Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan
2009-02-25
The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.
Beruto, Dario T; Botter, Rodolfo; Converti, Attilio
2009-02-01
Aluminum hydroxide gels were washed with water, ethanol, methanol and isopropanol to obtain new gels with different liquid phases that were dried either in air at 120 degrees C or under vacuum at 80 degrees C. Drying in air leads to alcoholic xerogels with BET surface areas larger than the aqueous ones. The effect of the alcoholic groups as substitutes of the hydroxyl ones has been discussed to account for the final size of xerogel crystallites. Drying under vacuum decreases the BET surface of the methanol xerogels, but no micropores are formed in all the alcoholic xerogel matrixes. On the contrary, the vacuum drying process changes significantly the microstructure of the aqueous xerogels. Their BET surface increases by 34 m(2)/g, and micropores are formed within their crystallite aggregates. It has been experimentally shown that these changes are due to a shear transformation that occurs in the boehmite xerogels obtained under vacuum. To discuss these data, the existence of chemical compounds such as AlOOHnH(2)O was postulated. On this ground, a neat analogy between vacuum drying process and vacuum interfacial decomposition reactions of inorganic salts can be drawn. This analogy explains how a state of stresses forms in aqueous xerogel matrix during vacuum drying process.
Drying performance of fermented cassava (fercaf) using a convective multiple flash dryer
NASA Astrophysics Data System (ADS)
Handojo, Lienda A.; Zefanya, Samuel; Christanto, Yohanes
2017-05-01
Fermented cassava (fercaf) is a tropical versatile carbohydrate source flour which is produced by modifying the characteristics of cassava. Drying process is one of the processes that could influence the quality of fercaf. In general, for food application, convective and vacuum drying were used, however recently another advanced method using combination of both convective and vacuum, i.e. convective multiple flash drying (CMFD), was proposed. This method is conducted by repeating cycles of convective and vacuum drying in intermittent manner. Cassava chips with thickness of 0.1-0.2 cm were fermented for 24 hours at room condition. Then, the drying process was conducted by using 3 techniques, i.e. convective, vacuum, and combined method (CMFD), with operation temperatures between 50 and 70°C for 10 hours or until fermented cassava reached a moisture content of less than 20%. The study shows that CMFD was the fastest drying method with only 5-6 hours period compared to 8-10 hours using vacuum and more than 10 hours using convective method. CMFD also produces harder fercaf chips than those of vacuum and convective methods. Moreover, this research also proves that the operating pressure and temperature influence the moisture content.
Calculation of the process of vacuum drying of a metal-concrete container with spent nuclear fuel
NASA Astrophysics Data System (ADS)
Karyakin, Yu. E.; Lavrent'ev, S. A.; Pavlyukevich, N. V.; Pletnev, A. A.; Fedorovich, E. D.
2012-01-01
An algorithm and results of calculation of the process of vacuum drying of a metal-concrete container intended for long-term "dry" storage of spent nuclear fuel are presented. A calculated substantiation of the initial amount of moisture in the container is given.
Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir
2016-07-15
Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of a modified dry curing process for beef.
Hayes, J E; Kenny, T A; Ward, P; Kerry, J P
2007-11-01
The development of a dry curing process using physical treatments to promote the diffusion of the cure ingredients was studied. Vacuum pulsing with and without tumbling, continuous vacuum, and tumbling only treatments were compared with a conventional static dry cure control method on beef M. supraspinatus. Vacuum tumble and tumble only treatments gave highest core salt content after 7 days conditioning (3.3% and 3.1%, respectively). All test treatments resulted in higher colour uniformity and lower % cook loss in comparison to control (P<0.001). The control and vacuum pulsed samples were tougher (P<0.001). Vacuum tumble and tumble only treatments gave higher acceptability (P<0.001). Based on these findings for M. supraspinatus, indicating that the vacuum tumble treatments gave the best results, further testing of this method was conducted using the M. biceps femoris in addition to the M. supraspinatus. Cured beef slices were stored in modified atmosphere packs (MAP) (80%N(2):20%CO(2)) for up to 28 day at 4°C. Redness (a(∗), P<0.001) decreased over storage time in M. biceps femoris. Vacuum tumble treatment increased (P<0.05) redness in M. supraspinatus. Results obtained demonstrate the benefits of vacuum tumbling over the other physical treatments as a method for accelerating the dry curing process, producing dry cured beef products with enhanced organoleptic quality and increased yields.
Spent nuclear fuel project cold vacuum drying facility operations manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
IRWIN, J.J.
This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of themore » CVDF until the CVDF final ORR is approved.« less
Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum
NASA Astrophysics Data System (ADS)
Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.
2017-06-01
Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.
FINAL REPORT: Transformational electrode drying process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus Daniel, C.; Wixom, M.
2013-12-19
This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less
NASA Astrophysics Data System (ADS)
Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.
2017-12-01
One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.
Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.
Wray, Derek; Ramaswamy, Hosahalli S
2015-12-01
A novel drying method for frozen-thawed whole cranberries was developed by combining microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions with microwave vacuum finish-drying. A central composite rotatable design was used to vary temperature (33 to 67 °C), osmotic solution concentration (33 to 67 °B), contact time (5 to 55 min), and flow rate (2.1 to 4.1 L/min) in order to the determine the effects of MWODS input parameters on quality of the dried berry. Quality indices monitored included colorimetric and textural data in addition to anthocyanin retention and cellular structure. Overall it was found that the MWODS-MWV process was able to produce dried cranberries with quality comparable to freeze dried samples in much shorter time. Additionally, cranberries dried via the novel process exhibited much higher quality than those dried via either vacuum or convective air drying in terms of color, anthocyanin content, and cellular structure. © 2015 Institute of Food Technologists®
Resin impregnation process for producing a resin-fiber composite
NASA Technical Reports Server (NTRS)
Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)
1994-01-01
Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.
Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko
2015-01-01
Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.
NASA Astrophysics Data System (ADS)
Martin Esparza, Maria Eugenia
Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).
Pu, Yuan-Yuan; Sun, Da-Wen
2015-12-01
Mango slices were dried by microwave-vacuum drying using a domestic microwave oven equipped with a vacuum desiccator inside. Two lab-scale hyperspectral imaging (HSI) systems were employed for moisture prediction. The Page and the Two-term thin-layer drying models were suitable to describe the current drying process with a fitting goodness of R(2)=0.978. Partial least square (PLS) was applied to correlate the mean spectrum of each slice and reference moisture content. With three waveband selection strategies, optimal wavebands corresponding to moisture prediction were identified. The best model RC-PLS-2 (Rp(2)=0.972 and RMSEP=4.611%) was implemented into the moisture visualization procedure. Moisture distribution map clearly showed that the moisture content in the central part of the mango slices was lower than that of other parts. The present study demonstrated that hyperspectral imaging was a useful tool for non-destructively and rapidly measuring and visualizing the moisture content during drying process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah
2016-06-17
The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.
Yan, Huitong; Kerr, William L
2013-04-01
Apple pomace is a waste material from apple juice processing, and contains significant amounts of dietary fiber and phytochemicals. Many of these compounds may be degraded post-pressing and during drying operations. Continuous vacuum-belt drying (VBD) was studied as a means of drying and maintaining quality of apple pomace. The color and chemical properties of samples dried by vacuum-belt drying at different temperatures were evaluated including total phenolics content (TPC), monomeric anthocyanins (TMA) and dietary fiber content (TDF). VBD powders were pale golden yellow, and those dried at 80°C did not differ in L*, a* and b* values from freeze-dried powders. VBD pomace had 44.9 to 51.9 g gallic acid equivalents kg(-1) TPC, with greatest retention for pomace dried at 80 and 95°C. TPC for pomace dried at 80 or 95°C was not significantly different from that for freeze-dried pomace. TMA levels (74.0 mg C3G kg(-1), where C3G is cyanidine 3-O-glucoside equivalents) were highest in pomace vacuum dried at 80°C. TDF ranged from 442 to 495 g kg(-1) in vacuum-dried pomace and was not significantly different from TDF of freeze-dried poamce (480 g kg(-1)). In all cases, TPC, TMA and TDF were higher in VBD pomace than in freeze-dried whole apple, while VBD pomace prepared at 80 or 95°C had fiber and phytochemical levels similar to freeze-dried powders. © 2012 Society of Chemical Industry.
Jiao, Rui; Gao, Jina; Zhang, Xiyan; Zhang, Maofeng; Chen, Jiren; Wu, Qingping; Zhang, Jumei; Ye, Yingwang
2017-03-01
Vacuum freeze-drying is an important food-processing technology for valid retention of nutrients and bioactive compounds. Cronobacter sakazakii has been reported to be associated with severe infections in neonates through consumption of contaminated powdered infant formula. In this study, effects of vacuum freeze-drying treatment for 12, 24, and 36 h on inactivation of C. sakazakii with different initial inoculum levels in sterile water, tryptic soy broth (TSB), skim milk, and whole milk were determined. Results indicated that the lethality rate of C. sakazakii in each sample increased with the extension of vacuum freeze-drying time. With initial inoculum levels of 10 2 and 10 3 cfu/mL, the survival of C. sakazakii in different liquid media was significantly affected by vacuum freeze-drying for 12, 24, and 36 h. In addition, the lethality rates of C. sakazakii in whole milk, skim milk, and TSB was significantly reduced compared with those in sterile water. Furthermore, whole milk showed the strongest protective role for C. sakazakii cells, followed by skim milk and TSB medium. Using the scanning electron microscope, the intracellular damage and obvious distortion of C. sakazakii cells were observed after vacuum freeze-drying for 24 and 36 h compared with the untreated sample, and the injured cells increased with the extension of vacuum-drying time. We concluded that inactivation of vacuum freeze-drying on C. sakazakii cells is related to the food matrix, and a combination with other methods for inactivating C. sakazakii is required for ensuring microbial safety of powdered infant formula. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.
2013-07-01
A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.
Figiel, Adam; Michalska, Anna
2016-12-30
The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.
Figiel, Adam; Michalska, Anna
2016-01-01
The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying. PMID:28042845
Chuyen, Hoang V; Roach, Paul D; Golding, John B; Parks, Sophie E; Nguyen, Minh H
2017-03-01
Gac fruit (Momordica cochinchinensis Spreng.) is a rich source of carotenoids for the manufacture of powder, oil and capsules for food, cosmetic and pharmaceutical uses. Currently, only the aril of the Gac fruit is processed and the peel, similar to the other components, is discarded, although it contains high level of carotenoids, which could be extracted for commercial use. In the present study, four different drying methods (hot-air, vacuum, heat pump and freeze drying), different temperatures and drying times were investigated for producing dried Gac peel suitable for carotenoid extraction. The drying methods and drying temperatures significantly affected the drying time, carotenoid content and antioxidant capacity of the dried Gac peel. Among the investigated drying methods, hot-air drying at 80 o C and vacuum drying at 50 o C produced dried Gac peel that exhibited the highest retention of carotenoids and the strongest antioxidant capacity. Hot-air drying at 80 o C and vacuum drying at 50 o C are recommended for the drying of Gac peel. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
Chayjan, Reza Amiri; Alaei, Behnam
2016-01-01
Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired results for colour change.
2010-01-01
a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was
USDA-ARS?s Scientific Manuscript database
Murta (Ugni molinae T.) berries were vacuum dried at a constant pressure of 15 kPa. The effects of processing temperatures (50, 60, 70, 80 and 90 °C) on the physico-chemical characteristics, the phenolic and flavonoid compounds, the antioxidant activity (measured by DPPH and ORAC) and the sugar and ...
Key composition optimization of meat processed protein source by vacuum freeze-drying technology.
Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun
2018-05-01
Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.
Retention of antioxidant capacity of vacuum microwave dried cranberry.
Leusink, Gwen J; Kitts, David D; Yaghmaee, Parastoo; Durance, Tim
2010-04-01
In this study, cranberries were dried by vacuum-microwave drying (VMD), freeze-drying (FD), or hot air-drying (AD), to compare the effects of different drying processes on both physical changes as well as the retention of bioactive components in dried samples. Total porosity (%) and average pore radius of dehydrated cranberries were greater using VMD compared to FD and AD (P < 0.05). Crude methanol cranberry powdered extracts were fractionated by solid phase extraction (SPE) into organic acid-, total phenolics-, anthocyanin-, or proanthocyanidin-enriched extracts, respectively. The chemical composition of the 60% acidified methanol fractions contained cyanidin-3-galactoside, cyanidin-3-arabinoside, peonidin-3-galactoside, and peonidin-3-arabinoside, as assessed by HPLC. Antioxidant activities of cranberry fractions were measured using chemical ORAC and ABTS methods. The 60% acidified methanol fraction had a significantly higher (P < 0.05) antioxidant potential than the other chemical fractions, which was largely attributed to the relatively higher anthocyanin content. In general, vacuum-microwave drying and freeze-drying resulted in similar retention of anthocyanins and antioxidant activity, which were both relatively higher (P < 0.05) than that recovered from cranberries dried by hot air drying.
A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods.
Chen, Zhi-Gang; Guo, Xiao-Yu; Wu, Tao
2016-05-01
A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41-53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model. Copyright © 2015. Published by Elsevier B.V.
Comparison of nonfried apple snacks with commercially available fried snacks.
Joshi, A P K; Rupasinghe, H P V; Pitts, N L
2011-06-01
The study was carried out to evaluate the selected quality attributes of a prototype nonfried apple snack produced by application of vacuum impregnation (VI) of maple syrup and vacuum drying. When maple syrup concentration was adjusted to 20-40% in the VI solution, vacuum-dried apple slices are resulted in the greatest textural attributes, whiteness index, and desirable moisture content and water activity. Comparison of the VI-treated, vacuum-dried apple slices with commercially fried apple and potato snacks revealed that the consumer acceptability was greater for the fried snack products due to their flavor and texture; however, in addition to higher oil content (>30%), commercial fried apple and potato snacks possessed lower antioxidant capacity than nonfried apple snacks. VI process enhanced the calcium content of the nonfried apple snack products.
Analysis of the moisture evaporation process during vacuum freeze-drying of koumiss and shubat
NASA Astrophysics Data System (ADS)
Shingisov, Azret Utebaevich; Alibekov, Ravshanbek Sultanbekovich
2017-05-01
The equation for the calculating of a moisture evaporation rate in the vacuum freeze-drying, wherein as a driving force instead of the generally accepted in the drying theory of Δt temperature difference, Δp pressure difference, Δc concentration difference, a difference of water activity in the product and the relative air humidity (a_{{w}} - \\varphi) is suggested. By using the proposed equation, the processes of vacuum freeze-drying of koumiss and shubat were analyzed, and it was found two drying periods: constant and falling. On the first drying period, a moisture evaporation rate of koumiss is j = 2.75 × 10-3 kg/(m2 h) and of shubat is j = 2.37 × 10-3 kg/(m2 h). On the second period, values decrease for koumiss from j = 2.65 × 10-3 kg/(m2 h) to j = 1.60 × 10-3 kg/(m2 h), and for shubat from j = 2.25 × 10-3 kg/(m2 h) to j = 1.62 × 10-3 kg/(m2 h). Specific humidity for koumiss is ueq = 0.61 kg/kg and for shubat is ueq = 0.58 kg/kg. The comparative analyze of the experimental data of the moisture evaporation rate versus the theoretical calculation shows that the approximation reliability is R2 = 0.99. Consequently, the proposed equation is useful for the analyzing a moisture evaporation rate during a vacuum freeze-drying of dairy products, including cultured milk foods.
Physicochemical properties of whole fruit plum powders obtained using different drying technologies.
Michalska, Anna; Wojdyło, Aneta; Lech, Krzysztof; Łysiak, Grzegorz P; Figiel, Adam
2016-09-15
Physicochemical quality parameters of plum powders obtained by applying conventional drying methods and their combination devised to process plums were evaluated. The effect of freeze-drying (FD), vacuum drying (VD), convective drying (CD), microwave-vacuum drying (MVD) and combination of convective pre-drying and microwave finish-drying (CPD-MVFD) affected physical (bulk density, porosity, colour, solubility) and chemical (polyphenolic compounds determined by UPLC and antioxidant capacity by TEAC ABTS and FRAP methods) properties of plum powders. The MVD at 1.2 W g(-1) and a novel combination for plum powders production - CPD-MVFD at 70 °C/1.2 W g(-1) allowed the best preservation of phenolic compounds and increased the efficiency of production. Results obtained support the use of MVD and its combination for better quality of dried plum products. The study proved that the determination of the browning index and HMF level (formed via Maillard reaction) might be good tool for monitoring the thermal processing of plum powders. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elhussein, Elaf Abdelillah Ali; Şahin, Selin
2018-07-01
Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.
NASA Astrophysics Data System (ADS)
Elhussein, Elaf Abdelillah Ali; Şahin, Selin
2018-01-01
Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.
Cold Vacuum Drying facility civil structural system design description (SYS 06)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PITKOFF, C.C.
This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.
NASA Astrophysics Data System (ADS)
Nadi, Fatemeh; Tzempelikos, Dimitrios
2018-01-01
In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.
NASA Astrophysics Data System (ADS)
Nadi, Fatemeh; Tzempelikos, Dimitrios
2018-07-01
In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy ( ΔH), entropy ( ΔS) and Gibbs free energy ( ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.
Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui
2014-12-15
Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)
NASA Astrophysics Data System (ADS)
Alhamid, M. Idrus; Yulianto, M.; Nasruddin
2012-06-01
A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.
Ma, Hongyue; Niu, Huixia; Cao, Qin; Zhou, Jing; Gong, Yan; Zhu, Zhenhua; Lv, Xiang; Di, Liuqing; Qian, Dawei; Wu, Qinan; Duan, Jin'ao
2016-12-01
Drying is a critical step to prolong the storage time in natural medicine processing but it changes the chemical characteristics of the product. In this study, research was performed to characterize the metabolomic changes in toad venom induced by vacuum-drying at 60°C and air-drying at room temperature by ultra high performance liquid chromatography coupled with pattern recognition approaches. In total 52 metabolites, down-regulated or up-regulated, were identified as potential chemical markers. Compared with fresh toad venom, vacuum-drying at 60°C succeeded in raising the conjugated-type bufadienolide content significantly, while the content of free-type bufadienolides were slightly reduced. On the other hand, toad venom air-dried at room temperature presented a relatively low amount of bufadienolides compared with fresh venom. For example, the content of several known anti-tumor components (gamabufotalin, bufotalin, cinobufagin, etc.) were significantly reduced. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide bioassay further showed that venom air-dried at room temperature had weaker anti-tumor activity on human hepatocellular carcinoma SMMC-7721 proliferation in vitro than samples vacuum-dried at 60°C. These results showed that the great metabolomic changes of toad venom occurred during the drying process, suggesting that a proper drying procedure is important for sustaining the chemical quality of natural medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries
NASA Astrophysics Data System (ADS)
Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.
Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.
Thermodynamic performance of multi-stage gradational lead screw vacuum pump
NASA Astrophysics Data System (ADS)
Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun
2018-02-01
As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.
Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye
2017-08-15
The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lenaerts, S; Van Der Borght, M; Callens, A; Van Campenhout, L
2018-07-15
Freeze drying represents the current practice to stabilize mealworms, even though it is an energy demanding technique. Therefore, it was examined in the present study whether microwave drying could be a proper alternative. To this end, the impact of both drying techniques on the proximate composition, vitamin B 12 content, fatty acid profile, oxidation status and colour parameters of mealworms was investigated. Furthermore, the influence of the application of vacuum during microwave drying was studied. The different drying technologies resulted in small differences in the proximate composition, while the vitamin B 12 content was only reduced by microwave drying. The fat fraction of freeze dried mealworms showed a higher oxidation status than the fat of microwave dried mealworms. Application of a vacuum during the microwave drying process did not appear to offer advantages. This research shows that for mealworms microwave drying can be a proper alternative to freeze drying. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin
2014-07-01
To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SWENSON JA; CROWE RD; APTHORPE R
2010-03-09
The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin.more » KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.« less
Optimization of pectin extraction and antioxidant activities from Jerusalem artichoke
NASA Astrophysics Data System (ADS)
Liu, Shengyi; Shi, Xuejie; Xu, Lanlan; Yi, Yuetao
2016-03-01
Jerusalem artichoke is an economic crop widely planted in saline-alkaline soil. The use of Jerusalem artichoke is of great significance. In this study, the response surface method was employed to optimize the effects of processing variables (extraction temperature, pH, extraction time, and liquid-to-solid ratio) on the yield of Jerusalem artichoke pectin. Under the optimal extraction conditions: pH 1.52, 63.62 min, 100°C and a liquid-to-solid ratio of 44.4 mL/g, the maximum pectin yield was predicted to be 18.76%. Experiments were conducted under these optimal conditions and a pectin yield of 18.52±0.90% was obtained, which validated the model prediction. The effects of diff erent drying methods (freeze drying, spray drying and vacuum drying) on the properties of Jerusalem artichoke pectin were evaluated and they were compared with apple pectin. FTIR spectral analysis showed no major structural diff erences in Jerusalem artichoke pectin samples produced by various drying treatments. The antioxidant activities of pectin dried by diff erent methods were investigated using in vitro hydroxyl and DPPH radical scavenging systems. The results revealed that the activities of spray dried pectin (SDP) and apple pectin (AP) were stronger than those of vacuum oven dried pectin (ODP) and vacuum freeze dried pectin (FDP). Therefore compared with the other two drying methods, the spray drying method was the best.
Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong
2016-04-15
Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (p<0.05) increase in the content of total free amino acids and the relative content of sulfur compounds of dried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mass transfer parameters of celeriac during vacuum drying
NASA Astrophysics Data System (ADS)
Beigi, Mohsen
2017-04-01
An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.
NASA Technical Reports Server (NTRS)
1980-01-01
Books produced since 1850, held in the Library of Congress, have a very high acid content, hence a shorter life expectancy than prior-published volumes. A means of "deacidifying" books on a large, economically-viable scale is of great interest, particularly to the research library community, which stores millions of valuable, often irreplaceable documents. The General Electric vacuum chamber used in deacidification tests serves a dual purpose. It creates an environment in which DEZ can do its job without presence of oxygen and also dries the books. After the drying phase, DEZ is introduced to the chamber as a paper-penetrating vapor. The complete process typically takes eight days, four days for vacuum drying and four days of book exposure to DEZ. Accelerated aging tests showed that the process can extend paper life almost fourfold, even on color illustrations.
Graphene oxide for acid catalyzed-reactions: Effect of drying process
NASA Astrophysics Data System (ADS)
Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.
2017-03-01
Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.
Space Chambers for Crop Treatment
NASA Technical Reports Server (NTRS)
1985-01-01
Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.
Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.
Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos
2017-07-01
Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50 ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.
Dong, Wenjiang; Cheng, Ke; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Long, Yuzhou
2018-05-11
The aim of this study is to investigate the effect of microwave vacuum drying (MVD) on the drying characteristics and quality attributes of green coffee beans. We specifically focused on the effective moisture diffusion coefficient ( D eff ), surface temperature, glass transition temperature ( T g ), water state, and microstructure. The kinetics of color changes during drying, total phenolic content (TPC), and antioxidant activity (DPPH, FRAP, and ABTS) were also characterized. Microwave power during MVD affected the porosity of coffee beans, their color, TPC, and antioxidant activity. The Allometric 1 model was the most suitable for simulating surface temperature rise kinetics. Thermal processing of green coffee beans resulted in increased b* , L* , Δ E , and TPC values, and greater antioxidant capacity. These findings may provide a theoretical reference for the technical improvement, mechanisms of flavor compound formation, and quality control of dried green coffee beans.
Shi, Kaiwei; Wu, Xujin; Ma, Jingwei; Zhang, Junfeng; Zhou, Ling; Wang, Hong; Li, Li
2017-12-06
The yam (Dioscorea spp.) is widely cultivated in China. The degradation of dithianon and pyraclostrobin in yams with different planting and processing treatments was investigated in this article. An analytical method for two pesticides in yam and yam plant was developed, and recoveries were between 77% and 93%, with relative standard deviations from 0.8% to 7.4%, respectively. On the basis of this method, half-lives for plants grown on stakes versus plants grown without stakes were compared. The results indicated that the half-life for pesticide residues for plants grown on stakes versus plants grown without stakes differed as 6.7 versus 3.1 days for dithianon and 5.4 versus 5.2 days for pyraclostrobin. Dithianon was significantly influenced by planting mode because of its low stability under sunlight. The processing factors of various processing treatments (hot air-drying, vacuum freeze-drying, microwave vacuum-drying, infrared-drying, steaming, and boiling) were all <1, indicating that those processes can reduce residues of two pesticides at different levels. Significant amounts of residues were removed during the boiling treatment, whereas the others showed less effect.
Methods to increase the rate of mass transfer during osmotic dehydration of foods.
Chwastek, Anna
2014-01-01
Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.
Developments and trends in fruit bar production and characterization.
