Science.gov

Sample records for vacuum annealing phenomena

  1. In-situ observation of self-cleansing phenomena during ultra-high vacuum anneal of transition metal nitride thin films: Prospects for non-destructive photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Hultman, L.

    2016-11-01

    Self-cleansing of transition metal nitrides is discovered to take place during ultra-high vacuum annealing of TiN, NbN, and VN thin films. Native oxide layers from air exposure disappear after isothermal anneal at 1000 °C. Also, for TiN, the Ti 2p and N 1s X-ray photoelectron spectra (XPS) recorded after the anneal are identical to those obtained from in-situ grown and analyzed epitaxial TiN(001). These unexpected effects are explained by oxide decomposition in combination with N-replenishing of the nitride during recrystallization. The finding opens up new possibilities for true bonding assignments through non-destructive XPS analyses, thus avoiding artefacts from Ar etching.

  2. Vacuum annealing phenomena in ultrathin TiDy/Pd bi-layer films evaporated on Si(100) as studied by TEM and XPS.

    PubMed

    Lisowski, W; Keim, E G

    2010-04-01

    Using a combination of TEM and XPS, we made an analysis of the complex high-temperature annealing effect on ultrathin titanium deuteride (TiD(y)) films evaporated on a Si(100) substrate and covered by an ultrathin palladium layer. Both the preparation and annealing of the TiD(y)/Pd bi-layer films were performed in situ under UHV conditions. It was found that the surface and bulk morphology of the bi-layer film as well as that of the Si substrate material undergo a microstructural and chemical conversion after annealing and annealing-induced deuterium evolution from the TiD(y) phase. Energy-filtered TEM (EFTEM) mapping of cross-section images and argon ion sputter depth profiling XPS analysis revealed both a broad intermixing between the Ti and Pd layers and an extensive inter-diffusion of Si from the substrate into the film bulk area. Segregation of Ti at the Pd top layer surface was found to occur by means of angle-resolved XPS (ARXPS) and the EFTEM analyses. Selected area diffraction (SAD) and XPS provided evidence for the formation of a new PdTi(2) bimetallic phase within the top region of the annealed film. Moreover, these techniques allowed to detect the initial stages of TiSi phase formation within the film-substrate interlayer.

  3. The effect of vacuum annealing on corrosion resistance of titanium

    SciTech Connect

    Chikanov, V.N.; Peshkov, V.V.; Kireev, L.S.

    1994-09-01

    The effect of annealing on the corrosion resistance of OT4-1 sheet titanium in 25% HCl under various air pressures and self-evacuating conditions has been investigated. From the kinetic corrosion curves it follows that the least corrosion resistance of titanium is observed after vacuum annealing. Even low residual air pressure in a chamber improves corrosion resistance. The corrosion resistance of titanium decreases with vacuum-annealing time.

  4. Vacuum annealing temperature on spray In2S3 layers

    NASA Astrophysics Data System (ADS)

    Bouguila, Nourredine; Timoumi, Abdelmajid; Bouzouita, Hassen

    2014-02-01

    Indium sulfide In2S3 thick films are deposited on glass substrates using spray technique over the optimum conditions experiments (Ts = 340 °C, S/In = 2). The films are polycrystalline and have thickness of about 1.8 μm. These films are annealed in a vacuum sealed pyrex tubes (10-5 torr). Physico-chemical characterizations by SEM observation, X-ray diffraction and EDX analysis are undertaked on these films. This treatment has improved crystallinity of samples. It has allowed thus to stabilize β and γ varieties of In2S3 material. In2O3 and In6S7 phases have appeared with very weak intensities at high temperatures. The best structure quality are obtained at 300 °C for the optimum annealed temperature (Ts = 340 °C, S/In = 2), for which samples are constituted in dominance by γ phase oriented preferentially towards (1 0 2). The grain size is 42 nm of this phase. Chemical composition of such films has changed relatively to non-treated film but it seems not be affected by treatment temperature. Atomic molar ratio S/In is obtained for 0.9. Optical study shows that these layers are transparent in the visible and optical direct band gap increases as function of annealed temperature.

  5. Annealing effect for SnS thin films prepared by high-vacuum evaporation

    SciTech Connect

    Revathi, Naidu Bereznev, Sergei; Loorits, Mihkel; Raudoja, Jaan; Lehner, Julia; Gurevits, Jelena; Traksmaa, Rainer; Mikli, Valdek; Mellikov, Enn; Volobujeva, Olga

    2014-11-01

    Thin films of SnS are deposited onto molybdenum-coated soda lime glass substrates using the high-vacuum evaporation technique at a substrate temperature of 300 °C. The as-deposited SnS layers are then annealed in three different media: (1) H{sub 2}S, (2) argon, and (3) vacuum, for different periods and temperatures to study the changes in the microstructural properties of the layers and to prepare single-phase SnS photoabsorber films. It is found that annealing the layers in H{sub 2}S at 400 °C changes the stoichiometry of the as-deposited SnS films and leads to the formation of a dominant SnS{sub 2} phase. Annealing in an argon atmosphere for 1 h, however, causes no deviations in the composition of the SnS films, though the surface morphology of the annealed SnS layers changes significantly as a result of a 2 h annealing process. The crystalline structure, surface morphology, and photosensitivity of the as-deposited SnS films improves significantly as the result of annealing in vacuum, and the vacuum-annealed films are found to exhibit promising properties for fabricating complete solar cells based on these single-phase SnS photoabsorber layers.

  6. Annealing of ultrathin silicon dioxide layers plasma oxidized in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Majamaa, T.; Kilpelä, O.; Novikov, S.; Sinkkonen, J.

    1999-04-01

    Ultrathin silicon dioxide layers have been fabricated by the room temperature plasma oxidation of silicon in ultrahigh vacuum. Silicon-silicon dioxide interface state densities of 10 11 eV -1 cm -2 in the mid-gap can be reached without any annealing. The oxide charge, however, is then quite high. By using post metallization annealing in 300°C or post oxidation UHV annealing in 750°C the surface state densities can slightly be decreased. The oxide charge can be totally removed in 750°C. Neither of these annealings decrease the oxide thickness.

  7. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10-5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  8. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  9. Work function recovery of air exposed molybdenum oxide thin films with vacuum annealing

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; Turniske, Alexander; Bao, Zhenan; Gao, Yongli

    2012-02-01

    We report substantial work function (WF) recovery of air exposed molybdenum oxide thin films with vacuum annealing. The high WF (˜6.8 eV) of thermally evaporated MoOx thin film was observed to decrease sharply to ˜5.6 eV with an air exposure of one hour. The drop in the WF was accompanied with a very thin layer of oxygen rich adsorbate on the MoOx film. The WF of the exposed MoOx film started to gradually recover with increasing annealing temperature in a vacuum chamber having base pressure of 8 x 10-11 torr. The saturation in the WF recovery was observed around 460 ^oC, with WF ˜6.4 eV. The adsorb layer was found to be removed after the vacuum annealing. We further studied the interface formation between the annealed MoOx and copper pthalocynine (CuPc). The highest occupied molecular orbital (HOMO) level of CuPc was observed to be almost pinned to the Fermi level, strongly suggesting an efficient hole injection through the vacuum annealed MoOx film.

  10. Surface enhanced Raman scattering of aged graphene: Effects of annealing in vacuum

    SciTech Connect

    Wang Yingying; Li Aizhi; Qu Shiliang; Ni Zhenhua; Zafar, Zainab; Qiu Teng; Zhang Yan; Ni Zhonghua; Yu Ting; Shen Zexiang

    2011-12-05

    In this paper, we report a simple method to recover the surface enhanced Raman scattering activity of aged graphene. The Raman signals of Rhodamine molecules absorbed on aged graphene are dramatically increased after vacuum annealing and comparable to those on fresh graphene. Atomic force microscopy measurements indicate that residues on aged graphene surface can efficiently be removed by vacuum annealing, which makes target molecule closely contact with graphene. We also find that the hole doping in graphene will facilitate charge transfer between graphene and molecule. These results confirm the strong Raman enhancement of target molecule absorbed on graphene is due to the charge transfer mechanism.

  11. Development of fast heating electron beam annealing setup for ultra high vacuum chamber.

    PubMed

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T; Hippler, R

    2014-02-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10(-6) mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  12. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    SciTech Connect

    Das, Sadhan Chandra; Majumdar, Abhijit E-mail: majumdar@uni-greifswald.de; Hippler, R.; Katiyal, Sumant; Shripathi, T.

    2014-02-15

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 ºC with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (∼10{sup −6} mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 ºC of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  13. Development of fast heating electron beam annealing setup for ultra high vacuum chamber

    NASA Astrophysics Data System (ADS)

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T.; Hippler, R.

    2014-02-01

    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 °C with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (˜10-6 mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 °C of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  14. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2015-09-01

    This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.

  15. A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet.

    PubMed

    Goto, Taichi; Onbasli, Mehmet C; Kim, Dong Hun; Singh, Vivek; Inoue, M; Kimerling, Lionel C; Ross, C A

    2014-08-11

    Vacuum annealed polycrystalline cerium substituted yttrium iron garnet (CeYIG) films deposited by radio frequency magnetron sputtering on non-garnet substrates were used in nonreciprocal racetrack resonators. CeYIG annealed at 800°C for 30 min provided a large Faraday rotation angle, close to the single crystal value. Crystallinity, magnetic properties, refractive indices and absorption coefficients were measured. The resonant transmission peak of the racetrack resonator covered with CeYIG was non-reciprocally shifted by applying an in-plane magnetic field.

  16. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing

    DOE PAGES

    Leng, Xiang; Bozovic, Ivan

    2014-11-21

    In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La2-xSrxCuO4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have been done on themore » same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less

  17. The effect of annealing on vacuum-evaporated copper selenide and indium telluride thin films

    SciTech Connect

    Peranantham, P.; Jeyachandran, Y.L.; Viswanathan, C.; Praveena, N.N.; Chitra, P.C.; Mangalaraj, D. . E-mail: dmraj800@yahoo.com; Narayandass, Sa. K.

    2007-08-15

    Copper selenide and indium telluride thin films were prepared by a vacuum evaporation technique. The as-deposited films were annealed in a vacuum at different temperatures and the influence on composition, structure and optical properties of copper selenide and indium telluride films was investigated using energy dispersive X-ray analysis, X-ray diffraction, scanning electron microscopy and optical transmission measurements. From the compositional analysis, the as-deposited copper selenide and indium telluride films which were annealed at 473 and 523 K, respectively, were found to possess the nearly stoichiometric composition of CuSe and InTe phases. However, the films annealed at 673 K showed the composition of Cu{sub 2}Se and In{sub 4}Te{sub 3} phases. The structural parameters such as, particle size and strain were determined using X-ray diffractograms of the films. Optical transmittance measurements indicated the existence of direct and indirect transitions in copper selenide films and an indirect allowed transition in indium telluride films.

  18. In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles.

    PubMed

    Pedrosa, Paulo; Cote, Jean-Marc; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain

    2017-02-01

    The present study describes a sputtering and in situ vacuum electrical resistivity setup that allows a more efficient sputtering-oxidation coupling process for the fabrication of oxide compounds like vanadium dioxide, VO2. After the sputtering deposition of pure V thin films, the proposed setup enables the sample holder to be transferred from the sputtering to the in situ annealing + resistivity chamber without venting the whole system. The thermal oxidation of the V films was studied by implementing two different temperature cycles up to 550 °C, both in air (using a different resistivity setup) and vacuum conditions. Main results show that the proposed system is able to accurately follow the different temperature setpoints, presenting clean and low-noise resistivity curves. Furthermore, it is possible to identify the formation of different vanadium oxide phases in air, taking into account the distinct temperature cycles used. The metallic-like electrical properties of the annealed coatings are maintained in vacuum whereas those heated in air produce a vanadium oxide phase mixture.

  19. In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles

    NASA Astrophysics Data System (ADS)

    Pedrosa, Paulo; Cote, Jean-Marc; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain

    2017-02-01

    The present study describes a sputtering and in situ vacuum electrical resistivity setup that allows a more efficient sputtering-oxidation coupling process for the fabrication of oxide compounds like vanadium dioxide, VO2. After the sputtering deposition of pure V thin films, the proposed setup enables the sample holder to be transferred from the sputtering to the in situ annealing + resistivity chamber without venting the whole system. The thermal oxidation of the V films was studied by implementing two different temperature cycles up to 550 °C, both in air (using a different resistivity setup) and vacuum conditions. Main results show that the proposed system is able to accurately follow the different temperature setpoints, presenting clean and low-noise resistivity curves. Furthermore, it is possible to identify the formation of different vanadium oxide phases in air, taking into account the distinct temperature cycles used. The metallic-like electrical properties of the annealed coatings are maintained in vacuum whereas those heated in air produce a vanadium oxide phase mixture.

  20. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  1. Enhancements of photoluminescence intensity in high-quality floating-zone Si by thermal annealing in vacuum

    NASA Astrophysics Data System (ADS)

    Kataoka, Keita; Hattori, Ken; Yamamoto, Aishi; Nakamoto Hattori, Azusa; Hatayama, Tomoaki; Kimoto, Yasuji; Endo, Katsuyoshi; Fuyuki, Takashi; Daimon, Hiroshi

    2016-11-01

    Inactivation of non-radiative defects by hydrogen and their thermal stabilities in a high-quality floating-zone Si wafer depending on annealing conditions have been studied using in-situ photoluminescence (PL) and thermal desorption under an ultra-high vacuum. The PL intensity increased to ∼400% of its initial value after annealing at 450 °C and decreased to ∼6% of its initial value after annealing at 600 °C due to inactivation and activation of non-radiative defects, respectively. Based on the annealing temperature- and duration-dependence of the PL intensity, we propose two types of hydrogenated defects with different thermal stabilities.

  2. Low vacuum annealing of cellulose acetate on nickel towards transparent conductive CNT-graphene hybrid films.

    PubMed

    Nguyen, Duc Dung; Tiwari, Rajanish N; Matsuoka, Yuki; Hashimoto, Goh; Rokuta, Eiji; Chen, Yu-Ze; Chueh, Yu-Lun; Yoshimura, Masamichi

    2014-06-25

    We report a versatile method based on low vacuum annealing of cellulose acetate on nickel (Ni) surface for rapid fabrication of graphene and carbon nanotube (CNT)-graphene hybrid films with tunable properties. Uniform films mainly composed of tri-layer graphene can be achieved via a surface precipitation of dissociated carbon at 800 °C for 30 seconds under vacuum conditions of ∼0.6 Pa. The surface precipitation process is further found to be efficient for joining the precipitated graphene with pre-coated CNTs on the Ni surface, consequently, generating the hybrid films. As expected, the hybrid films exhibit substantial opto-electrical and field electron emission properties superior to their individual counterparts. The finding suggests a promising route to hybridize the graphene with diverse nanomaterials for constructing novel hybrid materials with improved performances.

  3. Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Wang, Linzhi; Tan, Sheng

    2016-07-01

    Selective laser melting (SLM)-fabricated AlSi10Mg parts were heat-treated under vacuum to eliminate the residual stress. Microstructure evolutions and tensile properties of the SLM-fabricated parts before and after vacuum annealing treatment were studied. The results show that the crystalline structure of SLM-fabricated AlSi10Mg part was not modified after the vacuum annealing treatment. Additionally, the grain refinement had occurred after the vacuum annealing treatment. Moreover, with increasing of the vacuum annealing time, the second phase increased and transformed to spheroidization and coarsening. The SLM-produced parts after vacuum annealing at 300∘C for 2 h had the maximum ultimate tensile strength (UTS), yield strength (YS) and elongation, while the elastic modulus decreased significantly. In addition, the tensile residual stress was found in the as-fabricated AlSi10Mg samples by the microindentation method.

  4. Annealing effects of tantalum films on Si and SiO2/Si substrates in various vacuums

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Wang, Yue; Gong, Hao

    2001-07-01

    The annealing effects of 550 nm thick β-Ta films sputtered on Si and SiO2 substrates have been investigated under various vacuum conditions. Phase transformation from the tetragonal β-Ta into body-centered-cubic α-Ta of much higher conductivity occurred at annealing temperatures lower than 500 °C and 80% of β-Ta transformed into α-Ta after annealing at 600 °C for Ta on a Si substrate. For Ta on a SiO2 substrate, no phase transformation was observed at 500 °C annealing, and only 20% of β-Ta transformed into α-Ta at 600 °C. Oxygen diffusion into the Ta film at the interface of Ta/SiO2 could hinder β-Ta to α-Ta transformation. Both Ta on Si and Ta on SiO2 samples have smooth surfaces after annealing in 2×10-5 Torr. After annealing in a vacuum lower than 2×10-4 Torr, surface oxidation of the Ta thin films was detected. The increase of oxygen content in the Ta films caused higher compressive stress, and resulted in the film peeling in a serpentine pattern during annealing at 500 °C in 2×10-2 Torr for Ta on a SiO2 substrate. The Ta films cracked and detached from the SiO2 substrate after being annealed at 750 °C in 2×10-2 Torr. In contrast, no crack was found in Ta on Si, probably because of the relief of film stress due to more β-Ta being transformed into α-Ta during annealing. The residual oxygen and moisture in low vacuum may build up stress in Ta thin films during thermal processes, which can cause major reliability problems in electronic and other applications.

  5. Physical property characterization of Fe-tube encapsulated and vacuum annealed bulk MgB 2

    NASA Astrophysics Data System (ADS)

    Awana, V. P. S.; Rawat, Rajeev; Gupta, Anurag; Isobe, M.; Singh, K. P.; Vajpayee, Arpita; Kishan, H.; Takayama-Muromachi, E.; Narlikar, A. V.

    2006-08-01

    We report the phase formation, and present a detailed study of magnetization and resistivity under magnetic field of MgB 2 polycrystalline bulk samples prepared by the Fe-tube encapsulated and vacuum (10 -5 Torr) annealed (750 ∘C) route. Zero-field-cooled magnetic susceptibility (χ) measurements exhibited a sharp transition to the superconducting state with a sizeable diamagnetic signal at 39 K (Tc). The measured magnetization loops of the samples, despite the presence of flux jumps, exhibited a stable current density (Jc) of around 2.4×10 5 A/cm 2 in up to 2 T (Tesla) field and at temperatures (T) up to 10 K. The upper critical field is estimated from resistivity measurements in various fields and shows a typical value of 8 T at 21 K. Further, χ measurements at an applied field of 0.1 T reveal a paramagnetic Meissner effect (PME) that is briefly discussed.

  6. Microstructural and chemical transformation of thin Ti/Pd and TiDy/Pd bilayer films induced by vacuum annealing.

    PubMed

    Lisowski, W; Keim, E G; Kaszkur, Z; van den Berg, A H J; Smithers, M A

    2007-11-01

    Using a combination of scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction and X-ray photoelectron spectroscopy (XPS), we made a comparative study of the high-temperature annealing impact on thin titanium deuteride (TiD(y)) films covered by an ultrathin Pd layer, and on Ti/Pd bilayer films. The bilayer films were prepared under ultrahigh vacuum conditions and were in situ annealed using the same annealing procedure. It was found that the surface and the bulk morphology of both films undergo different annealing-induced transformations, leading to an extensive intermixing between the Ti and Pd layers and the formation of a new PdTi(2) bimetallic phase. Energy-filtered TEM imaging and energy-dispersive X-ray spectrometry analysis, as well as XPS depth profiling all provided evidence of a different distribution of Pd and Ti in the annealed TiD(y)/Pd film compared with the annealed Ti/Pd film. Our results show that thermal decomposition of TiD(y), as a consequence of annealing the TiD(y)/Pd film, modifies the intermixing process, thereby promoting Ti diffusion into the Pd-rich top layer of the TiD(y) film and thus providing a more likely path for the formation of the PdTi(2) phase than in an annealed Ti/Pd film.

  7. Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga-ZnO thin films.

    PubMed

    Srivastava, Amit Kumar; Kumar, Jitendra

    2013-12-01

    Pure and 1 at% gallium (Ga)-doped zinc oxide (ZnO) thin films have been prepared with a low-cost spin coating technique on quartz substrates and annealed at 500 °C in vacuum ∼10(-3) mbar to create anion vacancies and generate charge carriers for photovoltaic application. Also, 0.5-1.5 at% extra zinc species were added in the precursor sol to investigate changes in film growth, morphology, optical absorption, electrical properties and photoluminescence. It is shown that 1 at% Ga-ZnO thin films with 0.5 at% extra zinc content after vacuum annealing for 60 min correspond to wurtzite-type hexagonal structure with (0001) preferred orientation, electrical resistivity of ∼9 × 10(-3) Ω cm and optical transparency of ∼65-90% in the visible range. Evidence has been advanced for the presence of defect levels within bandgap such as zinc vacancy (VZn), zinc interstitial (Zni), oxygen vacancy (Vo) and oxygen interstitial (Oi). Further, variation in ZnO optical bandgap occurring with Ga doping and insertion of additional zinc species has been explained by invoking two competing phenomena, namely bandgap widening and renormalization, usually observed in semiconductors with increasing carrier concentration.

  8. Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga–ZnO thin films

    PubMed Central

    Srivastava, Amit Kumar; Kumar, Jitendra

    2013-01-01

    Pure and 1 at% gallium (Ga)-doped zinc oxide (ZnO) thin films have been prepared with a low-cost spin coating technique on quartz substrates and annealed at 500 °C in vacuum ∼10−3 mbar to create anion vacancies and generate charge carriers for photovoltaic application. Also, 0.5–1.5 at% extra zinc species were added in the precursor sol to investigate changes in film growth, morphology, optical absorption, electrical properties and photoluminescence. It is shown that 1 at% Ga–ZnO thin films with 0.5 at% extra zinc content after vacuum annealing for 60 min correspond to wurtzite-type hexagonal structure with (0001) preferred orientation, electrical resistivity of ∼9 × 10−3 Ω cm and optical transparency of ∼65–90% in the visible range. Evidence has been advanced for the presence of defect levels within bandgap such as zinc vacancy (VZn), zinc interstitial (Zni), oxygen vacancy (Vo) and oxygen interstitial (Oi). Further, variation in ZnO optical bandgap occurring with Ga doping and insertion of additional zinc species has been explained by invoking two competing phenomena, namely bandgap widening and renormalization, usually observed in semiconductors with increasing carrier concentration. PMID:27877622

  9. Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga-ZnO thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit Kumar; Kumar, Jitendra

    2013-12-01

    Pure and 1 at% gallium (Ga)-doped zinc oxide (ZnO) thin films have been prepared with a low-cost spin coating technique on quartz substrates and annealed at 500 °C in vacuum ˜10-3 mbar to create anion vacancies and generate charge carriers for photovoltaic application. Also, 0.5-1.5 at% extra zinc species were added in the precursor sol to investigate changes in film growth, morphology, optical absorption, electrical properties and photoluminescence. It is shown that 1 at% Ga-ZnO thin films with 0.5 at% extra zinc content after vacuum annealing for 60 min correspond to wurtzite-type hexagonal structure with (0001) preferred orientation, electrical resistivity of ˜9 × 10-3 Ω cm and optical transparency of ˜65-90% in the visible range. Evidence has been advanced for the presence of defect levels within bandgap such as zinc vacancy (VZn), zinc interstitial (Zni), oxygen vacancy (Vo) and oxygen interstitial (Oi). Further, variation in ZnO optical bandgap occurring with Ga doping and insertion of additional zinc species has been explained by invoking two competing phenomena, namely bandgap widening and renormalization, usually observed in semiconductors with increasing carrier concentration.

  10. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  11. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing

    SciTech Connect

    Leng, Xiang; Bozovic, Ivan

    2014-11-21

    In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La2-xSrxCuO4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have been done on the same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.

  12. Phase Formation and Superconductivity of Fe-TUBE Encapsulated and Vacuum-Annealed MgB2

    NASA Astrophysics Data System (ADS)

    Singh, K. P.; Awana, V. P. S.; Shahabuddin, Md.; Husain, M.; Saxena, R. B.; Nigam, Rashmi; Ansari, M. A.; Gupta, Anurag; Narayan, Himanshu; Halder, S. K.; Kishan, H.

    We report optimization of the synthesis parameters viz. heating temperature (TH), and hold time (thold) for vacuum-annealed (10-5 Torr) and LN2 (liquid nitrogen) quenched MgB2 compound. These are single-phase compounds crystallizing in the hexagonal structure (space group P6/mmm) at room temperature. Our XRD results indicated that for phase-pure MgB2, the TH for 10-5 Torr annealed and LN2-quenched samples is 750°C. The right stoichiometry i.e., MgB2 of the compound corresponding to 10-5 Torr and TH of 750°C is found for the hold time (thold) of 2.30 hours. With varying thold from 1-4 hours at fixed TH (750°C) and vacuum (10-5 Torr), the c-lattice parameter decreases first and later increases with thold (hours) before a near saturation, while the a-lattice parameter first increases and later decreases beyond a thold of 2.30 hours. The c/a ratio versus thold plot showed an inverted bell-shaped curve, touching the lowest value of 1.141, which is the reported value for perfect stoichiometry of MgB2. The optimized stoichimetric MgB2 compound exhibited superconductivity at 39.2 K with a transition width of 0.6 K. In conclusion, the synthesis parameters for phase pure stoichimetric vacuum-annealed MgB2 compound are optimized and are compared with widely-reported Ta tube encapsulated samples.

  13. Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits

    SciTech Connect

    Goto, Taichi; Ross, C. A.; Eto, Yu; Kobayashi, Keiichi; Haga, Yoji; Inoue, Mitsuteru

    2013-05-07

    Polycrystalline cerium-substituted yttrium iron garnet (CeYIG) showing large Faraday rotation (FR) in the near-IR region was grown on non-garnet (synthetic fused silica, Si, and Si-on-insulator) substrates by sputtering followed by thermal annealing in vacuum. The FR of the films is comparable to the single crystal value. Structural characterization, magnetic properties, refractive index, extinction coefficient, surface topography, and FR vs. wavelength were measured and the magnetooptical figure of merit was compared with that of CeYIG films on garnet substrates.

  14. Influence of annealing on the optical properties of vacuum deposited silver thin films

    SciTech Connect

    Gnanadurai, P. Vijayan, C.; Sivaraja, N.; Soundrarajan, N.

    2015-06-24

    Thin Silver films of thickness 15nm were prepared by thermal evaporation on well cleaned glass substrates at room temperature at a pressure of 2×10{sup −5} mbar with the deposition rate of 0.01À/sec and annealed in air for an hour at temperatures between 300°c and 400°c. The prepared films were characterized by X-ray diffraction (XRD), UV-visible spectroscopy and AFM. The mean grain size of the film at different annealing temperatures was determined by the X-ray diffraction pattern by using Scheer’s formula. It is found that from absorbance studies surface Plasmon peak position decreases as the annealing temperature increases and blue shifted. And also from transmittance studies the thermal effect of silver film strongly affects the optical transmittance. From AFM studies the average particle size and RMS surface roughness increase with increase of annealing temperatures.

  15. Surface phase, morphology, and charge distribution transitions on vacuum and ambient annealed SrTi O3 (100)

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Simon, Georg H.; Zou, Ke; Walker, Fred J.; Ahn, Charles; Altman, Eric I.; Schwarz, Udo D.

    2016-05-01

    The surface structures of SrTi O3 (100) single crystals were examined as a function of annealing time and temperature in either oxygen atmosphere or ultrahigh vacuum (UHV) using noncontact atomic force microscopy (NC-AFM), Auger electron spectroscopy (AES), and low-energy electron diffraction (LEED). Samples were subsequently analyzed for the effect the modulation of their charge distribution had on their surface potential. It was found that the evolution of the SrTi O3 surface roughness, stoichiometry, and reconstruction depends on the preparation scheme. LEED revealed phase transitions from a (1 ×1 ) termination to an intermediate c (4 ×2 ) reconstruction to ultimately a (√ 13 ×√ 13 ) -R 33 .7∘ surface phase when the surface was annealed in an oxygen flux, while the reverse transition from (√ 13 ×√ 13 ) -R 33 .7∘ to c (4 ×2 ) was observed when samples were annealed in UHV. When the surface reverted to c (4 ×2 ) , AES data indicated decreases in both the surface Ti and O concentrations. These findings were corroborated by NC-AFM imaging, where initially Ti O2 -terminated crystals developed half-unit cell high steps following UHV annealing, which is typically attributed to a mix of SrO and Ti O2 terminations. Surface roughness evolved nonmonotonically with UHV annealing temperature, which is explained by electrostatic modulations of the surface potential caused by increasing oxygen depletion. This was further corroborated by experiments in which the apparent roughness tracked in NC-AFM could be correlated with changes in the surface charge distribution that were controlled by applying a bias voltage to the sample. Based on these findings, it is suggested that careful selection of preparation procedures combined with application of an electric field may be used to tune the properties of thin films grown on SrTi O3 .

  16. Consequences of plasma oxidation and vacuum annealing on the chemical properties and electron accumulation of In2O3 surfaces

    NASA Astrophysics Data System (ADS)

    Berthold, Theresa; Rombach, Julius; Stauden, Thomas; Polyakov, Vladimir; Cimalla, Volker; Krischok, Stefan; Bierwagen, Oliver; Himmerlich, Marcel

    2016-12-01

    The influence of oxygen plasma treatments on the surface chemistry and electronic properties of unintentionally doped and Mg-doped In2O3(111) films grown by plasma-assisted molecular beam epitaxy or metal-organic chemical vapor deposition is studied by photoelectron spectroscopy. We evaluate the impact of semiconductor processing technology relevant treatments by an inductively coupled oxygen plasma on the electronic surface properties. In order to determine the underlying reaction processes and chemical changes during film surface-oxygen plasma interaction and to identify reasons for the induced electron depletion, in situ characterization was performed implementing a dielectric barrier discharge oxygen plasma as well as vacuum annealing. The strong depletion of the initial surface electron accumulation layer is identified to be caused by adsorption of reactive oxygen species, which induce an electron transfer from the semiconductor to localized adsorbate states. The chemical modification is found to be restricted to the topmost surface and adsorbate layers. The change in band bending mainly depends on the amount of attached oxygen adatoms and the film bulk electron concentration as confirmed by calculations of the influence of surface state density on the electron concentration and band edge profile using coupled Schrödinger-Poisson calculations. During plasma oxidation, hydrocarbon surface impurities are effectively removed and surface defect states, attributed to oxygen vacancies, vanish. The recurring surface electron accumulation after subsequent vacuum annealing can be consequently explained by surface oxygen vacancies.

  17. Increased cubic-tetragonal phase transition temperature and resistivity hysteresis of surface vacuum annealed SrTiO3

    NASA Astrophysics Data System (ADS)

    Nestler, Tina; Potzger, Kay; Stöcker, Hartmut; Abendroth, Barbara; Strohmeyer, Ralph; Zierer, Robert; Meyer, Dirk C.

    2011-10-01

    Electrical properties of SrTiO3 single crystal samples treated by an anisotropic surface annealing technique under reducing conditions have been investigated in the temperature range of 35 K-300 K. Optical and atomic force microscopy show that annealing gives rise to polycrystallization and the formation of colored dendritic structures. Carrier concentrations and mobilities determined by Hall measurements as well as resistivities detected by van der Pauw measurements show the expected metallic behavior due to oxygen vacancy doping. Moreover, the temperature dependent resistivities indicate a cubic-to-tetragonal phase transition, which to our knowledge has not been reported before. Additionally, the transition occurred up to 53 K above the known bulk transition temperature T C at 105 K with a hysteresis up to a temperature of 220 K. Both phenomena possibly arise from dislocations and associated strain fields introduced by surface annealing that are assumed to lower the free energy of the tetragonal phase and simultaneously pin tetragonal domains. Thus, microregions of the tetragonal phase persist above T C causing the hysteresis in resistivity up to ˜12%. This effect possibly provides new chances for future oxide based non-volatile data-storage devices.

  18. Effect of thermal annealing in vacuum and in air on nanograin sizes in hard and superhard coatings Zr-Ti-Si-N.

    PubMed

    Pogrebnjak, A D; Shpak, A P; Beresnev, V M; Kolesnikov, D A; Kunitskii, Yu A; Sobol, O V; Uglov, V V; Komarov, F F; Shypylenko, A P; Makhmudov, N A; Demyanenko, A A; Baidak, V S; Grudnitskii, V V

    2012-12-01

    Zr-Ti-Si-N coating had high thermal stability of phase composition and remained structure state under thermal annealing temperatures reached 1180 degrees C in vacuum and 830 degrees C in air. Effect of isochronous annealing on phase composition, structure, and stress state of Zr-Ti-Si-N-ion-plasma deposited coatings (nanocomposite coatings) was reported. Below 1000 degrees C annealing temperature in vacuum, changing of phase composition is determined by appearing of siliconitride crystallites (beta-Si3N4) with hexagonal crystalline lattice and by formation of ZrO2 oxide crystallites. Formation of the latter did not result in decay of solid solution (Zr, Ti)N but increased in it a specific content of Ti-component. Vacuum annealing increased sizes of solid solution nanocrystallites from (12 to 15) in as-deposited coatings to 25 nm after annealing temperature reached 1180 degrees C. One could also find macro- and microrelaxations, which were accompanied by formation of deformation defects, which values reached 15.5 vol.%. Under 530 degrees C annealing in vacuum or in air, nanocomposite coating hardness increased. When Ti and Si concentration increased and three phases nc-ZrN, (Zr, Ti)N-nc, and alpha-Si3N4 were formed, average hardness increased to 40.8 +/- 4 GPa. Annealing to 500 degrees C increased hardness and demonstrated lower spread in values H = 48 +/- 6 GPa and E = (456 +/- 78) GPa. Zr-Ti-Si-N coatings has high wear resistance and low friction coefficient in comparison at a temperature of 500 degrees C possess with coatings TiN, Ti-Si-N.

  19. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  20. Influence of 700 °C vacuum annealing on fracture behavior of micro/nanoscale focused ion beam fabricated silicon structures

    NASA Astrophysics Data System (ADS)

    Goshima, Yoshiharu; Fujii, Tatsuya; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    In this paper, we describe the influence of 700 °C vacuum annealing on strength and fracture behavior of micro- and nano-scale Si structures fabricated by focused ion beam (FIB). Si nanowires (NWs) made from silicon-on-nothing (SON) membrane are fabricated using FIB. Microscale Si specimens are fabricated by conventional micromachining technologies and FIB. These specimens are tensioned to failure using specially developed microelectromechanical systems (MEMS) device and thin-film tensile tester, respectively. The mean fracture strengths of the nano- and microscale specimens are 5.6 and 1.6 GPa, respectively, which decrease to 2.9 and 0.9 GPa after vacuum annealing at 700 °C for only 10 s. These strength values do not vary with increasing annealing time. Fracture origin and its behavior are discussed in the light of fracture surface and FIB damage layer observations.

  1. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Daeho; Pan, Heng; Ko, Seung Hwan; Park, Hee K.; Kim, Eunpa; Grigoropoulos, Costas P.

    2012-04-01

    A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75×10-2 Ω cm, exhibiting a factor of 105 higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors.

  2. Effects of post-deposition vacuum annealing on film characteristics of p-type Cu2O and its impact on thin film transistor characteristics

    NASA Astrophysics Data System (ADS)

    Han, Sanggil; Niang, Kham M.; Rughoobur, Girish; Flewitt, Andrew J.

    2016-10-01

    Annealing of cuprous oxide (Cu2O) thin films in vacuum without phase conversion for subsequent inclusion as the channel layer in p-type thin film transistors (TFTs) has been demonstrated. This is based on a systematic study of vacuum annealing effects on the sputtered p-type Cu2O as well as the performance of TFTs on the basis of the crystallographic, optical, and electrical characteristics. It was previously believed that high-temperature annealing of Cu2O thin films would lead to phase conversion. In this work, it was observed that an increase in vacuum annealing temperature leads to an improvement in film crystallinity and a reduction in band tail states based on the X-ray diffraction patterns and a reduction in the Urbach tail, respectively. This gave rise to a considerable increase in the Hall mobility from 0.14 cm2/V.s of an as-deposited film to 28 cm2/V.s. It was also observed that intrinsic carrier density reduces significantly from 1.8 × 1016 to 1.7 × 1013 cm-3 as annealing temperature increases. It was found that the TFT performance enhanced significantly, resulting from the improvement in the film quality of the Cu2O active layer: enhancement in the field-effect mobility and the on/off current ratio, and a reduction in the off-state current. Finally, the bottom-gate staggered p-type TFTs using Cu2O annealed at 700 °C showed a field-effect mobility of ˜0.9 cm2/V.s and an on/off current ratio of ˜3.4 × 102.

