  9. ATP4A gene regulatory network for fine-tuning of proton pump and ion channels.

    PubMed

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar

    2013-06-01

    The ATP4A encodes α subunit of H(+), K(+)-ATPase that contains catalytic sites of the enzyme forming pores through cell membrane which allows the ion transport. H(+), K(+)-ATPase is a membrane bound P-type ATPase enzyme which is found on the surface of parietal cells and uses the energy derived from each cycle of ATP hydrolysis that can help in exchanging ions (H(+), K(+) and Cl(-)) across the cell membrane secreting acid into the gastric lumen. The 3-D model of α-subunit of H(+), K(+)-ATPase was generated by homology modeling. It was evaluated and validated on the basis of free energies and amino acid residues. The inhibitor binding amino acid active pockets were identified in the 3-D model by molecular docking. The two drugs Omeprazole and Rabeprazole were found more potent interactions with generated model of α-subunit of H(+), K(+)-ATPase on the basis of their affinity between drug-protein interactions. We have generated ATP4A gene regulatory networks for interactions with other proteins which involved in regulation that can help in fine-tuning of proton pump and ion channels. These findings provide a new dimension for discovery and development of proton pump inhibitors and gene regulation of the ATPase. It can be helpful in better understanding of human physiology and also using synthetic biology strategy for reprogramming of parietal cells for control of gastric ulcers.

  10. Vacuolar protein sorting mechanisms in plants.

    PubMed

    Xiang, Li; Etxeberria, Ed; Van den Ende, Wim

    2013-02-01

    Plant vacuoles are unique, multifunctional organelles among eukaryotes. Considerable new insights in plant vacuolar protein sorting have been obtained recently. The basic machinery of protein export from the endoplasmic reticulum to the Golgi and the classical route to the lytic vacuole and the protein storage vacuole shows many similarities to vacuolar/lysosomal sorting in other eukaryotes. However, as a result of its unique functions in plant defence and as a storage compartment, some plant-specific entities and sorting determinants appear to exist. The alternative post-Golgi route, as found in animals and yeast, probably exists in plants as well. Likely, adaptor protein complex 3 fulfils a central role in this route. A Golgi-independent route involving plant-specific endoplasmic reticulum bodies appears to provide sedentary organisms such as plants with extra flexibility to cope with changing environmental conditions. © 2012 The Authors Journal compilation © 2012 FEBS.

  11. Evidence for Avt6 as a vacuolar exporter of acidic amino acids in Saccharomyces cerevisiae cells.

    PubMed

    Chahomchuen, Thippayarat; Hondo, Kana; Ohsaki, Mariko; Sekito, Takayuki; Kakinuma, Yoshimi

    2009-12-01

    Here we examined the significance of Avt6, a vacuolar exporter of glutamate and aspartate suggested by the in vitro membrane vesicle experiment, in vacuolar compartmentalization of amino acids in Saccharomyces cerevisiae cells. Fluorescent microscopic observation of GFP-fused Avt6 revealed it to be exclusively localized to the vacuolar membrane, with the amount of Myc-tagged Avt6 significantly increased under nitrogen starvation. Glutamate uptake by cells was enhanced by deletion of the AVT6 gene, indicating indirect involvement of Avt6 in cellular glutamate accumulation. Differences in acidic amino acid content of both total and vacuolar fractions were insignificant between the parent and avt6Delta cells when cultured in nutrient-rich conditions. However, in nitrogen-starved conditions, the amount of glutamate and aspartate in the vacuolar fraction was notably increased in the avt6Delta cells. Avt6 is thus involved in vacuolar amino acid compartmentalization in S. cerevisiae cells, especially under conditions of nitrogen starvation.

  12. The Arabidopsis vacuolar malate channel is a member of the ALMT family.

    PubMed

    Kovermann, Peter; Meyer, Stefan; Hörtensteiner, Stefan; Picco, Cristiana; Scholz-Starke, Joachim; Ravera, Silvia; Lee, Youngsook; Martinoia, Enrico

    2007-12-01

    In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.

  13. Repositioning of proton pump inhibitors in cancer therapy.

    PubMed

    Lu, Zhen-Ning; Tian, Bing; Guo, Xiu-Li

    2017-11-01

    Drug repositioning, as a smart way to exploit new molecular targets of a known drug, has been gaining increasing attention in the discovery of anti-cancer drugs. Proton pump inhibitors (PPIs) as benzimidazole derivatives, which are essentially H + -K + -ATPases inhibitors, are commonly used in the treatment of acid-related diseases such as gastric ulcer. In recent years, exploring the new application of PPIs in anti-cancer field has become a hot research topic. Interestingly, cancer cells display an alkaline intracellular pH and an acidic extracellular pH. The extracellular acidity of tumors can be corrected by PPIs that are selectively activated in an acid milieu. It is generally believed that PPIs might provoke disruption of pH homeostasis by targeting V-ATPase on cancer cells, which is the theoretical basis for PPIs to play an anti-cancer role. Numerous studies have shown specialized effects of the PPIs on tumor cell growth, metastasis, chemoresistance, and autophagy. PPIs may really represent new anti-cancer drugs due to better safety and tolerance, the potential selectivity in targeting tumor acidity, and the ability to inhibit mechanism pivotal for cancer homeostasis. In this review, we focus on the new therapeutic applications of PPIs in multiple cancers, explaining the rationale behind this approach and providing practical evidence.

  14. Association between proton pump inhibitors and hepatic encephalopathy

    PubMed Central

    Bian, Jin; Wang, Anqiang; Lin, Jianzhen; Wu, Liangcai; Huang, Hanchun; Wang, Shanshan; Yang, Xiaobo; Lu, Xin; Xu, Yiyao; Zhao, Haitao

    2017-01-01

    Abstract Background & aims: Several studies have shown that proton pump inhibitors (PPIs) use can increase the risk of developing hepatic encephalopathy (HE) in patients with liver dysfunction. However, no definite conclusion is drawn because of study design limitations. Therefore, we conducted a meta-analysis to explore the association between PPIs and HE. Methods: We searched PubMed, EMBASE, and the Cochrane Library from inception until November 2016. Data from the identified studies were combined using a random effects model, and odds ratios (ORs) were calculated. Results: Three case-control studies were included. Compared with nonusers, hepatic insufficiency patients receiving PPIs therapy had a significantly increased risk of developing HE (OR = 1.76, 95% CI: 1.15–2.69), with notable heterogeneity (I2 = 61.4%, P = .075) and publication bias. No relevance was found between PPIs and HE after using the trim and fill method (OR = 1.360, 95%CI: 0.909–2.035, P = .135). Conclusions: PPIs are associated with a higher risk of HE among patients with chronic and acute liver dysfunction. A final conclusion cannot be drawn because of the limited number of studies and a lack of prospective studies. PMID:28445288

  15. Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity

    PubMed Central

    Farsi, Zohreh; Rammner, Burkhard; Woehler, Andrew; Lafer, Eileen M; Mim, Carsten; Jahn, Reinhard

    2018-01-01

    Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling. PMID:29652249

  16. FTIR spectroscopic study on individual amino acid residues in the proton pumping process of bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomei

    1998-05-01

    My thesis project has concentrated on clarifying the role of individual amino acids such as tyrosine, arginine and threonine in the active proton transferring process of Bacteriorhodopsin(bR). BR is a protein found in the purple membrane of Halobacteria salinarium. The main function of bR is to transfer a proton from the interior side of the cell to the external medium upon illumination by visible light. BR belongs to a family of retinal- containing membrane proteins which includes rhodopsin, a visual receptor found in the eye, and sensory rhodopsin I, a light receptor for phototaxis found in H. salinarium. Complete understanding of the proton transferring mechanism of bR can help explain the energy transduction and active ion transport in biological systems. This information also provides insight into other members of the retinal-containing protein family. To study the behavior of a single amino acid in a protein which consists of 248 amino acids, I employed the Fourier transform infrared (FTIR) difference spectroscopy technique. This was combined with the recently developed genetic engineering method of site directed isotope labeling (SDIL). As complementary work, I also characterized the vibrational properties of individual amino acids in various environments. Because of the high resolution and sensitivity of FTIR difference spectroscopy, along with the ability of SDIL to detect structural changes at the single amino acid level, we are able to determine changes in the structure of specific amino acids at different steps in bR photocycle. My research results provide strong evidence for a proton pump model. This model predicts the participation of tyrosine 185 and one or more threonines in a hydrogen bonded chain which can transfer proton across the membrane. My data also suggest a more accurate model for the proton release step which involves arginine 82.

  17. Proton pump inhibitors for functional dyspepsia.

    PubMed

    Pinto-Sanchez, Maria Ines; Yuan, Yuhong; Bercik, Premysl; Moayyedi, Paul

    2017-03-08

    Functional dyspepsia (FD or non-ulcer dyspepsia) is defined as continuous or frequently recurring epigastric pain or discomfort for which no organic cause can be found. Acid suppressive therapy, including proton pump inhibitors (PPIs), has been proposed as a therapeutic option in FD, but its efficacy remains controversial. While PPIs are generally considered safe and well tolerated, they have been associated with adverse events, especially in the long term. For this reason, decisions on whether to initiate or continue PPI therapy should be made based on an appropriate clinical indication. Therefore, we conducted a systematic review to evaluate whether PPI therapy provides symptomatic relief in FD. To determine the efficacy of proton pump inhibitors in the improvement of global symptoms of dyspepsia and quality of life compared to placebo, H2 receptor antagonists or prokinetics, in people with functional dyspepsia. We searched in the following electronic databases: the Cochrane Library (to January 2016), MEDLINE (OvidSP; to February 2016), Embase (OvidSP; to February 2016), and SIGLE grey literature (up to February 2016) and clinical trial registries; we handsearched abstracts from conferences up to February 2016. We screened non-systematic reviews, systematic reviews and guidelines to identify any additional trials. We contacted trialists to obtain missing information. All randomized controlled trials (RCTs) comparing any PPI with placebo, H2 receptor antagonists (H2RAs) or prokinetics for the treatment of FD. Participants were adults (aged 16 years or greater) with an adequate diagnosis of FD (any validated criteria such as Rome I, II, III or Lancet Working Group). Two review authors independently assessed eligibility, trial quality and extracted data. We collected data on dyspeptic symptoms, quality of life and number of overall adverse events. Specific adverse events were beyond the scope of this review. We identified 23 RCTs from 22 papers (with 8759

  18. Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1)in peanut to improve salt tolerance

    USDA-ARS?s Scientific Manuscript database

    Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large i...

  19. Evaluation of potential interactions between mycophenolic acid derivatives and proton pump inhibitors.

    PubMed

    Gabardi, Steven; Olyaei, Ali

    2012-01-01

    To evaluate the incidence of gastrointestinal (GI) complications in solid organ transplant (SOT) recipients, impact of the complications on transplant outcomes, and the potential interactions between mycophenolic acid (MPA) derivatives and proton pump inhibitors (PPIs). An unrestricted literature search (1980-January 2012) was performed with MEDLINE and EMBASE using the following key words: drug-drug interaction, enteric-coated mycophenolic acid, GI complications, mycophenolate mofetil, solid organ transplant, and proton pump inhibitor, including individual agents within the class. Abstracts from scientific meetings were also evaluated. Additionally, reference citations from identified publications were reviewed. Relevant English-language, original research articles and review articles were evaluated if they focused on any of the topics identified in the search or included substantial content addressing GI complications in SOT recipients or drug interactions. GI complications are frequent among SOT recipients, with some studies showing prevalence rates as high as 70%. Transplant outcomes among renal transplant recipients are significantly impacted by GI complications, especially in patients requiring immunosuppressant dosage reductions or premature discontinuation. To this end, PPI use among patients receiving transplants is common. Recent data demonstrate that PPIs significantly reduce the overall exposure to MPA after oral administration of mycophenolate mofetil. Similar studies show this interaction does not exist between PPIs and enteric-coated mycophenolic acid (EC-MPA). Unfortunately, most of the available data evaluating this interaction are pharmacokinetic analyses that do not investigate the clinical impact of this interaction. A significant interaction exists between PPIs and mycophenolate mofetil secondary to reduced dissolution of mycophenolate mofetil in higher pH environments. EC-MPA is not absorbed in the stomach; therefore, low intragastric acidity

  20. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses

    PubMed Central

    Charoenbhakdi, Sirikarn; Dokpikul, Thanittra; Burphan, Thanawat; Techo, Todsapol

    2016-01-01

    ABSTRACT During fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H+-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2 and Δvma3 mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype of vma mutants resulted from severe cytosolic acidification. Interestingly, the vma mutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol. IMPORTANCE The yeast Saccharomyces cerevisiae has been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains

  1. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.

    PubMed

    Charoenbhakdi, Sirikarn; Dokpikul, Thanittra; Burphan, Thanawat; Techo, Todsapol; Auesukaree, Choowong

    2016-05-15

    During fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H(+)-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2 and Δvma3 mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype of vma mutants resulted from severe cytosolic acidification. Interestingly, the vma mutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol. The yeast Saccharomyces cerevisiae has been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains used in alcoholic

  2. Ypq3p-dependent histidine uptake by the vacuolar membrane vesicles of Saccharomyces cerevisiae.

    PubMed

    Manabe, Kunio; Kawano-Kawada, Miyuki; Ikeda, Koichi; Sekito, Takayuki; Kakinuma, Yoshimi

    2016-06-01

    The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA(3) was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.

  3. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.

    PubMed

    Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen

    2008-12-01

    Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.

  4. Proton pump inhibitor medication is associated with colonisation of gut flora in the oropharynx.

    PubMed

    Tranberg, A; Thorarinsdottir, H R; Holmberg, A; Schött, U; Klarin, B

    2018-03-08

    The normal body exists in mutualistic balance with a large range of microbiota. The primary goal of this study was to establish whether there is an imbalance in the oropharyngeal flora early after hospital or ICU admittance, and whether flora differs between control, ward and critically ill patients. The secondary goal was to explore whether there are patient characteristics that can be associated with a disturbed oropharyngeal flora. Oropharyngeal cultures were obtained from three different study groups: (1) controls from the community, (2) ward patients and (3) critically ill patients, the two latter within 24 h after admittance. Cultures were obtained from 487 individuals: 77 controls, 193 ward patients and 217 critically ill patients. Abnormal pharyngeal flora was more frequent in critically ill and ward patients compared with controls (62.2% and 10.4% vs. 1.3%, P < 0.001 and P = 0.010, respectively). Colonisation of gut flora in the oropharynx was more frequent in critically ill patients compared with ward patients or controls (26.3% vs. 4.7% and 1.3%, P < 0.001 and P < 0.001, respectively). Proton pump inhibitor medication was the strongest independent factor associated with the presence of gut flora in the oropharynx in both ward and critically ill patients (P = 0.030 and P = 0.044, respectively). This study indicates that abnormal oropharyngeal flora is an early and frequent event in hospitalised patients and more so in the critically ill, compared to controls. Proton pump inhibitor medication is associated with colonisation of gut flora in the oropharynx. © 2018 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. The amino-terminal hydrophilic region of the vacuolar transporter Avt3p is dispensable for the vacuolar amino acid compartmentalization of Schizosaccharomyces pombe.

    PubMed

    Kawano-Kawada, Miyuki; Chardwiriyapreecha, Soracom; Manabe, Kunio; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2016-12-01

    Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3 (∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3 + but was not completely rescued by the expression of avt3 (∆1-270) . The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.

  6. The selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion

    PubMed Central

    Rui, Huan; Artigas, Pablo; Roux, Benoît

    2016-01-01

    The Na+/K+-pump maintains the physiological K+ and Na+ electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectivity remain mysterious. Free energy molecular dynamics simulations show that the ion binding sites switch their binding specificity in E1 and E2. This is accompanied by small structural arrangements and changes in protonation states of the coordinating residues. Additional computations on structural models of the intermediate states along the conformational transition pathway reveal that the free energy barrier toward the occlusion step is considerably increased when the wrong type of ion is loaded into the binding pocket, prohibiting the pump cycle from proceeding forward. This self-correcting mechanism strengthens the overall transport selectivity and protects the stoichiometry of the pump cycle. DOI: http://dx.doi.org/10.7554/eLife.16616.001 PMID:27490484

  7. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.

    PubMed

    Izawa, Shingo; Ikeda, Kayo; Miki, Takeo; Wakai, Yoshinori; Inoue, Yoshiharu

    2010-09-01

    Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.

  8. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  9. Patient acceptability and experiences of therapeutic switching of proton pump inhibitors within the National Preferred Drugs initiative in Ireland.

    PubMed

    O'Connor, G; O'Keeffe, D; Darker, C; O'Shea, B

    2017-08-01

    A 'Preferred Drugs' initiative was introduced into Ireland in 2013. This identified a single recommended drug to be prescribed to patients requiring treatment from a particular class of drugs. This study investigates how patients on established proton pump inhibitor (PPI) therapy experienced the therapeutic switching of their medication to the 'preferred drug', and the extent to which they regarded it as an acceptable practice. The experiences of 61 patients on established proton pump inhibitor (PPI) therapy were sought before and after their drug was switched to the 'preferred drug'. Eighty per cent of patients were happy to switch medications. When asked for their opinions on medications in general, 71% felt doctors should prescribe the least expensive medication, 84% agreed that all licensed medications were safe while 67% felt their GP changing medication for cost reasons was safe. After 8 weeks, 20% of patients had switched back to their old PPI. When asked how they felt about their medication change, 74% felt happy or pleased. The majority of patients in our study were satisfied to have their medication switched. However, prescribers should be mindful that 1 in 5 patients encountered problems as a result of the switching process.

  10. TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis.

    PubMed

    Mahmoud, Shima; Planes, María Dolores; Cabedo, Marc; Trujillo, Cristina; Rienzo, Alessandro; Caballero-Molada, Marcos; Sharma, Sukesh C; Montesinos, Consuelo; Mulet, José Miguel; Serrano, Ramón

    2017-07-01

    We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H + -ATPase Pma1 (which drives nutrient and K + uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector. Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K + uptake, intracellular pH, cell growth, and tolerance to weak organic acids. Tco89 does not affect Pma1 activity but activates K + transport. © 2017 Federation of European Biochemical Societies.

  11. The V-ATPase subunit A is essential for salt tolerance through participating in vacuolar Na+ compartmentalization in Salicornia europaea.

    PubMed

    Lv, Sulian; Jiang, Ping; Tai, Fang; Wang, Duoliya; Feng, Juanjuan; Fan, Pengxiang; Bao, Hexigeduleng; Li, Yinxin

    2017-12-01

    The V-ATPase subunit A participates in vacuolar Na + compartmentalization in Salicornia europaea regulating V-ATPase and V-PPase activities. Na + sequestration into the vacuole is an efficient strategy in response to salinity in many halophytes. However, it is not yet fully understood how this process is achieved. Particularly, the role of vacuolar H + -ATPase (V-ATPase) in this process is controversial. Our previous proteomic investigation in the euhalophyte Salicornia europaea L. found a significant increase of the abundance of V-ATPase subunit A under salinity. Here, the gene encoding this subunit named SeVHA-A was characterized, and its role in salt tolerance was demonstrated by RNAi directed downregulation in suspension-cultured cells of S. europaea. The transcripts of genes encoding vacuolar H + -PPase (V-PPase) and vacuolar Na + /H + antiporter (SeNHX1) also decreased significantly in the RNAi cells. Knockdown of SeVHA-A resulted in a reduction in both V-ATPase and vacuolar H + -PPase (V-PPase) activities. Accordingly, the SeVHA-A-RNAi cells showed increased vacuolar pH and decreased cell viability under different NaCl concentrations. Further Na + staining showed the reduced vacuolar Na + sequestration in RNAi cells. Taken together, our results evidenced that SeVHA-A participates in vacuolar Na + sequestration regulating V-ATPase and V-PPase activities and thereby vacuolar pH in S. europaea. The possible mechanisms underlying the reduction of vacuolar V-PPase activity in SeVHA-A-RNAi cells were also discussed.

  12. Avt5p is required for vacuolar uptake of amino acids in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Chardwiriyapreecha, Soracom; Mukaiyama, Hiroyuki; Sekito, Takayuki; Iwaki, Tomoko; Takegawa, Kaoru; Kakinuma, Yoshimi

    2010-06-03

    We identified SPBC1685.07c of Schizosaccharomyces pombe as a novel vacuolar protein, Avt5p, with similarity to vacuolar amino acid transporters Avt5p from Saccharomyces cerevisiae. Avt5p localizes to the vacuolar membrane and upon disruption of avt5, uptake of histidine, glutamate, tyrosine, arginine, lysine or serine was impaired. During nitrogen starvation, the transient increase of vacuolar lysine transport observed for wild-type cells still occurred in the mutant cells, however, uptake of glutamate did not significantly increase in response to nitrogen starvation. Our results show that under diverse growth conditions Avt5p is involved in vacuolar transport of a selective set of amino acids. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4

    PubMed Central

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C.; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H+ transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties ‘Ordinary Ponkan (OPK)’ and an early maturing mutant ‘Zaoshu Ponkan (ZPK)’. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  14. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4.

    PubMed

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-02-03

    Organic acids are essential to fruit flavor. The vacuolar H(+) transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties 'Ordinary Ponkan (OPK)' and an early maturing mutant 'Zaoshu Ponkan (ZPK)'. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis.

  15. Squeezing at Entrance of Proton Transport Pathway in Proton-translocating Pyrophosphatase upon Substrate Binding*

    PubMed Central

    Huang, Yun-Tzu; Liu, Tseng-Huang; Lin, Shih-Ming; Chen, Yen-Wei; Pan, Yih-Jiuan; Lee, Ching-Hung; Sun, Yuh-Ju; Tseng, Fan-Gang; Pan, Rong-Long

    2013-01-01

    Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H+-PPase consists of 14–16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H+-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H+-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H+-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H+-PPase upon substrate binding. PMID:23720778

  16. The Proton Pump Inhibitor Nonresponder: a Behavioral Approach to Improvement and Wellness.

    PubMed

    Riehl, Megan E; Chen, Joan W

    2018-06-09

    Gastroesophageal reflux disease (GERD) is a difficult to treat medical condition, where nearly 40% of patients are refractory to standard medical intervention, which typically begins with a proton pump inhibitor (PPI). These PPI nonresponders represent a population of patients, where treatment planning must be individualized; multidisciplinary and psychiatric comorbidities should be considered. This review highlights treatment options that include neuromodulators, lifestyle, and psychological interventions for the PPI nonresponder. Mental health specialists in the field of psychogastroenterology can aid in the management of esophageal hypersensitivity, which can drive the symptom experience of a PPI nonresponder. Considerations for comorbid anxiety and depression in this population require careful assessment and treatment. Physicians are encouraged to create realistic expectations for symptom management and offer multidisciplinary options for treatment early in care. Patients will frequently benefit from working with a GI psychologist and find value in behavioral interventions.

  17. Characterizing the proton loading site in cytochrome c oxidase.

    PubMed

    Lu, Jianxun; Gunner, M R

    2014-08-26

    Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, Cu(B), Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1-4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded.

  18. Identification of the fnx1+ and fnx2+ genes for vacuolar amino acid transporters in Schizosaccharomyces pombe.

    PubMed

    Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Morita, Tomotake; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2008-06-25

    We have identified the Schizosaccharomyces pombe SPBC3E7.06c gene (fnx2(+)) from a homology search with the fnx1(+) gene involving in G(0) arrest upon nitrogen starvation. Green fluorescent protein-fused Fnx1p and Fnx2p localized exclusively to the vacuolar membrane. Uptake of histidine or isoleucine by S. pombe cells was inhibited by concanamycin A, a specific inhibitor of the vacuolar H(+)-ATPase. Amino acid uptake was also defective in the vacuolar ATPase mutant, suggesting that vacuolar compartmentalization is critical for amino acid uptake by whole cells. In both Deltafnx1 and Deltafnx2 mutant cells, uptake of lysine, isoleucine or asparagine was impaired. These results suggest that fnx1(+) and fnx2(+) are involved in vacuolar amino acid uptake in S. pombe.

  19. Use of proton pump inhibitors and mortality after hip fracture in a nationwide study.

    PubMed

    Brozek, W; Reichardt, B; Zwerina, J; Dimai, H P; Klaushofer, K; Zwettler, E

    2017-05-01

    We analyzed the association of proton pump inhibitors (PPIs) with mortality after osteoporosis-related hip fracture in Austria. PPIs were associated with reduced 90-day mortality but elevated mortality after half a year when initiated pre-fracture. Inpatients and discharged patients on PPIs showed lowered in-hospital and 90-day mortality, respectively. We herein investigated use of proton pump inhibitors (PPIs) and mortality among hip fracture patients in a nationwide study in Austria. In this retrospective cohort study, data on use of PPIs were obtained from 31,668 Austrian patients ≥50 years with a hip fracture between July 2008 and December 2010. All-cause mortality in patients without anti-osteoporotic drug treatment who had received their first recorded PPI prescription in the study period either before or after fracture was compared with hip fracture patients on neither PPIs nor anti-osteoporotic medication using logistic and Cox regression analysis. With PPI use, 90-day mortality was significantly reduced, both at initiation before (OR 0.66; p < 0.0001) and after hip fracture (OR 0.23; p < 0.0001). 90-day mortality was also reduced when PPIs were prescribed not until after discharge from the last recorded hip fracture-related hospital stay (OR 0.49; p < 0.0001) except for patients aged <70 years. In a sub-cohort of patients beginning PPIs during hospital stay, in-hospital mortality (0.2%) was substantially reduced relative to matched control patients (3.5%) (p < 0.0001). Longer-term mortality significantly increased after half a year post-fracture only among those who started PPI prescription before fracture. PPI use during and after hospital stay due to hip fracture is associated with a considerable decrease in mortality. These findings could have implications for hip fracture treatment.

  20. Regulation of transport processes across the tonoplast

    PubMed Central

    Neuhaus, H. Ekkehard; Trentmann, Oliver

    2014-01-01

    In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation. PMID:25309559

  1. Timing of electron and proton transfer in the ba(3) cytochrome c oxidase from Thermus thermophilus.

    PubMed

    von Ballmoos, Christoph; Lachmann, Peter; Gennis, Robert B; Ädelroth, Pia; Brzezinski, Peter

    2012-06-05

    Heme-copper oxidases are membrane-bound proteins that catalyze the reduction of O(2) to H(2)O, a highly exergonic reaction. Part of the free energy of this reaction is used for pumping of protons across the membrane. The ba(3) oxidase from Thermus thermophilus presumably uses a single proton pathway for the transfer of substrate protons used during O(2) reduction as well as for the transfer of the protons that are pumped across the membrane. The pumping stoichiometry (0.5 H(+)/electron) is lower than that of most other (mitochondrial-like) oxidases characterized to date (1 H(+)/electron). We studied the pH dependence and deuterium isotope effect of the kinetics of electron and proton transfer reactions in the ba(3) oxidase. The results from these studies suggest that the movement of protons to the catalytic site and movement to a site located some distance from the catalytic site [proposed to be a "proton-loading site" (PLS) for pumped protons] are separated in time, which allows individual investigation of these reactions. A scenario in which the uptake and release of a pumped proton occurs upon every second transfer of an electron to the catalytic site would explain the decreased proton pumping stoichiometry compared to that of mitochondrial-like oxidases.

  2. Review of pharmacokinetic and pharmacodynamic modeling and safety of proton pump inhibitors and aspirin.

    PubMed

    Gesheff, Martin G; Franzese, Christopher J; Bliden, Kevin P; Contino, Chase J; Rafeedheen, Rahil; Tantry, Udaya S; Gurbel, Paul A

    2014-09-01

    The efficacy of aspirin in primary and secondary prevention of cardiovascular diseases has been convincingly demonstrated. Gastrointestinal (GI) adverse effects with aspirin may lead to poor adherence and/or discontinuation of treatment. Proton pump inhibitors (PPIs) have been used for more than 20 years as the first choice for treating peptic ulcers and their bleeding complications, gastroesophageal reflux disease, non-steroidal anti-inflammatory drug-induced GI lesions and dyspepsia. Adherence becomes a major concern when aspirin is co-prescribed with PPIs to prevent GI adverse effects. Combining aspirin and PPIs into one tablet is an effective approach to address aspirin-related GI adverse effects and increase adherence to aspirin therapy for the prevention of cardiovascular diseases.

  3. Rapid Nuclear Exclusion of Hcm1 in Aging Saccharomyces cerevisiae Leads to Vacuolar Alkalization and Replicative Senescence

    PubMed Central

    Ghavidel, Ata; Baxi, Kunal; Prusinkiewicz, Martin; Swan, Cynthia; Belak, Zach R.; Eskiw, Christopher H.; Carvalho, Carlos E.; Harkness, Troy A.

    2018-01-01

    The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox) transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1) are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2), leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS). Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost. PMID:29519938

  4. Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells*

    PubMed Central

    Chan, Chun-Yuan; Dominguez, Dennis; Parra, Karlett J.

    2016-01-01

    Yeast 6-phosphofructo-1-kinase (PFK-1) has two subunits, Pfk1p and Pfk2p. Deletion of Pfk2p alters glucose-dependent V-ATPase reassembly and vacuolar acidification (Chan, C. Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J. Biol. Chem. 289, 19448–19457). This study capitalized on the mechanisms suppressing vacuolar H+-ATPase (V-ATPase) in pfk2Δ to gain new knowledge of the mechanisms underlying glucose-dependent V-ATPase regulation. Because V-ATPase is fully assembled in pfk2Δ, and glycolysis partially suppressed at steady state, we manipulated glycolysis and assessed its direct involvement on V-ATPase function. At steady state, the ratio of proton transport to ATP hydrolysis increased 24% after increasing the glucose concentration from 2% to 4% to enhance the glycolysis flow in pfk2Δ. Tighter coupling restored vacuolar pH when glucose was abundant and glycolysis operated below capacity. After readdition of glucose to glucose-deprived cells, glucose-dependent V1Vo reassembly was proportional to the glycolysis flow. Readdition of 2% glucose to pfk2Δ cells, which restored 62% of ethanol concentration, led to equivalent 60% V1Vo reassembly levels. Steady-state level of assembly (100% reassembly) was reached at 4% glucose when glycolysis reached a threshold in pfk2Δ (≥40% the wild-type flow). At 4% glucose, the level of Pfk1p co-immunoprecipitated with V-ATPase decreased 58% in pfk2Δ, suggesting that Pfk1p binding to V-ATPase may be inhibitory in the mutant. We concluded that V-ATPase activity at steady state and V-ATPase reassembly after readdition of glucose to glucose-deprived cells are controlled by the glycolysis flow. We propose a new mechanism by which glucose regulates V-ATPase catalytic activity that occurs at steady state without changing V1Vo assembly. PMID:27226568

  5. Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile*

    PubMed Central

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-01-01

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding. PMID:23740255

  6. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile.

    PubMed

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-07-26

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding.

  7. Evidence-based support for the use of proton pump inhibitors in cancer therapy.

    PubMed

    Fais, Stefano

    2015-11-24

    'We can only cure what we can understand first', said Otto H. Warburg, the 1931 Nobel laureate for his discovery on tumor metabolism. Unfortunately, we still don't know too much the mechanisms underlying of cancer development and progression. One of the unsolved mystery includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery, that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. One of the most mechanism to survive to the acidic tumor microenvironment are proton exchangers not allowing intracellular acidification through a continuous elimination of H(+) either outside the cells or within the internal vacuoles. This article wants to comment a translational process through which from the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed chemosensitizers as well, we have got to the clinical proof of concept that PPI may well be included in new anti-cancer strategies, and with a solid background and rationale.

  8. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.

    PubMed

    Sekito, Takayuki; Chardwiriyapreecha, Soracom; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2014-01-01

    Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.

  9. Small Bowel Bacterial Overgrowth Associated with Persistence of Abdominal Symptoms in Children Treated with a Proton Pump Inhibitor.

    PubMed

    Sieczkowska, Agnieszka; Landowski, Piotr; Zagozdzon, Pawel; Kaminska, Barbara; Lifschitz, Carlos

    2015-05-01

    Small bowel bacterial overgrowth (SBBO) was diagnosed in 22.5% of 40 children treated for 3 months with a proton pump inhibitor (PPI). Compared with those without SBBO, children with SBBO had higher frequency of abdominal pain, bloating, eructation, and flatulence. Patients with gastrointestinal symptoms after PPI treatment should be evaluated for SBBO rather than empirically prolonging PPI therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Blood Pressure-Lowering Effect of Orally Ingested Nitrite Is Abolished by a Proton Pump Inhibitor.

    PubMed

    Montenegro, Marcelo F; Sundqvist, Michaela L; Larsen, Filip J; Zhuge, Zhengbing; Carlström, Mattias; Weitzberg, Eddie; Lundberg, Jon O

    2017-01-01

    Inorganic nitrate and nitrite from dietary and endogenous sources are metabolized to NO and other bioactive nitrogen oxides that affect blood pressure. The mechanisms for nitrite bioactivation are unclear, but recent studies in rodents suggest that gastric acidity may influence the systemic effects of this anion. In a randomized, double-blind, placebo-controlled crossover study, we tested the effects of a proton pump inhibitor on the acute cardiovascular effects of nitrite. Fifteen healthy nonsmoking, normotensive subjects, aged 19 to 39 years, were pretreated with placebo or esomeprazole (3×40 mg) before ingesting sodium nitrite (0.3 mg kg -1 ), followed by blood pressure monitoring. Nitrite reduced systolic blood pressure by a maximum of 6±1.3 mm Hg when taken after placebo, whereas pretreatment with esomeprazole blunted this effect. Peak plasma nitrite, nitrate, and nitroso species levels after nitrite ingestion were similar in both interventions. In 8 healthy volunteers, we then infused increasing doses of sodium nitrite (1, 10, and 30 nmol kg -1 min -1 ) intravenously. Interestingly, although plasma nitrite peaked at similar levels as with orally ingested nitrite (≈1.8 µmol/L), no changes in blood pressure were observed. In rodents, esomeprazole did not affect the blood pressure response to the NO donor, DEA NONOate, or vascular relaxation to nitroprusside and acetylcholine, demonstrating an intact downstream NO-signaling pathway. We conclude that the acute blood pressure-lowering effect of nitrite requires an acidic gastric environment. Future studies will reveal if the cardiovascular complications associated with the use of proton pump inhibitors are linked to interference with the nitrate-nitrite-NO pathway. © 2016 American Heart Association, Inc.

  11. Characterizing the proton loading site in cytochrome c oxidase

    PubMed Central

    Lu, Jianxun; Gunner, M. R.

    2014-01-01

    Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, CuB, Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1–4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded. PMID:25114210

  12. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    USDA-ARS?s Scientific Manuscript database

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  13. The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors

    PubMed Central

    Bellone, Matteo; Calcinotto, Arianna; Filipazzi, Paola; De Milito, Angelo; Fais, Stefano; Rivoltini, Licia

    2013-01-01

    We have recently reported that lowering the pH to values that are frequently detected in tumors causes reversible anergy in both human and mouse CD8+ T lymphocytes in vitro. The same occurs in vivo, in the tumor microenvironment and the administration of proton pump inhibitors, which buffer tumor acidity, can revert T-cell anergy and increase the efficacy of immunotherapy. PMID:23483769

  14. Proton pump inhibitors affect the gut microbiome

    PubMed Central

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Tigchelaar, Ettje F; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    2016-01-01

    Background and aims Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. Methods The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. Results 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon's diversity and with changes in 20% of the bacterial taxa (false discovery rate <0.05). Multiple oral bacteria were over-represented in the faecal microbiome of PPI-users, including the genus Rothia (p=9.8×10−38). In PPI users we observed a significant increase in bacteria: genera Enterococcus, Streptococcus, Staphylococcus and the potentially pathogenic species Escherichia coli. Conclusions The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs. PMID:26657899

  15. Expression, crystallization and phasing of vacuolar H(+)-ATPase subunit C (Vma5p) of Saccharomyces cerevisiae.

    PubMed

    Drory, Omri; Mor, Adi; Frolow, Felix; Nelson, Nathan

    2004-10-01

    The expression, crystallization and phasing of subunit C (Vma5p) of the yeast (Saccharomyces cerevisiae) vacuolar proton-translocating ATPase (V-ATPase) is described. The expressed protein consists of 412 residues: 392 from the reading frame of Vma5p and 20 N-terminal residues originating from the plasmid. Diffraction-quality crystals were obtained using the hanging-drop and sitting-drop vapour-diffusion methods assisted by streak-seeding, with PEG 3350 as precipitant. The crystals formed in hanging drops diffracted to 1.80 A and belong to space group P4(3)2(1)2(1), with unit-cell parameters a = b = 62.54, c = 327.37 A, alpha = beta = gamma = 90 degrees. The structure was solved using SIRAS with a Lu(O2C2H3)2 heavy-atom derivative.