Orrego, C E; Salgado, N; Botero, C A
2014-01-01
Fruits serve as a source of energy, vitamins, minerals, and dietary fiber. One of the barriers in increasing fruit and vegetables consumption is time required to prepare them. Overall, fruit bars have a far greater nutritional value than the fresh fruits because all nutrients are concentrated and, therefore, would be a convenience food assortment to benefit from the health benefits of fruits. The consumers prefer fruit bars that are more tasted followed by proper textural features that could be obtained by establishing the equilibrium of ingredients, the proper choosing of manufacturing stages and the control of the product final moisture content. Fruit bar preparations may include a mixture of pulps, fresh or dried fruit, sugar, binders, and a variety of minor ingredients. Additionally to the conventional steps of manufacturing (pulping, homogenizing, heating, concentrating, and drying) there have been proposed the use of gelled fruit matrices, dried gels or sponges, and extruders as new trends for processing fruit bars. Different single-type dehydration or combined methods include, in order of increasing process time, air-infrared, vacuum and vacuum-microwave drying convective-solar drying, convective drying, and freeze drying are also suggested as alternative to solar traditional drying stage. The dehydration methods that use vacuum exhibited not only higher retention of antioxidants but also better color, texture, and rehydration capacity. Antioxidant activity resulting from the presence of phenolic compounds in the bars is well established. Besides this, fruit bars are also important sources of carbohydrates and minerals. Given the wide range of bioactive factors in fresh fruits that are preserved in fruit bars, it is plausible that their uptake consumption have a positive effect in reducing the risk of many diseases.
Bioactive compounds and quality parameters of avocado oil obtained by different processes.
Krumreich, Fernanda D; Borges, Caroline D; Mendonça, Carla Rosane B; Jansen-Alves, Cristina; Zambiazi, Rui C
2018-08-15
The objective of this study was to evaluate the quality of avocado oil whose pulp was processed through different drying and oil extraction methods. The physicochemical characteristics of avocados cv. Breda were determined after drying the pulp in an oven under ventilation (40 °C and 60 °C) and vacuum oven (60 °C), followed by the oil extracted by mechanical pressing or the Soxhlet method. From the approximately 72% pulp found in the avocado fruit, the 16% fraction is lipids. The quality indices evaluated in avocado oil showed better results when the pulp was dried at 60 °C under vacuum and oil extraction was done by the Soxhlet method with petroleum ether, whereas the bioactive compounds were better preserved when the avocado pulp was dried at 60 °C under ventilation and mechanical pressing was used for the oil extraction. Among the fatty acids found, oleic acid was the main. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ethanol production from food waste at high solids content with vacuum recovery technology.
Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay
2015-03-18
Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).
Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.
Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard
2015-08-01
We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®
Modelling of nectarine drying under near infrared - Vacuum conditions.
Alaei, Behnam; Chayjan, Reza Amiri
2015-01-01
Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.
Sadykov, R A; Migunov, V V
1987-01-01
The process of potassium benzylpenicillin vacuum drying was investigated. The kinetics of the process showed that a larger period of the drying process was needed for eliminating bound moisture. The influence of the angular velocity of the drier drum rotation on drying duration was studied in a short-term contact model. It was shown that intensity of drying increased with increasing velocity of the drum rotation. Experimental trials confirmed the conclusion and revealed adequacy of the relationship between the drying time and dispersion intensity in the short-term contact model. A qualitative dependence of the coefficient of convective heat exchange between the heating surface and the product on the angular velocity of the drier drum rotation was constructed.
The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane
NASA Astrophysics Data System (ADS)
Sharma, H. N.; McLean, W.; Maxwell, R. S.; Dinh, L. N.
2016-09-01
A silica-filled polydimethylsiloxane (PDMS) composite M9787 was investigated for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environment applications at room temperature (˜300 K). The main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (˜30 ppm by volume of H2O) for even a couple of days was the formation, on the silica surface fillers, of ˜60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. The presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, H. N.; McLean, W.; Maxwell, R. S.
We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less
The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane
Sharma, H. N.; McLean, W.; Maxwell, R. S.; ...
2016-09-21
We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less
Su, Ya; Zhang, Min; Bhandari, Bhesh; Zhang, Weiming
2018-06-01
The combination of ultrasound and microwave in vacuum frying system was investigated to achieve higher drying efficiency and quality attributes of fried products. Purple-fleshed potato were used as test specimen and different power levels of microwave (0 W, 600 W, 800 W) and ultrasound (0 W, 300 W, 600 W) during vacuum frying. Drying kinetics, dielectric properties, moisture state variation and quality attributes of fried samples were measured in a vacuum frying (VF), and an innovatively designed ultrasound and microwave assisted vacuum frying (USMVF) equipment. The USMVF process markedly increased the moisture evaporation rate and effective moisture diffusivity compared to VF process. The oil uptake was reduced by about 16-34%, the water activity and the shrinkage was lowered, the texture (crispness) and the color of fried samples were greatly improved. The higher ultrasound and microwave power level in USMVF made a greater improvement. The total anthocyanin levels and retention of fried purple-fleshed potato chips was the highest (123.52 mg/100 g solids and 79.51% retention, respectively) among all treatments in US600M800VF process. The SEM analysis revealed a more porous and disruption microstructure in USMVF sample. Copyright © 2018 Elsevier B.V. All rights reserved.
Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia
2010-07-01
The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.
Liu, Zhenbin; Zhang, Min; Wang, Yuchuan
2016-06-01
Old stalks of Asparagus officinalis, which account for one third of the total length of each spear, are always discarded as waste. To make full use of the resource, a kind of restructured Asparagus officinalis chip was made. The effects of pulse-spouted microwave-assisted vacuum drying (PSMVD), microwave-assisted vacuum drying (MVD) and vacuum drying (VD) on texture, color and other quality parameters of restructured chips were then studied to obtain high-quality dried chips. Results indicated that the drying time was significantly affected by drying methods, and PSMVD had much better drying uniformity than MVD. The expansion ratio and crispness of chips increased with increasing microwave power and vacuum degree. The browning reaction of samples in VD was more serious, which was confirmed by the results of color test and electronic nose. The PSMVD drying method showed much better drying uniformity than MVD. The dried chips obtained by PSMVD showed optimal quality and were more readily accepted by consumers. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
A model for the effect of real leaks on the transport of microorganisms into a vacuum freeze-dryer.
Jennings, T A
1990-01-01
This paper proposes a model for determining the effect that real leaks, whose flow is viscous in nature, could have on the microorganism density in a vacuum freeze-dryer during a drying process. The model considers the entry of microorganisms to result from real leaks stemming from an environment containing a known bioburden. A means for determining the relationship between the rate of pressure rise of the system (ROR) and the density of microorganisms in a system, stemming from an environment of a known bioburden, is examined. The model also considers the change in the bioburden of the dryer with respect to variations in the primary and secondary drying process.
Li, Xin; Babol, Jakub; Wallby, Anna; Lundström, Kerstin
2013-10-01
This study investigated meat quality and consumer preference after ageing beef gluteus medius in a water vapour-permeable dry-ageing bag or in vacuum for 14 days. Higher ageing and trim losses but lower thawing loss, cooking loss and water content were found in samples aged in dry ageing bags compared to those aged in vacuum. Samples aged in dry ageing bags had higher total bacteria and yeast counts but lower lactic acid bacteria counts than those aged in vacuum, both before and after trimming. Meat aged in dry ageing bag was more tender and juicier and overall preferred by consumers compared with samples aged in vacuum. Female participants outperformed the males in detecting differences in palatability. No differences were found in pH, smell, shear force, colour, Enterobacteriaceae, and mould counts. Thus, by using a dry ageing bag, it is possible to produce dry-aged meat in a more controlled condition without negative effects on sensory or other quality attributes. Copyright © 2013. Published by Elsevier Ltd.
Space Technology for Crop Drying
NASA Technical Reports Server (NTRS)
1980-01-01
McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.
Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG
ten Have, R.; Reubsaet, K.; van Herpen, P.; Kersten, G.; Amorij, J.-P.
2016-01-01
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG. PMID:26981867
Demonstrating Functional Equivalence of Pilot and Production Scale Freeze-Drying of BCG.
Ten Have, R; Reubsaet, K; van Herpen, P; Kersten, G; Amorij, J-P
2016-01-01
Process analytical technology (PAT)-tools were used to monitor freeze-drying of Bacille Calmette-Guérin (BCG) at pilot and production scale. Among the evaluated PAT-tools, there is the novel use of the vacuum valve open/close frequency for determining the endpoint of primary drying at production scale. The duration of primary drying, the BCG survival rate, and the residual moisture content (RMC) were evaluated using two different freeze-drying protocols and were found to be independent of the freeze-dryer scale evidencing functional equivalence. The absence of an effect of the freeze-dryer scale on the process underlines the feasibility of the pilot scale freeze-dryer for further BCG freeze-drying process optimization which may be carried out using a medium without BCG.
Feyzi, Samira; Varidi, Mehdi; Zare, Fatemeh; Varidi, Mohammad Javad
2018-03-01
Different drying methods due to protein denaturation could alter the functional properties of proteins, as well as their structure. So, this study focused on the effect of different drying methods on amino acid content, thermo and functional properties, and protein structure of fenugreek protein isolate. Freeze and spray drying methods resulted in comparable protein solubility, dynamic surface and interfacial tensions, foaming and emulsifying properties except for emulsion stability. Vacuum oven drying promoted emulsion stability, surface hydrophobicity and viscosity of fenugreek protein isolate at the expanse of its protein solubility. Vacuum oven process caused a higher level of Maillard reaction followed by the spray drying process, which was confirmed by the lower amount of lysine content and less lightness, also more browning intensity. ΔH of fenugreek protein isolates was higher than soy protein isolate, which confirmed the presence of more ordered structures. Also, the bands which are attributed to the α-helix structures in the FTIR spectrum were in the shorter wave number region for freeze and spray dried fenugreek protein isolates that show more possibility of such structures. This research suggests that any drying method must be conducted in its gentle state in order to sustain native structure of proteins and promote their functionalities. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.C. Baker; T.M. Pfeiffer; J.C. Price
2013-09-01
Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed)more » while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.« less
Richter Reis, Felipe; de Oliveira, Aline Caroline; Gadelha, Gabriella Giani Pieretti; de Abreu, Marcela Breves; Soares, Hillary Isabelle
2017-06-01
In an attempt to obtain shelf-stable litchi fruit with preserved nutritional quality and good sensory features, quarters of peeled and pitted fruits were vacuum dried at 50, 60 and 70 °C at a constant pressure of 8.0 kPa. The product was assessed for its vitamin C, total phenolics and texture (hardness). In addition, the product with the best texture was assessed for its shelf-life by means of accelerated testing. Results suggest that vacuum dried litchi retained almost 70% of the vitamin C and total phenolics when compared to frozen fruits (control). Vitamin C and phenolic compounds content significantly decreased with drying, while no difference was found between different drying temperatures. Hardness increased with drying temperature. The sample dried at 70 °C presented crispness, which is a desired quality feature in dried fruit products. This sample was subjected to shelf-life evaluation, whose result suggests a shelf-life of eight months at 23 °C. Total color change (CIE ΔE 00 ) was the expiry criterion. Vacuum drying was a suitable technique for producing shelf-stable litchi fruit with good texture while preserving its desirable original nutrients. Consumption of vacuum dried litchi may be beneficial to health due to its remarkable content of phenolic compounds and vitamin C.
NASA Technical Reports Server (NTRS)
Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo
1989-01-01
The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.
Kitagawa, Fumihiko; Nakagawara, Syo; Nukatsuka, Isoshi; Hori, Yusuke; Sueyoshi, Kenji; Otsuka, Koji
2015-01-01
A simple and rapid vacuum-drying modification method was applied to several neutral and charged polymers to obtain coating layers for controlling electroosmotic flow (EOF) and suppressing sample adsorption on poly(dimethyl siloxane) (PDMS)-glass hybrid microchips. In the vacuum-dried poly(vinylpyrrolidone) coating, the electroosmotic mobility (μeo) was suppressed from +2.1 to +0.88 × 10(-4) cm(2)/V·s, and the relative standard deviation (RSD) of μeo was improved from 10.2 to 2.5% relative to the bare microchannel. Among several neutral polymers, poly(vinylalcohol) (PVA) and poly(dimethylacrylamide) coatings gave more suppressed and repeatable EOF with RSDs of less than 2.3%. The vacuum-drying method was also applicable to polyanions and polycations to provide accelerated and inversed EOF, respectively, with acceptable RSDs of less than 4.9%. In the microchip electrophoresis (MCE) analysis of bovine serum albumin (BSA) in the vacuum-dried and thermally-treated PVA coating channel, an almost symmetric peak of BSA was obtained, while in the native microchannel a significantly skewed peak was observed. The results demonstrated that the vacuum-dried polymer coatings were effective to control the EOF, and reduced the surface adsorption of proteins in MCE.
Pallas, Laura A; Pegg, Ronald B; Kerr, William L
2013-06-01
Rabbiteye blueberries are an excellent source of nutrients and phytochemicals. They are often dried, which can degrade health-promoting compounds. Means of shortening exposure to high-temperature drying air are desirable. Five cultivars of rabbiteye blueberries ('Premier', 'Tifblue', 'Brightwell', 'Alapaha', and 'Powderblue') were dried in a jet-tube fluidized bed air dryer with varying pretreatments including mechanical abrasion and osmotic dehydration. Drying time ranged from 66 to 95 min at 107 °C, achieving a final water activity of 0.347-0.605. Prior osmotic dehydration significantly reduced the drying time. Vacuum osmotic dehydration for 70 min achieved similar moisture contents to soaking blueberries for 24 h. Jet-tube dried blueberries exhibited greater color saturation than commercially available blueberries. While drying reduced the total monomeric anthocyanin (TMA) content, this occurred to a lesser extent than by other processing methods. The total phenolics content (TPC) and antioxidant capacity (H-ORACFL values) increased after drying. 'Premier' was the most preferred vacuum-infused dried blueberry, with a water activity (aw) of 0.53 and 157 g H2O kg(-1). 'Tifblue' was most preferred amongst the overnight-infused and also unsweetened dried blueberries. Jet-tube drying can substantially reduce drying times while yielding blueberries with good color, sensory properties, TMA, TPC, and H-ORACFL values. Furthermore, some cultivars produce better-quality dried blueberries than others. © 2012 Society of Chemical Industry.
Stabilities of Dried Suspensions of Influenza Virus Sealed in a Vacuum or Under Different Gases
Greiff, Donald; Rightsel, Wilton A.
1969-01-01
Suspensions of purified influenza virus, dried to a 1.4% content of residual moisture by sublimation of ice in vacuo, were sealed in a vacuum or under different gases of high purity. The stabilities of the several preparations were determined by an accelerated storage test. Based on the times predicted for the dried preparations stored at different temperatures to lose 1 log of infectivity titer, the order of stabilities in relation to sealing in vacuum or under different gases was as follows: helium > hydrogen > vacuum > argon > nitrogen > oxygen > carbon dioxide. Images PMID:5797938
Recent advances in drying and dehydration of fruits and vegetables: a review.
Sagar, V R; Suresh Kumar, P
2010-01-01
Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying time and cause minimum damage to the product. To reduce the energy utilization and operational cost new dimensions came up in drying techniques. Among the technologies osmotic dehydration, vacuum drying, freeze drying, superheated steam drying, heat pump drying and spray drying have great scope for the production of quality dried products and powders.
Press Dry Conference 1983 Held at Madison, Wisconsin on September 7-9, 1983,
1983-01-01
facil- model has served as a useful tool to ities wherein one can witness the pros verify reported results of other and cons associated with emerging...subjects of reduces the surface temperature required to pro - research at the Institute. The concepts being duce rapid drying; the desirability of operating...kraft handsheets (1650 experimental investigation of a new, thermally- g/m2 basis weight) at a 452 initial moisture con - driven, vacuum drying process
Clariana, Maria; Guerrero, Luis; Sárraga, Carmen; Garcia-Regueiro, José A
2012-02-01
The effect of high pressure processing at 400 MPa and 900 MPa on the oxidative stability of sliced and vacuum packaged commercial dry-cured ham was determined by analyzing the antioxidant enzyme activities, TBARS levels (thiobarbituric acid reactive substances), vitamin E content and physicochemical characteristics during refrigerated storage for 50 days in different light conditions. In dry-cured ham pressurized at 400 MPa color changes and sensory analyses were also assessed. The high pressure process at 900 MPa produced a decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities and increased vitamin E content. In contrast, pressurization at 400 MPa, increased SOD activity, and showed no effect on vitamin E content and GSHPx activity. In general the physicochemical parameters determined (fat, moisture and collagen) were unaffected by pressurization. Treatment at 400 MPa increased the instrumental color measurement of lightness (L* values, CIELAB). This level of pressure also modified the hardness, chewiness, saltiness and color intensity. These changes of the sensory attributes in dry-cured ham were significant, but small. Copyright © 2011 Elsevier Ltd. All rights reserved.
Modification of physical properties of freeze-dried rice
NASA Technical Reports Server (NTRS)
Huber, C. S.
1971-01-01
Freeze cycling process consists of alternately freezing and thawing precooked rice for two cycles, rice is then frozen and freeze-dehydrated in vacuum sufficient to remove water from rice by sublimitation. Process modifies rice grain structure and porosity, enabling complete rehydration in one minute in hot water.
Non-enzymatic browning and flavour kinetics of vacuum dried onion slices
NASA Astrophysics Data System (ADS)
Mitra, Jayeeta; Shrivastava, Shanker L.; Rao, Pavuluri S.
2015-01-01
Onion slices were dehydrated under vacuum to produce good quality dried ready-to-use onion slices. Colour development due to non-enzymatic browning and flavour loss in terms of thiosulphinate concentration was determined, along with moisture content and rehydration ratio. Kinetics of non-enzymatic browning and thiosulphinate loss during drying was analysed. Colour change due to non-enzymatic browning was found to be much lower in the case of vacuum dried onion, and improved flavour retention was observed as compared to hot air dried onion slices. The optical index values for non-enzymatic browning varied from 18.41 to 38.68 for untreated onion slices and from 16.73 to 36.51 for treated slices, whereas thiosulphinate concentration in the case of untreated onion slices was within the range of 2.96-3.92 μmol g-1 for dried sample and 3.71-4.43 μmol g-1 for the treated onion slices. Rehydration ratio was also increased, which may be attributed to a better porous structure attained due to vacuum drying. The treatment applied was found very suitable in controlling non-enzymatic browning and flavour loss during drying, besides increasing rehydration ratio. Hence, high quality dried ready- to-use onion slices were prepared.
9 CFR 113.29 - Determination of moisture content in desiccated biological products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... bottles with airtight glass stoppers. (2) Vacuum oven equipped with validated thermometer and thermostat... samples of completed product shall be tested. The weight loss of the sample due to drying in a vacuum oven... labeled sample-weighing bottles with stoppers should be allowed to dry at 60 ±3 °C under vacuum at less...
9 CFR 113.29 - Determination of moisture content in desiccated biological products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... bottles with airtight glass stoppers. (2) Vacuum oven equipped with validated thermometer and thermostat... samples of completed product shall be tested. The weight loss of the sample due to drying in a vacuum oven... labeled sample-weighing bottles with stoppers should be allowed to dry at 60 ±3 °C under vacuum at less...
9 CFR 113.29 - Determination of moisture content in desiccated biological products.
Code of Federal Regulations, 2012 CFR
2012-01-01
... bottles with airtight glass stoppers. (2) Vacuum oven equipped with validated thermometer and thermostat... samples of completed product shall be tested. The weight loss of the sample due to drying in a vacuum oven... labeled sample-weighing bottles with stoppers should be allowed to dry at 60 ±3 °C under vacuum at less...
Insulation Technology in Dry Air and Vacuum for a 72kV Low Pressured Dry Air Insulated Switchgear
NASA Astrophysics Data System (ADS)
Yoshida, Tadahiro; Koga, Hiromi; Harada, Takakazu; Miki, Shinichi; Arioka, Masahiro; Sato, Shinji; Yoshida, Satoru; Inoue, Naoaki; Maruyama, Akihiko; Takeuchi, Toshie
A new 72kV rated low pressured dry air insulated switchgear applying electromagnetic actuation and function that supports CBM has been developed. First, dielectric characteristics in dry air under lightning impulse application has been investigated at bare and insulator covered electrodes. Dependence of the breakdown electric field strength on the effective area has been clarified to apply the configuration design of the insulation mold for the vacuum interrupter. In addition, moisture volume dependence on surface resistance has been clarified to decide moisture volume in gas pressure tank. Next, a new vacuum circuit breaker (VCB) has been designed. To keep dimensions from former 72kV SF6 gas insulated switchgear, distance between contacts in vacuum interrupter is needed to be shorter than that of former switchgear. Voltage withstand capability between electrodes practically designed for vacuum interrupter has been investigated under dc voltage application simulated the small capacitive current breaking test. Gap configuration including contacts and slits has been optimized and distance has been shortened 11% from former switchgear. As a result, the new low pressured dry air insulated switchgear has been designed comparably in outer size to former SF6 gas insulated switchgear. Using dry air as an insulation medium with low pressure has been able to reduce the environmental burden.
Cold Vacuum Drying (CVD) Set Point Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHILIPP, B.L.
2000-03-21
The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated, would result in a safety event. Specifically, actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO on high tempered water MCO inlet temperature. For the MCO isolation and purge, the SCIC receives signals from MCO pressure (both positive pressure and vacuum), helium flow rate, bay high temperature switches, seismic trips and time under vacuum trips.
Vacuum infusion manufacturing and experimental characterization of Kevlar/epoxy composites
NASA Astrophysics Data System (ADS)
Ricciardi, M. R.; Giordano, M.; Langella, A.; Nele, L.; Antonucci, V.
2014-05-01
Epoxy/Kevlar composites have been manufactured by conventional Vacuum Infusion process and the Pulse Infusion technique. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The realized composite panel have been mechanically characterized by performing tensile and short beam shear tests according with the ASTM D3039 and ASTM D2344/D 2344M standard respectively in order to investigate the effect of Pulse Infusion on the tensile strength and ILSS.
Vacuum infusion manufacturing and experimental characterization of Kevlar/epoxy composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricciardi, M. R.; Giordano, M.; Antonucci, V.
2014-05-15
Epoxy/Kevlar composites have been manufactured by conventional Vacuum Infusion process and the Pulse Infusion technique. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The realized composite panel have been mechanically characterized by performing tensile and short beam shear tests according with the ASTM D3039 and ASTM D2344/D 2344M standard respectively in order to investigate the effect of Pulse Infusion on the tensile strength and ILSS.
Zhang, Zhongyuan; Wang, Xiaoyan; Li, Yixiang; Wei, Qiuyu; Liu, Chunju; Nie, Meimei; Li, Dajing; Xiao, Yadong; Liu, Chunquan; Xu, Lang; Zhang, Min; Jiang, Ning
2017-12-13
The food matrix is a limiting factor in determining the bioaccessibility of carotenoids. The impact of food matrix change on the bioaccessibility of carotenoids during drying processes is still unknown. The effect of intermittent microwave vacuum-assisted drying (IMVD) and hot air drying (HAD) on the in vitro liberation and micellization of carotenoids in pumpkin slices was studied. This variable depended on the changes of the matrix driven by the drying process. Different changes in the cell morphology and carotenoid distribution of pumpkin slices during the two processing methods were observed. For IMVD, cell wall degradation and complete chromoplast organelle disruption contributed to the improvement in the liberation and micellization of carotenoids. In the HAD-dried sample, large pigment aggregates hindered the liberation of carotenoids. The carotenoid level in the micellar fraction appeared to be lower than that in the aqueous supernatant during the two processes, suggesting that the new obstacles formed during processing and/or digestion hindered the incorporation of carotenoids in mixed micelles.
Decker, John F; Lee, Jaebum; Cortella, Carlo Alberto; Polimeni, Giuseppe; Rohrer, Michael D; Wozney, John M; Hall, Jan; Susin, Cristiano; Wikesjö, Ulf M E
2010-12-01
Endosseous implants coated with recombinant human bone morphogenetic protein-2 (rhBMP-2) in a laboratory bench setting and air-dried induce relevant bone formation but also resident bone remodeling. Thus, the objective of this study is to evaluate the effect of implants fully or partially coated with rhBMP-2 and vacuum-dried using an industrial process on local bone formation and resident bone remodeling. Twelve male adult Hound Labrador mongrel dogs were used. Critical-size, supraalveolar, peri-implant defects received titanium porous oxide surface implants coated in their most coronal aspect with rhBMP-2 (coronal-load, six animals), or by immersion of the entire implant in a rhBMP-2 solution (soak-load, six animals) for a total of 30 μg rhBMP-2 per implant. All implants were vacuum-dried. The animals were sacrificed at 8 weeks for histometric evaluation. Clinical healing was unremarkable. Bone formation was not significantly affected by the rhBMP-2 application protocol. New bone height and area averaged (± SE) 3.2 ± 0.5 versus 3.6 ± 0.3 mm, and 2.3 ± 0.5 versus 2.6 ± 0.8 mm(2) for coronal-load and soak-load implants, respectively (P >0.05). The corresponding bone density and bone-implant contact registrations averaged 46.7% ± 5.8% versus 31.6% ± 4.4%, and 28% ± 5.6% versus 36.9% ± 3.4% (P >0.05). In contrast, resident bone remodeling was significantly influenced by the rhBMP-2 application protocol. Peri-implant bone density averaged 72.2% ± 2.1% for coronal-load versus 60.6% ± 4.7% for soak-load implants (P <0.05); the corresponding bone-implant contact averaged 70.7% ± 6.1% versus 47.2% ± 6.0% (P <0.05). Local application of rhBMP-2 and vacuum-drying using industrial process seems to be a viable technology to manufacture implants that support local bone formation and osseointegration. Coronal-load implants obviate resident bone remodeling without compromising local bone formation.