  3. Air annealing effects on the optical properties of ZnO SnO2 thin films deposited by a filtered vacuum arc deposition system

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.; Boxman, R. L.

    2006-03-01

    ZnO-SnO2 transparent and conducting thin films were deposited on microscope glass substrates by a filtered vacuum arc deposition (FVAD) system. The cathode was prepared with 50%:50% atomic concentration of Zn:Sn. The films were annealed in air at 500 °C for 1 h. Structural and compositional analyses were obtained using XRD and XPS diagnostics. X-ray diffraction analysis indicated that as-deposited and air-annealed thin ZnO-SnO2 films were amorphous. The atomic ratio of Zn to Sn in the film obtained using the 50%:50% cathode as determined by XPS analysis was ~2.7:1 in the bulk film. The optical properties were determined from normal incidence transmission measurements. Film transmission in the visible was 70% to 90%, affected by interference effects. Annealed films did not show higher transmission in the VIS compared to as-deposited films. Assuming that the interband electron transition is direct, the optical band gap was found to be in the range 3.34-3.61 eV for both as-deposited and annealed films. However, the average Eg for annealed films was 3.6 eV, larger by 0.2 eV than that of as-deposited. The refractive index n increased while the extinction index k decreased significantly with annealing.

  4. Thermal annealing effect of on optical constants of vacuum evaporated Se 75S 25-xCd x chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Khan, Shamshad A.; Lal, J. K.; Al-Ghamdi, A. A.

    2010-07-01

    Chalcogenide glasses are interesting materials due to their infrared transmitting properties and photo induced effects exhibited by them. Thin films with thickness of 3000 Å of the glasses Se 75S 25-xCd x with x=6, 8 and 10 at% prepared by melt quench technique were evaporated by thermal evaporation onto glass substrates under a vacuum of 10 -6 Torr. The optical constants (absorption coefficient, refractive index and extinction coefficient) of as-prepared and annealed films have been studied as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been found that the absorption coefficient and optical band gap increase with increasing annealing temperatures. The refractive index ( n) and the extinction coefficient ( k) were observed to decrease with increasing annealing temperature.

  5. The effect of post-deposition annealing on the optical properties of filtered vacuum arc deposited ZnO SnO2

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.; Boxman, R. L.

    2007-06-01

    Zinc stannate (ZnO-SnO2) thin films were deposited on ultraviolet fused silica (UVFS) substrates using filtered vacuum arc deposition (FVAD). During deposition, the substrates were at 200 and 400 °C. As-deposited films were annealed at 500 and 600 °C in Ar for 50 min. The structure was determined before and after annealing using x-ray diffraction (XRD). The XRD patterns of all ZnO-SnO2 thin films had an amorphous structure. The average optical transmission of the film in the visible spectrum was>80% and was affected by annealing. The films' optical constants in the 250-989 nm wavelength range were determined by variable angle spectroscopic ellipsometry (VASE). The refractive indexes of as-deposited and annealed films were in the ranges 1.95-2.35 and 2.0-2.32, respectively. The extinction coefficients of as-deposited annealed films were in the same range, approximately 0-0.5. However, in the UV range (<450 nm) the extinction coefficient values decreased significantly for annealed films. The optical energy band gap (Eg) was determined by the dependence of the absorption coefficient on the photon energy at short wavelengths. It varied between 3.65 and 3.72 eV for annealed films as a function of deposition pressure. Although the lowest electrical resistivity of zinc stannate films obtained for as-deposited films on 400 °C heated substrates, using 0.93 Pa oxygen pressure, was 1.08 × 10-2 Ω cm, highly resistive films (>105 Ω cm) were obtained by annealing.

  6. Effect of low temperature vacuum annealing on microstructural, optical, electronic, electrical, nanomechanical properties and phase transition behavior of sputtered vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Porwal, Deeksha; Esther, A. Carmel Mary; Dey, Arjun; Gupta, A. K.; Raghavendra Kumar, D.; Bera, Parthasarathi; Barshilia, Harish C.; Bhattacharya, Manjima; Mukhopadhyay, Anoop Kumar; Khan, Kallol; Sharma, Anand Kumar

    2016-10-01

    Vanadium oxide thin films were deposited on quartz substrate by pulsed RF magnetron sputtering technique at 400-600 W and subsequently annealed at 100 °C in vacuum (1.5 × 10-5 mbar). Phase analysis, surface morphology and topology of the films e.g., both as-deposited and annealed were investigated by x-ray diffraction, field emission scanning electron microscopy and atomic force microscopy techniques. X-ray photoelectron spectroscopy (XPS) was employed to understand the elemental oxidation of the films. Transmittance of the films was evaluated by UV-vis-NIR spectrophotometer in the wavelength range of 200-1600 nm. Sheet resistance of the films was measured by two-probe method both for as-deposited and annealed conditions. XPS study showed the existence of V5+ and V4+ species. Metal to insulator transition temperature of the as-deposited film decreased from 339 °C to 326 °C after annealing as evaluated by differential scanning calorimetric technique. A significant change in transmittance was observed in particular at near infrared region due to alteration of surface roughness and grain size of the film after annealing. Sheet resistance values of the annealed films decreased as compared to the as-deposited films due to the lower in oxidation state of vanadium which led to increase in carrier density. Combined nanoindentation and finite element modeling were applied to evaluate nanohardness (H), Young’s modulus (E), von Mises stress and strain distribution. Both H and E were improved after annealing due to increase in crystallinity of the film.

  7. Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition.

    PubMed

    Wang, Tzu-Yu; Ou, Sin-Liang; Shen, Kun-Ching; Wuu, Dong-Sing

    2013-03-25

    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications.

  8. Effects of vacuum annealing and oxygen ion beam bombarding on the electrical and optical properties of ITO films deposited by E-beam evaporation

    NASA Astrophysics Data System (ADS)

    Pan, Yongqiang; Hang, Lingxia

    2012-10-01

    Tin doped indium oxide (ITO) transparent conductive thin films with composition of 10 wt% SnO2 and 89.8 wt% In2O3 have been deposited by electron beam evaporation technique on K9 glass substrates at room temperature. The post annealing processes are done in vacuum with different annealing temperature at 100, 200, 300 and 350 ° for 1 hour, respectively. The oxygen ion energy is 800 eV; oxygen ion beam bombarding time is 10,20,30,40 and 50min, respectively. The results show that conductivity of ITO thin films are improved by increasing annealing temperature. The resistivity of the ITO thin films decrease from 5.2×10-3Ω •cm at room temperature to 1.3×10-3Ω •cm(350 °C). The transmittance values of all samples in the visible range have been increased. As the oxygen ion beam bombarding time increases the resistivity reduce from 5.2×10-3Ω •cm to 9×10-4Ω •cm, the transmittance value improve from 66% to 82% at 550nm. Finally, the vacuum annealing and oxygen ion beam bombarding are done simultaneously, at temperature of 350 °C for 1 hours, ion bombardment time for 40 min. The resistivity of obtained ITO thin film is 7×10-4Ω •cm. The maximum transmittance value is above 89% in the visible wavelength region.

  9. Impact of air exposure and annealing on the chemical and electronic properties of the surface of SnO2 nanolayers deposited by rheotaxial growth and vacuum oxidation

    PubMed Central

    Krzywiecki, Maciej

    2017-01-01

    In this paper the SnO2 nanolayers were deposited by rheotaxial growth and vacuum oxidation (RGVO) and analyzed for the susceptibility to ambient-air exposure and the subsequent recovery under vacuum conditions. Particularly the surface chemistry of the layers, stoichiometry and level of carbon contamination, was scrutinized by X-ray photoelectron spectroscopy (XPS). The layers were tested i) pristine, ii) after air exposure and iii) after UHV annealing to validate perspective recovery procedures of the sensing layers. XPS results showed that the pristine RGVO SnO2 nanolayers are of high purity with a ratio [O]/[Sn] = 1.62 and almost no carbon contamination. After air exposure the relative [O]/[Sn] concentration increased to 1.80 while maintaining a relatively low level of carbon contaminants. Subsequent UHV annealing led to a relative [O]/[Sn] concentration comparable to the pristine samples. The oxidation resulted in a variation of the distance between the valence band edge and the Fermi level energy. This was attributed to oxygen diffusion through the porous SnO2 surface as measured by atomic force microscopy. PMID:28382240

  10. A vacuum-annealing strategy for improving near-infrared super long persistent luminescence in Cr(3+) doped zinc gallogermanate nanoparticles for bio-imaging.

    PubMed

    Yang, Jian; Liu, Yuxue; Yan, Duanting; Zhu, Hancheng; Liu, Chunguang; Xu, Changshan; Ma, Li; Wang, Xiaojun

    2016-01-28

    Novel Cr(3+) doped zinc gallogermanate (ZGGO) nanoparticles with 697 nm near-infrared (NIR) super long afterglow were prepared via a hydrothermal method. Subsequently, a vacuum-annealing strategy was adopted to improve NIR afterglow in ZGGO:Cr(3+) nanoparticles. For the sample annealed at 800 °C, no variation in the particle size is observed, the persistent luminescence increases by an order of magnitude (∼14 times) and the NIR afterglow time reaches more than 15 hours relative to the as-prepared sample. After annealing at temperatures higher than 880 °C, the persistent luminescence of the nanoparticles is enhanced, but they show aggregated-surface behavior. Meanwhile, shallow and deep traps are generated, related to the antisite defects and VGe-Cr(3+)-VO defect clusters, respectively. Finally, we apply ZGGO:Cr(3+) persistent luminescence nanoparticles (PLNPs) to a human serum albumin (HSA) colloid solution, and more than 1 h of NIR persistent luminescence is detected under 320 nm excitation. The quenching effect of NIR luminescence by OH(-) in the HSA solution is observed based on the reduced contribution of surface Cr(3+) in PLNPs to NIR luminescence. Our results suggest that ZGGO:Cr(3+) PLNPs have potential applications for in vivo bio-imaging.

  11. Characteristics of Al-doped ZnO thin films prepared in Ar + H{sub 2} atmosphere and their vacuum annealing behavior

    SciTech Connect

    Zhu, Bailin; Lü, Kun; Wang, Jun; Li, Taotao; Wu, Jun; Zeng, Dawen; Xie, Changsheng

    2013-11-15

    The microstructure and electrical–optical properties of Al-doped ZnO (AZO) films have been studied as a function of H{sub 2} flux in the magnetron sputtering process at 150 °C and postannealing temperature in vacuum. As H{sub 2} flux increases in the sputtering gas, the AZO films deposited have a (002) preferred orientation rather than the mixed (100) and (002) orientations, the grain size shows a tendency to first increase then decrease, and (002) diffraction peak position is inclined to shift to higher angles first then to lower angles. The resistivity of the films first decreases then increases with H{sub 2} flux, and the lowest resistivity of 4.02 × 10{sup −4}Ω cm is obtained at a H{sub 2} flux of 10 sccm. The average transmittance in the visible region shows little dependence on H{sub 2} flux. As a whole, the AZO films with higher values of figure of merit are obtained when the H{sub 2} flux is in the range of 6–12 sccm. The AZO films deposited in Ar and Ar + H{sub 2} exhibit different annealing behaviors. For the AZO film deposited in Ar, the grain size gradually increases, the stresses are relaxed, the resistivity first decreases then increases, and the average transmittance in the visible region is unchanged initially then somewhat decreased as annealing temperature is increased. The optimum annealing temperature for improving properties of AZO films deposited in Ar is 300 °C. For the AZO films deposited in Ar + H{sub 2}, annealing does not significantly change the microstructure but increases the resistivity of the films; the average transmittance in the visible region remains unchanged initially but greatly reduced with further increase in annealing temperature. The carrier transport in the as-deposited and annealed films appears to be controlled by a mechanism of grain boundary scattering, and the value of E{sub g} increases with the increase in carrier concentration due to Burstein–Moss effect.

  12. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Vacuum relaxation and annealing-induced enhancement of mobility of regioregular poly (3-hexylthiophene) field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Xu, Xu-Rong; Yuan, Guang-Cai; Li, Jing; Sun, Qin-Jun; Wang, Ying

    2009-11-01

    In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17 × 10-2 m2/(V · s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 °C for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00 × 10-2 cm2/(V · s).

  13. Obtaining phase-pure CZTS thin films by annealing vacuum evaporated CuS/SnS/ZnS stack

    NASA Astrophysics Data System (ADS)

    Sánchez, T. G.; Mathew, X.; Mathews, N. R.

    2016-07-01

    Cu2ZnSnS4 (CZTS) thin films were obtained by the sequential thermal evaporation of metal binary sulfides in the order CuS/SnS/ZnS, followed by annealing in Ar/S atmosphere. The as-grown films were annealed at different temperatures ranging between 350 and 600 °C, for 10 min. Based on the preliminary results, the temperatures 550 °C and 600 °C were selected for further optimization and a second batch of films were annealed for different time durations (10 min, 30 min and 60 min) at these temperatures in order to identify the conditions to obtain phase-pure CZTS films. The structural properties and chemical compositions at each temperature were investigated in order to optimize the phase purity and film stoichiometry. We have identified adequate and reproducible conditions to obtain the elemental ratio Cu/(Zn+Sn) and Zn/Sn close to 0.78 and 1.19 respectively, which is in the range of material composition required for promising solar cells. In addition the optimized material showed excellent optical and electrical properties to be used as a photovoltaic absorber layer. The optical band gap was found to be about 1.52 eV, and the carrier concentration, hall mobility, and resistivity were in the range of 8.372×1015 cm-3, 3.103 cm2/Vs and 340.3 Ω-cm respectively. Three traps with activation energies 4.39, 8.1, and 34 meV were detected.

  14. Compositional study of vacuum annealed Al doped ZnO thin films obtained by RF magnetron sputtering

    SciTech Connect

    Shantheyanda, B. P.; Todi, V. O.; Sundaram, K. B.; Vijayakumar, A.; Oladeji, I.

    2011-09-15

    Aluminum doped zinc oxide (AZO) thin films were obtained by RF magnetron sputtering. The effects of deposition parameters such as power, gas flow conditions, and substrate heating have been studied. Deposited and annealed films were characterized for composition as well as microstructure using x ray photoelectron spectroscopy and x ray diffraction. Films produced were polycrystalline in nature. Surface imaging and roughness studies were carried out using SEM and AFM, respectively. Columnar grain growth was predominantly observed. Optical and electrical properties were evaluated for transparent conducting oxide applications. Processing conditions were optimized to obtain highly transparent AZO films with a low resistivity value of 6.67 x 10{sup -4}{Omega} cm.

  15. Effects of defects generated in ALD TiO2 films on electrical properties and interfacial reaction in TiO2/SiO2/Si system upon annealing in vacuum

    NASA Astrophysics Data System (ADS)

    Won, Sanghee; Go, Seunghee; Lee, Wonhee; Jeong, Kyunghoon; Jung, Hyunsuk; Lee, Chongmu; Lee, Eungu; Lee, Jaegab

    2008-12-01

    Thin TiO2 layers grown at 130°C on SiO2-coated Si substrates by atomic layer deposition (ALD) using TTIP and H2O as precursors were annealed, and the effects of the annealing temperature on the resulting electrical properties of TiO2 and the interface properties between a Pt electrode and TiO2 were examined using transmission line model (TLM) structures. The as-deposited TiO2 thin film had an amorphous structure with OH groups and a high resistivity of 6×103Ω-cm. Vacuum annealing at 700 °C transformed the amorphous film into an anatase structure and reduced its resistivity to 0.04Ω-cm. In addition, the vacuum-annealing of the TiO2/SiO2 structure at 700°C produced free silicon at the TiO2-SiO2 interface as a result of the reaction between the Ti interstitials and SiO2. The SiO2 formed on the TiO2 surface caused a Schottky contact, which was characterized by the TLM method. The use of the TLM method enabled the accurate measurement of the resistivity of the vacuum-annealed TiO2 films and the characterization of the Schottky contacts of the metal electrode to the TiO2.

  16. Annealing effect on the particle size and chemical composition of activated carbon obtained from vacuum furnace of teak sawdust

    NASA Astrophysics Data System (ADS)

    Armynah, B.; Tahir, D.; Jaya, N.

    2014-09-01

    Activated carbon was produced from sawdust by using physical method in a high temperature vacuum furnace without additional chemical. Fast pyrolysis process was carried out prior in fluidized a bed furnace to produce char before activation process. Experiments were conducted to investigate the influence of various process parameters such as particle size, activation temperature and activation time on the quality of the activated carbon. In addition, the chemical composition studies were done by using x-ray fluorescence (XRF) spectroscopy. The crystallite sizes were calculated by using Scherer equation based on x-ray diffraction (XRD) spectroscopy data. The pyrolysis temperature and time were varied from 600°C to 900°C and from 3 hours to 6 hours, respectively. The particle size of activated carbon was increase with increasing temperature. The composition and crystallite size of the prepared activated carbon was compared with the non-activated carbon. The results indicated that the teak sawdust carbon could be employed as a low cost alternative to produce commercial activated carbon.

  17. Annealing effect on the particle size and chemical composition of activated carbon obtained from vacuum furnace of teak sawdust

    SciTech Connect

    Armynah, B. Tahir, D. Jaya, N.

    2014-09-25

    Activated carbon was produced from sawdust by using physical method in a high temperature vacuum furnace without additional chemical. Fast pyrolysis process was carried out prior in fluidized a bed furnace to produce char before activation process. Experiments were conducted to investigate the influence of various process parameters such as particle size, activation temperature and activation time on the quality of the activated carbon. In addition, the chemical composition studies were done by using x-ray fluorescence (XRF) spectroscopy. The crystallite sizes were calculated by using Scherer equation based on x-ray diffraction (XRD) spectroscopy data. The pyrolysis temperature and time were varied from 600°C to 900°C and from 3 hours to 6 hours, respectively. The particle size of activated carbon was increase with increasing temperature. The composition and crystallite size of the prepared activated carbon was compared with the non-activated carbon. The results indicated that the teak sawdust carbon could be employed as a low cost alternative to produce commercial activated carbon.

  18. Synthesis of Nd2Fe14C compound by high-energy ball-milling Nd-Fe alloy in heptane and annealing under vacuum

    NASA Astrophysics Data System (ADS)

    Geng, H. M.; Ji, Y.; Feng, X. Y.; Zhang, J. J.; Ran, Z.; Yan, Y.; Wang, W. Q.; Su, F.; Du, X. B.

    2016-06-01

    A simple synthesis route for the Nd2Fe14C compound with good permanent magnetic properties is presented. Being high-energy ball-milled in heptane (C7H16) for 8 h, the NdFe3.5 alloy consisting of Nd2Fe17 and Nd phases disproportionates into NdH2+δ and α-Fe. Subsequently, NdH2+δ decomposes when annealed from room temperature to 900 °C under vacuum, and H2 is released. Meanwhile Nd2Fe14C, NdC and little α-Fe phases are formed in the final product. H and C atoms come from the decomposition of heptane. Coercivity of 1.39 T and maximum magnetic energy product of 62.7 kJ m-3 have been achieved. Too short a ball-milling time results in the insufficient disproportionation of NdFe3.5 alloy and the residue of Nd2Fe17 phase in the final product. Too long a ball-milling time results in the appearance of NdC2 and more α-Fe phases besides Nd2Fe14C and NdC phases. Hexane (C6H14), octane (C8H18) and nonane (C9H20) have been proved to have a similar effect to heptane.

  19. Thermal analysis study of polysterene-poly(methyl methacrylate) (PS-PMMA) diblock copolymer thin films morphologies when annealed and sheared under vacuum in inert atmosphere

    NASA Astrophysics Data System (ADS)

    Pomales, Luis; Davila-Santana, Melissa; Rivera-Claudio, Mirna; Vedrine-Pauleus, Josee

    2011-03-01

    Diblock copolymers are made of two chemically bonded blocks, with incompatible monomers. This incompatibility gives the block the property to phase separate at temperatures above the glass transition (Tg). The ability to self-assemble into different mesophase structures is of great importance in nanolithography and nanofabrication. This research involves the morphological study of PS-PMMA thin films annealed under inert atmosphere. Our objective is to determine the microstructure properties of the PS-PMMA diblock copolymer as a function of film thickness, annealing temperature, and applied shear force. The PS-PMMA thin film is spin casted onto silicon substrates, and annealed under an inert atmosphere. Our initial results show that the samples have an incomplete formation of the microstructures. However, further film analysis is needed to study the morphological properties when annealed. Futures studies will focus on the effects of a shear force during annealing, to align the film microstructures.

  20. Simulated annealing versus quantum annealing

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    Based on simulated classical annealing and simulated quantum annealing using quantum Monte Carlo (QMC) simulations I will explore the question where physical or simulated quantum annealers may outperform classical optimization algorithms. Although the stochastic dynamics of QMC simulations is not the same as the unitary dynamics of a quantum system, I will first show that for the problem of quantum tunneling between two local minima both QMC simulations and a physical system exhibit the same scaling of tunneling times with barrier height. The scaling in both cases is O (Δ2) , where Δ is the tunneling splitting. An important consequence is that QMC simulations can be used to predict the performance of a quantum annealer for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent to a projector QMC algorithm, one obtains a quadratic speedup for QMC, and achieve linear scaling in Δ. I will then address the apparent contradiction between experiments on a D-Wave 2 system that failed to see evidence of quantum speedup and previous QMC results that indicated an advantage of quantum annealing over classical annealing for spin glasses. We find that this contradiction is resolved by taking the continuous time limit in the QMC simulations which then agree with the experimentally observed behavior and show no speedup for 2D spin glasses. However, QMC simulations with large time steps gain further advantage: they ``cheat'' by ignoring what happens during a (large) time step, and can thus outperform both simulated quantum annealers and classical annealers. I will then address the question how to optimally run a simulated or physical quantum annealer. Investigating the behavior of the tails of the distribution of runtimes for very hard instances we find that adiabatically slow annealing is far from optimal. On the contrary, many repeated relatively fast annealing runs can be orders of magnitude faster for

  1. An Effect of Annealing on Shielding Properties of Shungite

    NASA Astrophysics Data System (ADS)

    Belousova, E. S.; Mahmoud, M. Sh.; Lynkou, L. M.

    2013-05-01

    Annealing of shungite is studied in oxidizing conditions in a chamber with NH4Cl, and in vacuum at 900 °C for 2h. Frequency dependencies of transmission and reflection coefficients of annealed shungite are measured in the frequency range of 8-12 GHz. The minimum reflection at 8-10 GHz was shown for shungite annealed in the oxidizing atmosphere.

  2. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  3. Transport Phenomena.

    ERIC Educational Resources Information Center

    Shah, D. B.

    1984-01-01

    Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)

  4. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  5. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  6. Magnetoimpedance effect in current annealed Co-based amorphous wires

    NASA Astrophysics Data System (ADS)

    Ghanaatshoar, M.; Tehranchi, M. M.; Mohseni, S. M.; Parhizkari, M.; Roozmeh, S. E.; Jazayeri Gharehbagh, A.

    2006-09-01

    Current-annealing of Co68.15Fe4.35Si12.5B15 amorphous wires has been studied at various vacuum orders. Structure-sensitive properties such as the electrical resistance during Joule heating treatment have been monitored to investigate the structural changes. Different driving currents have been flowed through the samples at different vacuums between 6×10-2 and 6×10-5 mbar. Regarding the giant magnetoimpedance (GMI) effect, annealing at different vacuums but with the same current can lead to various responses.

  7. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  8. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  9. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  10. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  11. Gravitational vacuum

    NASA Astrophysics Data System (ADS)

    Grigoryan, L. S.; Saakyan, G. S.

    1984-09-01

    The existence of a special gravitational vacuum is considered in this paper. A phenomenological method differing from the traditional Einsteinian formalization is utilized. Vacuum, metric and matter form a complex determined by field equations and at great distances from gravitational masses vacuum effects are small but could be large in powerful fields. Singularities and black holes justify the approach as well as the Ambartsmyan theory concerning the existence of supermassive and superdense prestallar bodies that then disintegrate. A theory for these superdense bodies is developed involving gravitational field equations that describe the vacuum by an energy momentum tensor and define the field and mass distribution. Computations based on the theory for gravitational radii with incompressible liquid models adequately reflecting real conditions indicate that a gravitational vacuum could have considerable effects on superdense stars and could have radical effects for very large masses.

  12. Post-annealed gallium and aluminum co-doped zinc oxide films applied in organic photovoltaic devices

    PubMed Central

    2014-01-01

    Gallium and aluminum co-doped zinc oxide (GAZO) films were produced by magnetron sputtering. The GAZO films were post-annealed in either vacuum or hydrogen microwave plasma. Vacuum- and hydrogen microwave plasma-annealed GAZO films show different surface morphologies and lattice structures. The surface roughness and the spacing between adjacent (002) planes decrease; grain growth occurs for the GAZO films after vacuum annealing. The surface roughness increases and nanocrystals are grown for the GAZO films after hydrogen microwave plasma annealing. Both vacuum and hydrogen microwave plasma annealing can improve the electrical and optical properties of GAZO films. Hydrogen microwave plasma annealing improves more than vacuum annealing does for GAZO films. An electrical resistivity of 4.7 × 10−4 Ω-cm and average optical transmittance in the visible range from 400 to 800 nm of 95% can be obtained for the GAZO films after hydrogen microwave plasma annealing. Hybrid organic photovoltaic (OPV) devices were fabricated on the as-deposited, vacuum-annealed, and hydrogen microwave plasma-annealed GAZO-coated glass substrates. The active layer consisted of blended poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in the OPV devices. The power conversion efficiency of the OPV devices is 1.22% for the hydrogen microwave plasma-annealed GAZO films, which is nearly two times higher compared with that for the as-deposited GAZO films. PMID:25352768

  13. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE PAGES

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; ...

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  14. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    SciTech Connect

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Guiseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.

  15. Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Murmu, P. P.; Leveneur, J.; Markwitz, A.; Futter, J.

    2016-03-01

    We report the microstructural evolution of the preferred orientation and electrical conductivity of zinc oxide (ZnO) thin films prepared by ion beam sputtering. Elastic recoil detection analysis results showed 0.6 at% H in as-deposited film which decreased to 0.35 at% in air annealed film due to H diffusion. XRD results showed that the preferred orientation can be tuned by selecting annealing conditions. Vacuum annealed films exhibited (1 0 0) orientation, whereas air annealed film showed (0 0 2) orientation. The annealing conditions caused a dramatic increase in the resistivity of air annealed films (∼106 Ω cm), whereas vacuum annealed films showed lower resistivity (∼10-2 Ω cm). High resistivity in air annealed film is attributed to the lack of hydrogen interstitials and hydrogen-oxygen vacancy complexes. Raman results supported the XRD results which demonstrated that annealing assisted in recovery of the crystalline disorder in as-deposited films. Air annealed film exhibited the highest optical transmission (89.7%) in the UV-vis region compared to as-deposited and vacuum annealed films (∼85%). Optical bandgap was found to vary between 3.11 eV and 3.18 eV in as-deposited and annealed films, respectively. The bandgap narrowing is associated with the intrinsic defects which introduced defect states resulting in band tail in ZnO films.

  16. Investigation of Annealing Atmospheres on Physical Properties of Cigs Films Grown by Electrodeposition Technique

    NASA Astrophysics Data System (ADS)

    Adel, Chihi; Fethi, Boujmil Mohamed; Brahim, Bessais

    2016-02-01

    This study investigated the effect of different annealing conditions (influence of the annealing temperature and atmosphere) on structural, microstructure, optical and electrical properties of electrodeposited CuIn1-xGaxSe2 (CIGS) thin films. X-ray diffraction analysis exhibited all the samples have grown preferentially in the [112] crystal orientation with the chalcopyrite structure and without unwanted secondary CIGS phases. With the increase of annealing temperature, energy band gap of the CIGS film decrease from 1.32 to 1.12eV. The electrical properties of the films distinctly upgraded after annealing in nitrogen+ Se vapor, and worsened when annealed in vacuum.

  17. Quantum simulated annealing

    NASA Astrophysics Data System (ADS)

    Boixo, Sergio; Somma, Rolando; Barnum, Howard

    2008-03-01

    We develop a quantum algorithm to solve combinatorial optimization problems through quantum simulation of a classical annealing process. Our algorithm combines techniques from quantum walks and quantum phase estimation, and can be viewed as the quantum analogue of the discrete-time Markov Chain Monte Carlo implementation of classical simulated annealing.

  18. Annealing effect in structural and electrical properties of sputtered Mo thin film

    NASA Astrophysics Data System (ADS)

    Chelvanathan, P.; Zakaria, Z.; Yusoff, Y.; Akhtaruzzaman, M.; Alam, M. M.; Alghoul, M. A.; Sopian, K.; Amin, N.

    2015-04-01

    In this study, the effects of vacuum annealing on the structural and electrical properties of DC-sputtered molybdenum (Mo) thin films have been investigated. Mo thin films were deposited by DC sputtering and subsequently subjected to vacuum annealing in a tube furnace from 350 to 500 °C. Films that were deposited with different temperatures showed good adhesion with soda lime glass substrate after "tape testing". X-ray diffraction (XRD) spectra have indicated existence of (1 1 0) and (2 1 1) orientations. However, I(1 1 0)/I(2 1 1) peak intensity ratio decreased for all vacuum annealed Mo films compared to as-sputtered films indicating change of preferential orientation. This suggests vacuum annealing can be employed to tailor the Mo thin film atomic packing density of the plane parallel to the substrate. SEM images of surface morphology clearly show compact and dense triangular like grains for as-sputtered film, while annealed films at 350 °C, 400 °C and 450 °C indicate rice-like grains. Stony grains with less uniformity were detected for films annealed for 500 °C. Meanwhile, electrical resistivity is insensitive to the vacuum annealing condition as all films showed more or less same resistivity in the range of 3 × 10-5-6 × 10-5 Ω cm.

  19. Vacuum-assisted headspace-solid phase microextraction for determining volatile free fatty acids and phenols. Investigations on the effect of pressure on competitive adsorption phenomena in a multicomponent system.

    PubMed

    Trujillo-Rodríguez, María J; Pino, Verónica; Psillakis, Elefteria; Anderson, Jared L; Ayala, Juan H; Yiantzi, Evangelia; Afonso, Ana M

    2017-04-15

    This work proposes a new vacuum headspace solid-phase microextraction (Vac-HSSPME) method combined to gas chromatography-flame ionization detection for the determination of free fatty acids (FFAs) and phenols. All target analytes of the multicomponent solution were volatiles but their low Henry's Law constants rendered them amenable to Vac-HSSPME. The ability of a new and easy to construct Vac-HSSPME sampler to maintain low-pressure conditions for extended sampling times was concurrently demonstrated. Vac-HSSPME and regular HSSPME methods were independently optimized and the results were compared at all times. The performances of four commercial SPME fibers and two polymeric ionic liquid (PIL)-based SPME fibers were evaluated and the best overall results were obtained with the adsorbent-type CAR/PDMS fiber. For the concentrations used here, competitive displacement became more intense for the smaller and more volatile analytes of the multi-component solution when lowering the sampling pressure. The extraction time profiles showed that Vac-HSSPME had a dramatic positive effect on extraction kinetics. The local maxima of adsorbed analytes recorded with Vac-HSSPME occurred faster, but were always lower than that with regular HSSPME due to the faster analyte-loading from the multicomponent solution. Increasing the sampling temperature during Vac-HSSPME reduced the extraction efficiency of smaller analytes due to the enhancement in water molecule collisions with the fiber. This effect was not recorded for the larger phenolic compounds. Based on the optimum values selected, Vac-HSSPME required a shorter extraction time and milder sampling conditions than regular HSSPME: 20 min and 35 °C for Vac-HSSPME versus 40 min and 45 °C for regular HSSPME. The performance of the optimized Vac-HSSPME and regular HSSPME procedures were assessed and Vac-HSSPME method proved to be more sensitive, with lower limits of detection (from 0.14 to 13 μg L(-1)), and better intra

  20. XVIIth international symposium on discharges and electrical insulation in vacuum. Volume 1 and 2

    SciTech Connect

    1996-12-31

    This is the proceedings of the XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, held in Berkeley, CA, July 21-26, 1996. Papers were presented in the following areas: vacuum breakdown and prebreakdown phenomena; vacuum arcs; switching in vacuum; surface flashover; vacuum insulation including magnetic insulation, accelerators, and others; high current diodes, intense particle beams, and vacuum arc ion sources; discharges in the space environment; arcing in controlled fusion devices; emission processes and electrode phenomena; cathodic arc deposition; pseudospark discharges; industrial applications. Separate abstracts have been indexed into the database for some articles from this proceedings.

  1. Recent progress of quantum annealing

    SciTech Connect

    Suzuki, Sei

    2015-03-10

    We review the recent progress of quantum annealing. Quantum annealing was proposed as a method to solve generic optimization problems. Recently a Canadian company has drawn a great deal of attention, as it has commercialized a quantum computer based on quantum annealing. Although the performance of quantum annealing is not sufficiently understood, it is likely that quantum annealing will be a practical method both on a conventional computer and on a quantum computer.

  2. Annealing macromolecular crystals.

    PubMed

    Hanson, B Leif; Bunick, Gerard J

    2007-01-01

    The process of crystal annealing has been used to improve the quality of diffraction from crystals that would otherwise be discarded for displaying unsatisfactory diffraction after flash cooling. Although techniques and protocols vary, macromolecular crystals are annealed by warming the flash-cooled crystal, then flash cooling it again. To apply macromolecular crystal annealing, a flash-cooled crystal displaying unacceptably high mosaicity or diffraction from ice is removed from the goniometer and immediately placed in cryoprotectant buffer. The crystal is incubated in the buffer at either room temperature or the temperature at which the crystal was grown. After about 3 min, the crystal is remounted in the loop and flash cooled. In situ annealing techniques, where the cold stream is diverted and the crystal allowed to warm on the loop prior to flash cooling, are variations of annealing that appears to work best when large solvent channels are not present in the crystal lattice or the solvent content of the crystal is relatively low.

  3. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  4. GenAnneal: Genetically modified Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, Isaac E.

    2006-05-01

    A modification of the standard Simulated Annealing (SA) algorithm is presented for finding the global minimum of a continuous multidimensional, multimodal function. We report results of computational experiments with a set of test functions and we compare to methods of similar structure. The accompanying software accepts objective functions coded both in Fortran 77 and C++. Program summaryTitle of program:GenAnneal Catalogue identifier:ADXI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXI_v1_0 Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: The tool is designed to be portable in all systems running the GNU C++ compiler Installation: University of Ioannina, Greece on Linux based machines Programming language used:GNU-C++, GNU-C, GNU Fortran 77 Memory required to execute with typical data: 200 KB No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.:84 885 No. of lines in distributed program, including test data, etc.:14 896 Distribution format: tar.gz Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a non-linear system of equations via optimization, employing a "least squares" type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Typical running time: Depending on the objective function. Method of solution: We modified the process of step selection that the traditional Simulated

  5. Effect of thermal annealing on the thermoluminescent properties of nano-calcium fluoride and its dose-response characteristics.

    PubMed

    Mundupuzhakal, J K; Biswas, R H; Chauhan, S; Varma, V; Acharya, Y B; Chakrabarty, B S

    2015-12-01

    Nano-CaF2, prepared by the co-precipitation method, was annealed under different annealing conditions to improve its thermoluminescence (TL) characteristics. Different annealing parameters, such as temperature (400-700°C), duration (1-4 h) and environment (vacuum and air), were explored. The effect on TL sensitivity, peak position (Tm) and full-width at half-maximum (FWHM) with respect to the different annealing conditions are discussed as they are the measure of crystallinity of the material. Annealing temperature of 500°C with annealing duration of two and a half hours in vacuum provided the highest luminescence response (i.e. maximum sensitivity, minimum peak temperature and FWHM). Wide detectable dose range (5 mGy to 2 kGy), absence of thermal quenching and sufficient activation energy (1.04 eV) of this phosphor make it suitable for dosimetric applications.