  16. High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger.

    PubMed

    Elbaz, Benayahu; Shoshani-Knaani, Noa; David-Assael, Ora; Mizrachy-Dagri, Talya; Mizrahi, Keren; Saul, Helen; Brook, Emil; Berezin, Irina; Shaul, Orit

    2006-06-01

    Zn hyperaccumulator plants sequester Zn into their shoot vacuoles. To date, the only transporters implicated in Zn sequestration into the vacuoles of hyperaccumulator plants are cation diffusion facilitators (CDFs). We investigated the expression in Arabidopsis halleri of a homolog of AtMHX, an A. thaliana tonoplast transporter that exchanges protons with Mg, Zn and Fe ions. A. halleri has a single copy of a homologous gene, encoding a protein that shares 98% sequence identity with AtMHX. Western blot analysis with vacuolar-enriched membrane fractions suggests localization of AhMHX in the tonoplast. The levels of MHX proteins are much higher in leaves of A. halleri than in leaves of the non-accumulator plant A. thaliana. At the same time, the levels of MHX transcripts are similar in leaves of the two species. This suggests that the difference in MHX levels is regulated at the post-transcriptional level. In vitro translation studies indicated that the difference between AhMHX and AtMHX expression is not likely to result from the variations in the sequence of their 5' untranslated regions (5'UTRs). The high expression of AhMHX in A. halleri leaves is constitutive and not significantly affected by the metal status of the plants. In both species, MHX transcript levels are higher in leaves than in roots, but the difference is higher in A. halleri. Metal sequestration into root vacuoles was suggested to inhibit hyperaccumulation in the shoot. Our data implicate AhMHX as a candidate gene in metal accumulation or tolerance in A. halleri.

  17. Involvement of MoVMA11, a Putative Vacuolar ATPase c’ Subunit, in Vacuolar Acidification and Infection-Related Morphogenesis of Magnaporthe oryzae

    PubMed Central

    Chen, Guoqing; Liu, Xiaohong; Zhang, Lilin; Cao, Huijuan; Lu, Jianping; Lin, Fucheng

    2013-01-01

    Many functions of vacuole depend on the activity of vacuolar ATPase which is essential to maintain an acidic lumen and create the driving forces for massive fluxes of ions and metabolites through vacuolar membrane. In filamentous fungus Magnaporthe oryzae , subcellular colocalization and quinacrine staining suggested that the V1V0 domains of V-ATPase were fully assembled and the vacuoles were kept acidic during infection-related developments. Targeted gene disruption of MoVMA11 gene, encoding the putative c’ subunit of V-ATPase, impaired vacuolar acidification and mimicked the phenotypes of yeast V-ATPase mutants in the poor colony morphology, abolished asexual and sexual reproductions, selective carbon source utilization, and increased calcium and heavy metals sensitivities, however, not in the typical pH conditional lethality. Strikingly, aerial hyphae of the MoVMA11 null mutant intertwined with each other to form extremely thick filamentous structures. The results also implicated that MoVMA11 was involved in cell wall integrity and appressorium formation. Abundant non-melanized swollen structures and rare, small appressoria without penetration ability were produced at the hyphal tips of the ΔMovma11 mutant on onion epidermal cells. Finally, the MoVMA11 null mutant lost pathogenicity on both intact and wounded host leaves. Overall, our data indicated that MoVMA11, like other fungal VMA genes, is associated with numerous cellular functions and highlighted that V-ATPase is essential for infection-related morphogenesis and pathogenesis in M . oryzae . PMID:23826342

  18. Vacuolar Chloride Fluxes Impact Ion Content and Distribution during Early Salinity Stress1

    PubMed Central

    Baetz, Ulrike; Tohge, Takayuki; Martinoia, Enrico; De Angeli, Alexis

    2016-01-01

    The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl− are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl− channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl− and Na+. In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl− and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl− loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity. PMID:27503602

  19. Proton pump inhibitor-responsive esophageal eosinophilia: a historical perspective on a novel and evolving entity.

    PubMed

    Molina-Infante, Javier; Katzka, David A; Dellon, Evan S

    2015-01-01

    Eosinophilic esophagitis (EoE) is an emerging chronic esophageal disease, first described in 1993, with a steadily increasing incidence and prevalence in western countries. Over the 80's and early 90's, dense esophageal eosinophilia was mostly associated gastroesophageal reflux disease (GERD). For the next 15 years, EoE and GERD were rigidly considered separate entities: Esophageal eosinophilia with pathological acid exposure on pH monitoring or response to proton pump inhibitor (PPI) therapy was GERD, whereas normal pH monitoring or absence of response to PPIs was EoE. Updated guidelines in 2011 described a novel phenotype, proton pump inhibitor-responsive esophageal eosinophilia (PPI-REE), referring to patients who appear to have EoE clinically, but who achieve complete remission after PPI therapy. Currently, PPI-REE must be formally excluded before diagnosing EoE, since 30-40% of patients with suspected EoE are eventually diagnosed with PPI-REE.Interestingly, PPI-REE and EoE remain undistinguishable based on clinical, endoscopic, and histological findings, pH monitoring, and measurement of tissue markers and cytokines related to eosinophilic inflammation.This review article aims to revisit the relatively novel concept of PPI-REE from a historical perspective, given the strong belief that only GERD, as an acid peptic disorder, could respond to the acid suppressing ability of PPI therapy, is becoming outdated. Evolving evidence suggests that PPI-REE is genetically and phenotypically undistinguishable from EoE and PPI therapy alone can almost completely reverse allergic inflammation. As such, PPI-REE might constitute a subphenotype of EoE and PPI therapy may be the first therapeutic step and diet/ steroids may represent step up therapy. Possibly, the term PPI-REE will be soon replaced by PPI-responsive EoE. The mechanism as to why some patients respond to PPI therapy (PPI-REE) while others do not (EoE), remains to be elucidated.

  20. Pharmacokinetics and Pharmacodynamics of Azeloprazole Sodium, a Novel Proton Pump Inhibitor, in Healthy Japanese Volunteers.

    PubMed

    Toda, Ryoko; Shiramoto, Masanari; Komai, Emi; Yoshii, Kazuyoshi; Hirayama, Masamichi; Kawabata, Yoshihiro

    2018-04-01

    The pharmacokinetics (PK) and pharmacodynamics (PD) of proton pump inhibitors differ among cytochrome P450 (CYP) 2C19 genotypes. Therefore, we developed azeloprazole sodium (Z-215), a novel proton pump inhibitor, whose metabolism is not affected by CYP2C19 activity in vitro. However, the PK and PD of azeloprazole sodium have not been evaluated in Japanese subjects. We conducted an open-label, crossover study in healthy Japanese male volunteers to evaluate the plasma concentration and intragastric pH with respect to CYP2C19 genotype after repeated administration of 10, 20, and 40 mg azeloprazole sodium and 10 and 20 mg rabeprazole sodium (rabeprazole). The plasma concentration profile of azeloprazole sodium was similar among genotypes, whereas that of rabeprazole differed. The 24-hour intragastric pH ≥ 4 holding time ratio (pH ≥ 4 HTR) of azeloprazole sodium was similar among genotypes. The pH ≥ 4 HTR was 52.5%-60.3%, 55.1%-65.8%, and 69.4%-77.1% after administration of 10, 20, and 40 mg azeloprazole sodium, respectively, and 59.2%-72.3% and 64.4%-91.2% after administration of 10 and 20 mg rabeprazole, respectively, on the fifth day of dosing. The maximum plasma concentration (C max ), area under the plasma concentration-time curve (AUC), and pH ≥ 4 HTR of azeloprazole sodium were proportional to dose. The C max , AUC, and pH ≥ 4 HTR on day 5 were slightly higher following administration of 20 mg azeloprazole sodium before comparison with after a meal. No serious adverse events were observed. These results suggest that azeloprazole sodium is useful for treating gastroesophageal reflux disease in all CYP2C19 genotypes. © 2017, The American College of Clinical Pharmacology.

  1. Chimeric Proton-Pumping Rhodopsins Containing the Cytoplasmic Loop of Bovine Rhodopsin

    PubMed Central

    Sasaki, Kengo; Yamashita, Takahiro; Yoshida, Kazuho; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki

    2014-01-01

    G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light. PMID:24621599

  2. Arabidopsis Intracellular NHX-Type Sodium-Proton Antiporters are Required for Seed Storage Protein Processing.

    PubMed

    Ashnest, Joanne R; Huynh, Dung L; Dragwidge, Jonathan M; Ford, Brett A; Gendall, Anthony R

    2015-11-01

    The Arabidopsis intracellular sodium-proton exchanger (NHX) proteins AtNHX5 and AtNHX6 have a well-documented role in plant development, and have been used to improve salt tolerance in a variety of species. Despite evidence that intracellular NHX proteins are important in vacuolar trafficking, the mechanism of this role is poorly understood. Here we show that NHX5 and NHX6 are necessary for processing of the predominant seed storage proteins, and also influence the processing and activity of a vacuolar processing enzyme. Furthermore, we show by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) technology that the C-terminal tail of NHX6 interacts with a component of Retromer, another component of the cell sorting machinery, and that this tail is critical for NHX6 activity. These findings demonstrate that NHX5 and NHX6 are important in processing and activity of vacuolar cargo, and suggest a mechanism by which NHX intracellular (IC)-II antiporters may be involved in subcellular trafficking. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. The impact of proton pump inhibitors on the human gastrointestinal microbiome

    PubMed Central

    Freedberg, Daniel E.; Lebwohl, Benjamin; Abrams, Julian A.

    2014-01-01

    Potent gastric acid suppression using proton pump inhibitors (PPIs) is common in clinical practice yet may have important effects on human health that are mediated through changes in the gastrointestinal microbiome. Acting through pH-dependent or pH-independent mechanisms, PPIs have the potential to alter the normal microbiota throughout the human gastrointestinal lumen. In the esophagus, PPIs change the normal bacterial milieu to decrease distal esophageal exposure to inflammatory Gram-negative bacteria which may lower the risk of Barrett's esophagus. In the stomach, PPIs alter the abundance and location of gastric Helicobacter pylori and other bacteria, which has implications for peptic ulcer disease and gastric malignancy. In the small bowel, PPIs cause polymicrobial small bowel bacterial overgrowth and have been associated with the diagnosis of celiac disease. In the colon, PPIs associate with incident but not recurrent Clostridium difficile infection, putatively through alterations in commensal colonic anaerobes. Our understanding of the effect of gastric acid suppression on the human gastrointestinal microbiome is incomplete but is rapidly advancing. PMID:25439276

  4. What are the effects of proton pump inhibitors on the small intestine?

    PubMed Central

    Fujimori, Shunji

    2015-01-01

    Generally, proton-pump inhibitors (PPIs) have great benefit for patients with acid related disease with less frequently occurring side effects. According to a recent report, PPIs provoke dysbiosis of the small intestinal bacterial flora, exacerbating nonsteroidal anti-inflammatory drug-induced small intestinal injury. Several meta-analyses and systematic reviews have reported that patients treated with PPIs, as well as post-gastrectomy patients, have a higher frequency of small intestinal bacterial overgrowth (SIBO) compared to patients who lack the aforementioned conditions. Furthermore, there is insufficient evidence that these conditions induce Clostridium difficile infection. At this time, PPI-induced dysbiosis is considered a type of SIBO. It now seems likely that intestinal bacterial flora influence many diseases, such as inflammatory bowel disease, diabetes mellitus, obesity, non-alcoholic fatty liver disease, and autoimmune diseases. When attempting to control intestinal bacterial flora with probiotics, prebiotics, and fecal microbiota transplantation, etc., the influence of acid suppression therapy, especially PPIs, should not be overlooked. PMID:26078557

  5. What are the effects of proton pump inhibitors on the small intestine?

    PubMed

    Fujimori, Shunji

    2015-06-14

    Generally, proton-pump inhibitors (PPIs) have great benefit for patients with acid related disease with less frequently occurring side effects. According to a recent report, PPIs provoke dysbiosis of the small intestinal bacterial flora, exacerbating nonsteroidal anti-inflammatory drug-induced small intestinal injury. Several meta-analyses and systematic reviews have reported that patients treated with PPIs, as well as post-gastrectomy patients, have a higher frequency of small intestinal bacterial overgrowth (SIBO) compared to patients who lack the aforementioned conditions. Furthermore, there is insufficient evidence that these conditions induce Clostridium difficile infection. At this time, PPI-induced dysbiosis is considered a type of SIBO. It now seems likely that intestinal bacterial flora influence many diseases, such as inflammatory bowel disease, diabetes mellitus, obesity, non-alcoholic fatty liver disease, and autoimmune diseases. When attempting to control intestinal bacterial flora with probiotics, prebiotics, and fecal microbiota transplantation, etc., the influence of acid suppression therapy, especially PPIs, should not be overlooked.

  6. Proton pump inhibitor resistance, the real challenge in gastro-esophageal reflux disease.

    PubMed

    Cicala, Michele; Emerenziani, Sara; Guarino, Michele Pier Luca; Ribolsi, Mentore

    2013-10-21

    Gastro-esophageal reflux disease (GERD) is one of the most prevalent chronic diseases. Although proton pump inhibitors (PPIs) represent the mainstay of treatment both for healing erosive esophagitis and for symptom relief, several studies have shown that up to 40% of GERD patients reported either partial or complete lack of response of their symptoms to a standard PPI dose once daily. Several mechanisms have been proposed as involved in PPIs resistance, including ineffective control of gastric acid secretion, esophageal hypersensitivity, ultrastructural and functional changes in the esophageal epithelium. The diagnostic evaluation of a refractory GERD patients should include an accurate clinical evaluation, upper endoscopy, esophageal manometry and ambulatory pH-impedance monitoring, which allows to discriminate non-erosive reflux disease patients from those presenting esophageal hypersensitivity or functional heartburn. Treatment has been primarily based on doubling the PPI dose or switching to another PPI. Patients with proven disease, not responding to PPI twice daily, are eligible for anti-reflux surgery.

  7. In silico design of novel proton-pump inhibitors with reduced adverse effects.

    PubMed

    Li, Xiaoyi; Kang, Hong; Liu, Wensheng; Singhal, Sarita; Jiao, Na; Wang, Yong; Zhu, Lixin; Zhu, Ruixin

    2018-05-30

    The development of new proton-pump inhibitors (PPIs) with less adverse effects by lowering the pKa values of nitrogen atoms in pyrimidine rings has been previously suggested by our group. In this work, we proposed that new PPIs should have the following features: (1) number of ring II = number of ring I + 1; (2) preferably five, six, or seven-membered heteroatomic ring for stability; and (3) 1 < pKa1 < 4. Six molecular scaffolds based on the aforementioned criteria were constructed, and R groups were extracted from compounds in extensive data sources. A virtual molecule dataset was established, and the pKa values of specific atoms on the molecules in the dataset were calculated to select the molecules with required pKa values. Drug-likeness screening was further conducted to obtain the candidates that significantly reduced the adverse effects of long-term PPI use. This study provided insights and tools for designing targeted molecules in silico that are suitable for practical applications.

  8. Genome-Wide Analysis Reveals the Vacuolar pH-Stat of Saccharomyces cerevisiae

    PubMed Central

    Brett, Christopher L.; Kallay, Laura; Hua, Zhaolin; Green, Richard; Chyou, Anthony; Zhang, Yongqiang; Graham, Todd R.; Donowitz, Mark; Rao, Rajini

    2011-01-01

    Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pHv) in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pHv (5.27±0.13) was resistant to acid stress (5.28±0.14) but shifted significantly in response to alkali stress (5.83±0.13). Of 107 mutants that displayed aberrant pHv under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pHv dysregulation in a neo1ts mutant restored viability whereas cholesterol accumulation in human NPC1−/− fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation. PMID:21423800

  9. Single mutations that redirect internal proton transfer in the ba3 oxidase from Thermus thermophilus

    PubMed Central

    Smirnova, Irina; Chang, Hsin-Yang; von Ballmoos, Christoph; Ädelroth, Pia; Gennis, Robert B.; Brzezinski, Peter

    2014-01-01

    The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound proton pump. Results from earlier studies have shown that with the aa3-type oxidases proton uptake to the catalytic site and “pump site” occur simultaneously. However, with the ba3 oxidase the pump site is loaded before proton transfer to the catalytic site because the proton transfer to the latter is slower than with the aa3 oxidases. In addition, the timing of formation and decay of catalytic intermediates is different in the two types of oxidases. In the present study, we have investigated two mutant ba3 CytcOs in which residues of the proton pathway leading to the catalytic site as well as the pump site were exchanged, Thr312Val and Tyr244Phe. Even though the ba3 CytcO uses only a single proton pathway for transfer of the substrate and “pumped” protons, the amino-acid residue substitutions had distinctly different effects on the kinetics of proton transfer to the catalytic site and the pump site, respectively. The results indicate that the rates of these reactions can be modified independently by replacement of single residues within the proton pathway. Furthermore, the data suggest that the Thr312Val and Tyr244Phe mutations interfere with a structural rearrangement in the proton pathway that is rate limiting for proton transfer to the catalytic site. PMID:24004023

  10. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity.

    PubMed

    Deprez, Marie-Anne; Eskes, Elja; Wilms, Tobias; Ludovico, Paula; Winderickx, Joris

    2018-01-12

    The plasma membrane H + -ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.

  11. Vacuolar deposition of recombinant proteins in plant vegetative organs as a strategy to increase yields.

    PubMed

    Marin Viegas, Vanesa Soledad; Ocampo, Carolina Gabriela; Petruccelli, Silvana

    2017-05-04

    Delivery of recombinant proteins to vegetative tissue vacuoles was considered inconvenient since this compartment was expected to be hydrolytic; nevertheless there is growing evidence that certain foreign proteins accumulate at high yields in vacuoles. For example avidin, cellulolytic enzymes, endolysin, and transglutaminases were produced at high yields when were sorted to leaf central vacuole avoiding the detrimental effect of these proteins on plant growth. Also, several secretory mammalian proteins such as collagen, α1-proteinase inhibitor, complement-5a, interleukin-6 and immunoglobulins accumulated at higher yields in leaf vacuoles than in the apoplast or cytosol. To reach this final destination, fusions to sequence specific vacuolar sorting signals (ssVSS) typical of proteases or proteinase inhibitors and/or Ct-VSS representative of storage proteins or plant lectins were used and both types of motifs were capable to increase accumulation. Importantly, the type of VSSs or position, either the N or C-terminus, did not alter protein stability, levels or pos-translational modifications. Vacuolar sorted glycoproteins had different type of oligosaccharides indicating that foreign proteins reached the vacuole by 2 different pathways: direct transport from the ER, bypassing the Golgi (high mannose oligosaccharides decorated proteins) or trafficking through the Golgi (Complex oligosaccharide containing proteins). In addition, some glycoproteins lacked of paucimannosidic oligosaccharides suggesting that vacuolar trimming of glycans did not occur. Enhanced accumulation of foreign proteins fused to VSS occurred in several plant species such as tobacco, Nicotiana benthamiana, sugarcane, tomato and in carrot and the obtained results were influenced by plant physiological state. Ten different foreign proteins fused to vacuolar sorting accumulated at higher levels than their apoplastic or cytosolic counterparts. For proteins with cytotoxic effects vacuolar sorted forms

  12. Proton pump inhibitors affect the gut microbiome.

    PubMed

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Tigchelaar, Ettje F; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    2016-05-01

    Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon's diversity and with changes in 20% of the bacterial taxa (false discovery rate <0.05). Multiple oral bacteria were over-represented in the faecal microbiome of PPI-users, including the genus Rothia (p=9.8×10(-38)). In PPI users we observed a significant increase in bacteria: genera Enterococcus, Streptococcus, Staphylococcus and the potentially pathogenic species Escherichia coli. The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Regulation of Vacuolar pH in Citrus limon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln Taiz

    The primary objective of this grant was to characterize the vacuolar V-ATPase of lemon fruits. Lemon fruit vacuoles have an internal pH of about 2.5. Since a typical plant vacuole has a luminal pH of around 5.5, the lemon fruit V-APTase must have special properties which allow it to acidify the lumen to such a low pH: (1) it might have a different structure; (2) it might have a different H{sup +}/ATP stoichiometry; and (3) it might be regulated differently. During the course of the investigations (which began in 1996) they characterized these aspects of the V-ATPases of both lemonmore » fruits and lime fruits. They examined lime fruits because of the availability of both acidic limes with a low vacuolar pH and sweet limes, which have a much higher vacuolar pH. The existence of two types of lime fruits allowed a comparison of the V-ATPases of the two varieties. In this report they are including two publications from 1996 and 1997 as background for the later publications. A review article with Heven Sze on V-ATPase nomenclature was also generated during the funding period. In addition to the studies on citrus fruit vacuoles, they also initiated studies in two new areas: polar auxin transport and the regulation of stomatal opening by UV-B irradiation. These studies were intended to serve as a basis of future separate grants, but the proposals they submitted on these topics were not funded.« less

  14. Identifying Novel Regulators of Vacuolar Trafficking by Combining Fluorescence Imaging-Based Forward Genetic Screening and In Vitro Pollen Germination.

    PubMed

    Feng, Qiang-Nan; Zhang, Yan

    2017-01-01

    Subcellular targeting of vacuolar proteins depends on cellular machinery regulating vesicular trafficking. Plant-specific vacuolar trafficking routes have been reported. However, regulators mediating these processes are obscure. By combining a fluorescence imaging-based forward genetic approach and in vitro pollen germination system, we show an efficient protocol of identifying regulators of plant-specific vacuolar trafficking routes.

  15. Advantages and Disadvantages of Long-term Proton Pump Inhibitor Use

    PubMed Central

    Kinoshita, Yoshikazu; Ishimura, Norihisa; Ishihara, Shunji

    2018-01-01

    Proton pump inhibitors (PPIs) potently inhibit gastric acid secretion and are widely used for treatment of acid-related diseases including gastroesophageal reflux disease and secondary prevention of aspirin/NSAID-induced ulcers. Although clinically important adverse effects of PPIs can occur, just as with other drugs, those are not frequently observed during or after administration. Thus, PPIs are regarded as relatively safe and considered to be clinically beneficial. Recently, PPIs have become frequently administered to patients with functional gastrointestinal diseases or primary prevention of drug-related gastroduodenal damage, even though their beneficial effects for those conditions have not been fully confirmed. PPIs tend to be given for conditions in which the necessity of the drug has not been clarified, thus otherwise rare adverse effects are presented as clinically relevant. Although several PPI-related adverse effects have been reported, their clinical relevance is not yet clear, since the evidence reported in those studies is not at a high enough level, as the majority are based on retrospective observational studies and the reported hazard ratios are low. It is important to administer PPIs only for patients who will gain a substantial clinical benefit and to continue to investigate their adverse effects with high quality prospective studies. PMID:29605975

  16. Cutaneous reactions to proton pump inhibitors: a case-control study.

    PubMed

    Chularojanamontri, Leena; Jiamton, Sukhum; Manapajon, Araya; Suvanasuthi, Saroj; Kulthanan, Kanokvalai; Dhana, Naruemon; Jongjarearnprasert, Kowit

    2012-10-01

    Even though proton pump inhibitors (PPIs) are commonly used in clinical practice, a limited number of studies are available about cutaneous adverse reactions from PPIs, and most of these are case reports. To demonstrate the pattern of cutaneous reactions related to PPI usage and to evaluate the risk of developing PPI drug eruptions among adult patients. We reviewed the spontaneous reports of any adverse events associated with PPI use, as reported from January 2005 through May 2010 to the Adverse Drug Reaction Center at Siriraj Hospital in Thailand. Each control was sampled from 15 patients who had consecutive hospital numbers from each study case. The prevalence of cutaneous reactions to PPIs varied, ranging from three to 20 per 100,000 of the treated population. Sixty-four patients with a history of reaction to PPIs, and 65 controls were enrolled. Most cutaneous reactions were attributed to omeprazole (n=50; 78.1%), and the most frequently observed cutaneous reaction was maculopapular rash (43.8%). None of the patients experienced a cross-reaction between individual PPIs. Cutaneous adverse reactions to PPIs range from minor drug rashes to a severe, life-threatening reaction. Individuals with a history of adverse drug reaction have an increased risk of cutaneous reaction to PPIs.

  17. Advantages and Disadvantages of Long-term Proton Pump Inhibitor Use.

    PubMed

    Kinoshita, Yoshikazu; Ishimura, Norihisa; Ishihara, Shunji

    2018-04-30

    Proton pump inhibitors (PPIs) potently inhibit gastric acid secretion and are widely used for treatment of acid-related diseases including gastroesophageal reflux disease and secondary prevention of aspirin/NSAID-induced ulcers. Although clinically important adverse effects of PPIs can occur, just as with other drugs, those are not frequently observed during or after administration. Thus, PPIs are regarded as relatively safe and considered to be clinically beneficial. Recently, PPIs have become frequently administered to patients with functional gastrointestinal diseases or primary prevention of drug-related gastroduodenal damage, even though their beneficial effects for those conditions have not been fully confirmed. PPIs tend to be given for conditions in which the necessity of the drug has not been clarified, thus otherwise rare adverse effects are presented as clinically relevant. Although several PPI-related adverse effects have been reported, their clinical relevance is not yet clear, since the evidence reported in those studies is not at a high enough level, as the majority are based on retrospective observational studies and the reported hazard ratios are low. It is important to administer PPIs only for patients who will gain a substantial clinical benefit and to continue to investigate their adverse effects with high quality prospective studies.

  18. A light-driven proton pump from Haloterrigena turkmenica: Functional expression in Escherichia coli membrane and coupling with a H{sup +} co-transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamo, Naoki; Hashiba, Tsuyoshi; Kikukawa, Takashi

    2006-03-10

    A gene encoding putative retinal protein was cloned from Haloterrigena turkmenica (JCM9743). The deduced amino acid sequence was most closely related to that of deltarhodopsin, which functions as a light-driven H{sup +} pump and was identified in a novel strain Haloterrigena sp. arg-4 (K. Ihara, T. Uemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura, Y. Mukohata, Evolution of the archaeal rhodopsins: Evolution rate changes by gene duplication and functional differentiation, J. Mol. Biol. 285 (1999) 163-174. GenBank Accession No. AB009620). Thus, we called the present protein H. turkmenica deltarhodopsin (HtdR) in this report. Differing from the Halobacterium salinarum bacteriorhodopsinmore » (bR), functional expression of HtdR was achieved in Escherichia coli membrane with a high yield of 10-15mg protein/L culture. The photocycle of purified HtdR was similar to that of bR. The photo-induced electrogenic proton pumping activity of HtdR was verified. We co-expressed both HtdR and EmrE, a proton-coupled multi-drug efflux transporter in E. coli, and the cells successfully extruded ethidium, a substrate of EmrE, on illumination.« less

  19. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple.

    PubMed

    Hu, Da-Gang; Li, Yuan-Yuan; Zhang, Quan-Yan; Li, Ming; Sun, Cui-Hui; Yu, Jian-Qiang; Hao, Yu-Jin

    2017-08-01

    Malate, the predominant organic acid in many fruits, is a crucial component of the organoleptic quality of fruit, including taste and flavor. The genetic and environmental mechanisms affecting malate metabolism in fruit cells have been studied extensively. However, the transcriptional regulation of malate-metabolizing enzymes and vacuolar transporters remains poorly understood. Our previous studies demonstrated that MdMYB1 modulates anthocyanin accumulation and vacuolar acidification by directly activating vacuolar transporters, including MdVHA-B1, MdVHA-E, MdVHP1 and MdtDT. Interestingly, we isolated and identified a MYB transcription factor, MdMYB73, a distant relative of MdMYB1 in this study. It was subsequently found that MdMYB73 protein bound directly to the promoters of MdALMT9 (aluminum-activated malate transporter 9), MdVHA-A (vacuolar ATPase subunit A) and MdVHP1 (vacuolar pyrophosphatase 1), transcriptionally activating their expression and thereby enhancing their activities. Analyses of transgenic apple calli demonstrated that MdMYB73 influenced malate accumulation and vacuolar pH. Furthermore, MdCIbHLH1 interacted with MdMYB73 and enhanced its activity upon downstream target genes. These findings help to elucidate how MdMYB73 directly modulates the vacuolar transport system to affect malate accumulation and vacuolar pH in apple. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase.

    PubMed

    Wikström, Mårten; Ribacka, Camilla; Molin, Mika; Laakkonen, Liisa; Verkhovsky, Michael; Puustinen, Anne

    2005-07-26

    The membrane-bound enzyme cytochrome c oxidase is responsible for cell respiration in aerobic organisms and conserves free energy from O2 reduction into an electrochemical proton gradient by coupling the redox reaction to proton-pumping across the membrane. O2 reduction produces water at the bimetallic heme a3/CuB active site next to a hydrophobic cavity deep within the membrane. Water molecules in this cavity have been suggested to play an important role in the proton-pumping mechanism. Here, we show by molecular dynamics simulations that the conserved arginine/heme a3 delta-propionate ion pair provides a gate, which exhibits reversible thermal opening that is governed by the redox state and the water molecules in the cavity. An important role of this gate in the proton-pumping mechanism is supported by site-directed mutagenesis experiments. Transport of the product water out of the enzyme must be rigidly controlled to prevent water-mediated proton leaks that could compromise the proton-pumping function. Exit of product water is observed through the same arginine/propionate gate, which provides an explanation for the observed extraordinary spatial specificity of water expulsion from the enzyme.

  1. Human endomembrane H+ pump strongly resembles the ATP-synthetase of Archaebacteria.

    PubMed Central

    Südhof, T C; Fried, V A; Stone, D K; Johnston, P A; Xie, X S

    1989-01-01

    Preparations of mammalian H+ pumps that acidify intracellular vesicles contain eight or nine polypeptides, ranging in size from 116 to 17 kDa. Biochemical analysis indicates that the 70- and 58-kDa polypeptides are subunits critical for ATP hydrolysis. The amino acid sequences of the major catalytic subunits (58 and 70 kDa) of the endomembrane H+ pump are unknown from animal cells. We report here the complete sequence of the 58-kDa subunit derived from a human kidney cDNA clone and partial sequences of the 70- and 58-kDa subunits purified from clathrin-coated vesicles of bovine brain. The amino acid sequences of both proteins strongly resemble the sequences of the corresponding subunits of the vacuolar H+ pumps of Archaebacteria, plants, and fungi. The archaebacterial enzyme is believed to use a H+ gradient to synthesize ATP. Thus, a common ancestral protein has given rise to a H+ pump that synthesizes ATP in one organism and hydrolyzes it in another and is highly conserved from prokaryotes to humans. The same pump appears to mediate the acidification of intracellular organelles, including coated vesicles, lysosomes, and secretory granules, as well as extracellular fluids such as urine. PMID:2527371

  2. Stress ulcer prophylaxis with a proton pump inhibitor versus placebo in critically ill patients (SUP-ICU trial): study protocol for a randomised controlled trial.

    PubMed

    Krag, Mette; Perner, Anders; Wetterslev, Jørn; Wise, Matt P; Borthwick, Mark; Bendel, Stepani; Pelosi, Paolo; Keus, Frederik; Guttormsen, Anne Berit; Schefold, Joerg C; Møller, Morten Hylander

    2016-04-19

    Critically ill patients in the intensive care unit (ICU) are at risk of clinically important gastrointestinal bleeding, and acid suppressants are frequently used prophylactically. However, stress ulcer prophylaxis may increase the risk of serious adverse events and, additionally, the quantity and quality of evidence supporting the use of stress ulcer prophylaxis is low. The aim of the SUP-ICU trial is to assess the benefits and harms of stress ulcer prophylaxis with a proton pump inhibitor in adult patients in the ICU. We hypothesise that stress ulcer prophylaxis reduces the rate of gastrointestinal bleeding, but increases rates of nosocomial infections and myocardial ischaemia. The overall effect on mortality is unpredictable. The SUP-ICU trial is an investigator-initiated, pragmatic, international, multicentre, randomised, blinded, parallel-group trial of stress ulcer prophylaxis with a proton pump inhibitor versus placebo (saline) in 3350 acutely ill ICU patients at risk of gastrointestinal bleeding. The primary outcome measure is 90-day mortality. Secondary outcomes include the proportion of patients with clinically important gastrointestinal bleeding, pneumonia, Clostridium difficile infection or myocardial ischaemia, days alive without life support in the 90-day period, serious adverse reactions, 1-year mortality, and health economic analyses. The sample size will enable us to detect a 20 % relative risk difference (5 % absolute risk difference) in 90-day mortality assuming a 25 % event rate with a risk of type I error of 5 % and power of 90 %. The trial will be externally monitored according to Good Clinical Practice standards. Interim analyses will be performed after 1650 and 2500 patients. The SUP-ICU trial will provide high-quality data on the benefits and harms of stress ulcer prophylaxis with a proton pump inhibitor in critically ill adult patients admitted in the ICU. ClinicalTrials.gov Identifier: NCT02467621 .

  3. Role of protons in the pump cycle of KdpFABC investigated by time-resolved kinetic experiments.

    PubMed

    Damnjanovic, Bojana; Apell, Hans-Jürgen

    2014-05-20

    The time-resolved kinetics of the KdpFABC complex solubilized in Aminoxide WS-35 was investigated by ATP concentration jump experiments. ATP was photoreleased from its inactive precursor, caged ATP, and charge movements in the membrane domain of the KdpFABC were detected by the electrochromic dye RH421. At low ATP concentrations, the ATP binding step became rate-limiting with an apparent, pH-independent ATP binding affinity of ~70 μM. At saturating ATP concentrations, the rate-limiting step is the conformational transition (E1-P → P-E2) with a rate constant of ~1.7 s(-1) at 20 °C that was independent of K(+) concentration. This observation together with the detected fluorescence decrease indicates that K(+) (or another positive ion) is bound in the membrane domain after enzyme phosphorylation and the conformational transition to the P-E2 state. pH dependence experiments revealed different roles of H(+) in the transport mechanism. Two different functions of protons for the ion pump must be distinguished. On one hand, there are electrogenically bound "functional" protons, which are not transported but prerequisite for the performance of the ATP-driven half-cycle. On the other hand, protons bind to the transport sites, acting as weak congeners of K(+). There possibly are noncompetitively bound protons, affecting the enzyme activity and/or coupling between KdpA and KdpB subunits. Finally, the recently proposed Post-Albers model for the KdpFABC complex was supplemented with stoichiometry factors of 2 for K(+) and 3 for H(+), and additional inhibitory side reactions controlled by H(+) were introduced, which are relevant at pH <6.5 and/or in the absence of K(+).