Properties data for opening the Galileo's partially unfurled main antenna
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Pepper, Stephen V.
1992-01-01
An investigation was conducted into the friction and wear behavior of both unlubricated and dry-film-lubricated (Tiolube 460) titanium alloy (Ti-6Al-4V) in contact with an uncoated high-nickel-content superalloy (Inconel 718) both in vacuum and in air. The acquisition of friction and wear data for this sliding couple was motivated by the need for input data for the 'antenna stuck ribs model' effort to free Galileo's High Gain Antenna. The results of the investigation indicate that galling occurred in the unlubricated system in vacuum and that the coefficient of friction increased to 1.2. The abnormally high friction (1.45) was observed when relatively large wear debris clogged at the sliding interface. The coefficient of friction for the dry-film-lubricated system in vacuum is 0.04, while the value in air is 0.13. The endurance life of the dry-film lubricant is about three orders of magnitude greater in vacuum than in air. The worn surfaces of the dry-film-lubricated Ti-6Al-4V pin and Inconel 718 disk first run in humid air and then rerun in vacuum was completely different from that of the pin and disk run only in vacuum. When galling occurred in the humid-air and vacuum contact, coefficient of friction rose to 0.32 when sliding in humid air and to 1.4 when sliding in vacuum. The galling was accompanied by severe surface damage and extensive transfer of the Ti-6Al-4V to the Inconel 718, or vice versa. When spalling occurred in the dry-film-lubricated Ti-6Al-4V pin run only in vacuum, the coefficient of friction rose to 0.36 or greater. The wear damage caused by spalling can self-heal when rerun in vacuum - the coefficient of friction decreased to 0.05. The friction and wear data obtained can be used for the 'antenna stuck ribs model' effort to free Galileo's high gain antenna.
Kelly, Caroline A; Cruz-Romero, Malco; Kerry, Joseph P; Papkovsky, Dmitri P
2018-05-02
The commercially-available optical oxygen-sensing system Optech-O₂ Platinum was applied to nondestructively assess the in situ performance of bulk, vacuum-packaged raw beef in three ~300 kg containers. Twenty sensors were attached to the inner surface of the standard bin-contained laminate bag (10 on the front and back sides), such that after filling with meat and sealing under vacuum, the sensors were accessible for optical interrogation with the external reader device. After filling and sealing each bag, the sensors were measured repetitively and nondestructively over a 15-day storage period at 1 °C, thus tracking residual oxygen distribution in the bag and changes during storage. The sensors revealed a number of unidentified meat quality and processing issues, and helped to improve the packaging process by pouring flakes of dry ice into the bag. Sensor utility in mapping the distribution of residual O₂ in sealed bulk containers and optimising and improving the packaging process, including handling and storage of bulk vacuum-packaged meat bins, was evident.
Yu, Chang Ho; Yiin, Lih-Ming; Fan, Zhi-Hua (Tina); Rhoads, George G.
2014-01-01
Dry steam cleaning, which has gained recent attention as an effective method to reduce house dust mite (HDM) allergen concentration and loading in carpets, was evaluated in this study for its efficacy in lowering levels of polycyclic aromatic hydrocarbons (PAHs) as well as HDM allergens. Fifty urban homes with wail-to-wall carpets, mostly low-income and with known lead contamination, were studied in 2003 and 2004. Two carpet-cleaning interventions were compared: Repeated HEPA (High Efficiency Particulate Air filtered) vacuuming alone and repeated HEPA vacuuming supplemented with dry steam cleaning. Vacuum samples were collected to measure carpet loading of dust and contaminants immediately before and after cleaning. Paired comparisons were conducted to evaluate the effectiveness of the cleaning protocols in reducing the levels of PAHs and HDM allergens in carpets. The results indicated that both cleaning methods substantially reduced the loading of PAHs and HDM allergens as well as dust in carpets (p < 0.0001). The reductions in loading of dust (64.4%), PAHs (69.1%), and HDM allergens (85.5%), by dry steam cleaning plus repetitive HEPA vacuuming were larger than the reductions by regular HEPA vacuuming alone: dust (55.5%), PAHs (58.6%), and HDM allergens (80.8%), although the difference was statistically significant only for dust and PAHs. We conclude that intensive HEPA vacuum cleaning substantially reduced the loading of PAHs and HDM allergens in carpets in these urban homes and that dry steam cleaning added modestly to cleaning effectiveness. PMID:19137159
Magnetized Target Fusion - Field Reversed Configuration Formation and Injection (MTF-FRC)
2009-11-06
from accidental breakage and personnel from injury in that event. The pumps for the vacuum system included a Varian dry scroll pump that was...a dry scroll (oil-free) mechanical pump could be used, as mTorr pressures would be sufficient for the vacuum switch voltage hold-off and operation...56 FIGURE 46. ROUGHING PUMP AND VACUUM -GAUGE CONTROLLERS BENEATH THETA COIL CABLE HEADER
Cold Vacuum Drying (CVD) Facility Acceptance for Beneficial Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRISBIN, S.A.
2000-01-05
This document provides a checklist of the items required for turnover of the Cold Vacuum Drying Facility from the Construction Projects organization to the Operations organization. This document will be updated periodically to document completion of additional deliverables.
Volatile composition and sensory profile of shiitake mushrooms as affected by drying method.
Politowicz, Joanna; Lech, Krzysztof; Lipan, Leontina; Figiel, Adam; Carbonell-Barrachina, Ángel A
2018-03-01
One of the best preservation method for long-term storage is drying. In this work, the influence of different drying methods on aroma and sensory profile of shiitake mushroom was evaluated. The drying methods tested were: convective drying (CD), freeze-drying (FD), vacuum-microwave drying (VMD), and a combination of convective pre-drying and vacuum-microwave finish-drying (CPD-VMFD). The volatile composition of fresh and dried shiitake mushrooms was analysed by SPME, GC-MS and GC-FID, and showed the presence of 71 volatile compounds, most of them present in all dried samples but with quantitative variation. The major volatile compounds in fresh shiitake were 1-octen-3-ol (20.2%), 2-octanone (20.7%), 1,2,4-trithiolane (9.8%), and 1,2,3,5,6-pentathiepane (8.2%). Drying of shiitake mushrooms caused significant losses of C8 compounds and cyclic sulfur compounds, such as 1,2,4-trithiolane (V31) and 1,2,4,5-tetrathiane (V57). Samples dried at CD 80 °C implied a relative short drying time (120 min), had the highest contents of total volatiles (1594 μg 100 g -1 ) and cyclic sulfur compounds (e.g. V57 126 μg 100 g -1 ), and the highest intensity of most of the key positive sensory attributes, such as inner colour (7.0), fresh shiitake flavour (6.7), and sponginess (6.2). The best dehydration methods, resulting in the highest total concentrations of volatile compounds and high intensity of key sensory attributes were FD (if vacuum and liquid nitrogen facilities are available) and CD at 80 °C (for companies with vacuum and liquid nitrogen facilities). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Characterisation of Aronia powders obtained by different drying processes.
Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried
2013-12-01
Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stenström, Helena; Li, Xin; Hunt, Melvin C; Lundström, Kerstin
2014-02-01
The objective of this study was to determine which ageing treatment of beef was sensorially preferred by consumers and how their preference changed when given information about the ageing treatment used. Longissimus thoracis et lumborum from four young bulls were randomly assigned three ageing treatments: dry ageing, vacuum ageing and ageing in a highly moisture permeable bag (bag dry-ageing); each was aged at 1.6 °C for another 13 days. A preference test (171 consumers) with questions about overall liking, tenderness, and juiciness was performed. Thereafter, a deceptive test (61 consumers) was performed with two taste samples, the first taste sample with correct information about ageing treatment and the second with false information. In the preference test, consumers preferred dry ageing and bag dry-ageing to vacuum ageing. In the deceptive test, dry ageing was preferred, but the information given influenced preference. © 2013.
NASA Technical Reports Server (NTRS)
Koesterer, M. G.; Geating, J. A.
1975-01-01
Truckloads of materials such as rare books, papers, engineering drawings, blue prints, art work, leather objects such as shoes, and clothing were successfully dried, decontaminated and impregnated against future infestation by microorganisms in a large 12 x 24 foot vacuum chamber designed originally for testing unmanned spacecraft. The process is unique in that it allows either frozen or wet material, soaked by some castastrophic event to be dried and sterilized in the same chamber with a minimum of handling and transportation.
Gohel, Mukesh; Patel, Madhabhai; Amin, Avani; Agrawal, Ruchi; Dave, Rikita; Bariya, Nehal
2004-04-26
The purpose of this research was to develop mouth dissolve tablets of nimesulide. Granules containing nimesulide, camphor, crospovidone, and lactose were prepared by wet granulation technique. Camphor was sublimed from the dried granules by exposure to vacuum. The porous granules were then compressed. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability, wetting time, and disintegration time. In the investigation, a 32 full factorial design was used to investigate the joint influence of 2 formulation variables: amount of camphor and crospovidone. The results of multiple linear regression analysis revealed that for obtaining a rapidly disintegrating dosage form, tablets should be prepared using an optimum concentration of camphor and a higher percentage of crospovidone. A contour plot is also presented to graphically represent the effect of the independent variables on the disintegration time and percentage friability. A checkpoint batch was also prepared to prove the validity of the evolved mathematical model. Sublimation of camphor from tablets resulted in superior tablets as compared with the tablets prepared from granules that were exposed to vacuum. The systematic formulation approach helped in understanding the effect of formulation processing variables.
Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices
NASA Astrophysics Data System (ADS)
Salehi, Fakhreddin; Kashaninejad, Mahdi; Jafarianlari, Ali
2017-05-01
Infrared-vacuum drying characteristics of button mushroom ( Agaricus bisporus) were evaluated in a combined dryer system. The effects of drying parameters, including infrared radiation power (150-375 W), system pressure (5-15 kPa) and time (0-160 min) on the drying kinetics and characteristics of button mushroom slices were investigated. Both the infrared lamp power and vacuum pressure influenced the drying time of button mushroom slices. The rate constants of the nine different kinetic's models for thin layer drying were established by nonlinear regression analysis of the experimental data which were found to be affected mainly by the infrared power level while system pressure had a little effect on the moisture ratios. The regression results showed that the Page model satisfactorily described the drying behavior of button mushroom slices with highest R value and lowest SE values. The effective moisture diffusivity increases as power increases and range between 0.83 and 2.33 × 10-9 m2/s. The rise in infrared power has a negative effect on the ΔE and with increasing in infrared radiation power it was increased.
Ahmed, Faruq; Li, Yan; Fanning, Kent; Netzel, Michael; Schenk, Peer M
2015-08-01
Astaxanthin is a powerful antioxidant with various health benefits such as prevention of age-related macular degeneration and improvement of the immune system, liver and heart function. To improve the post-harvesting stability of astaxanthin used in food, feed and nutraceutical industries, the biomass of the high astaxanthin producing alga Haematococcus pluvialis was dried by spray- or freeze-drying and under vacuum or air at -20°C to 37°C for 20weeks. Freeze-drying led to 41% higher astaxanthin recovery compared to commonly-used spray-drying. Low storage temperature (-20°C, 4°C) and vacuum-packing also showed higher astaxanthin stability with as little as 12.3±3.1% degradation during 20weeks of storage. Cost-benefit analysis showed that freeze-drying followed by vacuum-packed storage at -20°C can generate AUD$600 higher profit compared to spray-drying from 100kgH. pluvialis powder. Therefore, freeze-drying can be suggested as a mild and more profitable method for ensuring longer shelf life of astaxanthin from H. pluvialis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Process for the preparation of calcium superoxide
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)
1978-01-01
Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.
The Evaluation of Carpet Steam/Heat Cleaners as Biological Sampling Device
2011-12-08
Vacuum Cleaner Evaluation as sampling Device Test Plan DHS Page 16 of 16 Fumigants , and Issues Related to Laboratory-scale Studies. Appl. Environ...ECBC Wet/dry Vacuum Cleaner Evaluation as sampling Device Test Plan DHS Page 1 of 16 Test Plan for The Evaluation of Carpet Steam...b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ECBC Wet/dry Vacuum Cleaner
Salting by Vacuum Brine Impregnation in Nitrite-Free Lonza: Effect on Enterobacteriaceae.
Serio, Annalisa; Chaves-López, Clemencia; Rossi, Chiara; Pittia, Paola; Rosa, Marco Dalla; Paparella, Antonello
2017-01-24
Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI) as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or strain-dependent. This result is of particular importance for future applications of VBI in lonza manufacturing.
Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.
Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar
2015-11-04
Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.
Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives
2015-01-01
Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864
Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan
2006-01-01
Controlled challenges with air dispersed microorganisms having widely different resistances to dry heat, carried out on 624 BFS machine processing growth medium, have shown that higher the heat resistance, the greater the extent of vial contamination. Differences in heat resistance affected also the extent of vial contamination when parison and vial formation were knowingly manipulated through changes made to each of three process variables, provision of ballooning air, mould vacuum delay, and parison extrusion rate. The findings demonstrate that, in this investigational system, exposure of challenge micoorganisms to heat inherent in the process has a controlling influence on vial contamination, an influence that could also control microbiological risk in production environments.
Method for removing volatile components from a ceramic article, and related processes
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2002-01-01
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei
2015-06-01
To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.
Evaluation of Dry, Rough Vacuum Pumps
NASA Technical Reports Server (NTRS)
Hunter, Brian
2006-01-01
This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer
Effect of drying method to antioxidants capacity of Limnophila aromatica
NASA Astrophysics Data System (ADS)
Yen, Tran Thi Ngoc; Vu, Nguyen Hoang
2017-09-01
Limnophila aromatica is widely used in South East Asian countries to make spices in food and medicine in traditional medicine. The use value of vegetables is known because some of the lesser constituents in plants are called antioxidants. These active ingredients have not been fully researched and their pharmacological effects are underestimated. In this study, the drying temperature at 40 °C was showed that the antioxidant activity decreased the most. The drying temperature of 50 °C is suitable for convection drying method and drying temperature of 60 °C suitable for vacuum drying, as it retains the most antioxidant properties. Regarding the drying method, freeze drying proved to be effective when retaining high antioxidant capacity. Using The convection drying at 50 °C and the vacuum drying at 60 °C, the antioxidant activity of Limnophila aromatica was not different. Over 6 weeks of preservation, the dried product has deterioration in antioxidant properties.
Encapsulation of lactase in Ca(II)-alginate beads: Effect of stabilizers and drying methods.
Traffano-Schiffo, Maria Victoria; Castro-Giraldez, Marta; Fito, Pedro J; Santagapita, Patricio R
2017-10-01
The purpose of the present work was to analyze the effect of trehalose, arabic and guar gums on the preservation of β-galactosidase activity in freeze-dried and vacuum dried Ca(II)-alginate beads. Freezing process was also studied as a first step of freeze-drying. Trehalose was critical for β-galactosidase conservation, and guar gum as a second excipient showed the highest conservation effect (close to 95%). Systems with T g values ~40°C which were stables at ambient temperature were obtained, being trehalose the main responsible of the formation of an amorphous matrix. Vacuum dried beads showed smaller size (with Feret's diameter below 1.08±0.09mm), higher circularity (reaching 0.78±0.06) and large cracks in their surface than freeze-dried beads, which were more spongy and voluminous. Ice crystallization of the beads revealed that the crystallization of Ca(II)-alginate system follows the Avrami kinetics of nucleation and growth. Particularly, Ca(II)-alginate showed an Avrami index of 2.03±0.07, which means that crystal growing is bidimensional. Neither the addition of trehalose nor gums affected the dimension of the ice growing or its rate. These results open an opportunity in the development of new lactic products able to be consumed by lactose intolerance people. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cilla, Irene; Martínez, Luis; Beltrán, José Antonio; Roncalés, Pedro
2006-05-01
The effect of storage on dry-cured ham quality was studied. Sixteen vacuum-packaged boneless dry-cured hams and sixteen vacuum-packaged dry-cured ham cuts were stored in darkness under refrigeration (4±2°C; 8 months) or freezing (-18±1°C; 24 months), respectively. Instrumental colour and texture, physico-chemical and biochemical parameters, sensory profile and consumer acceptability and purchase satisfaction were measured throughout storage. The overall quality of refrigerated boneless dry-cured hams and frozen dry-cured ham cuts showed only limited changes throughout long-term storage. Significant changes involved loss of odour and flavour, increased adhesiveness and modification of hardness, the Semimembranosus muscle became tender while Biceps femoris became harder, leading to a higher textural homogeneity. In agreement with those changes, the overall acceptability assessed by a trained panel decreased throughout storage, though this was significant regarding only frozen hams. However, consumer evaluation of acceptability, as well as satisfaction with hypothetical purchasing, did not vary significantly throughout storage.
Zielinska, Magdalena; Michalska, Anna
2016-12-01
The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drying effects on the antioxidant properties of tomatoes and ginger.
Gümüşay, Özlem Aktürk; Borazan, Alev Akpınar; Ercal, Nuran; Demirkol, Omca
2015-04-15
In this study, the effects of four different drying processes, sun drying (SD), oven drying (OD), vacuum oven drying (VOD) and freeze drying (FD) for tomatoes (Solanum lycopersicum) and ginger (Zingiber officinale) in terms of thiolic and phenolic contents have been studied. Thiol content, total phenolic content (TPC), ascorbic acid (AA) content, and cupric ion reducing antioxidant capacity (CUPRAC) were determined in fresh and dried samples. Glutathione (GSH) and cysteine (Cys) were determined as the thiol contents of tomatoes and ginger. Significant losses were observed in the contents of TPC, AA, GSH and Cys and CUPRAC values in all samples that were dried using the thermal method. There was a statistically significant difference in the losses of the TPC, AA, and thiol contents between the use of thermal drying and freeze drying (except Cys in tomatoes) methods. Freeze dried tomato and ginger samples have been found to have better antioxidant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Drying-induced physico-chemical changes in cranberry products.
Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried
2018-02-01
Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdurohman, K.; Siahaan, Mabe
2018-04-01
Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeishi, T.; Kotoh, K.; Kawabata, Y.
The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontaminationmore » was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.« less
Yi, Jianyong; Zhou, Linyan; Bi, Jinfeng; Chen, Qinqin; Liu, Xuan; Wu, Xinye
2016-02-01
The effects of hot air drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MV), vacuum drying (VD) as pre-drying treatments for explosion puff drying (EPD) on qualities of jackfruit chips were studied. The lowest total color differences (∆E) were found in the FD-, MV- and VD-EPD dried chips. Volume expansion effect (9.2 %) was only observed in the FD-EPD dried chips, which corresponded to its well expanded honeycomb microstructures and high rehydration rate. Compared with AD-, IR-, MV- and VD-EPD, the FD-EPD dried fruit chips exhibited lower hardness and higher crispness, indicative of a crispier texture. FD-EPD dried fruits also obtained high retentions of ascorbic acid, phenolics and carotenoids compared with that of the other puffed products. The results of sensory evaluation suggested that the FD-EPD was a more beneficial combination because it enhanced the overall qualities of jackfruit chips. In conclusion, the FD-EPD could be used as a novel combination drying method for processing valuable and/or high quality fruit chips.
A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying
NASA Astrophysics Data System (ADS)
Tsuruta, Takaharu; Hamidi, Nurkholis
Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.
Wu, Songhai; Li, Feng; Jia, Shaoyi; Ren, Haitao; Gong, Guili; Wang, Yanyan; Lv, Zesheng; Liu, Yong
2014-03-15
Three polysaccharides (ABMP-F, ABMP-V, ABMP-A) were obtained from Agaricus blazei Murrill via methods such as freeze drying, vacuum drying and air drying, respectively. Their chemical compositions were examined, and antioxidant activities were investigated on the basis of assay for hydroxyl radical, DPPH radical, ABTS free radical scavenging ability and assay for Fe(2+)-chelating ability. Results showed that the three ABMPs have different physicochemical and antioxidant properties. Compared with air drying and vacuum drying methods, freeze drying method resulted to ABMP with higher neutral sugar, polysaccharide yield, uronic acid content, and stronger antioxidant abilities of hydroxyl radical, DPPH radical, ABTS radical scavenging and Fe(2+)-chelating. As a result, Agaricus blazei Murrill polysaccharides are natural antioxidant and freeze drying method serves as a good choice for the preparation of such polysaccharides and should be used to produce antioxidants for food industry. Copyright © 2014. Published by Elsevier Ltd.
High post-thaw survival of ram sperm after partial freeze-drying.
Arav, Amir; Idda, Antonella; Nieddu, Stefano Mario; Natan, Yehudit; Ledda, Sergio
2018-03-14
Recrystallization damages occur when a frozen sample is held at high subzero temperatures and when the warming process is too slow. In this work, ram semen diluted in two different concentrations of sugar solutions (Lyo A consisted of 0.4 M sorbitol and 0.25 M trehalose, and the second, Lyo B composed of 0.26 M sorbitol and 0.165 M trehalose) in egg yolk and Tris medium were compared after freezing 10 μL samples to: (1) - 10, - 25, and - 35 °C and thawing. (2) Freezing to - 10 and - 25 °C, holding for 1 h and then thawing, and (3) freezing to - 10 and - 25 °C and drying for 1 h at these temperatures at a vacuum of 80 mTorr, prior thawing. For drying, we used a new freeze-drying apparatus (Darya, FertileSafe, Israel) having a condensation temperature below - 110 °C and a vacuum pressure of 10-100 mTorr that is reached in less than 10s. Results showed that samples in Lyo B solution frozen at - 25 °C had significantly higher sperm motility in partially freeze-dried samples than frozen samples (46.6 ± 2.8% vs 1.2 ± 2.5%, P < 0.001). Moreover, partially dried samples in Lyo B showed higher motility than Lyo A at - 25 °C (46.6 ± 2.8% vs 35 ± 4%). Cryomicroscopy and low-temperature/low-pressure environmental scanning electronic microscope demonstrated that the amount of the ice crystals present in partially dried samples was lower than in the frozen samples. Holding the sperm at high subzero temperatures is necessary for the primary drying of cells during the freeze-drying process. Rapid freeze-drying can be achieved using this new device, which enables to reduce recrystallization damages.
Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.
Qi, Jianping; Lu, Y I; Wu, Wei
2015-01-01
Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.
Ma, Xiaocui; Jamil, Kamran; Macrae, Thomas H; Clegg, James S; Russell, Joseph M; Villeneuve, Tania S; Euloth, Michelle; Sun, Yu; Crowe, John H; Tablin, Fern; Oliver, Ann E
2005-08-01
The ability to desiccate mammalian cells while maintaining a high degree of viability would be very important in many areas of biological science, including tissue engineering, cell transplantation, and biosensor technologies. Certain proteins and sugars found in animals capable of surviving desiccation might aid this process. We report here that human embryonic kidney (293H) cells transfected with the gene for the stress protein p26 from Artemia and loaded with trehalose showed a sharp increase in survival during air-drying. Further, we find vacuum-drying greatly improved the ability of the cells to survive, and that the physical shape and structure of the cellular sample had a large influence on recovery following rehydration. Cells suspended in a rounded droplet survived desiccation markedly better than those spread as a thin film. Finally, we used alamarBlue to monitor cellular metabolism and Hema 3 to assess colony formation after vacuum-drying. AlamarBlue fluorescence indicated that the transfected 293H cells expressing p26 (E11'L) grew much better than the control 293H cells. In fact, immediate survival and colony formation in E11'L cells increased as much as 34-fold compared with control cells when the samples were dried to a water content of 0.2 g H2O/g dry weight, as measured by gravimetric analysis. These results indicate that p26 improves cell survival following drying and rehydration, and suggest that dry storage of mammalian cells is a likely possibility in the future.
Impact of dehydration of purslane on retention of bioactive molecules and antioxidant activity.