  6. [Effects of different annealing conditions on the photoluminescence of nanoporous alumina film].

    PubMed

    Xie, Ning; Ma, Kai-Di; Shen, Yi-Fan; Wang, Qian

    2013-12-01

    The nanoporous alumina films were prepared by two-step anodic oxidation in 0.5 mol L-1 oxalic acid electrolyte at 40 V. Photoluminescence (PL) of nanoporous alumina films was investigated under different annealing atmosphere and different temperature. The authors got three results about the PL measurements. In the same annealing atmosphere, when the annealling temperature T< or =600 degreeC, the intensity of the PL peak increases with elevated annealing temperature and reaches a maximum value at 500 degreeC, but the intensity decreases with a further increase in the annealing temperature, and the PL peak intensity of samples increases with the increase in the annealing temperature when the annealling temperature T> or =800 degreeC. In the different annealling atmosphere, the change in the photoluminescence peak position for nanoporous alumina films with the increase in the annealing temperature is different: With the increase in the annealling temperature, the PL peak position for the samples annealed in air atmosphere is blue shifted, while the PL peak position for the samples annealed in vacuum atmosphere will not change. The PL spectra of nanoporous alumina films annealed at 1100 degreeC in air atmosphere can be de-convoluted by three Gaussian components at an excitation wavelength of 350 nm, with bands centered at 387, 410 and 439 nm, respectively. These results suggest that there might be three luminescence centers for the PL of annealed alumina films. At the same annealling temperature, the PL peak intensity of samples annealed in air atmosphere is stronger than that annealed in the vacuum. Based on the experimental results and the X-ray dispersive energy spectrum (EDS) combined with infrared reflect spectra, the luminescence mechanisms of nanoporous alumina films are discussed. There are three luminescence centers in the annealed nanoporous alumina films, which originate from the F center, F+ center and the center associated with the oxalic impurities. The

  7. Vacuum radiation induced by time dependent electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian; Gu, Yu-qiu

    2017-04-01

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  8. Effect of thermal annealing on properties of polycrystalline ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gritsenko, L. V.; Abdullin, Kh. A.; Gabdullin, M. T.; Kalkozova, Zh. K.; Kumekov, S. E.; Mukash, Zh. O.; Sazonov, A. Yu.; Terukov, E. I.

    2017-01-01

    Electrical properties (density, carriers mobility, resistivity), optical absorption and photoluminescence spectra of ZnO, grown by MOCVD and hydrothermal methods, have been investigated depending on the annealing and treatment modes in a hydrogen plasma. It has been shown that the electrical and photoluminescent (PL) properties of ZnO are strongly dependent on gas atmosphere during annealing. The annealing in oxygen atmosphere causes a sharp drop of carrier mobility and films conductivity due to the absorption of oxygen on grain boundaries. The process of ZnO electrical properties recovery by the thermal annealing in inert atmosphere (nitrogen), in oil (2×10-2 mbar) and oil-free (1×10-5 mbar) vacuum has been investigated. The hydrogen plasma treatment influence on the intensity of near-band-gap emission (NBE) has been studied. The effect of annealing and subsequent plasma treatment on PL intensity depends on the gas atmosphere of preliminary thermal annealing.

  9. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  10. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  11. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  12. Vacuum polarization and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  13. Laser sealed vacuum insulation window

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  14. Laser sealed vacuum insulating window

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  15. Repetitively pulsed vacuum insulator flashover

    SciTech Connect

    Ginn, J.W.; Buttram, M.T.

    1987-01-01

    Experiments were performed to determine the flashover strength of various vacuum insulators under conditions of repetitive pulsing. The pulse duration was 30 ns, and the thickness of a typical insulator sample was 1.8 cm. Data were taken for 45 insulators from five different materials. An insulator was subjected to an extended series of pulses at a given repetition rate and field. If flashover was not detected, the field level was increased and the sequence repeated. At rates up to 50 pulses per second, there was no apparent dependence of flashover field on rate. In addition, some ''single shot'' data were taken, including various modifications of the geometries and surface textures of the insulators. Only two to the modifications increased the flashover strength significantly over that of a 45 sample: (1) annealing some plastics (roughly a 35% increase), and (2) extending the insulator to cover the surfaces of both electrodes (an increase of nearly a factor of two).

  16. Wear of Steel and Ti6Al4V Rollers in Vacuum

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Shareef, Iqbal

    2012-01-01

    This investigation was prompted by results of a qualification test of a mechanism to be used for the James Webb Space Telescope. Post-test inspections of the qualification test article revealed some loose wear debris and wear of the steel rollers and the mating Ti6Al4V surfaces. An engineering assessment of the design and observations from the tested qualification unit suggested that roller misalignment was a controlling factor. The wear phenomena were investigated using dedicated laboratory experiments. Tests were done using a vacuum roller rig for a range of roller misalignment angles. The wear in these tests was mainly adhesive wear. The measured wear rates were highly correlated to the misalignment angle. For all tests with some roller misalignment, the steel rollers lost mass while the titanium rollers gained mass indicating strong adhesion of the steel with the titanium alloy. Inspection of the rollers revealed that the adhesive wear was a two-way process as titanium alloy was found on the steel rollers and vice versa. The qualification test unit made use of 440F steel rollers in the annealed condition. Both annealed 440F steel rollers and hardened 440C rollers were tested in the vacuum roller rig to investigate possibility to reduce wear rates and the risk of loose debris formation. The 440F and 440C rollers had differing wear behaviors with significantly lesser wear rates for the 440C. For the test condition of zero roller misalignment, the adhesive wear rates were very low, but still some loose debris was formed

  17. Breakdown phenomena in rf windows

    SciTech Connect

    Saito, Y.

    1995-07-05

    The multipactor and flashover phenomena of alumina rf windows used in high-power klystrons have been investigated. Multipactoring due to the high yield of secondary electron emission takes place during rf operation. A spectrum analysis of the luminescence due to multipactoring shows that multipactor electron bombardment causes an F-center of alumina, thus leading to surface melting. From the results of a high-power examination of rf windows with several kinds of alumina ceramics, it was found that an alumina material with a crystallized grain-boundary and without any voids between the boundaries, thus having a low loss-tangent value, is not liable to F-centers, even under multipactoring. Flashovers in a tree-like pattern of alumina luminescence occasionally take place on a TiN-coated surface. From the results of surface-charging measurements and high-power examinations of annealed alumina disks, the flashover phenomenon is considered to be an avalanche of electrons which have been trapped in mechanically introduced defects. The effectivenesses of multipactor-suppressing coatings and of a field-reduced window structure were also examined. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. Remarkably improved field emission of TiO{sub 2} nanotube arrays by annealing atmosphere engineering

    SciTech Connect

    Liao, Ai-Zhen; Wang, Cheng-Wei Chen, Jian-Biao; Zhang, Xu-Qiang; Li, Yan; Wang, Jian

    2015-10-15

    Highlights: • TNAs were prepared by anodization and annealed in different atmospheres. • The crystal structure and electronic properties of the prepared TNAs were investigated. • The field emission of TNAs was highly dependent on annealing atmosphere. • A low turn-on of 2.44 V/μm was obtained for TNAs annealed in H{sub 2} atmosphere. - Abstract: Highly ordered TiO{sub 2} nanotube arrays (TNAs) were prepared by anodization, and followed by annealing in the atmospheres of Air, Vacuum, Ar, and H{sub 2}. The effect of annealing atmosphere on the crystal structure, composition, and electronic properties of TNAs were systematically investigated. Raman and EDS results indicated that the TNAs annealed in anaerobic atmospheres contained more oxygen vacancies, which result in the substantially improved electron transport properties and reduced work function. Moreover, it was found that the FE properties of TNAs were highly dependent on the annealing atmosphere. By engineering the annealing atmosphere, the turn-on field as low as 2.44 V/μm can be obtained from TNAs annealed in H{sub 2}, which was much lower than the value of 18.23 V/μm from the TNAs annealed in the commonly used atmosphere of Air. Our work suggests an instructive and attractive way to fabricate high performance TNAs field emitters.

  19. Annealing-induced property improvements in 2-14-1 powders produced by inert gas atomization

    SciTech Connect

    Lewis, L.H.; Sellers, C.H.; Panchanathan, V.

    1996-04-01

    The effects of vacuum annealing on the phase constitution and magnetic properties of various size fractions of 3 alloy compositions produced by Inert-gas atomization (IGA) are examined. Annealing results in the oxidation of properitectic {alpha}-Fe formed during cooling of the melt, producing considerable improvement in the hard magnetic properties of the powders largely via the removal of lower-anisotropy magnetic reversal regions.

  20. Observation of Atomic Steps on Vicinal Si(111) Annealed in Hydrogen Gas Flow by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Kitahara, Kuninori; Ueda, Osamu

    1993-12-01

    The surface of vicinal Si(111) annealed in H2 flow was observed by equipping the chemical vapor deposition chamber with the scanning tunneling microscope. Samples were annealed at 1000°C for 10 min by passing an electric current under the H2 pressure of 7 Torr. Their surface morphology was compared with those annealed in ultrahigh vacuum (UHV) and in N2 flow at the same temperature. We found that the step motion during annealing in H2 was obviously smaller than that for annealing in UHV and N2. The multisteps formed during the annealing in UHV and N2 were not observed for H2 annealing except in the case of heating by direct current in the direction of lower to higher terraces. The mechanism of the interruption of the step motion is discussed from the viewpoint of the interaction between the surface and hydrogen.

  1. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    NASA Astrophysics Data System (ADS)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei

    2015-06-01

    We fabricated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 108 and a field-effect mobility of 0.3 cm2 V-1 s-1. These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs.

  2. Effect of annealing temperature on properties of RF sputtered Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Yu, Zhou; Yan, Chuanpeng; Yan, Yong; Zhang, Yanxia; Huang, Tao; Huang, Wen; Li, Shasha; Liu, Lian; Zhang, Yong; Zhao, Yong

    2012-09-01

    Cu(In,Ga)Se2 (CIGSe) thin films were prepared by radio frequency (RF) magnetron sputtering at room temperature, following vacuum annealing at different temperatures. We have investigated the effect of annealing temperature (150-550 °C) on the phase transformation process of the CIGSe films. The as-deposited precursor films show a near stoichiometry composition and amorphous structure. Composition loss of the films mainly occur in the annealing temperature range of 150-300 °C. Comparing with samples annealed at 300 °C, films annealed at 350 °C or higher temperatures exhibit almost similar composition and polycrystalline chalcopyrite structure. Crystal quality of the films improves with increasing annealing temperature. Reflectance spectra of the annealed films show interference fringe pattern. The calculated refractive indexes of the films are in the range of 2.4-2.5.

  3. Phase Control of RF Sputtered SnSx with Post-Deposition Annealing for a Pseudo-Homojunction Photovoltaic Device

    NASA Astrophysics Data System (ADS)

    Nasr, J. R.; Cordell, J. J.; Gurunathan, R. L.; Brownson, J. R. S.; Horn, M. W.

    2017-02-01

    Tin (II) Monosufide (SnS) is an interesting material for thin film photovoltaics. n- and p-type sputter-deposited SnSx have been investigated for use in a homojunction photovoltaic device. Post-deposition vacuum heat treatment of as-deposited amorphous films was found to produce n-type SnSx and p-type SnS depending upon in situ vacuum anneal time and temperature. Annealing temperatures varied from 300°C to 400°C at durations from 20 min to 60 min under high vacuum. Results show clear photoresponse for both n-type and p-type using Pd contacts.

  4. Preparation and Annealing-Induced Structural Transition of Self-Organized Nanostripes on the Electropolished Aluminium Surface

    NASA Astrophysics Data System (ADS)

    Guo, Deng-Zhu; Hou, Shi-Min; Shen, Zi-Yong; Zhao, Xing-Yu; Liu, Wei-Min; Xue, Zeng-Quan

    2002-03-01

    Self-organized nanostripe patterns with a wavelength of 100 nm and an amplitude of 4-5 nm were formed on the surface of high-purity aluminium by electropolishing. The thermal stability of the nanostripe patterns was investigated experimentally by using a needle-sensor atomic force microscope in an ultra-high vacuum after annealing the sample in a high vacuum. We found that the originally highly ordered nanostripe structures transformed into many domains separated by various boundaries, and different nanostripe patterns formed, the belt-like boundaries especially formed ``cross'' patterns on the surface. We also found that the vacuum annealing had the tendency to efface the nanostripe structures.

  5. Vacuum-assisted delivery

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on ... the baby through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is ...

  6. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  7. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  8. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  9. Influence of annealing on composition and optical properties of CdTe nanoparticle layer-by-layer films.

    PubMed

    Briscoe, Joe; Gallardo, Diego E; Lesnyak, Vladimir; Dunn, Steve

    2011-06-01

    CdTe nanoparticle-polymer composite films were deposited conformally using a layer-by-layer (LbL) process onto planar or ZnO nanorod-coated substrates. Films were annealed between 150-450 degrees C. Under air this led to oxidation of the nanoparticles while under vacuum their composition was retained. Annealing at 450 degrees C led to complete removal of the polymer with a loss of quantum confinement as shown by UV-vis spectroscopy. Annealing at 350 degrees C gave partial removal of the polymer and retained quantum confinement. Such annealed nanoparticle composite systems may have application in photovoltaics.

  10. Adjustable metal-semiconductor transition of FeS thin films by thermal annealing

    SciTech Connect

    Fu Ganhua; Polity, Angelika; Volbers, Niklas; Meyer, Bruno K.; Mogwitz, Boris; Janek, Juergen

    2006-12-25

    FeS polycrystalline thin films were prepared on float glass at 500 deg. C by radio-frequency reactive sputtering. The influence of vacuum annealing on the metal-semiconductor transition of FeS films was investigated. It has been found that with the increase of the annealing temperature from 360 to 600 deg. C, the metal-semiconductor transition temperature of FeS films first decreases and then increases, associated with first a reduction and then an enhancement of hysteresis width. The thermal stress is considered to give rise to the abnormal change of the metal-semiconductor transition of the FeS film during annealing.

  11. Surface Superstructure of Carbon Nanotubes on Highly Oriented Pyrolytic Graphite Annealed at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    An, Bai; Fukuyama, Seiji; Yokogawa, Kiyoshi; Yoshimura, Masamichi

    1998-06-01

    Carbon nanotubes deposited on highly oriented pyrolytic graphite (HOPG) are annealed in ultra high vacuum. The effect of annealing temperature on the surface morphology of the carbon nanotubes on HOPG is examined by scanning tunneling microscopy. The ring-like surface superstructure of (\\sqrt {3}× \\sqrt {3})R30° of graphite is found on the carbon nanotubes annealed above 1593 K. The tips of the carbon nanotubes are destroyed and the stacking misarrangement between the upper and the lower walls of the tube join with HOPG resulting in the superstructure.

  12. Molecular dynamics simulation of annealed ZnO surfaces

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.

  13. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  14. Annealing to Mitigate Pitting in Electropolished Niobium Coupons and SRF Cavities

    SciTech Connect

    Cooley, L.D.; Hahn, E.; Hicks, D.; Romanenko, A.; Schuessler, R.; Thompson, C.; /Fermilab

    2011-06-08

    Ongoing studies at Fermilab investigate whether dislocations and other factors instigate pitting during cavity electropolishing (EP), despite careful processing controls and the inherent leveling mechanism of EP itself. Here, cold-worked niobium coupons, which exhibited increased tendencies for pitting in our past study, were annealed in a high vacuum furnace and subsequently processed by EP. Laser confocal scanning microscopy and special defect counting algorithms were used to assess the population of pits formed. Hardness measurements indicated that annealing for 2 hours at 800 C produced recovery, whereas annealing for 12 hours at 600 C did not, as is consistent with known changes for cavities annealed in a similar way. The 800 C anneal was effective in some cases but not others, and we discuss reasons why tendencies for pitting remain. We discuss implications for cavities and continued work to understand pitting.

  15. Effect of annealing on Raman spectra of monolayer graphene samples gradually disordered by ion irradiation

    NASA Astrophysics Data System (ADS)

    Zion, E.; Butenko, A.; Kaganovskii, Yu.; Richter, V.; Wolfson, L.; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2017-03-01

    Raman scattering spectra (RS) of two series of monolayer graphene samples irradiated with various doses of C + and Xe + ions were measured after annealing in a high vacuum and in forming gas (95%Ar + 5%H2). It is shown that annealing below 500 °C leads to a significant decrease in both the D-line, associated with defects, and the 2D-line, associated with the intact lattice structure. This can be explained by annealing-induced enhanced doping. Further annealing in a vacuum up to 1000 °C leads to a significant increase in the 2D-line together with a continuous decrease in the D-line. This gives evidence for the partial removal of the defects and restoration of the damaged lattice. Annealing in forming gas is less effective in this sense. A blue shift of all lines is observed after annealing. It is shown that below 500 °C, unintentional doping is the main origin of the shift. At higher annealing temperatures, the blue shift is mainly due to lattice strain arising because of mismatch between the thermal expansion coefficients of graphene and the substrate. Inhomogeneous distribution of stress and doping across the samples lead to the correlated variation of the height and peak position of RS lines.

  16. Enhanced reduction of silicon oxide thin films on silicon under electron beam annealing

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Leveneur, J.; Fang, F.; Markwitz, A.

    2014-08-01

    Electron beam annealing is an interesting alternative to other annealing methods as it can provide high temperature, rapid heating and cooling and low level of impurity as it operates under high vacuum environment. Furthermore swamping the materials with electrons can lead to dramatic changes in the component valence states with the mechanism involving oxido-reduction reactions. This is illustrated in the present case with the enhancement of the reduction of SiO2. Commercial thermally grown 100 and 400 nm SiO2 films on Si were annealed under three different environments: furnace annealing in open atmosphere with O2 flow, high vacuum furnace annealing and electron beam annealing. The reduction and oxidation of SiO2 films on Si are investigated using ion beam analysis. The validity of the measurement method was confirmed by measuring the oxidation rate through successive Rutherford backscattering spectrometry (RBS) measurements. The oxidation kinetics were observed to be in excellent agreement with literature values. At 1000 °C reduction of the SiO2 film is observed only with electron beam annealing. A model is proposed to explain the effect of the electron beam.

  17. Imaging of snapping phenomena

    PubMed Central

    Guillin, R; Marchand, A J; Roux, A; Niederberger, E; Duvauferrier, R

    2012-01-01

    Snapping phenomena result from the sudden impingement between anatomical and/or heterotopical structures with subsequent abrupt movement and noise. Snaps are variously perceived by patients, from mild discomfort to significant pain requiring surgical management. Identifying the precise cause of snaps may be challenging when no abnormality is encountered on routinely performed static examinations. In this regard, dynamic imaging techniques have been developed over time, with various degrees of success. This review encompasses the main features of each imaging technique and proposes an overview of the main snapping phenomena in the musculoskeletal system. PMID:22744321

  18. Frost phenomena on Mars.

    PubMed

    Anderson, D M; Gaffney, E S; Low, P F

    1967-01-20

    The hypothesis that the Martian wave of darkening might be a frostheaving phenomenon has been examined. Consideration of the water-vapor sorption characteristics of a silicate mineral surface at temperatures below freezing leads to the conclusion that, without strongly deliquescent salts to attract and retain liquid water in the Martian soil, frost-heaving phenomena are not to be expected on Mars. On the other hand frost-heaving phenomena involving the freezing and thawing of ammonia may be common in the soils of Jupiter.

  19. Flow phenomena in turbomachines

    NASA Astrophysics Data System (ADS)

    Creitzer, E. M.; Epstein, A. H.; Giles, M. B.; McCune, J. E.; Tan, C. S.

    1993-01-01

    This report describes work carried out at the Gas Turbine Laboratory at MIT during the period 10/20/89 - 10/19/92, as part of our multi-investigator effort on basic unsteady flow phenomena in turbomachines. Within the overall project four separate tasks are specified. These are, in brief: (1) The Influence of Inlet Temperature Nonuniformities on Turbine Heat Transfer and Dynamics; (2) Assessment of Unsteady Losses in Stator/ Rotor Interactions; (3) Unsteady Phenomena and Flowfield instabilities in Multistage Axial Compressors; (4) Vortex Wake-Compressor Blade Interaction in Cascades - A New Rapid Method for Unsteady Separation and Vorticity Flux Calculations.

  20. Self field electromagnetism and quantum phenomena

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  1. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  2. Quantum phenomena in superconductors

    SciTech Connect

    Clarke, J.

    1987-08-01

    This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)

  3. Fundamentals of Electromagnetic Phenomena

    NASA Astrophysics Data System (ADS)

    Lorrain, Paul; Corson, Dale R.; Lorrain, Francois

    Based on the classic Electromagnetic Fields and Waves by the same authors, Fundamentals of Electromagnetic Phenomena capitalizes on the older text's traditional strengths--solid physics, inventive problems, and an experimental approach--while offering a briefer, more accessible introduction to the basic principles of electromagnetism.

  4. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  5. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB{sub 2} bulk samples

    SciTech Connect

    Phaneendra, Konduru Asokan, K. Kanjilal, D.; Awana, V. P. S.; Sastry, S. Sreehari

    2014-04-24

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB{sub 2}) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800°c for two hours. Both the samples show clear superconducting transition at Tc ∼ 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [ρ (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB{sub 2} phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (J{sub c}) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  6. Maintaining vacuum furnaces

    SciTech Connect

    Kowalewski, J.

    2000-04-01

    A preventive maintenance program is essential for safe and consistent vacuum furnace operation. The program should be developed in cooperation with safety, maintenance, and furnace operators, implemented as soon as the furnace is commissioned, and adhered to throughout the life of the furnace. This article serves as an introduction to the topic of vacuum furnace preventive maintenance. Basic information about installing a new vacuum furnace also is provided.

  7. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  8. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  9. Lunar transient phenomena

    NASA Astrophysics Data System (ADS)

    Cameron, W. S.

    1991-03-01

    Lunar transient phenomena (LTP) sightings are classified into five categories: brightenings, darkenings, reddish colorations, bluish colorations, and obscurations. There is evidence that the remaining LTP's are of lunar origin. A substantial number of sightings are independently confirmed. They have been recorded on film and spectrograms, as well as with photoelectric photometers and polarization equipment. It suggested that the LTP's may be gentle outgassings of less-than-volcanic proportions.

  10. Paramutation phenomena in plants.

    PubMed

    Pilu, Roberto

    2015-08-01

    Paramutation is a particular epigenetic phenomenon discovered in Zea mays by Alexander Brink in the 1950s, and then also found in other plants and animals. Brink coined the term paramutation (from the Greek syllable "para" meaning beside, near, beyond, aside) in 1958, with the aim to differentiate paramutation from mutation. The peculiarity of paramutation with respect to other gene silencing phenomena consists in the ability of the silenced allele (named paramutagenic) to silence the other allele (paramutable) present in trans. The newly silenced (paramutated) allele remains stable in the next generations even after segregation from the paramutagenic allele and acquires paramutagenic ability itself. The inheritance behaviour of these epialleles permits a fast diffusion of a particular gene expression level/phenotype in a population even in the absence of other evolutionary influences, thus breaking the Hardy-Weinberg law. As with other gene silencing phenomena such as quelling in the fungus Neurospora crassa, transvection in Drosophila, co-suppression and virus-induced gene silencing (VIGS) described in transgenic plants and RNA interference (RNAi) in the nematode Caenorhabditis elegans, paramutation occurs without changes in the DNA sequence. So far the molecular basis of paramutation remains not fully understood, although many studies point to the involvement of RNA causing changes in DNA methylation and chromatin structure of the silenced genes. In this review I summarize all paramutation phenomena described in plants, focusing on the similarities and differences between them.

  11. Electron-irradiation enhanced photoluminescence from GaInNAs/GaAs quantum wells subject to thermal annealing

    SciTech Connect

    Pavelescu, E.-M.; Gheorghiu, A.; Dumitrescu, M.; Tukiainen, A.; Jouhti, T.; Hakkarainen, T.; Kudrawiec, R.; Andrzejewski, J.; Misiewicz, J.; Tkachenko, N.; Dhaka, V.D.S.; Lemmetyinen, H.; Pessa, M.

    2004-12-20

    Electron irradiation of a 1.3-{mu}m-GaInNAs/GaAs multi-quantum-well heterostructure, grown by molecular beam epitaxy and subsequently rapid-thermal annealed, is found to induce much stronger photoluminescence than what is observed for an identical as-grown sample upon annealing. Annealing of the irradiated sample also causes a small additional spectral blueshift and reduces alloy potential energy fluctuations at the conduction band minimum. These irradiation-related phenomena are accompanied by small but discernable changes in x-ray diffraction features upon annealing, which indicate compositional and/or structural changes in the quantum wells.

  12. Reactor vessel annealing system

    DOEpatents

    Miller, Phillip E.; Katz, Leonoard R.; Nath, Raymond J.; Blaushild, Ronald M.; Tatch, Michael D.; Kordalski, Frank J.; Wykstra, Donald T.; Kavalkovich, William M.

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  13. Impacts of excimer laser annealing on Ge epilayer on Si

    NASA Astrophysics Data System (ADS)

    Huang, Zhiwei; Mao, Yichen; Yi, Xiaohui; Lin, Guangyang; Li, Cheng; Chen, Songyan; Huang, Wei; Wang, Jianyuan

    2017-02-01

    The impacts of excimer laser annealing on the crystallinity of Ge epilayers on Si substrate grown by low- and high-temperature two-step approach in an ultra-high vacuum chemical vapor deposition system were investigated. The samples were treated by excimer laser annealing (ELA) at various laser power densities with the temperature above the melting point of Ge, while below that of Si, resulting in effective reduction of point defects and dislocations in the Ge layer with smooth surface. The full-width at half-maximum (FWHM) of X-ray diffraction patterns of the low-temperature Ge epilayer decreases with the increase in laser power density, indicating the crystalline improvement and negligible effect of Ge-Si intermixing during ELA processes. The short laser pulse time and large cooling rate cause quick melting and recrystallization of Ge epilayer on Si in the non-thermal equilibrium process, rendering tensile strain in Ge epilayer as calculated quantitatively with thermal mismatch between Si and Ge. The FWHM of X-ray diffraction patterns is significantly reduced for the two-step grown samples after treated by a combination of ELA and conventional furnace thermal annealing, indicating that the crystalline of Ge epilayer is improved more effectively with pre- annealing by excimer laser.

  14. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  15. Annealing Behaviour of Hydrogenated and Oxidized Nanocrystalline Diamond

    NASA Astrophysics Data System (ADS)

    Schaefer, J. A.; Neumann, A.; Uhlig, J.; Finsterbusch, M.; Eremtchenko, M.; Ahmed, S. I.-U.; Garrido, J. A.; Stutzmann, M.

    2007-03-01

    Hydrogenated and oxidized nanocrystalline diamond (NCD) is a very promising material for future electronic, especially bioelectronic applications. In the past it has been shown that hydrogen, oxygen, and gases from the ambient environment as well as water can be responsible for causing drastic changes in surface conductivity and wettability (hydrophobicity, hydrophilicity), friction, wear, etc. In this contribution we have investigated differently prepared NCDs as function of the annealing temperature under ultrahigh vacuum conditions (UHV) with various electron spectroscopies like UPS and XPS as well as High Resolution Electron Energy Loss Spectroscopy (HREELS). We were able to identify the thermal stability of a number of different species at the interface, which are related to different characteristics of C-H, O-H, C-O, and C-C bonding. Finally, a carbonization of the interface appeared at higher annealing temperatures.

  16. ELETTRA vacuum system

    NASA Astrophysics Data System (ADS)

    Bernardini, M.

    1991-08-01

    A status report of the vacuum system of ELETTRA, the 2 GeV, 400 mA light source under construction in Trieste, will be described. The Vacuum project, presented at ``Synchrotron Radiation Vacuum Workshop'' at Riken (Japan 22-24 March 1990) and more recently at EVC-2, the European Vacuum Conference at Trieste (Italy 21-26 May 1990), is now in the phase of testing a prototype sector, which is 1/24 of the ring circumference. Details and some technological aspects of the fabrication will be reviewed together with the vacuum performances. Results of laboratory experiments on components, standard or not, allowed us to finalize the main choices in light of the general philosophy of the project and will be properly summarized.

  17. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  18. Cervical spine annulus vacuum.

    PubMed

    Bohrer, S P; Chen, Y M

    1988-01-01

    Thirty-eight annulus vacuums in 27 patients were analyzed with regard to location, configuration, and associated vertebral abnormalities such as degenerative changes, absent and compressed anterosuperior vertebral body corners, and annulus calcification. It is concluded that most annulus vacuums are a degenerative phenomenon at the attachment of the annulus to bone. These vacuums may be associated with other degenerative changes such as osteophytes and annulus calcification. Vacuums have a strong association with compressed anterosuperior corners. These deformed corners are thought to be early osteophytes and may be related to previous trauma, a vertebra with an absent corner, and/or normal motion. Small annulus vacuums adjacent to vertebral corners with a normal appearance are more likely to result from acute trauma.

  19. [Lateralization phenomena and headache].

    PubMed

    Nattero, G; Savi, L

    1984-09-08

    Ipsilateral carotid and vertebral vasomotor phenomena are marked components of a unilateral cluster headache crisis. Investigation of lateralisation at the height of a crisis has shown that Doppler findings supplement Heick's observation of the reversible opening of both intra and extracranial arteriovenous shunts. This observation is in line with personal thermographic evidence and that of Lance indicating local hypothermia, and with Wolff's demonstration of dilatation and congestion associated with the superficial temporal artery. Personal dynamographic findings now point to a local extra-intracranial artery pressure gradient as the cause of the peripheral component of lateralisation in cluster headache.

  20. Wolf-Rayet phenomena

    NASA Technical Reports Server (NTRS)

    Conti, P. S.

    1982-01-01

    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.

  1. Housing protects laser in vacuum

    NASA Technical Reports Server (NTRS)

    Canali, V. G.

    1978-01-01

    Airtight housing encloses laser for easy alinement and operation in high-vacuum chamber. Beam is transmitted through window into vacuum chamber. Flexible line runs through vacuum chamber to outside, maintaining laser enclosure at atmospheric pressure.

  2. Indium out-diffusion in Al{sub 2}O{sub 3}/InGaAs stacks during anneal at different ambient conditions

    SciTech Connect

    Krylov, Igor; Winter, Roy; Ritter, Dan; Eizenberg, Moshe

    2014-06-16

    Indium out-diffusion during anneal enhances leakage currents in metal/dielectric/InGaAs gate stacks. In this work, we study the influence of ambient conditions during anneal on indium out-diffusion in Al{sub 2}O{sub 3}/InGaAs structures, prior to the gate metal deposition. Using X-ray photoemission spectroscopy and time of flight secondary ions mass spectrometry, we observed much lower indium concentrations in the Al{sub 2}O{sub 3} layer following vacuum and O{sub 2} anneals compared to forming gas or nitrogen anneals. The electrical characteristics of the Ni/Al{sub 2}O{sub 3}/InGaAs gate stack following these pre-metallization anneals as well as after subsequent post metallization anneals are presented. Possible explanations for the role of the annealing ambient conditions on indium out-diffusion are presented.

  3. Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung

    2017-01-01

    In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

  4. Breakdown phenomena in high power klystrons

    SciTech Connect

    Vlieks, A.E.; Allen, M.A.; Callin, R.S.; Fowkes, W.R.; Hoyt, E.W.; Lebacqz, J.V.; Lee, T.G.

    1988-03-01

    In the course of developing new high peak power klystrons at SLAC, high electric fields in several regions of these devices have become an important source of vacuum breakdown phenomena. In addition, a renewed interest in breakdown phenomena for nanosecond pulse, multi-megavolt per centimeter fields has been sparked by recent R and D work in the area of gigawatt RF sources. The most important regions of electrical breakdown are in the output cavity gap area, the RF ceramic windows, and the gun ceramic insulator. The details of the observed breakdown in these regions, experiments performed to understand the phenomena and solutions found to alleviate the problems will be discussed. Recently experiments have been performed on a new prototype R and D klystron. Peak electric fields across the output cavity gaps of this klystron exceed 2 MV/cm. The effect of peak field duration (i.e. pulse width) on the onset of breakdown have been measured. The pulse widths varied from tens of nanoseconds to microseconds. Results from these experiments will be presented. The failure of ceramic RF windows due to multipactor and puncturing was an important problem to overcome in order that our high power klystrons would have a useful life expectancy. Consequently many studies and tests were made to understand and alleviate window breakdown phenomena. Some of the results in this area, especially the effects of surface coatings, window materials and processing techniques and their effects on breakdown will be discussed. Another important source of klystron failure in the recent past at SLAC has been the puncturing of the high voltage ceramic insulator in the gun region. A way of alleviating this problem has been found although the actual cause of the puncturing is not yet clear. The ''practical'' solution to this breakdown process will be described and a possible mechanism for the puncturing will be presented. 9 refs., 5 figs., 3 tabs.

  5. Influence of Annealing on the Optical Parameters of In2S3 Thin Films Produced by Thermal Evaporation

    NASA Astrophysics Data System (ADS)

    Izadneshan, H.; Gremenok, V. F.

    2014-05-01

    In2S3 thin fi lms are grown on glass substrates by vacuum thermal evaporation followed by annealing in vacuum between 330 and 400 °C for different time durations. We have investigated the infl uence of the annealing parameters on the characteristics of thin fi lms. It is shown that thermal treatment changed the crystal structure and optical energy band gap of In2S3 thin fi lms. Two energy band gaps were determined for all the fi lms, one indirect and the other direct.

  6. Influence of Substrate Nature and Annealing on Electro-Optical Properties of ZnO Thin Films

    SciTech Connect

    Iacomi, Felicia; Baban, C.; Prepelita, Petronela; Luca, D.; Iftimie, Nicoleta

    2007-04-23

    ZnO thin films were grown on different substrates (glass, quartz, silicon wafers, etc) by vacuum thermal evaporation. Different thermal treatments were performed in order to obtain transparent and conductive or high resistive ZnO thin films. The optical and electrical properties of ZnO thin films are dependent on the crucible temperature, annealing conditions and on the substrate nature. The thin films are transparent and have an electrical resistivity in 10-4 {omega}m regio. The annealing process performed in vacuum at 573K or under UV irradiation determines a decrease in the electrical resistivity of films.

  7. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2001-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  8. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  9. Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Lu, Y. F.; Tang, L. J.; Wu, Y. H.; Cho, B. J.; Xu, X. J.; Dong, J. R.; Song, W. D.

    2005-01-01

    We have investigated phase separation, silicon nanocrystal (Si NC) formation and optical properties of Si oxide (SiOx, 0vacuum annealing and dry oxidation. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous-oxide/silane flow ratios. The physical and optical properties of the SiOx films were studied as a result of high-vacuum annealing and thermal oxidation. X-ray photoelectron spectroscopy (XPS) reveals that the as-deposited films have a random-bonding or continuous-random-network structure with different oxidation states. After annealing at temperatures above 1000 °C, the intermediate Si continuum in XPS spectra (referring to the suboxide) split to Si peaks corresponding to SiO2 and elemental Si. This change indicates the phase separation of the SiOx into more stable SiO2 and Si clusters. Raman, high-resolution transmission electron microscopy and optical absorption confirmed the phase separation and the formation of Si NCs in the films. The size of Si NCs increases with increasing Si concentration in the films and increasing annealing temperature. Two photoluminescence (PL) bands were observed in the films after annealing. The ultraviolet (UV)-range PL with a peak fixed at 370-380 nm is independent of Si concentration and annealing temperature, which is a characteristic of defect states. Strong PL in red range shows redshifts from ˜600 to 900 nm with increasing Si concentration and annealing temperature, which supports the quantum confinement model. After oxidation of the high-temperature annealed films, the UV PL was almost quenched while the red PL shows continuous blueshifts with increasing oxidation time. The different oxidation behaviors further relate the UV PL to the defect states and the red PL to the recombination of quantum-confined excitions.

  10. Linear response theory for annealing of radiation damage in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Litovchenko, Vitaly

    1988-01-01

    A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.

  11. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  12. Thermal Wave Phenomena

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.

    The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  13. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  14. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; Sebitla, L. D.; Njoroge, E. G.; Mlambo, M.; Malherbe, J. B.