  4. Increased Activity of the Vacuolar Monosaccharide Transporter TMT1 Alters Cellular Sugar Partitioning, Sugar Signaling, and Seed Yield in Arabidopsis1[OA

    PubMed Central

    Wingenter, Karina; Schulz, Alexander; Wormit, Alexandra; Wic, Stefan; Trentmann, Oliver; Hoermiller, Imke I.; Heyer, Arnd G.; Marten, Irene; Hedrich, Rainer; Neuhaus, H. Ekkehard

    2010-01-01

    The extent to which vacuolar sugar transport activity affects molecular, cellular, and developmental processes in Arabidopsis (Arabidopsis thaliana) is unknown. Electrophysiological analysis revealed that overexpression of the tonoplast monosaccharide transporter TMT1 in a tmt1-2::tDNA mutant led to increased proton-coupled monosaccharide import into isolated mesophyll vacuoles in comparison with wild-type vacuoles. TMT1 overexpressor mutants grew faster than wild-type plants on soil and in high-glucose (Glc)-containing liquid medium. These effects were correlated with increased vacuolar monosaccharide compartmentation, as revealed by nonaqueous fractionation and by chlorophyllab-binding protein1 and nitrate reductase1 gene expression studies. Soil-grown TMT1 overexpressor plants respired less Glc than wild-type plants and only about half the amount of Glc respired by tmt1-2::tDNA mutants. In sum, these data show that TMT activity in wild-type plants limits vacuolar monosaccharide loading. Remarkably, TMT1 overexpressor mutants produced larger seeds and greater total seed yield, which was associated with increased lipid and protein content. These changes in seed properties were correlated with slightly decreased nocturnal CO2 release and increased sugar export rates from detached source leaves. The SUC2 gene, which codes for a sucrose transporter that may be critical for phloem loading in leaves, has been identified as Glc repressed. Thus, the observation that SUC2 mRNA increased slightly in TMT1 overexpressor leaves, characterized by lowered cytosolic Glc levels than wild-type leaves, provided further evidence of a stimulated source capacity. In summary, increased TMT activity in Arabidopsis induced modified subcellular sugar compartmentation, altered cellular sugar sensing, affected assimilate allocation, increased the biomass of Arabidopsis seeds, and accelerated early plant development. PMID:20709831

  5. A vacuolar membrane protein Avt7p is involved in transport of amino acid and spore formation in Saccharomyces cerevisiae.

    PubMed

    Tone, Junichi; Yamanaka, Atsushi; Manabe, Kunio; Murao, Nami; Kawano-Kawada, Miyuki; Sekito, Takayuki; Kakinuma, Yoshimi

    2015-01-01

    Active transport systems for various amino acids operate in the vacuolar membrane of Saccharomyces cerevisiae. The gene families for vacuolar amino acid transporters were identified by reverse genetics experiments. In the AVT transporter family, Avt1p works for active uptake of amino acid into vacuole, and Avt3p, Avt4p, and Avt6p for active extrusion of amino acid from vacuole to cytosol. Here, we found green fluorescent protein-tagged Avt7p, an unidentified member of the AVT family, localized to the vacuolar membrane of S. cerevisiae. Disruption of the AVT7 gene enhanced both vacuolar contents of several amino acids and uptake activities of glutamine and proline by vacuolar membrane vesicles. Efficiency of spore formation was impaired by the disruption of the AVT7 gene, suggesting the physiological importance of Avt7p-dependent efflux of amino acid from vacuoles under nutrient-poor condition.

  6. Molecular mechanisms for generating transmembrane proton gradients

    PubMed Central

    Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  7. Calmodulin-stimulated Ca(2+)-ATPases in the vacuolar and plasma membranes in cauliflower.

    PubMed

    Askerlund, P

    1997-07-01

    The subcellular locations of Ca(2+)-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and caM-binding Ca(2+)-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913-922; S. Malmström, P. Askerlund, M.G. Plamgren [1997] FEBS Lett 400: 324-328) comigrated with vacuolar membrane markers, whereas a 116-kD caM-binding Ca(2+)-ATPase co-migrated with a marker for the plasma membrane. The 116 kD Ca(2+)-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca(2+)-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca(2+)-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca(2+)-AtPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca(2+)-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.

  8. LC3 and p62 as diagnostic markers of drug-induced autophagic vacuolar cardiomyopathy: a study of 3 cases.

    PubMed

    Daniels, Brianne H; McComb, Rodney D; Mobley, Bret C; Gultekin, Sakir Humayun; Lee, Han S; Margeta, Marta

    2013-07-01

    Autophagic vacuolar cardiomyopathy is an underrecognized, but potentially fatal, complication of treatment with chloroquine (CQ) and its derivative hydroxychloroquine (HCQ), which are used as therapy for malaria and common connective tissue disorders. Currently, the diagnosis of autophagic vacuolar cardiomyopathy is established through an endomyocardial biopsy and requires electron microscopy, which is not widely available and has a significant potential for sampling error. Recently, we have reported that immunohistochemistry for autophagic markers LC3 and p62 can replace electron microscopy in the diagnosis of HCQ-induced and colchicine-induced autophagic vacuolar skeletal myopathies. In the current study, we use 3 cases of CQ-induced or HCQ-induced cardiomyopathy and 1 HCQ-treated control case to show that the same two markers can be used to diagnose autophagic vacuolar cardiomyopathies by light microscopy. CQ-induced or HCQ-induced autophagic vacuolar cardiomyopathy is not universally fatal, but successful treatment requires early detection. By lowering the barriers to diagnosis, the application of these immunohistochemical markers will decrease the number of misdiagnosed patients, thus increasing the likelihood of favorable clinical outcomes.

  9. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering?

    PubMed

    Spugnini, Enrico; Fais, Stefano

    2017-04-01

    One of the unsolved mysteries in oncology includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to the development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. In the last decades a primordial role for proton exchangers has been supported as a key tumor advantage in facing off the acidic milieu. Proton exchangers do not allow intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through that led to the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed powerful chemosensitizers as well. In this process we achieved the clinical proof of concept that PPI may well be included in new anti-cancer strategies with a solid background and rationale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Appropriate proton pump inhibitors use in elderly outpatients according to recommendations.

    PubMed

    Schonheit, Claire; Le Petitcorps, Hélène; Pautas, Éric

    2016-12-01

    Proton pump inhibitors (PPI) are widely prescribed, particularly in elderly patients, and their side effects are underestimated. Recommendations of the french health authorities, some specific to the elderly, specify their indications. The main objective of this descriptive and prospective study was to assess in elderly patients the adequacy of PPI prescriptions to these recommendations and to the marketing authorization. Analysis of all patients hospitalized in an acute geriatric unit over a period of 2 years for which the drug prescription on admission included a PPI. For the 125 patients included (mean age 84 years), the PPI treatment period exceeded one year in 68% of cases and 49.6% of PPI prescriptions were not consistent with the recommendations; not recommended indications are mainly prevention of gastroduodenal lesions in case of antiplatelet, VKA or corticosteroid treatment (24%), anemia (12%) or epigastric pain (8.5%) without prior endoscopic exploration. Only 50.4% of patients treated with PPI had an upper gastro-intestinal endoscopy, which should be systematically performed in patients over 65 years according to the recommendations. Our study confirms the low appropriateness of PPI prescriptions, particularly in elderly patients. This can be explained by controversial issues or by difficulties in adapting these recommendations in geriatric practice.

  11. Effect of Timing of Proton Pump Inhibitor Administration on Acid Suppression.

    PubMed

    Furuta, Kenji; Adachi, Kyoichi; Aimi, Masahito; Shimura, Shino; Mikami, Hironobu; Nishimura, Nobuhiro; Ishimura, Norihisa; Ishihara, Shunji; Naora, Kohji; Kinoshita, Yoshikazu

    2016-01-01

    Esomeprazole has been reported to show a strong acid suppression following preprandial as compared to postprandial administration, though no known study has compared the acid suppressing effects of other proton pump inhibitors between those administrations. The aim of this study was to compare intragastric pH levels following pre- and postprandial administrations of rabeprazole and esomeprazole. In 15 Helicobacter pylori-negative healthy volunteers, we measured intragastric pH after 7 days of pre- and postprandial administrations of rabeprazole (10 mg) or esomeprazole (20 mg) using a 5-way crossover design. Preprandial administration of esomeprazole showed stronger acid suppression than postprandial administration. The values for percent time at pH >4.0 over a 24-hour period increased from 45.3% with postprandial administration of esomeprazole to 54.4% with preprandial administration, while the percent time at pH >4.0 during daytime was increased to a greater extent from 51.4 to 66.5% with preprandial administration (p = 0.05). On the other hand, the acid suppressing effect of rabeprazole was not influenced by the timing of administration. The acid suppressing effect of esomeprazole is influenced by administration timing. In contrast, the acid suppressing effect of rabeprazole is not augmented by preprandial administration. © 2015 S. Karger AG, Basel.

  12. Proton Pump Inhibitors Decrease Phlebotomy Need in HFE Hemochromatosis: Double-Blind Randomized Placebo-Controlled Trial.

    PubMed

    Vanclooster, Annick; van Deursen, Cees; Jaspers, Reggy; Cassiman, David; Koek, Ger

    2017-09-01

    Phlebotomy constitutes the established treatment for HFE-related hemochromatosis. Retrospective studies have suggested proton pump inhibitors (PPIs) reduce the need for phlebotomy in this population. We conducted a randomized controlled trial to prove this. Thirty p.C282Y homozygous patients were randomly allocated to PPI (pantoprazole 40 mg/day) or placebo for 12 months. Phlebotomies were performed when serum ferritin was > 100 μg/L. Phlebotomy need turned out to be significantly lower in patients taking PPI (P = .0052). PPI treatment significantly reduces the need for phlebotomies in p.C282Y homozygous patients. In view of the known long-term safety profile of PPI, they can be a valuable addition to standard therapy. Clinicaltrials.gov: NCT01524757. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Proton-pump inhibitors are associated with a reduced risk for bleeding and perforated gastroduodenal ulcers attributable to non-steroidal anti-inflammatory drugs: a nested case-control study

    PubMed Central

    Vonkeman, Harald E; Fernandes, Robert W; van der Palen, Job; van Roon, Eric N; van de Laar, Mart AFJ

    2007-01-01

    Treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is hampered by gastrointestinal ulcer complications, such as ulcer bleeding and perforation. The efficacy of proton-pump inhibitors in the primary prevention of ulcer complications arising from the use of NSAIDs remains unproven. Selective cyclooxygenase-2 (COX-2) inhibitors reduce the risk for ulcer complications, but not completely in high-risk patients. This study determines which patients are especially at risk for NSAID ulcer complications and investigates the effectiveness of different preventive strategies in daily clinical practice. With the use of a nested case-control design, a large cohort of NSAID users was followed for 26 months. Cases were patients with NSAID ulcer complications necessitating hospitalisation; matched controls were selected from the remaining cohort of NSAID users who did not have NSAID ulcer complications. During the observational period, 104 incident cases were identified from a cohort of 51,903 NSAID users with 10,402 patient years of NSAID exposure (incidence 1% per year of NSAID use, age at diagnosis 70.4 ± 16.7 years (mean ± SD), 55.8% women), and 284 matched controls. Cases were characterised by serious, especially cardiovascular, co-morbidity. In-hospital mortality associated with NSAID ulcer complications was 10.6% (incidence 21.2 per 100,000 NSAID users). Concomitant proton-pump inhibitors (but not selective COX-2 inhibitors) were associated with a reduced risk for NSAID ulcer complications (the adjusted odds ratio 0.33; 95% confidence interval 0.17 to 0.67; p = 0.002). Especially at risk for NSAID ulcer complications are elderly patients with cardiovascular co-morbidity. Proton-pump inhibitors are associated with a reduced risk for NSAID ulcer complications. PMID:17521422

  14. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation.

    PubMed

    Nguyen, Trung D; Walker, Michelle E; Gardner, Jennifer M; Jiranek, Vladimir

    2018-04-01

    Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L -1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L -1 or 200 g L -1 . These findings offer insight to the importance of VA to cell growth in high sugar media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    PubMed Central

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  16. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    PubMed

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Functional expression of Schizosaccharomyces pombe Vba2p in the vacuolar membrane of Saccharomyces cerevisiae.

    PubMed

    Pongcharoen, Pongsanat; Kawano-Kawada, Miyuki; Iwaki, Tomoko; Sugimoto, Naoko; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2013-01-01

    A vacuolar membrane protein, Vba2p of Schizosaccharomyces pombe, is involved in basic amino acid uptake by intact cells. Here we found evidence that Vba2p mediated ATP-dependent lysine uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. Vba2p was also responsible for quinidine sensitivity, and the addition of lysine improved cell growth on quinidine-containing media. These findings should be useful for further characterization of Vba2p.

  18. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed.

    PubMed

    Wang, Xiu-Ling; Hu, Zi-Ying; You, Chun-Xiang; Kong, Xiu-Zhen; Shi, Xiao-Pu

    2013-09-01

    Sorbitol is the primary photosynthate and translocated carbohydrate in fruit trees of the Rosaceae family. NAD(+)-dependent sorbitol dehydrogenase (NAD-SDH, EC 1.1.1.14), which mainly catalyzes the oxidation of sorbitol to fructose, plays a key role in regulating sink strength in apple. In this study, we found that apple NAD-SDH was ubiquitously distributed in epidermis, parenchyma, and vascular bundle in developing cotyledon. NAD-SDH was localized in the cytosol, the membranes of endoplasmic reticulum and vesicles, and the vacuolar lumen in the cotyledon at the middle stage of seed development. In contrast, NAD-SDH was mainly distributed in the protein storage vacuoles in cotyledon at the late stage of seed development. Sequence analysis revealed there is a putative signal peptide (SP), also being predicated to be a transmembrane domain, in the middle of proteins of apple NAD-SDH isoforms. To investigate whether the putative internal SP functions in the vacuolar targeting of NAD-SDH, we analyzed the localization of the SP-deletion mutants of MdSDH5 and MdSDH6 (two NAD-SDH isoforms in apple) by the transient expression system in Arabidopsis protoplasts. MdSDH5 and MdSDH6 were not localized in the vacuoles after their SPs were deleted, suggesting the internal SP functions in the vacuolar targeting of apple NAD-SDH. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Use of proton pump inhibitors is associated with fractures in young adults: a population-based study.

    PubMed

    Freedberg, D E; Haynes, K; Denburg, M R; Zemel, B S; Leonard, M B; Abrams, J A; Yang, Y-X

    2015-10-01

    Proton pump inhibitors (PPIs) are associated with risk for fracture in osteoporotic adults. In this population-based study, we found a significant association between PPIs and fracture in young adults, with evidence of a dose-response effect. Young adults who use PPIs should be cautioned regarding risk for fracture. Proton pump inhibitors (PPIs) are associated with fracture in adults with osteoporosis. Because PPI therapy may interfere with bone accrual and attainment of peak bone mineral density, we studied the association between use of PPIs and fracture in children and young adults. We conducted a population-based, case-control study nested within records from general medical practices from 1994 to 2013. Participants were 4-29 years old with ≥ 1 year of follow-up who lacked chronic conditions associated with use of long-term acid suppression. Cases of fracture were defined as the first incident fracture at any site. Using incidence density sampling, cases were matched with up to five controls by age, sex, medical practice, and start of follow-up. PPI exposure was defined as 180 or more cumulative doses of PPIs. Conditional logistic regression was used to estimate the odds ratio and confidence interval for use of PPIs and fracture. We identified 124,799 cases and 605,643 controls. The adjusted odds ratio for the risk of fracture associated with PPI exposure was 1.13 (95% CI 0.92 to 1.39) among children aged < 18 years old and 1.39 (95% CI 1.26 to 1.53) among young adults aged 18-29 years old. In young adults but not children, we observed a dose-response effect with increased total exposure to PPIs (p for trend <0.001). PPI use was associated with fracture in young adults, but overall evidence did not support a PPI-fracture relationship in children. Young adults who use PPIs should be cautioned regarding potentially increased risk for fracture, even if they lack traditional fracture risk factors.

  20. Excited state proton transfer in strongly enhanced GFP (sGFP2).

    PubMed

    van Oort, Bart; ter Veer, Mirelle J T; Groot, Marie Louise; van Stokkum, Ivo H M

    2012-07-07

    Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study how proton transfer through the 'proton-wire' around the chromophore is affected by a combination of mutations in a modern GFP variety (sGFP2). The results indicate that in H(2)O, after absorption of a photon, a proton is transferred (A* → I*) in 5 ps, and back-transferred from a ground state intermediate (I → A) in 0.3 ns, similar to time constants found with GFPuv, although sGFP2 shows less heterogeneous proton transfer. This suggests that the mutations left the proton-transfer largely unchanged, indicating the robustness of the proton-wire. We used pump-dump-probe spectroscopy in combination with target analysis to probe suitability of the sGFP2 fluorophore for super-resolution microscopy.

  1. The Indications, Applications, and Risks of Proton Pump Inhibitors.

    PubMed

    Mössner, Joachim

    2016-07-11

    Proton pump inhibitors (PPI) are the most effective drugs for inhibiting gastric acid secretion. They have been in clinical use for more than 25 years, In 2014, 3.475 billion daily defined doses (DDD) of PPI were prescribed in Germany. This high number alone calls for a critical analysis of the spectrum of indications for PPI and their potential adverse effects. This review is based on pertinent publications retrieved by a selective search in the PubMed and Cochrane Library databases, with particular emphasis on randomized, prospective multicenter trials, cohort studies, case-control studies, and meta-analyses. The inhibition of gastric acid secretion with PPI is successfully used for the treatment of gastroesophageal reflux disease and of gastric and duodenal ulcers, for the secondary prevention of gastroduodenal lesions that have arisen under treatment with nonsteroidal anti-inflammatory drugs and acetylsalicylic acid, and for the prevention of recurrent hemorrhage from ulcers after successful endoscopic hemostasis. PPI are given along with practically all antibiotic regimens for the eradication of Helicobacter pylori infection. The number of prescriptions for PPI has risen linearly over the past 25 years. As there has been no broadening of indications, one may well ask whether the current, extensive use of PPI is justified. There is evidence that patients taking PPI are at greater risk for fractures. Moreover, the vitamin B12 level should be checked occasionally in all patients taking PPI. PPI are among the more effective drugs for the treatment of diseases associated with gastric acid. In view of their cost and potential adverse effects, they should only be prescribed for scientifically validated indications.

  2. Proton pump inhibitor failure in gastro-oesophageal reflux disease: a perspective aided by the Gartner hype cycle.

    PubMed

    Heading, Robert C

    2017-04-01

    Some patients with gastro-oesophageal reflux disease (GORD) experience symptoms despite proton pump inhibitor (PPI) treatment. In the early years of their availability, these drugs were thought to be a highly effective treatment for GORD and realisation that symptom relief was often incomplete came as a disappointment. This review considers the evolution of thinking with the aid of the Gartner hype cycle - a graphical depiction of the process of innovation, evolution and adoption of new technologies. Acknowledging that over-simplistic concepts of GORD have been largely responsible for inflated expectations of PPI therapy is an important step forward in establishing how patients with persistent symptoms, despite PPIs, should be assessed and treated. © Royal College of Physicians 2017. All rights reserved.

  3. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.

    PubMed

    Taylor, Sophie; Spugnini, Enrico Pierluigi; Assaraf, Yehuda G; Azzarito, Tommaso; Rauch, Cyril; Fais, Stefano

    2015-11-01

    Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide

  4. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca; Bawolak, Marie-Thérèse; Lodge, Robert

    “Lysosomotropic” cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent withmore » V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.« less

  5. Pharmacoepidemiology for nephrologists: do proton pump inhibitors cause chronic kidney disease?

    PubMed Central

    Tomlinson, Laurie A.; Fogarty, Damian G.; Douglas, Ian; Nitsch, Dorothea

    2017-01-01

    Abstract Pharmacoepidemiology studies are increasingly used for research into safe prescribing in chronic kidney disease (CKD). Typically, patients prescribed a drug are compared with patients who are not on the drug and outcomes are compared to draw conclusions about the drug effects. This review article aims to provide the reader with a framework to critically appraise such research. A key concern in pharmacoepidemiology studies is confounding, in that patients who have worse health status are prescribed more drugs or different agents and their worse outcomes are attributed to the drugs not the health status. It may be challenging to adjust for this using statistical methods unless a comparison group with a similar health status but who are prescribed a different (comparison) drug(s) is identified. Another challenge in pharmacoepidemiology is outcome misclassification, as people who are more ill engage more often with the health service, leading to earlier diagnosis in people who are frequent attenders. Finally, using replication cohorts with the same methodology in the same type of health system does not ensure that findings are more robust. We use two recent papers that investigated the association of proton pump inhibitor drugs with CKD as a device to review the main pitfalls of pharmacoepidemiology studies and how to attempt to mitigate against potential biases that can occur. PMID:28201528

  6. Proton Pump Inhibitors and Kidney Disease - GI Upset for the Nephrologist?

    PubMed

    Toth-Manikowski, Stephanie; Grams, Morgan E

    2017-05-01

    Widely regarded as safe and effective, proton pump inhibitors (PPIs) are among the most commonly used medications in the world today. However, a spate of observational studies suggest an association between PPI use and adverse events, including infection, bone fracture, and dementia. This review details evidence linking the use of PPI therapy to the development of kidney disease, including early case reports of acute interstitial nephritis and subsequent large observational studies of acute kidney injury (AKI), chronic kidney disease (CKD), and end-stage renal disease (ESRD). The majority of studies showed higher risk of kidney outcomes among persons prescribed PPI medications, with effect sizes that were slightly higher for AKI (∼2-3-fold) compared to CKD and ESRD (1.2-1.8-fold). Although observational pharmaco-epidemiology studies are limited by the possibility of residual confounding and confounding by indication, many of the described studies conducted rigorous sensitivity analyses aimed at minimizing these biases, including new-user design, comparison to similar agents (e.g., histamine 2 receptor antagonists), and evaluation for a dose-response, with robust results. Given the widespread use of PPIs, even a small effect on kidney outcomes could result in large public health burden. Timely cessation of PPI therapy when there is no clear indication for use might reduce the population burden of kidney disease.

  7. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole.

    PubMed

    Qi, Fang; Zhu, Liqin; Li, Na; Ge, Tingyue; Xu, Gaoqi; Liao, Shasha

    2017-04-01

    This study aimed to determine the influence of proton pump inhibitors (PPIs) on the pharmacokinetics of voriconazole and to characterise potential drug-drug interactions (DDIs) between voriconazole and various PPIs (omeprazole, esomeprazole, lansoprazole and rabeprazole). Using adjusted physicochemical data and the pharmacokinetic (PK) parameters of voriconazole and PPIs, physiologically based pharmacokinetic (PBPK) models were built and were verified in healthy subjects using GastroPlus TM to predict the plasma concentration-time profiles of voriconazole and PPIs. These models were then used to assess potential DDIs for voriconazole when administered with PPIs. The results indicated the PBPK model-simulated plasma concentration-time profiles of both voriconazole and PPIs were consistent with the observed profiles. In addition, the DDI simulations suggested that the PK values of voriconazole increased to various degrees when combined with several PPIs. The area under the plasma concentration-time curve for the time of the simulation (AUC 0- t ) of voriconazole was increased by 39%, 18%, 12% and 1% when co-administered with omeprazole, esomeprazole, lansoprazole and rabeprazole, respectively. Omeprazole was the most potent CYP2C19 inhibitor tested, whereas rabeprazole had no influence on voriconazole (omeprazole > esomeprazole > lansoprazole > rabeprazole). However, in consideration of the therapeutic concentration range, dosage adjustment of voriconazole is unnecessary regardless of which PPI was co-administered. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. Proton-pump inhibitor use is associated with low serum magnesium concentrations

    PubMed Central

    Danziger, John; William, Jeffrey H.; Scott, Daniel J.; Lee, Joon; Lehman, Li-wei; Mark, Roger G.; Howell, Michael D.; Celi, Leo A.; Mukamal, Kenneth J.

    2017-01-01

    Although case reports link proton-pump inhibitor (PPI) use and hypomagnesemia, no large-scale studies have been conducted. Here we examined the serum magnesium concentration and the likelihood of hypomagnesemia (< 1.6 mg/dl) with a history of PPI or histamine-2 receptor antagonist used to reduce gastric acid, or use of neither among 11,490 consecutive adult admissions to an intensive care unit of a tertiary medical center. Of these, 2632 patients reported PPI use prior to admission, while 657 patients were using a histamine-2 receptor antagonist. PPI use was associated with 0.012 mg/dl lower adjusted serum magnesium concentration compared to users of no acid-suppressive medications, but this effect was restricted to those patients taking diuretics. Among the 3286 patients concurrently on diuretics, PPI use was associated with a significant increase of hypomagnesemia (odds ratio 1.54) and 0.028 mg/dl lower serum magnesium concentration. Among those not using diuretics, PPI use was not associated with serum magnesium levels. Histamine-2 receptor antagonist use was not significantly associated with magnesium concentration without or with diuretic use. The use of PPI was not associated with serum phosphate concentration regardless of diuretic use. Thus, we verify case reports of the association between PPI use and hypomagnesemia in those concurrently taking diuretics. Hence, serum magnesium concentrations should be followed in susceptible individuals on chronic PPI therapy. PMID:23325090

  9. Phosphatidylinositol 3-Kinase Promotes V-ATPase Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence1

    PubMed Central

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-01-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H+-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence. PMID:26739232

  10. Formation and dissociation of proteasome storage granules are regulated by cytosolic pH.

    PubMed

    Peters, Lee Zeev; Hazan, Rotem; Breker, Michal; Schuldiner, Maya; Ben-Aroya, Shay

    2013-05-27

    The 26S proteasome is the major protein degradation machinery of the cell and is regulated at many levels. One mode of regulation involves accumulation of proteasomes in proteasome storage granules (PSGs) upon glucose depletion. Using a systematic robotic screening approach in yeast, we identify trans-acting proteins that regulate the accumulation of proteasomes in PSGs. Our dataset was enriched for subunits of the vacuolar adenosine triphosphatase (V-ATPase) complex, a proton pump required for vacuole acidification. We show that the impaired ability of V-ATPase mutants to properly govern intracellular pH affects the kinetics of PSG formation. We further show that formation of other protein aggregates upon carbon depletion also is triggered in mutants with impaired activity of the plasma membrane proton pump and the V-ATPase complex. We thus identify cytosolic pH as a specific cellular signal involved both in the glucose sensing that mediates PSG formation and in a more general mechanism for signaling carbon source exhaustion.

  11. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Henry, Rowan M.; Caplan, David; Fadda, Elisa; Pomès, Régis

    2011-06-01

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay

  12. Randomized controlled trial of transoral incisionless fundoplication vs. proton pump inhibitors for treatment of gastroesophageal reflux disease.

    PubMed

    Witteman, Bart P L; Conchillo, Jose M; Rinsma, Nicolaas F; Betzel, Bark; Peeters, Andrea; Koek, Ger H; Stassen, Laurents P S; Bouvy, Nicole D

    2015-04-01

    Transoral incisionless fundoplication (TIF) was developed in an attempt to create a minimally invasive endoscopic procedure that mimics antireflux surgery. The objective of this trial was to evaluate effectiveness of TIF compared with proton pump inhibition in a population consisting of gastroesophageal reflux disease (GERD) patients controlled with proton pump inhibitors (PPIs) who opted for an endoscopic intervention over lifelong drug dependence. Patients with chronic GERD were randomized (2:1) for TIF or continuation of PPI therapy. American Society of Anesthesiologists >2, body mass index >35 kg/m(2), hiatal hernia >2 cm, and esophageal motility disorders were exclusion criteria. Primary outcome measure was GERD-related quality of life. Secondary outcome measures were esophageal acid exposure, number of reflux episodes, PPI usage, appearance of the gastroesophageal valve, and healing of reflux esophagitis. Crossover for the PPI group was allowed after 6 months. A total of 60 patients (TIF n=40, PPI n=20, mean body mass index 26 kg/m(2), 37 male) were included. At 6 months, GERD symptoms were more improved in the TIF group compared with the PPI group (P<0.001), with a similar improvement of distal esophageal acid exposure (P=0.228) compared with baseline. The pH normalization for TIF group and PPI group was 50% and 63%, respectively. All patients allocated for PPI treatment opted for crossover. At 12 months, quality of life remained improved after TIF compared with baseline (P<0.05), but no improvement in esophageal acid exposure compared with baseline was found (P=0.171) and normalization of pH was accomplished in only 29% in conjunction with deteriorated valve appearances at endoscopy and resumption of PPIs in 61%. Although TIF resulted in an improved GERD-related quality of life and produced a short-term improvement of the antireflux barrier in a selected group of GERD patients, no long-term objective reflux control was achieved.

  13. Transepithelial leak in Barrett's esophagus patients: The role of proton pump inhibitors

    PubMed Central

    Farrell, Christopher; Morgan, Melissa; Tully, Owen; Wolov, Kevin; Kearney, Keith; Ngo, Benjamin; Mercogliano, Giancarlo; Thornton, James J; Valenzano, Mary Carmen; Mullin, James M

    2012-01-01

    AIM: To determine if the observed paracellular sucrose leak in Barrett’s esophagus patients is due to their proton pump inhibitor (PPI) use. METHODS: The in vivo sucrose permeability test was administered to healthy controls, to Barrett’s patients and to non-Barrett’s patients on continuous PPI therapy. Degree of leak was tested for correlation with presence of Barrett’s, use of PPIs, and length of Barrett’s segment and duration of PPI use. RESULTS: Barrett’s patients manifested a near 3-fold greater, upper gastrointestinal sucrose leak than healthy controls. A decrease of sucrose leak was observed in Barrett’s patients who ceased PPI use for 7 d. Although initial introduction of PPI use (in a PPI-naïve population) results in dramatic increase in sucrose leak, long-term, continuous PPI use manifested a slow spontaneous decline in leak. The sucrose leak observed in Barrett’s patients showed no correlation to the amount of Barrett’s tissue present in the esophagus. CONCLUSION: Although future research is needed to determine the degree of paracellular leak in actual Barrett’s mucosa, the relatively high degree of leak observed with in vivo sucrose permeability measurement of Barrett’s patients reflects their PPI use and not their Barrett’s tissue per se. PMID:22719187

  14. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine.

    PubMed

    El Rouby, Nihal; Lima, John J; Johnson, Julie A

    2018-04-01

    Proton Pump inhibitors (PPIs) are commonly used for a variety of acid related disorders. Despite the overall effectiveness and safety profile of PPIs, some patients do not respond adequately or develop treatment related adverse events. This variable response among patients is in part due to genotype variability of CYP2C19, the gene encoding the CYP450 (CYP2C19) isoenzyme responsible for PPIs metabolism. Areas covered: This article provides an overview of the pharmacokinetics and mechanism of action of the currently available PPIs, including the magnitude of CYPC19 contribution to their metabolism. Additionally, the role of CYP2C19 genetic variability in the therapeutic effectiveness or outcomes of PPI therapy is highlighted in details, to provide supporting evidence for the potential value of CYP2C19 genotype-guided approaches to PPI drug therapy. Expert opinion: There is a large body of evidence describing the impact of CYP2C19 variability on PPIs and its potential role in individualizing PPI therapy, yet, CYP2C19 pharmacogenetics has not been widely implemented into clinical practice. More data are needed but CYP2C19 genotype-guided dosing of PPIs is likely to become increasingly common and is expected to improve clinical outcomes, and minimize side effects related to PPIs.

  15. Protons pump inhibitor treatment and lower gastrointestinal bleeding: Balancing risks and benefits.

    PubMed

    Lué, Alberto; Lanas, Angel

    2016-12-28

    Proton pump inhibitors (PPIs) represent a milestone in the treatment of acid-related diseases, and are the mainstay in preventing upper gastrointestinal bleeding in high-risk patients treated with nonsteroidal anti-inflammatory drugs (NSAIDs) or low-dose aspirin. However, this beneficial effect does not extend to the lower gastrointestinal tract. PPIs do not prevent NSAID or aspirin-associated lower gastrointestinal bleeding (LGB). PPIs may increase both small bowel injury related to NSAIDs and low-dose aspirin treatment and the risk of LGB. Recent studies suggested that altering intestinal microbiota by PPIs may be involved in the pathogenesis of NSAID-enteropathy. An increase in LGB hospitalization rates may occur more frequently in older patients with more comorbidities and are associated with high hospital resource utilization, longer hospitalization, and increased mortality. Preventive strategies for NSAID and aspirin-associated gastrointestinal bleeding should be directed toward preventing both upper and lower gastrointestinal damage. Future research should be directed toward identifying patients at low-risk for gastrointestinal events associated with the use of NSAIDs or aspirin to avoid inappropriate PPI prescribing. Alternatively, the efficacy of new pharmacologic strategies should be evaluated in high-risk groups, with the aim of reducing the risk of both upper and lower gastrointestinal bleeding in these patients.

  16. Proton pump inhibitors alter the composition of the gut microbiota.

    PubMed

    Jackson, Matthew A; Goodrich, Julia K; Maxan, Maria-Emanuela; Freedberg, Daniel E; Abrams, Julian A; Poole, Angela C; Sutter, Jessica L; Welter, Daphne; Ley, Ruth E; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2016-05-01

    Proton pump inhibitors (PPIs) are drugs used to suppress gastric acid production and treat GI disorders such as peptic ulcers and gastro-oesophageal reflux. They have been considered low risk, have been widely adopted, and are often over-prescribed. Recent studies have identified an increased risk of enteric and other infections with their use. Small studies have identified possible associations between PPI use and GI microbiota, but this has yet to be carried out on a large population-based cohort. We investigated the association between PPI usage and the gut microbiome using 16S ribosomal RNA amplification from faecal samples of 1827 healthy twins, replicating results within unpublished data from an interventional study. We identified a significantly lower abundance in gut commensals and lower microbial diversity in PPI users, with an associated significant increase in the abundance of oral and upper GI tract commensals. In particular, significant increases were observed in Streptococcaceae. These associations were replicated in an independent interventional study and in a paired analysis between 70 monozygotic twin pairs who were discordant for PPI use. We propose that the observed changes result from the removal of the low pH barrier between upper GI tract bacteria and the lower gut. Our findings describe a significant impact of PPIs on the gut microbiome and should caution over-use of PPIs, and warrant further investigation into the mechanisms and their clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Obesity does not affect treatment outcomes with proton pump inhibitors.

    PubMed

    Sharma, Prateek; Vakil, Nimish; Monyak, John T; Silberg, Debra G

    2013-09-01

    Obesity is associated with increased risk of gastroesophageal reflux disease (GERD). To evaluate the effect of obesity on symptom resolution in patients with nonerosive reflux disease (NERD) and healing rates in patients with erosive esophagitis (EE). Two post hoc analyses were performed. Analyses included pooled data from randomized, double-blind, multicenter studies of proton pump inhibitors (PPIs) in GERD patients. Analysis 1 included 704 patients with NERD receiving esomeprazole 20 mg, esomeprazole 40 mg, or placebo. Analysis 2 included 11,027 patients with EE receiving esomeprazole 40 mg, omeprazole 20 mg, or lansoprazole 30 mg. For NERD patients, no significant association between baseline heartburn severity and body mass index (BMI) was observed. In EE patients, overweight (BMI 25 to <35 kg/m) and obese (BMI ≥35 kg/m) patients had significantly higher rates of Los Angeles (LA) grade C or D EE than patients with BMI <25 kg/m (P<0.0001). Percentages of PPI-treated patients who achieved heartburn resolution or EE healing within a given LA grade were similar across BMI categories. Heartburn resolution was significantly associated with treatment (esomeprazole vs. placebo), increasing age, and for men versus women (all P≤0.0284). EE healing was significantly associated with PPI treatment (esomeprazole and lansoprazole vs. omeprazole), increasing age, race, presence of a hiatal hernia, and lower LA grade at baseline (all P≤0.0183). In patients with GERD, high BMI was associated with more severe EE at baseline. However, during PPI treatment, BMI is not a significant independent predictor of heartburn resolution or EE healing.