Shanker, Niharika; Debnath, Sukumar
2015-10-01
Purslane (Portulaca oleracea L.) has several health benefits, such as it reduces risk of CVD, obesity and diabetes. The objective of the study was to investigate the effect of different drying on retention of bioactive molecules, such as omega-3 fatty acids, total phenolic content and antiradical activity of purslane. Five different dehydration methods including microwave (100 MW, 5 min), tray, vacuum, low temperature low humidity, infrared were used at 55-60 °C for 5-7 h for dehydration of purslane. Three solvents, viz. water, ethanol and methanol were used for extraction of bioactive molecules from purslane. Total polyphenol content, antiradical activity and rehydration ratio of the bioactive molecules were determined. Results revealed that total PUFA, α-linolenic acid (ALA), total polyphenol content and antiradical activity were found to retain in the dried purslane in the range of (47.9-59.9 %), (42.5-50 %), (188-408GAE/100 g) and (33.0-88.8 mg/100 g) respectively. The highest values of ALA, total polyphenol content and antiradical activity were found to obtain in the vacuum dried sample. Rehydration ratio was found in the range of 3.2-4.3 and vacuum dried purslane showed maximum rehydration. It could be concluded that vacuum dehydration of purslane is an effective method for retention of bioactive molecules and good rehydration behaviour of dried purslane.
Combined wet and dry cleaning of SiGe(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong
Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less
Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.
Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang
2016-02-17
New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent developments in drying of food products
NASA Astrophysics Data System (ADS)
Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar
2017-05-01
Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.
NASA Astrophysics Data System (ADS)
Sukarsono, R.; Rachmawati, M.; Susilowati, S. R.; Husnurrofiq, D.; Nurwidyaningrum, K.; Dewi, A. K.
2018-02-01
Cerium Stabilized Zirconium gel has been prepared using external gelation process. As the raw materials was used ZrO(NO3)2 and Ce(NO3)4 nitrate salt which was dissolved with water into Zr-Ce nitrate mixture. The concentration of the nitrate salt mixture in the sol solution was varied by varying the concentration of zirconium and cerium nitrate in the sol solution and the addition of PVA and THFA to produce a sol with a viscosity of 40-60 cP. The viscosity range of 40-60cP is the viscosity of the sol solution that was easy to produce a good gel in the gelation apparatus. Sol solution was casted in a gelation column equipped with following tools: a 1 mm diameter drip nozzle which was vibrated to adjust the best frequency and amplitude of vibration, a flow meter to measure the flow rate of sol, flowing of NH3 gas to presolidification process. Gelation column was contained NH4OH solution as gelation medium and gel container to collect gel product. Gel obtained from the gelation process than processed with ageing, washing, drying and calcinations to get round gel and not broken at calcinations up to 500°C. The parameters observed in this research are variation of Zr nitrate concentration, Ce nitrate concentration, ratio of Zr and Ce in the sol and ageing and drying process method which was appropriate to get a good gel. From the gelation processes that has been done, it can be seen that with the presolidification process can be obtained a round gel and without presolidification process, produce not round gel. In the process of ageing to get not broken gel, ageing was done on the rotary flask so that during the ageing, gels rotate in gelation media. Gels, then be washed by dilute ammonium nitrate, demireralized water and iso prophyl alcohol. The washed gel was then dried by vacuum drying to form pores on the gel which become the path for the gases resulting from decomposition of the gel to exit the gel. Vacuum drying can prevent cracking because the pores allow the gel to release the decomposition of the material during heating. Larger the concentration of nitric metal in sol solution, yields a gel with a larger diameter of gels. This research allows us to plan the diameter of the sintered particles to be made.
NASA Astrophysics Data System (ADS)
Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.
2014-04-01
The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].
Ambient stable quantitative PCR reagents for the detection of Yersinia pestis.
Qu, Shi; Shi, Qinghai; Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu
2010-03-09
Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37 degrees C. TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37 degrees C for at least 49 days for a lower concentration of template DNA (10 copies/microl), and up to 79 days for higher concentrations (> or =10(2) copies/microl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5x10(4) CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37 degrees C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance.
Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis
Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu
2010-01-01
Background Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37°C. Methods/Principal Findings TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37°C for at least 49 days for a lower concentration of template DNA (10 copies/µl), and up to 79 days for higher concentrations (≥102 copies/µl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5×104 CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. Conclusions/Significance The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37°C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance. PMID:20231881
Relevance of nanocomposite packaging on the stability of vacuum-packed dry cured ham.
Lloret, Elsa; Fernandez, Avelina; Trbojevich, Raul; Arnau, Jacint; Picouet, Pierre A
2016-08-01
In this study effects of a novel high barrier multilayer polyamide film containing dispersed nanoclays (PAN) on the stability of vacuum packed dry-cured ham were investigated during 90days refrigerated storage in comparison with non-modified multilayer polyamide (PA) and a commercial high barrier film. Characteristic bands of the mineral in FT-IR spectra confirmed the presence of nanoclays in PAN, enhancing oxygen transmission barrier properties and UV protection. Packaging in PAN films did not originate significant changes on colour or lipid oxidation during prolonged storage of vacuum-packed dry-cured ham. Larger oxygen transmission rates in PA films caused changes in CIE b* during refrigerated storage. Ham quality was not affected by light exposition during 90days and only curing had a significant benefit on colour and TBARS, being cured samples more stable during storage in all the packages used. Packaging of dry-cured ham in PAN was equivalent to commercial high barrier films. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Andraws, Rodney; Jacques, David; VanderWal, Randy L.; Sayir, Ali
2005-01-01
To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440 C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.
A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldiges, Olaf; Blenski, Hans-Juergen
2003-02-27
Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less
Wojdyło, Aneta; Figiel, Adam; Legua, Pilar; Lech, Krzysztof; Carbonell-Barrachina, Ángel A; Hernández, Francisca
2016-09-15
The aim of this study was to determine the effect of different dying methods, such as convective drying (CD: 50, 60, 70 °C), vacuum-microwave drying (VMD: 120, 480, 480-120 W), a combination of convective pre-drying and vacuum-microwave finish drying [(CPD (60 °C)-VMFD (480-120 W)], and freeze-drying (FD) on key quality parameters of dried jujube fruits (cv. "GAL", "MSI", and "PSI"). The parameters studied included bioactive compounds (flavan-3-ols and flavonols, identified by LC-PDA-MS, and vitamin C), antioxidant capacity (ABTS and FRAP), and sensory attributes (e.g. hardness, jujube-ID, and sweetness). The best quality of the dried product (high contents of bioactive compounds and high intensity of key sensory attributes) was found in fruits treated by FD and VMD 480-120 W. The best cultivars were "PSI" and "GAL" from the point of view of bioactive content and sensory quality, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fernandes, M B A; Habu, S; de Lima, M A; Thomaz-Soccol, V; Soccol, C R
2011-03-01
Agaricus blazei is a mushroom that belongs to the Brazilian biodiversity and is considered as an important producer of bioactive compounds beneficial to human health. Studies have demonstrated that these compounds present immuno-modulatory, antioxidant and antitumor properties. In order to compare the most used method for fungal polysaccharide drying, lyophilization with other industrial-scale methods, the aim of this work was to submit A. blazei LPB 03 polysaccharide extracts to vaucum, spray and freeze drying, and evaluate the maintenance of its antitumoral effects in vitro. Exopolysaccharides produced by A. blazei LPB 03 on submerged fermentation were extracted with ethanol and submitted to drying processes. The efficiency represents the water content that was removed during the drying process. The resultant dried products showed water content around 3% and water activity less than 0.380, preventing therefore the growth of microorganisms and reactions of chemical degradation. Exopolysaccharide extracts dried by vacuum and spray dryer did not showed any significant cytotoxic effect on cell viability of Wistar mice macrophages. Content of total sugars and protein decrease after drying, nevertheless, 20 mg/ml of exopolysaccharides dried by spray dryer reached 33% of inhibition rate over Ehrlich tumor cells in vitro.
Yang, Chun-Yu; Guo, Feng-Qian; Zang, Chen; Cao, Hui; Zhang, Bao-Xian
2018-02-01
Ginger juice, a commonly used adjuvant for Chinese materia medica, is applied in processing of multiple Chinese herbal decoction pieces. Because of the raw materials and preparation process of ginger juice, it is difficult to be preserved for a long time, and the dosage of ginger juice in the processing can not be determined base on its content of main compositions. Ginger juice from different sources is hard to achieve consistent effect during the processing of traditional Chinese herbal decoction pieces. Based on the previous studies, the freeze drying of ginger juice under different shelf temperatures and vacuum degrees were studied, and the optimized freeze drying condition of ginger juice was determined. The content determination method for 6-gingerol, 8-gingerol, 10-gingerol and 6-shagaol in ginger juice and redissolved ginger juice was established. The content changes of 6-gingerol, 8-gingerol, 10-gingerol, 6-gingerol, 6-shagaol, volatile oil and total phenol were studied through the drying process and 30 days preservation period. The results showed that the freeze drying time of ginger juice was shortened after process optimization; the compositions basically remained unchanged after freeze drying, and there was no significant changes in the total phenol content and gingerol content, but the volatile oil content was significantly decreased( P <0.05). Within 30 days, the contents of gingerol, total phenol, and volatile oil were on the decline as a whole. This study has preliminarily proved the feasibility of freeze-drying process of ginger juice as an adjuvant for Chinese medicine processing. Copyright© by the Chinese Pharmaceutical Association.
Grand Forks - East Grand Forks Urban Water Resources Study. Wastewater Management Appendix.
1981-07-01
SLUIGES FROM AEROBIC DIGESTION . 2. LOADING RATE OF 20 LB/FT 2/YR APPLICABLE TO BIOLOGICAL SLUDGES FROM ANAEROBIC DIGESTION. 3. EXPECTED PERFORMANCE...plant size as follows: Sludge Handling Facilities Flow Range Biological Sludge Lime Sludge Flow <_ 3 MCD Flotation thickening, Gravity thicken & aerobic ... digestion , & drying beds. drying beds. 3 MGD < Mot; < 10 MGD Flotation thickening, Gravity thicken & anaerobic digestion, & vacuum filter. vacuum
Friction and wear of plasma-deposited diamond films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.
1993-01-01
Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.
7 CFR 58.230 - Heavy duty vacuum cleaners.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy...
Rodríguez, Diana; Barrero, Marinela; Kodaira, Makie
2009-06-01
Salting fish in the south Venezuelan towns are still the main method of preserving fish including cutt, and salting fish process, storage and commercialization. As the result, salted-dried fish is particularly susceptible to spoilage by a number of factors, including lipid oxidation, browning meat. Packing salted fish product is an alternative increasing storage life time reducing lost of quality and enhancing the storage time. The present study evaluated the physic, chemist, and sensory quality of fish fillet from cat fish (Pseudoplatystoma sp.) from Apure state, Venezuela. Fillet fish were placed in brine solution at 36% of sodium chloride 1:2 fillet: brine solution; after, they were packed under followed conditions: vacuum, vacuum and storage under refrigeration condition, and room temperature. The results showed significant differences (p < 0.01) for moisture, salt content, and Aw. The fillets packed at vacuum and storage at 4 degrees C were significant different from the resting treatments; not significant differences were presented at room and refrigeration temperature after three moths. The best conditions treatment was vacuum packing and refrigeration at 4 degrees C.
Preparation of high porosity xerogels by chemical surface modification.
Deshpande, Ravindra; Smith, Douglas M.; Brinker, C. Jeffrey
1996-01-01
This invention provides an extremely porous xerogel dried at vacuum-to-below supercritical pressures but having the properties of aerogels which are typically dried at supercritical pressures. This is done by reacting the internal pore surface of the wet gel with organic substances in order to change the contact angle of the fluid meniscus in the pores during drying. Shrinkage of the gel (which is normally prevented by use of high autoclave pressures, such that the pore fluid is at temperature and pressure above its critical values) is avoided even at vacuum or ambient pressures.
Fibrillar structure and elasticity of hydrating collagen: a quantitative multiscale approach.
Morin, Claire; Hellmich, Christian; Henits, Peter
2013-01-21
It is well known that hydration of collagenous tissues leads to their swelling, as well as to softening of their elastic behavior. However, it is much less clear which microstructural and micromechanical "rules" are involved in this process. Here, we develop a theoretical approach cast in analytical mathematical formulations, which is experimentally validated by a wealth of independent tests on collagenous tissues, such as X-ray diffraction, vacuum drying, mass measurements, and Brillouin light scattering. The overall emerging picture is the following: air-drying leaves water only in the gap zones between the triple-helical collagen molecules; upon re-hydration, the extrafibrillar space is established at volumes directly proportional to the hydration-induced swelling of the (micro) fibrils, until the maximum equatorial distance between the long collagen molecules is reached. Thereafter, the volume of the fibrils stays constant, and only the extrafibrillar volume continues to grow. At all these hydration stages, the elastic behavior is governed by the same, hydration-invariant mechanical interaction pattern of only two, interpenetrating mechanical phases: transversely isotropic molecular collagen and isotropic water (or empty pores in the vacuum-dried case). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
Environmentally benign processing of YAG transparent wafers
NASA Astrophysics Data System (ADS)
Yang, Yan; Wu, Yiquan
2015-12-01
Transparent yttrium aluminum garnet (YAG) wafers were successfully produced via aqueous tape casting and vacuum sintering techniques using a new environmentally friendly binder, a copolymer of isobutylene and maleic anhydride with the commercial name ISOBAM (noted as ISOBAM). Aqueous YAG slurries were mixed by ball-milling, which was followed by de-gassing and tape casting of wafers. The final YAG green tapes were homogenous and flexible, and could be bent freely without cracking. After the drying and sintering processes, transparent YAG wafers were achieved. The microstructures of both the green tape and vacuum-sintered YAG ceramic were observed by scanning electronic microscopy (SEM). Phase compositions were examined by X-ray diffraction (XRD). Optical transmittance was measured in UV-VIS regions with the result that the transmittance is 82.6% at a wavelength of 800 nm.
NASA Technical Reports Server (NTRS)
1994-01-01
In planning for the long duration Apollo missions, NASA conducted extensive research into space food. One of the techniques developed was freeze drying. Action Products commercialized this technique, concentrating on snack food including the first freeze-dried ice cream. The foods are cooked, quickly frozen and then slowly heated in a vacuum chamber to remove the ice crystals formed by the freezing process. The final product retains 98 percent of its nutrition and weighs only 20 percent of its original weight. Action snacks are sold at museums, NASA facilities and are exported to a number of foreign countries. Sales run to several million dollars annually.
Method For Removing Volatile Components From A Gel-Cast Ceramic Article
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2004-09-07
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
USDA-ARS?s Scientific Manuscript database
Fresh blueberries were pretreated with pulsed electric fields (PEF) at 2 kV/cm and then dried at 45, 60 and 75 degrees C by conventional hot air or vacuum drying. Drying characteristics and changes in contents of moisture, anthocyanin, total phenolics, vitamin C, and antioxidant activity in the blu...
Mejia-Meza, E I; Yáñez, J A; Remsberg, C M; Takemoto, J K; Davies, N M; Rasco, B; Clary, C
2010-01-01
Fresh and dried raspberries prepared by freeze drying (FD), microwave-vacuum (MIVAC), hot-air drying (HAD), and a combination of hot-air drying and microwave-vacuum (HAD/MIVAC) drying methods were evaluated for polyphenol retention, total polyphenol and anthocyanin contents, total antioxidant capacity, and antiadipogenic activity (the inhibition of fat cell development). Ellagic acid and quercetin were present in the largest concentrations in fresh and dehydrated raspberries. Dehydration led to a loss of polyphenols and anthocyanins and antioxidant capacity. Polyphenols (aglycone form) were retained in the greatest amount: 20% (freeze dried) to 30% (HAD/MIVAC) (fresh = 100%). A total of 30% of polyphenols (glycoside form) were retained in raspberries dried by the HAD/MIVAC methods with 5% of retention observed for raspberries dried by FD, HAD, or MIVAC. FD and MIVAC resulted in higher retention of anthocyanins (aglycone form) than other drying methods. It was also observed that antioxidant activity was reduced by dehydration. Adipogenesis was inhibited by polyphenolic glycosides (30%) and aglycones (30% to 40%) in fresh and HAD/MIVAC raspberries. Extracts from dried raspberries by HAD/MIVAC methods were relatively more effective at inhibiting adipogenesis compared to HAD and FD dried raspberries.
Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko
2016-12-01
After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low-pressure technology to prevent odorous gasses from spreading into the environment. There are presented two new technologies: a) Sewage sludge or digestate drying in the vacuum chamber consumes approx. 1 kWh/dm 3 of evaporated water and, therefore, reaches a price of 180-240 Euros/t Dry Matter (DM), and b) Heavy metals' reduction using adsorbing reaction with magnetite nanostructures can decrease the level of heavy metals in the sewage sludge or digestate up to 20% in one cycle, which can be repeated several times on the same sludge. The aim of the paper is to present a newly developed technology which can provide economic and safe use of moderate heavy metals polluted sewage sludge on agricultural lands as organic fertilizer and, therefore, returning the nutrients (nitrogen, phosphorous, potassium) back to the human food chain, instead of being incinerated or landfilled. The proposed drying technology is economically sustainable due to the low vacuum and temperature (35 °C-40 °C), that increases the efficiency of the heat pump (coefficient of performance 5-7,2) of the energy produced by the anaerobic digestion. Hence, the main emphasis is given to the development of: an efficient method for heavy metals' reduction in the sludge treatment chain by using chitosan covered magnetite nanoparticles, an efficient drying method in a vacuum with low temperature energy which can be exploited from sludge digestion to reduce organic matter, and an energy sustainable concept of sludge treatment, with the addition of fats, oil and grease (FOG) to produce enough biogas for sludge drying to produce fertilizer. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Susilowati, Agustine; Aspiyanto, Ghozali, Muhammad
2017-11-01
Fermentation on inulin hydrolysate as fructooligosaccharides (FOS) by Bifidobacterium bifidum as a result of hydrolysis by inulase enzyme of Scopulariopsis sp.-CBS1 fungi has been performed to bind cholesterol. Their applications on preparation of fermented pour beverages was conducted via a series of concentration process using dead-end Stirred Ultrafiltration Cell (SUFC) mode at stirrer rotation of 400 rpm, room temperature and pressure of 40 psia for 0 minute (pre-concentration process) as concentrate (A) and 45 minutes as concentrate (B), and drying process using vacuum dryer at 30 °C and 22 cm Hg for 0, 8, 16, 24, 32, 40 and 48 hours. Based on optimization of Total Dietary Fiber (TDF), the best time of drying process was achieved for 40 hours. Long time of drying process would increase TDF and total solids, decreased total acids, and fluctuated dissolved protein and Cholesterol Binding Capacity (CBC). At the optimum condition of drying process was get fermented inulin fiber powder from concentration processes using both UF as pre process (0 minute) as concentrate (A) and UF for 45 minutes as concentrate (B) with compositions of total solids of 92.31 % and 93.67 %, TDF of 59.07 % (dry weight) and 69.28 %, total acids of 7.03 % and 7.5 %, dissolved protein of 3.95 mg/mL and 3.05 mg/mL, and CBC pH 2 15.71 mg/g and 16.8 mg/g, respectively. Concentration process through dead-end SUFC mode gave distribution of particles with better smoothness level than without through dead-end SUFC mode.
Rehydration properties of hybrid method dried fruit enriched by natural components
NASA Astrophysics Data System (ADS)
Kowalska, Hanna; Marzec, Agata; Kowalska, Jolanta; Ciurzyńska, Agnieszka; Samborska, Kinga; Bialik, Michał; Lenart, Andrzej
2018-04-01
The aim of the study was to determine the impact of osmotic pre-dehydration and drying of fruit on the rehydration properties of dried fruit. Herein, the effect of fruit juice, applied as a natural enriching substance was very important. In addition, the properties of dried fruits obtained through combined air-drying and subsequent microwave-vacuum drying with `puffing' effect were similar to the freeze-dried fruits, but showed other rehydration properties. As raw material, frozen strawberry (Honeoye variety) and fresh apples (Idared variety) were used in the study. The apples and partially defrosted strawberries were prior dehydrated in solutions of sucrose and a mixture of sucrose with chokeberry juice concentrate at 50°C for 2 h. Next, the fruit samples were dried by one of two ways: air-drying (50°C, 5 h) and microwavevacuum drying for about 360 s; and freeze-drying (30°C, 63 Pa, 24 h). The rehydration was carried out in distilled water (20°C, 5 h). The osmotic pre-dehydration hindered fruit drying process. The impact of drying method became particularly evident while examining the kinetics of rehydration. During the rehydration of the pre-dehydrated dried fruit a slower hydration could be observed. Freeze-dried strawberries absorbed 2-3 times more water than those dried by the `puffing' effect.
Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures
Zeren, J.D.
1993-12-28
A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.
Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures
Zeren, Joseph D.
1993-12-28
A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet.
Moisture transfer from stopper to product and resulting stability implications.
Pikal, M J; Shah, S
1992-01-01
Since the stability of a freeze-dried product is often sensitive to the level of moisture, control of residual moisture by attention to the secondary drying phase of the freeze-drying process is of considerable importance. However, several reports in the literature as well as our own experience suggest that low residual moisture immediately after manufacture does not ensure low moisture throughout the shelf life of the product. Equilibration of the product with moisture in the stopper can lead to significant increases in product water content. This research is a study of the kinetic and equilibrium aspects of moisture transfer from stopper to product at 5 degrees C, 25 degrees C, and 40 degrees C for two amorphous materials: vancomycin (highly hygroscopic) and lactose (moderately hygroscopic). Stoppers are 13 mm butyl rubber (#1816, West Co.) slotted freeze-drying stoppers which were studied: (a) "U"-with no treatment; (b) "SV1"-steam-sterilized followed by 1 hr vacuum drying; and (c) "SV8"-steam sterilized followed by 8 hrs vacuum drying. No evidence was found for moisture transmission through the stopper. Rather, the product moisture content increases with time and reaches an apparent equilibrium value characteristic of the product, amount of product, and stopper treatment method ("SV1" much greater than "U" greater than "SV1"). As a first approximation, the rate of approach to "equilibrium" depends only on temperature (t1/2 approximately 10 months at 5 degrees C to approximately 4 days at 40 degrees C) with the "equilibrium" water content being independent of temperature. The "equilibrium" moisture content increases as the dose decreases and is larger for vancomycin than for lactose. The "equilibrium" moisture contents range from 5.0% (25 mg vancomycin, "SV1" stoppers) to 0.68% (100 mg lactose, "SV8" stoppers).
Kinetics of mass transfer during deep fat frying of yellow fleshed cassava root slices
NASA Astrophysics Data System (ADS)
Oyedeji, A. B.; Sobukola, O. P.; Henshaw, F. O.; Adegunwa, M. O.; Sanni, L. O.; Tomlins, K. I.
2016-05-01
Kinetics of mass transfer [moisture content, oil uptake, total carotenoid (TC) and shrinkage] during frying of yellow fleshed cassava roots (TMS 01/1371) was investigated. Slices were divided into (i) fresh and (ii) pre-dried to 75 % moisture content before atmospheric frying and (iii) vacuum fried. Percentage TC and activation energies of vacuum, fresh and pre-dried fried samples were 76, 63 and 61 %; and 82, 469.7, 213.7 kJ/mol, respectively.
Safety analysis report for packaging (onsite) multicanister overpack cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, W.S.
1997-07-14
This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.
Evaluation of Friction Stir Processing of HY-80 Steel Under Wet and Dry Conditions
2012-03-01
MS80. The tool design included a convex scroll shoulder with a step-spiral protruding pin (CS4). Figure 4. PCBN FSW/P threaded tool. 12 For...and cooling water was pumped through during the FSW/P process, Figure 7. Sea salt was added to distilled water to create a 3.5% salt content. 14... Vacuum hot extraction was used to determine the hydrogen concentration as specified by ASTM E 146–83. In addition, combustion infrared detection
Cooling and solidification of heavy hydrocarbon liquid streams
Antieri, Salvatore J.; Comolli, Alfred G.
1983-01-01
A process and apparatus for cooling and solidifying a stream of heavy hydrocarbon material normally boiling above about 850.degree. F., such as vacuum bottoms material from a coal liquefaction process. The hydrocarbon stream is dropped into a liquid bath, preferably water, which contains a screw conveyor device and the stream is rapidly cooled, solidified and broken therein to form discrete elongated particles. The solid extrudates or prills are then dried separately to remove substantially all surface moisture, and passed to further usage.
Combined dry plasma etching and online metrology for manufacturing highly focusing x-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berujon, S., E-mail: berujon@esrf.eu; Ziegler, E., E-mail: ziegler@esrf.eu; Cunha, S. da
A new figuring station was designed and installed at the ESRF beamline BM05. It allows the figuring of mirrors within an iterative process combining the advantage of online metrology with dry etching. The complete process takes place under a vacuum environment to minimize surface contamination while non-contact surfacing tools open up the possibility of performing at-wavelength metrology and eliminating placement errors. The aim is to produce mirrors whose slopes do not deviate from the stigmatic profile by more than 0.1 µrad rms while keeping surface roughness in the acceptable limit of 0.1-0.2 nm rms. The desired elliptical mirror surface shapemore » can be achieved in a few iterations in about a one day time span. This paper describes some of the important aspects of the process regarding both the online metrology and the etching process.« less
Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics
NASA Astrophysics Data System (ADS)
Brines, C.; Mulet, A.; García-Pérez, J. V.; Riera, E.; Cárcel, J. A.