    2017-03-01

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 1016 ions/cm2 and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  15. Vacuum mechatronics first international workshop

    SciTech Connect

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. )

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  16. The classical vacuum

    NASA Astrophysics Data System (ADS)

    Boyer, T. H.

    1985-08-01

    The history of vacuum concepts is reviewed, noting that no way is known to physically produce a true void. Even at absolute zero, a pattern of electromagnetic wave fluctuations are still present. The fluctuations are called zero-point radiation (ZPR). To be invariant to Lorentz transformation, ZPR has a spectral intensity proportional to the cube of each frequency. ZPR does not change in response to compression and produces a force between objects that is inversely proportional to the 4th power of the separation distance. The ZPR scale value has been measured to be one-half of the Planck constant, and is the measure of the energy of a harmonic oscillator, such as the electron, in a vacuum. Finally, since gravitational accelerations always occur in the physical space, a minimum thermal radiation can also be found for the vacuum, implying that a fixed relationship exists between thermal radiation and the classical vacuum.

  17. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  18. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  19. Influence of Thermal Annealings in Argon on the Structural and Thermochromic Properties of MoO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Arvizu, M. A.; Morales-Luna, M.; Pérez-González, M.; Campos-Gonzalez, E.; Zelaya-Angel, O.; Tomás, S. A.

    2017-04-01

    The effect of thermal annealing in an inert atmosphere (argon) on the structural and thermochromic properties of MoO3 thin films was investigated. MoO3 thin films were deposited by thermal evaporation in vacuum of MoO3 powders. X-ray diffraction patterns of the films showed the presence of the monoclinic Magneli phase Mo9O_{26} for annealing temperatures above 250°C. Absorbance spectra of the films annealed in argon indicated that their thermochromic response increases with the annealing temperature in the analyzed range (23°C -300°C), a result opposite to the case of thermal annealings in air, for which case the thermochromic response shows a maximum value around 200°C -225°C and decreases for higher temperatures. These results are explained in terms of a higher density of oxygen vacancies formed upon thermal treatments in inert atmospheres.

  20. Annealing effect on the magnetic properties of evaporated CoCr thin films

    NASA Astrophysics Data System (ADS)

    Kharmouche, Ahmed; Djouada, Intissar; Schmerber, Guy

    2013-08-01

    Series of CoxCr1-x thin films have been evaporated under vacuum onto monocrystalline silicon substrate, x being atomic percent of cobalt. The thickness ranges from 17 to 220 nm, values measured by Rutherford backscattering spectrometry. The samples have been annealed under vacuum for one hour at 700 °C. The as deposited films show a hexagonal close packed (hcp) structure while the annealed films show both hexagonal close packed and face centered cubic (fcc) structures. While the as deposited films are under a compressive stress, the annealed films, on the contrary, are under a tensile stress. The hysteresis loops present the same features for the as deposited and annealed films concerning the in-plane and out-of-plane anisotropies. Nevertheless, the coercive field is strongly improved for the annealed films. Moreover, these latter films present very high values of the squareness. A squareness value up to 0.96 has been measured. All these results and others are analyzed and discussed.

  1. Unraveling the enhanced Oxygen Vacancy Formation in Complex Oxides during Annealing and Growth

    PubMed Central

    Hensling, Felix V. E.; Xu, Chencheng; Gunkel, Felix; Dittmann, Regina

    2017-01-01

    The reduction of oxides during annealing and growth in low pressure processes is a widely known problem. We hence investigate the influence of mere annealing and of growth in vacuum systems to shed light on the reasons behind the reduction of perovskites. When comparing the existing literature regarding the reduction of the perovskite model material SrTiO3 it is conspicuous that one finds different oxygen pressures required to achieve reduction for vacuum annealing and for chemically controlled reducing atmospheres. The unraveling of this discrepancy is of high interest for low pressure physical vapor depositions of thin films heterostructures to gain further understanding of the reduction of the SrTiO3. For thermal annealing, our results prove the attached measurement devices (mass spectrometer/ cold cathode gauge) to be primarily responsible for the reduction of SrTiO3 in the deposition chamber by shifting the thermodynamic equilibrium to a more reducing atmosphere. We investigated the impact of our findings on the pulsed laser deposition growth at low pressure for LaAlO3/SrTiO3. During deposition the reduction triggered by the presence of the laser plume dominates and the impact of the measurement devices plays a minor role. During post annealing a complete reoxidization of samples is inhibited by an insufficient supply of oxygen. PMID:28091517

  2. Unraveling the enhanced Oxygen Vacancy Formation in Complex Oxides during Annealing and Growth

    NASA Astrophysics Data System (ADS)

    Hensling, Felix V. E.; Xu, Chencheng; Gunkel, Felix; Dittmann, Regina

    2017-01-01

    The reduction of oxides during annealing and growth in low pressure processes is a widely known problem. We hence investigate the influence of mere annealing and of growth in vacuum systems to shed light on the reasons behind the reduction of perovskites. When comparing the existing literature regarding the reduction of the perovskite model material SrTiO3 it is conspicuous that one finds different oxygen pressures required to achieve reduction for vacuum annealing and for chemically controlled reducing atmospheres. The unraveling of this discrepancy is of high interest for low pressure physical vapor depositions of thin films heterostructures to gain further understanding of the reduction of the SrTiO3. For thermal annealing, our results prove the attached measurement devices (mass spectrometer/ cold cathode gauge) to be primarily responsible for the reduction of SrTiO3 in the deposition chamber by shifting the thermodynamic equilibrium to a more reducing atmosphere. We investigated the impact of our findings on the pulsed laser deposition growth at low pressure for LaAlO3/SrTiO3. During deposition the reduction triggered by the presence of the laser plume dominates and the impact of the measurement devices plays a minor role. During post annealing a complete reoxidization of samples is inhibited by an insufficient supply of oxygen.

  3. Enhancement in visible luminescence from nanocomposite ZnO-SiOx thin films due to annealing

    NASA Astrophysics Data System (ADS)

    Kumar, V. V. Siva; Kanjilal, D.

    2014-01-01

    The annealing induced enhancement in visible photoluminescence (PL) from nanocomposite (nc) ZnO-SiOx thin films was investigated. Nc ZnO-SiOx thin films consisting of ZnO nanocrystals in silica matrix were grown by depositing the films using radio frequency (rf) reactive co-sputtering and post-annealing them at temperatures of 350°C and 500°C in high vacuum and air. These films were characterized by Fourier transform infrared (FTIR), (PL) spectroscopy and UV-Vis spectrophotometry measurements. Thin films were also deposited on transmission electron microscopy (TEM) grids in almost identical conditions. The TEM measurement of the thin film deposited on TEM grid shows the formation of ZnO nanocrystals with a size distribution from 3.0 nm to 6.8 nm (+/-0.2 nm) in silica matrix. The UV-Vis spectra of the films show absorption features of ZnO and Zn2SiO4 phases in the films. The visible PL emission intensity and peak width increased in the annealed films. The results suggest increase in the number and size distribution of the ZnO nanocrystals in silica matrix due to the annealing resulting in increase in visible PL emission. The results of vacuum annealed films indicate that these films can be useful in the development of wide band visible light emitting devices using this material.

  4. Annealed single-crystal cadmium selenide electrodes in liquid junction solar cells

    SciTech Connect

    Wessel, S.; Colbow, K.; Mackintosh, A.

    1984-12-01

    I-V characteristics, voltage dependence of the quantum efficiency, and spectral response were compared for annealed single-crystal CdSe photoanodes. Annealing in cadmium atmosphere improved the overall solar response considerably, while annealing under vacuum revealed a poor response for photon energies larger than 1.8 eV and a high quantum efficiency for near-bandgap energies. This behavior may be attributed to electron-hole pai generation from interbandgap states and a large density of minority carrier recombination centers near the crystal surface, owing to a high nonstoichiometry and a selenium layer at the surface. Annealing in selenium atmosphere resulted in very poor solar response caused by compensation. Simultaneous illumination of the electrodes with a He-Ne lase strongly enhanced the quantum efficiency for vacuum-annealed crystals for near-bandgap photons. We attribute this to electron trapping in the selenium-rich surface, with a resulting increase in depletion-layer width in the cadmium selenide.

  5. ON DETECTING TRANSIENT PHENOMENA

    SciTech Connect

    Belanger, G.

    2013-08-10

    Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximize the sensitivity of the method used to identify such events. In this article, we present a general procedure based on the use of the likelihood function for identifying transients which is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method makes use of all the information that is available in the data throughout the statistical decision-making process, and is suitable for a wide range of applications. Here we consider those most common in astrophysics, which involve searching for transient sources, events or features in images, time series, energy spectra, and power spectra, and demonstrate the use of the method in the case of a weak X-ray flare in a time series and a short-lived quasi-periodic oscillation in a power spectrum. We derive a fit statistic that is ideal for fitting arbitrarily shaped models to a power density distribution, which is of general interest in all applications involving periodogram analysis.

  6. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  7. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  8. A new carbon structure in annealed film coatings of the carbon-lead system

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Tuleushev, Yu. Zh.; Zhakanbaev, E. A.; Tsai, K. V.; Rofman, O. V.

    2017-01-01

    Carbon-lead solid solutions coexisting with amorphous carbon have been obtained for the first time in a film coating deposited by ion-plasma sputtering. During subsequent vacuum annealing of carbon-lead films containing more than 68.5 at % Pb, this element almost completely evaporates to leave an amorphous carbon coating on a substrate. During annealing at 1100°C, this amorphous carbon crystallizes into a new hexagonal lattice with unit cell parameters a = 0.7603 nm and c = 0.8168 nm. Characteristic X-ray diffraction data for the identification of this phase are determined.

  9. Alkali doping of graphene: The crucial role of high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Khademi, A.; Sajadi, E.; Dosanjh, P.; Bonn, D. A.; Folk, J. A.; Stöhr, A.; Starke, U.; Forti, S.

    2016-11-01

    The doping efficiency of lithium deposited at cryogenic temperatures on epitaxial and chemical vapor deposition monolayer graphene has been investigated under ultrahigh-vacuum conditions. Change of charge-carrier density was monitored by gate voltage shift of the Dirac point and by Hall measurements in low and high doping regimes. It was found that preannealing the graphene greatly enhanced the maximum levels of doping that could be achieved: doping saturated at Δ n =2 ×1013e- /cm2 without annealing, independent of sample type or previous processing; after a 900 K anneal, the saturated doping rose one order of magnitude to Δ n =2 ×1014e- /cm2.

  10. Hysteresis phenomena in hydraulic measurement

    NASA Astrophysics Data System (ADS)

    Ran, H. J.; Luo, X. W.; Chen, Y. L.; Xu, H. Y.; Farhat, M.

    2012-11-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  11. The Thermoelectric Properties and Flexural Strength of Nano-TiN/Co4Sb11.3Te0.58Se0.12 Composites Affected by Annealing Treatment

    NASA Astrophysics Data System (ADS)

    Pengfei, Wen; Pengcheng, Zhai; Shijie, Ding; Bo, Duan; Yao, Li

    2016-10-01

    This paper is devoted to investigating the thermoelectric properties and flexural strength of the nano-TiN (1 vol.%) dispersed Co4Sb11.3Te0.58Se0.12 composites affected by different thermal annealing treatments at 773 K in a vacuum. After 200 h of annealing treatment, the density of the sample decreases by 4% compared with that before annealing. Moreover, the electrical conductivity and thermal conductivity decline because of the higher porosity in the annealed sample. However, the Seebeck coefficient changes little after annealing. As a result, the ZT value varies slightly after 200 h of annealing. In addition, it is noteworthy that the flexural strength decreases by 16% after 200 h of annealing treatment. Furthermore, the discrete degree of the flexural strength increases with increasing annealing time.

  12. Hypervelocity impact phenomena

    NASA Astrophysics Data System (ADS)

    Chhabildas, L. C.

    There is a need to determine the equations of state of materials in regimes of extreme high pressures, temperatures, and strain rates that are not attainable on current two-stage light-gas guns. Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences: orbital-debris impact, debris-shield designs, high-speed plasma propagation, and impact lethality applications. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. Techniques that have been used to extend both the launch capabilities of a two-stage light-gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained in the laboratory, are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of materials impacted by such fliers as well as shock-induced vaporization phenomena in fully vaporized states. High-speed photography or radiography has been used to evaluate the debris propagation characteristics resulting from disc impact of thin bumper sheets at hypervelocities in excess of 10 km/s using the HVL. Examples of these experiments are provided.

  13. Hypervelocity impact phenomena

    SciTech Connect

    Chhabildas, L.C.

    1995-07-01

    There is a need to determine the equations of state of materials in regimes of extreme high pressures, temperatures and strain rates that are not attainable on current two-stage light-gas guns. Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences-orbital-debris impact, debris-shield designs, high-speed plasma propagation, and impact lethality applications. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques that have been used to extend both the launch capabilities of a two-stage light gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained in the laboratory are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of materials impacted by such fliers as well as shock-induced vaporization phenomena in fully vaporized states. High-speed photography or radiography has been used to evaluate the debris propagation characteristics resulting from disc impact of thin bumper sheets at hypervelocities in excess of 10 km/s using the HVL. Examples of these experiments are provided in this paper.

  14. An Introduction to Simulated Annealing

    ERIC Educational Resources Information Center

    Albright, Brian

    2007-01-01

    An attempt to model the physical process of annealing lead to the development of a type of combinatorial optimization algorithm that takes on the problem of getting trapped in a local minimum. The author presents a Microsoft Excel spreadsheet that illustrates how this works.

  15. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  16. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  17. Superoleophobicity under vacuum

    NASA Astrophysics Data System (ADS)

    Liu, Xinjie; Wang, Xiaolong; Liang, Yongmin; Bell, Steven E. J.; Liu, Weimin; Zhou, Feng

    2011-05-01

    By using superoleophobic alumina and low vapor pressure oils we have been able to study wetting behavior at high vacuum. Here, we show that a superoleophobic state can exist for some probe liquids, even under high vacuum. However, with other liquids the surfaces are only superoloephobic because air is trapped beneath the droplet and the contact angle decreases dramatically (150°-120°) if this air is removed. These observations open up the possibility of designing materials which fully exploit the potential of physically trapped air to achieve extreme oleophobicity and/or hydrophobicity.

  18. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  19. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  20. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  1. Crystal microstructure of annealed nanocrystalline Chromium studied by synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Wardecki, D.; Przeniosło, R.; Fitch, A. N.; Bukowski, M.; Hempelmann, R.

    2011-03-01

    The microstructure of electrodeposited nanocrystalline chromium (n-Cr) was studied by using synchrotron radiation (SR) diffraction, SEM, TEM, and EDX techniques. The as-prepared n-Cr samples show the standard bcc crystal structure of Cr with volume-averaged column lengths varying from 25 to 30 nm. The grain growth kinetics and the oxidation kinetics were studied by time resolved SR diffraction measurements with n-Cr samples annealed at 400, 600, and 800 °C. The grain growth process is relatively fast and it occurs within the first 10 min of annealing. The final crystallite size depends only on the annealing temperature and not on the initial grain size or on the oxygen content. The final volume-averaged column lengths observed after 50 min annealing are 40(4), 80(1), and 120(2) nm for temperatures 400, 600, and 800 °C, respectively. It is shown that annealing ex situ of n-Cr at 800 °C both under vacuum and in air gives a grain growth process with the same final crystallite sizes. The formation of the Cr2O3 and CrH phases is observed during annealing.

  2. VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-12

    S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)

  3. No energy to be extracted from the vacuum

    NASA Astrophysics Data System (ADS)

    Bruhn, Gerhard W.

    2006-11-01

    . Both O(3) and Lehnert equations are superior to the Maxwell-Heaviside equations in being able to describe phenomena not amenable to the latter. In theory, devices can be made to extract the energy associated with vacuum charge and current. A review of a former article in this journal.

  4. Structure of vacuum Cu–Ta condensates

    NASA Astrophysics Data System (ADS)

    Zubkov, A. I.; Zubarev, E. N.; Sobol', O. V.; Hlushchenko, M. A.; Lutsenko, E. V.

    2017-02-01

    The structure of vacuum condensate foils (separated from substrates) of the binary Cu-Ta system has been investigated both in the initial condensed state and after annealings at temperatures of up to 1000°C. It has been shown that the alloying of a vapor flow of the matrix metal (copper) with tantalum to 0.5 at % makes it possible to reduce the grain size from 3 μm to 50 nm. Depending on the tantalum concentration, condensates exhibit a broad spectrum of structural states, i.e., single- and two-phase, a supersaturated solution of tantalum in the fcc lattice of copper, etc. The structure of the objects possesses a high thermal stability. The temperature of the start of grain growth in the copper matrix depends on the tantalum content and can reach 900°C. The dispersion of the structure of copper condensates and its thermal stability is due to the formation of segregates of tantalum atoms at the boundaries of grains of the copper matrix both in the process of condensation and upon subsequent annealing.

  5. Gas injected vacuum switch

    DOEpatents

    Hardin, K. Dan

    1977-01-01

    The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.

  6. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  7. Vacuum Kundt waves

    NASA Astrophysics Data System (ADS)

    McNutt, David; Milson, Robert; Coley, Alan

    2013-03-01

    We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.

  8. Quantum Speedup by Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Somma, Rolando D.; Nagaj, Daniel; Kieferová, Mária

    2012-08-01

    We study the glued-trees problem from A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. Spielman, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (ACM, San Diego, CA, 2003), p. 59. in the adiabatic model of quantum computing and provide an annealing schedule to solve an oracular problem exponentially faster than classically possible. The Hamiltonians involved in the quantum annealing do not suffer from the so-called sign problem. Unlike the typical scenario, our schedule is efficient even though the minimum energy gap of the Hamiltonians is exponentially small in the problem size. We discuss generalizations based on initial-state randomization to avoid some slowdowns in adiabatic quantum computing due to small gaps.

  9. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  10. Effect of annealing environments on self-organized TiO2 nanotubes for efficient photocatalytic applications.

    PubMed

    Hyam, Rajeshkumar Shankar; Lee, Jongseok; Cho, Eunju; Khim, Jeehyeong; Lee, Haigun

    2012-12-01

    In the present study, amorphous titanium dioxide (TiO2) nanotubes were synthesized by one-step anodization technique and subsequently annealed in different environments to investigate the effect of annealing atmospheres on the formation of different crystalline phases. X-ray Diffraction (XRD) patterns clearly showed the presence of anatase TiO2 phase with various crystallite sizes. The samples annealed in oxygen and air atmospheres at 500 degrees C showed a dominant anatase phase and a small amount of rutile phase, on the other hand, the samples annealed in nitrogen and argon atmospheres and in a vacuum at 500 degrees C contained the anatase phase only. XPS analysis of the samples showed a broadening in the binding energy curves with respect to variation in annealing atmosphere, confirming the variation in surface defects, which in turn affect photocatalytic degradation. The vacuum-annealed sample showed superior photocatalytic degradation efficiency as it had relatively higher pseudo-first order rate constants (k) of 0.009/min.

  11. Simulated annealing model of acupuncture

    NASA Astrophysics Data System (ADS)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  12. Quantum annealing with antiferromagnetic fluctuations.

    PubMed

    Seki, Yuya; Nishimori, Hidetoshi

    2012-05-01

    We introduce antiferromagnetic quantum fluctuations into quantum annealing in addition to the conventional transverse-field term. We apply this method to the infinite-range ferromagnetic p-spin model, for which the conventional quantum annealing has been shown to have difficulties in finding the ground state efficiently due to a first-order transition. We study the phase diagram of this system both analytically and numerically. Using the static approximation, we find that there exists a quantum path to reach the final ground state from the trivial initial state that avoids first-order transitions for intermediate values of p. We also study numerically the energy gap between the ground state and the first excited state and find evidence for intermediate values of p for which the time complexity scales polynomially with the system size at a second-order transition point along the quantum path that avoids first-order transitions. These results suggest that quantum annealing would be able to solve this problem with intermediate values of p efficiently, in contrast to the case with only simple transverse-field fluctuations.

  13. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  14. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  15. Gas bearing operates in vacuum

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1975-01-01

    Bearing has restrictions to reduce air leaks and is connected to external pumpout facility which removes exhausted air. Token amount of air which is lost to vacuum is easily removed by conventional vacuum pump.

  16. Misconceptions of Emergent Semiconductor Phenomena

    NASA Astrophysics Data System (ADS)

    Nelson, Katherine G.

    The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students may have for three PV semiconductor phenomena; Diffusion, Drift and Excitation. These phenomena are emergent, a class of phenomena that have certain characteristics. In emergent phenomena, the individual entities in the phenomena interact and aggregate to form a self-organizing pattern that can be observed at a higher level. Learners develop a different type of misconception for these phenomena, an emergent misconception. Participants (N=41) completed a written protocol. The pilot study utilized half of these protocols (n = 20) to determine the presence of both general and emergent misconceptions for the three phenomena. Once the presence of both general and emergent misconceptions was confirmed, all protocols (N=41) were analyzed to determine the presence and prevalence of general and emergent misconceptions, and to note any relationships among these misconceptions (full study). Through written protocol analysis of participants' responses, numerous codes emerged from the data for both general and emergent misconceptions. General and emergent misconceptions were found in 80% and 55% of participants' responses, respectively. General misconceptions indicated limited understandings of chemical bonding, electricity and magnetism, energy, and the nature of science. Participants also described the phenomena using teleological, predictable, and causal traits, indicating participants had misconceptions regarding the emergent aspects of the phenomena. For both general and emergent misconceptions, relationships were observed between similar misconceptions within and across the three phenomena, and differences in misconceptions were

  17. Formation of Nanocomposites by Oxidizing Annealing of SiO x and SiO x Films: Ellipsometry and FTIR Analysis

    NASA Astrophysics Data System (ADS)

    Sopinskyy, Mykola V.; Vlasenko, Natalya A.; Lisovskyy, Igor P.; Zlobin, Sergii O.; Tsybrii, Zinoviia F.; Veligura, Lyudmyla I.

    2015-05-01

    The structural-phase transformations induced by air annealing of SiO x and SiO x < Er,F > films were studied by the combined use of infrared spectroscopy and ellipsometry. The films were prepared using vacuum evaporation of SiO powder and co-evaporation of SiO and ErF3 powders. The annealing took place at moderate temperatures (750 and 1000 °C). It was found that the micro- and macrostructure of the annealed films is similar to the structure of the Si-SiO x nanocomposites obtained by annealing SiO x in vacuum or inert atmosphere and subjected to post-annealing in oxidizing atmosphere. This proves that the phase separation in the non-stoichiometric SiO x films proceeds much faster than their oxidation. The results of the work point at a possibility to simplify the annealing technology by replacing the two-step annealing with one-step in the oxygen-containing environment while maintaining the positive effects. The differences in the structure of the nanocomposites obtained by annealing the SiO x and SiO x < Er,F > films are explained by the action of Er centers as the promoters for SiO x disproportionation, as well as the enhanced action of F on the processes of disorder-to-order transition and crystallization in amorphous silicon.

  18. Formation of Nanocomposites by Oxidizing Annealing of SiO x and SiO x Films: Ellipsometry and FTIR Analysis.

    PubMed

    Sopinskyy, Mykola V; Vlasenko, Natalya A; Lisovskyy, Igor P; Zlobin, Sergii O; Tsybrii, Zinoviia F; Veligura, Lyudmyla I

    2015-01-01

    The structural-phase transformations induced by air annealing of SiO x and SiO x  < Er,F > films were studied by the combined use of infrared spectroscopy and ellipsometry. The films were prepared using vacuum evaporation of SiO powder and co-evaporation of SiO and ErF3 powders. The annealing took place at moderate temperatures (750 and 1000 °C). It was found that the micro- and macrostructure of the annealed films is similar to the structure of the Si-SiO x nanocomposites obtained by annealing SiO x in vacuum or inert atmosphere and subjected to post-annealing in oxidizing atmosphere. This proves that the phase separation in the non-stoichiometric SiO x films proceeds much faster than their oxidation. The results of the work point at a possibility to simplify the annealing technology by replacing the two-step annealing with one-step in the oxygen-containing environment while maintaining the positive effects. The differences in the structure of the nanocomposites obtained by annealing the SiO x and SiO x  < Er,F > films are explained by the action of Er centers as the promoters for SiO x disproportionation, as well as the enhanced action of F on the processes of disorder-to-order transition and crystallization in amorphous silicon.

  19. Effects of annealing on the ripple texture and mechanical properties of suspended bilayer graphene

    NASA Astrophysics Data System (ADS)

    Annamalai, M.; Mathew, S.; Jamali, M.; Zhan, D.; Palaniapan, M.

    2013-04-01

    Periodic ripples of amplitude ˜15 nm were formed in suspended bilayer graphene after nanoindentation with incremental forces up to 600 nN. The structure was annealed at ˜620 K in high vacuum and the corresponding modifications in the mechanical properties and surface morphology were investigated. The pre-tension of the pristine sample was found to be 1.46 N m-1 and after annealing it was reduced to 0.72 N m-1. The nanometre-sized ripples induced by mechanical excitation were found to be flattened after annealing. Tailoring surface corrugations in bilayer graphene through nanoindentation and thermal engineering of these ripples thus provides an innovative fabrication route for flexible electronic devices and strain sensors.

  20. Note: development of fast heating inert gas annealing apparatus operated at atmospheric pressure.

    PubMed

    Das, S C; Majumdar, A; Shripathi, T; Hippler, R

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCN(x)) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup.

  1. Exoelectron emission from a clean, annealed magnesium single crystal during oxygen adsorption

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1976-01-01

    Exoelectron emission was observed from a clean, annealed Mg (0001) surface during oxygen and chlorine adsorption at pressures of 6.5x10 0.00001- N/sq m and lower. the studies were performed in an ultrahigh vacuum system. The crystals were cleaned by argon ion bombardment and annealed at 300 C. Auger electron spectroscopy was used to verify surface cleanliness, and low energy electron diffraction was used to verify that the surface was annealed. The emission was found to be oxygen arrival rate dependent. Two peaks were observed in the electron emission with exposure. Evidence is presented that the formation of the second peak corresponds to oxidation of the Mg surface. No emission was observed from clean aluminum during adsorption. Results verify that electron emission occurs from a strain free surface simply upon adsorption of oxygen. A qualitative explanation for the mechanisms of emission in terms of chemical effects is presented.

  2. Exoelectron emission from a clean, annealed magnesium single crystal during oxygen adsorption

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1976-01-01

    Exoelectron emission has been observed from a clean, annealed Mg (0001) surface during oxygen and chlorine adsorption at pressures of 0.000065 N/sq m and lower. The studies were performed in an ultrahigh vacuum system. The crystals were cleaned by argon-ion bombardment and annealed at 300 C. Auger electron spectroscopy was used to verify surface cleanliness, and low-energy electron diffraction was used to verify that the surface was annealed. The emission was found to be dependent on oxygen arrival rate. Two peaks were observed in the electron emission with exposure. Evidence is presented that the formation of the second peak corresponds to oxidation of the Mg surface. The results verify that electron emission occurs from a strain-free surface simply upon adsorption of oxygen. A qualitative explanation for the mechanisms of emission in terms of chemical effects is presented.

  3. Note: Development of fast heating inert gas annealing apparatus operated at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Das, S. C.; Majumdar, A.; Shripathi, T.; Hippler, R.

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCNx) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup.

  4. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  5. Combined Intercritical Annealing and Q&P Processing of Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    De Cooman, Bruno C.; Lee, Seon Jong; Shin, Sunmi; Seo, Eun Jung; Speer, John G.

    2017-01-01

    The microstructure and mechanical properties of intercritically annealed medium Mn steel are dependent on the selection of the intercritical annealing (IA) temperature. While the yield strength (YS) decreases with increasing IA temperature, the ultimate tensile strength increases with increasing IA temperature. Strain aging phenomena, both static and dynamic, are also often observed. The present contribution shows that, by combining IA with the quench and partitioning processing of the intercritical austenite, it is possible to obtain non-aging mechanical properties which combine a high YS with an ultra-high tensile strength. These properties are particularly suitable for automotive parts related to passenger safety.

  6. Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing.

    PubMed

    Turyanska, L; Elfurawi, U; Li, M; Fay, M W; Thomas, N R; Mann, S; Blokland, J H; Christianen, P C M; Patanè, A

    2009-08-05

    We show that the thermal annealing of thiol-capped PbS colloidal quantum dots provides a means of narrowing the nanoparticle size distribution, increasing the size of the quantum dots and facilitating their coalescence preferentially along the 100 crystallographic axes. We exploit these phenomena to tune the photoluminescence emission of an ensemble of dots and to narrow the optical linewidth to values that compare with those reported at room temperature for single PbS quantum dots. We probe the influence of annealing on the electronic properties of the quantum dots by temperature dependent studies of the photoluminescence and magneto-photoluminescence.

  7. Fermi level pinning in metal/Al{sub 2}O{sub 3}/InGaAs gate stack after post metallization annealing

    SciTech Connect

    Winter, R.; Krylov, I.; Cytermann, C.; Eizenberg, M.; Tang, K.; Ahn, J.; McIntyre, P. C.

    2015-08-07

    The effect of post metal deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al{sub 2}O{sub 3} interface.

  8. Surge-damping vacuum valve

    DOEpatents

    Bullock, Jack C.; Kelly, Benjamin E.

    1980-01-01

    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  9. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  10. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  11. Recursive Branching Simulated Annealing Algorithm

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew; Smith, J. Scott; Aronstein, David

    2012-01-01

    This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal

  12. Vacuum transitions and eternal inflation

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew C.

    In this thesis, we focus on aspects of inflation and eternal inflation arising in scalar field theories coupled to gravity which possess a number of metastable states. Such theories contain instantons that interpolate between the metastable potential minima, corresponding to the nucleation of bubbles containing a new phase in a background of the old phase. In the first part of this thesis, we describe the classical dynamics and quantum nucleation of vacuum bubbles. We classify all possible spherically symmetric, thin-wall solutions with arbitrary interior and exterior cosmological constant, and find that bubbles possessing a turning point are unstable to aspherical perturbations. Next, we turn to the quantum nucleation of bubbles with zero mass. Focusing on instantons interpolating between positive and negative energy minima, we find that there exists a "Great Divide" in the space of potentials, across which the lifetime of metastable states differs drastically. Generalizing a semi-classical Hamiltonian formalism to treat the nucleation of bubbles with nonzero mass, we show that a number of tunneling mechanisms can be unified in the thin-wall limit, and directly compare their probabilities. In the second part of this thesis, we discuss the measure problem in eternal inflation. We give a detailed analysis of the prospects for making predictions in eternal inflation, and describe the existing probability measures and the connections between them. We then show that all existing measures exhibit a number of rather generic phenomena, for example strongly weighting vacua that can undergo rapid transitions between each other. It is argued that making predictions will require a measure that weights histories as opposed to vacua, and we develop a formalism to addresses this. Finally, we assess the prospects for observing collisions between vacuum bubbles in an eternally inflating universe. Contrary to conventional wisdom, we find that under certain assumptions most

  13. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    PubMed Central

    Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    Summary This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process. PMID:25977868

  14. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation.

    PubMed

    Alvarado, Jose Alberto; Maldonado, Arturo; Juarez, Héctor; Pacio, Mauricio; Perez, Rene

    2015-01-01

    This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm), which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  15. Vacuum tool manipulator

    SciTech Connect

    Zollinger, W.T.

    1992-12-31

    This invention is comprised of an apparatus for manipulating a vacuum hose in a reactor vessel comprising a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  16. Edison's vacuum technology patents

    NASA Astrophysics Data System (ADS)

    Waits, Robert K.

    2003-07-01

    During 1879 Thomas Edison's Menlo Park, New Jersey laboratory developed the means to evacuate glass lamp globes to less than a mTorr in 20 min and in mid-1880 began production of carbon-filament incandescent lamps. Among Edison's nearly 1100 U.S. patents are five for vacuum pump improvements, and at least eight others that are vacuum-related; all applied for between 1880 and 1886. Inspired by an 1878 article by De La Rue and Müller [Philos. Trans. R. Soc. London, Ser. A 169, 155 (1878)] on studies of glow discharges, Edison devised a combination pump using the Geissler pump as a rough pump and the Sprengel pump for continuous exhaustion. Edison's patents described means to control the mercury flow and automate the delivery of the mercury to banks of up to a hundred pumps. Other patents described various means to remove residual gases during lamp processing.

  17. Vacuum tool manipulator

    DOEpatents

    Zollinger, W.T.

    1993-11-23

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm. 6 figures.

  18. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  19. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  1. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  2. Vacuum tool manipulator

    DOEpatents

    Zollinger, William T.

    1993-01-01

    Apparatus for manipulating a vacuum hose in a reactor vessel comprises a housing with two opposing openings, an arm carried by the housing and deployable from a stowed position essentially completely within the housing to an extended position where the arm extends through the two openings in a generally horizontal position. The arm preferably has a two-fingered gripping device for gripping the vacuum hose but may carry a different end effector such as a grinding wheel. The fingers are opened and closed by one air cylinder. A second air cylinder extends the device. A third air cylinder within the housing pivotally pulls the opposing end of the arm into the housing via a pivoting member pivotally connected between the third air cylinder shaft and the arm.

  3. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  4. An automated vacuum system

    SciTech Connect

    Atkins, W.H. ); Vaughn, G.D. ); Bridgman, C. )

    1991-01-01

    Software tools available with the Ground Test Accelerator (GTA) control system provide the capability to express a control problem as a finite state machine. System states and transitions are expressed in terms of accelerator parameters and actions are taken based on state transitions. This is particularly useful for sequencing operations which are modal in nature or are unwieldy when implemented with conventional programming. State diagrams are automatically translated into code which is executed by the control system. These tools have been applied to the vacuum system for the GTA accelerator to implement automatic sequencing of operations. With a single request, the operator may initiate a complete pump-down sequence. He can monitor the progress and is notified if an anomaly occurs requiring intervention. The operator is not required to have detailed knowledge of the vacuum system and is protected from taking inappropriate actions. 1 ref., 6 figs.

  5. TOPICAL REVIEW: Optimization using quantum mechanics: quantum annealing through adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Santoro, Giuseppe E.; Tosatti, Erio

    2006-09-01

    We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'planck' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models—double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schrödinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized.

  6. Vacuum: From Art to Exact Science.

    ERIC Educational Resources Information Center

    Lafferty, James M.

    1981-01-01

    Reviews the history of vacuum technology. Includes vacuum pump developments (mechanical, ion, and cyrogenic pumps), measurement techniques, the development of the American Vacuum Society, and electronics in vacuum technology. (JN)

  7. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  8. Correlation of grain growth phenomena with magnetic properties in non - oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Mangiorou, E.

    2016-03-01

    This paper presents a combination of two types of method targeted to investigate the stages of the microstructure evolution in annealed non-oriented electrical steels by means of magnetic measurements and metallographic analysis. The indirect magnetic testing, carried out by Barkhausen noise was associated with the direct structural investigation by Scanning Electron Microscopy measurements. The goal of this work was to study the influence of heat transport phenomena on grain growth processes in non-oriented electrical steels, which were subjected to different annealing conditions. The results determined from the magnetic measurements and predicted from micrograph observations show a relatively good concordance.