  18. Strategies for discontinuation of proton pump inhibitors: a systematic review.

    PubMed

    Haastrup, Peter; Paulsen, Maja S; Begtrup, Luise M; Hansen, Jane M; Jarbøl, Dorte E

    2014-12-01

    Proton pump inhibitors (PPIs) are considered to be overprescribed. Consensus on how to attempt discontinuation is, however, lacking. We therefore conducted a systematic review of clinical studies on discontinuation of PPIs. Systematic review based on clinical studies investigating discontinuation strategies and discontinuation rates for users of antisecretory medication judged eligible for withdrawal. The databases Medline, Embase and Cochrane Library were searched to December 2013 using the terms antisecretory, anti-ulcer, PPI, acid suppressant, discontinuation, step-down, step down, cessation, tapering, withdrawal and withhold. Search terms were used either singularly or in combination. Papers written in English or Scandinavian were included. Concurrent hand searching was undertaken to pursue references of references. The website ClinicalTrials.gov was searched for unpublished results and ongoing studies. A total of 371 abstracts were scrutinized to determine relevancy. The thorough search resulted in six clinical studies on strategies for discontinuation of PPIs. All discontinuation regimens used in the studies differed, and several interventions have been tested in order to decrease use of PPIs. Discontinuations were reported across all studies ranging from 14% to 64% without deteriorating symptom control. Tapering seems to be a more effective discontinuation strategy than abrupt discontinuation. Discontinuation of PPIs is feasible in a clinical setting, and a substantial number of the patients treated without a clear indication can safely reduce or discontinue treatment. Tapering seems to be the most effective way of doing this. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Safe use of proton pump inhibitors in patients with cirrhosis.

    PubMed

    Weersink, Rianne A; Bouma, Margriet; Burger, David M; Drenth, Joost P H; Froukje Harkes-Idzinga, S; Hunfeld, Nicole G M; Metselaar, Herold J; Monster-Simons, Margje H; van Putten, Sandra A W; Taxis, Katja; Borgsteede, Sander D

    2018-04-24

    Proton pump inhibitors (PPIs) belong to the most frequently used drugs, also in patients with cirrhosis. PPIs are extensively metabolized by the liver, but practice guidance on prescribing in cirrhosis is lacking. We aim to develop practical guidance on the safe use of PPIs in cirrhosis. A systematic literature search identified studies about the safety (i.e. adverse events) and pharmacokinetics of PPIs in cirrhotic patients. This evidence and data from the product information was reviewed by an expert panel who classified drugs as safe; no additional risks known; additional risks known; unsafe; or unknown. Guidance was aimed at the oral use of PPIs and categorized by the severity of cirrhosis, using the Child-Turcotte-Pugh (CTP) classification. A total of 69 studies were included. Esomeprazole, omeprazole and rabeprazole were classified as having 'no additional risks known'. A reduction in maximum dose of omeprazole and rabeprazole is recommended for CTP A and B patients. For patients with CTP C cirrhosis, the only PPI advised is esomeprazole in a maximum dosage of 20 mg per day. Pantoprazole and lansoprazole were classified as unsafe, because of 4- to 8-fold increased exposure. The use of PPIs in cirrhotic patients has been associated with the development of infections and hepatic encephalopathy and should be carefully considered. We suggest using esomeprazole, omeprazole or rabeprazole in patients with CTP A or B cirrhosis and only esomeprazole in patients with CTP C. Pharmacokinetic changes are also important to consider when prescribing PPIs to vulnerable, cirrhotic patients. This article is protected by copyright. All rights reserved.

  20. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota.

    PubMed

    Imhann, Floris; Vich Vila, Arnau; Bonder, Marc Jan; Lopez Manosalva, Ailine G; Koonen, Debby P Y; Fu, Jingyuan; Wijmenga, Cisca; Zhernakova, Alexandra; Weersma, Rinse K

    2017-07-04

    Proton pump inhibitors (PPIs), used to treat gastro-esophageal reflux and prevent gastric ulcers, are among the most widely used drugs in the world. The use of PPIs is associated with an increased risk of enteric infections. Since the gut microbiota can, depending on composition, increase or decrease the risk of enteric infections, we investigated the effect of PPI-use on the gut microbiota. We discovered profound differences in the gut microbiota of PPI users: 20% of their bacterial taxa were statistically significantly altered compared with those of non-users. Moreover, we found that it is not only PPIs, but also antibiotics, antidepressants, statins and other commonly used medication were associated with distinct gut microbiota signatures. As a consequence, commonly used medications could affect how the gut microbiota resist enteric infections, promote or ameliorate gut inflammation, or change the host's metabolism. More studies are clearly needed to understand the role of commonly used medication in altering the gut microbiota as well as the subsequent health consequences.

  1. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  2. Proton pump inhibitor chemosensitization in human osteosarcoma: from the bench to the patients' bed.

    PubMed

    Ferrari, Stefano; Perut, Francesca; Fagioli, Franca; Brach Del Prever, Adalberto; Meazza, Cristina; Parafioriti, Antonina; Picci, Piero; Gambarotti, Marco; Avnet, Sofia; Baldini, Nicola; Fais, Stefano

    2013-10-24

    Major goals in translational oncology are to reduce systemic toxicity of current anticancer strategies and improve effectiveness. An extremely efficient cancer cell mechanism to avoid and/or reduce the effects of highly cytotoxic drugs is the establishment of an acidic microenvironment, an hallmark of all malignant tumors. The H +-rich milieu that anticancer drugs meet once they get inside the tumor leads to their protonation and neutralization, therefore hindering their access into tumor cells. We have previously shown that proton pump inhibitors (PPI) may efficiently counterattack this tumor advantage leading to a consistent chemosensitization of tumors. In this study, we investigated the effects of PPI in chemosensitizing osteosarcoma. MG-63 and Saos-2 cell lines were used as human osteosarcoma models. Cell proliferation after pretreatment with PPI and subsequent treatment with cisplatin was evaluated by using erythrosin B dye vital staining. Tumour growth was evaluated in xenograft treated with cisplatin after PPI pretreatment. Subsequently, a multi-centre historically controlled trial, was performed to evaluate the activity of a pre-treatment administration of PPIs as chemosensitizers during neoadjuvant chemotherapy based on methotrexate, cisplatin, and adriamycin. Preclinical experiments showed that PPI sensitize both human osteosarcoma cell lines and xenografts to cisplatin. A clinical study subsequently showed that pretreatment with PPI drug esomeprazole leads to an increase in the local effect of chemotherapy, as expressed by percentage of tumor necrosis. This was particularly evident in chondroblastic osteosarcoma, an histological subtype that normally shows a poor histological response. Notably, no significant increase in toxicity was recorded in PPI treated patients. This study provides the first evidence that PPI may be beneficially added to standard regimens in combination to conventional chemotherapy.

  3. Proton pump inhibitors therapy vs H2 receptor antagonists therapy for upper gastrointestinal bleeding after endoscopy: A meta-analysis.

    PubMed

    Zhang, Ying-Shi; Li, Qing; He, Bo-Sai; Liu, Ran; Li, Zuo-Jing

    2015-05-28

    To compare the therapeutic effects of proton pump inhibitors vs H₂ receptor antagonists for upper gastrointestinal bleeding in patients after successful endoscopy. We searched the Cochrane library, MEDLINE, EMBASE and PubMed for randomized controlled trials until July 2014 for this study. The risk of bias was evaluated by the Cochrane Collaboration's tool and all of the studies had acceptable quality. The main outcomes included mortality, re-bleeding, received surgery rate, blood transfusion units and hospital stay time. These outcomes were estimated using odds ratios (OR) and mean difference with 95% confidence interval (CI). RevMan 5.3.3 software and Stata 12.0 software were used for data analyses. Ten randomized controlled trials involving 1283 patients were included in this review; 678 subjects were in the proton pump inhibitors (PPI) group and the remaining 605 subjects were in the H₂ receptor antagonists (H₂RA) group. The meta-analysis results revealed that after successful endoscopic therapy, compared with H₂RA, PPI therapy had statistically significantly decreased the recurrent bleeding rate (OR = 0.36; 95%CI: 0.25-0.51) and receiving surgery rate (OR = 0.29; 95%CI: 0.09-0.96). There were no statistically significant differences in mortality (OR = 0.46; 95%CI: 0.17-1.23). However, significant heterogeneity was present in both the numbers of patients requiring blood transfusion after treatment [weighted mean difference (WMD), -0.70 unit; 95%CI: -1.64 - 0.25] and the time that patients remained hospitalized [WMD, -0.77 d; 95%CI: -1.87 - 0.34]. The Begg's test (P = 0.283) and Egger's test (P = 0.339) demonstrated that there was no publication bias in our meta-analysis. In patients with upper gastrointestinal bleeding after successful endoscopic therapy, compared with H₂RA, PPI may be a more effective therapy.

  4. Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants.

    PubMed

    Liu, Shiliang; Yang, Rongjie; Pan, Yuanzhi; Ma, Mingdong; Pan, Jiang; Zhao, Yan; Cheng, Qingsu; Wu, Mengxi; Wang, Maohua; Zhang, Lin

    2015-09-01

    Nitric oxide (NO) is a stress-signaling molecule in plants that mediates a wide range of physiological processes and responses to metal toxicity. In this work, various NO modulators (NO donor: SNP; NO scavenger: cPTIO; NO synthase inhibitor: l-NAME; and SNP analogs: sodium nitrite/nitrate and sodium ferrocyanide) were investigated to determine the role of NO in Trifolium repens L. plants exposed to Cd. Cd (100μM) markedly reduced biomass, NO production and chlorophyll (Chl a, Chl b and total Chl) concentration but stimulated reactive oxygen species (ROS) and Cd accumulation in plants. SNP (50μM) substantially attenuated growth inhibition, reduced hydrogen peroxide (H2O2) and malonyldialdehyde (MDA) levels, stimulated ROS-scavenging enzymes/agents, and mitigated the H(+)-ATPase inhibition in proton pumps. Interestingly, SNP considerably up-regulated the levels of jasmonic acid (JA) and proline in plant tissues but down-regulated the levels of ethylene (ET) in both shoots and roots and the level of salicylic acid (SA) in roots only, which might be related to the elevated NO synthesis. Additionally, SNP (25-200μM) regulated mineral absorption and, particularly at 50μM, significantly enhanced the uptake of shoot magnesium (Mg) and copper (Cu) and of root calcium (Ca), Mg and iron (Fe). Nevertheless, the effects of SNP on plant growth were reversed by cPTIO and l-NAME, suggesting that the protective effect of SNP might be associated with NO synthesis in vivo. Moreover, SNP analogs did not display roles similar to that of SNP. These results indicated that NO depleted Cd toxicity by eliminating oxidative damage, enhancing minerals absorption, regulating proton pumps, and maintaining hormone equilibrium. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Clinical value of wireless pH-monitoring of gastro-esophageal reflux in children before and after proton pump inhibitors.

    PubMed

    Boström, Michaela; Thorsson, Ola; Toth, Ervin; Agardh, Daniel

    2014-12-24

    Wireless pH-monitoring is an accurate method for diagnosing adults with gastroesophageal reflux disease (GERD). The aim of this study was to evaluate the use of the Bravo capsule on children investigated for GERD in terms of safety, tolerability and feasibility before and after administration of proton pump inhibitors. A Bravo capsule was inserted during upper endoscopy under general anaesthesia or deep sedation with propofol. 48-hour pH-metry was performed in 106 children (50 males, 56 females) at the median age of 11 years (range 17 months-18 years). On the second day of investigation, proton pump inhibitor (PPI) was given at a mean dose of 1.6 mg/kg (SD ±0.6 mg). The definition of GERD was set to a reflux index (RI) of ≥5% and DeMeester score (DMS) ≥14.7. Application of the capsule was successful in 103 of the 106 children (97.2%) and interpretable in 99 of these 103 (96.1%). 49 of the children with interpretable results (49.5%) had GERD according to RI, while 51 (56.7%) had GERD according to DMS. After PPI was given on day 2, RI decreased from a median of 4.9% (range 0.3-63.4%) to 2.2% (0-58.0%), while DMS decreased from a median of 17.6 (range 2.2-207.6) to 8.2 (0.3-178.6), respectively (p < 0.0001). No severe adverse events were reported. Wireless pH-metry is a safe and tolerable method when investigating children for GERD. PPI given on the second day of assessment provides additional information on response to treatment suggesting that pH-metry preferably should be extended to 48 hours.

  6. The association between the use of proton pump inhibitors and the risk of hypomagnesemia: a systematic review and meta-analysis.

    PubMed

    Park, Chan Hyuk; Kim, Eun Hye; Roh, Yun Ho; Kim, Ha Yan; Lee, Sang Kil

    2014-01-01

    Although many case reports have described patients with proton pump inhibitor (PPI)-induced hypomagnesemia, the impact of PPI use on hypomagnesemia has not been fully clarified through comparative studies. We aimed to evaluate the association between the use of PPI and the risk of developing hypomagnesemia by conducting a systematic review with meta-analysis. We conducted a systematic search of MEDLINE, EMBASE, and the Cochrane Library using the primary keywords "proton pump," "dexlansoprazole," "esomeprazole," "ilaprazole," "lansoprazole," "omeprazole," "pantoprazole," "rabeprazole," "hypomagnesemia," "hypomagnesaemia," and "magnesium." Studies were included if they evaluated the association between PPI use and hypomagnesemia and reported relative risks or odds ratios or provided data for their estimation. Pooled odds ratios with 95% confidence intervals were calculated using the random effects model. Statistical heterogeneity was assessed with Cochran's Q test and I2 statistics. Nine studies including 115,455 patients were analyzed. The median Newcastle-Ottawa quality score for the included studies was seven (range, 6-9). Among patients taking PPIs, the median proportion of patients with hypomagnesemia was 27.1% (range, 11.3-55.2%) across all included studies. Among patients not taking PPIs, the median proportion of patients with hypomagnesemia was 18.4% (range, 4.3-52.7%). On meta-analysis, pooled odds ratio for PPI use was found to be 1.775 (95% confidence interval 1.077-2.924). Significant heterogeneity was identified using Cochran's Q test (df = 7, P<0.001, I2 = 98.0%). PPI use may increase the risk of hypomagnesemia. However, significant heterogeneity among the included studies prevented us from reaching a definitive conclusion.

  7. Proton transfer events in GFP.

    PubMed

    Di Donato, Mariangela; van Wilderen, Luuk J G W; Van Stokkum, Ivo H M; Stuart, Thomas Cohen; Kennis, John T M; Hellingwerf, Klaas J; van Grondelle, Rienk; Groot, Marie Louise

    2011-09-28

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton transfer through a 'proton-wire', formed by the chromophore (the proton donor), water molecule W22, Ser205 and Glu222 (the acceptor), on a picosecond time scale. To obtain a more refined view of this process, we have used a combined approach of time resolved mid-infrared spectroscopy and visible pump-dump-probe spectroscopy to resolve with atomic resolution how and how fast protons move through this wire. Our results indicate that absorption of light by GFP induces in 3 ps (10 ps in D(2)O) a shift of the equilibrium positions of all protons in the H-bonded network, leading to a partial protonation of Glu222 and to a so-called low barrier hydrogen bond (LBHB) for the chromophore's proton, giving rise to dual emission at 475 and 508 nm. This state is followed by a repositioning of the protons on the wire in 10 ps (80 ps in D(2)O), ultimately forming the fully deprotonated chromophore and protonated Glu222.

  8. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis

    PubMed Central

    De Angeli, Alexis; Zhang, Jingbo; Meyer, Stefan; Martinoia, Enrico

    2013-01-01

    Water deficit strongly affects crop productivity. Plants control water loss and CO2 uptake by regulating the aperture of the stomatal pores within the leaf epidermis. Stomata aperture is regulated by the two guard cells forming the pore and changing their size in response to ion uptake and release. While our knowledge about potassium and chloride fluxes across the plasma membrane of guard cells is advanced, little is known about fluxes across the vacuolar membrane. Here we present the molecular identification of the long-sought-after vacuolar chloride channel. AtALMT9 is a chloride channel activated by physiological concentrations of cytosolic malate. Single-channel measurements demonstrate that this activation is due to a malate-dependent increase in the channel open probability. Arabidopsis thaliana atalmt9 knockout mutants exhibited impaired stomatal opening and wilt more slowly than the wild type. Our findings show that AtALMT9 is a vacuolar chloride channel having a major role in controlling stomata aperture. PMID:23653216

  9. Insights into proton translocation in cbb3 oxidase from MD simulations.

    PubMed

    Carvalheda, Catarina A; Pisliakov, Andrei V

    2017-05-01

    Heme-copper oxidases are membrane protein complexes that catalyse the final step of the aerobic respiration, namely the reduction of oxygen to water. The energy released during catalysis is coupled to the active translocation of protons across the membrane, which contributes to the establishment of an electrochemical gradient that is used for ATP synthesis. The distinctive C-type (or cbb 3 ) cytochrome c oxidases, which are mostly present in proteobacteria, exhibit a number of unique structural and functional features, including high catalytic activity at low oxygen concentrations. At the moment, the functioning mechanism of C-type oxidases, in particular the proton transfer/pumping mechanism presumably via a single proton channel, is still poorly understood. In this work we used all-atom molecular dynamics simulations and continuum electrostatics calculations to obtain atomic-level insights into the hydration and dynamics of a cbb 3 oxidase. We provide the details of the water dynamics and proton transfer pathways for both the "chemical" and "pumped" protons, and show that formation of protonic connections is strongly affected by the protonation state of key residues, namely H243, E323 and H337. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Common gastrointestinal symptoms: risks of long-term proton pump inhibitor therapy.

    PubMed

    Fashner, Julia; Gitu, Alfred Chege

    2013-10-01

    More than 11 million individuals receive proton pump inhibitor (PPI) prescriptions each year in the United States. Although PPIs are effective treatment for peptic ulcers and esophagitis and provide symptom relief for many other conditions, their use carries risks. They decrease gastric acid and can lower blood levels of drugs whose absorption is acid dependent, including several antiretroviral and cancer therapy drugs. Other drugs, such as digoxin, may be absorbed more extensively when gastric acid is reduced; thus, digoxin toxicity may occur with PPI use. Warfarin's effect also is increased in patients taking PPIs. Decreased gastric acid can lower absorption of vitamin B12, calcium, iron, and magnesium; deficiencies in these nutrients are a concern. Several medical conditions, including Clostridium difficile infection, osteoporotic fractures, and community-acquired pneumonia, are more likely to occur among PPI users. Interstitial nephritis also has been reported. Because of these risks, clinicians should try to use the lowest possible dose of PPI and to discontinue PPI therapy if it is not essential. Step-down regimens can be used to decrease/discontinue treatment; these regimens may prevent or minimize the rebound acid hypersecretion that can occur with abrupt discontinuation. For some patients, occasional treatment with intermittent or on-demand regimens may be sufficient to control symptoms. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  11. The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway.

    PubMed

    ter Beek, Josy; Krause, Nils; Reimann, Joachim; Lachmann, Peter; Ädelroth, Pia

    2013-10-18

    The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H(+) + 2e(-) → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.

  12. Cloning, 3D modeling and expression analysis of three vacuolar invertase genes from cassava (Manihot Esculenta Crantz).

    PubMed

    Yao, Yuan; Wu, Xiao-Hui; Geng, Meng-Ting; Li, Rui-Mei; Liu, Jiao; Hu, Xin-Wen; Guo, Jian-Chun

    2014-05-15

    Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β-fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.

  13. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1∆ mutant.

    PubMed

    Sekito, Takayuki; Nakamura, Kyosuke; Manabe, Kunio; Tone, Junichi; Sato, Yumika; Murao, Nami; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2014-01-01

    Saccharomyces cerevisiae Ypq1p is a vacuolar membrane protein of the PQ-loop protein family. We found that ATP-dependent uptake activities of amino acids by vacuolar membrane vesicles were impaired by ypq1∆ mutation. Loss of lysine uptake was most remarkable, and the uptake was recovered by overproduction of Ypq1p. Ypq1p is thus involved in transport of amino acids into vacuoles.

  14. Inappropriate use of proton pump inhibitors in a local setting

    PubMed Central

    Chia, Christopher Tze Wei; Lim, Wan Peng; Vu, Charles Kien Fong

    2014-01-01

    INTRODUCTION There are growing concerns that the use of proton pump inhibitors (PPIs) may be inappropriate in instances that do not conform to evidence-based indications. This point-prevalence study aimed to investigate the frequency, indications and appropriateness of use of PPIs in hospitalised patients on a randomly chosen day. METHODS On a randomly chosen day, all inpatients were documented, and those on any form of PPIs on that day were determined. Indications for maintaining these patients on PPIs were obtained from the electronic medical records, which were then recorded and cross-referenced against a list of accepted indications adapted from the US Food and Drug Administration (FDA)-approved list. RESULTS In all, 1,025 inpatients were documented. Of the 477 (46.5%) inpatients using PPIs, only 219 (45.9%) fulfilled the FDA-approved indications, while the majority (n = 258, 54.1%) did not. Overall, PPIs were not strictly indicated for use in 206 (43.2%) inpatients, according to FDA criteria. Of the 477 inpatients on PPIs, 52 (10.9%) had borderline indications based on expert consensus/guidelines other than FDA criteria. CONCLUSION Although the use of PPIs is prevalent in hospitals, less than half of the hospitalised patients using PPIs in our study had evidence-based indications that supported such use. The overuse of PPIs has a negative impact on healthcare costs and may lead to adverse effects. Steps to curb the inappropriate use of PPIs should address factors such as indications for the initiation of PPIs, and reassessment of the need for ongoing PPI use in inpatients upon discharge and during outpatient reviews. PMID:25091884

  15. The Gastric and Intestinal Microbiome: Role of Proton Pump Inhibitors.

    PubMed

    Minalyan, Artem; Gabrielyan, Lilit; Scott, David; Jacobs, Jonathan; Pisegna, Joseph R

    2017-08-01

    The discovery of Helicobacter pylori and other organisms colonizing the stomach and the intestines has shed some light on the importance of microbiome in maintaining overall health and developing pathological conditions when alterations in biodiversity are present. The gastric acidity plays a crucial role in filtering out bacteria and preventing development of enteric infections. In this article, we discuss the physiology of gastric acid secretion and bacterial contribution to the composition of gastric and intestinal barriers and review the current literature on the role of proton pump inhibitors (PPIs) in the microbial biodiversity of the gastrointestinal tract. Culture-independent techniques, such as 16S rRNA sequencing, have revolutionized our understanding of the microbial biodiversity in the gastrointestinal tract. Luminal and mucosa-associated microbial populations are not identical. Streptococcus is overrepresented in the biopsies of patients with antral gastritis and may also be responsible for the development of peptic ulcer disease. The use of PPIs favors relative streptococcal abundance irrespective of H. pylori status and may explain the persistence of dyspeptic symptoms in patients on PPI therapy. Increased risk of enteric infections has also been seen in patients taking PPIs. The overuse of PPIs leads to significant shift of the gastrointestinal microbiome towards a less healthy state. With the advent of PPIs, many studies have demonstrated the significant changes in the microbial composition of both gastric and intestinal microbiota. Although they are considered relatively safe over-the-counter medications, PPIs in many cases are over- and even inappropriately used. Future studies assessing the safety of PPIs and their role in the development of microbiome changes should be encouraged.

  16. Proton pump inhibitors while belonging to the same family of generic drugs show different anti-tumor effect.

    PubMed

    Lugini, Luana; Federici, Cristina; Borghi, Martina; Azzarito, Tommaso; Marino, Maria Lucia; Cesolini, Albino; Spugnini, Enrico Pierluigi; Fais, Stefano

    2016-08-01

    Tumor acidity represents a major cause of chemoresistance. Proton pump inhibitors (PPIs) can neutralize tumor acidity, sensitizing cancer cells to chemotherapy. To compare the anti-tumor efficacy of different PPIs in vitro and in vivo. In vitro experiments PPIs anti-tumor efficacy in terms of cell proliferation and cell death/apoptosis/necrosis evaluation were performed. In vivo PPIs efficacy experiments were carried out using melanoma xenograft model in SCID mice. Lansoprazole showed higher anti-tumor effect when compared to the other PPIs. The lansoprazole effect lasted even upon drug removal from the cell culture medium and it was independent from the lipophilicity of the PPIs formulation. These PPIs have shown different anti-tumoral efficacy, and the most effective at low dose was lansoprazole. The possibility to contrast tumor acidity by off-label using PPIs opens a new field of oncology investigation.

  17. Proton-pump inhibitor use does not affect semen quality in subfertile men.

    PubMed

    Keihani, Sorena; Craig, James R; Zhang, Chong; Presson, Angela P; Myers, Jeremy B; Brant, William O; Aston, Kenneth I; Emery, Benjamin R; Jenkins, Timothy G; Carrell, Douglas T; Hotaling, James M

    2018-01-01

    Proton-pump inhibitors (PPIs) are among the most widely used drugs worldwide. PPI use has recently been linked to adverse changes in semen quality in healthy men; however, the effects of PPI use on semen parameters remain largely unknown specifically in cases with male factor infertility. We examined whether PPI use was associated with detrimental effects on semen parameters in a large population of subfertile men. We retrospectively reviewed data from 12 257 subfertile men who had visited our fertility clinic from 2003 to 2013. Patients who reported using any PPIs for >3 months before semen sample collection were included; 7698 subfertile men taking no medication served as controls. Data were gathered on patient age, medication use, and conventional semen parameters; patients taking any known spermatotoxic medication were excluded. Linear mixed-effect regression models were used to test the effect of PPI use on semen parameters adjusting for age. A total of 248 patients (258 samples) used PPIs for at least 3 months before semen collection. In regression models, PPI use (either as the only medication or when used in combination with other nonspermatotoxic medications) was not associated with statistically significant changes in semen parameters. To our knowledge, this is the largest study to compare PPI use with semen parameters in subfertile men. Using PPIs was not associated with detrimental effects on semen quality in this retrospective study.

  18. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine

    PubMed Central

    El Rouby, Nihal; Lima, John J.; Johnson, Julie A.

    2018-01-01

    ABSTRACT Introduction: Proton Pump inhibitors (PPIs) are commonly used for a variety of acid related disorders. Despite the overall effectiveness and safety profile of PPIs, some patients do not respond adequately or develop treatment related adverse events. This variable response among patients is in part due to genotype variability of CYP2C19, the gene encoding the CYP450 (CYP2C19) isoenzyme responsible for PPIs metabolism. Areas covered: This article provides an overview of the pharmacokinetics and mechanism of action of the currently available PPIs, including the magnitude of CYPC19 contribution to their metabolism. Additionally, the role of CYP2C19 genetic variability in the therapeutic effectiveness or outcomes of PPI therapy is highlighted in details, to provide supporting evidence for the potential value of CYP2C19 genotype-guided approaches to PPI drug therapy. Expert opinion: There is a large body of evidence describing the impact of CYP2C19 variability on PPIs and its potential role in individualizing PPI therapy, yet, CYP2C19 pharmacogenetics has not been widely implemented into clinical practice. More data are needed but CYP2C19 genotype-guided dosing of PPIs is likely to become increasingly common and is expected to improve clinical outcomes, and minimize side effects related to PPIs. PMID:29620484

  19. Nuclear-Pumped Lasers. [efficient conversion of energy liberated in nuclear reactions to coherent radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The state of the art in nuclear pumped lasers is reviewed. Nuclear pumped laser modeling, nuclear volume and foil excitation of laser plasmas, proton beam simulations, nuclear flashlamp excitation, and reactor laser systems studies are covered.

  20. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling

    PubMed Central

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-01-01

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system. PMID:26370138

  1. Proton pump inhibitor chemosensitization in human osteosarcoma: from the bench to the patients’ bed

    PubMed Central

    2013-01-01

    Background Major goals in translational oncology are to reduce systemic toxicity of current anticancer strategies and improve effectiveness. An extremely efficient cancer cell mechanism to avoid and/or reduce the effects of highly cytotoxic drugs is the establishment of an acidic microenvironment, an hallmark of all malignant tumors. The H + −rich milieu that anticancer drugs meet once they get inside the tumor leads to their protonation and neutralization, therefore hindering their access into tumor cells. We have previously shown that proton pump inhibitors (PPI) may efficiently counterattack this tumor advantage leading to a consistent chemosensitization of tumors. In this study, we investigated the effects of PPI in chemosensitizing osteosarcoma. Method MG-63 and Saos-2 cell lines were used as human osteosarcoma models. Cell proliferation after pretreatment with PPI and subsequent treatment with cisplatin was evaluated by using erythrosin B dye vital staining. Tumour growth was evaluated in xenograft treated with cisplatin after PPI pretreatment. Subsequently, a multi-centre historically controlled trial, was performed to evaluate the activity of a pre-treatment administration of PPIs as chemosensitizers during neoadjuvant chemotherapy based on methotrexate, cisplatin, and adriamycin. Results Preclinical experiments showed that PPI sensitize both human osteosarcoma cell lines and xenografts to cisplatin. A clinical study subsequently showed that pretreatment with PPI drug esomeprazole leads to an increase in the local effect of chemotherapy, as expressed by percentage of tumor necrosis. This was particularly evident in chondroblastic osteosarcoma, an histological subtype that normally shows a poor histological response. Notably, no significant increase in toxicity was recorded in PPI treated patients. Conclusion This study provides the first evidence that PPI may be beneficially added to standard regimens in combination to conventional chemotherapy. PMID

  2. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier

    PubMed Central

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A.; Traub, Michaela; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2003-01-01

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter. PMID:12947042

  3. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.

    PubMed

    Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A; Traub, Michaela; Martinoia, Enrico; Neuhaus, H Ekkehard

    2003-09-16

    Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.

  4. Association Between Proton Pump Inhibitors and Metronomic Capecitabine as Salvage Treatment for Patients With Advanced Gastrointestinal Tumors: A Randomized Phase II Trial.

    PubMed

    Marchetti, Paolo; Milano, Annalisa; D'Antonio, Chiara; Romiti, Adriana; Falcone, Rosa; Roberto, Michela; Fais, Stefano

    2016-12-01

    The acidification of extracellular compartment represents a conceivable mechanism of drug resistance in malignant cells. In addition, it has been reported to drive proliferation and promote invasion and metastasis. Experimental evidence has shown that proton pump inhibitors can counteract tumor acidification and restore sensitivity to anticancer drugs. Moreover, early clinical data have supported the role of proton pump inhibitors in anticancer treatments. Metronomic capecitabine has demonstrated beneficial effects as salvage chemotherapy for heavily pretreated or frail patients with gastrointestinal cancer. The present study (EudraCT Number: 2013-001096-20) was aimed at investigating the activity and safety of high-dose rabeprazole in combination with metronomic capecitabine in patients with advanced gastrointestinal cancer refractory to standard treatment. A total of 66 patients will be randomized 1:1 to receive capecitabine 1500 mg/daily, continuously with or without rabeprazole 1.5 mg/kg twice a day, 3 days a week until disease progression, undue toxicity, or withdrawal of informed consent. The primary endpoint is progression-free survival. The secondary endpoints are clinical benefit, which reflects the proportion of patients with complete response, partial response, and stable disease, and overall survival. Progression-free and overall survival will be evaluated using a log-rank test to determine the effect of rabeprazole independently at the 2-sided α-level of 0.05. Other assessments will include the frequency and severity of adverse events and changes in laboratory parameters to measure the safety, and the pharmacokinetics of capecitabine. The results are expected in 2016. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Jan C.; Grosser, Nina; Waltke, Christian

    2006-07-07

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidantmore » defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection.« less

  6. The Association between the Use of Proton Pump Inhibitors and the Risk of Hypomagnesemia: A Systematic Review and Meta-Analysis

    PubMed Central

    Park, Chan Hyuk; Kim, Eun Hye; Roh, Yun Ho; Kim, Ha Yan; Lee, Sang Kil

    2014-01-01

    Background Although many case reports have described patients with proton pump inhibitor (PPI)-induced hypomagnesemia, the impact of PPI use on hypomagnesemia has not been fully clarified through comparative studies. We aimed to evaluate the association between the use of PPI and the risk of developing hypomagnesemia by conducting a systematic review with meta-analysis. Methods We conducted a systematic search of MEDLINE, EMBASE, and the Cochrane Library using the primary keywords “proton pump,” “dexlansoprazole,” “esomeprazole,” “ilaprazole,” “lansoprazole,” “omeprazole,” “pantoprazole,” “rabeprazole,” “hypomagnesemia,” “hypomagnesaemia,” and “magnesium.” Studies were included if they evaluated the association between PPI use and hypomagnesemia and reported relative risks or odds ratios or provided data for their estimation. Pooled odds ratios with 95% confidence intervals were calculated using the random effects model. Statistical heterogeneity was assessed with Cochran’s Q test and I 2 statistics. Results Nine studies including 115,455 patients were analyzed. The median Newcastle-Ottawa quality score for the included studies was seven (range, 6–9). Among patients taking PPIs, the median proportion of patients with hypomagnesemia was 27.1% (range, 11.3–55.2%) across all included studies. Among patients not taking PPIs, the median proportion of patients with hypomagnesemia was 18.4% (range, 4.3–52.7%). On meta-analysis, pooled odds ratio for PPI use was found to be 1.775 (95% confidence interval 1.077–2.924). Significant heterogeneity was identified using Cochran’s Q test (df = 7, P<0.001, I 2 = 98.0%). Conclusions PPI use may increase the risk of hypomagnesemia. However, significant heterogeneity among the included studies prevented us from reaching a definitive conclusion. PMID:25394217

  7. Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    PubMed Central

    Garvin, Michael R.; Bielawski, Joseph P.; Gharrett, Anthony J.

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm. PMID:21969854

  8. Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon.

    PubMed

    Garvin, Michael R; Bielawski, Joseph P; Gharrett, Anthony J

    2011-01-01

    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm.

  9. Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma.

    PubMed

    Canitano, Andrea; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Federici, Cristina; Fais, Stefano

    2016-07-01

    Multiple Myeloma (MM) is the second most common hematological malignancy and is responsive to a limited number of drugs. Unfortunately, to date, despite the introduction of novel drugs, no relevant increase in survival rates has been obtained. Proton pump inhibitors (PPIs) have been shown to have significant antitumor action as single agents as well as in combination with chemotherapy. This study investigates the potential anti-tumor effectiveness of two PPIs, Lansoprazole and Omeprazole, against human MM cells. We found that Lansoprazole exerts straightforward efficacy against myeloma cells, even at suboptimal concentrations (50 µM), while Omeprazole has limited cytotoxic action. The Lansoprazole anti-MM effect was mostly mediated by a caspase-independent apoptotic-like cytotoxicity, with only a secondary anti-proliferative action. This study provides clear evidence supporting the use of Lansoprazole in the strive against MM with an efficacy proven much higher than current therapeutical approaches and without reported side effects. It is however conceivable that, consistent with the results obtained in other human tumors, Lansoprazole may well be combined with existing anti-myeloma therapies with the aim to improve the low level of efficacy of the current strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Overutilization of proton pump inhibitors: a review of cost-effectiveness and risk [corrected].

    PubMed

    Heidelbaugh, Joel J; Goldberg, Kathleen L; Inadomi, John M

    2009-03-01

    Proton pump inhibitors (PPIs) are superior to histamine-2 receptor antagonists for the treatment of gastroesophageal reflux disease (GERD) and erosive esophagitis. Antisecretory therapy (AST), however, accounts for significant cost expenditure in the United States including over-the-counter and prescription formulations. Moreover, emerging data illustrate the potential risks associated with long-term PPI therapy including variations in bioavailability of common medications, vitamin B12 deficiency, Clostridium difficile-associated diarrhea, community-acquired pneumonia, and hip fracture. For these reasons, it is imperative to use the lowest dose of drug necessary to achieve desired therapeutic goals. This may entail the use of step-down, step-off, or on-demand PPI therapy for the treatment of GERD. In addition, PPIs are the most commonly used medications for stress ulcer prophylaxis (SUP), despite little evidence to support their use. Compounding this problem is evidence that patients erroneously administered SUP are often discharged on long-term PPI therapy. Pharmacy-driven step-down orders, limitation of the use of PPIs for SUP in non-ICU settings, and meticulous chart review to ensure that hospitalized patients are not discharged home on a PPI without an appropriate indication are interventions that can ensure proper PPI utilization with minimal of risk and optimization of cost-effectiveness.

  11. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota

    PubMed Central

    Imhann, Floris; Vich Vila, Arnau; Bonder, Marc Jan; Koonen, Debby P.Y.; Fu, Jingyuan; Zhernakova, Alexandra; Weersma, Rinse K.