The atmospheric freeze drying (AFD) constitutes an interesting alternative to vacuum freeze drying providing products with similar quality at lowest cost. However, the long process time needed represent an important drawback. In this sense, the application of high intensity ultrasound can enhance heat and mass transfer and intensify the operation. In hot air drying operation, the ultrasonic effects are dependent on the process variables such as air velocity, internal sample structure or ultrasonic power applied. However, in AFD processes, the internal structure of material or the air velocity has not significant influence on the magnitude of ultrasonic effects. The aim of this work was to determine the influence on drying kinetics of the ultrasonic power applied during the AFD of apple. For that purpose, AFD experiments (-10 °C, 2 m/s and 15% relative humidity) of apple slabs (cv. Granny Smith, 30 x 30 x 10 mm) were carried out with ultrasound application (21 kHz) at different power levels (0, 10.3, 20.5 and 30.8 kW/m3). The drying kinetics was obtained from the initial moisture content and the weight evolution of samples during drying. Experimental results showed a significant (p<0.05) influence of the ultrasound application on drying. Thus, drying time was shorter as higher the ultrasonic power applied. From modeling, it was observed that the effective diffusion coefficient identified was 4.8 times higher when ultrasound was applied at the lowest power tested (10.3 kW/m3) that illustrated the high intensification potential of ultrasound application in the AFD.
García-Esteban, Marta; Ansorena, Diana; Astiasarán, Iciar
2004-05-01
Slices of dry-cured hams (Biceps femoris muscle) were stored during 8 weeks under vacuum and modified atmospheres (100% N(2) and a mixture of 20% CO(2) and 80% N(2)) in order to study the modifications on colour, texture and microbial counts during that period. Lightness was found to be more stable when samples were stored with 20% CO(2) and 80% N(2) without statistical differences between vacuum and 100% N(2). A slight whiteness was observed in the vacuum packed samples. Yellowness increased during time in vacuum packed samples, although no differences were found among the three conditions at the end of the study. Redness values were not affected by time or by the packaging system. With regard to texture, values found for all samples were within the normal range for this type of products, although it was observed that modified atmosphere packaging preserved samples better from hardening than vacuum packaging. No safety problems were detected in relation to the microbial quality in any case. In general, no clear differences were found among the three packaging systems for colour, texture and microbial quality in the storage conditions studied.
Vapor Hydrogen Peroxide as Alternative to Dry Heat Microbial Reduction
NASA Technical Reports Server (NTRS)
Cash, Howard A.; Kern, Roger G.; Chung, Shirley Y.; Koukol, Robert C.; Barengoltz, Jack B.
2006-01-01
The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with appropriate specification, in NPG8020.12C as a low temperature complementary technique to the dry heat sterilization process. A series of experiments were conducted in vacuum to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. With this knowledge of D values, sensible margins can be applied in a planetary protection specification. The outcome of this study provided an optimization of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D value may be imposed, a process humidity range for which the worst case D value may be imposed, and robustness to selected spacecraft material substrates.
NASA Astrophysics Data System (ADS)
Takahashi, K.; Ishida, H.; Sawada, K.
2018-01-01
We report the development of a microcavity drum sealed by suspended graphene. The drum is fabricated by using a low-pressure dry-transfer technique, which involves vacuum de-aeration between a graphene sheet and a substrate and raising the temperature to above the glass transition of the supporting poly(methyl methacrylate) film, which serves to increase the real contact area. The result is a suspended graphene sheet with a maximum diameter of 48.6 μm. The Raman spectrum of the suspended graphene has a 2D/G ratio of 1.79 and a few D peaks, which suggests that the material is high-quality single-layer graphene. The dry-transfer technique yields a vacuum-sealed microcavity drum 1.1 μm deep up to 4.5 μm in diameter. The Raman shift indicates that the suspended graphene is subjected to a tensile strain of 0.05%, which is attributed to the pressure difference between the evacuated cavity and the exterior gas.
New Processes for Freeze-Drying in Dual-Chamber Systems.
Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M
2016-01-01
Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this challenge by (1) freeze-drying the drug product in the syringe in an orientation in which the product is closest to the heat source, or (2) freeze-drying the drug product outside the syringe in a metal tube. The latter requires filling the freeze-dried product subsequently into the dual-chamber syringe. Both processes were very efficient and promised to achieve similar freeze-drying conditions for all dual-chamber syringes within one production run. The proposed processes may help to considerably decrease investment costs into dual-chamber syringe fill-finish equipment. © PDA, Inc. 2016.
Freeze-drying of yeast cultures.
Bond, Chris
2007-01-01
A method is described that allows yeast species to be stored using a variation on the standard freeze-drying method, which employs evaporative cooling in a two-stage process. Yeast cultures are placed in glass ampoules after having been mixed with a lyoprotectant. Primary drying is carried out using a centrifuge head connected to a standard freeze-dryer. Once the centrifuge head is running, air is removed and evaporated liquid is captured in the freeze-dryer. Centrifugation continues for 15 min and primary drying for a further 3 h. The ampoules are constricted using a glass blowing torch. They are then placed on the freeze-dryer manifold for secondary drying under vacuum overnight, using phosphorus pentoxide as a desiccant. The ampoules are sealed and removed from the manifold by melting the constricted section. Although the process causes an initial large drop in viability, further losses after storage are minimal. Yeast strains have remained viable for more than 30 yr when stored using this method and sufficient cells are recovered to produce new working stocks. Although survival rates are strain specific, nearly all National Collection of Yeast Cultures strains covering most yeast genera, have been successfully stored with little or no detectable change in strain characteristics.
Solid and Liquid Waste Drying Bag
NASA Technical Reports Server (NTRS)
Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)
2009-01-01
Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.
Effect of sugar additives on stability of human serum albumin during vacuum foam drying and storage.
Hajare, A A; More, H N; Pisal, S S
2011-11-01
No literature on the protein stabilization of human serum albumin (HSA) by vacuum foam drying (VFD) has been reported. The purpose of this study was to investigate the effect of sugar-additive systems on the stability of HSA by VFD. For the assessment, HSA was formulated with sucrose and mannitol, respectively, alone or in combination with stabilizers, which were vacuum foam dried and stored at 25C. Protein content of the resulting dried formulations was analyzed by Lowry method. Fourier-transform infrared spectroscopy (FT-IR) analysis of the HSA secondary structure showed apparent protein structure-stabilizing effects of the amorphous sugar and phosphate combination during the VFD. In particular, sucrose-sodium phosphate monobasic mixture provide an interesting alternative to pure saccharide formulations due to their high glass transition temperatures and their increased ability to maintain a low melting transition temperature in the presence of small amounts of water. Inhibition of the sucrose crystallization in solutions under vacuum resulted in highly amorphous sucrose. Changes in the endothermic melting transition suggested reduced sucrose molecular mobility with increase in the sodium phosphate ratio. The addition of phosphate salts to sugar systems has several interesting features that merit its consideration in formulations to protect dehydrated labile biomaterials. In conclusion, our data suggest that sucrose and phosphate as additives seem to protect HSA during VFD better than lyophilized products and also maintain its stability in the VFD state during storage.
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
1997-11-01
Many industrial and scientific processes like electron beam melting and welding, material modification by ion implantation, dry etching, and micro-fabrication, as well as generation of synchrotron radiation are performed almost exclusively in vacuum nowadays, since the electron and ion guns and their extractors must be kept at a reasonably high vacuum. Consequently, there are numerous drawbacks, among which are low production rates due to required pumping time, limits the vacuum volume sets on the size of target objects. In a small number of applications like non-vacuum electron beam welding, and various processes involving UV and x-ray radiation, thin vacuum walls or long stages of differential pumping are used. But, the resultant degradations of particle and radiation beams severely limit those applications. A novel apparatus, which utilized a short plasma arc, was successfully used to maintain a pressure of 7.6 x exp(-6) Torr in a vacuum chamber with a 2.36mm aperture to atmosphere, i.e., a plasma was successfully used to "plug" a hole to atmosphere while maintaining a reasonably high vacuum in the chamber. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. More details can be found in A. Hershcovitch, J. Appl. Physics 78, p. 5283 (1995). In addition to sustaining a vacuum atmosphere interface, the plasma has very strong lensing effect on charged particles. The plasma current generates an azimuthal magnetic field which exerts a radial Lorentz on charged particles moving parallel to the current channel. With proper orientation of the current direction, the Lorentz force is radially inward. This feature can be used to focus in beams to a very small spot size, and to overcome beam dispersion due to scattering by atmospheric atoms and molecules. Relatively hot plasma at the atmosphere boundary rarefies the atmospheric gases to further enhance particle beam propagation to the materials to target. Recent experimental results, with a plasma window coupled to a venturi, show a factor of three further enhancement in vacuum-atmosphere separation.
Mascarin, Gabriel Moura; Jackson, Mark A; Behle, Robert W; Kobori, Nilce N; Júnior, Ítalo Delalibera
2016-10-01
The yeast form (blastospore) of the dimorphic insect-pathogenic fungus Beauveria bassiana can be rapidly produced using liquid fermentation methods but is generally unable to survive rapid dehydration processes or storage under non-refrigerated conditions. In this study, we evaluated the influence of two convective drying methods, various modified atmosphere packaging systems, and storage temperatures on the desiccation tolerance, storage stability, and virulence of blastospores of B. bassiana ESALQ 1432. All blastospore formulations were dried to <5 % water content equivalent to aw < 0.3. The viability of B. bassiana blastospores after air drying and spray drying was greater than 80 %. Vacuum-packaged blastospores remained viable longer when stored at 4 °C compared with 28 °C with virtually no loss in viability over 9 months regardless the drying method. When both oxygen and moisture scavengers were added to sealed packages of dried blastospore formulations stored at 28 °C, viability was significantly prolonged for both air- and spray-dried blastospores. The addition of ascorbic acid during spray drying did not improve desiccation tolerance but enhanced cell stability (∼twofold higher half-life) when stored at 28 °C. After storage for 4 months at 28 °C, air-dried blastospores produced a lower LC80 and resulted in higher mortality to whitefly nymphs (Bemisia tabaci) when compared with spray-dried blastospores. These studies identified key storage conditions (low aw and oxygen availability) that improved blastospore storage stability at 28 °C and will facilitate the commercial development of blastospores-based bioinsecticides.
High Temperature Polymer Film Dielectrics for Aerospace Power Conditioning Capacitor Applications
2008-10-01
a temperature controller as well as a vacuum controller. A vacuum of əTorr is achieved with a combination of a turbo pump and a scroll pump system...the addition of a non- solvent such as de-ionized, distilled water. The films were dried at ∼0.1 Torr vacuum in an oven for several days at 65–75 ◦C
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
Stabilization of lunar core samples
NASA Technical Reports Server (NTRS)
Nagle, J. S.; Duke, M. B.
1974-01-01
Processing of lunar cores includes: (1) careful dissection for study of loose fines, and (2) stabilization of the residue by peeling and impregnation. The newly developed technique for preparing thin peels of lunar cores requires application of the methacrylate adhesive to a backing strip, before taking the peel. To ensure complete impregnation of the very fine, dry lunar soil, the low-viscosity epoxy, Araldite 506, is gently flowed onto the core, under vacuum.
Vidal, Natalia P; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D
2017-02-01
Fish shelf-life extension is a topic of great interest. In this study the behaviour of salted and unsalted farmed and wild European sea bass (Dicentrarchus labrax) fillets during storage was analysed through the evolution of their volatile metabolites. Farmed and wild sea bass fillets were brine-salted for 15 or 75 min, or dry-salted, vacuum-packed and stored at 4 °C for up to 1 month, and their headspaces were studied by Solid Phase Micro extraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). At the same storage time, unsalted wild fillets contained, in general, a higher number and abundance of volatile compounds coming from microbiological or endogenous enzymatic activity than unsalted farmed ones. The more intense the salting, the lower the number and abundance of microbiological spoilage metabolites, especially in wild samples. The appearance of oxidation metabolites only in dry-salted wild samples evidences that this kind of salting provokes a certain oxidation in these samples. The better performance of farmed than wild fillets suggests that salted farmed fillets, vacuum-packed and stored under refrigeration conditions, could be a successful alternative to diversify the presence of sea bass in the market. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Moisture Sorption and Thermodynamic Properties of Vacuum-Dried Capsosiphon fulvescens Powder
Zuo, Li; Rhim, Jong-Whan; Lee, Jun Ho
2015-01-01
The moisture sorption isotherms of vacuum-dried edible green alga (Capsosiphon fulvescens) powders were determined at 25, 35, and 45°C and water activity (aw) in the range of 0.11~0.94. An inversion effect of temperature was found at high water activity (>0.75). Various mathematical models were fitted to the experimental data, and Brunauer, Emmett, and Teller model was found to be the most suitable model describing the relationship between equilibrium moisture content and water activity (<0.45). Henderson model could also provide excellent agreement between the experimental and predicted values despite of the intersection point. Net isosteric heat of adsorption decreased from 15.77 to 9.08 kJ/mol with an increase in equilibrium moisture content from 0.055 to 0.090 kg H2O/kg solids. The isokinetic temperature (Tβ) was 434.79 K, at which all the adsorption reactions took place at the same rate. The enthalpy-entropy compensation suggested that the mechanism of the adsorption process was shown to be enthalpy-driven. PMID:26451360
Umbilical Negative Pressure Dressing for Transumbilical Appendectomy in Childern.
Seifarth, Federico G; Kundu, Neilendu; Guerron, Alfredo D; Garland, Mary M; Gaffley, Michaela W G; Worley, Sarah; Knight, Colin G
2016-01-01
Transumbilical laparoscopic-assisted appendectomy (TULAA) carries a high risk for surgical site infection. We investigated the effect of a bio-occlusive umbilical vacuum dressing on wound infection rates after TULAA for patients with acute appendicitis and compared to it with a conventional 3-port appendectomy with a nonvacuum dressing. This study was a retrospective chart review of 1377 patients (2-20 years) undergoing laparoscopic appendectomy for acute appendicitis in 2 tertiary care referral centers from January 2007 through December 2012. Twenty-two different operative technique/dressing variations were documented. The 6 technique/dressing groups with >50 patients were assessed, including a total of 1283 patients. The surgical site infection rate of the 220 patients treated with TULAA and application of an umbilical vacuum dressing with dry gauze is 1.8% (95% CI, 0.0-10.3%). This compares to an infection rate of 4.1% (95% CI, 1.3-10.5%) in 97 patients with dry dressing without vacuum. In the 395 patients who received an umbilical vacuum dressing with gauze and bacitracin, the surgical site infection rate was found to be 4.3% (95% CI, 2.7-6.8%). Application of an umbilical negative-pressure dressing with dry gauze lowers the rate of umbilical site infections in patients undergoing transumbilical laparoscopic-assisted appendectomy for acute appendicitis.
High Capacity Cathode and Carbon Nanotube-Supported Anode for Enhanced Energy Density Batteries
2017-09-07
energy density of typical lithium ion cells and enables twice the run time or a reduction of cell mass by 50%. This work investigated a variety of...foil for the anode) by a doctor blade on one or both sides of the foil. The composite is dried in a vacuum oven, then calendared to compress the...composite slurry was coated onto the MWCNT paper using a doctor blade . The electrode was then dried overnight in a vacuum oven at 100°C and
Interruption of a dry-type transformer in no-load by a vacuum circuit-breaker
NASA Astrophysics Data System (ADS)
Vandenheuvel, W. M. C.; Daalder, J. E.; Boone, M. J. M.; Wilmes, L. A. H.
1983-08-01
Overvoltages generated during interruption of a dry type delta-star connected transformer in no load by a vacuum breaker were studied. During interruption of inrush current 37% of the phase-to-ground overvoltages were 5 pu, and 6% 7 pu. Comparison of experimental and theoretical results using Boyle's model shows no discrepancy for inrush currents and clean overvoltages from the steady-state interruption. Overvoltages due to repetitive reignitions (not covered by Boyle's model) are higher than the calculated values during steady-state switching.
Ejector subassembly for dual wall air drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolle, J.J.
1996-09-01
The dry drilling system developed for the Yucca Mountain Site Characterization Project incorporates a surface vacuum system to prevent drilling air and cuttings from contaminating the borehole wall during coring operations. As the drilling depth increases, however there is a potential for borehole contamination because of the limited volume of air which can be removed by the vacuum system. A feasibility analysis has shown that an ejector subassembly mounted in the drill string above the core barrel could significantly enhance the depth capacity of the dry drilling system. The ejector subassembly would use a portion of the air supplied tomore » the core bit to maintain a vacuum on the hole bottom. The results of a design study including performance testing of laboratory scale ejector simulator are presented here.« less
Overview of High Power Vacuum Dry RF Load Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnykh, Anatoly
2015-08-27
A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less
NASA Astrophysics Data System (ADS)
Ito, Hiroshi; Iwamura, Takuya; Someya, Satoshi; Munakata, Tetsuo; Nakano, Akihiro; Heo, Yun; Ishida, Masayoshi; Nakajima, Hironori; Kitahara, Tatsumi
2016-02-01
This experimental study identifies the effect of through-plane polytetrafluoroethylene (PTFE) distribution in gas diffusion backing (GDB) on the performance of proton exchange membrane fuel cells (PEMFC). PTFE-drying under vacuum pressure created a relatively uniform PTFE distribution in GDB compared to drying under atmospheric pressure. Carbon paper samples with different PTFE distributions due to the difference in drying conditions were prepared and used for the cathode gas diffusion layer (GDL) of PEMFCs. Also investigated is the effect of MPL application on the performance for those samples. The current density (i) - voltage (V) characteristics of these PEMFCs measured under high relative humidity conditions clearly showed that, with or without MPL, the cell using the GDL with PTFE dried under vacuum condition showed better performance than that dried under atmospheric condition. It is suggested that this improved performance is caused by the efficient transport of liquid water through the GDB due to the uniform distribution of PTFE.
Cleaning Process Development for Metallic Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark
2014-01-01
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.
Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products
Hong, Soo Hyeon; Kim, Han Sol; Yoon, Ki Sun
2016-01-01
The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite). Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low. PMID:27294947
Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardinale, G.F.; Howitt, D.G.; Mirkarimi, P.B.
1994-08-01
Effect of environmental conditions on cubic boron nitride (cBN) film adhesion to silicon substrates was studied. cBN films were deposited onto (100)-oriented silicon substrates by ion-assisted pulsed laser deposition. Irradiating ions were mixtures of nitrogen with argon, krypton, and xenon. Under room-ambient conditions, the films delaminated in the following time order: N/Xe, N/Kr, and N/Ar. cBN films deposited using N/Xe ion-assisted deposition were exposed to four environmental conditions for several weeks: a 1-mTorr vacuum, high humidity, dry oxygen, and dry nitrogen. Films exposed to the humid environment delaminated whereas those stored under vacuum or in dry gases did not. Filmsmore » stored in dry nitrogen were removed after nearly two weeks and placed in the high-humidity chamber; these films subsequently delaminated within 14 hours.« less
NASA Astrophysics Data System (ADS)
Hong, S. S.; Lim, J. Y.; Khan, W.
2014-02-01
Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.
Comparison of release torques of tightened bolts in vacuum and air
NASA Technical Reports Server (NTRS)
Demorest, K. E.
1970-01-01
Various combinations of stainless steel, mild steel, and aluminum bolt-nut couples are tightened to 60 lb-ft in partial vacuum and in air. Results are given for tests with and without two lubricants /a fluorosilicone and a sodium silicate bonded dry-film/.
Evaluation of two cleaning methods for the removal of asbestos fibers from carpet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kominsky, J.R.; Freyberg, R.W.; Chesson, J.
The research study examined the effectiveness of dry vacuuming and wet cleaning for the removal of asbestos fibers from carpet, and evaluated the potential for fiber reentrainment during carpet cleaning activities. Routine carpet cleaning operations using high-efficiency particulate air (HEPA) filtered dry vacuum cleaners and HEPA-filtered hot-water extraction cleaners were simulated on carpet artificially contaminated with asbestos fibers. Overall, wet cleaning the carpet with a hot-water extraction cleaner reduced the level of asbestos contamination by approximately 70 percent. There was no significant evidence of either an increase or a decrease in the asbestos concentration after dry vacuuming. The level ofmore » asbestos contamination had no significant effect on the difference between the carpet asbestos concentrations before and after cleaning. Airborne asbestos concentrations were between two and four times greater during the carpet cleaning activities. The level of asbestos contamination in the carpet cleaning activities. The level of asbestos contamination in the carpet and the type of cleaning method used had no statistically significant effect on the difference between the airborne asbestos concentrations before and during cleaning.« less
PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY
Kanter, M.A.
1958-05-20
A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.
Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes
2009-07-13
Elastomer Flange 50 The chamber is pumped by a Varian TV-300 HT turbomolecular vacuum pump with a pumping speed of 250 l/s backed by a dry scroll ... vacuum diffusion chamber with pump locations .................................................. 49 Figure 3.2. RF power delivery system...steel, 0.5 meter diameter by 1.0 meter long vacuum chamber. It has 24 access ports / flanges of varying diameter for diagnostic feed-throughs, pumping
Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael
2011-05-01
Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.
Overview Of Dry-Etch Techniques
NASA Astrophysics Data System (ADS)
Salzer, John M.
1986-08-01
With pattern dimensions shrinking, dry methods of etching providing controllable degrees of anisotropy become a necessity. A number of different configurations of equipment - inline, hex, planar, barrel - have been offered, and within each type, there are numerous significant variations. Further, each specific type of machine must be perfected over a complex, interactive parameter space to achieve suitable removal of various materials. Among the most critical system parameters are the choice of cathode or anode to hold the wafers, the chamber pressure, the plasma excitation frequency, and the electrode and magnetron structures. Recent trends include the use of vacuum load locks, multiple chambers, multiple electrodes, downstream etching or stripping, and multistep processes. A major percentage of etches in production handle the three materials: polysilicon, oxide and aluminum. Recent process developments have targeted refractory metals, their silicides, and with increasing emphasis, silicon trenching. Indeed, with new VLSI structures, silicon trenching has become the process of greatest interest. For stripping, dry processes provide advantages other than anisotropy. Here, too, new configurations and methods have been introduced recently. While wet processes are less than desirable from a number of viewpoints (handling, safety, disposal, venting, classes of clean room, automatability), dry methods are still being perfected as a direct, universal replacement. The paper will give an overview of these machine structures and process solutions, together with examples of interest. These findings and the trends discussed are based on semiannual survey of manufacturers and users of the various types of equipment.
Quality of pomegranate pomace as affected by drying method.
Cano-Lamadrid, Marina; Lech, Krzysztof; Calín-Sánchez, Ángel; Rosas-Burgos, Ema Carina; Figiel, Adam; Wojdyło, Aneta; Wasilewska, Malwina; Carbonell-Barrachina, Ángel A
2018-03-01
During the industrial manufacturing of pomegranate juice, large amounts of pomace are produced. The aim of this work was to find the effective method to dry pomegranate pomace to open new commercial applications for this co-product. The effects of three drying methods: (i) convective drying (CD) at 50, 60, and 70 °C; (ii) vacuum microwave drying (VMD) at 240, 360, and 480 W, and (iii) a combined method (CPD-VMFD); convective pre-drying (60 °C) followed by vacuum microwave finish drying (360 W), on drying kinetics and quality of PomP (pomegranate pomace obtained after preparing pomegranate juice by squeezing only arils) were evaluated. The shortest treatments were VMD at 240 and 360 W (52 and 33 min, respectively); besides, these treatments led to interesting values of the green-red coordinate, a *, (12.2 and 4.1, respectively), total phenolic content (4.0 and 4.1 mg eq gallic acid g -1 dry weight, respectively), and antioxidant activity (30.8 and 29.0 µmol g -1 dry weight, respectively). On the other hand, this study demonstrated that this co-product is a rich source of punicic acid (average value = 66.4%), being a good opportunity for the pharmaceutical and nutraceutical industries. Moreover, no significant changes in the fatty acid profile was observed as affected by the drying treatments, and no off-flavors were generated by any of the drying methods.
Neumayerová, Helena; Juránková, Jana; Saláková, Alena; Gallas, Leo; Kovařčík, Kamil; Koudela, Břetislav
2014-05-01
Ingestion of raw or undercooked meat is a potential source of human toxoplasmosis. The aim of this study was to determine the viability of Toxoplasma gondii cysts in vacuum packed (VP) goat meat and in dry fermented sausages (DFS), and evaluate certain physical and chemical parameters, like water activity (aw), pH value, content of salt, dry matter and fat. A portion of muscle tissue from experimentally infected animals was used for production of VP meat with or without addition of 2.5% curing salt, and stored at 4 °C or at -20 °C. Results of bioassay showed that, samples of vacuum packed Toxoplasma positive meat without salt addition were alive after six weeks at 4 °C. Incubation at -20 °C supported the viability after 3 h, but not after 4 h. After 7 days in 2.5% of curing salt, samples of T. gondii VP goat meat were still viable, but not after 14 days at 4 °C. All the DFS samples were not positive for infective cysts which mean that, they do not pose a risk of T. gondii transmission. These data suggest that vacuum packaging increases the survival of T. gondii cysts. Copyright © 2013 Elsevier Ltd. All rights reserved.