  9. Structure and decay in the QED vacuum

    NASA Astrophysics Data System (ADS)

    Labun, Lance Andrew

    This thesis is a guide to a selection of the author's published work that connect and contribute to understanding the vacuum of quantum electrodynamics in strong, prescribed electromagnetic fields. This theme is elaborated over the course of two chapters: The first chapter sets the context, defining the relevant objects and conditions of the study and reviewing established knowledge upon which this study builds. The second chapter organizes and explains important results appearing in the published work. The papers 1. (Labun and Rafelski, 2009) "Vacuum Decay Time in Strong External Fields" 2. (Labun and Rafelski, 2010a) "Dark Energy Simulacrum in Nonlinear Electrodynamics" 3. (Labun and Rafelski, 2010b) "QED Energy-Momentum Trace as a Force in Astrophysics" 4. (Labun and Rafelski, 2010c) "Strong Field Physics: Probing Critical Acceleration and Inertia with Laser Pulses and Quark-Gluon Plasma" 5. (Labun and Rafelski, 2010d) "Vacuum Structure and Dark Energy" 6. (Labun and Rafelski, 2011) "Spectra of Particles from Laser-Induced Vacuum Decay" are presented in their published format as appendices. Related literature is cited throughout the body where it directly supports the content of this overview; more extensive references are found within the attached papers. This study begins with the first non-perturbative result in quantum electrodynamics, a result obtained by Heisenberg and Euler (1936) for the energy of a zero-particle state in a prescribed, long-wavelength electromagnetic field. The resulting Euler-Heisenberg effective potential generates a nonlinear theory of electromagnetism and exhibits the ability of the electrical fields to decay into electron-positron pairs. Context for phenomena arising from the Euler-Heisenberg effective potential is established by considering the energy-momentum tensor of a general nonlinear electromagnetic theory. The mass of a field configuration is defined, and I discuss two of its consequences pertinent to efforts to observe

  10. Evaluation of the physical annealing strategy for simulated annealing: A function-based analysis in the landscape paradigm

    NASA Astrophysics Data System (ADS)

    Hasegawa, M.

    2012-05-01

    The effectiveness of the actual annealing strategy in finite-time optimization by simulated annealing (SA) is analyzed by focusing on the search function of the relaxation dynamics observed in the multimodal landscape of the cost function. The rate-cycling experiment, which was introduced in the previous study [M. Hasegawa, Phys. Rev. EPLEEE81063-651X 10.1103/PhysRevE.83.036708 83, 036708 (2011)] to examine the role of the relaxation dynamics in optimization, and the temperature-cycling experiment, which was developed for a laboratory experiment on relaxation-related phenomena, are conducted on two types of random traveling salesman problems (TSPs). In each experiment, the SA search starting from a quenched solution is performed systematically under a nonmonotonic temperature control used in the actual heat treatment of metals and glasses. The results show that, as in the previous monotonic cooling from a random solution, the optimizing ability is enhanced by allocating a lot of time to the search performed near an effective intermediate temperature irrespective of the annealing technique. In this productive phase, the relaxation dynamics successfully function as an optimizer and the relevant characteristics analogous to the stabilization phenomenon and the acceleration of relaxation, which are observed in glass-forming materials, play favorable roles in the present optimization. This nonmonotonic approach also has the advantage of a wider operation range of the effective relaxation dynamics, and in conclusion, the actual annealing strategy is useful and more workable than the conventional slow-cooling strategy, at least for the present TSPs. Further discussion is given of an illuminating aspect of computational physics analysis in the optimization algorithm research.

  11. Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Wang, Jiwei; Mei, Yong; Lu, Xuemei; Fan, Xiaoxing; Kang, Dawei; Xu, Panfeng; Tan, Tianya

    2016-11-01

    Post-treatments of Al-doped ZnO films fabricated by sol-gel method were studied in condition of annealing in air, vacuum and protective ambient, as well as the follow-up Ar+ sputtering cleaning. The effect of annealing pressure on resistivity of AZO films was investigated from 105 to 10-4 Pa, where the resistivity decreased four orders of magnitude as the pressure decreased and approached to its minimum at 10 Pa. It was observed that the main decreasing of resistivity occurred in a very narrow range of middle vacuum (between 100 and 10 Pa) and high vacuum was dispensable. The XRD and XPS characterizations demonstrated that the radical increasing of oxygen vacancy, Zn interstitial and substitution of Al3+ for Zn2+ under middle vacuum were responsible for the significant enhancement of conductivity. The follow-up Ar+ sputtering cleaning can further decrease the resistivity through removing the chemisorbed oxygen on film surface and grain boundaries, meanwhile fulfil the surface texture process, and thus improve both electrical and optical performances for applications.

  12. The effect of annealing ambient on the characteristics of an indium-gallium-zinc oxide thin film transistor.

    PubMed

    Park, Soyeon; Bang, Seokhwan; Lee, Seungjun; Park, Joohyun; Ko, Youngbin; Jeon, Hyeongtag

    2011-07-01

    In this study, the effects of different annealing conditions (air, O2, N2, vacuum) on the chemical and electrical characteristics of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFT) were investigated. The contact resistance and interface properties between the IGZO film and the gate dielectric improved after an annealing treatment. However, the chemical bonds in the IGZO bulk changed under various annealing atmospheres, which, in turn, altered the characteristics of the TFTs. The TFTs annealed in vacuum and N2 ambients exhibited undesired switching properties due to the high carrier concentration (>10(17) cm(-3)) of the IGZO active layer. In contrast, the IGZO TFTs annealed in air and oxygen ambients displayed clear transfer characteristics due to an adequately adjusted carrier concentration in the operating range of the TFT. Such an optimal carrier concentration arose through the stabilization of unstable chemical bonds in the IGZO film. With regard to device performance, the TFTs annealed in O2 and air exhibited saturation mobility values of 8.29 and 7.54 cm2/Vs, on-off ratios of 7.34 x 10(8) and 3.95 x 10(8), and subthreshold swing (SS) values of 0.23 and 0.19 V/decade, respectively. Therefore, proper annealing ambients contributed to internal modifications in the IGZO structure and led to an enhancement in the oxidation state of the metal. As a result, defects such as oxygen vacancies were eliminated. Oxygen annealing is thus effective for controlling the carrier concentration of the active layer, decreasing electron traps, and enhancing TFT performance.

  13. Influence of annealing effects on polyaniline for good microstructural modification

    PubMed Central

    Begum, A. Nishara; Dhachanamoorthi, N.; saravanan, M.E. Raja; Jayamurugan, P.; Manoharan, D.; Ponnuswamy, V.

    2013-01-01

    H2SO4 doped polyaniline (PANI) has synthesized by chemical oxidation method. The prepared Polyaniline were annealed at 150 °C, 200 °C and 250 °C for 30 min in vacuum. Crystal size, percentage of crystallinity, total percentage of crystallinity properties of untreated and heat treated PANI samples were studied by using X-ray diffraction pattern. The molecular structure of untreated and heat treated samples were examined by using Fourier transform infrared spectrophotometer. UV study shows π–π* transition of untreated and heat treated of polyaniline were found at 328 and 636 nm. The peak at 636 nm reveals the extension of conjugated polymer. Thermal properties of untreated and heat treated PANI sample measured by using thermo gravimetric analysis and differential scanning calorimetric spectroscopy. PMID:23378673

  14. Experimental signature of programmable quantum annealing.

    PubMed

    Boixo, Sergio; Albash, Tameem; Spedalieri, Federico M; Chancellor, Nicholas; Lidar, Daniel A

    2013-01-01

    Quantum annealing is a general strategy for solving difficult optimization problems with the aid of quantum adiabatic evolution. Both analytical and numerical evidence suggests that under idealized, closed system conditions, quantum annealing can outperform classical thermalization-based algorithms such as simulated annealing. Current engineered quantum annealing devices have a decoherence timescale which is orders of magnitude shorter than the adiabatic evolution time. Do they effectively perform classical thermalization when coupled to a decohering thermal environment? Here we present an experimental signature which is consistent with quantum annealing, and at the same time inconsistent with classical thermalization. Our experiment uses groups of eight superconducting flux qubits with programmable spin-spin couplings, embedded on a commercially available chip with >100 functional qubits. This suggests that programmable quantum devices, scalable with current superconducting technology, implement quantum annealing with a surprising robustness against noise and imperfections.

  15. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  16. Observations of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Nye, A. H.; Cram, L. E.; Beckers, J. M.; Thomas, J. H.

    1981-01-01

    A preliminary report of the results of one observing run based on data from one spectral line, the photospheric magnetic line Fe 6303, is presented as part of a series of observations of dynamical phenomena in sunspots using photographic spectra with the SPO vacuum tower telescope and echelle spectrograph. The ejection of a magnetic feature from the outer edge of the penumbra was observed. The initial total field strength of the feature was about 1000 gauss, which appeared to decrease as the feature moved away from the sunspot. The proper motion was about 2 km/s, and the velocity field measured in the V profile showed a downflow of 400 m/s on the spotward side of the moving magnetic feature. Umbral oscillations at the photospheric level with a herringbone structure characteristic of horizontally propagating waves, suggesting some overtone mode of membrane oscillation in the umbra, were seen. The peak amplitude of the oscillation was about 200 m/s, and the mean power spectrum had several clear peaks.

  17. Semantic search via concept annealing

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    2007-04-01

    Annealing, in metallurgy and materials science, is a heat treatment wherein the microstructure of a material is altered, causing changes in its properties such as strength and hardness. We define concept annealing as a lexical, syntactic, and semantic expansion capability (the removal of defects and the internal stresses that cause term- and phrase-based search failure) coupled with a directed contraction capability (semantically-related terms, queries, and concepts nucleate and grow to replace those originally deformed by internal stresses). These two capabilities are tied together in a control loop mediated by the information retrieval precision and recall metrics coupled with intuition provided by the operator. The specific representations developed have been targeted at facilitating highly efficient and effective semantic indexing and searching. This new generation of Find capability enables additional processing (i.e. all-source tracking, relationship extraction, and total system resource management) at rates, precisions, and accuracies previously considered infeasible. In a recent experiment, an order magnitude reduction in time to actionable intelligence and nearly three orderss magnitude reduction in false alarm rate was achieved.

  18. Annealing of aromatic polyimide precursors

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1975-01-01

    A study has been made of the thermal behavior of polyimide precursors: an isomeric pair of crystals of the complex formed by p-phenylenediamine with the separated isomers of the di-isopropyl ester of pyromellitic acid. Specimens of this material were isothermally annealed in the temperature range 120 C to 170 C for periods of time up to 1 week. Although this temperature range is well below that customarily used for imidizations, the working hypothesis was that it would be more likely that a polymer embodying at least part of the precursor structure could be formed if the molecular motion was minimized to that actually required for the formation of the imide linkage. The progress of the annealing was followed by: infrared spectroscopy, differential thermal analysis, powder X-ray diffraction, and thermal gravimetric analysis. Single crystal X-ray analysis of the meta monomer yields a structure of chains of alternating acid and base and suggests that this monomer is amenable to polymerization with a minimum of geometrical disruption.

  19. Photoluminescence of annealed biomimetic apatites.

    PubMed

    Zollfrank, Cordt; Müller, Lenka; Greil, Peter; Müller, Frank A

    2005-11-01

    Biomimetic apatite coatings are widely used in orthopaedic applications to provide bioinert material surfaces with bioactive behaviour by means of initiating bone growth at the implant surface. In this study we manufactured biomimetic calcium phosphate coatings consisting of a calcium deficient carbonated apatite by immersing activated titanium platelets into simulated body fluid. The development of the crystal phases was monitored by X-ray diffractometry in addition to Fourier-transform infrared spectroscopy. The microstructure of the biomimetic apatites and phase composition was analysed using scanning and transmission electron microscopy as well as attached energy dispersive X-ray spectrometry. The samples were annealed in air yielding in an inherent luminescence of the biomimetic apatite up to temperatures of 600 degrees C. The photo-induced emission spectra were recorded in the range from 400 to 750 nm at excitation wavelengths ranging 310-450 nm. A blue (437 nm) and a green (561 nm) emission were found between 200 and 600 degrees C visually appearing white. Photoluminescence of annealed biomimetic apatites might be of interest for histological probing and monitoring of bone re-modelling. The results are discussed in terms of chemical and crystallographic changes in the calcium phosphate layer during heat treatment.

  20. Mathematical methods of studying physical phenomena

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of

  1. Influence of post-annealing on electrical, structural and optical properties of vanadium oxide thin films

    NASA Astrophysics Data System (ADS)

    Mustafa Öksüzoğlu, Ramis; Bilgiç, Pınar; Yıldırım, Mustafa; Deniz, Okan

    2013-06-01

    Vanadium oxide thin films were grown onto quartz substrates using the pulsed DC reactive magnetron sputtering technique at room temperature and afterwards post annealed under vacuum conditions in the temperature range from 75 to 230 °C. The electrical resistance, temperature coefficient of resistance (TCR), optical energy gap and structural properties were investigated. The films are amorphous, nanoscale grained V2O5 phase and the mean grain size increases with increasing temperature. Additionally, the post-annealing at 230 °C induces formation of both V2O5 and V4O9 phases and pinholes on the film surface. The temperature dependent variation of the electrical resistance indicates two activation energy areas corresponding to two TCR values for the films post annealed up to 180 °C, but only one activation area was found after annealing at 230 °C. Analyses of the absorption coefficient versus photon energy revealed a direct forbidden transition. The mean grain size and TCR values increase with increasing post-annealing temperature, whereas the optical energy gap and electrical resistance do not follow this tendency. The evolution of the structure and its correlation to the optical energy gap, electrical resistance, activation energy and TCR were discussed by means of the results obtained in the present study.

  2. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-08-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  3. Transport Phenomena and Materials Processing

    NASA Astrophysics Data System (ADS)

    Kou, Sindo

    1996-10-01

    An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer

  4. Vacuum bell therapy

    PubMed Central

    Sesia, Sergio

    2016-01-01

    Background For specific therapy to correct pectus excavatum (PE), conservative treatment with the vacuum bell (VB) was introduced more than 10 years ago in addition to surgical repair. Preliminary results using the VB were encouraging. We report on our 13-year experience with the VB treatment including the intraoperative use during the Nuss procedure and present some technical innovations. Methods A VB with a patient-activated hand pump is used to create a vacuum at the anterior chest wall. Three different sizes of vacuum bells, as well as a model fitted for young women, exist. The appropriate size is selected according to the individual patient’s age and ventral surface. The device should be used at home for a minimum of 30 minutes (twice a day), and may be used up to a maximum of several hours daily. The intensity of the applied negative pressure can be evaluated with an integrated pressure gauge during follow-up visits. A prototype of an electronic model enables us to measure the correlation between the applied negative pressure and the elevation of the anterior chest wall. Results Since 2003, approx. 450 patients between 2 to 61 years of age started the VB therapy. Age and gender specific differences, depth of PE, symmetry or asymmetry, and concomitant malformations such as scoliosis and/or kyphosis influence the clinical course and success of VB therapy. According to our experience, we see three different groups of patients. Immediate elevation of the sternum was confirmed thoracoscopically during the Nuss procedure in every patient. Conclusions The VB therapy has been established as an alternative therapeutic option in selected patients suffering from PE. The initial results up to now are encouraging, but long-term results comprising more than 15 years are so far lacking, and further evaluation and follow-up studies are necessary. PMID:27747177

  5. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  6. Undergraduates' understanding of cardiovascular phenomena.

    PubMed

    Michael, Joel A; Wenderoth, Mary Pat; Modell, Harold I; Cliff, William; Horwitz, Barbara; McHale, Philip; Richardson, Daniel; Silverthorn, Dee; Williams, Stephen; Whitescarver, Shirley

    2002-12-01

    Undergraduates students in 12 courses at 8 different institutions were surveyed to determine the prevalence of 13 different misconceptions (conceptual difficulties) about cardiovascular function. The prevalence of these misconceptions ranged from 20 to 81% and, for each misconception, was consistent across the different student populations. We also obtained explanations for the students' answers either as free responses or with follow-up multiple-choice questions. These results suggest that students have a number of underlying conceptual difficulties about cardiovascular phenomena. One possible source of some misconceptions is the students' inability to apply simple general models to specific cardiovascular phenomena. Some implications of these results for teachers of physiology are discussed.

  7. Rolling through a vacuum

    NASA Astrophysics Data System (ADS)

    van der Schaar, Jan Pieter; Yang, I.-Sheng

    2013-12-01

    We clarify under what conditions slow-roll inflation can continue almost undisturbed, while briefly evolving through a (semi-classically) metastable false vacuum. Furthermore, we look at potential signatures in the primordial power spectrum that could point towards the existence of traversed metastable false vacua. Interestingly, the theoretical constraints for the existence of traversable metastable vacua imply that Planck should be able to detect the resulting features in the primordial power spectrum. In other words, if Planck does not see features this immediately implies the non-existence of metastable false vacua rolled through during the inflationary epoch.

  8. Avoiding Death by Vacuum

    NASA Astrophysics Data System (ADS)

    Barroso, A.; Ferreira, P. M.; Ivanov, I.; Santos, R.; Silva, João P.

    2013-07-01

    The two-Higgs doublet model (2HDM) can have two electroweak breaking, CP-conserving, minima. The possibility arises that the minimum which corresponds to the known elementary particle spectrum is metastable, a possibility we call the "panic vacuum". We present analytical bounds on the parameters of the softly broken Peccei-Quinn 2HDM which are necessary and sufficient conditions to avoid this possibility. We also show that, for this particular model, the current LHC data already tell us that we are necessarily in the global minimum of the theory, regardless of any cosmological considerations about the lifetime of the false vacua.

  9. Vacuum Beat Wave Accelerator

    NASA Astrophysics Data System (ADS)

    Moore, C. I.; Hafizi, B.; Ting, A.; Burris, H. R.; Sprangle, P.; Esarey, E.; Ganguly, A.; Hirshfield, J. L.

    1997-11-01

    The Vacuum Beat Wave Accelerator (VBWA) is a particle acceleration scheme which uses the non-linear ponderomotive beating of two different frequency laser beams to accelerate electrons. A proof-of-principle experiment to demonstrate the VBWA is underway at the Naval Research Laboratory (NRL). This experiment will use the beating of a 1054 nm and 527 nm laser pulse from the NRL T-cubed laser to generate the beat wave and a 4.5 MeV RF electron gun as the electron source. Simulation results and the experimental design will be presented. The suitability of using axicon or higher order Gaussian laser beams will also be discussed.

  10. Thermal Vacuum Test Facility.

    DTIC Science & Technology

    1984-01-31

    tne power has a rear terminal sensor input for this Probe, use it. Otherwiseq connect the probe to the front panel. The end of the sensor should be...outlet on the front panel of the vacuum chamber. BUS CONNECTtONS: Plug the 1/0 expander card into one of the three calculator slots. Cover the other two...mating cable. Soth connectors on the slave disk are identical, so either one can be used. This cable also locks into place at each end . Connect the other

  11. Controlling the growth of ZnO quantum dots embedded in silica by Zn/F sequential ion implantation and subsequent annealing.

    PubMed

    Ren, F; Zhang, L Y; Xiao, X H; Cai, G X; Fan, L X; Liao, L; Jiang, C Z

    2008-04-16

    We report the formation of embedded ZnO quantum dots (QDs) by Zn and F ion sequential implantation and subsequent annealing. Optical absorption and photoluminescence spectrum measurements, transmission electron microscopy bright field images and selected area electron diffraction patterns indicate that ZnO QDs were formed after annealing in air or vacuum at temperatures higher than 500 °C. Atomic force microscopy images show a comparatively flat surface of the annealed samples, which indicates that only very few Zn atoms are evaporated to the surfaces. The formation of ZnO QDs during the thermal annealing can be attributed to the direct oxidization of Zn nanoparticles by the oxygen molecules in the substrate produced during the implantation of F ions. The quality of ZnO QDs increases with the increase of annealing temperature.

  12. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  13. Neutronic optimization in high conversion Th-{sup 233}U fuel assembly with simulated annealing

    SciTech Connect

    Kotlyar, D.; Shwageraus, E.

    2012-07-01

    This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-{sup 233}U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density. (authors)

  14. "Un-annealed and Annealed Pd Ultra-Thin Film on SiC Characterized by Scanning Probe Microscopy and X-ray Photoelectron Spectroscopy"

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.

  15. Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

    SciTech Connect

    Simimol, A.; Manikandanath, N. T.; Chowdhury, Prasanta; Barshilia, Harish C.; Anappara, Aji A.

    2014-08-21

    Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantly by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.

  16. DOE`s annealing prototype demonstration projects

    SciTech Connect

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.

  17. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  18. Motor actuated vacuum door

    NASA Astrophysics Data System (ADS)

    Hanagud, A. V.

    1986-10-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  19. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  20. Quantum Phenomena Observed Using Electrons

    SciTech Connect

    Tonomura, Akira

    2011-05-06

    Electron phase microscopy based on the Aharonov-Bohm (AB) effect principle has been used to illuminate fundamental phenomena concerning magnetism and superconductivity by visualizing quantitative magnetic lines of force. This paper deals with confirmation experiments on the AB effect, the magnetization process of tiny magnetic heads for perpendicular recording, and vortex behaviors in high-Tc superconductors.

  1. Discovery potential for new phenomena

    SciTech Connect

    Godfrey, S.; Hewett, J.L.; Price, L.E.

    1997-03-01

    The authors examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. The authors first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. They then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales.

  2. Visualizing Chemical Phenomena in Microdroplets

    ERIC Educational Resources Information Center

    Lee, Sunghee; Wiener, Joseph

    2011-01-01

    Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of…

  3. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  4. Engineering of nanoscale defect patterns in CeO2 nanorods via ex situ and in situ annealing.

    PubMed

    Sakthivel, Tamil Selvan; Reid, David L; Bhatta, Umananda M; Möbus, Günter; Sayle, Dean C; Seal, Sudipta

    2015-03-12

    Single-crystalline ceria nanorods were fabricated using a hydrothermal process and annealed at 325 °C-800 °C. As-synthesized CeO2 nanorods contain a high concentration of defects, such as oxygen vacancies and high lattice strains. Annealing resulted in an improved lattice crystalline quality along with the evolution of novel cavity-shaped defects in the nanorods with polyhedral morphologies and bound by e.g. {111} and {100} (internal) surfaces, confirmed for both air (ex situ) and vacuum (in situ) heating. We postulate that the cavities evolve via agglomeration of vacancies within the as-synthesized nanorods.

  5. Optimization Via Open System Quantum Annealing

    DTIC Science & Technology

    2016-01-07

    mapping between the Ising spin glass partition function and circuit model decision problems, discovered in a previous ARO Quantum Algorithms funded...of tunneling in providing quantum annealing speedup over classical algorithms • Characterized the effects of classical hardness on the performance...15 Annual APS March meeting, Tutorial on Quantum Annealing 12/14 Quantum Sensing, Metrology, and Algorithms Workshop, Northrop Grumman, Los

  6. Modernizing quantum annealing using local searches

    NASA Astrophysics Data System (ADS)

    Chancellor, Nicholas

    2017-02-01

    I describe how real quantum annealers may be used to perform local (in state space) searches around specified states, rather than the global searches traditionally implemented in the quantum annealing algorithm (QAA). Such protocols will have numerous advantages over simple quantum annealing. By using such searches the effect of problem mis-specification can be reduced, as only energy differences between the searched states will be relevant. The QAA is an analogue of simulated annealing, a classical numerical technique which has now been superseded. Hence, I explore two strategies to use an annealer in a way which takes advantage of modern classical optimization algorithms. Specifically, I show how sequential calls to quantum annealers can be used to construct analogues of population annealing and parallel tempering which use quantum searches as subroutines. The techniques given here can be applied not only to optimization, but also to sampling. I examine the feasibility of these protocols on real devices and note that implementing such protocols should require minimal if any change to the current design of the flux qubit-based annealers by D-Wave Systems Inc. I further provide proof-of-principle numerical experiments based on quantum Monte Carlo that demonstrate simple examples of the discussed techniques.

  7. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E.; Sparrow, Robert

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  8. Understanding the microwave annealing of silicon

    NASA Astrophysics Data System (ADS)

    Fu, Chaochao; Wang, Yan; Xu, Peng; Yue, Lei; Sun, Feng; Zhang, David Wei; Zhang, Shi-Li; Luo, Jun; Zhao, Chao; Wu, Dongping

    2017-03-01

    Though microwave annealing appears to be very appealing due to its unique features, lacking an in-depth understanding and accurate model hinder its application in semiconductor processing. In this paper, the physics-based model and accurate calculation for the microwave annealing of silicon are presented. Both thermal effects, including ohmic conduction loss and dielectric polarization loss, and non-thermal effects are thoroughly analyzed. We designed unique experiments to verify the mechanism and extract relevant parameters. We also explicitly illustrate the dynamic interaction processes of the microwave annealing of silicon. This work provides an in-depth understanding that can expedite the application of microwave annealing in semiconductor processing and open the door to implementing microwave annealing for future research and applications.

  9. Reduced annealing temperatures in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.

    1981-01-01

    Cells irradiated to a fluence of 5x10,000,000,000,000/square cm showed short circuit current on annealing at 200 C, with complete annealing occurring at 275 C. Cells irradiated to 100,000,000,000,000/square cm showed a reduction in annealing temperature from the usual 500 to 300 C. Annealing kinetic studies yield an activation energy of (1.5 + or - 2) eV for the low fluence, low temperature anneal. Comparison with activation energies previously obtained indicate that the presently obtained activation energy is consistent with the presence of either the divacancy or the carbon interstitial carbon substitutional pair, a result which agrees with the conclusion based on defect behavior in boron-doped silicon.

  10. Investigation of the room temperature annealing peak in ionomers

    SciTech Connect

    Goddard, R.J.; Grady, B.P.; Cooper, S.L.

    1993-12-31

    A number of studies appearing in the literature have documented an endothermic peak in differential scanning calorimetry (DSC) scans for ethylene-methacrylic acid copolymer ionomers which appears only upon annealing at room temperature. This peak has been attributed to either polyethylene crystallites, ionic crystallite, or water absorption. In a novel polyurethane cationomer with a quarternized amine contained in hard segment, the same phenomena has been found in DSC scans when the neutralizing anion is bromine or iodine. Since this material does not crystallize, the authors were able to conclusively eliminate crystallization as the cause of the endotherm. The extended x-ray absorption fine structure (EXAFS) of bromine has been measured to differentiate between water absorption and ionic crystallites. Spectra were collected above and below the temperature corresponding to the endothermic peak. The results of the EXAFS analysis will be presented.

  11. LIGO vacuum system study

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Moore, Boude C.

    1988-01-01

    A laser interferometer gravitational wave observatory (LIGO) is being developed with sensitivities which will have a high probability of detecting gravitational waves from astrophysical sources. A major component of LIGO is a total of 16 km of 1.2 m (48 inch) diameter tube at a pressure of less than 10 to the minus 8th power torr. It will be of 304L stainless steel procured directly from the steel mills with the initial hydrogen content specially reduced. Projections of the outgassing rates of hydrogen and of water vapor as a function of time are given and the uncertainties discussed. Based on these, a preliminary analysis of the vacuum system is presented.

  12. ULTRA HIGH VACUUM VALVE

    DOEpatents

    Fry, W.A.

    1962-05-29

    A valve for high vacuum applications such as the CStellarator where chamber pressures as low as 2 x 10/sup -10/ mm Hg are necessary is designed with a line-of-sight path through the valve for visual inspection of the contents of reactants in such chambers. The valve comprises a turnable resilient metal ball having an aperture therethrough, means for selectively turning the ball to rotate the axis of its line-of-sight path, and soft, deformable opposing orifices that are movable relatively toward said ball to seal with opposite ball surfaces upon said movement of said axis of said line-of-sight path. The valve also includes a bellows seal connected between said orifices and internal actuating means that eliminates the requirement for gasketed turnable valve closing stems. (AEC)

  13. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  14. Miniature ion-sorption vacuum pump with CNT field-emission electron source

    NASA Astrophysics Data System (ADS)

    Grzebyk, T.; Górecka-Drzazga, A.

    2013-01-01

    Generation and maintenance of the high vacuum in the MEMS-type (micro-electro-mechanical system) microsystems and vacuum nanoelectronics devices remain a major problem today. The phenomena of gas desorption from the surface of a microcavity and outgassing of materials limit the vacuum to the level of about 10-1 Pa. In this paper, a new MEMS-type micropump for generating a high vacuum in a microcavity is presented. The main component of the ion-sorption micropump is a carbon nanotube (CNT) field-emission electron source. Test structures of the electron source with electrophoretically deposited CNT have been fabricated and measured. A satisfactory value of the emission current and a low turn-on voltage have been obtained. The elaborated electron source has been applied to the micropump structure; it has enabled us to achieve a vacuum level below 10-3 Pa.

  15. Vacuum Energy Sequestering and Graviton Loops.

    PubMed

    Kaloper, Nemanja; Padilla, Antonio

    2017-02-10

    We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.

  16. Vacuum Energy Sequestering and Graviton Loops

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio

    2017-02-01

    We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.

  17. Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability

    SciTech Connect

    Mishra, Y. K.; Adelung, R.; Chakravadhanula, V. S. K.; Hrkac, V.; Kienle, L.; Jebril, S.; Agarwal, D. C.; Avasthi, D. K.; Mohapatra, S.

    2012-09-15

    The growth of gold nanoparticles and ZnO nanorods in atom beam co-sputtered Au-ZnO nanocomposite (NC) system by annealing at two different ambient conditions is demonstrated in this work. Annealing in a furnace at 600 Degree-Sign C (air environment) confirmed the formation of ZnO nanorods surrounded with Au nanoparticles. In-situ annealing inside a transmission electron microscope (TEM) led to the formation of gold nanocrystals with different polygonal shapes. TEM micrographs were obtained in real time at intermediate temperatures of 300 Degree-Sign C, 420 Degree-Sign C, and 600 Degree-Sign C under vacuum. The growth mechanisms of Au nanocrystals and ZnO nanorods are discussed in the framework of Au-Zn eutectic and Zn-melting temperatures in vacuum and air, respectively. Current-voltage responses of Au-ZnO NC nanorods in dark as well as under light illumination have been investigated and photoswitching in Au-ZnO NC system is reported. The photoswitching has been discussed in terms of Au-ZnO band-diagram.

  18. Vacuum Ultraviolet and Infrared Spectra of Condensed Methyl Acetate on Cold Astrochemical Dust Analogs

    NASA Astrophysics Data System (ADS)

    Sivaraman, B.; Nair, B. G.; Lo, J.-I.; Kundu, S.; Davis, D.; Prabhudesai, V.; Raja Sekhar, B. N.; Mason, N. J.; Cheng, B.-M.; Krishnakumar, E.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH3COOCH3) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  19. Breather cloth for vacuum curing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1979-01-01

    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  20. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  1. Vacuum Enhanced Cutaneous Biopsy Instrument

    SciTech Connect

    Collins, Joseph

    1999-06-25

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  2. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  3. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  4. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  5. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  6. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  7. Single event phenomena: A summary

    NASA Astrophysics Data System (ADS)

    Price, W. E.; Coss, J. R.

    1989-04-01

    Single event phenomena (SEP) are effects resulting from a single particle inducing a significant response in an integrated circuit. SEP are of greatest concern to spacecraft designers but are becoming of concern to avionics and large earth-bound electronic systems due to the continual reduction in size (which increases SEP sensitivity) of circuit elements. The phenomena include soft error and multiple errors in memory cells or logic latches, latchup, MOSFET power device burnout, MNOS punch-through and transients. Cyclotron and Van de Graaff accelerators are used to produce heavy ions, protons and neutrons which induce SEP effects. Methods of testing are described. Solutions to SEP are varied, but include parts substitutions or redesign and software solutions which will be described.

  8. Molecular model for chirality phenomena.

    PubMed

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  9. Statistical phenomena in particle beams

    SciTech Connect

    Bisognano, J.J.

    1984-09-01

    Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability.

  10. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  11. Thermodynamic constraints on fluctuation phenomena

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  12. New phenomena searches at CDF

    SciTech Connect

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  13. Visualization of solidification front phenomena

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.

    1993-01-01

    Directional solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental platform which minimizes variables in solidification experiments. Because of the wide-spread use of this experimental technique in space-based research, it has become apparent that a better understanding of all the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible.

  14. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  15. Unsteady Aerodynamic Phenomena in Turbomachines

    DTIC Science & Technology

    1990-02-01

    The first part of a systematic variation of important parameters shows their influence on the aerodynamic forces and moments coefficients . 2-2...real physical phenomena. Besides, for reasons of stability it in necessary to introduce an additional damping coefficient , which depends on the... coefficients for the "Fourth Standard Configu- ration No. 4" /10/, using a mesh with 51 x 17 points (Fig. I). This grid represents a typical section of

  16. Bubbling the false vacuum away

    SciTech Connect

    Gleiser, M.; Rogers, B.; Thorarinson, J.

    2008-01-15

    We investigate the role of nonperturbative, bubblelike inhomogeneities on the decay rate of false-vacuum states in two- and three-dimensional scalar field theories. The inhomogeneities are induced by setting up large-amplitude oscillations of the field about the false vacuum, as, for example, after a rapid quench or in certain models of cosmological inflation. We show that, for a wide range of parameters, the presence of large-amplitude bubblelike inhomogeneities greatly accelerates the decay rate, changing it from the well-known exponential suppression of homogeneous nucleation to a power-law suppression. It is argued that this fast, power-law vacuum decay--known as resonant nucleation--is promoted by the presence of long-lived oscillons among the nonperturbative fluctuations about the false vacuum. A phase diagram is obtained distinguishing three possible mechanisms for vacuum decay: homogeneous nucleation, resonant nucleation, and crossover. Possible applications are briefly discussed.

  17. Hadron Contribution to Vacuum Polarisation

    NASA Astrophysics Data System (ADS)

    Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.

    2016-10-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.

  18. Precision Laser Annealing of Focal Plane Arrays

    SciTech Connect

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea; Verley, Jason C.; Jenkins, Mark W.

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  19. Theory of quantum annealing of an Ising spin glass.

    PubMed

    Santoro, Giuseppe E; Martonák, Roman; Tosatti, Erio; Car, Roberto

    2002-03-29

    Probing the lowest energy configuration of a complex system by quantum annealing was recently found to be more effective than its classical, thermal counterpart. By comparing classical and quantum Monte Carlo annealing protocols on the two-dimensional random Ising model (a prototype spin glass), we confirm the superiority of quantum annealing relative to classical annealing. We also propose a theory of quantum annealing based on a cascade of Landau-Zener tunneling events. For both classical and quantum annealing, the residual energy after annealing is inversely proportional to a power of the logarithm of the annealing time, but the quantum case has a larger power that makes it faster.

  20. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    PubMed

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  1. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  2. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  3. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  4. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  5. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake...

  6. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  7. Annealing and structural properties of composite films

    NASA Astrophysics Data System (ADS)

    Kotov, L. N.; Ustyugov, V. A.; Vlasov, V. S.; Turkov, V. K.; Dianov, M. Yu; Antonets, I. V.; Kalinin, Yu E.; Sitnikov, A. V.; Golubev, E. A.

    2017-02-01

    The composite films were investigated by AFM methods before and after annealing. Topographic and phase-contrast AFM images of the composite films at different annealing temperature were obtained. The separate metal granules and larger-scale labyrinth-like formations were described. These formations appear by the process of the film growth, also by film annealing. Strong changes of the structural properties of the films are observed after the percolation transition. The significant changes of the structural properties are connected with nanostructural transformations in the metal granules topology and presence of metal crystal phase.

  8. Exchange-diffusion reactions in HfSiON during annealing studied by Rutherford backscattering spectrometry, nuclear reaction analysis and narrow resonant nuclear reaction profiling

    NASA Astrophysics Data System (ADS)

    Miotti, L.; Bastos, K. P.; Soares, G. V.; Driemeier, C.; Pezzi, R. P.; Morais, J.; Baumvol, I. J. R.; Rotondaro, A. L. P.; Visokay, M. R.; Chambers, J. J.; Quevedo-Lopez, M.; Colombo, L.

    2004-11-01

    HfSiON films deposited on Si (001) by reactive sputtering were submitted to rapid thermal annealing at 1000°C in vacuum, N2 and O2 atmospheres. The stability of the dielectric was evaluated by measuring the atomic transport and exchange of the chemical species, using Rutherford backscattering spectrometry, nuclear reaction analysis and narrow resonant nuclear reaction profiling. Annealing in O2 ambient reduced the N concentration mainly from near-surface regions where oxygen was incorporated in comparable amounts. Vacuum annealing, on the other hand, induced N loss preferentially from the Si/dielectric interface and O loss preferentially from near-surface regions. The results are explained in terms of exchange-diffusion reactions occurring in the HfSiON.

  9. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  10. Segregation phenomena in Nd-Fe-B nanoparticles

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Pohl, D.; Schultz, L.; Rellinghaus, B.