    2017-01-01

    ABSTRACT Proton pump inhibitors (PPIs), used to treat gastro-esophageal reflux and prevent gastric ulcers, are among the most widely used drugs in the world. The use of PPIs is associated with an increased risk of enteric infections. Since the gut microbiota can, depending on composition, increase or decrease the risk of enteric infections, we investigated the effect of PPI-use on the gut microbiota. We discovered profound differences in the gut microbiota of PPI users: 20% of their bacterial taxa were statistically significantly altered compared with those of non-users. Moreover, we found that it is not only PPIs, but also antibiotics, antidepressants, statins and other commonly used medication were associated with distinct gut microbiota signatures. As a consequence, commonly used medications could affect how the gut microbiota resist enteric infections, promote or ameliorate gut inflammation, or change the host's metabolism. More studies are clearly needed to understand the role of commonly used medication in altering the gut microbiota as well as the subsequent health consequences. PMID:28118083

  12. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato.

    PubMed

    Van Oosten, Michael J; Silletti, Silvia; Guida, Gianpiero; Cirillo, Valerio; Di Stasio, Emilio; Carillo, Petronia; Woodrow, Pasqualina; Maggio, Albino; Raimondi, Giampaolo

    2017-01-01

    Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP), a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl), respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching), protection of the photosynthetic system (improving quantum yield of photosystem II) and regulation of ion homeostasis (improving the K + :Na + ratio in leaves and roots). To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions. Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.

  13. One year treatment of Barrett's oesophagus with proton pump inhibitors (a multi-center study).

    PubMed

    Babic, Z; Bogdanovic, Z; Dorosulic, Z; Petrovic, Z; Kujundzic, M; Banic, M; Marusic, M; Heinzl, R; Bilić, B; Andabak, M

    2015-12-01

    Aim of the study was to investigate the effects of 1-year therapy by different proton pump inhibitors (PPIs) on epithelial tissue and surrounding inflammatory changes in Barrett's oesophagus, in patients who have abandoned invasive therapy. A group of 120 patients (sampled in 60-month period, from 61201 upper gastrointestinal endoscopies) who were diagnosed both, endoscopically and pathohistologically with Barrett's oesophagus, and who have abandoned invasive therapeutic approach were enrolled in study. Treatment with different PPIs was initiated and continued for a year. At the end of treatment, patients were reassessed by endoscopy with tissue biopsy and pathohistological analysis. No difference in regenerating squamous epithelium or degree of dysplasia was seen between different treatment groups. Interestingly, most patients receiving pantoprazole (94%) ended up with thinner squamous epithel (P<0.0001). The squamous epithel was consider thinner only if its total thickness, measured on histological specimen, was smaller for more than 50% of the thickness before therapy. Significantly less of difference (P<0.0014) was seen with patients receiving lansoprazole (65%) and (P<0.003) omeprazole (50%). Regeneration of the squamous epithel was the same for all PPIs but not good enough to stop the progression of the disease.

  14. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato

    PubMed Central

    Van Oosten, Michael J.; Silletti, Silvia; Guida, Gianpiero; Cirillo, Valerio; Di Stasio, Emilio; Carillo, Petronia; Woodrow, Pasqualina; Maggio, Albino; Raimondi, Giampaolo

    2017-01-01

    Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP), a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl), respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching), protection of the photosynthetic system (improving quantum yield of photosystem II) and regulation of ion homeostasis (improving the K+:Na+ ratio in leaves and roots). To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions. Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport. PMID:28769943

  15. Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification.

    PubMed

    Connorton, James M; Jones, Eleanor R; Rodríguez-Ramiro, Ildefonso; Fairweather-Tait, Susan; Uauy, Cristobal; Balk, Janneke

    2017-08-01

    Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular, iron deficiency anemia is a major global health issue, but the iron content of staple crops such as wheat ( Triticum aestivum ) is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for the biofortification of wheat, we functionally characterized homologs of the VACUOLAR IRON TRANSPORTER ( VIT ). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2 , which have different expression patterns but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue the growth of a yeast ( Saccharomyces cerevisiae ) mutant defective in vacuolar iron transport. TaVIT2 also complemented a manganese transporter mutant but not a vacuolar zinc transporter mutant. By overexpressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a greater than 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the United Kingdom. The antinutrient phytate was not increased and the iron in the white flour fraction was bioavailable in vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and also was effective in barley ( Hordeum vulgare ). Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue, bypassing existing homeostatic mechanisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    PubMed

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  17. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanan, Raynoo; Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507; Ma, Ning

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the riskmore » of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and nuclear

  18. Creating Drought- and Salt-Tolerant Crops by Overexpressing a Vacuolar Pyrophosphatase Gene

    USDA-ARS?s Scientific Manuscript database

    Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proto...

  19. Pantoprazole, a proton pump inhibitor, increases orthodontic tooth movement in rats.

    PubMed

    Shirazi, Mohsen; Alimoradi, Houman; Kheirandish, Yasaman; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Meysamie, Alipasha; Fatahi Meybodi, Seyed Amir Reza; Dehpour, Ahmad Reza

    2014-06-01

    Pantoprazole, is a proton pump inhibitor (PPI) prescribed for the treatment of upper gastrointestinal disorders, which in high doses has been suggested to decrease calcium absorption leading to hypocalcaemia and therefore osteoporosis. The aim of this study was to assess whether pantoprazol, could alter the rate of orthodontic tooth movement (OTM) in rats. A time course study was established using 72 rats which were divided into six groups of 12 samples each (four: vehicle; eight: pantoprazole + vehicle). Pantoprazole at a dose of 200 mg/kg suspended in carboxymethyl cellulose (0.25 percent) was administered by a gastric tube. The upper incisors and first molars were ligated by a 5 mm nickel-titanium closed-coil spring to deliver an initial force of 60 g. Animals were euthanized two weeks after orthodontic treatment followed by assessment of tooth movement and histomorphometric evaluation of the detached maxillae. Lateral skull radiographs were obtained once a week, starting from the first day to the 6(th) week of the study. OTM and bone density data were analyzed using independent sample t-test and repeated measures ANOVA. No significant changes in OTM measurements and optical density were observed in vehicle-receiving animals during the study (P=0.994). OTM was significantly increased after six weeks pantoprazole therapy which continued until the 7(th) week of the experiment (P=0.007). Optical density significantly increased in the pantoprazole-treated rats after six weeks. Long term PPI therapy at high doses could lead to osteoporosis and enhanced OTM.

  20. Proton Pump Inhibitors Inhibit Metformin Uptake by Organic Cation Transporters (OCTs)

    PubMed Central

    Nies, Anne T.; Hofmann, Ute; Resch, Claudia; Schaeffeler, Elke; Rius, Maria; Schwab, Matthias

    2011-01-01

    Metformin, an oral insulin-sensitizing drug, is actively transported into cells by organic cation transporters (OCT) 1, 2, and 3 (encoded by SLC22A1, SLC22A2, or SLC22A3), which are tissue specifically expressed at significant levels in various organs such as liver, muscle, and kidney. Because metformin does not undergo hepatic metabolism, drug-drug interaction by inhibition of OCT transporters may be important. So far, comprehensive data on the interaction of proton pump inhibitors (PPIs) with OCTs are missing although PPIs are frequently used in metformin-treated patients. Using in silico modeling and computational analyses, we derived pharmacophore models indicating that PPIs (i.e. omeprazole, pantoprazole, lansoprazole, rabeprazole, and tenatoprazole) are potent OCT inhibitors. We then established stably transfected cell lines expressing the human uptake transporters OCT1, OCT2, or OCT3 and tested whether these PPIs inhibit OCT-mediated metformin uptake in vitro. All tested PPIs significantly inhibited metformin uptake by OCT1, OCT2, and OCT3 in a concentration-dependent manner. Half-maximal inhibitory concentration values (IC50) were in the low micromolar range (3–36 µM) and thereby in the range of IC50 values of other potent OCT drug inhibitors. Finally, we tested whether the PPIs are also transported by OCTs, but did not identify PPIs as OCT substrates. In conclusion, PPIs are potent inhibitors of the OCT-mediated metformin transport in vitro. Further studies are needed to elucidate the clinical relevance of this drug-drug interaction with potential consequences on metformin disposition and/or efficacy. PMID:21779389

  1. Transient anterior subcapsular vacuolar change of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation.

    PubMed

    Chung, Jin Kwon; Shin, Jin Hee; Lee, Sung Jin

    2013-10-25

    We present two cases of transient vacuolar changes in the anterior subcapsular space of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation. Implantable collamer lenses (ICL) were implanted in healthy myopic patients. Vacuolar changes developed just after the irrigating procedure through the narrow space between the ICL and the crystalline lens. Slit-lamp examinations and spectral domain optical coherence tomography showed bleb-like lesions in the anterior subcapsular space of one eye in each case, though the lesions gradually improved without visual deterioration. Consequently, the lesions turned into a few anterior subcapsular small faint opacities. Direct irrigation of the narrow space confined by the ICL and the crystalline lens is at risk for the development of vacuolar changes in the crystalline lens. The observed spontaneous reversal indicates that surgeons should not rush to surgical intervention but rather opt for close follow over several weeks.

  2. Atg22p, a vacuolar membrane protein involved in the amino acid compartmentalization of Schizosaccharomyces pombe.

    PubMed

    Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Kawano, Miyuki; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi

    2011-01-01

    The fission yeast Schizosaccharomyces pombe has a homolog of the budding yeast Atg22p, which is involved in spore formation (Mukaiyama H. et al., Microbiology, 155, 3816-3826 (2009)). GFP-tagged Atg22p in the fission yeast was localized to the vacuolar membrane. Upon disruption of atg22, the amino acid levels of the cellular fraction as well as the vacuolar fraction decreased. The uptake of several amino acids, such as lysine, histidine, and arginine, was impaired in atg22Δ cells. S. pombe Atg22p plays an important role in the compartmentalization of amino acids.

  3. Vba2p, a vacuolar membrane protein involved in basic amino acid transport in Schizosaccharomyces pombe.

    PubMed

    Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi

    2010-01-01

    A recent study filling the gap in the genome sequence in the left arm of chromosome 2 of Schizosaccharomyces pombe revealed a homolog of budding yeast Vba2p, a vacuolar transporter of basic amino acids. GFP-tagged Vba2p in fission yeast was localized to the vacuolar membrane. Upon disruption of vba2, the uptake of several amino acids, including lysine, histidine, and arginine, was impaired. A transient increase in lysine uptake under nitrogen starvation was lowered by this mutation. These findings suggest that Vba2p is involved in basic amino acid transport in S. pombe under diverse conditions.

  4. The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability.

    PubMed

    Wilms, Tobias; Swinnen, Erwin; Eskes, Elja; Dolz-Edo, Laura; Uwineza, Alice; Van Essche, Ruben; Rosseels, Joëlle; Zabrocki, Piotr; Cameroni, Elisabetta; Franssens, Vanessa; De Virgilio, Claudio; Smits, Gertien J; Winderickx, Joris

    2017-06-01

    The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase) to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc) homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing.

  5. To Be Cytosolic or Vacuolar: The Double Life of Listeria monocytogenes.

    PubMed

    Bierne, Hélène; Milohanic, Eliane; Kortebi, Mounia

    2018-01-01

    Intracellular bacterial pathogens are generally classified into two types: those that exploit host membrane trafficking to construct specific niches in vacuoles (i.e., "vacuolar pathogens"), and those that escape from vacuoles into the cytosol, where they proliferate and often spread to neighboring cells (i.e., "cytosolic pathogens"). However, the boundary between these distinct intracellular phenotypes is tenuous and may depend on the timing of infection and on the host cell type. Here, we discuss recent progress highlighting this phenotypic duality in Listeria monocytogenes , which has long been a model for cytosolic pathogens, but now emerges as a bacterium also capable of residing in vacuoles, in a slow/non-growing state. The ability of L. monocytogenes to enter a persistence stage in vacuoles might play a role during the asymptomatic incubation period of listeriosis and/or the carriage of this pathogen in asymptomatic hosts. Moreover, persistent vacuolar Listeria could be less susceptible to antibiotics and more difficult to detect by routine techniques of clinical biology. These hypotheses deserve to be explored in order to better manage the risks related to this food-borne pathogen.

  6. Vacuolar myelinopathy in waterfowl from a North Carolina impoundment

    USGS Publications Warehouse

    Augspurger, T.; Fischer, John R.; Thomas, Nancy; Sileo, L.; Brannian, Roger E.; Miller, Kimberli J.; Rocke, Tonie E.

    2003-01-01

    Vacuolar myelinopathy was confirmed by light and electron microscopic examination of mallards (Anas platyrhynchos), ring-necked ducks (Aythya collaris), and buffleheads (Bucephala albeola) collected during an epizootic at Lake Surf in central North Carolina (USA) between November 1998 and February 1999. Clinical signs of affected birds were consistent with central nervous system impairment of motor function (incoordination, abnormal movement and posture, weakness, paralysis). This is the first report of this disease in wild waterfowl (Anseriformes).Aug

  7. Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus.

    PubMed

    Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter

    2014-11-04

    A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.

  8. Proton Transfer in the K-Channel Analog of B-Type Cytochrome c Oxidase from Thermus thermophilus

    PubMed Central

    Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter

    2014-01-01

    A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers. PMID:25418102

  9. Multi site polyadenylation and transcriptional response to stress of a vacuolar type H+-ATPase subunit A gene in Arabidopsis thaliana

    PubMed Central

    Magnotta, Scot M; Gogarten, Johann Peter

    2002-01-01

    Background Vacuolar type H+-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H+-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. Results Evidence suggests that subunit A of the vacuolar type H+-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. Conclusions Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H+-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2–4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation. PMID:11985780

  10. Proton pump inhibitors therapy vs H2 receptor antagonists therapy for upper gastrointestinal bleeding after endoscopy: A meta-analysis

    PubMed Central

    Zhang, Ying-Shi; Li, Qing; He, Bo-Sai; Liu, Ran; Li, Zuo-Jing

    2015-01-01

    AIM: To compare the therapeutic effects of proton pump inhibitors vs H2 receptor antagonists for upper gastrointestinal bleeding in patients after successful endoscopy. METHODS: We searched the Cochrane library, MEDLINE, EMBASE and PubMed for randomized controlled trials until July 2014 for this study. The risk of bias was evaluated by the Cochrane Collaboration’s tool and all of the studies had acceptable quality. The main outcomes included mortality, re-bleeding, received surgery rate, blood transfusion units and hospital stay time. These outcomes were estimated using odds ratios (OR) and mean difference with 95% confidence interval (CI). RevMan 5.3.3 software and Stata 12.0 software were used for data analyses. RESULTS: Ten randomized controlled trials involving 1283 patients were included in this review; 678 subjects were in the proton pump inhibitors (PPI) group and the remaining 605 subjects were in the H2 receptor antagonists (H2RA) group. The meta-analysis results revealed that after successful endoscopic therapy, compared with H2RA, PPI therapy had statistically significantly decreased the recurrent bleeding rate (OR = 0.36; 95%CI: 0.25-0.51) and receiving surgery rate (OR = 0.29; 95%CI: 0.09-0.96). There were no statistically significant differences in mortality (OR = 0.46; 95%CI: 0.17-1.23). However, significant heterogeneity was present in both the numbers of patients requiring blood transfusion after treatment [weighted mean difference (WMD), -0.70 unit; 95%CI: -1.64 - 0.25] and the time that patients remained hospitalized [WMD, -0.77 d; 95%CI: -1.87 - 0.34]. The Begg’s test (P = 0.283) and Egger’s test (P = 0.339) demonstrated that there was no publication bias in our meta-analysis. CONCLUSION: In patients with upper gastrointestinal bleeding after successful endoscopic therapy, compared with H2RA, PPI may be a more effective therapy. PMID:26034370

  11. Non-guideline-recommended prescribing of proton pump inhibitors in the general population.

    PubMed

    Mares-García, Emma; Palazón-Bru, Antonio; Martínez-Martín, Álvaro; Folgado-de la Rosa, David Manuel; Pereira-Expósito, Avelino; Gil-Guillén, Vicente Francisco

    2017-10-01

    To determine the magnitude of non-guideline-recommended prescribing (NGRP) of proton pump inhibitors (PPIs) in the general population, its associated factors and expense. We undertook a cross-sectional observational study in three community pharmacies in a Spanish region in 2013 involving a total of 302 patients with a prescription for PPIs. The main variable was the NGRP of PPIs. Secondary variables were: gender, age, antidepressants, osteoporosis, osteoarthritis, prescription cost per month and total number of chronic diseases. The cost associated with NGRP was calculated. To evaluate the associated factors, a multivariate binary logistic regression model was constructed and the adjusted odds ratios (OR) were obtained. NGRP was observed in 192 cases (63.6%). The average cost associated with NGRP per prescription was 3.24 euros per month. The factors significantly associated with NGRP (p < .05) were: antidepressants (OR = 2.66, p = .001), osteoporosis (OR = 3.53, p = .001), osteoarthritis (OR = 3.57, p < .001) and number of chronic diseases (OR = 0.73, p = .003). A novel approach was used to quantify the NGRP of PPIs in a Spanish community, as well as the associated economic costs. Qualitative studies are needed to better understand the causes of NGRP of PPIs. This analysis will aid in designing interventions to minimize this problem. Qualitative studies are needed to better understand the attitude of health professionals when prescribing PPIs.

  12. A study with pharyngeal and esophageal 24-hour pH-impedance monitoring in patients with laryngopharyngeal symptoms refractory to proton pump inhibitors.

    PubMed

    Dulery, C; Lechot, A; Roman, S; Bastier, P-L; Stoll, D; de Gabory, L; Zerbib, F

    2017-01-01

    The role of gastroesophageal reflux in chronic laryngeal symptoms is difficult to establish. The aim of this study was to characterize pharyngeal and esophageal pH-impedance reflux patterns in a group of patients with suspected laryngopharyngeal reflux and to determine predictive factors of response to proton pump inhibitors. Patients with chronic pharyngolaryngeal symptoms were evaluated with a symptom score questionnaire, laryngoscopy, and 24-hour pharyngeal and esophageal pH-impedance monitoring at baseline and after 8-week treatment with esomeprazole 40 mg b.i.d. Response to treatment was defined by a diminution of more than 50% of the score for the primary symptom. Reflux patterns and baseline impedance values were compared to those obtained in 46 healthy subjects. Twenty-four patients were included (17 women, median age 54 years), all previously refractory to antisecretory therapy. Symptom scores were 46 (32-62) and 40 (27-76) off and on therapy, respectively (P=.1). There was no significant difference between patients and controls for pH-impedance reflux parameters and baseline values off and on therapy in distal and proximal esophagus and in the pharynx. Median numbers of pharyngeal reflux were 0 and 0 off and on therapy, respectively. Only two patients were responders to treatment, both with excessive distal reflux but no pharyngeal reflux. Only one patient had abnormal pharyngeal reflux but did not respond to proton pump inhibitors. Patients with suspected laryngopharyngeal reflux refractory to therapy do not exhibit abnormal pharyngeal or esophageal pH-impedance reflux. In these patients, laryngopharyngeal reflux is unlikely. © 2016 John Wiley & Sons Ltd.

  13. Investigating the Proton Donor in the NO Reductase from Paracoccus denitrificans

    PubMed Central

    ter Beek, Josy; Krause, Nils; Ädelroth, Pia

    2016-01-01

    Variant nomenclature: the variants were made in the NorB subunit if not indicated by the superscript c, which are variants in the NorC subunit (e.g. E122A = exchange of Glu-122 in NorB for an Ala, E71cD; exchange of Glu-71 in NorC for an Asp). Bacterial NO reductases (NORs) are integral membrane proteins from the heme-copper oxidase superfamily. Most heme-copper oxidases are proton-pumping enzymes that reduce O2 as the last step in the respiratory chain. With electrons from cytochrome c, NO reductase (cNOR) from Paracoccus (P.) denitrificans reduces NO to N2O via the following reaction: 2NO+2e-+2H+→N2O+H2O. Although this reaction is as exergonic as O2-reduction, cNOR does not contribute to the electrochemical gradient over the membrane. This means that cNOR does not pump protons and that the protons needed for the reaction are taken from the periplasmic side of the membrane (since the electrons are donated from this side). We previously showed that the P. denitrificans cNOR uses a single defined proton pathway with residues Glu-58 and Lys-54 from the NorC subunit at the entrance. Here we further strengthened the evidence in support of this pathway. Our further aim was to define the continuation of the pathway and the immediate proton donor for the active site. To this end, we investigated the region around the calcium-binding site and both propionates of heme b3 by site directed mutagenesis. Changing single amino acids in these areas often had severe effects on cNOR function, with many variants having a perturbed active site, making detailed analysis of proton transfer properties difficult. Our data does however indicate that the calcium ligation sphere and the region around the heme b3 propionates are important for proton transfer and presumably contain the proton donor. The possible evolutionary link between the area for the immediate donor in cNOR and the proton loading site (PLS) for pumped protons in oxygen-reducing heme-copper oxidases is discussed. PMID

  14. Investigating the Proton Donor in the NO Reductase from Paracoccus denitrificans.

    PubMed

    ter Beek, Josy; Krause, Nils; Ädelroth, Pia

    2016-01-01

    Variant nomenclature: the variants were made in the NorB subunit if not indicated by the superscript c, which are variants in the NorC subunit (e.g. E122A = exchange of Glu-122 in NorB for an Ala, E71cD; exchange of Glu-71 in NorC for an Asp). Bacterial NO reductases (NORs) are integral membrane proteins from the heme-copper oxidase superfamily. Most heme-copper oxidases are proton-pumping enzymes that reduce O2 as the last step in the respiratory chain. With electrons from cytochrome c, NO reductase (cNOR) from Paracoccus (P.) denitrificans reduces NO to N2O via the following reaction: 2NO+2e-+2H+→N2O+H2O. Although this reaction is as exergonic as O2-reduction, cNOR does not contribute to the electrochemical gradient over the membrane. This means that cNOR does not pump protons and that the protons needed for the reaction are taken from the periplasmic side of the membrane (since the electrons are donated from this side). We previously showed that the P. denitrificans cNOR uses a single defined proton pathway with residues Glu-58 and Lys-54 from the NorC subunit at the entrance. Here we further strengthened the evidence in support of this pathway. Our further aim was to define the continuation of the pathway and the immediate proton donor for the active site. To this end, we investigated the region around the calcium-binding site and both propionates of heme b3 by site directed mutagenesis. Changing single amino acids in these areas often had severe effects on cNOR function, with many variants having a perturbed active site, making detailed analysis of proton transfer properties difficult. Our data does however indicate that the calcium ligation sphere and the region around the heme b3 propionates are important for proton transfer and presumably contain the proton donor. The possible evolutionary link between the area for the immediate donor in cNOR and the proton loading site (PLS) for pumped protons in oxygen-reducing heme-copper oxidases is discussed.

  15. Proton Probing using the T-Cubed Laser

    NASA Astrophysics Data System (ADS)

    Kordell, Peter; Campbell, Paul; Willingale, Louise; Maksimchuk, Anatoly; Krushelnick, Karl; Tubman, Eleanor; Woolsey, Nigel

    2015-11-01

    The University of Michigan's 20 TW, 400 fs pulse T-cubed laser can produce proton beams of up to 7.2 MeV through target normal sheeth acceleration. The proton flux at 4 MeV produces sufficient signal on Radiochromic Film for use as an ultrafast, electromagnetic field diagnostic. A two beam experiment has been set-up to enable co-timed, pump-probe relativistic intensity interactions. We present an evaluation of the flux, uniformity, energy and laminar flow of the proton probe for future use in imaging of a simple wire target interaction. This work was supported by the DOE (Grant No. DE-SC0012327).

  16. Intermittent and on-demand use of proton pump inhibitors in the management of symptomatic gastroesophageal reflux disease.

    PubMed

    Bardhan, Karna Dev

    2003-03-01

    The epidemic of gastroesophageal reflux disease (GERD) in industrialized nations is currently spreading to less-developed ones, with more than half of the patients having symptomatic or mild erosive GERD. The long-term management of GERD has been dominated by daily maintenance treatment with proton pump inhibitors (PPI) to prevent relapse. It is common, however, for many patients with mild disease and infrequent symptom relapses to use a PPI only when symptoms demand. Patients with symptomatic or mild erosive GERD are therefore ideal for on-demand or intermittent treatment. The efficacy of such a strategy of intermittent treatment, or treatment of symptoms on demand, has recently been evaluated in four randomized controlled studies. These trials demonstrate that such therapeutic strategies reduce symptoms, improve quality of life, and are cost effective. In clinical practice, the author has found these treatment strategies suitable for approximately 60% of newly diagnosed patients with GERD for the long-term management of symptomatic GERD of mild or moderate severity.

  17. Repositioning Proton Pump Inhibitors as Anticancer Drugs by Targeting the Thioesterase Domain of Human Fatty Acid Synthase

    PubMed Central

    2015-01-01

    Fatty acid synthase (FASN), the enzyme responsible for de novo synthesis of free fatty acids, is up-regulated in many cancers. FASN is essential for cancer cell survival and contributes to drug resistance and poor prognosis. However, it is not expressed in most nonlipogenic normal tissues. Thus, FASN is a desirable target for drug discovery. Although different FASN inhibitors have been identified, none has successfully moved into clinical use. In this study, using in silico screening of an FDA-approved drug database, we identified proton pump inhibitors (PPIs) as effective inhibitors of the thioesterase activity of human FASN. Further investigation showed that PPIs inhibited proliferation and induced apoptosis of cancer cells. Supplementation of palmitate, the end product of FASN catalysis, rescued cancer cells from PPI-induced cell death. These findings provide new evidence for the mechanism by which this FDA-approved class of compounds may be acting on cancer cells. PMID:25513712

  18. Accumulating Evidence for a Drug–Drug Interaction Between Methotrexate and Proton Pump Inhibitors

    PubMed Central

    Mackey, Ann Corken; Kluetz, Paul; Jappar, Dilara; Korvick, Joyce

    2012-01-01

    Background. A number of medications are known to interact with methotrexate through various mechanisms. The aim of this article is to apprise practitioners of a new labeling change based on the accumulating evidence for a possible drug–drug interaction between methotrexate (primarily at high doses) and proton pump inhibitors (PPIs). Methods. The U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (AERS) database of spontaneous adverse event reports and the published literature were searched for cases reporting an interaction between methotrexate and PPIs. Results. A search of the AERS database and existing literature found several individual case reports of drug–drug interactions and three additional supportive studies that suggest potential underlying mechanisms for the interaction. Conclusion. There is evidence to suggest that concomitant use of methotrexate (primarily at high doses) with PPIs such as omeprazole, esomeprazole, and pantoprazole may decrease methotrexate clearance, leading to elevated serum levels of methotrexate and/or its metabolite hydroxymethotrexate, possibly leading to methotrexate toxicities. In several case reports, no methotrexate toxicity was found when a histamine H2 blocker was substituted for a PPI. Based on the reviewed data, the FDA updated the methotrexate label to include the possible drug–drug interaction between high-dose methotrexate and PPIs. Physicians should be alerted to this potential drug–drug interaction in patients receiving concomitant high-dose methotrexate and PPIs. PMID:22477728

  19. Proton-pump inhibitors can decrease gastrointestinal bleeding after percutaneous coronary intervention.

    PubMed

    Jiang, Zongdan; Wu, Hailu; Duan, Zhaotao; Wang, Zhibing; Hu, Kewei; Ye, Fei; Zhang, Zhenyu

    2013-12-01

    Current medical therapies for patients who have an acute coronary syndrome (ACS) focus on the coagulation cascade and platelet inhibition. These, coupled with early use of cardiac catheterization and revascularization, have decreased morbidity and mortality rates in patients who have acute ischemic heart disease with risk of bleeding. The study aimed to determine the incidence of gastrointestinal bleeding after percutaneous coronary intervention (PCI). The effect of proton-pump inhibitor (PPI) treatment was also analyzed. This case-control study evaluated gastrointestinal bleeding within a year of PCI for stable angina and acute coronary syndromes at Nanjing First Hospital between 2008 and 2011. Cases were identified and outcomes assessed using linkage analysis of data from cardiology and gastroenterology department databases. Analysis of the case and control groups for both risk and protective factors was performed using independent two-sample Student's t-test with Fisher's exact P value and logistic regression. The incidence of gastrointestinal bleeding following PCI was 1.3% (35/2680 patients). The risk factors for gastrointestinal bleeding were advanced age, female gender, smoking, drinking, previous peptic ulcer and previous gastrointestinal bleeding. PPI use after PCI (P=0.000) was accompanied by a lower risk of gastrointestinal bleeding, with only a few cases of gastrointestinal bleeding events reported. The incidence of gastrointestinal bleeding associated with the combination of aspirin and clopidogrel therapy was estimated to be 1.3%. Advanced age, being female, smokers, drinkers, previous peptic ulcer and previous gastrointestinal bleeding were significant independent risk factors. PPI for the prevention and treatment of gastrointestinal bleeding induced by the combination of aspirin and clopidogrel in patients after PCI was safe and effective. Published by Elsevier Masson SAS.

  20. Gut Microbiota Composition Before and After Use of Proton Pump Inhibitors.

    PubMed

    Hojo, Mariko; Asahara, Takashi; Nagahara, Akihito; Takeda, Tsutomu; Matsumoto, Kohei; Ueyama, Hiroya; Matsumoto, Kenshi; Asaoka, Daisuke; Takahashi, Takuya; Nomoto, Koji; Yamashiro, Yuichiro; Watanabe, Sumio

    2018-05-24

    Recently, problems associated with proton pump inhibitor (PPI) use have begun to surface. PPIs influence the gut microbiota; therefore, PPI use may increase the risk of enteric infections and cause bacterial translocation. In this study, we investigated fecal microbiota composition, fecal organic acid concentrations and pH, and gut bacteria in the blood of the same patients before and after PPI use. Twenty patients with reflux esophagitis based on endoscopic examination received 8 weeks of treatment with PPIs. To analyze fecal microbiota composition and gut bacteria in blood and organic acid concentrations, 16S and 23S rRNA-targeted quantitative RT-PCR and high-performance liquid chromatography were conducted. Lactobacillus species were significantly increased at both 4 and 8 weeks after PPI treatment compared with bacterial counts before treatment (P = 0.011 and P = 0.002, respectively). Among Lactobacillus spp., counts of the L. gasseri subgroup, L. fermentum, the L. reuteri subgroup, and the L. ruminis subgroup were significantly increased at 4 and 8 weeks after treatment compared with counts before treatment. Streptococcus species were also significantly increased at 4 and 8 weeks after PPI treatment compared with counts before treatment (P < 0.01 and P < 0.001, respectively). There was no significant difference in the total organic acid concentrations before and after PPI treatment. Detection rates of bacteria in blood before and after PPI treatment were 22 and 28%, respectively, with no significant differences. Our quantitative RT-PCR results showed that gut dysbiosis was caused by PPI use, corroborating previous results obtained by metagenomic analysis.

  1. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitorsmore » in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.« less

  2. Electrostatic coupling of ion pumps.

    PubMed

    Nieto-Frausto, J; Lüger, P; Apell, H J

    1992-01-01

    In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation.

  3. MgATP-concentration dependence of protection of yeast vacuolar V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole supports a bi-site catalytic mechanism of ATP hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milgrom, Elena M.; Milgrom, Yakov M., E-mail: milgromy@upstate.edu

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer MgATP protects V-ATPase from inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Black-Right-Pointing-Pointer V-ATPase activity saturation with MgATP is not sufficient for complete protection. Black-Right-Pointing-Pointer The results support a bi-site catalytic mechanism for V-ATPase. -- Abstract: Catalytic site occupancy of the yeast vacuolar V-ATPase during ATP hydrolysis in the presence of an ATP-regenerating system was probed using sensitivity of the enzyme to inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). The results show that, regardless of the presence or absence of the proton-motive force across the vacuolar membrane, saturation of V-ATPase activity at increasing MgATP concentrations is accompanied by only partial protection of the enzyme from inhibitionmore » by NBD-Cl. Both in the presence and absence of an uncoupler, complete protection of V-ATPase from inhibition by NBD-Cl requires MgATP concentrations that are significantly higher than those expected from the K{sub m} values for MgATP. The results are inconsistent with a tri-site model and support a bi-site model for a mechanism of ATP hydrolysis by V-ATPase.« less

  4. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.

    PubMed

    Momonoi, Kazumi; Yoshida, Kumi; Mano, Shoji; Takahashi, Hideyuki; Nakamori, Chihiro; Shoji, Kazuaki; Nitta, Akira; Nishimura, Mikio

    2009-08-01

    Blue color in flowers is due mainly to anthocyanins, and a considerable part of blue coloration can be attributed to metal-complexed anthocyanins. However, the mechanism of metal ion transport into vacuoles and subsequent flower color development has yet to be fully explored. Previously, we studied the mechanism of blue color development specifically at the bottom of the inner perianth in purple tulip petals of Tulipa gesneriana cv. Murasakizuisho. We found that differences in iron content were associated with the development of blue- and purple-colored cells. Here, we identify a vacuolar iron transporter in T. gesneriana (TgVit1), and characterize the localization and function of this transporter protein in tulip petals. The amino acid sequence of TgVit1 is 85% similar that of the Arabidopsis thaliana vacuolar iron transporter AtVIT1, and also showed similarity to the AtVIT1 homolog in yeast, Ca(2+)-sensitive cross-complementer 1 (CCC1). The gene TgVit1 was expressed exclusively in blue-colored epidermal cells, and protein levels increased with increasing mRNA expression and blue coloration. Transient expression experiments revealed that TgVit1 localizes to the vacuolar membrane, and is responsible for the development of the blue color in purple cells. Expression of TgVit1 in yeast rescued the growth defect of ccc1 mutant cells in the presence of high concentrations of FeSO(4). Our results indicate that TgVit1 plays an essential role in blue coloration as a vacuolar iron transporter in tulip petals. These results suggest a new role for involvement of a vacuolar iron transporter in blue flower color development.

  5. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers.

    PubMed

    McKenzie, Marian J; Chen, Ronan K Y; Harris, John C; Ashworth, Matthew J; Brummell, David A

    2013-01-01

    Cold-induced sweetening (CIS) is a serious post-harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark-coloured and bitter-tasting product and generating the probable carcinogen acrylamide as a by-product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS-susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS-resistant line increased susceptibility to CIS. The results show that post-translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS. © 2012 Blackwell Publishing Ltd.

  6. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering.

    PubMed

    Aluri, Sirisha; Büttner, Michael

    2007-02-13

    Sugar compartmentation into vacuoles of higher plants is a very important physiological process, providing extra space for transient and long-term sugar storage and contributing to the osmoregulation of cell turgor and shape. Despite the long-standing knowledge of this subcellular sugar partitioning, the proteins responsible for these transport steps have remained unknown. We have identified a gene family in Arabidopsis consisting of three members homologous to known sugar transporters. One member of this family, Arabidopsis thaliana vacuolar glucose transporter 1 (AtVGT1), was localized to the vacuolar membrane. Moreover, we provide evidence for transport activity of a tonoplast sugar transporter based on its functional expression in bakers' yeast and uptake studies in isolated yeast vacuoles. Analyses of Atvgt1 mutant lines indicate an important function of this vacuolar glucose transporter during developmental processes like seed germination and flowering.