Use of osmotic dehydration to improve fruits and vegetables quality during processing.
Maftoonazad, Neda
2010-11-01
Osmotic treatment describes a preparation step to further processing of foods involving simultaneous transient moisture loss and solids gain when immersing in osmotic solutions, resulting in partial drying and improving the overall quality of food products. The different aspects of the osmotic dehydration (OD) technology namely the solutes employed, solutions characteristics used, process variables influence, as well as, the quality characteristics of the osmodehydrated products will be discussed in this review. As the process is carried out at mild temperatures and the moisture is removed by a liquid diffusion process, phase change that would be present in the other drying processes will be avoided, resulting in high quality products and may also lead to substantial energy savings. To optimize this process, modeling of the mass transfer phenomenon can improve high product quality. Several techniques such as microwave heating, vacuum, high pressure, pulsed electric field, etc. may be employed during or after osmotic treatment to enhance performance of the osmotic dehydration. Moreover new technologies used in osmotic dehydration will be discussed. Patents on osmotic dehydration of fruits and vegetables are also discussed in this article.
Development of Stable Influenza Vaccine Powder Formulations: Challenges and Possibilities
Amorij, J-P.; Huckriede, A.; Wilschut, J.; Frijlink, H. W.
2008-01-01
Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought into the dry state using suitable excipients, stabilizers and drying processes. The resulting stable influenza vaccine powder is independent of cold-chain facilities. This can be attractive for the integration of the vaccine logistics with general drug distribution in Western as well as developing countries. In addition, a stockpile of stable vaccine formulations of potential vaccines against pandemic viruses can provide an immediate availability and simple distribution of vaccine in a pandemic outbreak. Finally, in the development of new needle-free dosage forms, dry and stable influenza vaccine powder formulations can facilitate new or improved targeting strategies for the vaccine compound. This review represents the current status of dry stable inactivated influenza vaccine development. Attention is given to the different influenza vaccine types (i.e. whole inactivated virus, split, subunit or virosomal vaccine), the rationale and need for stabilized influenza vaccines, drying methods by which influenza vaccines can be stabilized (i.e. lyophilization, spray drying, spray-freeze drying, vacuum drying or supercritical fluid drying), the current status of dry influenza vaccine development and the challenges for ultimate market introduction of a stable and effective dry-powder influenza vaccine. PMID:18338241
Maurya, Vaibhav Kumar; Gothandam, Kodiveri Muthukaliannan; Ranjan, Vijay; Shakya, Amita; Pareek, Sunil
2018-07-01
A randomized block design experiment was performed to investigate the influence of drying on the physical, chemical and nutritional quality attributes of five prominent cultivars of India under sun drying (SD) (mean temperature 35.5 °C, average daily radiation 5.26 kW h m -2 and mean relative humidity 73.66% RH), hot air drying (HD) at 65 °C, microwave vacuum drying (MVD) (800 W, 5 kPa) and freeze drying (FD) (-50 °C, 5 kPa). Water activity, pH, total phenolic content (TPC), ascorbic acid (AA), capsaicin, β-carotene, color and Scoville heat unit were studied. TPC, AA, capsaicin content, β-carotene, color and water activity were significantly affected by the drying method. FD was observed to be most efficient in minimizing the loss of color, capsaicin and β-carotene. The hotness of analyzed samples decreased in the order 'Bird's Eye' > 'Sannam S4' > 'CO-4' > 'PLR-1' > 'PKM-1' among the studied cultivars, and FD > MVD > HD > SD among the drying methods. The FD method was observed to be the most efficient drying method for retaining capsaicin content over other drying methods (SD, HD, MVD), whereas MVD was found to be most efficient in minimizing the loss to nutritional attributes for all five pepper cultivars. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Pneumatic conveyance apparatus and process
Heckendorn, Frank M.; Matzolf, Athneal D.; Hera, Kevin R.
2010-05-04
A pneumatic nozzle capable of removing dry solid debris, liquids, and mixtures of solid and liquid waste is provided. The pneumatic nozzle uses a pressurized gas stream to push materials through the nozzle. The force of a pressurized gas stream provides a partial vacuum to allow material to be introduced into an opening of a nozzle via a slight suction force. Thereafter, individual particles and materials introduced into the pneumatic nozzle are pushed by a stream of pressurized gas through the nozzle.
Effect of different drying methods on chemical composition and bioactivity of tea polysaccharides.
Wang, Yuanfeng; Liu, Yangyang; Huo, Jianglei; Zhaoa, Xintong; Zhao, Tingtong; Zheng, Jian; Ren, Jian; Wei, Xinlin
2013-11-01
Four polysaccharides (TPS-F, TPS-V, TPS-S and TPS-M) were obtained from tea (Camellia sinensis) leaves by freeze-drying, vacuum-drying, spray-drying and microwave-vacuum drying, respectively. Their chemical composition and biological properties were comparatively studied. The results showed these TPS were similar in IR, UV absorption and distribution of molecular weight. However, they showed significant differences (P<0.05) in yields of crude polysaccharides and contents of protein and total polyphenols. Furthermore, morphological analysis showed their surface differed from each other in size and shape when viewed by SEM, from which surface of TPS-F was rough and porous, surface of TPS-S was evenly particles, and surfaces of the other two were similar to anomalistic bricks. In addition, the bioactivity of them was also evaluated. It was found TPS-F exhibited relatively better ability on metal chelating and superoxide radicals scavenging assays than others, and TPS-V exhibited higher ability on α-glycosidase and α-amylase inhibition assays than others with inhibitory percentages of 82.75% and 92.8%. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
McCleary, John M.
This Records and Archives Management Programme (RAMP) study covers the conservation of archival documents and the application of freeze-drying to the salvage of documents damaged by flood. Following an introductory discussion of the hazards of water, the study presents a broad summary of data on freeze-drying, including the behavior of…
Cao, Xiaohuang; Zhang, Min; Qian, He; Mujumdar, Arun S
2017-06-01
An online temperature-detection-assisted control system of microwave-assisted pulse-spouted vacuum drying was newly developed. By using this system, temperature control can be automatically and continuously adjusted based on the detection of drying temperature and preset temperature. Various strategies for constant temperature control, linear temperature control and three-step temperature control were applied to drying carrot cubes. Drying kinetics and the quality of various temperature-controlled strategies online are evaluated for the new drying technology as well as its suitability as an alternative drying method. Drying time in 70 °C mode 1 had the shortest drying time and lowest energy consumption in all modes. A suitable colour, highest re-hydration ratio and fracture-hardness, and longest drying time occurred in 30-40-50 °C mode 3. The number of hot spots was reduced in 40-50-60 °C mode 3. Acceptable carrot snacks were obtained in 50-60-70 °C mode 3 and 70 °C mode 2. All temperature curves showed that the actual temperatures followed the preset temperatures appropriately. With this system, a linear temperature-controlled strategy and a three-step temperature-controlled strategy can improve product quality and heating non-uniformity compared to constant temperature control, but need greater energy consumption and longer drying time. A temperature-detection-assisted control system was developed for providing various drying strategies as a suitable alternative in making a snack product. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Woods, P S; Ledbetter, M C; Tempel, N
1991-06-01
We describe methods for freezing and drying EDTA-expanded, fixed metaphase chromosomes and nuclei, attached to grids as whole-mounts, for transmission electron microscopy. These methods use a special apparatus that is simple to construct. While separate freezers and dryers are commercially available, one for freezing blocks of tissue by slamming them against a cold metal surface, and the other for vacuum drying the frozen tissue, our apparatus is designed for gentler, cryogenic liquid plunge freezing and drying, sequentially, in the same apparatus, thus avoiding any compression or damage to the specimen. Use of a cryoprotectant is not essential; however, good results are obtained more often when 20% ethanol is used. Freezing is accomplished by rapid propulsion of the grid, with specimens attached, into slushy N2 (-210 degrees C) within the drying chamber; drying is automatic, by either sublimation under vacuum or by solvent substitution using absolute ethanol followed by acetone, which, in turn, is removed with a critical-point dryer. The apparatus offers a means of drying chromosomes and nuclei in an expanded state, and avoids the shrinkage of these structures that occurs during stepwise passage through increasing concentrations of ethanol or acetone.
Yang, Kai; Zhang, Jing; Ma, Xiaoyu; Ma, Yifan; Kan, Chao; Ma, Haiyan; Li, Yulin; Yuan, Yuan; Liu, Changsheng
2015-11-01
Despite good biocompatibility and osteoconductivity, porous β-TCP scaffolds still lack the structural stability and mechanical robustness, which greatly limit their application in the field of bone regeneration. The hybridization of β-TCP with conventional synthetic biodegradable PLA and PCL only produced a limited toughening effect due to the plasticity of the polymers in nature. In this study, a β-TCP/poly(glycerol sebacate) scaffold (β-TCP/PGS) with well interconnected porous structure and robust mechanical property was prepared. Porous β-TCP scaffold was first prepared with polyurethane sponge as template and then impregnated into PGS pre-polymer solution with moderate viscosity, followed by in situ heat crosslinking and freezing-drying process. The results indicated that the freezing-drying under vacuum process could further facilitate crosslinking of PGS and formation of Ca(2+)-COO(-) ionic complexing and thus synergistically improved the mechanical strength of the β-TCP/PGS with in situ heat crosslinking. Particularly, the β-TCP/PGS with 15% PGS content after heat crosslinking at 130°C and freezing-drying at -50°C under vacuum exhibited an elongation at break of 375±25% and a compressive strength of 1.73MPa, 3.7-fold and 200-fold enhancement compared to the β-TCP, respectively. After the abrupt drop of compressive load, the β-TCP/PGS scaffolds exhibited a full recovery of their original shape. More importantly, the PGS polymer in the β-TCP/PGS scaffolds could direct the biomineralization of Ca/P from particulate shape into a nanofiber-interweaved structure. Furthermore, the β-TCP/PGS scaffolds allowed for cell penetration and proliferation, indicating a good cytobiocompatibility. It is believed that β-TCP/PGS scaffolds have great potential application in rigid tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.
A Hydration of an Alkyne Illustrating Steam and Vacuum Distillation.
ERIC Educational Resources Information Center
Wasacz, J. P.; Badding, V. G.
1982-01-01
Reports on the conversion 2,5-dimethylhexyne-2,5-diol(I) to 2,2,5,5-tetramethyltetrahydrofuran-3-one(II) using aqueous mercuric sulfate without the use of acid. The experiment has been successfully performed in introductory organic chemistry laboratories demonstrating alkyne hydration, steam distillation, vacuum distillation, drying of organic…
Vacuum storage of yellow-poplar pollen
James R. Wilcox
1966-01-01
Vacuum-drying, followed by storage in vacuo or in an inert gas, is effective for storing pollen of many species. It permits storage at room environments without rigid controls of either temperature or humidity, an advantage that becomes paramount during long-distance transfers of pollen when critical storage conditions are impossible to maintain. In...
Classification of dried vegetables using computer image analysis and artificial neural networks
NASA Astrophysics Data System (ADS)
Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D.
2017-07-01
In the recent years, there has been a continuously increasing demand for vegetables and dried vegetables. This trend affects the growth of the dehydration industry in Poland helping to exploit excess production. More and more often dried vegetables are used in various sectors of the food industry, both due to their high nutritional qualities and changes in consumers' food preferences. As we observe an increase in consumer awareness regarding a healthy lifestyle and a boom in health food, there is also an increase in the consumption of such food, which means that the production and crop area can increase further. Among the dried vegetables, dried carrots play a strategic role due to their wide application range and high nutritional value. They contain high concentrations of carotene and sugar which is present in the form of crystals. Carrots are also the vegetables which are most often subjected to a wide range of dehydration processes; this makes it difficult to perform a reliable qualitative assessment and classification of this dried product. The many qualitative properties of dried carrots determining their positive or negative quality assessment include colour and shape. The aim of the research was to develop and implement the model of a computer system for the recognition and classification of freeze-dried, convection-dried and microwave vacuum dried products using the methods of computer image analysis and artificial neural networks.
Papaya drying and waste conversion system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-02-12
This project, performed under United States Department of Energy Small-scale Appropriate Energy Technology Grant, involves demonstration of an integrated system using solar energy to process off-grade or reject fruit into marketable food products. The integrated system consists of three phases: (1) solar dehydration of usable fruit; (2) solar vacuum distillation of fermented wastes (peelings, rinds, skins, and seeds) to produce an ethanol fuel to use as a backup source of heat for dehydration; and (3) land reclamation by mixing stillage and compost with volcanic cinder and ash to produce on marginal land a rich soil suitable for growing more cropsmore » to dry. Although the system is not 100% complete the investigators have demonstrated that a small business can efficiently use solar energies in an integrated fashion to process waste into food, improve the quality of the land, and provide meaningful jobs in a region of very high unemployment.« less
Durante, Miriana; Lenucci, Marcello S; D'Amico, Leone; Piro, Gabriella; Mita, Giovanni
2014-04-01
In this work a process for obtaining high vitamin E and carotenoid yields by supercritical carbon dioxide (SC-CO₂) extraction from pumpkin (Cucurbita moschata Duch.) is described. The results show that the use of a vacuum oven-dried [residual moisture (∼8%)] and milled (70 mesh sieve) pumpkin flesh matrix increased SC-CO₂ extraction yields of total vitamin E and carotenoids of ∼12.0- and ∼8.5-fold, respectively, with respect to the use of a freeze-dried and milled flesh matrix. The addition of milled (35 mesh) pumpkin seeds as co-matrix (1:1, w/w) allowed a further ∼1.6-fold increase in carotenoid yield, besides to a valuable enrichment of the extracted oil in vitamin E (274 mg/100 g oil) and polyunsaturated fatty acids. These findings encourage further studies in order to scale up the process for possible industrial production of high quality bioactive ingredients from pumpkin useful in functional food or cosmeceutical formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel
Xu, Mingyue; Zhao, Chengying; Ahmad, Aftab; Zhang, Huijuan; Xiao, Hang
2017-01-01
To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying) were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W.) from 3.39 mg/g (sun drying). Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels. PMID:29348752
Volatile composition and sensory profile of Cantharellus cibarius Fr. as affected by drying method.
Politowicz, Joanna; Lech, Krzysztof; Sánchez-Rodríguez, Lucía; Szumny, Antoni; Carbonell-Barrachina, Ángel A
2017-12-01
In this work, the influence of different drying methods on the aroma composition and sensory quality of chanterelle mushrooms (Cantharellus cibarius Fr.) was evaluated. The drying methods tested were convective drying (CD), freeze drying (FD), vacuum microwave drying (VMD) and a combination of convective pre-drying and vacuum microwave finish drying (CPD-VMFD). Analyses of fresh and dried chanterelle samples by HS-SPME and GC/MS and GC-FID showed the presence of 39 volatile compounds at different concentrations. The most abundant compounds in fresh chanterelle were 1-hexanol (33.4 μg per 100 g dry basis (db)), 1-octen-3-ol (80.2 μg per 100 g db) and 2-octen-1-ol (19.3 μg per 100 g db). The results showed that fresh and dried chanterelle contained very low levels of aroma compounds; however, the highest contents of volatile compounds were found in samples after (i) CD at 80 °C (129 μg per 100 g db), (ii) CPD-VMFD at 70 °C-480/240 W (136 μg per 100 g db) and (iii) CPD-VMFD at 80 °C-480/240 W (136 μg per 100 g db). The best dehydration methods, which resulted in high contents of volatile compounds and appropriate sensory quality, according to descriptive sensory analysis and PCA tools, were CD at 70 and 80 °C. Besides, these methods led to spongy dried mushrooms with high intensities of fresh, mushroom ID, with proper color and without intense shrinkage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
2009-07-01
power supply, a temperature controller and a vacuum controller. A vacuum of < 1 )1 torr is achieved with a combination of a turbo pump and a... scroll pump system. The sanlple probing is accomplished with a 3-axis molybdenum probing rod test fixture .. The dielectric measurements on the...water. The films were dried at ~ 0.1 torr vacuum and 80-85°C in an oven for several days. Circular films varying in diameter from 2" to 4" were
Vojta, P J; Randels, S P; Stout, J; Muilenberg, M; Burge, H A; Lynn, H; Mitchell, H; O'Connor, G T; Zeldin, D C
2001-01-01
House dust mite allergen exposure is a postulated risk factor for allergic sensitization, asthma development, and asthma morbidity; however, practical and effective methods to mitigate these allergens from low-income, urban home environments remain elusive. The purpose of this study was to assess the feasibility and effectiveness of physical interventions to mitigate house dust mite allergens in this setting. Homes with high levels of house dust mite allergen (Der f 1 + Der p 1 > or = 10 microg/g dust by enzyme-linked immunosorbent assay) in the bed, bedroom carpet, and/or upholstered furniture were enrolled in the study. Carpets and upholstered furniture were subjected to a single treatment of either dry steam cleaning plus vacuuming (carpet only) or intensive vacuuming alone. Bed interventions consisted of complete encasement of the mattress, box spring, and pillows plus either weekly professional or in-home laundering of nonencased bedding. Dust samples were collected at baseline and again at 3 days (carpet and upholstery only) and 2, 4, and 8 weeks posttreatment. We compared pretreatment mean allergen concentrations and loads to posttreatment values and performed between-group analyses after adjusting for differences in the pretreatment means. Both dry steam cleaning plus vacuuming and vacuuming alone resulted in a significant reduction in carpet house dust mite allergen concentration and load (p < 0.05). Levels approached pretreatment values by 4 weeks posttreatment in the intensive vacuuming group, whereas steam cleaning plus vacuuming effected a decrease that persisted for up to 8 weeks. Significant decreases in bed house dust mite allergen concentration and load were obtained in response to encasement and either professional or in-home laundering (p < 0.001). Between-group analysis revealed significantly less postintervention house dust mite allergen load in professionally laundered compared to home-laundered beds (p < 0.05). Intensive vacuuming and dry steam cleaning both caused a significant reduction in allergen concentration and load in upholstered furniture samples (p < 0.005). Based on these data, we conclude that physical interventions offer practical, effective means of reducing house dust mite allergen levels in low-income, urban home environments. PMID:11564617
Colas, Guillaume; Saulot, Aurélien; Philippon, David; Berthier, Yves; Léonard, Didier
2018-06-13
Controlling and predicting the tribological behavior of dry lubricants is a necessity to ensure low friction, long life, and low particle generation. Understanding the tribochemistry of the materials as a function of the environment is of primary interest as synergistic effects exist between the mechanics, the physicochemistry, and the thermodynamics within a contact. However, in most studies the role of the coating internal contaminants in the process is often discarded to the benefit of a more common approach in which the performances of the materials are compared as a function of different atmospheric pressure environments. The study focuses on the understanding of the tribochemical processes occurring between the materials and their internal contaminants inside an AISI440C contact lubricated by a MoS 2 /Ti coating. Time-of-flight secondary ion mass spectrometry is used to study at the molecular level, the material before and after friction. Friction tests with different durations are performed in ultrahigh vacuum at the macroscale to stay relevant to the real application (space). The adsorption/desorption of gaseous species during friction is monitored by mass spectrometry to ensure reliable study of the tribochemical processes inside the contact. The study shows that a competition exists between the Ti- and MoS 2 -based materials to create the appropriate lubricating materials via (i) recrystallization of MoS 2 materials with creation of a MoS x O y material via reactions with internal contaminants (presumably H 2 O), (ii) reaction of Ti-based materials with internal contaminants (mostly H 2 O and N 2 ). The biphasic material created is highly similar to the one created in both humid air and dry N 2 environments and providing low friction and low particle generation. However, the process is incomplete. The study thus brings insight into the possibility of controlling friction via a rational inclusion of reactants in a form of contaminants to control the tribochemical processes governing the low friction and long life.
1985-08-01
Kodak) by crystallization from acetone; it was recrystallized twice from ethanol and dried in a vacuum oven. Tetraethylamonium perchlorate (TEAP) (G...the electrooxidation of in(Cp’) 2 , which yielded significantly smaller reverse (cathodic) currents in the most strongly coordinating solvents (DMX...DM50) at slower scan rates (< 0.5 V sec-1). Nevertheless, satisfactory a.c. polarograms were obtained for each of these system=. 5 4 Temperature
Sknepnek, Aleksandra; Pantić, Milena; Matijašević, Danka; Miletić, Dunja; Lević, Steva; Nedović, Viktor; Niksic, Miomir
2018-01-01
Kombucha is a nonalcoholic beverage traditionally made by fermenting black tea using a combination of yeast and acetic acid bacteria (AAB) cultures. Ganoderma lucidum hot water extract (HWE) was used-to our knowledge for the first time-to prepare a novel, health-promoting kombucha product. During the 11-day fermentation, pH, total acidity, and the numbers of yeasts and AAB were monitored. It was found that sweetened G. lucidum HWE was a good medium for yeast and AAB growth. The desired acidity for the beverage was reached on the second day (3 g/L) of the fermentation process; the maximum established acidity was 22.8 ± 0.42 g/L. Fourier transform infrared analysis revealed that the vacuum-dried beverage is a mixture of various compounds such as polysaccharides, phenols, proteins, and lipids. Total phenolic content of the liquid sample was 4.91 ± 0.2338 mg gallic acid equivalents/g, whereas the vacuum-dried sample had a smaller amount of phenolics (2.107 ± 0.228 mg gallic acid equivalents/g). Established half-maximal effective concentrations for DPPH scavenging activity and reducing power were 22.8 ± 0.17 and 10.61 ± 0.34 mg/mL, respectively. The antibacterial testing revealed that activity does not originate solely from synthesized acetic acid. The liquid G. lucidum beverage was the most effective against the tested bacteria, with the lowest minimum inhibitory concentration (0.04 mg/mL) against Staphylococcus epidermidis and Rhodococcus equi, and a minimum bactericidal concentration (0.16 mg/mL) against Bacillus spizizenii, B. cereus, and R. equi. The vacuum-dried sample was less effective, with the lowest minimum bactericidal concentration against the Gram-positive bacteria R. equi (1.875 mg/mL) and against the Gram-negative bacteria Proteus hauseri (30 mg/mL).
NASA Technical Reports Server (NTRS)
Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard
2006-01-01
The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.
A pilot scale electrical infrared dry-peeling system for tomatoes: design and performance evaluation
USDA-ARS?s Scientific Manuscript database
A pilot scale infrared dry-peeling system for tomatoes was designed and constructed. The system consisted of three major sections including the IR heating, vacuum, and pinch roller sections. The peeling performance of the system was examined under different operational conditions using tomatoes with...
Mechanical properties and area retention of leather dried with biaxial stretching under vacuum
USDA-ARS?s Scientific Manuscript database
The conversion of animal hides to leather involves many complicated chemical and mechanical operations. Drying is one of the mechanical operations, and plays a key role in determining the physical properties of leather. It is where leather acquires its final texture, consistency and flexibility. ...
CFD simulation of a dry scroll vacuum pump with clearances, solid heating and thermal deformation
NASA Astrophysics Data System (ADS)
Spille-Kohoff, A.; Hesse, J.; Andres, R.; Hetze, F.
2017-08-01
Although dry scroll vacuum pumps (DSPV) are essential devices in many different industrial processes, the CFD simulation of such pumps is not widely used and often restricted to simplified cases due to its complexity: The working principle with a fixed and an orbiting scroll leads to working chambers that are changing in time and are connected through moving small radial and axial clearances in the range of 10 to 100 μm. Due to the low densities and low mass flow rates in vacuum pumps, it is important to include heat transfer towards and inside the solid components. Solid heating is very slow compared to the scroll revolution speed and the gas behaviour, thus a special workflow is necessary to reach the working conditions in reasonable simulation times. The resulting solid temperature is then used to compute the thermal deformation, which usually results in gap size changes that influence leakage flows. In this paper, setup steps and results for the simulation of a DSVP are shown and compared to theoretical and experimental results. The time-varying working chambers are meshed with TwinMesh, a hexahedral meshing programme for positive displacement machines. The CFD simulation with ANSYS CFX accounts for gas flow with compressibility and turbulence effects, conjugate heat transfer between gas and solids, and leakage flows through the clearances. Time-resolved results for torques, chamber pressure, mass flow, and heat flow between gas and solids are shown, as well as time- and space-resolved results for pressure, velocity, and temperature for different operating conditions of the DSVP.
Simplified installation of thrust bearings
NASA Technical Reports Server (NTRS)
Sensenbaugh, N. D.
1980-01-01
Special handling sleeve, key to method of installing thrust bearings, was developed for assembling bearings on shaft of low-pressure oxygen turbo-pump. Method eliminates cooling and vacuum-drying steps which saves time, while also eliminating possibility of corrosion formation. Procedure saves energy because it requires no liquid nitrogen for cooling shaft and no natural gas or electric power for operating vacuum oven.