    2015-04-01

    We report on the phase stability and phase formation of Nd-Fe-B nanoparticles from the gas phase in the size range from 10 to 25 nm. Particular attention is paid to the question, if the intermetallic Nd2Fe_{14}B phase also forms in free particles with a few nanometers in size that grow without contact to any solid or liquid matrix in a low pressure Ar atmosphere. The paper also addresses the possible influence of segregation phenomena that go along with the phase formation and the effect of (rapid) thermal annealing on the structure and phase stability of the particles. Aberration-corrected transmission electron microscopy in combination with spectroscopic methods was used to determine the local atomic structure and the chemical composition of the particles. Unheated particles are found to be mainly amorphous, while the rapidly optically annealed particles are crystalline. In both cases, we observe an enrichment of Nd in the shell of the particles and a Fe enrichment in the core. This segregation of Nd toward the particles' surface is more pronounced in heated particles, which form a clear core-shell structure with a Fe core surrounded by a Nd2O3 shell. This finding is attributed to the comparably small surface energy and the higher affinity of Nd to oxygen as compared to Fe. A simple model is introduced and used in order to estimate these surface energies. These estimations support the experimentally observed segregation phenomena. It is further found that B prefers the vicinity of Fe over that of Nd atoms, which as a consequence leads to a B enrichment in the Fe-rich parts of the particles. Magnetic measurements show a soft magnetic behavior for both, unheated and heated Nd-Fe-B nanoparticles.

  11. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  12. Interplay between relaxation and Sn segregation during thermal annealing of GeSn strained layers

    NASA Astrophysics Data System (ADS)

    Comrie, C. M.; Mtshali, C. B.; Sechogela, P. T.; Santos, N. M.; van Stiphout, K.; Loo, R.; Vandervorst, W.; Vantomme, A.

    2016-10-01

    The effect of thermal annealing on epitaxial GeSn (6.5% Sn) strained layers grown on Ge-buffered Si(100) wafers has been investigated using Rutherford backscattering spectrometry and X-ray diffraction to unambiguously determine the Sn substitutional content as well as the elastic strain in the layers. Vacuum annealing at temperatures below 400 °C for 20 min has no noticeable effect on the strain in the epitaxial layers. Once the temperature was raised above 400 °C, however, relaxation of the layer sets in and the GeSn layer has essentially completely relaxed following a 20 min anneal at 650 °C. Using Rutherford backscattering and channelling spectrometry to provide compositional information as a function of depth enables one to monitor the effect of the thermal anneal on the Sn distribution throughout the layer, and also to directly extract their substitutional fraction (i.e., their solubility in the lattice). The results obtained show that when the relaxation initially sets in both the Ge and the Sn remain firmly bound in substitutional lattice sites and it is only around 600 °C, and after substantial relaxation has taken place, that Sn is finally expelled from lattice sites and diffuses to the surface of the sample.

  13. Photo annealing effect on p-doped inverted organic solar cell

    SciTech Connect

    Lafalce, Evan; Toglia, Patrick; Lewis, Jason E.; Jiang, Xiaomei

    2014-06-28

    We report the transient positive photo annealing effect in which over 600% boost of power conversion efficiency was observed in inverted organic photovoltaic devices (OPV) made from P3HT/PCBM by spray method, after 2 hrs of constant solar AM 1.5 irradiation at low temperature. This is opposite to usual photodegradation of OPV, and cannot be explained by thermal activation alone since the mere temperature effect could only account for 30% of the enhancement. We have investigated the temperature dependence, cell geometry, oxygen influence, and conclude that, for p-doped active layer at room temperature, the predominant mechanism is photo-desorption of O{sub 2}, which eliminates electron traps and reduces space charge screening. As temperature decreases, thermal activation and deep trap-state filling start to show noticeable effect on the enhancement of photocurrent at intermediate low temperature (T = 125 K). At very low temperature, the dominant mechanism for photo annealing is trap-filling, which significantly reduces recombination between free and trapped carriers. At all temperature, photo annealing effect depends on illumination direction from cathode or anode. We also explained the large fluctuation of photocurrent by the capture/reemit of trapped electrons from shallow electron traps of O{sub 2}{sup -} generated by photo-doping. Our study has demonstrated the dynamic process of photo-doping and photo-desorption, and shown that photo annealing in vacuum can be an efficient method to improve OPV device efficiency.

  14. Photo annealing effect on p-doped inverted organic solar cell

    NASA Astrophysics Data System (ADS)

    Lafalce, Evan; Toglia, Patrick; Lewis, Jason E.; Jiang, Xiaomei

    2014-06-01

    We report the transient positive photo annealing effect in which over 600% boost of power conversion efficiency was observed in inverted organic photovoltaic devices (OPV) made from P3HT/PCBM by spray method, after 2 hrs of constant solar AM 1.5 irradiation at low temperature. This is opposite to usual photodegradation of OPV, and cannot be explained by thermal activation alone since the mere temperature effect could only account for 30% of the enhancement. We have investigated the temperature dependence, cell geometry, oxygen influence, and conclude that, for p-doped active layer at room temperature, the predominant mechanism is photo-desorption of O2, which eliminates electron traps and reduces space charge screening. As temperature decreases, thermal activation and deep trap-state filling start to show noticeable effect on the enhancement of photocurrent at intermediate low temperature (T = 125 K). At very low temperature, the dominant mechanism for photo annealing is trap-filling, which significantly reduces recombination between free and trapped carriers. At all temperature, photo annealing effect depends on illumination direction from cathode or anode. We also explained the large fluctuation of photocurrent by the capture/reemit of trapped electrons from shallow electron traps of O2- generated by photo-doping. Our study has demonstrated the dynamic process of photo-doping and photo-desorption, and shown that photo annealing in vacuum can be an efficient method to improve OPV device efficiency.

  15. Investigation into the optoelectrical properties of tungsten oxide thin films annealed in an oxygen air

    SciTech Connect

    Arfaoui, A.; Ouni, B. Touihri, S.; Mannoubi, T.

    2014-12-15

    Tungsten oxide (WO{sub x}) thin film have been deposited onto glass substrates using the thermal vacuum evaporation technique, monitored by an annealing process in a variable oxygen atmosphere. Analysis by X-ray diffraction and Raman spectroscopy showed the structural changes from orthorhombic to monoclinic which depend on the annealing temperature and the oxygen content. AFM study shows that the increase of oxygen content leads to a decrease of the root-mean-square from 94.64 nm to 2 nm. Ellipsometric measurements have been used to evaluate the optical constants. Further, it is found that when the oxygen content increases, the band gap of the annealed layer varies from 3.01 eV to 3.52 eV by against, the Urbach energy decreases. The AC conductivity plot showed a universal power law according to the Jonscher model. Moreover, at high frequency semiconductor-to-metallic behavior has been observed. Finally, the effect of annealing in oxygen atmosphere on their structural modifications, morphological, optical properties and electrical conductivity are reported.

  16. Vacuum phenomenon: Clinical relevance.

    PubMed

    Gohil, Ishan; Vilensky, Joel A; Weber, Edward C

    2014-04-01

    Vacuum phenomenon (VP) is an anatomical entity of potential confusion in the diagnosis and evaluation of joint pathology. Observation of this phenomenon has been demonstrated on basic radiographs, computed tomography, and magnetic resonance imaging. Although VP is most often associated with degenerative joint disease, it is observed with other pathologies. Two problematic scenarios can occur: a false-positive diagnosis of serious pathology instead of benign VP and a false-negative diagnosis of benign VP with a more serious underlying process Despite this potential for confusion, criteria for distinguishing VP from other causes of joint pain and for evaluating a suspected case of VP have not been fully established. We reviewed the literature to determine underlying mechanism, symptomology, associated pathologies, and clinical importance of VP. The formation of VP can be explained by gas solubility, pressure-volume relationships, and human physiology. CT, GRE-MRI, and multipositional views are the best imaging studies to view VP. Although most cases of VP are benign, it can be associated with clinical signs and symptoms. VP outside the spine is an underreported finding on imaging studies. VP should be on the differential diagnosis for joint pain, especially in the elderly. We have proposed criteria for diagnosing VP and generated a basic algorithm for its workup. Underreporting of this phenomenon shows a lack of awareness of VP on the part of physicians. By identifying true anatomic VP, we can prevent harm from suboptimal treatment of patients.

  17. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  18. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  19. Quantum Vacuum Pathway Theory

    NASA Astrophysics Data System (ADS)

    Habegger, Eric John

    2005-02-01

    It is theorized that the quantum vacuum is a random electromagnetic field that permeates the universe. It will be shown that acceleration between a quark and a random electromagnetic energy field is an analog of the reaction between a charge moving at constant velocity with respect to an organized electromagnetic field. The difference is that with a quark any natural perpendicular deflection during that motion, as predicted by Lorentz, is contained by the strong force, which results in a change in the angular momentum of the spin of a quark. The first derivative of the equations of motion of charges in an organized electromagnetic field may be used when applied to a random electromagnetic field to invoke the same fields modeled by Maxwell's equations. Mass is intimately bound up with a quark's spin angular momentum and the energy for that increase comes directly from the local field. The underlying randomness of the local field normally remains intact through these energy exchanges but it is speculated that in a quantum entanglement, an absolute level of order is imposed on the field along a path between two particles. This causes the non local effects seen in quantum entanglement. The mechanism that may cause this effect is discussed and a simple experiment is proposed that can test the hypothesis. Also discussed are new theoretical constructs for electromagnetic radiation, mass, the skin effect, self-inductance, superposition, and gravity. The emphasis will be on an intuitive and logical approach more than a mathematical approach.

  20. Precooler Ring Vacuum System

    SciTech Connect

    Moenich, J.

    1980-10-02

    The precooler vacuum system, as proposed by FNAL, is based on a suitable modification of the existing Electron Cooling Ring System. Because of the magnetic cycle of the bending magnets, distributed ion pumping, as exists in the Electron Cooling Ring, is not applicable. Instead, the proposed pumping will be done with commercial appendage ion pumps mounted approximately every two meters around the circumference of the ring. The loss of effective pumping speed and non-uniformity of system pressure with appendage pumps may not be major considerations but the large number required does effect experimental and analytical equipment placement considerations. There is a distributed pumping technique available which: (1) is not affected by the magnetic cycle of the bending magnets; (2) will provide a minimum of four times the hydrogen pumping speed of the proposed appendage ion pumps; (3) will require no power during pumping after the strip is activated; (4) will provide the heat source for bakeout; (5) is easily replaceable; and (6) can be purchased, installed, and operated at a generous economic advantage over the presently proposed ion pumped system. The pumping technique referred to is non-evaporable gettering with ST101 Zr/Al pumping strip. A technical description of this pumping strip is given on Data Sheet 1 and 2 attached to this report.

  1. KEKB vacuum system

    NASA Astrophysics Data System (ADS)

    Kanazawa, K.; Kato, S.; Suetsugu, Y.; Hisamatsu, H.; Shimamoto, M.; Sato, M.; Shirai, M.

    2001-01-01

    For KEK B-factory (KEKB), two rings with a circumference of 3016 m, mainly made of copper have been constructed. One ring stores a maximum of 2.6 A positron beam with the energy at 3.5 GeV, the other stores 1.1 A, 8 GeV electron beam. These stored currents far exceed those of existing electron storage rings. The inside of a beam duct is designed to minimize an effect of beam induced fields. A gap between flanges is filled using Helicoflex as a vacuum seal. Contact force of a RF finger in a bellows is assured by the use of a spring finger. Pumping slots are backed by crossing bars to prevent the penetration of beam induced fields. To obtain a pressure of 10 -7 Pa with beam, a pumping speed is designed to realize 0.1 m 3 s -1 m -1 assuming that the photodesorption coefficient reaches 10 -6 molecules/photon. The NEG strip is used as a main pump element. Chemical polishing is applied to clean the extruded surface of copper chambers. Almost all chambers are baked before installation. Only ion pumps are baked in situ. From beginning to end, a completely oil free pumping system is used. The photodesorption coefficient at the start of the commissioning was slightly higher than expected, but the decrease of the coefficient is as expected on the whole. There is no trouble on the RF contact for bellows.

  2. Vacuum still bottoms viscometer

    SciTech Connect

    Dinsmore, T.V.; Wilson, J.H.

    1985-01-01

    A viscometer system that is capable of measuring VSB viscosity on-line has been designed, constructed, and tested. The viscometer will not only provide continuous on-line measurements for process control purposes, but will also determine viscosity as functions of temperature and shear rate. The latter results may be used to verify design-base information for direct coal liquefaction demonstration plants. The viscosities of Wilsonville samples of VSB and LSRC were determined as functions of shear rate and, in the case of LSRC, temperature. The VSB viscosity was found to be shear-rate sensitive, while the LSRC viscosity was temperature sensitive. A 24-h test run was unsuccessful, apparently because the check valves in the pump plugged; however, all other mechanical, electrical, and electronic equipment operated satisfactorily. The source of the plugging was thought to be degradation products, which should not cause difficulties in the pilot plant where fresh vacuum bottoms feed is always available. In summary, the results obtained in this study indicate that the viscometer system is ready to be transported to a plant such as Wilsonville and operated on-line. 7 figs., 5 tabs.

  3. Correlated randomness and switching phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  4. Photoelectron backscattering in vacuum phototubes

    NASA Astrophysics Data System (ADS)

    Lubsandorzhiev, B. K.; Vasiliev, R. V.; Vyatchin, Y. E.; Shaibonov, B. A. J.

    2006-11-01

    In this article we describe results of studies of a photoelectron backscattering effect in vacuum phototubes: classical photomultipliers (PMT) and hybrid phototubes (PH). Late pulses occurring in PMTs are attributed to the photoelectron backscattering and distinguished from pulses due to an anode glow effect. The late pulses are measured in a number of PMTs and HPs with various photocathode sizes covering 1 50 cm range and different types of the first dynode materials and construction designs. It is shown that the late pulses are a generic feature of all vacuum photodetectors—PMTs and PHs—and they do not deteriorate dramatically amplitude and timing responses of vacuum phototubes.

  5. Enthalpy relaxation and annealing effect in polystyrene.

    PubMed

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2013-07-01

    The effects of thermal history on the enthalpy relaxation in polystyrene are studied by differential scanning calorimetry. The temperature dependence of the specific heat in the liquid and the glassy states, that of relaxation time, and the exponent of the Kohlrausch-Williams-Watts function are determined by measurements of the thermal response against sinusoidal temperature variation. A phenomenological model equation previously proposed to interpret the memory effect in the frozen state is applied to the enthalpy relaxation and the evolution of entropy under a given thermal history is calculated. The annealing below the glass transition temperature produces two effects on enthalpy relaxation: the decay of excess entropy with annealing time in the early stage of annealing and the increase in relaxation time due to physical aging in the later stage. The crossover of these effects is reflected in the variation of temperature of the maximum specific heat observed in the heating process after annealing and cooling.

  6. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  7. Phenomena and Diosignes of Aratous

    NASA Astrophysics Data System (ADS)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  8. Improved electron collection in fullerene via caesium iodide or carbonate by means of annealing in inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    El Jouad, Zouhair; Louarn, Guy; Praveen, Thappily; Predeep, Padmanabhan; Cattin, Linda; Bernède, Jean-Christian; Addou, Mohammed; Morsli, Mustapha

    2014-05-01

    Inverted organic photovoltaic cells (IOPVCs), based on the planar heterojunction C60/CuPc, were grown using MoO3 as anode buffer layer and CsI or Cs2CO3 as cathode buffer layer (CBL), the cathode being an ITO coated glass. Work functions, Φf, of treated cathode were estimated using the cyclic voltammetry method. It is shown that Φf of ITO covered with a Cs compounds is decreased. This decrease is amplified by the annealing. It is shown that the thermal deposition under vacuum of the CBL induces a partial decomposition of the caesium compounds. In parallel, the formation of a compound with the In of ITO is put in evidence. This reaction is amplified by annealing, which allows obtaining IOPVCs with improved efficiency. The optimum annealing conditions is 150 °C for 5 min.

  9. Laser annealing of thin organic films

    NASA Astrophysics Data System (ADS)

    Agashkov, A. V.; Ivlev, G. D.; Filippov, V. V.; Kashko, I. A.; Shulitski, B. G.

    2010-09-01

    Microstructure of defects in organic solar cells containing PEDOT:PSS:Sorbitol layer has been studied and conditions for successful pulsed laser annealing of them have been determined. Investigation with oblique illumination showed that radial symmetry of fine structure is an intrinsic property of either separated discotic defects or block structure. Our study shows that pulsed laser annealing of organic thin films in inert atmosphere has promising future.

  10. Laser annealing of thin organic films

    NASA Astrophysics Data System (ADS)

    Agashkov, A. V.; Ivlev, G. D.; Filippov, V. V.; Kashko, I. A.; Shulitski, B. G.

    2011-02-01

    Microstructure of defects in organic solar cells containing PEDOT:PSS:Sorbitol layer has been studied and conditions for successful pulsed laser annealing of them have been determined. Investigation with oblique illumination showed that radial symmetry of fine structure is an intrinsic property of either separated discotic defects or block structure. Our study shows that pulsed laser annealing of organic thin films in inert atmosphere has promising future.

  11. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  12. Superheating, melting, and annealing of copper surfaces

    SciTech Connect

    Hakkinen, H.; Landman, U. )

    1993-08-16

    Dynamics of superheating, melting, and annealing processes at Cu(111) and Cu(110) surfaces, induced by laser-pulse irradiation, are investigated using molecular dynamics simulations, incorporating energy transfer from the electronic to the ionic degrees of freedom. Superheating occurs at Cu(111) for conditions that lead to melting of the Cu(110) surface. Highly damaged Cu(111) surfaces structurally anneal under the influence of a superheating pulse.

  13. Magnetic induced heating for ferritic metal annealing

    SciTech Connect

    De Witt, G.L.; Huber, D.J.

    1987-03-24

    A method is described for annealing the wall of a nuclear reactor vessel, including, positioning an electromagnet within a vertically positioned nuclear reactor vessel by lowering the electromagnet into the vessel, supplying power to the electromagnet to generate substantially uniform heat in the vessel wall, maintaining the power to the electromagnet for a predetermined length of time which will anneal the vessel wall, and removing the electromagnet.

  14. Quantum Simulations of Classical Annealing Processes

    NASA Astrophysics Data System (ADS)

    Somma, R. D.; Boixo, S.; Barnum, H.; Knill, E.

    2008-09-01

    We describe a quantum algorithm that solves combinatorial optimization problems by quantum simulation of a classical simulated annealing process. Our algorithm exploits quantum walks and the quantum Zeno effect induced by evolution randomization. It requires order 1/δ steps to find an optimal solution with bounded error probability, where δ is the minimum spectral gap of the stochastic matrices used in the classical annealing process. This is a quadratic improvement over the order 1/δ steps required by the latter.

  15. Positron study of annealing of gallium arsenide

    SciTech Connect

    Rice-Evans, P.C.; Smith, D.L.; Evans, H.E.; Gledhill, G.A. )

    1991-02-01

    A positron beam has been used to investigate the sub-surface changes in semi-insulating gallium arsenide which had been annealed to a range of temperatures. The variations of the Doppler S parameter as a function of positron implantation energy, when subjected to a diffusion analysis, indicate variations in positron trapping at different depths. The results indicate the changes in the type of point defect that accompany the annealing.

  16. Effects of annealing, acid and alcoholic beverages on Fe1+yTe0.6Se0.4

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Taen, T.; Tsuchiya, Y.; Shi, Z. X.; Tamegai, T.

    2013-01-01

    We have systematically investigated and compared different methods to induce superconductivity in the iron chalcogenide Fe1+yTe0.6Se0.4, including annealing in a vacuum, N2, O2 and I2 atmospheres and immersing samples into acid and alcoholic beverages. Vacuum and N2 annealing are proved to be ineffective in inducing superconductivity in a Fe1+yTe0.6Se0.4 single crystal. Annealing in O2 and I2 and immersion in acid and alcoholic beverages can induce superconductivity by oxidizing the excess Fe in the sample. Superconductivity in O2 annealed samples is of a bulk nature, while I2, acid and alcoholic beverages can only induce superconductivity near the surface. By comparing the different effects of O2, I2, acid and alcoholic beverages we propose a scenario to explain how the superconductivity is induced in the non-superconducting as-grown Fe1+yTe0.6Se0.4.

  17. Comparative study of the performance of quantum annealing and simulated annealing.

    PubMed

    Nishimori, Hidetoshi; Tsuda, Junichi; Knysh, Sergey

    2015-01-01

    Relations of simulated annealing and quantum annealing are studied by a mapping from the transition matrix of classical Markovian dynamics of the Ising model to a quantum Hamiltonian and vice versa. It is shown that these two operators, the transition matrix and the Hamiltonian, share the eigenvalue spectrum. Thus, if simulated annealing with slow temperature change does not encounter a difficulty caused by an exponentially long relaxation time at a first-order phase transition, the same is true for the corresponding process of quantum annealing in the adiabatic limit. One of the important differences between the classical-to-quantum mapping and the converse quantum-to-classical mapping is that the Markovian dynamics of a short-range Ising model is mapped to a short-range quantum system, but the converse mapping from a short-range quantum system to a classical one results in long-range interactions. This leads to a difference in efficiencies that simulated annealing can be efficiently simulated by quantum annealing but the converse is not necessarily true. We conclude that quantum annealing is easier to implement and is more flexible than simulated annealing. We also point out that the present mapping can be extended to accommodate explicit time dependence of temperature, which is used to justify the quantum-mechanical analysis of simulated annealing by Somma, Batista, and Ortiz. Additionally, an alternative method to solve the nonequilibrium dynamics of the one-dimensional Ising model is provided through the classical-to-quantum mapping.

  18. New Phenomena in Physics Related with Single-Atom Electron Sources

    NASA Astrophysics Data System (ADS)

    Akamine, Yuta; Fujiwara, Kazuto; Cho, Bokulae; Oshima, Chuhei

    We have reviewed new phenomena in physics related with development of single-atom electron sources. A collimated electron beam was emitted from the single-atom situated at the top of the nano-pyramids. The following three topics have been discussed. (1) High brightness of electron beam: High-density electrons come out of the source, and overlapping of wave functions presumably produces new phenomena including anti-bunching of electrons in vacuum. Energy spectra showed characteristic features of single-atom electron sources; additional shoulders appeared in the normal spectra. 3) Stable electron emission originates from the field evaporation.

  19. Functional theories of thermoelectric phenomena

    NASA Astrophysics Data System (ADS)

    Eich, F. G.; Di Ventra, M.; Vignale, G.

    2017-02-01

    We review the progress that has been recently made in the application of time-dependent density functional theory to thermoelectric phenomena. As the field is very young, we emphasize open problems and fundamental issues. We begin by introducing the formal structure of thermal density functional theory, a density functional theory with two basic variables—the density and the energy density—and two conjugate fields—the ordinary scalar potential and Luttinger’s thermomechanical potential. The static version of this theory is contrasted with the familiar finite-temperature density functional theory, in which only the density is a variable. We then proceed to constructing the full time-dependent non equilibrium theory, including the practically important Kohn-Sham equations that go with it. The theory is shown to recover standard results of the Landauer theory for thermal transport in the steady state, while showing greater flexibility by allowing a description of fast thermal response, temperature oscillations and related phenomena. Several results are presented here for the first time, i.e. the proof of invertibility of the thermal response function in the linear regime, the full expression of the thermal currents in the presence of Luttinger’s thermomechanical potential, an explicit prescription for the evaluation of the Kohn-Sham potentials in the adiabatic local density approximation, a detailed discussion of the leading dissipative corrections to the adiabatic local density approximation and the thermal corrections to the resistivity that follow from it.

  20. Critical phenomena on k -booklets

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter

    2017-01-01

    We define a "k -booklet" to be a set of k semi-infinite planes with -∞ phenomena: self-avoiding random walks, the Ising model, and percolation. For k =2 , a booklet is equivalent to a single infinite lattice, and for k =1 to a semi-infinite lattice. In both these cases the systems show standard critical phenomena. This is not so for k ≥3 . Self-avoiding walks starting at y =0 show a first-order transition at a shifted critical point, with no power-behaved scaling laws. The Ising model and percolation show hybrid transitions, i.e., the scaling laws of the standard models coexist with discontinuities of the order parameter at y ≈0 , and the critical points are not shifted. In the case of the Ising model, ergodicity is already broken at T =Tc , and not only for T

  1. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  2. Alumina barrier for vacuum brazing

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1980-01-01

    Heating platens of vacuum-brazing press will not stick to workpiece if aluminum oxide "paper" is interposed. Paper does not disintegrate in press, will not contaminate braze alloy, and helps form smoothly contoured, regular fillet at brazed edges.

  3. APS storage ring vacuum system

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1990-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

  4. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  5. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  6. [Endoscopic vacuum-assisted closure].

    PubMed

    Wedemeyer, J; Lankisch, T

    2013-03-01

    Anastomotic leakage in the upper and lower intestinal tract is associated with high morbidity and mortality. Within the last 10 years endoscopic treatment options have been accepted as sufficient treatment option of these surgical complications. Endoscopic vacuum assisted closure (E-VAC) is a new innovative endoscopic therapeutic option in this field. E-VAC transfers the positive effects of vacuum assisted closure (VAC) on infected cutaneous wounds to infected cavities that can only be reached endoscopically. A sponge connected to a drainage tube is endoscopically placed in the leakage and a continuous vacuum is applied. Sponge and vacuum allow removal of infected fluids and promote granulation of the leakage. This results in clean wound grounds and finally allows wound closure. Meanwhile the method was also successfully used in the treatment of necrotic pancreatitis.

  7. VACUUM DEPOSITION OF THIN FILMS,

    DTIC Science & Technology

    The book deals with methods of obtaining and processing thin films , methods of measuring the deposition rate and thickness of thin-film layers, and...the main fields of application of thin films . Vacuum requirements and the requirements for the composition of the residual medium in thermal...evaporation and cathode sputtering are given, and modern methods of producing and measuring vacuums and the equipment used in obtaining thin films are described. (Author)

  8. Effects of vacuum fluctuation suppression on atomic decay rates

    SciTech Connect

    Ford, L.H.; Roman, Thomas A.

    2011-08-15

    Highlights: > Excited atoms are shot through a cavity containing an electromagnetic field. > Cavity is in the lowest mode in a non-classical state. > Such a state can suppress the decay rate of the atoms in certain situations. > We show that this effect can be correlated with periods of negative energy density. - Abstract: The use of atomic decay rates as a probe of sub-vacuum phenomena will be studied. Because electromagnetic vacuum fluctuations are essential for radiative decay of excited atomic states, decay rates can serve as a measure of the suppression of vacuum fluctuations in non-classical states, such as squeezed vacua. In such states, the renormalized expectation value of the square of the electric field or the energy density can be periodically negative, representing suppression of vacuum fluctuations. We explore the extent to which atomic decays can be used to measure the mean squared electric field or energy density. We consider a scheme in which atoms in an excited state transit a closed cavity whose lowest mode contains photons in a non-classical state. A crucial feature of our analysis is that we do not employ the rotating wave approximation. The change in the decay probability of the atom in the cavity due to the non-classical state can, under certain circumstances, serve as a measure of the mean squared electric field or energy density in the cavity. We make some estimates of the magnitude of this effect, which indicate that an experimental test might be possible, although very challenging.

  9. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect

    Conrads, T.J.

    1998-09-29

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  10. Surface morphological evolution during annealing of epitaxial Cu(001) layers

    SciTech Connect

    Purswani, J. M.; Gall, D.

    2008-08-15

    Single crystal Cu(001) layers were grown on MgO(001) by ultrahigh vacuum magnetron sputtering at T{sub s}=100 deg. C. Quantitative surface morphological analyses by in situ scanning tunneling microscopy show that the surfaces exhibit self-affine mound structures with a scaling exponent of 0.82{+-}0.03 and a mound radius r{sub c} that increases from 31{+-}8 to 39{+-}6 nm for increasing layer thickness t=24-120 nm. In situ annealing at 200 and 300 deg. C leads to a thermodynamically driven mass transport that minimizes the surface step density, resulting in broader mounds and a smaller root mean square surface roughness {sigma}. This effect is most pronounced for t=24 nm, for which r{sub c} increases from 31{+-}8 to 70{+-}20 nm and {sigma} decreases from 1.3{+-}0.1 to 0.74{+-}0.08 nm, resulting in a decrease in the average surface slope from {chi}=7 deg. to 2 deg. and an increase in the average terrace width w{sub T} by more than a factor of 4. In contrast, w{sub T} increases by only 20% for t=120 nm. This remarkable difference between 'thin' and 'thick' layers is attributed to diverging surface morphological pathways during annealing: The strong smoothening for t=24 nm is due to a competitive coalescence process where some mounds grow laterally at the expense of their smaller neighbors, which die out. In contrast, the initially wider mounds of thicker layers (t=120 nm) combine to form a quasistable surface morphology that exhibits anisotropic mound structures, which limit mass transport and stabilize the surface step density.

  11. Technical specification for vacuum systems

    SciTech Connect

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  12. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  13. Stability, sub-gap current, 1/f-noise, and elemental depth profiling of annealed Al:Mn-AlOX-Al normal metal-insulator-superconducting tunnel junctions

    NASA Astrophysics Data System (ADS)

    Julin, J. K.; Chaudhuri, S.; Laitinen, M.; Sajavaara, T.; Maasilta, I. J.

    2016-12-01

    In this paper we report a study of the effect of vacuum annealing at 400°C on the properties of normal metal-insulator-superconductor (NIS) tunnel junctions, with manganese doped aluminium (Al:Mn) as the normal metal, aluminum as the superconductor and amorphous aluminum oxide as the tunneling barrier (Al:Mn-AlOx-Al). The annealing treatment improves the stability of the junctions, increases their tunneling resistance and does not have a negative impact on the low-temperature current-voltage characteristics. The measured 1/f resistance noise of the junctions also changes after annealing, in the best case decreasing by over an order of magnitude. All these observations show that annealing is a viable route to improve NIS junction devices after the sample has been fabricated.

  14. Enhanced annealing of GaAs solar cell radiation damage

    NASA Technical Reports Server (NTRS)

    Loo, R.; Knechtli, R. C.; Kamath, G. S.

    1981-01-01

    Solar cells are degraded by radiation damage in space. Investigations have been conducted concerning possibilities for annealing this radiation damage in GaAs solar cells, taking into account the conditions favoring such annealing. It has been found that continuous annealing as well as the combination of injection annealing with thermal annealing can lead to recovery from radiation damage under particularly favorable conditions in GaAs solar cells. The damage caused by both electrons and protons in GaAs solar cells can be substantially reduced by annealing at temperatures as low as 150 C, under appropriate conditions. This possibility makes the GaAs solar cells especially attractive for long space missions, or for missions in severe radiation environments. Attention is given to results concerning periodic thermal annealing, continuous annealing, and injection annealing combined with thermal annealing.

  15. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  16. Emergent Phenomena at Oxide Interfaces

    SciTech Connect

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin

  17. Earthquake prediction with electromagnetic phenomena

    SciTech Connect

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  18. Turbulent phenomena in protein folding.

    PubMed

    Kalgin, Igor V; Chekmarev, Sergei F

    2011-01-01

    Protein folding and hydrodynamic turbulence are two long-standing challenges, in molecular biophysics and fluid dynamics, respectively. The theories of these phenomena have been developed independently and used different formalisms. Here we show that the protein folding flows can be surprisingly similar to turbulent fluid flows. Studying a benchmark model protein (an SH3 domain), we have found that the flows for the slow folding trajectories of the protein, in which a partly formed N- and C-terminal β sheet hinders the RT loop from attaching to the protein core, have many properties of turbulent flows of a fluid. The flows are analyzed in a three-dimensional (3D) space of collective variables, which are the numbers of native contacts between the terminal β strands, between the RT loop and the protein core, and the rest of the native contacts. We have found that the flows have fractal nature and are filled with 3D eddies; the latter contain strange attractors, at which the tracer flow paths behave as saddle trajectories. Two regions of the space increment have been observed, in which the flux variations are self-similar with the scaling exponent h=1/3, in surprising agreement with the Kolmogorov inertial range theory of turbulence. In one region, the cascade of protein rearrangements is directed from larger to smaller scales (net folding), and in the other, it is oppositely directed (net unfolding). Folding flows for the fast trajectories are essentially "laminar" and do not have the property of self-similarity. Based on the results of our study, we infer, and support this inference by simulations, that the origin of the similarity between the protein folding and turbulent motion of a fluid is in a cascade mechanism of structural transformations in the systems that underlies these phenomena.

  19. Effects of annealing in Be/W and Be/C bilayers deposited on Si(0 0 1) substrates with Fe buffer layers

    NASA Astrophysics Data System (ADS)

    Schinteie, G.; Greculeasa, S. G.; Palade, P.; Lungu, G. A.; Porosnicu, C.; Jepu, I.; Lungu, C. P.; Filoti, G.; Kuncser, V.

    2015-02-01

    Atomic intermixing processes in relation to structural aspects and phase formation in Be based thin films subjected to different annealing treatments simulating the case of re-deposited layered structures on plasma facing components in nuclear fusion devices are reported. Accordingly, bilayers of Be/W and Be/C have been deposited on Si(0 0 1) substrates with Fe buffer layers. The Fe films have been prepared by radiofrequency sputtering and further processed by annealing in hydrogen atmosphere at 300 °C, for 90 min, at a pressure of 10 bars of H2. After the Be/W and Be/C bilayer deposition by means of thermionic vacuum arc method, annealing in vacuum at 600 °C, for 10 min has been applied to the complex structures. The influence of annealing on the phase composition and atomic intermixing processes in the complex structures has been studied by means of X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The layered structures present an oxidation gradient with oxide phases in the uppermost layers and non-oxidized phases in the lower layers, as observed from the XPS data. The CEMS results revealed that the as-deposited structures contain a main metallic Fe phase and secondary superparamagnetic Fe oxide phases at the Fe/Be interface, while annealed samples present a large contribution of Fe-Be and Fe-C mixtures. The annealing treatment induces considerable atomic interdiffusion, strongly dependent on the nature of the upper layer. In the case of Be/W system, the annealing provides a much rougher Be/W interface, while in case of the Be/C structure, the annealing treatment only homogenize the structure over the whole depth.

  20. Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Bandari, Esfandiar; Tumer, Kagan

    2001-01-01

    The game-theory field of Collective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved as a side-effect. Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting significantly improves simulated annealing for a model of an economic process run over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded rationality domains.

  1. Vacuum Packaging for Microelectromechanical Systems (MEMS)

    DTIC Science & Technology

    2002-10-01

    The Vacuum Packaging for MEMS Program focused on the development of an integrated set of packaging technologies which in totality provide a low cost...high volume product-neutral vacuum packaging capability which addresses all MEMS vacuum packaging requirements. The program balanced the need for...near term component and wafer-level vacuum packaging with the development of advanced high density wafer-level packaging solutions. Three vacuum

  2. Probability distribution of the vacuum energy density

    SciTech Connect

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  3. Post-deposition annealing study of tantalum nitride thin-film resistors

    SciTech Connect

    Au, Chi Lok.

    1989-01-01

    With the present integrated circuit design, the use of hybrid metallic thin film resistor networks leads to more design flexibility, economical chip area consumption, reduced processing steps, higher precision and stability for the integrated circuits. To meet the hybrid circuit requirements, the thin film resistors must have high sheet resistivity for compact design, chemical and mechanical stability, and precise resistance which is temperature independent. The nickel-chrome (NiCr) alloy, with its very low temperature coefficient of resistance (TCR), is currently used in the industry. The non-linear TCR behavior and the ease of hydrolytic dissociation of NiCr give place to a more stable material, such as tantalum nitride. Due to technical difficulties in heating the substrate to a high temperature during deposition, which is the controlling parameter for achieving the stable Ta{sub 2}N structure, post deposition annealing becomes the central theme for this project. Preliminary TCR studies of the reactive sputtered tantalum nitride thin films shows that films with sheet resistivity less than 60 ohm/sq. can be air annealed to improve the TCR to less than 30 ppm/{degree}C in magnitude. The deposition parameters may influence the annealing conditions. For films with higher sheet resistivity, high vacuum annealing must be used for the TCR improvement. The TCR can be adjusted to an almost zero value by the combination of annealing temperature and time. With the electrical stability and chemically inertness in water and acids, tantalum nitride is likely to become a major thin-film resistor material in the industry. A systematic study of this thin film material is conducted, covering both electrical and structural properties.