  7. A Review of the Novel Application and Potential Adverse Effects of Proton Pump Inhibitors.

    PubMed

    Yu, Li-Yuan; Sun, Lu-Ning; Zhang, Xue-Hui; Li, Yue-Qi; Yu, Lei; Yuan, Zi-Qing-Yun; Meng, Ling; Zhang, Hong-Wen; Wang, Yong-Qing

    2017-05-01

    Proton pump inhibitors (PPIs) are known as a class of pharmaceutical agents that target H + /K + -ATPase, which is located in gastric parietal cells. PPIs are widely used in the treatment of gastric acid-related diseases including peptic ulcer disease, erosive esophagitis and gastroesophageal reflux disease, and so on. These drugs present an excellent safety profile and have become one of the most commonly prescribed drugs in primary and specialty care. Except for gastric acid-related diseases, PPIs can also be used in the treatment of Helicobacter pylori infection, viral infections, respiratory system diseases, cancer and so on. Although PPIs are mainly used short term in patients with peptic ulcer disease, nowadays these drugs are increasingly used long term, and frequently for a lifetime, for instance in patients with typical or atypical symptoms of gastroesophageal reflux disease and in NSAID or aspirin users at risk of gastrotoxicity and related complications including hemorrhage, perforation and gastric outlet obstruction. Long-term use of PPIs may lead to potential adverse effects, such as osteoporotic fracture, renal damage, infection (pneumonia and clostridium difficile infection), rhabdomyolysis, nutritional deficiencies (vitamin B12, magnesium and iron), anemia and thrombocytopenia. In this article, we will review some novel uses of PPIs in other fields and summarize the underlying adverse reactions.

  8. Is the required therapeutic effect always achieved by racemic switch of proton-pump inhibitors?

    PubMed Central

    Zhou, Quan; Yan, Xiao-Feng; Pan, Wen-Sheng; Zeng, Su

    2008-01-01

    Many of the drugs currently used in medical practice are racemates. The enantiomers of a racemic drug differ in pharmacodynamics and/or pharmacokinetics, thus in some cases it is preferable to develop pure enantiomers by racemic switch. In a recent study by Pai et al, dexrabeprazole [R(+)-rabeprazole] (10 mg) was found to be more effective than rabeprazole (20 mg) in the treatment of gastroesophageal reflux disease. We read with great interest in this study and discussed whether such racemic switch would be applicable to other proton-pump inhibitors (PPIs). A literature review indicates that stereoselective pharmacokinetics, rather than stereoselective pharmacological activity, is the main cause of differences in clinical efficacy between pure enantiomer and racemic PPI. Racemic switches of PPI provide the therapeutic advantages such as reducing metabolic load on the body, simplifying pharmacokinetics, providing benefit to the non-responders to standard dose of racemate, more homogenous response to treatment and better efficacy with equal safety. Further studies in quantitative structure-activity relationships (QSARs) are needed to address the fact that the preferred enantiomer of PPI is not always in the same absolute configuration, i.e., S-form is for omeprazole, pantoprazole and tenatoprazole whereas R-form is for lansoprazole and rabeprazole. PMID:18442220

  9. A Novel Arabidopsis Vacuolar Glucose Exporter Is Involved in Cellular Sugar Homeostasis and Affects the Composition of Seed Storage Compounds1[W][OA

    PubMed Central

    Poschet, Gernot; Hannich, Barbara; Raab, Sabine; Jungkunz, Isabel; Klemens, Patrick A.W.; Krueger, Stephan; Wic, Stefan; Neuhaus, H. Ekkehard; Büttner, Michael

    2011-01-01

    Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves. PMID:21984725

  10. Effect of proton pump inhibitors on magnesium balance: is there a link to cardiovascular risk?

    PubMed

    Pisani, Laura Francesca; Filippi, Elisabetta; Vavassori, Sara; Munizio, Nadia; Vecchi, Maurizio; Pastorelli, Luca

    2016-03-01

    Magnesium (Mg(2+)) is the second most copious element inside human cells and the fourth most abundant positively charged ion in the human body. It is of central importance for a broad variety of physiological processes, including intracellular signaling, neuronal excitability, muscle contraction, bone formation and enzyme activation. Its overall balance is tightly regulated by the concerted actions of the intestine, bones and kidneys. Disturbance of this balance can have serious consequences. Symptoms of hypomagnesaemia include tetany, seizures and cardiac arrhythmias, whereas hypermagnesaemia may cause cardiovascular and neuromuscular abnormalities. Drugs can interfere with Mg(2+) homoeostasis in several ways, and proton-pump inhibitors (PPIs) have been associated with hypomagnesaemia. A better understanding of the molecular mechanisms underlying the adverse effects of these medications on Mg(2+) balance will isuggest ideas for prevention and treatment, and might provide greater insight into Mg(2+) homoeostasis. This review gives an overview of the influence of PPIs on Mg(2+) homoeostasis and provides some understanding of the underlying physiological mechanisms. Moreover, we will discuss the potential link between PPI-induced changes in Mg(2+) homeostasis, and the reported cardiovascular risk observed in long-term PPI users.

  11. In Vitro Activities of Rabeprazole, a Novel Proton Pump Inhibitor, and Its Thioether Derivative Alone and in Combination with Other Antimicrobials against Recent Clinical Isolates of Helicobacter pylori

    PubMed Central

    Kawakami, Yoshiyuki; Akahane, Takayuki; Yamaguchi, Masaru; Oana, Kozue; Takahashi, Yuko; Okimura, Yukie; Okabe, Tadashi; Gotoh, Akira; Katsuyama, Tsutomu

    2000-01-01

    The MICs of rabeprazole sodium (RPZ), a newly developed benzimidazole proton pump inhibitor (PPI), against 133 clinical Helicobacter pylori strains revealed a higher degree of activity than the another two PPIs, lansoprazole and omeprazole. Time-kill curve assays of RPZ, when combined with amoxicillin, clarithromycin, or metronidazole, disclosed that synergistic effects were demonstrated in combination with each antibiotic examined. Moreover, no apparent antagonistic effect appeared among all of the strains tested. PMID:10639386

  12. Tributyltin sensitivity of vacuolar-type Na(+)-transporting ATPase from Enterococcus hirae.

    PubMed

    Chardwiriyapreecha, Soracom; Inoue, Tomohiro; Sugimoto, Naoko; Sekito, Takayuki; Yamato, Ichiro; Murata, Takeshi; Homma, Michio; Kakinuma, Yoshimi

    2009-10-01

    Tributyltin chloride (TBT), an environmental pollutant, is toxic to a variety of eukaryotic and prokaryotic organisms. Some members of F-ATP synthase (F-ATPase)/vacuolar type ATPase (V-ATPase) superfamily have been identified as the molecular target of this compound. TBT inhibited the activities of H(+)-transporting or Na(+)-transporting F-ATPase as well as H(+)-transporting V-ATPase originated from various organisms. However, the sensitivity to TBT of Na(+)-transporting V-ATPase has not been investigated. We examined the effect of TBT on Na(+)-transporting V-ATPase from an eubacterium Enterococus hirae. The ATP hydrolytic activity of E. hirae V-ATPase in purified form as well as in membrane-bound form was little inhibited by less than 10 microM TBT; IC50 for TBT inhibition of purified enzyme was estimated to be about 35 microM. Active sodium transport by E. hirae cells, indicating the in vivo activity of this V-ATPase, was not inhibited by 20 microM TBT. By contrast, IC50 of H(+)-transporting V-ATPase of the vacuolar membrane vesicles from Saccharomyces cerevisiae was about 0.2 microM. E. hirae V-ATPase is thus extremely less sensitive to TBT.

  13. The antiwrinkle effect of topical concentrated 2-dimethylaminoethanol involves a vacuolar cytopathology.

    PubMed

    Morissette, G; Germain, L; Marceau, F

    2007-03-01

    The 'cosmeceutical' agent 2-dimethylaminoethanol (DMAE) is a tertiary amine found in high concentration in numerous topical antiwrinkle preparations. We hypothesized that a 337 mmol L(-1) (3%) DMAE reservoir applied to the skin could reproduce the cytopathology induced by other amines by maintaining a millimolar drug concentration within a certain depth of the skin layers, and that vacuolar cell expansion could account for the very rapid effect on the apparent skin fullness. Morphological and functional assays were applied to cultured rabbit dermal fibroblasts treated with tertiary amines in vitro. A morphological verification of the vacuolization caused by topical DMAE was also attempted in vivo using the inner skin of the rabbit ear and in vitro using primary cultures of human cutaneous epithelial cells. Fibroblasts responded to DMAE (2.5-10 mmol L(-1)) by massive vacuolization (0.5-4 h; phase contrast observations). Triethanolamine, another chemical frequently used topically, was also active in this respect (10 mmol L(-1)). The vacuolar adenosine triphosphatase inhibitor bafilomycin A1 prevented DMAE- or triethanolamine-induced vacuolization; adding bafilomycin A1 or cell washout slowly reversed the established vacuolization induced by DMAE. Further effects of DMAE in cultured fibroblasts included a moderate cytotoxicity (10 mmol L(-1)) that was abated by bafilomycin A1 cotreatment, a concentration-dependent mitotic arrest (2.5 mmol L(-1)) and transient and mild effects on cell ploidy. The epidermis of the rabbit external ear was significantly thickened and exhibited clear perinuclear swelling indicative of vacuolization in response to 3% DMAE (1 h; paraffin tissue sections). Cultured human cutaneous epithelial cells responded to DMAE by vacuolization (inhibited by bafilomycin A1 cotreatment). The vacuolar cytopathology induced by concentrated organic amines may be the cellular basis of the antiwrinkle effect of DMAE.

  14. Vacuolar invertase gene silencing in potato decreasing the frequency of sugar-end defects

    USDA-ARS?s Scientific Manuscript database

    Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one e...

  15. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis.

    PubMed

    Amato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battista

    2016-01-01

    A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2 . When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera , we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.

  16. A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis

    PubMed Central

    Amato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battista

    2017-01-01

    A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine. PMID:28105033

  17. Underuse of proton-pump inhibitors in older patients newly starting NSAID treatment.

    PubMed

    Hoffmann, F; Glaeske, G; Schmiemann, G

    2015-07-01

    Proton pump inhibitors (PPIs) are recommended for the prevention of traditional non-steroidal anti-inflammatory drugs (tNSAIDs)-related ulcer complications in high-risk patients. We aimed to study to which extent older persons initiating tNSAIDs with and without oral corticosteroids receive PPIs and whether sex and age influence treatment. We analysed claims data of the German health insurance company BARMER GEK, covering about 9 million persons. A cohort of new users of tNSAIDs aged 65 years and older starting treatment from 1 January 2011, through 1 December 2012 was included. Concurrent use of oral corticosteroids was assessed within the 28 days before the index date. Persons were categorised as users of PPIs if they filled a prescription within 28 days before or after the index prescription. A total of 83,326 persons met the inclusion criteria (64.1% females; mean age: 74.7 years). Of these new users of tNSAID, 27.8% received PPIs within 28 days before or after the index date (females: 29.4% and males: 25.0%). Of the 2857 persons with concurrent prescriptions of oral corticosteroids, 42.8% also received PPIs (females: 43.4% and males: 41.8%). An increase in prescribing of PPIs with age was found in all new users as well as in those concurrently receiving oral corticosteroids. We found that gastroprotective agents are not prescribed to older new users of tNSAIDs as recommended. When compared with earlier studies, adherence to guidelines still remains low. © 2015 John Wiley & Sons Ltd.

  18. Metal Fluoride Inhibition of a P-type H+ Pump

    PubMed Central

    Pedersen, Jesper Torbøl; Falhof, Janus; Ekberg, Kira; Buch-Pedersen, Morten Jeppe; Palmgren, Michael

    2015-01-01

    The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state. PMID:26134563

  19. Intraorganellar acidification by V-ATPases: a target in cell proliferation and cancer therapy.

    PubMed

    Hernández, Agustín; Serrano, Gloria; Herrera-Palau, Rosana; Pérez-Castiñeira, José R; Serrano, Aurelio

    2010-06-01

    Vacuolar-type ATPases are multicomponent proton pumps involved in the acidification of single membrane intracellular compartments such as endosomes and lysosomes. They couple the hydrolysis of ATP to the translocation of one to two protons across the membrane. Acidification of the lumen of single membrane organelles is a necessary factor for the correct traffic of membranes and cargo to and from the different internal compartments of a cell. Also, V-ATPases are involved in regulation of pH at the cytosol and, possibly, extracellular milieu. The inhibition of V-ATPases has been shown to induce apoptosis and cell cycle arrest in tumour cells and, therefore, chemicals that behave as inhibitors of this kind of proton pumps have been proposed as putative treatment agents against cancer and many have been patented as such. The compounds filed in patents fall into five major types: plecomacrolides, benzolactone enamides, archazolids, chondropsins and indoles. All these have proved to be apoptosis inducers in cell culture and many to be able to reduce xenograft tumor growth in murine models. The present review will summarize their general structure, origin and mechanisms of action and put them in relation to the patents registered so far for the treatment of cancer.

  20. The Ca2+-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum.

    PubMed

    Espinoza-Fonseca, L Michel

    2017-03-28

    Ca 2+ transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca 2+ homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca 2+ uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca 2+ and other ions across the SR. During Ca 2+ uptake by the SR Ca 2+ -ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca 2+ transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca 2+ release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca 2+ transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.

  1. Stereoselective disposition of proton pump inhibitors.

    PubMed

    Andersson, Tommy; Weidolf, Lars

    2008-01-01

    It is estimated that about half of all therapeutic agents are chiral, but most of these drugs are administered in the form of the racemic mixture, i.e. a 50/50 mixture of its enantiomers. However, chirality is one of the main features of biology, and many of the processes essential for life are stereoselective, implying that two enantiomers may work differently from each other in a physiological environment. Thus, receptors or metabolizing enzymes would recognize one of the ligand enantiomers in favour of the other. With one exception, all presently marketed proton pump inhibitors (PPIs)--omeprazole, lansoprazole, pantoprazole and rabeprazole--used for the treatment of gastric acid-related diseases are racemic mixtures. The exception is esomeprazole, the S-enantiomer of omeprazole, which is the only PPI developed as a single enantiomer drug. The development of esomeprazole (an alkaline salt thereof, e.g. magnesium or sodium) was based on unique metabolic properties that clearly differentiated esomeprazole from omeprazole, the racemate. At comparable doses, these properties led to several clinical advantages, for example higher bioavailability in the majority of patients, i.e. the extensive metabolizers (EMs; 97% in Caucasian and 80-85% in Asian populations), lower exposure in poor metabolizers (PMs; 3% in Caucasian and 15-20% in Asian populations) and lower interindividual variation. For the other, i.e. racemic, PPIs there are some data available on the characteristics of the individual enantiomers, and we have therefore undertaken to analyse the current literature with the purpose of evaluating the potential benefits of developing single enantiomer drugs from lansoprazole, pantoprazole and rabeprazole. For lansoprazole, the plasma concentrations of the S-enantiomer are lower than those of the R-enantiomer in both EMs and PMs, and, consequently, the variability in the population or between EMs and PMs is not likely to decrease with either of the lansoprazole

  2. Wheat Vacuolar Iron Transporter TaVIT2 Transports Fe and Mn and Is Effective for Biofortification1[OPEN

    PubMed Central

    Jones, Eleanor R.; Rodríguez-Ramiro, Ildefonso

    2017-01-01

    Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular, iron deficiency anemia is a major global health issue, but the iron content of staple crops such as wheat (Triticum aestivum) is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for the biofortification of wheat, we functionally characterized homologs of the VACUOLAR IRON TRANSPORTER (VIT). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2, which have different expression patterns but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue the growth of a yeast (Saccharomyces cerevisiae) mutant defective in vacuolar iron transport. TaVIT2 also complemented a manganese transporter mutant but not a vacuolar zinc transporter mutant. By overexpressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a greater than 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the United Kingdom. The antinutrient phytate was not increased and the iron in the white flour fraction was bioavailable in vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and also was effective in barley (Hordeum vulgare). Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue, bypassing existing homeostatic mechanisms. PMID:28684433

  3. Selective inhibition of tumor cell associated Vacuolar-ATPase 'a2' isoform overcomes cisplatin resistance in ovarian cancer cells.

    PubMed

    Kulshrestha, Arpita; Katara, Gajendra K; Ginter, Jordyn; Pamarthy, Sahithi; Ibrahim, Safaa A; Jaiswal, Mukesh K; Sandulescu, Corina; Periakaruppan, Ramayee; Dolan, James; Gilman-Sachs, Alice; Beaman, Kenneth D

    2016-06-01

    Development of resistance to platinum compounds significantly hinders successful ovarian cancer (OVCA) treatment. In tumor cells, dysregulated pH gradient across cell membranes is a key physiological mechanism of metastasis/chemo-resistance. These pH alterations are mediated by aberrant activation of key multi-subunit proton pumps, Vacuolar-ATPases (V-ATPases). In tumor cells, its 'a2' isoform (V-ATPase-V0a2) is a component of functional plasma-membrane complex and promotes tumor invasion through tumor-acidification and immuno-modulation. Its involvement in chemo-resistance has not been studied. Here, we show that V-ATPase-V0a2 is over-expressed in acquired-cisplatin resistant OVCA cells (cis-A2780/cis-TOV112D). Of all the 'a' subunit isoforms, V-ATPase-V0a2 exhibited an elevated expression on plasma membrane of cisplatin-resistant cells compared to sensitive counterparts. Immuno-histochemistry revealed V-ATPase-V0a2 expression in both low grade (highly drug-resistant) and high grade (highly recurrent) human OVCA tissues indicating its role in a centralized mechanism of tumor resistance. In cisplatin resistant cells, shRNA mediated inhibition of V-ATPase-V0a2 enhanced sensitivity towards both cisplatin and carboplatin. This improved cytotoxicity was mediated by enhanced cisplatin-DNA-adduct formation and suppressed DNA-repair pathway, leading to enhanced apoptosis. Suppression of V0a2 activity strongly reduced cytosolic pH in resistant tumor cells, which is known to enhance platinum-associated DNA-damage. As an indicator of reduced metastasis and chemo-resistance, in contrast to plasma membrane localization, a diffused cytoplasmic localization of acidic vacuoles was observed in V0a2-knockdown resistant cells. Interestingly, pre-treatment with monoclonal V0a2-inhibitory antibody enhanced cisplatin cytotoxicity in resistant cells. Taken together, our findings suggest that the isoform specific inhibition of V-ATPase-V0a2 could serve as a therapeutic strategy for chemo

  4. Guidelines for proton pump inhibitor prescriptions in paediatric intensive care unit.

    PubMed

    Joret-Descout, P; Dauger, S; Bellaiche, M; Bourdon, O; Prot-Labarthe, S

    2017-02-01

    Background Stress ulcer prophylaxis (SUP) is recommended in some situations to prevent upper gastrointestinal bleeding and is a component of standard care for patients admitted to the intensive care unit (ICU). Proton pump inhibitors (PPIs), already among the most widely prescribed drug classes, are being increasingly used. Objective To describe PPI prescribing patterns and their changes after the dissemination of guidelines. Setting Paediatric ICU (PICU), Robert-Debré Teaching Hospital, Paris, France, which admits about 800 patients annually, from full-term neonates to 18-year-olds. Method Prospective observational study with two 6-week observation periods (July-August and September-October, 2013), before and after dissemination in the PICU of PPI prescribing guidelines. Main outcome measure Changes in PPI prescribing patterns (prevalence, dosage, and indication) after the guidelines. Results The number of patients admitted to the PICU was 77 (mean age 4.6 years [range 1 day-18 years]) before and 70 (mean age 3.8 years [range 1 day-17 years]) after the guidelines. During both periods, SUP was the most common reason for PPI prescribing. The proportion of patients prescribed PPIs dropped significantly, from 51% before the guidelines to 30% after the guidelines (p < 0.001). Mean daily dosage also decreased significantly, from 1.5 mg/kg/(range 0.5-4.4) to 1.1 mg/kg (range 0.7-1.8) (p < 0.002). None of the patients experienced upper gastrointestinal bleeding during either period. Conclusion Off-label PPI prescribing for SUP was common in our PICU. The introduction of guidelines was associated with a significant decrease in PPI use and dosage. This study confirms that guidelines can change PPI prescribings patterns in paediatric practice.

  5. Proton storage site in bacteriorhodopsin: new insights from QM/MM simulations of microscopic pKa and infrared spectra

    PubMed Central

    Goyal, Puja; Ghosh, Nilanjan; Phatak, Prasad; Clemens, Maike; Gaus, Michael; Elstner, Marcus; Cui, Qiang

    2011-01-01

    Identifying the group that acts as the proton storage/loading site is a challenging but important problem for understanding the mechanism of proton pumping in biomolecular proton pumps, such as bacteriorhodopsin (bR) and cytochrome c oxidase. Recent experimental studies of bR propelled the idea that the proton storage/release group (PRG) in bR is not an amino acid but a water cluster embedded in the protein. We argue that this idea is at odds with our knowledge of protein electrostatics, since invoking the water cluster as PRG would require the protein to raise the pKa of a hydronium by almost 11 pKa units, which is difficult considering known cases of pKa shifts in proteins. Our recent QM/MM simulations suggested an alternative “intermolecular proton bond” model in which the stored proton is shared between two conserved Glu residues (194 and 204). Here we show that this model leads to microscopic pKa values consistent with available experimental data and the functional requirement of a PRG. Extensive QM/MM simulations also show that, independent of a number of technical issues, such as the influence of QM region size, starting x-ray structure and nuclear quantum effects, the “intermolecular proton bond” model is qualitatively consistent with available spectroscopic data. Potential of mean force calculations show explicitly that the stored proton strongly prefers the pair of Glu residues over the water cluster. The results and analyses help highlight the importance of considering protein electrostatics and provide arguments for why the “intermolecular proton bond” model is likely applicable to PRG in biomolecular proton pumps in general. PMID:21761868

  6. [Adherence with proton pump inhibitor therapy, by continuously taking nonsteroidal anti-inflammatory drugs].

    PubMed

    Pimanov, S I; Makarenko, E V; Dikareva, E A

    2015-01-01

    To estimate the impact of adherence with proton pump inhibitor (PPI) therapy on the incidence of nonsteroidal anti-inflammatory drug (NSAID)-induced gastropathy (NSAID gastropathy) in patients with rheumatoid arthritis (RA). PPI pharmacotherapy adherence was estimated using the Medication Adherence Questionnaire (MAQ) in 92 patients with RA, including 32 patients did not take a PPI and 60 used a PPI. The groups were matched for age, disease duration, and used NSAIDs. All those asked underwent video esophagogastroduodenoscopy. According to the data of MAQ survey, low, moderate, and high adherence subgroups could be identified among the patients treated with a PPI. NSAID gastropathy was detected in 43.8% of the patients taking no PPI, in 50% of those with low PPI treatment adherence, in 12.5% with moderate adherence, and in 4.5% with high adherence. In the patients with low adherence to PPI therapy, NSAID gastropathy was recorded 11 times more frequently than in those with high adherence (c2 = 7.77; p = 0.005). This condition occurred in 28.6% of the patients taking NSAID without preventively using a PPI in the absence of risk factors for NSAID gastropathy. Only 36.7% patients who had been recommended to use a PPI for the prevention of NSAID gastropathy strictly observed their doctor's directions. Low PPI pharmacotherapy adherence may serve as an additional risk factor for NSAID gastropathy in patients in whom preventive antisecretory therapy used in combination with NSAID is indicated.

  7. Effects of proton pump inhibitors on lung cancer precise radiotherapy-induced radiation pneumonitis.

    PubMed

    Su, QiaoLi; Wang, Duoning; Yuan, Bo; Liu, Feng; Lei, Yi; Li, Shuangqing

    2014-11-01

    The objective of this study was to explore the effects of proton pump inhibitors (PPIs) on the development and prognosis of lung cancer precise radiotherapy-induced radiation pneumonitis. Clinical materials of 84 lung cancer patients who had radiation pneumonitis after precise radiotherapy were retrospectively analyzed, and the patients were divided into PPI group and control group, according to whether or not PPIs were applied. The development and prognosis of patients and the effects of different doses of PPI on patient condition from two groups were compared. There were 57 PPI cases in PPI group and 27 cases in control group. Basic characteristics of patients were not statistically different between the two groups; however, white blood cell count, oxygenation indexes, blood gas pH, and lung imaging index were significantly different (p < 0.05), indicating that radiation pneumonitis tended to be more severe in PPI group. As regards effects of PPI on prognosis of two groups, remission rate of radiation pneumonia in PPI group was significantly less than that of the control group. Among 57 cases in PPI group, there were 31 patients applied with PPI ≤ 1DDD and 31 patients applied with PPI > 1DDD. In comparison of the various parameters of patients, 7 days after being applied with different doses of PPI, there were no significant differences between the parameters of radiation pneumonitis. PPIs should be cautiously utilized to avoid the effects of lung cancer radiotherapy-induced radiation pneumonia.

  8. Proton-pump inhibitors for prevention of upper gastrointestinal bleeding in patients undergoing dialysis.

    PubMed

    Song, Young Rim; Kim, Hyung Jik; Kim, Jwa-Kyung; Kim, Sung Gyun; Kim, Sung Eun

    2015-04-28

    To investigate the preventive effects of low-dose proton-pump inhibitors (PPIs) for upper gastrointestinal bleeding (UGIB) in end-stage renal disease. This was a retrospective cohort study that reviewed 544 patients with end-stage renal disease who started dialysis at our center between 2005 and 2013. We examined the incidence of UGIB in 175 patients treated with low-dose PPIs and 369 patients not treated with PPIs (control group). During the study period, 41 patients developed UGIB, a rate of 14.4/1000 person-years. The mean time between the start of dialysis and UGIB events was 26.3 ± 29.6 mo. Bleeding occurred in only two patients in the PPI group (2.5/1000 person-years) and in 39 patients in the control group (19.2/1000 person-years). Kaplan-Meier analysis of cumulative non-bleeding survival showed that the probability of UGIB was significantly lower in the PPI group than in the control group (log-rank test, P < 0.001). Univariate analysis showed that coronary artery disease, PPI use, anti-coagulation, and anti-platelet therapy were associated with UGIB. After adjustments for the potential factors influencing risk of UGIB, PPI use was shown to be significantly beneficial in reducing UGIB compared to the control group (HR = 13.7, 95%CI: 1.8-101.6; P = 0.011). The use of low-dose PPIs in patients with end-stage renal disease is associated with a low frequency of UGIB.

  9. Relationship between use of proton pump inhibitors and IGF system in older subjects.

    PubMed

    Maggio, M; Lauretani, F; De Vita, F; Buttò, V; Cattabiani, C; Masoni, S; Sutti, E; Bondi, G; Dall'aglio, E; Bandinelli, S; Corsonello, A; Abbatecola, A M; Lattanzio, F; Ferrucci, L; Ceda, G P

    2014-04-01

    to investigate the effects of proton pump inhibitors (PPIs) on the insulin-like-growth factor 1(IGF-1) system in the elderly. cross-sectional. InCHIANTI study. 938 older subjects (536 women, 402 men, mean age 75.7±7.4 years). complete data on age, sex, BMI, liver function, medications, dietary intake, IGF-1, IGF-binding protein-1 and -3 (IGFBP-1, IGFBP-3). Participants were categorized by PPI use, identifying 903 PPI non users and 35 users. After adjusting for age, male PPI users (107.0 ± 69.6 vs. 127.1 ± 55.8, p<0.001) and female PPI users (87.6 ± 29.1 vs. 107.6 ± 52.3, p=0.03) had lower IGF-1 levels than non-users. IGFBP-1 levels were similar in the two groups in both sexes. In whole population, after adjustment for age and sex, PPI users had lower IGF-1 levels 81.9 [61.1-113.8] than non-users 110 [77.8-148.6], p=0.02. After further adjustment for BMI, albumin, liver function, C-reactive protein, Interleukin-6, number of medications, ACE-inhibitors use, caloric intake, protein intake, physical activity, glycemia, and IGFBP-1, the use of PPIs remained significantly and negatively associated with IGF-1 levels (β±SE = -19.60±9.83, p=0.045). Use of PPIs was independently and negatively associated with IGF-1 levels.

  10. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death.

    PubMed

    Koh, Eugene; Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-07-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Therapy with proton-pump inhibitors for gastroesophageal reflux disease does not reduce the risk for severe exacerbations in COPD.

    PubMed

    Baumeler, Luzia; Papakonstantinou, Eleni; Milenkovic, Branislava; Lacoma, Alicia; Louis, Renaud; Aerts, Joachim G; Welte, Tobias; Kostikas, Konstantinos; Blasi, Francesco; Boersma, Wim; Torres, Antoni; Rohde, Gernot G U; Boeck, Lucas; Rakic, Janko; Scherr, Andreas; Tamm, Michael; Stolz, Daiana

    2016-07-01

    Gastroesophageal reflux disease (GERD) symptoms are associated with a higher risk of chronic obstructive pulmonary disease (COPD) exacerbation. We hypothesize that treatment with proton pump inhibitors reduces the risk of exacerbation in patients with stable COPD. A total of 638 patients with stable COPD for ≥6 weeks, ≥10 pack-years of smoking and Global Initiative for Chronic Obstructive Lung Disease II-IV seeking care in tertiary hospitals in eight European countries in the Predicting Outcome using Systemic Markers in Severe Exacerbations-COPD cohort was prospectively evaluated by us. Comorbidities including associated medical treatment were assessed at baseline, at exacerbation and at biannual visits. Median observation time was 24 months. The primary study outcomes were exacerbation and/or death. A total of 85 (13.3%) of COPD patients were on anti-GERD therapy. These patients had higher annual and higher severe exacerbation rates (P = 0.009 and P = 0.002), decreased quality of life (SF-36: activity score P = 0.004, St. George's Respiratory Questionnaire: physical functioning P = 0.013 and social functioning P = 0.007), higher body mass airflow obstruction, dyspnea and exercise capacity index (P = 0.033) and Modified Medical Research Council scores (P = 0.002), shorter 6-min walking distance (P = 0.0004) and a higher adjusted Charlson score (P < 0.0001). Anti-GERD therapy was associated with a shorter time to severe exacerbation (HR 2.05 95% CI 1.37-3.08). Using three multivariable Cox-regression models, this association was independent of the following: (i) adjusted Charlson score and FEV1% predicted (HR 1.91 95% CI 1.26-2.90); (ii) adjusted Charlson score, body mass, airflow obstruction, dyspnea and exercise capacity index and Modified Medical Research Council (HR 1.62 95% CI 1.04-2.54); and (iii) adjusted Charlson score, FEV1% predicted and nine classes of medication for comorbidities (HR 1.63 95% CI 1

  12. Measuring H(+) Pumping and Membrane Potential Formation in Sealed Membrane Vesicle Systems.

    PubMed

    Wielandt, Alex Green; Palmgren, Michael G; Fuglsang, Anja Thoe; Günther-Pomorski, Thomas; Justesen, Bo Højen

    2016-01-01

    The activity of enzymes involved in active transport of matter across lipid bilayers can conveniently be assayed by measuring their consumption of energy, such as ATP hydrolysis, while it is more challenging to directly measure their transport activities as the transported substrate is not converted into a product and only moves a few nanometers in space. Here, we describe two methods for the measurement of active proton pumping across lipid bilayers and the concomitant formation of a membrane potential, applying the dyes 9-amino-6-chloro-2-methoxyacridine (ACMA) and oxonol VI. The methods are exemplified by assaying transport of the Arabidopsis thaliana plasma membrane H(+)-ATPase (proton pump), which after heterologous expression in Saccharomyces cerevisiae and subsequent purification has been reconstituted in proteoliposomes.

  13. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells.

    PubMed

    Kortebi, Mounia; Milohanic, Eliane; Mitchell, Gabriel; Péchoux, Christine; Prevost, Marie-Christine; Cossart, Pascale; Bierne, Hélène

    2017-11-01

    Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called "viable but non-culturable" state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy.

  14. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells

    PubMed Central

    Mitchell, Gabriel

    2017-01-01

    Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called “viable but non-culturable” state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy. PMID:29190284

  15. Celecoxib versus a non-selective NSAID plus proton-pump inhibitor: what are the considerations?.

    PubMed

    Chen, Judy T; Pucino, Frank; Resman-Targoff, Beth H

    2006-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are extensively used worldwide. However, associated adverse gastrointestinal effects (NSAID gastropathy) such as bleeding, perforation and obstruction result in considerable morbidity, mortality, and expense. Although it is essential to employ gastroprotective strategies to minimize these complications in patients at risk, controversy remains on whether celecoxib alone or a non-selective NSAID in conjunction with a proton-pump inhibitor (PPI) is a superior choice. Recent concerns regarding potential cardiovascular toxicities associated with cox-2 selective inhibitors may favor non-selective NSAID/PPI co-therapy as the preferred choice. Concomitant use of low-dose aspirin with any NSAID increases the risk of gastrointestinal complications and diminishes the improved gastrointestinal safety profile of celecoxib; whereas use of ibuprofen plus PPI regimens may negate aspirin's antiplatelet benefits. Evidence shows that concurrent use of a non-selective NSAID (such as naproxen) plus a PPI is as effective in preventing NSAID gastropathy as celecoxib, and may be more cost-effective. Patients failing or intolerant to this therapy would be candidates for celecoxib at the lowest effective dose for the shortest duration of time. Potential benefits from using low-dose celecoxib with a PPI in patients previously experiencing bleeding ulcers while taking NSAIDs remains to be proven. An evidence-based debate is presented to assist clinicians with the difficult decision-making process of preventing NSAID gastropathy while minimizing other complications.

  16. An Unexpected Effect of Proton Pump Inhibitors: Elevation of the Cardiovascular Risk Factor ADMA

    PubMed Central

    Ghebremariam, Yohannes T.; LePendu, Paea; Lee, Jerry C.; Erlanson, Daniel A.; Slaviero, Anna; Shah, Nigam H.; Leiper, James; Cooke, John P.

    2013-01-01

    Background Proton pump inhibitors (PPIs) are gastric acid suppressing agents widely prescribed for the treatment of gastro-esophageal reflux disease (GERD). Recently, several studies in patients with acute coronary syndrome (ACS) have raised the concern that use of PPIs in these patients may increase their risk of major adverse cardiovascular events (MACE). The mechanism of this possible adverse effect is not known. Whether the general population might also be at risk has not been addressed. Methods and Results Plasma ADMA is an endogenous inhibitor of nitric oxide synthase (NOS). Elevated plasma ADMA is associated with increased risk for cardiovascular disease, likely due to its attenuation of the vasoprotective effects of endothelial NOS. We find that PPIs elevate plasma asymmetric dimethylarginine (ADMA) level and reduce nitric oxide (NO) levels and endothelium-dependent vasodilation in a murine model and ex vivo human tissues. PPIs increase ADMA because they bind to, and inhibit dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades ADMA. Conclusions We present a plausible biological mechanism to explain the association of PPIs with increased MACE in patients with unstable coronary syndromes. Of concern, this adverse mechanism is also likely to extend to the general population using PPIs. This finding compels additional clinical investigations and pharmacovigilance directed toward understanding the cardiovascular risk associated with use of the PPIs in the general population. PMID:23825361

  17. Double-dose, new-generation proton pump inhibitors do not improve Helicobacter pylori eradication rate.

    PubMed

    Choi, Hyo Sun; Park, Dong Il; Hwang, Sang Jun; Park, Jung Sik; Kim, Hong Joo; Cho, Yong Kyun; Sohn, Chong Il; Jeon, Woo Kyu; Kim, Byung Ik

    2007-12-01

    Up to present, omeprazole plus two antibiotics are used for Helicobacter pylori eradication therapy . Few studies have compared double-dose new-generation, proton pump inhibitors (PPI) with omeprazole. Therefore, we conducted a randomized, prospective study to evaluate differences in H. pylori eradication rates by PPI type. Between January 2006 and December 2006, 576 consecutive patients with proven H. pylori infection were enrolled prospectively. Four different PPIs [omeprazole 20 mg b.i.d. (old generation), or pantoprazole 40 mg b.i.d., rabeprazole 20 mg b.i.d., or esomeprazole 40 mg b.i.d. (new generation)] were added to clarithromycin (500 mg b.i.d.) and amoxicillin (1 g b.i.d.) for 1 week. By intention-to-treat analysis, no difference was found between the eradication rates of these four PPIs: 64.9% (omeprazole, n = 148), 69.3% (pantoprazole, n = 140), 69.3% (rabeprazole, n = 140), and 72.9% (esomoprazole, n = 148). When eradication rates were analyzed according to whether patients had an ulcer or not on a per-protocol basis, no difference was found between the eradication rates of the four PPIs. However, side-effects were more common in the esomeprazole-based triple therapy group than in the other groups (p < .05). No convincing evidence was obtained that double-dose new-generation PPIs have better H. pylori eradication rates and tolerability than omeprazole.