Design of plywood and paper flywheel rotors
NASA Astrophysics Data System (ADS)
Erdman, A. G.; Hagen, D. L.; Gaff, S. A.
1982-05-01
Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of rotors are evaluated. Wound kraft paper, twine and plywood rotors are examined. Two hub attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Preliminary duration of load tests was performed on vacuum dried hexagonal birch plywood. Dynamic and static rotor hub fatigue equipment is designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for seventeen examples. Plywood rotors appear to be marginally competitive with the steel hose wire or E glass rotors. High performance oriented kraft paper rotors potentially provide the lowest energy storage costs in stationary systems.
2009-02-01
with a combination of a turbo pump and a scroll pump system. The sample probing is accomplished with 3-axis molybdenum probing rod test fixture...thin films were carefully isolated by the addition of a non- solvent such as de-ionized, distilled water. The films were dried at ~ 0.1 torr vacuum ...1000ºC. The test station has a 100V/10A power supply, a temperature controller as well as a vacuum controller. A vacuum of < 1 µ torr is achieved
Thermal Flammable Gas Production from Bulk Vitrification Feed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.
2008-05-21
The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. Themore » drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution« less
Accelerated aging of phenolic-bonded flakeboards
Andrew J. Baker; Robert H. Gillespie
1978-01-01
Specimens of phenolic-bonded flakeboard, vertical-grain southern pine and Douglas-fir, and marine-grade Douglas-fir plywood were exposed to four accelerated aging situations. These consisted of: 1) Multiple cycles of boiling and elevated-temperature drying, 2) multiple cycles of vacuum- pressure soaking and intermediate-temperature drying, 3) the six-cycle ASTM D-1037...
Neffe-Skocińska, Katarzyna; Okoń, Anna; Kołożyn-Krajewska, Danuta; Dolatowski, Zbigniew
2017-07-01
Proteolysis is a biochemical process in dry-aged meat products where proteins are metabolized and broken down to polypeptides, peptides, and free amino acids. In the literature it is reported that an appropriate choice of probiotic starter culture limits proteolytic changes in dry-fermented meat products. In this study the combined effect of a mixture of probiotic starter cultures on the free amino acid profile, total count of lactic acid bacteria, and the sensory quality of dry-aged pork loins after fermentation and after storing the vacuum-packed samples was evaluated. LOCK900 and BB12 probiotic strains were the technologically best two-species mixture of starter cultures for the production of probiotic dry-aged pork loins. They allowed us to obtain products with high and stable bacterial count and acceptable sensory quality, both after 21 days of fermentation and after 2 months of cold storage. Changes in the free amino acid profile and increased intensity of the selected sensory attributes result from a significant share of probiotics in meat proteolysis occurring during fermentation and storage. The results suggest the relevance of using probiotic bacteria as a two-species starter culture for the production of dry-aged products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Purnama, Monica; Yaghmaee, Parastoo; Durance, Tim D; Kitts, David D
2010-09-01
Air drying (AD), freeze-drying (FD), and vacuum-microwave drying (VMD) were applied to fresh North American ginseng roots to evaluate the effect of different drying techniques on pore characteristics and the subsequent recovery of ginsenoside content. FD ginseng root produced the lowest reductions in both total moisture content and water activity (P < 0.05), with no differences noted between Ontario or British Columbia ginseng. Ginseng roots from Ontario and British Columbia sources were therefore pooled to conduct the root porosity and ginsenoside measurements. Among samples, FD ginseng obtained the highest total porosity followed by VMD and AD, respectively (P < 0.05). All dehydrated samples had a porous structure with sizes that ranged from 0.002 μm to 172 μm, dominated by macropores (>1.5 μm). Pore characteristics of dried ginseng root were shown to affect recovery of ginsenosides, with the general trend being an increase in total porosity resulting in an increase in total ginsenoside recovered. High performance liquid chromatography results obtained on specific ginsenosides showed that AD of ginseng root resulted in the lowest recovery of total ginsenosides, most notably, Rg1 and Rb1, followed by VMD and FD, respectively. There was no specific difference in total ginsenoside recovery from roots dried at increasing power of VMD.
Shipper, G; Grossman, E S; Botha, A J; Cleaton-Jones, P E
2004-05-01
To compare the marginal adaptation of mineral trioxide aggregate (MTA) or amalgam root-end fillings in extracted teeth under low-vacuum (LV) versus high-vacuum (HV) scanning electron microscope (SEM) viewing conditions. Root-end fillings were placed in 20 extracted single-rooted maxillary teeth. Ten root ends were filled with MTA and the other 10 root ends were filled with amalgam. Two 1 mm thick transverse sections of each root-end filling were cut 0.50 mm (top) and 1.50 mm (bottom) from the apex. Gap size was recorded at eight fixed points along the dentine-filling material interface on each section when uncoated wet (LV wet (LVW)) and dry under LV (0.3 Torr) in a JEOL JSM-5800 SEM and backscatter emission (LV dry uncoated (LVDU)). The sections were then air-dried, gold-coated and gap size was recorded once again at the fixed points under HV (10(-6) Torr; HV dry coated (HVDC)). Specimen cracking, and the size and extent of the crack were noted. Gap sizes at fixed points were smallest under LVW and largest under HVDC SEM conditions. Gaps were smallest in MTA root-end fillings. A General Linear Models Analysis, with gap size as the dependent variable, showed significant effects for extent of crack in dentine, material and viewing condition (P = 0.0001). This study showed that MTA produced a superior marginal adaptation to amalgam, and that LVW conditions showed the lowest gap size. Gap size was influenced by the method of SEM viewing. If only HV SEM viewing conditions are used for MTA and amalgam root-end fillings, a correction factor of 3.5 and 2.2, respectively, may be used to enable relative comparisons of gap size to LVW conditions.
Capacitors for Aircraft High Power
1980-04-01
Methanol ext rM hton:1 2 . 343 I .2 Z vacuum driedl 1 6034 31 -11 3 5910 30 -17 54 6159 31 A .4 1431 -26:1K raft 1 Vacuum dried at 105 0C 36 0...was employed, so that each design was the result of the previous work and problems. A very large amount of data was taken during the test effort, anl
Sousdaleff, Mirian; Baesso, Mauro Luciano; Medina Neto, Antonio; Nogueira, Ana Cláudia; Marcolino, Vanessa Aparecida; Matioli, Graciette
2013-01-30
Stability of potassium norbixinate and curcumin by microencapsulation with maltodextrin DE20 and freeze-drying was evaluated as a function of exposition to light, air, different pH, water solubility, and in food applications. The best results were obtained with microencapsulated potassium norbixinate 1:20, which, when vacuum-packed and in the presence of natural light, showed color retention of 78%, while microencapsulated curcumin 1:20 showed color retention of 71%. Differential scanning calorimetry and thermogravimetry provided an indication of interaction between colorants and maltodextrin. Photoacoustic spectroscopy (PAS) showed that free and microencapsulated colorants exhibited high rates of absorption throughout the measured spectral region. This work evidenced that the freeze-drying process is favorable for microencapsulation of curcumin by maltodextrin, providing improved solubility to the microencapsulated colorant. Both microencapsulated colorants showed relevant results for use in a wide range of pH and food applications. The PAS technique was useful for the evaluation of the stability of free and microencapsulated colorants.
Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulin Deng; Art Ragauskas
Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The secondmore » method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was evaporated first under vacuum condition at low temperature. Then, the dry woodchips were baked at high temperature (120-130 C) at atmospheric pressure. The qualities of the pulp made with this method were improved compared to that made with method one. The pulp shows higher brightness and lower bulk than Kraft pulping. The tensile strength is significantly higher than the pulp made from the first method. Although the pulp is stronger than that of TMP pulp, it is still lower than conventional Kraft fiber. Method Three: The third dry method was done in a Kraft pulping digester at elevated pressure but without free liquid in the digester. With this method, pulp that has almost the same qualities as conventional Kraft pulp could be produced. The screen yield, Kappa number, fiber brightness, pulp strength and pulp bulk are almost identical to the conventional Kraft pulp. The key advantages of this dry pulping method include ca. 55 % of cooking energy saved during the pulping process, as high as 50 wt% of NaOH saving as well as 3 wt% of Na2S saving comparing to Kraft one. By analyzing fiber properties, yields, chemical and energy consumptions, we concluded that the dry pulping method based on Liquid Free Chemical Pulping, LFCP, could be very attractive for the pulp and paper industry. More fundamental studies and scale up trials are needed to fully commercialize the technology. We expect to conduct pilot trials between 12 to 24 months of period if the DOE or industry can provide continual research funding. Based on the technology we demonstrated in this report, several pilot trial facilities in the United States will be available after small modifications. For example, the Herty Foundation in Savannah, Georgia is one of these potential locations. DOE funding for continuous study and final lead to commercialization of the technique is important.« less
Omer, M K; Alvseike, O; Holck, A; Axelsson, L; Prieto, M; Skjerve, E; Heir, E
2010-12-01
The effect of high pressure processing (HPP) on the survival of verotoxigenic Escherichia coli (VTEC) in two types of Norwegian type dry-fermented sausages was studied. Two different types of recipes for each sausage type were produced. The sausage batter was inoculated with 6.8 log(10) CFU/g of VTEC O103:H25. After fermentation, drying and maturation, slices of finished sausages were vacuum packed and subjected to two treatment regimes of HPP. One group was treated at 600 MPa for 10 min and another at three cycles of 600 MPa for 200 s per cycle. A generalized linear model split by recipe type showed that these two HPP treatments on standard recipe sausages reduced E. coli by 2.9 log(10) CFU/g and 3.3 log(10) CFU/g, respectively. In the recipe with higher levels of dextrose, sodium chloride and sodium nitrite E. coli reduction was 2.7 log(10) CFU/g in both treatments. The data show that HPP has a potential to make the sausages safer and also that the effect depends somewhat on recipe. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Cao, Xiaohuang; Zhang, Min; Mujumdar, Arun S; Zhong, Qifeng; Wang, Zhushang
2018-01-01
Barley grass is a plant resource for rehabilitation therapy. Its processing requires retaining nutrition well for rehabilitation cure of consumers. To meet the aim as well as low energy consumption and microbiological safety of products, ultrasonic treatments (UT) were applied to bathing materials at different power levels (10, 30, 45, 60W/L) for 10mins. After treatments, the bathed barley grass (100g) was freeze-dried under vacuum -0.09MPa with fixed power of 2W/g. Parameters of color, microbial colony, energy consumption, glass transition temperature, moisture content, water activity, taste substances, contents of flavonoid and chlorophyll were determined after drying. In contrast with no treatment case, UT (45W/L) decreased drying time by 14% and decreased energy consumption by 19%; UT (60W/L) decreased total microbial colonies by 33%. Also, UT (30W/L) yielded contents of flavonoid (9.2/kg) and chlorophyll (10.5g/kg) of dried sample; UT power (10W/L) yielded the highest L ∗ (51.5) and the lowest a ∗ (-9.3) value. Simultaneously, UT leads to a higher glass transition temperature (Tg), lower water activity and produces less sourness and bitterness of dried products. Ultra-sonication is an alternative to improve quality, flavor and energy consumption of barley grass in freeze drying. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.
He, Chao; Chena, Chia-Lung; Xu, Zhirong; Wang, Jing-Yuan
2014-01-01
Secondary dewatering of dewatered sludge is imperative to make conventional drying and incineration of sludge more economically feasible. In this study, a secondary dewatering of dewatered sludge with selected solvents (i.e. acetone and ethanol) followed by vacuum filtration and nature drying was investigated to achieve in-depth dewatering. After the entire secondary dewatering process, the sludge was shown to be odourless and the organic matter content was greatly retained. Increased mean particle size of sludge after solvent contact improved solid-liquid separation. With an acetone/sludge ratio of 3:1 (mL:g) in solvent contact and subsequent nature drying at ambient temperature after 24 h, the moisture content of sludge can be reduced to a level less than 20%. It is found that the polysaccharides were mainly precipitated by acetone, whereas the release ratios of protein and DNA were increased significantly as the added acetone volumes were elevated. During nature drying, accumulated evaporation rates of the sludge after solvent contact were 5-6 times higher than original dewatered sludge. Furthermore, sludge after acetone contact had better nature drying performance than ethanol. The two-stage dewatering involves solvent contact dewatering and solvent enhanced evaporation dewatering. Through selecting an appropriate solvent/sludge ratio as well as economical solvents and minimizing the solvent loss in a closed-pilot system, this dewatering process can be competitive in industrial applications. Therefore, this solvent-aided secondary dewatering is an energy-saving technology for effective in-depth dewatering of dewatered sludge and subsequent sludge utilization.
Friction behavior of glass and metals in contact with glass in various environments
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.
Development of a low-pressure materials pre-treatment process for improved energy efficiency
NASA Astrophysics Data System (ADS)
Lee, Kwanghee; You, Byung Don
2017-09-01
Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.
Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Fluss
2015-08-31
This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistantmore » to oxidation and hydriding is outlined.« less
Shao, Yuyu; Gao, Shuran; Guo, Huiling; Zhang, Heping
2014-03-01
The cryotolerance of Lactobacillus delbrueckii ssp. bulgaricus is weak during vacuum freeze-drying. Many factors affect cryoresistance of these bacteria, such as cryoprotectant composition, the lyophilization technology used, and the intrinsic characteristics of the bacteria. In this research, we explored the fermentation technology and other preconditioning treatments of cells in improving the cryoresistance of Lactobacillus delbrueckii ssp. bulgaricus strains during lyophilization. The addition of yeast extract in the propagation medium exerted a negative effect on the cryotolerance of these bacteria and decreased survival during lyophilization. The count of the freeze-dried cells from medium containing a high level (4%) of yeast extract was only 4.1 × 10(9) cfu/g, indicating a death rate as high as 88%, compared with the culture medium without yeast extract, with a lower death rate of 44.7%. When Lactobacillus delbrueckii ssp. bulgaricus ND02 was propagated in yeast extract-free de Man, Rogosa, and Sharpe broth at a set pH value of 5.1, the cells showed unexpectedly higher survival after freeze-drying. Viable counts of the lyophilized cell of strain ND02 cultivated at pH 5.1 could reach 1.05 × 10(11)cfu/g and survival of the freeze-drying process was 68.3%, whereas at pH 5.7, survival was only 51.2%. We also examined the effects of pretreatment of cells on survival of the bacteria after vacuum freeze-drying. By analyzing the effect of pretreatment conditions on the expression of cold- and heat-shock genes, we established 2 pretreatments that improved survival of cells after lyophilization. Optimal fermentation conditions and pretreatment of the cell-cryoprotectant mixture at 10°C for 2h or 37°C for 30 min improved the cryoresistance of 4 strains of Lactobacillus delbrueckii ssp. bulgaricus to varying degrees. Cells of IMAU20269 and IMAU20291 that were pretreated showed enhanced survival of 16.06 and 16.82%, respectively, after lyophilization. Expression of cold- and heat-shock genes for pretreated strains ND02, IMAU80423, IMAU20269, and IMAU20291 was analyzed by using quantitative PCR. From the expression of 2 cold shock-induced genes (cspA and cspB) and 6 heat shock-induced genes (groES, hsp, hsp20, hsp40, hsp60, and hsp70), strain ND02 showed a higher relative quantity of gene expression and displayed superior resistance to cold-induced stress during the freeze-drying process. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Advanced Photonic Sensors Enabled by Semiconductor Bonding
2010-05-31
a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system
Synthesis and Characterization of Thianthrene-Based Polyamides
1994-07-15
pyrrolidinone using triphenyl phosphite and pyridine. The fused-ring thianthrene-based polyamides were more soluble than analogous poly(thloether amide)s...pyrrolidinone using triphonyl phosphite and pyridine. The fused-ring thianthrene-based polyamides were more soluble than analogous poly(thloether amide)s...sodium hydroxide, and triphenyl phosphite (TPP) was vacuum distilled. UCI and CaCI2 were dried at 180 OC for 48 hours under vacuum. 4,4’-Oxydianiline
Isolation, characterization of wheat gluten and its regeneration properties.
Kaushik, Ravinder; Kumar, Naveen; Sihag, Manvesh Kumar; Ray, Aradhita
2015-09-01
In order to assess the effectiveness of different drying methods on physicochemical and reconstitution properties of wheat gluten, four wheat cultivars were selected and milled. Gluten was extracted and its wet and dry gluten content and water holding capacity were estimated. The washed starch and other flour constituents were dried. Isolated gluten was dried using three treatments viz. oven drying, vacuum drying and freeze drying. Dried gluten of four wheat cultivars were characterized for its water and oil absorption properties and thermal properties. The dried gluten and washed and dried flour constituents were then reconstituted and this flour was checked for flour quality (SDS volume, texture analysis and falling number). Only reconstituted flour using freeze dried gluten showed no significant difference to control flour in SDS volume and dough strength. In Falling number all reconstituted flour samples showed significant difference to control flour.
Active hold-down for heat treating
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr. (Inventor)
1986-01-01
The object of the disclosure is to provide a vacuum hold-down for holding thin sheets to a support surface, which permits the thin sheet to change dimensions as it is held down. The hold-down includes numerous holes in the support surface, through which a vacuum is applied from a vacuum source. The holes are arranged in zones. The vacuum is repeatedly interrupted at only one or a few zones, while it continues to be applied to other zones, to allow the workpiece to creep along that interrupted zone. The vacuum to different zones is interrupted at different times, as by a slowly turning valve number, to allow each zone of the workpiece to creep. A positive pressure may be applied from a pressured air source to a zone when the vacuum is interrupted there, to help lift the corresponding workpiece zone off the surface to aid in creeping. The workpiece may undergo dimensional changes because of heating, cooling, drying, or other procedure.
Impact of an auditory stimulus on baseline cortisol concentrations in clinically normal dogs.
Gin, T E; Puchot, M L; Cook, A K
2018-03-19
Baseline cortisol concentrations are routinely used to screen dogs for hypoadrenocorticism (HOC); this diagnosis must then be confirmed with an ACTH stimulation test. A baseline cortisol concentration less than 55 nmol/L (2 μg/dL) is highly sensitive for HOC but lacks specificity, with a false positive rate >20%. Many dogs with nonadrenal disease are therefore subjected to unnecessary additional testing. It was hypothesized that exposure to an unpleasant auditory stimulus before sample collection would improve the specificity of baseline cortisol measurements in dogs with nonadrenal disease by triggering cortisol production. Twenty-eight healthy client-owned dogs were included in the study, with a median age of 4 yr (range 2-9 yr) and a median weight of 20 kg (range 10-27 kg). Dogs were ineligible for inclusion if they had received short- or long-acting glucocorticoids within the previous 30 and 90 d, respectively. Dogs were randomly assigned to group 1 (control; no noise; n = 7), group 2 (brief noise: n = 10), or group 3 (long noise: n = 11). Each dog and owner were directed to a secluded area for approximately 15 min. Group 1 sat in relative quiet, exposed only to the background sounds of a veterinary hospital. Group 2 were exposed to the sound of a wet-dry vacuum in an adjacent hallway during the first 3 min of this period. Group 3 were exposed to random bursts of wet-dry vacuum noise during this period. At the end of the test interval, each dog was escorted to an adjacent examination room for blood collection. Samples were processed within 15 min; serum was frozen at -80°C before measurement of cortisol concentrations. Median serum cortisol concentrations and the proportion of dogs with results <55 nmol/L were similar for the 3 groups. The study hypothesis that exposure to the noise of a wet-dry vacuum cleaner would consistently drive baseline serum cortisol concentrations above 55 nmol/L in dogs with apparently normal adrenal function was therefore rejected. Copyright © 2018 Elsevier Inc. All rights reserved.
Three stage vacuum system for ultralow temperature installation
NASA Astrophysics Data System (ADS)
Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.
2012-11-01
We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.
Greer, Derek; Pfahl, Les; Rieck, Jim; Daniels, Tim; Garza, Oscar
2008-10-08
This research studied a novel form of distillation (high vacuum distillation) as a method for preserving volatile aroma chemicals important to the organoleptic attributes of a four botanical model gin as well as the degradation products generated during the heating required in traditional methods of gin distillation. A 2 (5) factorial experiment was conducted in a partially confounded incomplete block design and analyzed using the PROC MIXED procedure from SAS. A model gin was made of dried juniper berries (Juniperus communis), coriander seed (Coriandrum sativum), angelica root (Angelica archangelica), and dry lemon peel (Citrus limonum). This was distilled on a traditional still utilizing atmospheric pressure and a heating mantel to initiate phase separation as well as a novel still (high vacuum) utilizing high vacuum pressures below 0.1 mmHg and temperatures below -15 degrees C to initiate phase separation. The degradation products (alpha-pinene, alpha-phellandrene, E-caryophyllene, and beta-myrcene) were present at greater levels (approximately 10 times) in the traditional still-made gin as compared to the novel gin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Li, Ruixin; Jiang, Wenxue, E-mail: jiangortholivea@sina.cn
In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher thanmore » those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.« less
Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package.
Fronczek, Christopher F; You, David J; Yoon, Jeong-Yeol
2013-02-15
A direct, sensitive, near-real-time, handheld optical immunoassay device was developed to detect Salmonella typhimurium in the naturally occurring liquid from fresh poultry packages (hereafter "chicken matrix"), with just single pipetting of sample (i.e., no filtration, culturing and/or isolation, thus reducing the assay time and the error associated with them). Carboxylated, polystyrene microparticles were covalently conjugated with anti-Salmonella, and the immunoagglutination due to the presence of Salmonella was detected by reading the Mie scatter signals from the microfluidic channels using a handheld device. The presence of chicken matrix did not affect the light scatter signal, since the optical parameters (particle size d, wavelength of incident light λ and scatter angle θ) were optimized to minimize the effect of sample matrix (animal tissues and blood proteins, etc.). The sample was loaded into a microfluidic chip that was split into two channels, one pre-loaded with vacuum-dried, antibody-conjugated particles and the other with vacuum-dried, bovine serum albumin-conjugated particles. This eliminated the need for a separate negative control, effectively minimizing chip-to-chip and sample-to-sample variations. Particles and the sample were diffused in-channel through chemical agitation by Tween 80, also vacuum-dried within the microchannels. Sequential mixing of the sample to the reagents under a strict laminar flow condition synergistically improved the reproducibility and linearity of the assay. In addition, dried particles were shown to successfully detect lower Salmonella concentrations for up to 8 weeks. The handheld device contains simplified circuitry eliminating unnecessary adjustment stages, providing a stable signal, thus maximizing sensitivity. Total assay time was 10 min, and the detection limit 10 CFU mL(-1) was observed in all matrices, demonstrating the suitability of this device for field assays. Copyright © 2012 Elsevier B.V. All rights reserved.
Research on Melt Degassing Processes of High Conductivity Hard Drawn Aluminum Wire
NASA Astrophysics Data System (ADS)
Xu, Xuexia; Feng, Yanting; Wang, Qing; Li, Wenbin; Fan, Hui; Wang, Yong; Li, Guowei; Zhang, Daoqian
2018-03-01
Degassing effects of ultrasonic and vacuum processes on high conductivity hard drawn aluminum melt were studied. Results showed that the degassing efficiency improved with the increase of ultrasonic power within certain range, stabilizing at 70% with 240W. For vacuum degassing process, hydrogen content of aluminum melt decreased with the loading time and was linear with logarithm of vacuum degree. Comparison of degassing effects of ultrasonic, vacuum, vacuum-ultrasonic degassing process showed that vacuum-ultrasonic process presented optimal effect.
NASA Astrophysics Data System (ADS)
Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon
2017-12-01
Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.
1993-10-01
A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.
Azulay, Doron; Kopnov, Frieda; Tenne, Reshef; Balberg, Isaac; Millo, Oded
2006-04-01
Current-voltage characteristics measured using STM on fullerene-like WS2 nanoparticles show zero-bias current and contain segments in which the tunneling current flows opposite to the applied bias voltage. In addition, negative differential conductance peaks emerge in these reversed current segments, and the characteristics are hysteretic with respect to the change in the voltage sweep direction. Such unusual features resemble those appearing in cyclic voltammograms, but are uniquely observed here in tunneling spectra measured in vacuum, as well as in ambient and dry atmosphere conditions. This behavior is attributed to tunneling-driven electrochemical processes.