  4. Recrystallization of Ge thin film on SiO2 substrates using a two-step annealing process

    NASA Astrophysics Data System (ADS)

    Kim, Sung Wook; Lee, Jaejun; Park, Youn Ho; Park, Jeong Min; Do, Hong Kyeong; Kim, Yeon Joo; Choi, Heon-Jin

    2017-01-01

    The fabrication of high-quality crystalline germanium thin films (GeTF) on an amorphous SiO2 layer is crucial for the realization of high performance-, low cost III-V solar cells used in many applications. Herein, we report the growth of a high-quality crystalline GeTF on SiO2/Si substrates using an ultra-vacuum chemical vapor deposition (UHV-CVD) method. GeTF was grown on the SiO2 layer using a two-step growth and multi-annealing processes. The fabrication method involved the deposition of a 1st seeding layer, annealing, and deposition of a 2nd main layer followed by three times of cyclic annealing. The crystallization of the seeding layer having a thickness of less than 10 nm could be ascribed to the evolution of polycrystalline structures in the main layer. The cyclic annealing performed after the deposition of the main layer is also found to be crucial for the formation of single crystalline, high-quality Ge films on SiO2 substrates with <311> direction. The cyclic annealing results in a further reduction of the defects, thereby threading dislocations significantly to a density of 5.311 × 107 cm-2. Electrical measurements using the van der Pauw method revealed that the GeTF exhibits p-type characteristics and a high mobility of 360.10 cm2/Vs at room temperature. [Figure not available: see fulltext.

  5. Thermal annealing and magnetic anisotropy of NiFe thin films on n+-Si for spintronic device applications

    NASA Astrophysics Data System (ADS)

    Lu, Q. H.; Huang, R.; Wang, L. S.; Wu, Z. G.; Li, C.; Luo, Q.; Zuo, S. Y.; Li, J.; Peng, D. L.; Han, G. L.; Yan, P. X.

    2015-11-01

    To ensure that the magnetic metal electrodes can meet the requirements of the spin injection, NiFe films prepared both on HfO2 dielectric layer and n+-Si directly by sputtering deposition, and treated by conventional furnace annealing and/or high vacuum magnetic field annealing were investigated. It was found that thermal annealing at 250 °C improved the crystalline quality and reduced surface roughness of the NiFe films, thus enhancing its saturation magnetization intensity. The 100 nm thick NiFe films had too large coercive force and saturation magnetization intensity in vertical direction to meet the requirements of Hanle curve detection. While, 30 nm thick NiFe films showed paramagnetic hysteresis loops in vertical direction, and the magnetization intensity of the sample after annealing at 250 °C for 30 min was less than 2% to the parallel when the external magnetic field was given between ±10 Oe. This was preferred to Hanle curve detection. The thin HfO2 dielectric layer between metal and Si partially suppressed the diffusion of Ni in NiFe into Si substrate and formation of NiSi, greatly enhancing the saturation magnetization intensity of the Al/NiFe/HfO2/Si sample by thermal annealing. Those results suggest that Al/NiFe/HfO2/Si structure, from the point view of magnetic electrodes, would be suitable for spin injection and detection applications.

  6. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition.

    PubMed

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Lacroix, B; Papathanasiou, N; Tinkham, B P; Guérin, P; Marteau, M

    2011-08-24

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 °C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  7. Thin-film transistor behaviour and the associated physical origin of water-annealed In-Ga-Zn oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Du Ahn, Byung; Lim, Jun Hyung; Cho, Mann-Ho; Park, Jin-Seong; Chung, Kwun-Bum

    2012-10-01

    A transparent In-Ga-Zn oxide semiconductor was thermally annealed in an ambient atmosphere of water vapour and the associated electrical and physical properties of the film were investigated. After annealing in water vapour, the resulting thin-film transistor (TFT) exhibits n-type behaviour with a field effect mobility of 11.4 cm2 V-1 s-1, and an on/off current ratio of 6.65 × 109. The annealing process in water vapour induces changes in the elemental composition and chemical bonding states of Zn and O. These phenomena affect the changes of band alignment including the band gap and conduction band offset (Δ(ECB - EF)) of InGaZnO semiconductors, which is the basis for the improved operation and performance of these TFTs.

  8. EBSD coupled to SEM in situ annealing for assessing recrystallization and grain growth mechanisms in pure tantalum.

    PubMed

    Kerisit, C; Logé, R E; Jacomet, S; Llorca, V; Bozzolo, N

    2013-06-01

    An in situ annealing stage has been developed in-house and integrated in the chamber of a Scanning Electron Microscope equipped with an Electron BackScattered Diffraction system. Based on the Joule effect, this device can reach the temperature of 1200°C at heating rates up to 100°C/s, avoiding microstructural evolutions during heating. A high-purity tantalum deformed sample has been annealed at variable temperature in the range 750°C-1030°C, and classical mechanisms of microstructural evolutions such as recrystallization and grain coarsening phenomena have been observed. Quantitative measurements of grain growth rates provide an estimate of the mean grain boundary mobility, which is consistent with the value estimated from physical parameters reported for that material. In situ annealing therefore appears to be suited for complementing bulk measurements at relatively high temperatures, in the context of recrystallization and grain growth in such a single-phase material.

  9. Laser pulse design using optimal control theory-based adaptive simulated annealing technique: vibrational transitions and photo-dissociation

    NASA Astrophysics Data System (ADS)

    Nath, Bikram; Mondal, Chandan Kumar

    2014-08-01

    We have designed and optimised a combined laser pulse using optimal control theory-based adaptive simulated annealing technique for selective vibrational excitations and photo-dissociation. Since proper choice of pulses for specific excitation and dissociation phenomena is very difficult, we have designed a linearly combined pulse for such processes and optimised the different parameters involved in those pulses so that we can get an efficient combined pulse. The technique makes us free from choosing any arbitrary type of pulses and makes a ground to check their suitability. We have also emphasised on how we can improve the performance of simulated annealing technique by introducing an adaptive step length of the different variables during the optimisation processes. We have also pointed out on how we can choose the initial temperature for the optimisation process by introducing heating/cooling step to reduce the annealing steps so that the method becomes cost effective.

  10. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  11. Vacuum-assisted cesarean section

    PubMed Central

    McQuivey, Ross W; Block, Jon E

    2017-01-01

    There has been a dramatic rise in the frequency of cesarean sections, surpassing 30% of all deliveries in the US. This upsurge, coupled with a decreasing willingness to allow vaginal birth after cesarean section, has resulted in an expansion of the use of vacuum assistance to safely extract the fetal head. By avoiding the use of a delivering hand or forceps blade, the volume being delivered through the uterine incision can be decreased when the vacuum is used properly. Reducing uterine extensions with their associated complications (eg, excessive blood loss) in difficult cases is also a theoretical advantage of vacuum delivery. Maternal discomfort related to excessive fundal pressure may also be lessened. To minimize the risk of neonatal morbidity, proper cup placement over the “flexion point” remains essential to maintain vacuum integrity and reduce the chance of inadvertent detachment and uterine extensions. Based on the published literature and pragmatic clinical experience, utilization of the vacuum device is a safe and effective technique to assist delivery during cesarean section. PMID:28331371

  12. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  13. Quantum Annealing and Many-Body Localization

    NASA Astrophysics Data System (ADS)

    Bray-Ali, Noah

    The quantum phase transition separating the Ising spin glass from the quantum paramagnet phase in one-dimension is many-body localized. We study quantum annealing across this transition using the recently developed, dynamical strong-disorder renormalization group approach. The probability of successful adiabatic quantum computation of the spin glass ground-state obeys a universal scaling function of system size, anneal rate, and strength of disorder, which we obtain. Measurement of this universal scaling behavior in a quantum annealing device, for example, would be the first direct test of the activated dynamics of a many-body localized quantum phase transition. Support provided by National Research Council Post-Doctoral Research Associateship.

  14. Computational multiqubit tunnelling in programmable quantum annealers

    PubMed Central

    Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797

  15. Stochastic annealing simulation of cascades in metals

    SciTech Connect

    Heinisch, H.L.

    1996-04-01

    The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.

  16. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  17. Surface Chemistry, Friction, and Wear Properties of Untreated and Laser-Annealed Surfaces of Pulsed-Laser-Deposited WS(sub 2) Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wheeler, Donald R.; Zabinski, Jeffrey S.

    1996-01-01

    An investigation was conducted to examine the surface chemistry, friction, and wear behavior of untreated and annealed tungsten disulfide (WS2) coatings in sliding contact with a 6-mm-diameter 440C stainless-steel ball. The WS2 coatings and annealing were performed using the pulsed-laser-deposition technique. All sliding friction experiments were conducted with a load of 0.98 N (100 g), an average Hertzian contact pressure of 0.44 GPa, and a constant rotating speed of 120 rpm. The sliding velocity ranged from 31 to 107 mm/s because of the range of wear track radii involved in the experiments. The experiment was performed at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7X(exp -10) Pa), dry nitrogen (relative humidity, less than 1 percent), and humid air (relative humidity, 15 to 40 percent). Analytical techniques, including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), x-ray photo electron spectroscopy (XPS), surface profilometry, and Vickers hardness testing, were used to characterize the tribological surfaces of WS2 coatings. The results of the investigation indicate that the laser annealing decreased the wear of a WS2 coating in an ultrahigh vacuum. The wear rate was reduced by a factor of 30. Thus, the laser annealing increased the wear life and resistance of the WS2 coating. The annealed WS 2 coating had a low coefficient of friction (less than O.1) and a low wear rate ((10(exp -7) mm(exp 3)/N-m)) both of which are favorable in an ultrahigh vacuum.

  18. Quantum annealing correction with minor embedding

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  19. Macroscopic, freestanding, and tubular graphene architectures fabricated via thermal annealing.

    PubMed

    Nguyen, Duc Dung; Suzuki, Seiya; Kato, Shuji; To, Bao Dong; Hsu, Chia Chen; Murata, Hidekazu; Rokuta, Eiji; Tai, Nyan-Hwa; Yoshimura, Masamichi

    2015-03-24

    Manipulation of individual graphene sheets/films into specific architectures at macroscopic scales is crucially important for practical uses of graphene. We present herein a versatile and robust method based on annealing of solid carbon precursors on nickel templates and thermo-assisted removal of poly(methyl methacrylate) under low vacuum of ∼0.6 Pa for fabrication of macroscopic, freestanding, and tubular graphene (TG) architectures. Specifically, the TG architectures can be obtained as individual and woven tubes with a diameter of ∼50 μm, a wall thickness in the range of 2.1-2.9 nm, a density of ∼1.53 mg·cm(-3), a thermal stability up to 600 °C in air, an electrical conductivity of ∼1.48 × 10(6) S·m(-1), and field emission current densities on the order of 10(4) A·cm(-2) at low applied electrical fields of 0.6-0.7 V·μm(-1). These properties show great promise for applications in flexible and lightweight electronics, electron guns, or X-ray tube sources.

  20. Gravity-Induced Vacuum Dominance

    SciTech Connect

    Lima, William C. C.; Vanzella, Daniel A. T.

    2010-04-23

    It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.

  1. Gravity-induced vacuum dominance.

    PubMed

    Lima, William C C; Vanzella, Daniel A T

    2010-04-23

    It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.

  2. Microscale Digital Vacuum Electronic Gates

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  3. D-Zero Vacuum System

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1986-04-07

    The system pumping speed was calculated by taking the reciprocal of the sum of the reciprocal pump speed and the reciprocal line conductances. The conductances of the pipe were calculated from the following formulas taken from the Varian vacuum manual. This report updates the original to reflect the pumping curves and basic vacuum system characteristics for the purchased components and installed piping of the D-Zero vacuum system. The system consists of two Edward's E2M275 two stage mechanical pumps, a Leybold-Heraeus WSU2000 Blower and three Varian 4' diffusion pumps (one for each cryostat). Individual pump and system pumping speed curves and a diagram of the system is included.

  4. Understanding empathy and related phenomena.

    PubMed

    Shamasundar, C

    1999-01-01

    Over a period of time, the author arrived at a few tentative postulates concerning empathy and related processes based on some of his experiences and observations. The central theme of these postulates is, firstly, that interpersonal interaction is an interaction of the personal-space fields. Secondly, empathy, therapeutic benefit, and the professional stress are all related to the same process of interpersonal interaction. This interaction takes place as an enmeshment of personal spaces of the interacting individuals, and involves transfer of a wide range of information in the affective, cognitive, and other areas. This is because the personal spaces have fieldlike qualities analogous to what Kurt Lewin described. Thus, such phenomena as empathy, therapeutic benefit, professional stress are all consequences of the same process. It is possible to substantiate these postulates by diverse evidences in the published literature. The natural consequences of such an interpersonal interaction are empathic understanding, transfer of mood states (like hope, distress or expectancy), affective states (like anxiety, sadness, anger or hostility), ideas, images and even attitudes and values, etc. This phenomenon of transfer can explain such processes as therapeutic benefit in individual and group settings, professional stress, shared delusions, and even experimenter bias. Whether one becomes aware of such transferred information or not depends upon the intent and sensitivity of the participants.

  5. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  6. Monitoring of Transient Lunar Phenomena

    NASA Astrophysics Data System (ADS)

    Barker, Timothy; Farber, Ryan; Ahrendts, Gary

    2014-06-01

    Transient Lunar Phenomena (TLP’s) are described as short-lived changes in the brightness of areas on the face of the Moon. TLP research is characterized by the inability to substantiate, reproduce, and verify findings. Our current research includes the analysis of lunar images taken with two Santa Barbara Instrument Group (SBIG) ST8-E CCD cameras mounted on two 0.36m Celestron telescopes. On one telescope, we are using a sodium filter, and on the other an H-alpha filter, imaging approximately one-third of the lunar surface. We are focusing on two regions: Hyginus and Ina. Ina is of particular interest because it shows evidence of recent activity (Schultz, P., Staid, M., Pieters, C. Nature, Volume 444, Issue 7116, pp. 184-186, 2006). A total of over 50,000 images have been obtained over approximately 35 nights and visually analyzed to search for changes. As of March, 2014, no evidence of TLPs has been found. We are currently developing a Matlab program to do image analysis to detect TLPs that might not be apparent by visual inspection alone.

  7. Conductance phenomena in microcrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Nilsson, M.

    2006-02-01

    We have investigated the conduction phenomena in compacted tablets of cellulose with varying relative humidity (RH) with techniques such as Low Frequency Dielectric Spectroscopy (LFDS) and Transient Current (TC) at room temperature. Two exponential decaying regions in the transient current measurements indicate two ionic species contributing to the conduction mechanism. A high power-law exponent of 9 for the conductance with moisture content has been found. The mobility initially decreases with RH up to monolayer coverage, and further water vapor increases the mobility, indicating a blocking of available positions for the charge carrier ions. When the amount of water molecules present in the tablet increases one order of magnitude, the number of charge carriers increases 5-6 orders of magnitude, suggesting a transition from a power-law increase to a linear effective medium theory for the conduction. The charge carrier dependence on RH suggests that a percolating network of water molecules adsorbed to 6-OH units on the cellulose chain span through the sample. The conductivity mechanisms in cellulose are still not clear.

  8. Rock melting tool with annealer section

    DOEpatents

    Bussod, Gilles Y.; Dick, Aaron J.; Cort, George E.

    1998-01-01

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  9. Annealing Increases Stability Of Iridium Thermocouples

    NASA Technical Reports Server (NTRS)

    Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.; Ahmed, Shaffiq

    1989-01-01

    Metallurgical studies carried out on samples of iridium versus iridium/40-percent rhodium thermocouples in condition received from manufacturer. Metallurgical studies included x-ray, macroscopic, resistance, and metallographic studies. Revealed large amount of internal stress caused by cold-working during manufacturing, and large number of segregations and inhomogeneities. Samples annealed in furnace at temperatures from 1,000 to 2,000 degree C for intervals up to 1 h to study effects of heat treatment. Wire annealed by this procedure found to be ductile.

  10. X-ray reflectivity measurements of vacuum deposited thin films

    SciTech Connect

    Chason, M. ); Chason, E. )

    1992-01-01

    X-ray reflectivity using energy dispersive X-ray detection, a nondestructive probe of surface roughness over the region of [approximately] 1--50 [Angstrom], has been used to investigate the characteristicsof vacuum deposited thin films. With a surface roughness sensitivity better than 1 [Angstrom] X-ray reflectivity is sensitive to interfaces between different materials for sample thicknesses up to approximately2000 [Angstrom] (depending on material density). We have investigated discrete Cr/Al deposits on quartz substrates and determined the surface roughness at the interfaces. We have also monitored the evolution ofthe Cr/Al interface following annealing. The experimental data is presented and discussed. The use of the technique for studying thin film deposits is addressed.

  11. X-ray reflectivity measurements of vacuum deposited thin films

    SciTech Connect

    Chason, M.; Chason, E.

    1992-12-31

    X-ray reflectivity using energy dispersive X-ray detection, a nondestructive probe of surface roughness over the region of {approximately} 1--50 {Angstrom}, has been used to investigate the characteristicsof vacuum deposited thin films. With a surface roughness sensitivity better than 1 {Angstrom} X-ray reflectivity is sensitive to interfaces between different materials for sample thicknesses up to approximately2000 {Angstrom} (depending on material density). We have investigated discrete Cr/Al deposits on quartz substrates and determined the surface roughness at the interfaces. We have also monitored the evolution ofthe Cr/Al interface following annealing. The experimental data is presented and discussed. The use of the technique for studying thin film deposits is addressed.

  12. Improved zircon fission-track annealing model based on reevaluation of annealing data

    SciTech Connect

    Guedes, Sandro; Moreira, Pedro A.F.P.; Devanathan, Ram; Weber, William J; Hadler, Julio C

    2013-01-01

    The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T0, beyond which fission tracks are erased within a time t0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

  13. Improved zircon fission-track annealing model based on reevaluation of annealing data

    SciTech Connect

    Guedes, S.; Moreira, Pedro; Devanathan, Ramaswami; Weber, William J.; Hadler, J. C.

    2012-11-10

    The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T 0, beyond which fission tracks are erased within a time t 0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

  14. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  15. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  16. Vacuum Cleaner Fan Being Improved

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    1997-01-01

    As part of the technology utilization program at the NASA Lewis Research Center, efforts are underway to transfer aerospace technologies to new areas of practical application. One such effort involves using advanced computational fluid dynamics (CFD) codes for turbomachinery to analyze the internal fluid dynamics of low-speed fans and blowers. This year, the Kirby Company in Cleveland, Ohio, approached NASA with a request for technologies that could help them improve their vacuum cleaners. Of particular interest to Kirby is the high-frequency blade-passing noise generation of their vacuum cleaner fan at low airflow rates.

  17. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  18. Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Seuthe, Thomas; Mermillod-Blondin, Alexandre; Grehn, Moritz; Bonse, Jörn; Wondraczek, Lothar; Eberstein, Markus

    2017-03-01

    Structural relaxation phenomena in binary and multicomponent lithium silicate glasses were studied upon irradiation with femtosecond (fs) laser pulses (800 nm central wavelength, 130 fs pulse duration) and subsequent thermal annealing experiments. Depending on the annealing temperature, micro-Raman spectroscopy analyses evidenced different relaxation behaviours, associated to bridging and non-bridging oxygen structures present in the glass network. The results indicate that the mobility of lithium ions is an important factor during the glass modification with fs-laser pulses. Quantitative phase contrast imaging (spatial light interference microscopy) revealed that these fs-laser induced structural modifications are closely related to local changes in the refractive index of the material. The results establish a promising strategy for tailoring fs-laser sensitivity of glasses through structural mobility.

  19. Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses

    PubMed Central

    Seuthe, Thomas; Mermillod-Blondin, Alexandre; Grehn, Moritz; Bonse, Jörn; Wondraczek, Lothar; Eberstein, Markus

    2017-01-01

    Structural relaxation phenomena in binary and multicomponent lithium silicate glasses were studied upon irradiation with femtosecond (fs) laser pulses (800 nm central wavelength, 130 fs pulse duration) and subsequent thermal annealing experiments. Depending on the annealing temperature, micro-Raman spectroscopy analyses evidenced different relaxation behaviours, associated to bridging and non-bridging oxygen structures present in the glass network. The results indicate that the mobility of lithium ions is an important factor during the glass modification with fs-laser pulses. Quantitative phase contrast imaging (spatial light interference microscopy) revealed that these fs-laser induced structural modifications are closely related to local changes in the refractive index of the material. The results establish a promising strategy for tailoring fs-laser sensitivity of glasses through structural mobility. PMID:28266615

  20. Intrinsic interfacial phenomena in manganite heterostructures.

    PubMed

    Vaz, C A F; Walker, F J; Ahn, C H; Ismail-Beigi, S

    2015-04-01

    We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

  1. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  2. Special Orientation Relationships of CuZr2 in the Annealed Zr64.5Cu35.5 Metallic Glass

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Zhang, Lijun; Cheng, Hu; Zhang, Huan; Jing, Qin; Ma, Mingzhen; Liaw, Peter K.; Li, Gong; Liu, Riping

    2015-05-01

    The amorphous Zr64.5Cu35.5 alloy ribbon was prepared and annealed in a high vacuum furnace at 645 K (372 °C) for different times. It was found that the main crystallization phases in the alloy ribbon are CuZr2 and CuZr3. The grains of CuZr2 show special orientation relationships. The grains in opposite dendrites show the same orientation, and adjacent dendrites behave as a twinlike orientation with a (103) twin plane. The CuZr3 with a superstructure is discovered in annealed ZrCu metallic glasses.

  3. Proceedings of the International Conference on Vacuum Microelectronics (2nd) Held in Bath England on 24-26 July 1989: Vacuum Microelectronics

    DTIC Science & Technology

    1989-07-26

    the film state change. The test result teaches u that some phenomena occur in between 1113 K and 1173 K. 4. Discussion The titanium interface layer...at lower .emperatures because of the choice of a thermochemistry that establishes these optimal emissive centers before the onset the onset of...absorber, during the activation and operation of the respective cathodes in a vacuum environment. Impregnant thermochemistry associated with the Philips

  4. Ultra-high vacuum compatible preparation chain for intermetallic compounds.

    PubMed

    Bauer, A; Benka, G; Regnat, A; Franz, C; Pfleiderer, C

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  5. Ultra-high vacuum compatible preparation chain for intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.

    2016-11-01

    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  6. Cold-Cathodes for Sensors and Vacuum Microelectronics

    SciTech Connect

    Siegal, M.P.; Sullivan, J.P.; Tallant, D.R.; Simpson, R.L.; DiNardo, N.J.; Mercer, T.W.; Martinez-Miranda, L.J.

    1998-05-01

    The aim of this laboratory-directed research and development project was to study amorphous carbon (a-C) thin films for eventual cold-cathode electron emitter applications. The development of robust, cold-cathode emitters are likely to have significant implications for modern technology and possibly launch a new industry: vacuum micro-electronics (VME). The potential impact of VME on Sandia`s National Security missions, such as defense against military threats and economic challenges, is profound. VME enables new microsensors and intrinsically radiation-hard electronics compatible with MOSFET and IMEM technologies. Furthermore, VME is expected to result in a breakthrough technology for the development of high-visibility, low-power flat-panel displays. This work covers four important research areas. First, the authors studied the nature of the C-C bonding structures within these a-C thin films. Second, they determined the changes in the film structures resulting from thermal annealing to simulate the effects of device processing on a-C properties. Third, they performed detailed electrical transport measurements as a function of annealing temperature to correlate changes in transport properties with structural changes and to propose a model for transport in these a-C materials with implications on the nature of electron emission. Finally, they used scanning atom probes to determine important aspects on the nature of emission in a-C.

  7. Unraveling Quantum Annealers using Classical Hardness

    NASA Astrophysics Data System (ADS)

    Martin-Mayor, Victor; Hen, Itay

    2015-10-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip.

  8. Annealing of gold nanostructures sputtered on polytetrafluoroethylene

    PubMed Central

    2011-01-01

    Gold nanolayers sputtered on polytetrafluoroethylene (PTFE) surface and their changes induced by post-deposition annealing at 100°C to 300°C are studied. Changes in surface morphology and roughness are examined by atomic force microscopy, electrical sheet resistance by two point technique, zeta potential by electrokinetic analysis and chemical composition by X-ray photoelectron spectroscopy (XPS) in dependence on the gold layer thickness. Transition from discontinuous to continuous gold coverage takes place at the layer thicknesses 10 to 15 nm and this threshold remains practically unchanged after the annealing at the temperatures below 200°C. The annealing at 300°C, however, leads to significant rearrangement of the gold layer and the transition threshold increases to 70 nm. Significant carbon contamination and the presence of oxidized structures on gold-coated samples are observed in XPS spectra. Gold coating leads to a decrease in the sample surface roughness. Annealing at 300°C of pristine PTFE and gold-coated PTFE results in significant increase of the sample surface roughness. PMID:22078024

  9. Unraveling Quantum Annealers using Classical Hardness.

    PubMed

    Martin-Mayor, Victor; Hen, Itay

    2015-10-20

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize 'temperature chaos' as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip.

  10. Deformation and annealing study of Nicraly

    NASA Technical Reports Server (NTRS)

    Trela, D. M.; Ebert, L. J.

    1975-01-01

    Extensive experiments were carried out on the ODS alloy Nicraly, (an alloy prepared by mechanical alloying and consolidating a powder blend consisting of 16% chromium, 4% aluminum, 2-3% yttria, balance nickel), in efforts to develop methods of controlling the grain size and grain shape of the material. The experiments fell into two general categories: variations in the annealing parameters using the as-extruded material as it was received, and various thermomechanical processing schedules (various combinations of cold work and annealing). Success was achieved in gaining grain size and grain shape control by annealing of the as-extruded material. By proper selection of annealing temperature and cooling rates, the grain size of the as-received material was increased almost two orders of magnitude (from an average grain dimension of 0.023 mm to 1.668 mm) while the aspect ratio was increased by some 50% (from 20:1 to 30:1). No success was achieved in gaining significant control of the grain size and shape of the material by thermo-mechanical processing.

  11. Optimal Groundwater Management: 1. Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Dougherty, David E.; Marryott, Robert A.

    1991-10-01

    Simulated annealing is introduced and applied to the optimization of groundwater management problems cast in combinatorial form. This heuristic, probabilistic optimization method seeks minima in analogy with the annealing of solids and is effective on large-scale problems. No continuity requirements are imposed on objective (cost) functions. Constraints may be added to the cost function via penalties, imposed by designation of the solution domain, or imbedded in submodels (e.g., mass balance in aquifer flow simulators) used to evaluate costs. The location of global optima may be theoretically guaranteed, but computational limitations lead to searches for nearly optimal solutions in practice. Like other optimization methods, most of the computational effort is expended in flow and transport simulators. Practical algorithmic guidance that leads to enormous computational savings and sometimes makes simulated annealing competitive with gradient-type optimization methods is provided. The method is illustrated by example applications to idealized problems of groundwater flow and selection of remediation strategy, including optimization with multiple groundwater control technologies. They demonstrate the flexibility of the method and indicate its potential for solving groundwater management problems. The application of simulated annealing to water resources problems is new and its development is immature, so further performance improvements can be expected.

  12. Graphene annealing: how clean can it be?

    PubMed

    Lin, Yung-Chang; Lu, Chun-Chieh; Yeh, Chao-Huei; Jin, Chuanhong; Suenaga, Kazu; Chiu, Po-Wen

    2012-01-11

    Surface contamination by polymer residues has long been a critical problem in probing graphene's intrinsic properties and in using graphene for unique applications in surface chemistry, biotechnology, and ultrahigh speed electronics. Poly(methyl methacrylate) (PMMA) is a macromolecule commonly used for graphene transfer and device processing, leaving a thin layer of residue to be empirically cleaned by annealing. Here we report on a systematic study of PMMA decomposition on graphene and of its impact on graphene's intrinsic properties using transmission electron microscopy (TEM) in combination with Raman spectroscopy. TEM images revealed that the physisorbed PMMA proceeds in two steps of weight loss in annealing and cannot be removed entirely at a graphene susceptible temperature before breaking. Raman analysis shows a remarkable blue-shift of the 2D mode after annealing, implying an anneal-induced band structure modulation in graphene with defects. Calculations using density functional theory show that local rehybridization of carbons from sp(2) to sp(3) on graphene defects may occur in the random scission of polymer chains and account for the blue-shift of the Raman 2D mode.

  13. High temperature annealing of ion irradiated tungsten

    DOE PAGES

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; ...

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  14. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  15. Unraveling Quantum Annealers using Classical Hardness

    PubMed Central

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  16. Processing of silicon solar cells by ion implantation and laser annealing

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.; Greenwald, A. C.

    1981-01-01

    Methods to improve the radiation tolerance of silicon cells for spacecraft use are described. The major emphasis of the program was to reduce the process-induced carbon and oxygen impurities in the junction and base regions of the solar cell, and to measure the effect of reduced impurity levels on the radiation tolerance of cells. Substrates of 0.1, 1.0 and 10.0 ohm-cm float-zone material were used as starting material in the process sequence. High-dose, low-energy ion implantation was used to form the junction in n+p structures. Implant annealing was performed by conventional furnace techniques and by pulsed laser and pulsed electron beam annealing. Cells were tested for radiation tolerance at Spire and NASA-LeRC. After irradiation by 1 MeV electrons to a fluence of 10 to the 16th power per sq cm, the cells tested at Spire showed no significant process induced variations in radiation tolerance. However, for cells tested at Lewis to a fluence of 10 to the 15th power per sq cm, ion-implanted cells annealed in vacuum by pulsed electron beam consistently showed the best radiation tolerance for all cell resistivities.

  17. Annealing effects on the characteristics of AuCl3-doped graphene

    NASA Astrophysics Data System (ADS)

    Hee Shin, Dong; Min Kim, Jong; Wook Jang, Chan; Hwan Kim, Ju; Kim, Sung; Choi, Suk-Ho

    2013-02-01

    Single-layer graphene sheets grown on Cu foils by chemical vapor deposition were transferred on 300 nm SiO2/n-type Si wafers and subsequently doped with 10 mM AuCl3 solution. The doped graphene sheets were annealed at various temperatures (TA) under vacuum below 10-3 Torr for 10 min and characterized by atomic force microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and 4-probe van der Pauw method. The XPS studies show that the compositions of Cl and Au3+ ions in doped graphene sheets increase slightly by annealing at 50 °C, but by further increase of TA above 50 °C, they monotonically decrease and become almost negligible at TA = 500 °C. These XPS results are consistent with the corresponding TA-dependent behaviors of the Raman scattering and the sheet resistance, implying that the doping efficiency is maximized at TA = 50 °C and the Cl and Au3+ ions play a major role in the doping/dedoping processes that are very reversible, different from the case of carbon nanotubes. These results suggest that the annealing temperature is a crucial factor to determine the structural and electrical properties of AuCl3-doped graphene. Possible mechanisms are discussed to explain the doping/dedoping processes of graphene sheets.

  18. Transformation of the microstructure and luminescence characteristics of LiF films during annealing

    NASA Astrophysics Data System (ADS)

    Lazareva, N. L.; Dresvyanskii, V. P.; Rakevich, A. L.; Papernyi, V. L.; Shipilova, O. I.; Kolesnikov, S. S.; Astrakhantsev, N. V.; Ivanov, N. A.; Martynovich, E. F.

    2016-09-01

    The microstructure of lithium fluoride thin films deposited on a glass substrate by thermal vacuum evaporation was investigated. An additional annealing of the films in air at temperatures of 400, 500, and 600°C resulted in an increase in the size of grains forming the film, as well as in the transformation of luminescence spectra of the initial and annealed samples before and after their X-ray irradiation used to generate in the films color centers that played the role of luminescent probes. It was found that an increase in the annealing temperature with an increase in the size of grains leads to a decrease in the intensity of the characteristic photoluminescence bands of color centers in lithium fluoride and to the appearance of new luminescence bands that are not characteristic of this material. Based on the results of the X-ray powder diffraction analysis, it was concluded that the increase in the grain size is caused by the change in the chemical composition of the films primarily due to the interaction of lithium fluoride with the substrate material.

  19. The effect of size on the strength of FCC metals at elevated temperatures: annealed copper

    PubMed Central

    Wheeler, Jeffrey M.; Kirchlechner, Christoph; Micha, Jean-Sébastien; Michler, Johann; Kiener, Daniel

    2016-01-01

    Abstract As the length scale of sample dimensions is reduced to the micron and sub-micron scales, the strength of various materials has been observed to increase with decreasing size, a fact commonly referred to as the ‘sample size effect’. In this work, the influence of temperature on the sample size effect in copper is investigated using in situ microcompression testing at 25, 200 and 400 °C in the SEM on vacuum-annealed copper structures, and the resulting deformed structures were analysed using X-ray μLaue diffraction and scanning electron microscopy. For pillars with sizes between 0.4 and 4 μm, the size effect was measured to be constant with temperature, within the measurement precision, up to half of the melting point of copper. It is expected that the size effect will remain constant with temperature until diffusion-controlled dislocation motion becomes significant at higher temperatures and/or lower strain rates. Furthermore, the annealing treatment of the copper micropillars produced structures which yielded at stresses three times greater than their un-annealed, FIB-machined counterparts. PMID:28003795

  20. Effect of initial-annealing on the microstructure of C-SiC/Cu composite coatings

    NASA Astrophysics Data System (ADS)

    Ren, D.; Du, J. F.; Xiao, T.; Yang, B.; Liu, B.; Lin, L. W.

    2013-07-01

    A copper layer as "binder" was added between C-SiC coating and the stainless steel substrate, before C-SiC coatings were prepared by using ion beam mixing and followed initial-annealing in vacuum. The surface microstructures scanned by atomic force microscopy (AFM) showed the increase or rupture of argon bubbles with the increasing temperature, which showed that initial-annealing could effectively eliminate residual gas in the coatings. The profile microstructure images obtained by scanning electron microscope (SEM) demonstrated that the interfaces of not only between C-SiC films but also between the coatings and the substrates transformed from clear to obscure, which implied the interdiffusion and stress release near these interfaces due to initial-annealing. Further depth profile analyses of major element including Cu, Si and Fe measured by secondary ion mass spectrometry (SIMS) also confirmed the interdiffusion, which could effectively enhance the adhesion strength of the coatings to the substrates by forming a wider extended transition layer.

  1. The effect of size on the strength of FCC metals at elevated temperatures: annealed copper.

    PubMed

    Wheeler, Jeffrey M; Kirchlechner, Christoph; Micha, Jean-Sébastien; Michler, Johann; Kiener, Daniel

    2016-12-01

    As the length scale of sample dimensions is reduced to the micron and sub-micron scales, the strength of various materials has been observed to increase with decreasing size, a fact commonly referred to as the 'sample size effect'. In this work, the influence of temperature on the sample size effect in copper is investigated using in situ microcompression testing at 25, 200 and 400 °C in the SEM on vacuum-annealed copper structures, and the resulting deformed structures were analysed using X-ray μLaue diffraction and scanning electron microscopy. For pillars with sizes between 0.4 and 4 μm, the size effect was measured to be constant with temperature, within the measurement precision, up to half of the melting point of copper. It is expected that the size effect will remain constant with temperature until diffusion-controlled dislocation motion becomes significant at higher temperatures and/or lower strain rates. Furthermore, the annealing treatment of the copper micropillars produced structures which yielded at stresses three times greater than their un-annealed, FIB-machined counterparts.

  2. Facile synthesis of few-layer graphene with a controllable thickness using rapid thermal annealing.

    PubMed

    Chu, Jae Hwan; Kwak, Jinsung; Kwon, Tae-Yang; Park, Soon-Dong; Go, Heungseok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kwon, Soon-Yong

    2012-03-01

    Few-layer graphene films with a controllable thickness were grown on a nickel surface by rapid thermal annealing (RTA) under vacuum. The instability of nickel films in air facilitates the spontaneous formation of ultrathin (<2-3 nm) carbon- and oxygen-containing compounds on a nickel surface; thus, the high-temperature annealing of the nickel samples without the introduction of intentional carbon-containing precursors results in the formation of graphene films. From annealing temperature and ambient studies during RTA, it was found that the evaporation of oxygen atoms from the surface is the dominant factor affecting the formation of graphene films. The thickness of the graphene layers is strongly dependent on the RTA temperature and time, and the resulting films have a limited thickness (<2 nm), even for an extended RTA time. The transferred films have a low sheet resistance of ~0.9 ± 0.4 kΩ/sq, with ~94% ± 2% optical transparency, making them useful for applications as flexible transparent conductors.