  18. Proton Pump Inhibitor Use and Magnesium Concentrations in Hemodialysis Patients: A Cross-Sectional Study

    PubMed Central

    Nakashima, Akio; Ohkido, Ichiro; Yokoyama, Keitaro; Mafune, Aki; Urashima, Mitsuyoshi; Yokoo, Takashi

    2015-01-01

    Magnesium concentration is a proven predictor of mortality in hemodialysis patients. Recent reports have indicated that proton pump inhibitor (PPI) use affects serum magnesium levels, however few studies have investigated the relationship between PPI use and magnesium levels in hemodialysis patients. This study aimed to clarify the association between PPI use and serum magnesium levels in hemodialysis patients. We designed this cross sectional study and included 1189 hemodialysis patients in stable condition. Associations between PPI and magnesium-related factors, as well as other possible confounders, were evaluated using a multiple regression model. We defined hypomagnesemia as a value < 2.0 mg/dL, and created comparable logistic regression models to assess the association between PPI use and hypomagnesemia. PPI use is associated with a significantly lower mean serum magnesium level than histamine 2 (H2) receptor antagonists or no acid-suppressive medications (mean [SD] PPI: 2.52 [0.45] mg/dL; H2 receptor antagonist: 2.68 [0.41] mg/dL; no acid suppressive medications: 2.68 [0.46] mg/dL; P = 0.001). Hypomagnesemia remained significantly associated with PPI (adjusted OR, OR: 2.05; 95% CI: 1.14–3.69; P = 0.017). PPI use is associated with an increased risk of hypomagnesemia in hemodialysis patients. Future prospective studies are needed to explore magnesium replacement in PPI users on hemodialysis. PMID:26618538

  19. Therapeutic intent of proton pump inhibitor prescription among elderly nonsteroidal anti-inflammatory drug users.

    PubMed

    Dries, A M; Richardson, P; Cavazos, J; Abraham, N S

    2009-09-15

    Prescription of proton pump inhibitors (PPIs) has increased dramatically. To assess therapeutic intent of PPI prescription among elderly veterans prescribed nonsteroidal anti-inflammatory drugs. Medical-record abstraction identified therapeutic intent of PPI prescription. An 'appropriate therapeutic intent' was defined as symptomatic gastro-oesophageal reflux disease or endoscopic oesophagitis, Zollinger-Ellison disease, dyspepsia, upper gastrointestinal event, Helicobacter pylori infection or nonsteroidal anti-inflammatory drug gastroprotection. Logistic regression predicted the outcome while adjusting for clinical characteristics. Of 1491 patients [mean 73 years (s.d. 5.6), 73% white and 99.8% men], among those charts which did document a therapeutic indication, 88.8% were appropriate. Prior gastroscopy was predictive of an appropriate therapeutic intent (OR 2.7; 95% CI: 1.9-3.7). Prescription to patients who used VA pharmacy services only, to in-patients, or by a cardiologist or an otolaryngologist were less likely to be appropriate. Gastroprotection was poorly recognized as an indication for PPI prescription, except by rheumatologists (OR 46.7; 95% CI: 15.9-136.9), or among highly co-morbid patients (OR 1.8; 95% CI: 1.1-2.9). Among in-patients, 45% of PPI prescriptions were initiated for unknown or inappropriate reasons. Type of provider predicts appropriate PPI use. In-patient prescription is associated with poor recognition of necessary gastroprotection and unknown therapeutic intent.

  20. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression.

    PubMed

    Yúfera, Manuel; Moyano, Francisco J; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo

    2012-01-01

    Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.

  1. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis1[OPEN

    PubMed Central

    Wang, Zhen-Yu; Gehring, Chris; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2015-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1. PMID:25416474

  2. The formation of Anthocyanic Vacuolar Inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments.

    PubMed

    Pourcel, Lucille; Irani, Niloufer G; Lu, Yuhua; Riedl, Ken; Schwartz, Steve; Grotewold, Erich

    2010-01-01

    Anthocyanins are flavonoid pigments that accumulate in the large central vacuole of most plants. Inside the vacuole, anthocyanins can be found uniformly distributed or as part of sub-vacuolar pigment bodies, the Anthocyanic Vacuolar Inclusions (AVIs). Using Arabidopsis seedlings grown under anthocyanin-inductive conditions as a model to understand how AVIs are formed, we show here that the accumulation of AVIs strongly correlates with the formation of cyanidin 3-glucoside (C3G) and derivatives. Arabidopsis mutants that fail to glycosylate anthocyanidins at the 5-O position (5gt mutant) accumulate AVIs in almost every epidermal cell of the cotyledons, as compared to wild-type seedlings, where only a small fraction of the cells show AVIs. A similar phenomenon is observed when seedlings are treated with vanadate. Highlighting a role for autophagy in the formation of the AVIs, we show that various mutants that interfere with the autophagic process (atg mutants) display lower numbers of AVIs, in addition to a reduced accumulation of anthocyanins. Interestingly, vanadate increases the numbers of AVIs in the atg mutants, suggesting that several pathways might participate in AVI formation. Taken together, our results suggest novel mechanisms for the formation of sub-vacuolar compartments capable of accumulating anthocyanin pigments.

  3. Bacterial Overgrowth and Irritable Bowel Syndrome: Unifying Hypothesis or a Spurious Consequence of Proton Pump Inhibitors?

    PubMed Central

    Spiegel, Brennan M.R.; Chey, William D.; Chang, Lin

    2010-01-01

    Some studies indicate that small intestinal bacterial overgrowth (SIBO), as measured by hydrogen breath tests (HBT), is more prevalent in patients with irritable bowel syndrome (IBS) vs. matched controls without IBS. Although the data are conflicting, this observation has led to the hypothesis that SIBO may be a primary cause of IBS. Yet, it remains unclear whether SIBO is truly fundamental to the pathophysiology of IBS, or is instead a mere epiphenomenon or bystander of something else altogether. We hypothesize that SIBO might be a byproduct of the disproportionate use of proton pump inhibitors (PPIs) in IBS, as follows: (1) IBS patients are more likely than controls to receive PPI therapy; (2) PPI therapy may promote varying forms of SIBO by eliminating gastric acid; and (3) existing studies linking SIBO to IBS have not adjusted for or excluded the use of PPI therapy. When linked together, these premises form the basis for a simple and testable hypothesis: the relationship between SIBO and IBS may be confounded by PPIs. Our article explores these premises, lays out the argument supporting this “PPI hypothesis,” discusses potential implications, and outlines next steps to further investigate this possibility. PMID:19086951

  4. Gastroesophageal reflux symptoms not responding to proton pump inhibitor: GERD, NERD, NARD, esophageal hypersensitivity or dyspepsia?

    PubMed Central

    Bashashati, Mohammad; Hejazi, Reza A; Andrews, Christopher N; Storr, Martin A

    2014-01-01

    Gastroesophageal reflux (GER) is a common gastrointestinal process that can generate symptoms of heartburn and chest pain. Proton pump inhibitors (PPIs) are the gold standard for the treatment of GER; however, a substantial group of GER patients fail to respond to PPIs. In the past, it was believed that acid reflux into the esophagus causes all, or at least the majority, of symptoms attributed to GER, with both erosive esophagitis and nonerosive outcomes. However, with modern testing techniques it has been shown that, in addition to acid reflux, the reflux of nonacid gastric and duodenal contents into the esophagus may also induce GER symptoms. It remains unknown how weakly acidic or alkaline refluxate with a pH similar to a normal diet induces GER symptoms. Esophageal hypersensitivity or functional dyspepsia with superimposed heartburn may be other mechanisms of symptom generation, often completely unrelated to GER. Detailed studies investigating the pathophysiology of esophageal hypersensitivity are not conclusive, and definitions of the various disease states may overlap and are often confusing. The authors aim to clarify the pathophysiology, definition, diagnostic techniques and medical treatment of patients with heartburn symptoms who fail PPI therapy. PMID:24719900

  5. Science review: The use of proton pump inhibitors for gastric acid suppression in critical illness

    PubMed Central

    Brett, Stephen

    2005-01-01

    Prophylaxis is routinely provided for critically ill patients admitted to intensive care units (ICUs) who are at high risk for stress-related mucosal damage (SRMD), an erosive process of the gastroduodenum associated with abnormally high physiological demands. Traditionally, treatment options have included sucralfate, antacids and histamine H2 receptor antagonists (H2RAs). The H2RAs are currently the most widely used agents in prophylactic acid suppression; however, proton pump inhibitors (PPIs) have recently replaced H2RAs in the treatment of many acid-related conditions. PPIs achieve a more rapid and sustained increase in gastric pH and are not associated with the rapid tachyphylaxis seen with H2RAs. As a result, and after the introduction of intravenous formulations, PPIs are beginning to be used for the prophylaxis of SRMD in critically ill adults. The high prevalence of renal and hepatic impairment among the ICU population, as well as the need for multiple drug therapy in many patients, means that pharmacokinetic characteristics and the potential for drug interactions may be important considerations in the choice of prophylactic agent. This review seeks to present the pharmacological evidence that may inform decision-making about the prescription of drugs for prophylaxis of SRMD. PMID:15693983

  6. East Asian perspective on the interaction between proton pump inhibitors and clopidogrel.

    PubMed

    Zou, Duowu; Goh, Khean-Lee

    2017-06-01

    Both proton pump inhibitors (PPIs) and clopidogrel are widely prescribed in the Asia-Pacific population. PPIs are the mainstay therapeutic agents for prophylaxis against aspirin gastropathy and for acid-related disorders including gastroesophageal reflux disease. They are also co-prescribed with oral anticoagulant agents and with dual-antiplatelet therapy for the treatment and prevention of gastrointestinal bleeding. Clopidogrel belongs to the drug class of thienopyridines and is currently the most widely prescribed oral anticoagulant agent either alone or in combination with aspirin. Platelet inhibition by clopidogrel is prone to significant inter-individual variability and is believed to be affected by several factors such as genetics and drug-drug interactions. Since it was first reported in 2009, the potential for drug-drug interactions between PPIs and clopidogrel has remained headline news, and its significance in clinical practice is the subject of an ongoing debate. For East Asian patients in particular, the clinical relevance of the interaction between PPIs and clopidogrel remains unclear because of conflicting data, as well as underrepresentation of East Asian subjects in landmark trials. Increased CYP2C19 genetic polymorphisms in individuals from Asia-Pacific countries only fuel the confusion. Recent studies in East Asian cohorts suggests that the potential of PPIs to attenuate the efficacy of clopidogrel could be minimized by the use of newer PPIs with weaker affinity for the CYP2C19 isoenzyme, namely, pantoprazole, dexlansoprazole, and rabeprazole. This review aims to help clinicians choose the most appropriate PPI for co-prescription with clopidogrel in patients from Asia-Pacific countries. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  7. Cost-Effectiveness of Chemoprevention with Proton Pump Inhibitors in Barrett’s Esophagus

    PubMed Central

    Freedberg, Daniel E.; Abrams, Julian A.; Wang, Y. Claire

    2015-01-01

    Background Proton pump inhibitors (PPIs) may reduce the risk of esophageal adenocarcinoma (EAC) in patients with Barrett’s esophagus. PPIs are prescribed for virtually all patients with Barrett’s esophagus, irrespective of the presence of reflux symptoms, and represent a de facto chemopreventive agent in this population. However, long-term PPI use has been associated with several adverse effects, and the cost-effectiveness of chemoprevention with PPIs has not been evaluated. Aim The purpose of this study was to assess the cost-effectiveness of PPIs for the prevention of EAC in Barrett’s esophagus without reflux. Methods We designed a state-transition Markov micro-simulation model of a hypothetical cohort of 50-year-old white men with Barrett’s esophagus. We modeled chemoprevention with PPIs or no chemoprevention, with endoscopic surveillance for all treatment arms. Outcome measures were life-years, quality-adjusted life years (QALYs), incident EAC cases and deaths, costs, and incremental cost-effectiveness ratios. Results Assuming 50 % reduction in EAC, chemoprevention with PPIs was a cost-effective strategy compared to no chemoprevention. In our model, administration of PPIs cost $23,000 per patient and resulted in a gain of 0.32 QALYs for an incremental cost-effectiveness ratio of $12,000/QALY. In sensitivity analyses, PPIs would be cost-effective at $50,000/QALY if they reduce EAC risk by at least 19 %. Conclusions Chemoprevention with PPIs in patients with Barrett’s esophagus without reflux is cost-effective if PPIs reduce EAC by a minimum of 19 %. The identification of subgroups of Barrett’s esophagus patients at increased risk for progression would lead to more cost-effective strategies for the prevention of esophageal adenocarcinoma. PMID:24795040

  8. H+-type and OH--type biological protonic semiconductors and complementary devices

    NASA Astrophysics Data System (ADS)

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco

    2013-10-01

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH- as proton holes. Discriminating between H+ and OH- transport has been elusive. Here, H+ and OH- transport is achieved in polysaccharide- based proton wires and devices. A H+- OH- junction with rectifying behaviour and H+-type and OH--type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH- to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems.

  9. Tunneling induced electron transfer between separated protons

    NASA Astrophysics Data System (ADS)

    Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.

    2018-04-01

    We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.

  10. The influence of prophylactic proton pump inhibitor treatment on the development of symptomatic marginal ulceration in Roux-en-Y gastric bypass patients: a historic cohort study.

    PubMed

    Coblijn, Usha K; Lagarde, Sjoerd M; de Castro, Steve M M; Kuiken, Sjoerd D; van Tets, Willem F; van Wagensveld, Bart A

    2016-02-01

    Marginal ulceration at the gastrojejunostomy is a serious complication after laparoscopic Roux-en-Y gastric bypass surgery (LRYGB) and occurs in 1%-16% of patients. Proton pump inhibitors (PPIs) might lower the occurrence of these ulcers. The aim of the present study was to evaluate the effect of 6 months prophylactic usage of PPIs on the development of marginal ulceration and compare this with a historic patient control group. A single institution cohort at a bariatric center of excellence, The Sint Lucas Andreas Zienkenhuis, Amsterdam A consecutive database of patients who underwent LRYGB from November 2007 to September 2012 in a single institution was retrospectively reviewed. From August 2011, patients received a standard dose of pantozol 40 mg once daily directly postoperatively for 6 months. No standard PPI prophylaxis was administered before August 2011, and the patients not using PPIs in this historic cohort served as the control group. A total of 610 patients underwent LRYGB, of which 128 patients (21.0%) underwent revisional surgery. Postoperative PPIs were administered in the intervention group of 337 patients, compared with the historic control group consisting of 273 patients. Six patients (1.2%) who received postoperative PPIs versus 20 patients (7.3 %) in the historic control group developed marginal ulceration (P = .001). Patients using proton pump inhibitors developed fewer gastrointestinal complaints postoperatively (P< .001). Routine usage of PPIs reduced the occurrence of marginal ulceration after LRYGB. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  11. The proton radius puzzle

    NASA Astrophysics Data System (ADS)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  12. High-doses of proton pump inhibitors in refractory gastro-intestinal cancer: A case series and the state of art.

    PubMed

    Falcone, Rosa; Roberto, Michela; D'Antonio, Chiara; Romiti, Adriana; Milano, Annalisa; Onesti, Concetta Elisa; Marchetti, Paolo; Fais, Stefano

    2016-12-01

    In recent years, proton pump inhibitors (PPIs) have been investigated at high-dose to modulate tumour microenvironment acidification thus restoring chemotherapeutic sensitivity. Moreover, several clinical data supports the role of cytotoxic drugs at low-dose continuously delivered as anticancer therapy. Clinical records of three patients affected with gastrointestinal cancer refractory to standard treatments, who had received a combination of high-dose rabeprazole and metronomic chemotherapy were reviewed. The first case, a 78-year-old man was treated for lung metastasis from colon adenocarcinoma. The second case, a 73-year-old man was treated for metastatic rectal cancer to the liver. The third one, a 68-year-old man, underwent the combination regimen for colon cancer with lung, liver and peritoneal metastases. Despite the failure of previous standard chemotherapy for metastatic disease, good clinical outcome was shown in these patients treated with an unconventional association of high-dose PPIs and metronomic chemotherapy. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  13. Gastrointestinal symptoms associated with gastroesophageal reflux disease, and their relapses after treatment with proton pump inhibitors: A systematic review

    PubMed Central

    Hosseini, Mousalreza; Salari, Roshanak; Shariatmaghani, Somayeh; Birjandi, Batul; Salari, Masoumeh

    2017-01-01

    Gastroesophageal reflux disease (GERD) is a common functional gastrointestinal disorder with significant effects on the quality of life. The burden of GERD is soaring in Asia. Preventing symptom relapse is a therapeutic goal in GERD patients. Since proton pump inhibitors (PPI) are the first-line treatment of GERD, drug failure has become a major problem in the treatment procedure. We reviewed the literature in order to find articles related to comorbidities and symptoms affecting GERD from 1980 to 2015 via PubMed and Google Scholar using keywords such as ‘Gastroesophageal reflux disease’, ‘Gastrointestinal symptoms’ and Boolean operators (such as AND, OR, NOT). Due to the cost of PPI therapy and the high rate of GERD relapse after PPI therapy, demand for continuing this type of treatment is decreasing. Thus, we need to discover new approaches to treat the disease and also investigate the relationship between the treatment of GERD and its comorbidities and symptoms such as functional constipation. PMID:28848636

  14. A Novel Action of the Proton Pump Inhibitor Rabeprazole and Its Thioether Derivative against the Motility of Helicobacter pylori

    PubMed Central

    Tsutsui, Nanako; Taneike, Ikue; Ohara, Tatsuki; Goshi, Satoshi; Kojio, Seiichi; Iwakura, Nobuhiro; Matsumaru, Hiroyuki; Wakisaka-Saito, Noriko; Zhang, Hui-Min; Yamamoto, Tatsuo

    2000-01-01

    The motility of Helicobacter pylori was maximum at 37°C and at pH 6. A newly developed proton pump inhibitor, rabeprazole (RPZ), and its thioether derivative (RPZ-TH) markedly inhibited the motility of H. pylori. The concentrations of the drug necessary to inhibit 50% of the motility were 0.25, 16, 16, and >64 μg/ml for RPZ-TH, RPZ, lansoprazole, and omeprazole, respectively. No such inhibitory effects were observed with H2 blockers or anti-H. pylori agents. The motilities of Campylobacter jejuni and C. coli—but not those of Vibrio cholerae O1 and O139, Vibrio parahaemolyticus, Salmonella enterica serovar Typhimurium, and Proteus mirabilis—were also inhibited. Prolonged incubation with RPZ or RPZ-TH inhibited bacterial growth of only H. pylori, except for a turbid colony mutant. The results indicate that RPZ and RPZ-TH have a characteristic inhibitory effect against the motility of H. pylori (spiral-shaped bacteria), which is distinguished from that against bacterial growth. PMID:11036024

  15. Proton pump inhibitors in prevention of low-dose aspirin-associated upper gastrointestinal injuries.

    PubMed

    Mo, Chen; Sun, Gang; Lu, Ming-Liang; Zhang, Li; Wang, Yan-Zhi; Sun, Xi; Yang, Yun-Sheng

    2015-05-07

    To determine the preventive effect and safety of proton pump inhibitors (PPIs) in low-dose aspirin (LDA)-associated gastrointestinal (GI) ulcers and bleeding. We searched MEDLINE, EMBASE and the Cochrane Controlled Trials Register from inception to December 2013, and checked conference abstracts of randomized controlled trials (RCTs) on the effect of PPIs in reducing adverse GI events (hemorrhage, ulcer, perforation, or obstruction) in patients taking LDA. The preventive effects of PPIs were compared with the control group [taking placebo, a cytoprotective agent, or an H2 receptor antagonist (H2RA)] in LDA-associated upper GI injuries. The meta-analysis was performed using RevMan 5.1 software. We evaluated 8780 participants in 10 RCTs. The meta-analysis showed that PPIs decreased the risk of LDA-associated upper GI ulcers (OR = 0.16; 95%CI: 0.12-0.23) and bleeding (OR = 0.27; 95%CI: 0.16-0.43) compared with control. For patients treated with dual anti-platelet therapy of LDA and clopidogrel, PPIs were able to prevent the LDA-associated GI bleeding (OR = 0.36; 95%CI: 0.15-0.87) without increasing the risk of major adverse cardiovascular events (MACE) (OR = 1.00; 95%CI: 0.76-1.31). PPIs were superior to H2RA in prevention of LDA-associated GI ulcers (OR = 0.12; 95%CI: 0.02-0.65) and bleeding (OR = 0.32; 95%CI: 0.13-0.79). PPIs are effective in preventing LDA-associated upper GI ulcers and bleeding. Concomitant use of PPI, LDA and clopidogrel did not increase the risk of MACE.

  16. Association of Proton Pump Inhibitors Usage with Risk of Pneumonia in Dementia Patients.

    PubMed

    Ho, Sai-Wai; Teng, Ying-Hock; Yang, Shun-Fa; Yeh, Han-Wei; Wang, Yu-Hsun; Chou, Ming-Chih; Yeh, Chao-Bin

    2017-07-01

    To determine the association between usages of proton pump inhibitors (PPIs) and subsequent risk of pneumonia in dementia patients. Retrospective cohort study. Taiwanese National Health Insurance Research Database. The study cohort consisted of 786 dementia patients with new PPI usage and 786 matched dementia patients without PPI usage. The study endpoint was defined as the occurrence of pneumonia. The Cox proportional hazard model was used to estimate the pneumonia risk. Defined daily dose methodology was applied to evaluate the cumulative and dose-response relationships of PPI. Incidence of pneumonia was higher among patients with PPI usage (adjusted hazard ratio (HR) = 1.89; 95% CI = 1.51-2.37). Cox model analysis also demonstrated that age (adjusted HR = 1.05; 95% CI = 1.03-1.06), male gender (adjusted HR = 1.57; 95% CI = 1.25-1.98), underlying cerebrovascular disease (adjusted HR = 1.30; 95% CI = 1.04-1.62), chronic pulmonary disease (adjusted HR = 1.39; 95% CI = 1.09-1.76), congestive heart failure (adjusted HR = 1.54; 95% CI = 1.11-2.13), diabetes mellitus (adjusted HR = 1.54; 95% CI = 1.22-1.95), and usage of antipsychotics (adjusted HR = 1.29; 95% CI = 1.03-1.61) were independent risk factors for pneumonia. However, usage of cholinesterase inhibitors and histamine receptor-2 antagonists were shown to decrease pneumonia risk. PPI usage in dementia patients is associated with an 89% increased risk of pneumonia. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  17. Can proton pump inhibitors reduce rebleeding following Histoacryl sclerotherapy for gastric variceal hemorrhage?

    PubMed

    Kim, Ka Rham; Jun, Chung Hwan; Cho, Kyu Man; Wi, Jin Woo; Park, Seon Young; Cho, Sung Bum; Lee, Wan Sik; Park, Chang Hwan; Joo, Young Eun; Kim, Hyun Soo; Choi, Sung Kyu; Rew, Jong Sun

    2015-09-01

    To evaluate the efficacy of proton pump inhibitors (PPIs) in reducing rebleeding and bleeding-related death rates after endoscopic gastric variceal obliteration (GVO) using N-butyl-2-cyanoacrylate (NBC). This study enrolled 341 patients who were consecutively diagnosed with and treated for bleeding gastric varices. The patients were divided into PPI and non-PPI groups, and their endoscopic findings, initial hemostasis outcomes, rebleeding and bleeding-related death rates, and treatment-related complications were analyzed. The rate of initial hemostasis was 97.1%. rebleeding occurred in 2.2% of patients within 2 weeks, 3.9% of patients within 4 weeks, 18.9% of patients within 6 months, and 27.6% of patients within 12 months of the GVO procedure. A previous history of variceal bleeding (relative risk [RR], 1.955; 95% confidence interval [CI], 1.263 to 3.028; p = 0.003) and use of PPIs (RR, 0.554; 95% CI, 0.352 to 0.873; p = 0.011) were associated with rebleeding. Child-Pugh class C (RR, 10.914; 95% CI, 4.032 to 29.541; p < 0.001), failure of initial hemostasis (RR, 13.329; 95% CI, 2.795 to 63.556; p = 0.001), and the presence of red-colored concomitant esophageal varices (RR, 4.096; 95% CI, 1.320 to 12.713; p = 0.015) were associated with bleeding-related death. The prophylactic use of PPIs reduces rebleeding after GVO using NBC in patients with gastric variceal hemorrhage. However, prophylactic use of PPIs does not reduce bleeding-related death.

  18. RELATIONSHIP BETWEEN USE OF PROTON PUMP INHIBITORS AND IGF SYSTEM IN OLDER SUBJECTS

    PubMed Central

    MAGGIO, M.; LAURETANI, F.; DE VITA, F.; BUTTO, V.; CATTABIANI, C.; MASONI, S.; SUTTI, E.; BONDI, G.; DALL’AGLIO, E.; BANDINELLI, S.; CORSONELLO, A.; ABBATECOLA, A.M.; LATTANZIO, F.; FERRUCCI, L.; CEDA, G.P.

    2016-01-01

    Objectives to investigate the effects of proton pump inhibitors (PPIs) on the insulin-like-growth factor 1(IGF-1) system in the elderly. Design cross-sectional. Setting InCHIANTI study. Participants 938 older subjects (536 women, 402 men, mean age 75.7±7.4 years). Measurements complete data on age, sex, BMI, liver function, medications, dietary intake, IGF-1, IGF-binding protein-1 and -3 (IGFBP-1, IGFBP-3). Results Participants were categorized by PPI use, identifying 903 PPI non users and 35 users. After adjusting for age, male PPI users (107.0 ± 69.6 vs 127.1 ± 55.8, p<0.001) and female PPI users (87.6 ± 29.1 vs 107.6 ± 52.3, p=0.03) had lower IGF-1 levels than non-users. IGFBP-1 levels were similar in the two groups in both sexes. In whole population, after adjustment for age and sex, PPI users had lower IGF-1 levels 81.9 [61.1–113.8] than non-users 110 [77.8–148.6], p=0.02. After further adjustment for BMI, albumin, liver function, C-reactive protein, Interleukin-6, number of medications, ACE-inhibitors use, caloric intake, protein intake, physical activity, glycemia, and IGFBP-1, the use of PPIs remained significantly and negatively associated with IGF-1 levels (β±SE=−19.60±9.83, p=0.045). Conclusion Use of PPIs was independently and negatively associated with IGF-1 levels. PMID:24676324

  19. In Vitro Study of the Variable Effects of Proton Pump Inhibitors on Voriconazole

    PubMed Central

    Niece, Krista L.; Boyd, Natalie K.

    2015-01-01

    Voriconazole is a broad-spectrum antifungal agent used for the treatment of severe fungal infections. Maintaining therapeutic concentrations of 1 to 5.5 μg/ml is currently recommended to maximize the exposure-response relationship of voriconazole. However, this is challenging, given the highly variable pharmacokinetics of the drug, which includes metabolism by cytochrome P450 (CYP450) isotypes CYP2C19, CYP3A4, and CYP2C9, through which common metabolic pathways for many medications take place and which are also expressed in different isoforms with various metabolic efficacies. Proton pump inhibitors (PPIs) are also metabolized through these enzymes, making them competitive inhibitors of voriconazole metabolism, and coadministration with voriconazole has been reported to increase total voriconazole exposure. We examined the effects of five PPIs (rabeprazole, pantoprazole, lansoprazole, omeprazole, and esomeprazole) on voriconazole concentrations using four sets of human liver microsomes (HLMs) of different CYP450 phenotypes. Overall, the use of voriconazole in combination with any PPI led to a significantly higher voriconazole yield compared to that achieved with voriconazole alone in both pooled HLMs (77% versus 59%; P < 0.001) and individual HLMs (86% versus 76%; P < 0.001). The mean percent change in the voriconazole yield from that at the baseline after PPI exposure in pooled microsomes ranged from 22% with pantoprazole to 51% with esomeprazole. Future studies are warranted to confirm whether and how the deliberate coadministration of voriconazole and PPIs can be used to boost voriconazole levels in patients with difficult-to-treat fungal infections. PMID:26124167

  20. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    PubMed Central

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  1. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    PubMed

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P < 0.05, respectively). Symptom association probability analysis revealed a positive association between GER and cough in three CC patients. Proton pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P < 0.05). Most patients with CC responding to PPI therapy had weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  2. Hygromycin B hypersensitive (hhy) mutants implicate an intact trans-Golgi and late endosome interface in efficient Tor1 vacuolar localization and TORC1 function.

    PubMed

    Ejzykowicz, Daniele E; Locken, Kristopher M; Ruiz, Fiona J; Manandhar, Surya P; Olson, Daniel K; Gharakhanian, Editte

    2017-06-01

    Saccharomyces cerevisiae vacuoles are functionally analogous to mammalian lysosomes. Both also serve as physical platforms for Tor Complex 1 (TORC1) signal transduction, the master regulator of cellular growth and proliferation. Hygromycin B is a eukaryotic translation inhibitor. We recently reported on hygromycin B hypersensitive (hhy) mutants that fail to grow at subtranslation inhibitory concentrations of the drug and exhibit vacuolar defects (Banuelos et al. in Curr Genet 56:121-137, 2010). Here, we show that hhy phenotype is not due to increased sensitivity to translation inhibition and establish a super HHY (s-HHY) subgroup of genes comprised of ARF1, CHC1, DRS2, SAC1, VPS1, VPS34, VPS45, VPS52, and VPS54 that function exclusively or inclusively at trans-Golgi and late endosome interface. Live cell imaging of s-hhy mutants revealed that hygromycin B treatment disrupts vacuolar morphology and the localization of late endosome marker Pep12, but not that of late endosome-independent vacuolar SNARE Vam3. This, along with normal post-late endosome trafficking of the vital dye FM4-64, establishes that severe hypersensitivity to hygromycin B correlates specifically with compromised trans-Golgi and late endosome interface. We also show that Tor1p vacuolar localization and TORC1 anabolic functions, including growth promotion and phosphorylation of its direct substrate Sch9, are compromised in s-hhy mutants. Thus, an intact trans-Golgi and late endosome interface is a requisite for efficient Tor1 vacuolar localization and TORC1 function.

  3. H+-type and OH−-type biological protonic semiconductors and complementary devices

    PubMed Central

    Deng, Yingxin; Josberger, Erik; Jin, Jungho; Rousdari, Anita Fadavi; Helms, Brett A.; Zhong, Chao; Anantram, M. P.; Rolandi, Marco

    2013-01-01

    Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues – proton wires. These wires also support the transport of OH− as proton holes. Discriminating between H+ and OH− transport has been elusive. Here, H+ and OH− transport is achieved in polysaccharide- based proton wires and devices. A H+- OH− junction with rectifying behaviour and H+-type and OH−-type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH− to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems. PMID:24089083

  4. Inconsistency in the Diagnosis of Functional Heartburn: Usefulness of Prolonged Wireless pH Monitoring in Patients With Proton Pump Inhibitor Refractory Gastroesophageal Reflux Disease

    PubMed Central

    Penagini, Roberto; Sweis, Rami; Mauro, Aurelio; Domingues, Gerson; Vales, Andres; Sifrim, Daniel

    2015-01-01

    Background/Aims The diagnosis of functional heartburn is important for management, however it stands on fragile pH monitoring variables, ie, acid exposure time varies from day to day and symptoms are often few or absent. Aim of this study was to investigate consistency of the diagnosis of functional heartburn in subsequent days using prolonged wireless pH monitoring and its impact on patients’ outcome. Methods Fifty proton pump inhibitotor refractory patients (11 male, 48 years [range, 38–57 years]) with a diagnosis of functional heart-burn according to Rome III in the first 24 hours of wireless pH monitoring were reviewed. pH variables were analysed in the following 24-hour periods to determine if tracings were indicative of diagnosis of non-erosive reflux disease (either acid exposure time > 5% or normal acid exposure time and symptom index ≥ 50%). Outcome was assessed by review of hospital files and/or telephone interview. Results Fifteen out of 50 patients had a pathological acid exposure time after the first day of monitoring (10 in the second day and 5 in subsequent days), which changed their diagnosis from functional heartburn to non-erosive reflux disease. Fifty-four percent of non-erosive reflux disease vs 11% of functional heartburn patients (P < 0.003) increased the dose of proton pump inhibitors or underwent fundoplication after the pH test. Outcome was positive in 77% of non-erosive reflux disease vs 43% of functional heartburn patients (P < 0.05). Conclusions One-third of patients classified as functional heartburn at 24-hour pH-monitoring can be re-classified as non-erosive reflux disease after a more prolonged pH recording period. This observation has a positive impact on patients’ management. PMID:25843078

  5. Decreasing incidence of peptic ulcer complications after the introduction of the proton pump inhibitors, a study of the Swedish population from 1974–2002

    PubMed Central

    2009-01-01

    Background Despite a decreasing incidence of peptic ulcer disease, most previous studies report a stabile incidence of ulcer complications. We wanted to investigate the incidence of peptic ulcer complications in Sweden before and after the introduction of the proton pump inhibitors (PPI) in 1988 and compare these data to the sales of non-steroid anti-inflammatory drugs (NSAID) and acetylsalicylic acid (ASA). Methods All cases of gastric and duodenal ulcer complications diagnosed in Sweden from 1974 to 2002 were identified using the National hospital discharge register. Information on sales of ASA/NSAID was obtained from the National prescription survey. Results When comparing the time-periods before and after 1988 we found a significantly lower incidence of peptic ulcer complications during the later period for both sexes (p < 0.001). Incidence rates varied from 1.5 to 7.8/100000 inhabitants/year regarding perforated peptic ulcers and from 5.2 to 40.2 regarding peptic ulcer bleeding. The number of sold daily dosages of prescribed NSAID/ASA tripled from 1975 to 2002. The number of prescribed sales to women was higher than to males. Sales of low-dose ASA also increased. The total volume of NSAID and ASA, i.e. over the counter sale and sold on prescription, increased by 28% during the same period. Conclusion When comparing the periods before and after the introduction of the proton pump inhibitors we found a significant decrease in the incidence of peptic ulcer complications in the Swedish population after 1988 when PPI were introduced on the market. The cause of this decrease is most likely multifactorial, including smoking habits, NSAID consumption, prevalence of Helicobacter pylori and the introduction of PPI. Sales of prescribed NSAID/ASA increased, especially in middle-aged and elderly women. This fact seems to have had little effect on the incidence of peptic ulcer complications. PMID:19379513

  6. Proton Pump Inhibitors in cancer patients: How useful they are? A review of the most common indications for their use.

    PubMed

    Numico, Gianmauro; Fusco, Vittorio; Franco, Pierfrancesco; Roila, Fausto

    2017-03-01

    Proton-Pump Inhibitors (PPIs) are commonly prescribed in the general population and in cancer patients. A supposed role in the prevention of gastric mucosal damage apparently justify their use in patients undergoing cytotoxic chemotherapy, steroids and radiotherapy on the gastro-duodenal region. They are frequently given also to patients admitted to Intensive Care Units, for the prevention of stress-related gastric ulcers. The evidence about these use of gastroprotection is reviewed. In the majority of the cases the prescription of PPIs is not justified. In two circumstances (chemotherapy and stress-related gastric disease) randomized studies have shown a protective action of PPIs although this effect did not translate into the reduction of serious clinical consequences. PPIs are not free of toxic effects that are acknowledged by an expanding literature. Also the interaction with anticancer drugs is a potential source of unwanted consequences. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis

    2009-01-01

    A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.