  3. Vacuum-jacketed line spacer

    NASA Technical Reports Server (NTRS)

    Houte, F. A.; Mckee, H. B.; Patten, T. C.

    1976-01-01

    Device has three integral, equally spaced leaf springs. Springs separate outer vacuum jacket from fluid carrying line, yet minimize conductive heat leaks and liquid boiloff. One-piece heat spring has sufficient flexibility to accommodate differential thermal expansion of inner and outer line.

  4. Cleaner Vacuum-Bag Curing

    NASA Technical Reports Server (NTRS)

    Clemons, J. M.; Penn, B. G.; Ledbetter, Frank E., III; Daniels, J. G.

    1987-01-01

    Improvement upon recommended procedures saves time and expense. Autoclave molding in vacuum bag cleaner if adhesive-backed covering placed around caul plate as well as on mold plate. Covering easy to remove after curing and leaves caul plate free of resin deposits.

  5. Quantum Vacuum Structure and Cosmology

    SciTech Connect

    Rafelski, Johann; Labun, Lance; Hadad, Yaron; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2011-12-05

    Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.

  6. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  7. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  8. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  9. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  10. Plates for vacuum thermal fusion

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  11. A vacuum ultraviolet spectrophotometric system

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Keffer, Charles E.; Zukic, Muamer

    1993-01-01

    The development of a vacuum ultraviolet spectrophotometric system for measuring transmittance and reflectance at variable angles is presented. Using various detectors and sources, the spectrophotometric system has been used for wavelengths from 80 nm to 300 nm with optical components up to 80 mm in diameter. The capability exists to make measurements through the visible range.

  12. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    Dr. M.A. Ebadian

    2000-01-13

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process.

  13. Degassing procedure for ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Moore, B. C.

    1979-01-01

    Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.

  14. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    SciTech Connect

    Oladeji, I.; Wood, D. L.; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this

  15. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    SciTech Connect

    Pratt, A.; Graziosi, P.; Bergenti, I.; Dediu, A.; Prezioso, M.; Yamauchi, Y.

    2014-07-15

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy and Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.

  16. Materials for ultra-high vacuum

    SciTech Connect

    Lee, G.

    1989-08-15

    This report discusses materials for use in ultrahigh vacuum systems of 1 {times} 10{sup {minus}9} Torr or lower. The author briefly discusses alloys, solders, insulators and joining methods for vacuum systems. (JDL)

  17. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  18. Ceramic-to-metal vacuum seal

    NASA Technical Reports Server (NTRS)

    Sackerlotzky, O. H.

    1979-01-01

    Knife-edge sealing technique forms reliable, vacuum-tight bonds between materials having very different thermal-expansion characteristics. Seal is thin and flexible and absorb shear, hoop, and bonding stresses at joint so that seal remains vacuum tight.

  19. Vacuum Phenomenon of the Sacroiliac Joint: Correlation with Sacropelvic Morphology

    PubMed Central

    Higashino, Kosaku; Morimoto, Masatoshi; Sakai, Toshinori; Yamashita, Kazuta; Abe, Mitusnobu; Nagamachi, Akihiro; Sairyo, Koichi

    2016-01-01

    Study Design A radiologic study of sacropelvic morphology and vacuum phenomenon of sacroiliac joint in subjects unrelated to low back pain. Purpose The aim of this study is to describe the relationship between sacropelvic morphology and vacuum phenomenon of the sacroiliac joint. Overview of Literature Lumbopelvic alignment and sacropelvic morphology are associated with the pathomechanisms of various spinal disorders. The vacuum phenomena of the sacroiliac joint (SJVP) are often observed in clinical practice, but the relationships between these phenomena and sacropelvic morphology have not been investigated. This study examined the prevalence of SJVP in computed tomography (CT) images and the relationship between sacropelvic morphology and SJVP. Methods We analyzed multiplanar CT images of 93 subjects (59 men, 34 women). Pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), and lumbar lordosis (LL) were measured using the three-dimensional reconstruction method. The prevalence of SJVP in multiplanar CT images were reviewed. Roland-Morris Disability Questionnaire (RDQ) scores and the modified Japanese Orthopedic Association (JOA) score, which focuses on subjective symptoms and restriction of activities of daily living, were also obtained from all the subjects. Results Thirty-six of the 93 subjects had SJVP (39%), with marked female predominance (91% women, 8.5% men). Men with SJVP had significantly lower PI than men without SJVP (35.1° vs. 46.3°, p<0.05). There was no correlation between SJVP and the modified JOA or RDQ scores. Conclusions These data suggest that differences in sacropelvic morphology can influence the biomechanical environment and contribute to SJVP in men. Presence of SJVP did not affect JOA or RDQ scores. PMID:27559459

  20. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  1. Understanding the Physics of changing mass phenomena

    NASA Astrophysics Data System (ADS)

    Ellermeijer, A. L.

    2008-05-01

    Changing mass phenomena, like a falling chain or a bungee jumper, might give surprising results, even for experienced physicists. They have resulted in hot discussions in journals, in which for instance Physics professors claim the impossibility of an acceleration larger then g in case of a bungee jumper. These phenomena are also interesting as topics for challenging student projects, and used as such by Dutch high school students. I will take these phenomena as the context in which I like to demonstrate the possibilities of ICT in the learning process of physics. Especially dynamical modeling enables us to describe these phenomena in an elegant way and with knowledge of high school mathematics. Furthermore tools for video-analysis and data from measurements with sensors allow us to study the phenomena in experiments. This example demonstrates the level of implementation of ICT in Physics Education in The Netherlands [1].

  2. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    NASA Astrophysics Data System (ADS)

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-02-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor.

  3. Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    PubMed Central

    Filippin, A. Nicolas; Macias-Montero, Manuel; Saghi, Zineb; Idígoras, Jesús; Burdet, Pierre; Barranco, Angel; Midgley, Paul; Anta, Juan A.; Borras, Ana

    2016-01-01

    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensor. PMID:26860367

  4. Vacuum-deposited diphenyl-diketo-pyrrolopyrrole solar cell structures

    NASA Astrophysics Data System (ADS)

    Georgieva, G.; Dobrikov, G.; Heinrichova, P.; Karashanova, D.; Dimov, D.; Vala, M.; Weiter, M.; Zhivkov, I.

    2016-03-01

    Photoelectrical parameters were measured of solar cell ITO|PEDOT:PSS|composite| Al samples. The active composite film was deposited in vacuum by co-evaporation of 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP(TBFu)2) and fullerene (C60). Additional DPP(TBFu)2:C60 composite films were studied by spectroscopy in the ultraviolet and visible region (UV-VIS) and scanning electron microscopy (SEM). It was found that solvent annealing (SVA) of composite DPP(TBFu)2:C60 vacuum-deposited films with tetrahydrofuran vapors improves the solar cell parameters by increasing the efficiency more than tenfold. This could be related to the more homogenized structure of the SVA composite film, as observed by SEM. The increased light absorption, as shown by UV-VIS spectroscopy, around the peak at 350 nm contributed to the better SVA solar cell performance. Photogeneration in the samples follows a monomolecular mechanism.

  5. A Review of Maintenance of Vacuum inside Vacuum Insulation Panels

    NASA Astrophysics Data System (ADS)

    Yang, Chun Guang; Xu, Lie

    The growing concerns over global energy crisis and the phasing out of polyurethane foams blown with CFC-11, which has high Ozone Depletion Potential(ODP), have pushed thermal insulation technology to improve its efficiency. Vacuum Insulation Panel(VIP) has been regarded as a super thermal insulation material with a thermal resistance of about 5-10 times higher than conventional thermal insulation. Appropriate vacuum in VIP is one of the most important factors contributing to the long term heat insulation performance of VIP. In this paper, the researches on three factors, which influence internal pressure inside VIP, including gas and water vapor permeation through the barrier, gas absorption by getters and desiccants and outgassing of the kernel, were reviewed respectively. Following this, the research emphasis and suggestions, which should be paid attention to, were summarized.

  6. Switching Circuit for Shop Vacuum System

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1987-01-01

    No internal connections to machine tools required. Switching circuit controls vacuum system draws debris from grinders and sanders in machine shop. Circuit automatically turns on vacuum system whenever at least one sander or grinder operating. Debris safely removed, even when operator neglects to turn on vacuum system manually. Pickup coils sense alternating magnetic fields just outside operating machines. Signal from any coil or combination of coils causes vacuum system to be turned on.

  7. AUTOMATED MALLEABLE ANNEALING OVENS SLOWLY HEAT AND COOL CASTINGS AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMATED MALLEABLE ANNEALING OVENS SLOWLY HEAT AND COOL CASTINGS AS THEY MOVE IN BINS ALONG TRACKS IN THE OVEN BOTTOM IN THE MALLEABLE ANNEALING BUILDING. THIS PROCESS TRANSFORMS BRITTLE WHITE IRON CASTINGS INTO SOFTER, STRONGER MALLEABLE IRON. - Stockham Pipe & Fittings Company, Malleable Annealing Building, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  8. Gravitational vacuum polarization. II. Energy conditions in the Boulware vacuum

    SciTech Connect

    Visser, M.

    1996-10-01

    Building on techniques developed in the preceding paper, I investigate the various pointwise and averaged energy conditions for the quantum stress-energy tensor corresponding to a conformally coupled massless scalar field in the Boulware vacuum. I work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytical and numerical techniques. In contradistinction to the case of the Hartle-Hawking vacuum, wherein violations of the energy conditions were confined to the region between the event horizon and the unstable photon orbit, I show that in the Boulware vacuum (1) all standard (pointwise and averaged) energy conditions are violated throughout the exterior region, all the way from spatial infinity down to the event horizon, and (2) outside the event horizon the standard pointwise energy conditions are violated in a maximal manner: They are violated at all points and for all null or timelike vectors. (The region inside the event horizon is considerably messier and of dubious physical relevance. Nevertheless, the standard pointwise energy conditions seem to be violated even inside the event horizon.) I argue that this is highly suggestive evidence, pointing to the fact that general self-consistent solutions of semiclassical quantum gravity might {ital not} satisfy the energy conditions and may in fact for certain quantum fields and certain quantum states violate {ital all} the energy conditions. {copyright} {ital 1996 The American Physical Society.}

  9. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  10. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  11. Drying leather with vacuum and toggling sequentially

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated a drying method that will enable leather to be dried under vacuum and stretch sequentially to improve area yield. Vacuum drying offers fast speed at a low temperature, which would be advantageous to heat-vulnerable chrome-free leather. Adding a toggle action after vacuum drying cou...

  12. Utilize Vacuum Forming to Make Interdisciplinary Connections

    ERIC Educational Resources Information Center

    Love, Tyler S.; Valenza, Frank

    2011-01-01

    The concept of vacuum forming has been around since the 19th century, despite not being fully utilized in industry until the 1950s. In the past, industrial arts classes have used vacuum-forming projects to concentrate solely on the manufacturing process and the final product. However, vacuum forming is not just an old industrial arts activity; it…

  13. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  14. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  15. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  16. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  17. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  18. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  19. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  20. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  1. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  2. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  3. 46 CFR 154.804 - Vacuum protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either...

  4. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  5. Carbon Monoxide-Induced Stability and Atomic Segregation Phenomena in Shape-Selected Octahedral PtNi Nanoparticles.

    PubMed

    Ahmadi, Mahdi; Cui, Chunhua; Mistry, Hemma; Strasser, Peter; Cuenya, Beatriz Roldan

    2015-11-24

    The chemical and morphological stability of size- and shape-selected octahedral PtNi nanoparticles (NP) were investigated after different annealing treatments up to a maximum temperature of 700 °C in a vacuum and under 1 bar of CO. Atomic force microscopy was used to examine the mobility of the NPs and their stability against coarsening, and X-ray photoelectron spectroscopy to study the surface composition, chemical state of Pt and Ni in the NPs, and thermally and CO-induced atomic segregation trends. Exposing the samples to 1 bar of CO at room temperature before annealing in a vacuum was found to be effective at enhancing the stability of the NPs against coarsening. In contrast, significant coarsening was observed when the sample was annealed in 1 bar of CO, most likely as a result of Ni(CO)4 formation and their enhanced mobility on the support surface. Sample exposure to CO at room temperature prior to annealing led to the segregation of Pt to the NP surface. Nevertheless, oxidic PtOx and NiOx species still remained at the NP surface, and, irrespective of the initial sample pretreatment, Ni surface segregation was observed upon annealing in a vacuum at moderate temperature (T < 300 °C). Interestingly, a distinct atomic segregation trend was detected between 300 and 500 °C for the sample pre-exposed to CO; namely, Ni surface segregation was partially hindered. This might be attributed to the higher bonding energy of CO to Pt as compared to Ni. Annealing in the presence of 1 bar CO also resulted in the initial surface segregation of Ni (T < 400 °C) as long as PtOx and NiOx species were available on the surface as a result of the higher affinity of Ni for oxygen. Above 500 °C, and regardless of the sample pretreatment, the diffusion of Pt atoms to the NP surface and the formation of a Ni-Pt alloy are observed.

  6. Effects of annealing in N2 ambient on traps and persistent conduction in hydrothermally grown ZnO

    NASA Astrophysics Data System (ADS)

    Fang, Z.-Q.; Claflin, B.; Look, D. C.

    2008-04-01

    Thermally stimulated current (TSC) spectroscopy and temperature-dependent dark current (DC) measurements have been applied to study traps and photoinduced persistent surface conduction in two hydrothermally grown bulk ZnO samples, as-grown, and annealed at 600°C in N2 ambient for 30min, respectively. The as-grown sample had a room-temperature (RT) resistivity of 1.6×103Ωcm, mobility of 2.1×102cm2/Vs, and carrier concentration of 1.8×1013cm-3, while the annealed sample was highly resistive, with RT resistivity of 3.6×106Ωcm, mobility of 4.4cm2/Vs, and carrier concentration of 3.9×1011cm-3. The as-grown sample showed strong conduction at low temperatures, which has been shown to be due to near-surface carriers in other studies. The annealed sample did not demonstrate this phenomenon. The dominant trap in the as-grown sample had an activation energy of 0.16eV, was strongest near the surface, and is possibly related to VZn. In the annealed sample, however, the dominant trap had an activation energy of 0.22eV, was of bulk nature, and is tentatively assigned to LiZn. After several routine TSC measurements, the DC for the as-grown sample increased by more than one order of magnitude at low temperatures (T<180K), while for the annealed sample, the DC increased by a factor of 2 at high temperatures (T>200K). These effects are generated by the TSC trap-filling illumination and can persist for many days under vacuum. At RT, the DC in the annealed sample returns to its equilibrium state if the sample is vented to air.

  7. Decoherence delays false vacuum decay

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.

    2013-05-01

    We show that gravitational interactions between massless thermal modes and a nucleating Coleman-de Luccia bubble may lead to efficient decoherence and strongly suppress metastable vacuum decay for bubbles that are small compared to the Hubble radius. The vacuum decay rate including gravity and thermal photon interactions has the exponential scaling \\Gamma \\sim \\Gamma _{CDL}^{2}, where ΓCDL is the Coleman-de Luccia decay rate neglecting photon interactions. For the lowest metastable initial state an efficient quantum Zeno effect occurs due to thermal radiation of temperatures as low as the de Sitter temperature. This strong decoherence effect is a consequence of gravitational interactions with light external mode. We argue that efficient decoherence does not occur for the case of Hawking-Moss decay. This observation is consistent with requirements set by Poincaré recurrence in de Sitter space.

  8. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect

    William S. McPhee

    2001-08-31

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites.

  9. Deflated--victims of vacuum.

    PubMed

    Sanders, Roy E

    2007-04-11

    Atmospheric pressure combined with a partial vacuum within chemical plant or refinery tanks can result in some ego-deflating moments. This article will review three catastrophic vessel failures in detail and touch on several other incidents. A 4000-gal acid tank was destroyed by a siphoning action; a well maintained tank truck was destroyed during a routine delivery; and a large, brand new refinery mega-vessel collapsed as the steam within it condensed. Seasoned engineers are aware of the frail nature of tanks and provide safeguards or procedures to limit damages. The purpose of this paper is to ensure this new generation of chemical plant/refinery employees understand the problems of the past and take the necessary precautions to guard against tank damages created by partial vacuum conditions.

  10. Open vacuum tube in space.

    PubMed

    Gonfalone, A A; Arends, H J

    1979-11-01

    After having reviewed briefly the reliability of vacuum tubes on spacecraft, it is shown that the operation in space of a vacuum tube with an open structure is possible provided adequate measures are taken. The tube considered here is a multielectrode electron gun emitting electrons into space, in order to control the potential of a satellite. To avoid the failure of the most sensitive element of the gun, namely the impregnated tungsten cathode, the gun design includes such characteristics as a slow warming up of the heater element, a reactivation program used in case of cathode contamination, and a clean opening system which is not contaminant. Similarities with communication tubes are considered and the advantages of open tubes are mentioned.

  11. Radiation reaction in quantum vacuum

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-02-01

    Since the development of the radiating electron theory by P. A. M. Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model, called the "radiation reaction". Recently, this equation has become important for ultra-intense laser-electron (plasma) interactions. In our recent research, we found a stabilized model of the radiation reaction in quantum vacuum [K. Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014)]. It led us to an updated Fletcher-Millikan charge-to-mass ratio including radiation. In this paper, I will discuss the generalization of our previous model and the new equation of motion with the radiation reaction in quantum vacuum via photon-photon scatterings and also introduce the new tensor d{E}^{μ ν α β }/dm, as the anisotropy of the charge-to-mass ratio.

  12. In-vacuum exposure shutter

    DOEpatents

    Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.

    2004-06-01

    An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.

  13. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  14. 6 MV Vacuum Voltmeter Development

    DTIC Science & Technology

    2009-06-01

    reversed). The draw rod compresses o-ring seals between the insulators and rings to allow operation in vacuum. The insulator outer surfaces are coated...small-diameter ends, and have toroidal conductors attached at their large-diameter ends. The field shaper surfaces are treated to increase the...the direction to emit electrons toward the VVM insulator stack. The field magnitude is about 0.5 MV/cm, and would probably emit without the surface

  15. Low-Cost "Vacuum Desiccator"

    NASA Astrophysics Data System (ADS)

    Sweet, Frederick

    2004-10-01

    Described are individualized, low-cost, and safe desiccators that can be efficiently and rapidly made with an inexpensive kitchen aid sold for shrink-wrapping food. The device can be used for enclosing small vials or bottles and also jars that are too large to be placed in conventional glass or plastic desiccators. This shrink-wrapping device is proposed for producing "vacuum desiccators" in large undergraduate chemistry laboratories or in graduate and research laboratories.

  16. The solar vacuum water pump

    SciTech Connect

    Ryduchowski, K.W.

    1983-12-01

    In this paper the conception of the solar vacuum water pump is presented. The working medium of the pump consists of the water vapour with temperature about 100/sup 0/C, which is produced by solar energy Fresnel-lens collector. The pressure difference between the condensing chamber /3/ and ambient atmosphere caused by the direct condensation of the water vapour at the surface of the pumped water, creates the necessary pumping force.

  17. Improved Vacuum-Tight Connector

    NASA Technical Reports Server (NTRS)

    Rudin, Frank

    1989-01-01

    Simple reinforcing tube increases service life and improves seal. Short stainless-steel tube inserted in copper tube to reinforce against compression, preventing leaks due to thermal distortion or to collapse under squeeze of ferrule in compressure fitting. Several test specimens of improved connector constructed, tested, and evaluated. Fittings not only operated successfully at required operating conditions of vacuum and temperature but also consistently demonstrated high reliability after loosened and tightened many times.

  18. Random numbers from vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Shi, Yicheng; Chng, Brenda; Kurtsiefer, Christian

    2016-07-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  19. Vacuum distillation of americium metal

    SciTech Connect

    Berry, J W; Knighton, J B; Nannie, C A

    1982-01-22

    High-purity americium metal has been distilled in multigram quantities from a plutonium-americium alloy. The procedure consisted of a two-stage vacuum distillation carried out at 1200/sup 0/C and 10/sup -6/ torr pressure. Four batches of americium metal were produced ranging in weight from 13.3 grams to 54.1 grams. The purity of the americium product ranged from 99.27 to 99.79%.

  20. Nanowire transformation and annealing by Joule heating.

    PubMed

    Hummelgård, Magnus; Zhang, Renyun; Carlberg, Torbjörn; Vengust, Damjan; Dvorsek, Damjan; Mihailovic, Dragan; Olin, Håkan

    2010-04-23

    Joule heating of bundles of Mo(6)S(3)I(6) nanowires, in real time, was studied using in situ TEM probing. TEM imaging, electron diffraction, and conductivity measurements showed a complete transformation of Mo(6)S(3)I(6) into Mo via thermal decomposition. The resulting Mo nanowires had a conductivity that was 2-3 orders higher than the starting material. The conductivity increased even further, up to 1.8 x 10(6) S m( - 1), when the Mo nanowires went through annealing phases. These results suggest that Joule heating might be a general way to transform or anneal nanowires, pointing to applications such as metal nanowire fabrication, novel memory elements based on material transformation, or in situ improvement of field emitters.

  1. Shock, Post-Shock Annealing, and Post-Annealing Shock in Ureilites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post-shock annealing, and 4) post-annealing shock. Period 1 occurred approx.4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali-rich fine-grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact-induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral-appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb-Sr internal isochron age of approx.4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, approx.7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact-melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary-type noble gases from the ureilitic melts. Incomplete separation of metal from silicates

  2. Matter, spacetime and the vacuum.

    PubMed

    Overduin, J; Fahr, H J

    2001-12-01

    We distinguish three historical and scientific views of matter, spacetime, and the relationship between them: the absolute approach of Newton, the relational approach most often associated with Mach, and a third, geometrical approach which inspired Einstein and continues to drive efforts toward a unified theory of fundamental interactions today. Which is correct? We suggest that this is, to a large extent, an "ill-posed question," reminiscent of the wave/particle debate in earlier times. The boundary between matter and spacetime is no longer easy to draw, and it is likely that they are complementary aspects of the same reality. There is no clearer illustration of this than the modern view of the vacuum. We review the importance of this concept in cosmology, and explore the extent to which the old idea of an "empty" vacuum might still be maintained. If the real cosmological vacuum is far from empty, as observations now suggest, then it may be possible to achieve an even simpler goal: a Universe with a net energy of zero.

  3. Cosmic vacuum and galaxy formation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2006-04-01

    It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red shift z≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the subsequent epoch of the vacuum domination. At the zrrV={M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation between the largest mass condensations and their spatial scales. All the real large-scale systems follow this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that there is a strong correspondence between the global design of the Universe as a whole and the cosmic structures of various masses and spatial scales.

  4. Running Jobs in the Vacuum

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Ubeda Garcia, M.

    2014-06-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  5. Annealing of Solar Cells and Other Thin Film Devices

    NASA Technical Reports Server (NTRS)

    Escobar, Hector; Kuhlman, Franz; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    Annealing is a key step in most semiconductor fabrication processes, especially for thin films where annealing enhances performance by healing defects and increasing grain sizes. We have employed a new annealing oven for the annealing of CdTe-based solar cells and have been using this system in an attempt to grow US on top of CdTe by annealing in the presence of H2S gas. Preliminary results of this process on CdTe solar cells and other thin-film devices will be presented.

  6. Entanglement in a Quantum Annealing Processor

    DTIC Science & Technology

    2016-09-07

    Entanglement in a Quantum Annealing Processor T. Lanting,1,* A. J. Przybysz,1 A. Yu. Smirnov,1 F. M. Spedalieri,2,3 M. H. Amin,1,4 A. J. Berkley,1 R...promising path to a practical quantum processor . We have built a series of architecturally scalable QA processors consisting of networks of manufactured...such processor , demonstrating quantum coherence in these systems. We present experimental evidence that, during a critical portion of QA, the qubits

  7. Laser annealing of ion implanted silicon

    SciTech Connect

    White, C.W.; Appleton, B.R.; Wilson, S.R.

    1980-01-01

    Pulsed laser annealing of ion implanted silicon leads to the formation of supersaturated alloys by nonequilibrium crystal growth processes at the interface occurring during liquid phase epitaxial regrowth. The interfacial distribution coefficients from the melt (k') and the maximum substitutional solubilities (C/sub s//sup max/) are far greater than equilibrium values. Both K' and C/sub s//sup max/ are functions of growth velocity. Mechanisms limiting substitutional solubilities are discussed. 5 figures, 2 tables.

  8. Laser Annealing of GaAs

    DTIC Science & Technology

    1978-12-01

    annealing implanted layers. Sheet resistance measurements made on the irradiated semi- insulating GaAs samples indicate no significant change in the... sheet resistance after laser irradiation (typical decrease in the sheet resistance after laser irradiation was found to be less than a factor of two...OF THE SHEET - RESISTANCE (P ) THE EFFECTIVE SHEET ELECTRON CONCENTRATION (N ), AND THE EFFECTIVE MOBILITY _u)FOR SEMIb- INSULATING GaAs IMPLANTED WITH

  9. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  10. Thermal annealing dependence of high-frequency magnetoimpedance in amorphous and nanocrystalline FeSiBCuNb ribbons.

    PubMed

    Hernando, B; Prida, V M; Sanchez, M L; Olivera, J; Garcia, C; Santos, J D; Alvarez, P; Sánchez, J L Ll; Perov, N

    2008-06-01

    The magnetoimpedance (MI) effect in Fe73.5Si13.5B9Nb3Cu1 melt-spun amorphous ribbons has been studied in the frequency range (1-500 MHz). Isothermal heating treatments in a furnace have been employed to nanocrystallize the ribbons (1 h at 565 degrees C in a vacuum of 10(-3) mbar), while other samples were annealed at lower temperatures (400 and 475 degrees C during 1 h), in order to evaluate the influence of the annealing temperature on the MI effect. The high-frequency impedance was measured using a technique based on the reflection coefficient measurements of a specific transmission line by using a network analyzer. Frequency dependence of the MI ratio, DeltaZ/Z, and both resistive, DeltaR/R, and reactive, DeltaX/X, components of magnetoimpedance were measured in the amorphous and annealed states, at different temperatures. A maximum value of the MI ratio of about 50% at a driving frequency of 18 MHz is obtained in the nanocrystalline (annealed at 565 degrees C) ribbon. Maxima for DeltaR/R of about 81% at 85 MHz and DeltaX/X around 140% at 5 MHz were also achieved. It is revealed that the microstructural evolution in the nanocrystalline sample leads to a magnetic softening, an optimum domain structure and a permeability which is sensitive to frequency and applied magnetic field, generating a large MI response.

  11. Effects of Annealing Ambient on the Characteristics of LaAlO3 Films Grown by Atomic Layer Deposition.

    PubMed

    Zhao, Lu; Liu, Hong-Xia; Wang, Xing; Fei, Chen-Xi; Feng, Xing-Yao; Wang, Yong-Te

    2017-12-01

    We investigated the effects of different annealing ambients on the physical and electrical properties of LaAlO3 films grown by atomic layer deposition. Post-grown rapid thermal annealing (RTA) was carried out at 600 °C for 1 min in vacuum, N2, and O2, respectively. It was found that the chemical bonding states at the interfacial layers (ILs) between LaAlO3 films and Si substrate were affected by the different annealing ambients. The formation of IL was enhanced during the RTA process, resulting in the decrease of accumulation capacitance, especially in O2 ambient. Furthermore, based on the capacitance-voltage characteristics of LaAlO3/Si MIS capacitors, positive V FB shifting tendency could be observed, indicating the decrease of positive oxide charges. Meanwhile, both trapped charge density and interface trap density showed decreased trends after annealing treatments. In addition, RTA process in various gaseous ambients can reduce the gate leakage current due to the enhancement of valence band offset and the reduction of defects in the LaAlO3/Si structure in varying degrees.

  12. Effects of Annealing Ambient on the Characteristics of LaAlO3 Films Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Liu, Hong-xia; Wang, Xing; Fei, Chen-xi; Feng, Xing-yao; Wang, Yong-te

    2017-02-01

    We investigated the effects of different annealing ambients on the physical and electrical properties of LaAlO3 films grown by atomic layer deposition. Post-grown rapid thermal annealing (RTA) was carried out at 600 °C for 1 min in vacuum, N2, and O2, respectively. It was found that the chemical bonding states at the interfacial layers (ILs) between LaAlO3 films and Si substrate were affected by the different annealing ambients. The formation of IL was enhanced during the RTA process, resulting in the decrease of accumulation capacitance, especially in O2 ambient. Furthermore, based on the capacitance-voltage characteristics of LaAlO3/Si MIS capacitors, positive V FB shifting tendency could be observed, indicating the decrease of positive oxide charges. Meanwhile, both trapped charge density and interface trap density showed decreased trends after annealing treatments. In addition, RTA process in various gaseous ambients can reduce the gate leakage current due to the enhancement of valence band offset and the reduction of defects in the LaAlO3/Si structure in varying degrees.

  13. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Li, Rong; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) sheet was cross-linked by γ irradiation in air with a dose of up to 300 kGy at a dose rate of 5 kGy/h and further treated by post-annealing at 120 °C for 4 h in vacuum. Variations in chemical structure, thermostability, crystallinity, creep resistance, and tensile properties were investigated and compared mainly by gel content, TGA, DSC, and creep and tensile measurements. Gel content measurements indicated that cross-linking was predominant over chain scission during irradiation and post-annealing. Radiation cross-linking resulted in an obvious improvement in the creep resistance and tensile properties of UHMWPE. Through cross-linking, the operational temperature and yield strength of the irradiated and subsequently annealed UHMWPE sheet were improved by more than 100 °C and 14%, respectively, at a dose of 300 kGy. Simultaneously, Young's modulus was increased to 1413 MPa, compared with 398 MPa of pristine UHMWPE. Annealing after irradiation further improved the creep resistance and Young's modulus. Highly cross-linked UHMWPE can even be maintained at 250 °C for a long time without any obvious deformation.

  14. Seismic traveltime tomography: a simulated annealing approach

    NASA Astrophysics Data System (ADS)

    Wéber, Zoltán

    2000-04-01

    Seismic traveltime tomography involves finding a velocity model that minimizes the error energy between the measured and the theoretical traveltimes. When solving this nonlinear inverse problem, a local optimization technique can easily produce a solution for which the gradient of the error energy function vanishes, but the energy function itself does not take its global minimum. Other methods such as simulated annealing can be applied to such global optimization problems. The simulated annealing approach to seismic traveltime tomography described in this paper has been tested on synthetic as well as real seismic data. It is shown that unlike local methods, the convergence of the simulated annealing algorithm is independent of the initial model: even in cases of virtually no prior information, it is capable of producing reliable results. The method can provide a number of acceptable solutions. When prior information is sparse, the solution of the global optimization can be used as an input to a local optimization procedure, such as, e.g., simultaneous iterative reconstruction technique (SIRT), producing an even more accurate result.

  15. Annealing free magnetic tunnel junction sensors

    NASA Astrophysics Data System (ADS)

    Knudde, S.; Leitao, D. C.; Cardoso, S.; Freitas, P. P.

    2017-04-01

    Annealing is a major step in the fabrication of magnetic tunnel junctions (MTJs). It sets the exchange bias between the pinned and antiferromagnetic layers, and helps to increase the tunnel magnetoresistance (TMR) in both amorphous and crystalline junctions. Recent research on MTJs has focused on MgO-based structures due to their high TMR. However, the strict process control and mandatory annealing step can limit the scope of the application of these structures as sensors. In this paper, we present AlOx-based MTJs that are produced by ion beam sputtering and remote plasma oxidation and show optimum transport properties with no annealing. The microfabricated devices show TMR values of up to 35% and using NiFe/CoFeB free layers provides tunable linear ranges, leading to coercivity-free linear responses with sensitivities of up to 5.5%/mT. The top-pinned synthetic antiferromagnetic reference shows a stability of about 30 mT in the microfabricated devices. Sensors with linear ranges of up to 60 mT are demonstrated. This paves the way for the integration of MTJ sensors in heat-sensitive applications such as flexible substrates, or for the design of low-footprint on-chip multiaxial sensing devices.

  16. Vacuum-Packaging Technology for IRFPAs

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Tokuda, Takayuki; Tsutinaga, Akinobu; Kimata, Masafumi; Abe, Hideyuki; Tokashiki, Naotaka

    We developed vacuum-packaging equipment and low-cost vacuum packaging technology for IRFPAs. The equipment is versatile and can process packages with various materials and structures. Getters are activated before vacuum packaging, and we can solder caps/ceramic-packages and caps/windows in a high-vacuum condition using this equipment. We also developed a micro-vacuum gauge to measure pressure in vacuum packages. The micro-vacuum gauge uses the principle of thermal conduction of gases. We use a multi-ceramic package that consists of six packages fabricated on a ceramic sheet, and confirm that the pressure in the processed packages is sufficiently low for high-performance IRFPA.

  17. Vacuum Technology and Standardization-An Update

    NASA Astrophysics Data System (ADS)

    Akram, H. M.; Rashid, H.

    2011-06-01

    Vacuum technology has been vital for the progress in almost every field of modern industrial & scientific research and technological developments. Research in this field is therefore important for the rapid progress in other sophisticated technologies. The modern society require precise know-how of vacuum metrology for its complex and sophisticated manufacturing processes and research activities. Accuracy in vacuum measurements is therefore an essential need for every application. The required accuracy is achieved with the help of well-calibrated vacuum gauges and this is possible only, if there exist proper vacuum standards of required range and accuracy. In this paper, a brief review of recently developed different vacuum standards, namely Standard Mercury Manometer, Standard Volume Expansion System and Standard Orifice Flow System will be presented, employed for the calibration of low, medium and high vacuum gauges respectively. Our recently developed standards are simple in design, least in vibration & degassing rate with desired accuracy, ease of operation and cost effective.

  18. Compactified Vacuum in Ten Dimensions.

    NASA Astrophysics Data System (ADS)

    Wurmser, Daniel

    1987-09-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M ^4 and a "compactified" space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum be annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. Recently, it has been proposed that gravity in more than four dimensions may involve terms of higher order in the curvature as well as the linear terms present in ordinary general relativity. I illustrate the effect of such terms by considering the example B = S^6 where S ^6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. I explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The example M^4 times S^6 is still plagued by the semi -classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a

  19. Application of laser annealing to solar cell junction formation

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.; Lopez, M.; Josephs, R. H.

    1981-01-01

    The possibility of using high-energy Q-switched Nd:glass lasers to form pn junctions in solar cells by annealing ion-implanted substrates is investigated. The properties of laser annealed cells are analyzed by electrical, transmission electron microscopy, Rutherford backscattering and secondary ion mass spectrometry techniques. Tests indicate the laser annealed substrates to be damage-free and electrically active. Similar reference analysis of ion-implanted furnace-annealed substrates reveals the presence of residual defects in the form of dislocation lines and loops with substantial impurity redistribution evident for some anneal temperature/time regimes. Fabricated laser annealed cells exhibit excellent conversion efficiency. It is noted that additional improvements are anticipated once the anneal parameters for a back surface field are optimized.

  20. Ion-implanted laser annealed silicon solar cells

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1980-01-01

    Development of low cost solar cells fabrication technology is being sponsored by NASA JPL as part of the Low Cost Solar Array Project (LSA). In conformance to Project requirements ion implantation and laser annealing were evaluated as junction formation techniques offering low cost-high throughput potential. Properties of cells fabricated utilizing this technology were analyzed by electrical, transmission electron microscopy, Rutherford backscattering and secondary ion mass spectrometry techniques. Tests indicated the laser annealed substrates to be damage free and electrically active. Similar analysis of ion implanted furnace annealed substrates revealed the presence of residual defects in the form of dislocation lines and loops with substantial impurity redistribution evident for some anneal temperature/time regimes. Fabricated laser annealed cells exhibited improved spectral response and conversion efficiency in comparison to furnace annealed cells. An economic projection for LSA indicates a potential for considerable savings from laser annealing technology.