  8. Proton dynamics in cancer.

    PubMed

    Huber, Veronica; De Milito, Angelo; Harguindey, Salvador; Reshkin, Stephan J; Wahl, Miriam L; Rauch, Cyril; Chiesi, Antonio; Pouysségur, Jacques; Gatenby, Robert A; Rivoltini, Licia; Fais, Stefano

    2010-06-15

    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth.Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.

  9. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.

    PubMed

    Barkla, Bronwyn J.; Pantoja, Omar

    1996-06-01

    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.

  10. Proton pump inhibitors and functional decline in older adults discharged from acute care hospitals.

    PubMed

    Corsonello, Andrea; Maggio, Marcello; Fusco, Sergio; Adamo, Bakhita; Amantea, Diana; Pedone, Claudio; Garasto, Sabrina; Ceda, Gian Paolo; Corica, Francesco; Lattanzio, Fabrizia; Antonelli Incalzi, Raffaele

    2014-06-01

    To investigate the relationship between use of proton pump inhibitors (PPIs) and incident dependency in older adults discharged from acute care hospitals. Prospective observational study. Eleven geriatric and internal medicine acute care wards located throughout Italy. Individuals (mean age 79.2 ± 5.5) who were not completely dependent at the time of discharge from participating wards (N = 401). The outcome of interest was the loss of at least one basic activity of daily living (ADL) from discharge to the end of follow-up (12 months). The relationship between PPI use and functional decline was investigated using logistic regression analysis before and after propensity score matching. Use of PPIs was significantly associated with functional decline before (odds ratio (OR) = 1.75, 95% confidence interval (CI) = 1.17-2.60) and after propensity score matching (OR = 2.44; 95% CI = 1.36-4.41). Other predictors of functional decline were hypoalbuminemia (OR = 3.10, 95% CI = 1.36-7.10 before matching, OR = 2.81, 95% CI = 1.09-7.77 after matching) and cognitive impairment (OR = 4.08, 95% CI = 1.63-10.2 before matching, OR = 6.35, 95% CI = 1.70-24.0 after matching). Use of PPIs is associated with functional decline during 12 months of follow-up in older adults discharged from acute care hospitals. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  11. Proton Pump Inhibitor Usage and the Risk of Mortality in Hemodialysis Patients.

    PubMed

    de Francisco, Angel L M; Varas, Javier; Ramos, Rosa; Merello, Jose Ignacio; Canaud, Bernard; Stuard, Stefano; Pascual, Julio; Aljama, Pedro

    2018-03-01

    Long-term inappropriate proton pump inhibitors use (PPIs) is a matter of concern because of the risks associated with their long-term use in older patients with chronic conditions. The risk of PPI treatment in hemodialysis patients remains unexplored. We assessed the relationship between the use of PPIs and the risk of death in hemodialysis patients throughout a retrospective multicenter propensity score-matched study. Information about demographic, hemodialysis treatment, laboratory data, and concomitant medication was obtained from the EuCliD database (Fresenius Medical Care). We studied 1776 hemodialysis patients on PPI therapy compared to 466 patients not receiving PPIs. The resulting population comprising 2 groups of 410 matched patients was studied. PPI use was associated with hypomagnesemia (Mg <1.8 mg/dl (0.75 mmol/l); odds ratio [OR] = 2.70, 95% confidence interval [CI] = 1.38-5.27, P  < 0.01). The exposure to PPIs in the full patient cohort was identified as an independent predictor for all-cause mortality in both univariate (HR = 3.16, 95% CI = 1.69-5.90, P  < 0.01) and multivariate (HR = 2.70, 95% CI = 1.38-5.27, P  < 0.01) Cox regression models. Moreover PPI use was identified as a predictor of CV mortality (HR = 1.51, 95% CI = 1.05-2.20, P  = 0.03) Of the 820 patients matched throughout the propensity score analysis, the hazard ratios for all-cause mortality (HR = 1.412, 95% CI = 1.04-1.93, P  = 0.03) and CV mortality (HR = 1.67, 95% CI = 1.03-2.71, P  = 0.04) were higher among patients on PPIs versus those not on PPIs. The study data suggest that the PPI treatment should be regularly monitored and prescribed only when indicated.

  12. Proton pump inhibitors and vascular function: A prospective cross-over pilot study.

    PubMed

    Ghebremariam, Yohannes T; Cooke, John P; Khan, Fouzia; Thakker, Rahul N; Chang, Peter; Shah, Nigam H; Nead, Kevin T; Leeper, Nicholas J

    2015-08-01

    Proton pump inhibitors (PPIs) are commonly used drugs for the treatment of gastric reflux. Recent retrospective cohorts and large database studies have raised concern that the use of PPIs is associated with increased cardiovascular (CV) risk. However, there is no prospective clinical study evaluating whether the use of PPIs directly causes CV harm. We conducted a controlled, open-label, cross-over pilot study among 21 adults aged 18 and older who are healthy (n=11) or have established clinical cardiovascular disease (n=10). Study subjects were assigned to receive a PPI (Prevacid; 30 mg) or a placebo pill once daily for 4 weeks. After a 2-week washout period, participants were crossed over to receive the alternate treatment for the ensuing 4 weeks. Subjects underwent evaluation of vascular function (by the EndoPAT technique) and had plasma levels of asymmetric dimethylarginine (ADMA, an endogenous inhibitor of endothelial function previously implicated in PPI-mediated risk) measured prior to and after each treatment interval. We observed a marginal inverse correlation between the EndoPAT score and plasma levels of ADMA (r = -0.364). Subjects experienced a greater worsening in plasma ADMA levels while on PPI than on placebo, and this trend was more pronounced amongst those subjects with a history of vascular disease. However, these trends did not reach statistical significance, and PPI use was also not associated with an impairment in flow-mediated vasodilation during the course of this study. In conclusion, in this open-label, cross-over pilot study conducted among healthy subjects and coronary disease patients, PPI use did not significantly influence vascular endothelial function. Larger, long-term and blinded trials are needed to mechanistically explain the correlation between PPI use and adverse clinical outcomes, which has recently been reported in retrospective cohort studies. © The Author(s) 2015.

  13. Comparison of vonoprazan and proton pump inhibitors for eradication of Helicobacter pylori.

    PubMed

    Shinozaki, Satoshi; Nomoto, Hiroaki; Kondo, Yoshie; Sakamoto, Hirotsugu; Hayashi, Yoshikazu; Yamamoto, Hironori; Lefor, Alan Kawarai; Osawa, Hiroyuki

    2016-05-01

    Alternative eradication therapies for Helicobacter pylori infection are needed because of an increasing failure rate over the past decade. The aim of this study was to determine if vonoprazan, a new potassium-competitive acid blocker, showed superiority to existing proton pump inhibitors for primary eradication of H. pylori in routine clinical practice. Data for 573 patients who underwent primary H. pylori eradication therapy were retrospectively reviewed. Regimens included clarithromycin 200 mg, amoxicillin 750 mg, and an acid-suppressing drug [lansoprazole 30 mg (LAC), rabeprazole 10 mg (RAC), esomeprazole 20 mg (EAC), or vonoprazan 20 mg (VAC)] twice daily for 1 week. Eradication was successful in 73% (419/573) of patients using intention-to-treat (ITT) analysis and 76% (419/549) of patients in per-protocol (PP) analysis. The VAC group had a significantly superior eradication rate compared with the LAC and RAC groups in ITT (VAC 83%, LAC 66% and RAC 67%, p < 0.01) and PP analysis (VAC 85%, LAC 69% and RAC 70%, p < 0.01), and had a similarly high eradication rate to the EAC group (83% in ITT and 87% in PP). Although the eradication rate in the VAC and EAC groups was not significantly higher than in the LAC and RAC groups in patients with mild gastric atrophy with both ITT and PP analyses, it was significantly higher in patients with severe gastric atrophy (p < 0.01). The VAC group had a significantly higher H. pylori eradication rate than the LAC and RAC groups, and a > 80% eradication rate regardless of the degree of atrophy. Copyright © 2016. Published by Elsevier Taiwan.

  14. Proton pump inhibitor for non-erosive reflux disease: A meta-analysis

    PubMed Central

    Zhang, Ji-Xiang; Ji, Meng-Yao; Song, Jia; Lei, Hong-Bo; Qiu, Shi; Wang, Jing; Ai, Ming-Hua; Wang, Jun; Lv, Xiao-Guang; Yang, Zi-Rong; Dong, Wei-Guo

    2013-01-01

    AIM: To evaluate the efficacy, safety and influential factors of proton pump inhibitor (PPI) treatment for non-erosive reflux disease (NERD). METHODS: PubMed, MEDLINE, EMBASE and the Cochrane Library were searched up to April 2013 to identify eligible randomized controlled trials (RCTs) that probed into the efficacy, safety and influential factors of PPI treatment for NERD. The rates of symptomatic relief and adverse events were measured as the outcomes. After RCT selection, assessment and data collection, the pooled RRs and 95%CI were calculated. This meta-analysis was performed using the Stata 12.0 software (Stata Corporation, College Station, Texas, United States). The level of evidence was estimated by the Grading of Recommendations Assessment, Development and Evaluation system. RESULTS: Seventeen RCTs including 6072 patients met the inclusion criteria. The results of the meta-analysis showed that PPI treatment was significantly superior to H2 receptor antagonists (H2RA) treatment (RR = 1.629, 95%CI: 1.422-1.867, P = 0.000) and placebo (RR = 1.903, 95%CI: 1.573-2.302, P = 0.000) for the symptomatic relief of NERD. However, there were no obvious differences between PPI and H2RA (RR = 0.928, 95%CI: 0.776-1.110, P = 0.414) or PPI and the placebo (RR = 1.000, 95%CI: 0.896-1.116, P = 0.997) regarding the rate of adverse events. The overall rate of symptomatic relief of PPI against NERD was 51.4% (95%CI: 0.433-0.595, P = 0.000), and relief was influenced by hiatal hernia (P = 0.030). The adverse rate of PPI against NERD was 21.0% (95%CI: 0.152-0.208, P = 0.000), and was affected by hiatal hernia (P = 0.081) and drinking (P = 0.053). CONCLUSION: PPI overmatched H2RA on symptomatic relief rate but not on adverse rate for NERD. Its relief rate and adverse rate were influenced by hiatal hernia and drinking. PMID:24363534

  15. 8-Dehydrosterols induce membrane traffic and autophagy defects through V-ATPase dysfunction in Saccharomyces cerevisae.

    PubMed

    Hernández, Agustín; Serrano-Bueno, Gloria; Perez-Castiñeira, José Román; Serrano, Aurelio

    2015-11-01

    8-Dehydrosterols are present in a wide range of biologically relevant situations, from human rare diseases to amine fungicide-treated fungi and crops. However, the molecular bases of their toxicity are still obscure. We show here that 8-dehydrosterols, but not other sterols, affect yeast vacuole acidification through V-ATPases. Moreover, erg2Δ cells display reductions in proton pumping rates consistent with ion-transport uncoupling in vitro. Concomitantly, subunit Vph1p shows conformational changes in the presence of 8-dehydrosterols. Expression of a plant vacuolar H(+)-pumping pyrophosphatase as an alternative H(+)-pump relieves Vma(-)-like phenotypes in erg2Δ-derived mutant cells. As a consequence of these acidification defects, endo- and exo-cytic traffic deficiencies that can be alleviated with a H(+)-pumping pyrophosphatase are also observed. Despite their effect on membrane traffic, 8-dehydrosterols do not induce endoplasmic reticulum stress or assembly defects on the V-ATPase. Autophagy is a V-ATPase dependent process and erg2Δ mutants accumulate autophagic bodies under nitrogen starvation similar to Vma(-) mutants. In contrast to classical Atg(-) mutants, this defect is not accompanied by impairment of traffic through the CVT pathway, processing of Pho8Δ60p, GFP-Atg8p localisation or difficulties to survive under nitrogen starvation conditions, but it is concomitant to reduced vacuolar protease activity. All in all, erg2Δ cells are autophagy mutants albeit some of their phenotypic features differ from classical Atg(-) defective cells. These results may pave the way to understand the aetiology of sterol-related diseases, the cytotoxic effect of amine fungicides, and may explain the tolerance to these compounds observed in plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

  17. Proton Transport and pH Control in Fungi

    PubMed Central

    Kane, Patricia M.

    2018-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPaseare coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This re view describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi. PMID:26721270

  18. Association of Proton Pump Inhibitor (PPI) Use with Energy Intake, Physical Activity, and Weight Gain

    PubMed Central

    Czwornog, Jennifer L.; Austin, Gregory L.

    2015-01-01

    Studies suggest proton pump inhibitor (PPI) use impacts body weight regulation, though the effect of PPIs on energy intake, energy extraction, and energy expenditure is unknown. We used data on 3073 eligible adults from the National Health and Nutrition Examination Survey (NHANES). Medication use, energy intake, diet composition, and physical activity were extracted from NHANES. Multivariate regression models included confounding variables. Daily energy intake was similar between PPI users and non-users (p = 0.41). Diet composition was similar between the two groups, except that PPI users consumed a slightly greater proportion of calories from fat (34.5% vs. 33.2%; p = 0.02). PPI users rated themselves as being as physically active as their age/gender-matched peers and reported similar frequencies of walking or biking. However, PPI users were less likely to have participated in muscle-strengthening activities (OR: 0.53; 95% CI: 0.30–0.95). PPI users reported similar sedentary behaviors to non-users. Male PPI users had an increase in weight (of 1.52 ± 0.59 kg; p = 0.021) over the previous year compared to non-users, while female PPI users had a non-significant increase in weight. The potential mechanisms for PPI-associated weight gain are unclear as we did not find evidence for significant differences in energy intake or markers of energy expenditure. PMID:26492268

  19. Effect of esomeprazole, a proton pump inhibitor on the pharmacokinetics of sonidegib in healthy volunteers

    PubMed Central

    Quinlan, Michelle; Glenn, Kelli; Boss, Hildegard; Picard, Franck; Castro, Henry; Sellami, Dalila

    2016-01-01

    Aims This study aimed to evaluate the impact of esomeprazole on the pharmacokinetics of sonidegib. Methods This Phase I study evaluated the impact of the proton pump inhibitor (PPI) esomeprazole on the oral absorption and pharmacokinetics (PKs) of a single dose of sonidegib under fasted conditions. A total of 42 healthy subjects were enrolled to receive either sonidegib alone (200 mg single dose) or sonidegib in combination with esomeprazole (40 mg pre‐treatment 5 days and combination were given on day 6). Primary PK parameters assessed in the study were area under the concentration‐time curve (AUC) from 0–14 days and 0–7 days and maximum observed plasma concentration (C max). Results The plasma exposure (AUC0‐14d, AUC0‐7d and C max) of a single 200 mg oral dose of sonidegib was decreased by 32–38% when sonidegib was co‐administered with esomeprazole compared with sonidegib alone, with no apparent change in elimination slope and t max. Baseline gastric pH was similar between the two arms. Conclusions These results suggest a modest reduction in the extent of sonidegib absorption by esomeprazole. There was no obvious metabolic drug–drug interaction between the two agents. Both sonidegib and esomeprazole were well tolerated in the study population. PMID:27277189

  20. Comparative risk of ischemic stroke among users of clopidogrel together with individual proton pump inhibitors.

    PubMed

    Leonard, Charles E; Bilker, Warren B; Brensinger, Colleen M; Flockhart, David A; Freeman, Cristin P; Kasner, Scott E; Kimmel, Stephen E; Hennessy, Sean

    2015-03-01

    There is controversy and little information about whether individual proton pump inhibitors (PPIs) differentially alter the effectiveness of clopidogrel in reducing ischemic stroke risk. We, therefore, aimed to elucidate the risk of ischemic stroke among concomitant users of clopidogrel and individual PPIs. We conducted a propensity score-adjusted cohort study of adult new users of clopidogrel, using 1999 to 2009 Medicaid claims from 5 large states. Exposures were defined by prescriptions for esomeprazole, lansoprazole, omeprazole, rabeprazole, and pantoprazole-with pantoprazole serving as the referent. The end point was hospitalization for acute ischemic stroke, defined by International Classification of Diseases Ninth Revision Clinical Modification codes in the principal position on inpatient claims, within 180 days of concomitant therapy initiation. Among 325 559 concomitant users of clopidogrel and a PPI, we identified 1667 ischemic strokes for an annual incidence of 2.4% (95% confidence interval, 2.3-2.5). Adjusted hazard ratios for ischemic stroke versus pantoprazole were 0.98 (0.82-1.17) for esomeprazole; 1.06 (0.92-1.21) for lansoprazole; 0.98 (0.85-1.15) for omeprazole; and 0.85 (0.63-1.13) for rabeprazole. PPIs of interest did not increase the rate of ischemic stroke among clopidogrel users when compared with pantoprazole, a PPI thought to be devoid of the potential to interact with clopidogrel. © 2015 American Heart Association, Inc.

  1. Proton Pump Inhibitor Use Is Associated With a Reduced Risk of Infection with Intestinal Protozoa.

    PubMed

    Sheele, Johnathan M

    2017-12-01

    Proton pump inhibitors (PPIs) can kill some human protozoan parasites in cell culture better than the drug metronidazole. Clinical data showing an antiprotozoal effect for PPIs are lacking. The objective of the study is to determine if PPI use is associated with a reduced risk of having intestinal parasites. We obtained electronic medical record data for all persons who received a stool ova and parasite (O & P) examination at our tertiary care academic medical center in Cleveland, Ohio, between January 2000 and September 2014. We obtained the person's age, whether they were taking a PPI at the time of the O & P examination, and whether the pathology report indicated the presence of any parasites. χ 2 with Yates correction was used to determine if PPI use was associated with stool protozoa. Three intestinal protozoa were identified in 1199 patients taking a PPI (0.3%), and 551 intestinal parasites were identified in the 14,287 patients not taking a PPI (3.9%). There was a statistically significant lower likelihood of finding protozoa in the stool of a person taking a PPI compared with those not taking a PPI (P < .0001). Patients taking a PPI were statistically less likely to have an intestinal protozoa reported on stool O & P examination compared with those not taking a PPI. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  2. Exchangers man the pumps

    PubMed Central

    Barkla, Bronwyn J; Hirschi, Kendal D

    2008-01-01

    Tonoplast-localised proton-coupled Ca2+ transporters encoded by cation/H+ exchanger (CAX) genes play a critical role in sequestering Ca2+ into the vacuole. These transporters may function in coordination with Ca2+ release channels, to shape stimulus-induced cytosolic Ca2+ elevations. Recent analysis of Arabidopsis CAX knockout mutants, particularly cax1 and cax3, identified a variety of phenotypes including sensitivity to abiotic stresses, which indicated that these transporters might play a role in mediating the plant's stress response. A common feature of these mutants was the perturbation of H+-ATPase activity at both the tonoplast and the plasma membrane, suggesting a tight interplay between the Ca2+/H+ exchangers and H+ pumps. We speculate that indirect regulation of proton flux by the exchangers may be as important as the direct regulation of Ca2+ flux. These results suggest cautious interpretation of mutant Ca2+/H+ exchanger phenotypes that may be due to either perturbed Ca2+ or H+ transport. PMID:19841670

  3. Use of proton pump inhibitors for the provision of stress ulcer prophylaxis: clinical and economic consequences.

    PubMed

    Barletta, Jeffrey F; Sclar, David A

    2014-01-01

    The provision of stress ulcer prophylaxis (SUP) for the prevention of clinically significant bleeding is widely recognized as a crucial component of care in critically ill patients. Nevertheless, SUP is often provided to non-critically ill patients despite a risk for clinically significant bleeding of roughly 0.1 %. The overuse of SUP therefore introduces added risks for adverse drug events and cost, with minimal expected benefit in clinical outcome. Historically, histamine-2-receptor antagonists (H2RAs) have been the preferred agent for SUP; however, recent data have revealed proton pump inhibitors (PPIs) as the most common modality (76 %). There are no high quality randomized controlled trials demonstrating superiority with PPIs compared with H2RAs for the prevention of clinically significant bleeding associated with stress ulcers. In contrast, PPIs have recently been linked to several adverse effects including Clostridium difficile diarrhea and pneumonia. These complications have substantial economic consequences and have a marked impact on the overall cost effectiveness of PPI therapy. Nevertheless, PPI use remains widespread in patients who are at both high and low risk for clinically significant bleeding. This article will describe the utilization of PPIs for SUP and present the clinical and economic consequences linked to their use/overuse.

  4. Effects of Helicobacter pylori infection and long-term proton pump inhibitor use on enterochromaffin-like cells.

    PubMed

    Bektaş, Mehmet; Saraç, Nurşen; Cetinkaya, Hülya; Törüner, Murat; Erdemli, Esra; Keskin, Onur; Soykan, Irfan; Oktay, Esen Ismet; Korkut, Esin; Ustün, Yusuf; Bahar, Kadir

    2012-01-01

    Excessive release of gastrin leads to hypertrophy and hyperplasia of enterochromaffin-like cells (ECL) and prolonged stimulation of these cells causes functional impairment. The purpose of this study was to investigate the effect of Helicobacter pylori ( H. pylori) infection and long-term proton pump inhibitors (PPI) use on ECL cells. Fifteen patients who underwent endoscopy because of dyspeptic symptoms were enrolled in the present study. Biopsies were taken from corpus and antrum and existence of H. pylori was investigated with culture, cytology and CLOtest. The patients were divided into 3 groups. Group-A: H. pylori -negative, never treated previously with PPI; Group-B: H. pylori -positive, never treated previously with PPI; and group-C: H. pylori -negative and continuously treated with PPI for more than 6 months before the subject recruitment period. The features of ECL cell in oxyntic glands were examined with electron microscopy on biopsy specimens. ECL cells were completely normal in Group A. In group B, moderate hyperplasia and vacuolization was seen in ECL cells. In group C, ECL cell hyperplasia was observed and vacuoles with greater amounts of granules in enlarged vesicles were found more intensely in cytoplasm. The use of PPI for a long period of time and presence of H. pylori infection are risk factors for ECL hyperplasia.

  5. Designed inhibitors with hetero linkers for gastric proton pump H+,K+-ATPase: Steered molecular dynamics and metadynamics studies.

    PubMed

    Jana, Kalyanashis; Bandyopadhyay, Tusar; Ganguly, Bishwajit

    2017-11-01

    Acid suppressant SCH28080 and its derivatives reversibly reduce acid secretion activity of the H + ,K + -ATPase in a K + competitive manner. The results on homologation of the SCH28080 by varying the linker chain length suggested the improvement in efficacy. However, the pharmacokinetic studies reveal that the hydrophobic nature of the CH 2 linker units may not help it to function as a better acid suppressant. We have exploited the role of linker unit to enhance the efficacy of such reversible acid suppressant drug molecules using hetero linker, i.e., disulfide and peroxy linkers. The logarithm of partition coefficient defined for a drug molecule relates to the partition coefficient, which allows the optimum solubility characteristics to reach the active site. The logarithm of partition coefficient calculated for the designed inhibitors suggests that inhibitors would possibly reach the active site in sufficient concentration like in the case of SCH28080. The steered molecular dynamics studies have revealed that the Inhibitor-1 with disulfide linker unit is more stable at the active site due to greater noncovalent interactions compared to the SCH28080. Centre of mass distance analysis suggests that the Cysteine-813 amino acid residue selectively plays an important role in the inhibition of H + ,K + -ATPase for Inhibitor-1. Furthermore, the quantum chemical calculations with M11L/6-31+G(d,p) level of theory have been performed to account the noncovalent interactions responsible for the stabilization of inhibitor molecules in the active site gorge of the gastric proton pump at different time scale. The hydrogen bonding and hydrophobic interaction studies corroborate the center of mass distance analysis as well. Well-tempered metadynamics free energy surface and center of mass separation analysis for the Inhibitor-1 is in good agreement with the steered molecular dynamics results. The torsional angle of the linker units seems to be crucial for better efficacy of drug

  6. Proton pump inhibitors in prevention of low-dose aspirin-associated upper gastrointestinal injuries

    PubMed Central

    Mo, Chen; Sun, Gang; Lu, Ming-Liang; Zhang, Li; Wang, Yan-Zhi; Sun, Xi; Yang, Yun-Sheng

    2015-01-01

    AIM: To determine the preventive effect and safety of proton pump inhibitors (PPIs) in low-dose aspirin (LDA)-associated gastrointestinal (GI) ulcers and bleeding. METHODS: We searched MEDLINE, EMBASE and the Cochrane Controlled Trials Register from inception to December 2013, and checked conference abstracts of randomized controlled trials (RCTs) on the effect of PPIs in reducing adverse GI events (hemorrhage, ulcer, perforation, or obstruction) in patients taking LDA. The preventive effects of PPIs were compared with the control group [taking placebo, a cytoprotective agent, or an H2 receptor antagonist (H2RA)] in LDA-associated upper GI injuries. The meta-analysis was performed using RevMan 5.1 software. RESULTS: We evaluated 8780 participants in 10 RCTs. The meta-analysis showed that PPIs decreased the risk of LDA-associated upper GI ulcers (OR = 0.16; 95%CI: 0.12-0.23) and bleeding (OR = 0.27; 95%CI: 0.16-0.43) compared with control. For patients treated with dual anti-platelet therapy of LDA and clopidogrel, PPIs were able to prevent the LDA-associated GI bleeding (OR = 0.36; 95%CI: 0.15-0.87) without increasing the risk of major adverse cardiovascular events (MACE) (OR = 1.00; 95%CI: 0.76-1.31). PPIs were superior to H2RA in prevention of LDA-associated GI ulcers (OR = 0.12; 95%CI: 0.02-0.65) and bleeding (OR = 0.32; 95%CI: 0.13-0.79). CONCLUSION: PPIs are effective in preventing LDA-associated upper GI ulcers and bleeding. Concomitant use of PPI, LDA and clopidogrel did not increase the risk of MACE. PMID:25954113

  7. Proton pump inhibitors increase the incidence of bone fractures in hepatitis C patients.

    PubMed

    Mello, Michael; Weideman, Rick A; Little, Bertis B; Weideman, Mark W; Cryer, Byron; Brown, Geri R

    2012-09-01

    While proton pump inhibitors (PPI) may increase the risk of bone fractures, the incidence of new bone fractures in a chronic hepatitis C virus (HCV) infected cohort, with or without PPI exposure, has not been explored. A retrospective cohort study of the incidence of bone fractures over 10 years in 9,437 HCV antibody positive patients in the Dallas VA Hepatitis C Registry was performed. The study endpoint was the incidence of verified new bone fractures per patient-years (pt-yrs) in PPI users compared to non-PPI users. PPI use was defined as those taking a PPI for ≥360 days. Pt-yrs of exposure for PPI users began on the first PPI prescription date, and pt-yrs of exposure for non-PPI users began with first date of any non-PPI prescription. For both HCV groups, the final date of patients' study duration was defined by end of PPI exposure, bone fracture occurrence, death or end of study evaluation period. Exclusion criteria included use of bone health modifying medications ≥30 days. Statistical differences in fracture incidence between groups were determined by multivariate regression analysis. Among the total study population analyzed (n = 2,573), 109 bone fractures occurred. Unadjusted bone fracture incidences were 13.99/1,000 pt-yrs vs. 5.86/1,000 pt-yrs in PPI and non-PPI users, respectively. The adjusted hazard ratio for new bone fractures was 3.87 (95 % CI 2.46-6.08) (p < 0.001) in PPI users. In patients with chronic HCV, use of PPI for >1 year increased the risk of new bone fractures by more than threefold.

  8. In vitro study of the variable effects of proton pump inhibitors on voriconazole.

    PubMed

    Niece, Krista L; Boyd, Natalie K; Akers, Kevin S

    2015-09-01

    Voriconazole is a broad-spectrum antifungal agent used for the treatment of severe fungal infections. Maintaining therapeutic concentrations of 1 to 5.5 μg/ml is currently recommended to maximize the exposure-response relationship of voriconazole. However, this is challenging, given the highly variable pharmacokinetics of the drug, which includes metabolism by cytochrome P450 (CYP450) isotypes CYP2C19, CYP3A4, and CYP2C9, through which common metabolic pathways for many medications take place and which are also expressed in different isoforms with various metabolic efficacies. Proton pump inhibitors (PPIs) are also metabolized through these enzymes, making them competitive inhibitors of voriconazole metabolism, and coadministration with voriconazole has been reported to increase total voriconazole exposure. We examined the effects of five PPIs (rabeprazole, pantoprazole, lansoprazole, omeprazole, and esomeprazole) on voriconazole concentrations using four sets of human liver microsomes (HLMs) of different CYP450 phenotypes. Overall, the use of voriconazole in combination with any PPI led to a significantly higher voriconazole yield compared to that achieved with voriconazole alone in both pooled HLMs (77% versus 59%; P < 0.001) and individual HLMs (86% versus 76%; P < 0.001). The mean percent change in the voriconazole yield from that at the baseline after PPI exposure in pooled microsomes ranged from 22% with pantoprazole to 51% with esomeprazole. Future studies are warranted to confirm whether and how the deliberate coadministration of voriconazole and PPIs can be used to boost voriconazole levels in patients with difficult-to-treat fungal infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  10. Analogies between respiration and a light-driven proton pump as sources of energy for active glutamate transport in Halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Belliveau, J. W.; Lanyi, J. K.

    1977-01-01

    Halobacterium halobium is known to contain sheets of bacteriorhodopsin, a pigment which upon exposure to light undergoes cyclic protonation and deprotonation, resulting in net H(+) translocation. In this paper, experiments were conducted to test H. halobium cell envelope vesicles for respiration-induced glutamate uptake. It is shown that glutamate transport in H. halobium cell envelope vesicles can occur as a result of respiration, as well as light acting on bacteriorhodopsin. Glutamate transport can be energized by the oxidation of dimethyl phenylenediamine, and the properties of the transport system are entirely analogous to those observed with illumination as the source of energy. In the case of respiration-dependent glutamate transport, the transportation is also driven by a Na(+) gradient, thereby confirming the existence of a single glutamate transport system independent of the source of energy. The analogy observed is indirect evidence that the cytochrome oxidase of H. halobium functions as a H(+) pump.

  11. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death1[OPEN

    PubMed Central

    Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-01-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB. In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. PMID:26884487

  12. Isolation, characterization, and structure analysis of a vacuolar processing enzyme gene (MhVPEγ) from Malus hupehensis (Pamp) Rehd.

    PubMed

    Ran, Kun; Yang, Hongqiang; Sun, Xiaoli; Li, Qiang; Jiang, Qianqian; Zhang, Weiwei; Shen, Wei

    2014-05-01

    Vacuolar processing enzymes (VPEs) have received considerable attention recently, as they exhibit caspase-1-like cleavage activity and regulate the process of PCD. However, knowledge about their detailed characteristics and structures is relatively limited. In this study, a gamma vacuolar processing enzyme gene, MhVPEγ, has been isolated from the leaves of Malus hupehensis (Ramp) Rehd. var pinyiensis Jiang. MhVPEγ coded-translated protein sequence comprised of 494 amino acids with a signal peptide and a transmembrane helix structure at N-terminal, peptidase_C13 domain, and vacuolar sorting signal at C-terminal. Consequently, genomic walking approach was performed for the isolation of its upstream sequence. Computational analysis demonstrated several motifs of the promoter exhibiting hypothetic MeJA, ABA, and light-induced characteristics, as well as some typical domains universally discovered in promoter, such as TATA-box and CAAT-box. MhVPEγ transcript level was enhanced during wounding treatment, and WUN-motif, as one of the cis-acting regulatory elements existing in the upstream sequence perhaps regulates its expression. In silico-constructed 3D models revealed that MhCPYL successively interacts with MhVPEγ like that of "Induced Fit-Lock and Key" model, providing molecular conformation evidence that CPY is a direct substrate of VPEγ. This study is the first stride to understand the molecular mechanism of VPEγ and CPYL interactions.

  13. Vacuolar processing enzyme: an executor of plant cell death.

    PubMed

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  14. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Helgerson, S. L.; Stoeckenius, W.

    1985-01-01

    The roles of bacteriorhodopsin (bR), halorhodopsin (hR), and the H(+)-ATPase in the proton uptake in intact cells are examined. The Halobacterium halobium strains and solutions utilized in the experiment, and the techniques for measuring extracellular pH changes and intracellular K(+) concentrations are described. It is observed that in Halobacterium halobium strain R1, containing bR and hR, the light-driven proton uptake is divided into three transient inflows superimposed on the larger proton outflow. Under anaerobic conditions early proton uptake consists of an inflow which can be blocked with Dio-9 and a second inflow that can be eliminated by low concentrations (less than 125 nm) of triphenyltin chloride (TPT). The effects of Dio-9 and TPT on the passive proton-hydroxyl permeability of the cell membrane are investigated. A third transient light-driven proton flow observed at later times of illumination is studied. The data reveal that the first proton inflow correlates with proton dependent ATP synthesis; the second inflow is a passive uptake through an unidentified channel in response to electrogenic chloride pumping by bR and/or hR; and the third inflow correlates with the Na(+)/H(+) antiporter function.

  15. Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum.

    PubMed

    Siletsky, Sergey A; Mamedov, Mahir D; Lukashev, Evgeniy P; Balashov, Sergei P; Dolgikh, Dmitriy A; Rubin, Andrei B; Kirpichnikov, Mikhail P; Petrovskaya, Lada E

    2016-11-01

    A retinal protein from Exiguobacterium sibiricum (ESR) functions as a light-driven proton pump. Unlike other proton pumps, it contains Lys96 instead of a usual carboxylic residue in the internal proton donor site. Nevertheless, the reprotonation of the Schiff base occurs fast, indicating that Lys96 facilitates proton transfer from the bulk. In this study we examined kinetics of light-induced transmembrane electrical potential difference, ΔΨ, generated in proteoliposomes reconstituted with ESR. We show that total magnitude of ΔΨ is comparable to that produced by bacteriorhodopsin but its kinetic components and their pH dependence are substantially different. The results are in agreement with the earlier finding that proton uptake precedes reprotonation of the Schiff base in ESR, suggesting that Lys96 is unprotonated in the initial state and gains a proton transiently in the photocycle. The electrogenic phases and the photocycle transitions related to proton transfer from the bulk to the Schiff base are pH dependent. At neutral pH, they occur with τ 0.5ms and 4.5ms. At alkaline pH, the fast component ceases and Schiff base reprotonation slows. At pH8.4, a spectrally silent electrogenic component with τ 0.25ms is detected, which can be attributed to proton transfer from the bulk to Lys96. At pH5.1, the amplitude of ΔΨ decreases 10 fold, reflecting a decreased yield and rate of proton transfer, apparently from protonation of the acceptor (Asp85-His57 pair) in the initial state. The features of the photoelectric potential generation correlate with the ESR structure and proposed mechanism of proton transfer. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination.

    PubMed

    Obroucheva, Natalie V; Lityagina, Snezhana V; Novikova, Galina V; Sin'kevich, Irina A

    2012-01-01

    In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H(+)-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H(+)-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due

  17. Vacuolar status and water relations in embryonic axes of recalcitrant Aesculus hippocastanum seeds during stratification and early germination

    PubMed Central

    Obroucheva, Natalie V.; Lityagina, Snezhana V.; Novikova, Galina V.; Sin'kevich, Irina A.

    2012-01-01

    Backgrounds and aims In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Methodology Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H+-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Principal results Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H+-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Conclusions Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant

  18. Development of a MeV proton beam irradiation system.

    PubMed

    Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok

    2008-02-01

    A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.

  19. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.

    PubMed

    Shima, Jun; Ando, Akira; Takagi, Hiroshi

    2008-03-01

    Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.

  20. Environmental Factors Influencing Blooms of a Neurotoxic Stigonematalan Cyanobacterium Responsible for Avian Vacuolar Myelinopathy

    DTIC Science & Technology

    2013-01-01

    aquatic plants and subsequent ecological consequences. The authors of this technical note have linked avian vacuolar myelinopathy (AVM), a disease...additional cyanobacteria sequences to determine designations for probe development, to advance understanding of the species’ phylogeny , and to lay...groundwork for its formal description. Phylogeny data confirm that the species is in section V, order Stigonematales. Phylogeny also infers that the