Pateiro, Mirian; Bermúdez, Roberto; Lorenzo, José Manuel; Franco, Daniel
2015-01-01
The dose effect of the addition of natural antioxidants (tea, chestnut, grape seed and beer extracts) on physicochemical, microbiological changes and on oxidative stability of dry-cured “chorizo”, as well as their effect during the storage under vacuum conditions was evaluated. Color parameters were significantly (p < 0.05) affected by the addition of antioxidants so that samples that contained antioxidants were more effective in maintaining color. The improving effects were dose-dependent with highest values with the dose of 50 mg/kg during ripening and depend on the extract during vacuum packaging. Addition of antioxidants decreased (p < 0.05) the oxidation, showing thiobarbituric acid reactive substances (TBARS) values below 0.4 mg MDA/kg. Natural antioxidants matched or even improved the results obtained for butylated hydroxytoluene (BHT). Regarding texture profile analysis (TPA) analysis, hardness values significantly (p < 0.001) decreased with the addition of antioxidants, obtaining the lower results with the dose of 200 mg/kg both during ripening and vacuum packaging. Antioxidants reduced the counts of total viable counts (TVC), lactic acid bacteria (LAB), mold and yeast. Free fatty acid content during ripening and under vacuum conditions showed a gradual and significant (p < 0.05) release as a result of lipolysis. At the end of ripening, the addition of GRA1000 protected chorizos from oxidative degradation. PMID:26785337
Parra, V; Viguera, J; Sánchez, J; Peinado, J; Espárrago, F; Gutierrez, J I; Andrés, A I
2010-04-01
Dry-cured Iberian ham slices were stored under vacuum and under four different modified atmospheres (60/40=60%N(2)+40%CO(2); 70/30=70%N(2)+30%CO(2); 80/20=80%N(2)+20%CO(2); argon=70%argon+30%CO(2)) at 4+/-1 degrees C during 120 days. Gas composition, moisture content, pH, colour, pigment content, and lipid stability were measured, as well as sensory and microbial analysis were carried out throughout storage. A loss of intensity of red colour (a(*)-values) was observed during storage in ham slices (P<0.05). Consistently, MbFe(II)NO content also decreased throughout storage (P>0.05). Slices of ham packed in 40%CO(2) (60/40) and 30%CO(2) (70/30) showed lower a(*)-values than the rest of the batches after 60 days (P<0.05), though differences were not evident after 120 days (P>0.05). TBARs values showed an upward trend during the storage of packaged slices (P<0.05). Vacuum-packed slices showed the lowest TBARs values and those packed with 40%CO(2), the highest. Sensory attributes did not vary significantly (P>0.05) throughout storage under refrigeration and packed either in vacuum or in modified atmospheres. No safety problems were detected in relation to the microbial quality in any case. 2009 Elsevier Ltd. All rights reserved.
Szychowski, Przemysław J; Lech, Krzysztof; Sendra-Nadal, Esther; Hernández, Francisca; Figiel, Adam; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A
2018-07-30
Quinces are attracting interest due to their health and nutritional benefits. Drying kinetics, bioactive compounds, antioxidant activity, and the main sensory parameters were determined in dried quinces, cultivar Leskovač, as affected by the drying method. The highest total polyphenols content was observed in dried samples obtained after freeze drying and convective drying at 50 °C. The best drying treatment, considering only sensory attributes, was vacuum-microwave drying at 480 W, because it led to intermediate dark color and high intensities of basic tastes and key flavor attributes. The studied parameters were finally used to recommend convective drying at 60 °C as the most appropriate drying method for quinces, because it had a high content of total phenolic compounds (2nd best treatment out of 10), a good sensory profile, was cheap, and caused no negative effects on nutritional or sensory parameters; the only disadvantage was its long drying time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yousefi, Hossein; Azad, Sona; Mashkour, Mahdi; Khazaeian, Abolghasem
2018-05-01
A cellulose nanofiber board (CNF-board) with a nominal thickness of 3 mm was fabricated without adhesive or additive. To provide comparison, a cellulose fiber board (CF-board) was also fabricated. A novel cold pre-press apparatus was made to dewater highly absorbent CNF gel prior to drying. A mild drying condition in the vacuum oven at 70 °C and 0.005 MPa was enough to provide the CNF-board with a density of 1.3 g/cm 3 thanks to its self-densification capability. Unlike the CF-board, the fabricated CNF-board had a high water-activated dimensional recovery ratio (averagely 96%) during the five cyclic wetting-drying process. The flexural and tensile strengths of CNF-board obtained were 162 MPa and 85 MPa, respectively. The corresponding values for CF-board were 28 MPa and 11 MPa, respectively. The specific flexural and tensile strengths of CNF-board obtained were higher than those of CF-board as well as some other traditional wood-based composites, polymers and structural ASTM A36 steel. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Jung Eun; Choi, Hyeon-Son; Lee, Dong-Un; Min, Sea C
2017-12-18
The efficacy of microwave-combined cold plasma treatment (MCPT) for inactivating Bacillus cereus spores contaminating red pepper (Capsicum annum L.) flakes was investigated. The effects of red pepper drying method, particle size, and water activity (a w ) were also evaluated at two levels of microwave power (1700 and 2500W/cm 2 ). The inactivation effect of MCPT was higher at higher microwave power. Spore reduction was more effective with vacuum-dried red pepper than far-infrared-dried flakes. A significantly higher level of spore reduction was observed with the red pepper sample with a smaller surface to volume ratio when one surface (exterior surface) was inoculated (p<0.05). Spore reduction by MCPT at high microwave power increased from 1.7 to 2.6logspores/cm 2 when the a w of flake increased from 0.4 to 0.9 (p<0.05). MCPT did not change the color of red pepper flakes. MCPT demonstrated potential as a microbial decontaminating technology for red pepper flakes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dang, K. Q.; Nanko, M.
2011-03-01
The aluminium oxide crystal, Al2O3, which contains a small amount of chromium, Cr, is called ruby. Pulsed electric current sintering (PECS) was applied to sinter ruby polycrystals. Cr2O3-Al2O3 powder mixture prepared by drying an aqueous slurry containing amounts of Al2O3 and Cr(NO3)3 was consolidated by PECS process. The PECS process was performed in vacuum at sintering temperature raging from 1100 to 1300°C with heating rate of 2 K/min under applied uniaxial pressure varied from 40 to 100 MPa. This study found that highly densified and transparent Cr-doped Al2O3 can be obtained by the PECS process with the high applied pressure at sintering temperature of 1200°C.
Storage stability of biodegradable polyethylene glycol microspheres
NASA Astrophysics Data System (ADS)
Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.
2017-10-01
Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at -80 °C (moist condition) or vacuum drying (dry condition).
Development and Evaluation of Stitched Sandwich Panels
NASA Technical Reports Server (NTRS)
Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)
2001-01-01
This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.
Self-regenerating Nanotips: Indestructable Field-emission Cathodes for Low-power Electric Propulsion
2010-09-27
Field Emission Scanning Electron Microscope. The chamber was evacuated using a series of three ion pumps and vacuum pressure of 10-7 Torr was...backed by a 110-L/min dry scroll pump . The chamber is also equipped with a 300-L/s combination ion/sublimation pump that can maintain pressure of...Torr for 2 to 24 hours and then the ion pump was turned off to let the vacuum pressure slowly increase while observing the electron emission
NASA Technical Reports Server (NTRS)
Reimers, Harold; Andampour, Jay; Kunitser, Craig; Thomas, Ike
1995-01-01
Vacuum cleaner collects and retains dust, wet debris, and liquids. Designed for housekeeping on Space Station Freedom, it functions equally well in normal Earth Gravity or in microgravity. Generates acoustic noise at comfortably low levels and includes circuitry that reduces electromagnetic interference to other electronic equipment. Draws materials into bag made of hydrophobic sheet with layers of hydrophilic super-absorbing pads at downstream end material. Hydrophilic material can gel many times its own weight of liquid. Blower also provides secondary airflow to cool its electronic components.
Credit PSR. This interior view shows the vacuum tumble dryer. ...
Credit PSR. This interior view shows the vacuum tumble dryer. The tumble dryer is lined with a water jacket to maintain temperature during the drying of ammonium perchlorate ("AP"); water enters and exits the dryer jacket through the pipe fittings along the horizontal center line of the dryer. The wall at the right is constructed to blow out in the event of an explosion - Jet Propulsion Laboratory Edwards Facility, Oxidizer Dryer Building, Edwards Air Force Base, Boron, Kern County, CA
Materials for Heated Head Automated Thermoplastic Tape Placement
NASA Technical Reports Server (NTRS)
Jensen, Brian J.; Kinney, Megan C.; Cano, Roberto J.; Grimsley, Brian W.
2012-01-01
NASA Langley Research Center (LaRC) is currently pursuing multiple paths to develop out of autoclave (OOA) polymeric composite materials and processes. Polymeric composite materials development includes the synthesis of new and/or modified thermosetting and thermoplastic matrix resins designed for specific OOA processes. OOA processes currently under investigation include vacuum bag only (VBO) prepreg/composite fabrication, resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM) and heated head automated thermoplastic tape placement (HHATP). This paper will discuss the NASA Langley HHATP facility and capabilities and recent work on characterizing thermoplastic tape quality and requirements for quality part production. Samples of three distinct versions of APC-2 (AS4/PEEK) thermoplastic dry tape were obtained from two materials vendors, TENCATE, Inc. and CYTEC Engineered Materials** (standard grade and an experimental batch). Random specimens were taken from each of these samples and subjected to photo-microscopy and surface profilometry. The CYTEC standard grade of APC-2 tape had the most voids and splits and the highest surface roughness and/or waviness. Since the APC-2 tape is composed of a thermoplastic matrix, it offers the flexibility of reprocessing to improve quality, and thereby improve final quality of HHATP laminates. Discussions will also include potential research areas and future work that is required to advance the state of the art in the HHATP process for composite fabrication.
Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PLYS, M.G.
2000-10-10
The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3)more » Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Zhu, Zihua; Yu, Xiao-Ying
In this study, we report new results of in situ study of 5 nm goat anti-mouse IgG gold nanoparticles in a novel portable vacuum compatible microfluidic device using scanning electron microscope (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The unique feature of the liquid flow cell is that the detection window is open to the vacuum allowing direct probing of the liquid surface. The flow cell is composed of a silicon nitride (SiN) membrane and polydimethylsiloxane (PDMS), and it is fully compatible with vacuum operations for surface analysis. The aperture can be drilled through the 100 nm SiN membranemore » using a focused ion beam. Characteristic signals of the conjugated gold nanoparticles were successfully observed through the aperture by both energy-dispersive X-ray spectroscopy (EDX) in SEM and ToF-SIMS. Comparison was also made among wet samples, dry samples, and liquid sample in the flow cell using SEM/EDX. Stronger gold signal can be observed in our novel portable device by SEM/EDX compared with the wet or dry samples, respectively. Our results indicate that analyses of the nanoparticle components are better made in their native liquid environment. This is made possible using our unique microfluidic flow cell.« less
NASA Astrophysics Data System (ADS)
Azoddein, Abdul Aziz Mohd; Nuratri, Yana; Azli, Faten Ahada Mohd; Bustary, Ahmad Bazli
2017-12-01
Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose was able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage at 4 °C without vacuum. Polyethylene glycol (PEG) pre-treated freeze dried cells and broth pre-treated freeze dried cells after the freeze-dry process recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introducing freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage of 3 weeks was 17.91 %. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been grown in agar. Result from this study may be beneficial and useful as initial reference before commercialized freeze-dried P. putida.
Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun
2016-01-01
In this paper, a simple and controllable “wet pulse annealing” technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm2 V−1 s−1; Ion/Ioff ratio ≈ 108; reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances. PMID:27198067
Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun
2016-05-20
In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.
Drying results of K-Basin fuel element 1990 (Run 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marschman, S.C.; Abrefah, J.; Klinger, G.S.
1998-06-01
The water-filled K-Basins in the Hanford 100-Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basins have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtainedmore » from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first of those tests (Run 1), which was conducted on an N-Reactor inner fuel element (1990) that had been stored underwater in the K-West Basin (see Section 2.0). This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The testing was conducted in the Whole Element Furnace Testing System, described in Section 3.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in Section 4.0, and the experimental results provided in Section 5.0. These results are further discussed in Section 6.0.« less
Simandl, Ronald F.; Brown, John D.; Whinnery, Jr., LeRoy L.
1999-01-01
In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.
Lubrication by Diamond and Diamondlike Carbon Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1997-01-01
Regardless of environment (ultrahigh vacuum, humid air, dry nitrogen, or water), ion-beam-deposited diamondlike carbon (DLC) and nitrogen-ion-implanted, chemical-vapor-deposited (CVD) diamond films had low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6)cu mm/N(dot)m). These films can be used as effective wear-resistant, self-lubricating coatings regardless of environment. On the other hand, as-deposited, fine-grain CVD diamond films; polished, coarse-grain CVD diamond films; and polished and then fluorinated, coarse-grain CVD diamond films can be used as effective wear-resistant, self-lubricating coatings in humid air, in dry nitrogen, and in water, but they had a high coefficient of friction and a high wear rate in ultrahigh vacuum. The polished, coarse-grain CVD diamond film revealed an extremely low wear rate, far less than 10(exp 10) cu mm/N(dot)m, in water.
Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia
2014-08-01
The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B
2017-12-01
Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Waste Management System overview for future spacecraft.
NASA Technical Reports Server (NTRS)
Ingelfinger, A. L.; Murray, R. W.
1973-01-01
Waste Management Systems (WMS) for post Apollo spacecraft will be significantly more sophisticated and earthlike in user procedures. Some of the features of the advanced WMS will be accommodation of both males and females, automatic operation, either tissue wipe or anal wash, measurement and sampling of urine, feces and vomitus for medical analysis, water recovery, and solids disposal. This paper presents an overview of the major problems of and approaches to waste management for future spacecraft. Some of the processes discussed are liquid/gas separation, the Dry-John, the Hydro-John, automated sampling, vapor compression distillation, vacuum distillation-catalytic oxidation, incineration, and the integration of the above into complete systems.
Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan
2012-10-21
In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.
Did Water Leave Its Mark on Mars?
ERIC Educational Resources Information Center
Secosky, James J.
1989-01-01
Discusses the missing water on Mars. Describes five experiments simulating conditions on Mars: (1) behavior of dry ice; (2) low-pressure vacuum; (3) freezing point depression; (4) water in hydrated minerals and clay; and (5) properties of carbon dioxide. (YP)
Friction and Wear Properties of As-Deposited and Carbon Ion-Implanted Diamond Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1996-01-01
Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 keV ion energy, resulting in a dose of 1.2 x 10(exp 17) carbon ions per cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40% relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and wear properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to lO(exp -8) mm(exp 3) N(exp -1) m(exp -1)) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4) mm(exp 7) N(exp -1) m(exp -1)) in ultrahigh vacuum. The carbon ion implantation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, non-diamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7) mm(exp 3) N(exp -1) m(exp-1)). Even in ultrahigh vacuum, the presence of the non-diamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6) mm(exp 3) N(exp -1) m(exp -1). Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum.
Sealed-bladdered chemical processing method and apparatus
Harless, D. Phillip
1999-01-01
A method and apparatus which enables a complete multi-stepped chemical treatment process to occur within a single, sealed-bladdered vessel 31. The entire chemical process occurs without interruption of the sealed-bladdered vessel 31 such as opening the sealed-bladdered vessel 31 between various steps of the process. The sealed-bladdered vessel 31 is loaded with a batch to be dissolved, treated, decanted, rinsed and/or dried. A pressure filtration step may also occur. The self-contained chemical processing apparatus 32 contains a sealed-bladder 32, a fluid pump 34, a reservoir 20, a compressed gas inlet, a vacuum pump 24, and a cold trap 23 as well as the associated piping 33, numerous valves 21,22,25,26,29,30,35,36 and other controls associated with such an apparatus. The claimed invention allows for dissolution and/or chemical treatment without the operator of the self-contained chemical processing apparatus 38 coming into contact with any of the process materials.
K(3)EDTA Vacuum Tubes Validation for Routine Hematological Testing.
Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Poli, Giovanni; Solero, Giovanni Pietro; Picheth, Geraldo; Guidi, Gian Cesare
2012-01-01
Background and Objective. Some in vitro diagnostic devices (e.g, blood collection vacuum tubes and syringes for blood analyses) are not validated before the quality laboratory managers decide to start using or to change the brand. Frequently, the laboratory or hospital managers select the vacuum tubes for blood collection based on cost considerations or on relevance of a brand. The aim of this study was to validate two dry K(3)EDTA vacuum tubes of different brands for routine hematological testing. Methods. Blood specimens from 100 volunteers in two different K(3)EDTA vacuum tubes were collected by a single, expert phlebotomist. The routine hematological testing was done on Advia 2120i hematology system. The significance of the differences between samples was assessed by paired Student's t-test after checking for normality. The level of statistical significance was set at P < 0.05. Results and Conclusions. Different brand's tubes evaluated can represent a clinically relevant source of variations only on mean platelet volume (MPV) and platelet distribution width (PDW). Basically, our validation will permit the laboratory or hospital managers to select the brand's vacuum tubes validated according to him/her technical or economical reasons for routine hematological tests.
K3EDTA Vacuum Tubes Validation for Routine Hematological Testing
Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Poli, Giovanni; Solero, Giovanni Pietro; Picheth, Geraldo; Guidi, Gian Cesare
2012-01-01
Background and Objective. Some in vitro diagnostic devices (e.g, blood collection vacuum tubes and syringes for blood analyses) are not validated before the quality laboratory managers decide to start using or to change the brand. Frequently, the laboratory or hospital managers select the vacuum tubes for blood collection based on cost considerations or on relevance of a brand. The aim of this study was to validate two dry K3EDTA vacuum tubes of different brands for routine hematological testing. Methods. Blood specimens from 100 volunteers in two different K3EDTA vacuum tubes were collected by a single, expert phlebotomist. The routine hematological testing was done on Advia 2120i hematology system. The significance of the differences between samples was assessed by paired Student's t-test after checking for normality. The level of statistical significance was set at P < 0.05. Results and Conclusions. Different brand's tubes evaluated can represent a clinically relevant source of variations only on mean platelet volume (MPV) and platelet distribution width (PDW). Basically, our validation will permit the laboratory or hospital managers to select the brand's vacuum tubes validated according to him/her technical or economical reasons for routine hematological tests. PMID:22888448
2014-06-11
typically of a few 10-11 torr using oil-free magnetically suspended turbomolecular pumps backed with dry scroll pumps . A cold finger assembled from...on line and in situ utilizing a Faraday cup mounted inside a differentially pumped chamber on an ultrahigh vacuum compatible translation state. The...down to a base pressure typically of a few 10-11 torr using oil-free magnetically suspended turbomolecular pumps backed with dry scroll pumps . A
Wear-Resistant, Self-Lubricating Surfaces of Diamond Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1995-01-01
In humid air and dry nitrogen, as-deposited, fine-grain diamond films and polished, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m). In an ultrahigh vacuum (10(exp -7) Pa), however, they have high steady-state coefficients of friction (greater than 0.6) and high wear rates (greater than or equal to 10(exp -4) mm(exp 3)/N-m). Therefore, the use of as-deposited, fine-grain and polished, coarse-grain diamond films as wear-resistant, self-lubricating coatings must be limited to normal air or gaseous environments such as dry nitrogen. On the other hand, carbon-ion-implanted, fine-grain diamond films and nitrogen-ion-implanted, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m) in all three environments. These films can be effectively used as wear-resistant, self-lubricating coatings in an ultrahigh vacuum as well as in normal air and dry nitrogen.
Encapsulation of black carrot juice using spray and freeze drying.
Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam
2015-12-01
Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. © The Author(s) 2014.
Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Shah, C. H.; Postyn, A. S.
1996-01-01
In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.
Tube Suction Test for Evaluating
DOT National Transportation Integrated Search
2012-06-01
In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (F-T/W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moisture ...
Robot design for a vacuum environment
NASA Technical Reports Server (NTRS)
Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.
1987-01-01
The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.
Redesigning the continuous vacuum sealer packaging machine to improve the processing speed
NASA Astrophysics Data System (ADS)
Belo, J. B.; Widyanto, S. A.; Jamari, J.
2017-01-01
Vacuum sealer as a product packaging tool of food products to be able to vacuum air inside the plastic which is filled with food products and it causes the pressure lower. In this condition, the optimal heating temperature is reached in a shorter time, so that damage on plastic sealer of vacuumed food products could be prevented to be more effective and efficient. The purpose of this redesigning is to design a vacuum sealer packaging machine continuously through a conveyor mechanism on the packaging quality, time of processing speed of vacuuming food product in the plastic package. This designing process is conducted through several steps of designing and constructing tools until the products are ready to operate. Data analysis is done through quality test of vacuum and sealer to the plastic thickness of 75 µm, 80 µm, and 100 µm with temperature of 170°C, 180°C, 190°C and vacuum duration of 5 seconds, 8 seconds, and 60 seconds. Results of this designing process indicate that vacuum sealer works practically and more optimally with the time of vacuum processing speed of 0 to 1 minute/s; whereas, the pressure of vacuuming suction is until 1e-5 MPa. The results of tensile strength test are at a maximum of 32,796 (N/mm2) and a minimum of 20,155 (N/mm2) and the analysis of plastic composite with EDX. This result shows that the vacuum pressure and the quality of vacuum sealer are better and more efficient.
Germanium detector vacuum encapsulation
NASA Technical Reports Server (NTRS)
Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.
1991-01-01
This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.
An effective system to produce smoke solutions from dried plant tissue for seed germination studies1
Coons, Janice; Coutant, Nancy; Lawrence, Barbara; Finn, Daniel; Finn, Stephanie
2014-01-01
• Premise of the study: An efficient and inexpensive system was developed to produce smoke solutions from plant material to research the influence of water-soluble compounds from smoke on seed germination. • Methods and Results: Smoke solutions (300 mL per batch) were produced by burning small quantities (100–200 g) of dried plant material from a range of species in a bee smoker attached by a heater hose to a side-arm flask. The flask was attached to a vacuum water aspirator, to pull the smoke through the water. The entire apparatus was operated in a laboratory fume hood. • Conclusions: Compared with other smoke solution preparation systems, the system described is easy to assemble and operate, inexpensive to build, and effective at producing smoke solutions from desired species in a small indoor space. Quantitative measurements can be made when using this system, allowing for replication of the process. PMID:25202613
Zhu, Bo; Liu, Jianli; Gao, Weidong
2017-09-01
This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.
Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying
2016-01-25
This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.
Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying
2016-01-01
This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency. PMID:28787870
NASA Astrophysics Data System (ADS)
Soliman, Ahmed I. A.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki
2017-09-01
Vacuum ultraviolet light irradiation in dry air generates active oxygen species, which have powerful oxidation abilities. These active oxygen species (O) can oxidize the alkyl moieties of polymers, and generate new oxygenated groups such as OH, CHO and COOH groups. Reducing the oxygen content in the exposure environment decreases the rate of oxidation processes. In this study, we examined the influences of the 172 nm VUV irradiation in a high vacuum (HV, < 10-3 Pa) environment on the chemical constituents, surface properties and morphological structure of well-defined VUV/(O)-modified hexadecyl (HD-) self-assembled monolayer (SAM) prepared on hydrogen-terminated silicon (H-Si) substrate. After VUV light irradiation in a HV environment (HV-VUV), the chemical constituents and surface properties were changed in two distinct stages. At short irradiation time (the first stage), the Csbnd O and COO groups decreased rapidly, while the Cdbnd O groups slightly changed. The dissociation of nonderivatizable groups (such as ether (Csbnd Osbnd C) and ester (Csbnd COOsbnd C) groups) compensated the dissociated OH, CHO, Csbnd COsbnd C and COOH groups. With further irradiation (the second stage), the quantities of the oxygenated groups slightly decreased. The carbon skeleton (Csbnd C) of SAM was scarcely dissociated during the HV-VUV treatment. These chemical changes affected the surface properties, such as wettability and morphology.
Development of Li-S Battery With Improved Sulphur Utilization and Cyclic Stability
2017-12-04
blade technique and dried overnight at 80 °C in vacuum oven. The dried sample was cut into 12 mm electrode disks. The 2032 coin assembly has been done...capability up to 2C as shown in Fig. 8(c), after running cell at high current and going back to lower 0.1C the cell shows the specific...shows a high rate capability up to 2C. And after running cell at high current and reverse back to lower 0.1
Extremely Low Frequency (ELF) Vertical Electric Field Exposure of Rats: Irradiation Facility
1977-05-01
altered inside an animal cage even with wet or dry litter and full food and water containers. Rats weighing approximately 300 g in adjacent cages caused...with guard circuit Field inside empty cage Field inside complete cage ( litter (wet or dry) + food + water) Field variations caused by 300 g rat...blanket 250 Iron 60 Broiler 130 Hair dryer 40 Vaporizer 40 Refrigerator 60 Color TV 30 Stereo 90 Coffee pot 30 Vacuum cleaner 16 Clock radio
The Design, Synthesis and Screening of Potential Pyridinium Oxime Prodrugs
1985-09-30
210 ml stainless steel bombs were each filled with 100 ml of 28% aqueous NH4OH, 2.8 g (11 imol) of copper sulfate pentahydrate , and 15 g (87 mol) of...ethyl acetate. The organic extracts were washed twice with brine, dried over sodium sulfate , filtered and flashed to a black oil. A vacuum distillation...extracts were washed with brine, dried with sodium sulfate , filtered and flashed. The residue was then purified by column chromatography (silica gel
Fiber Bragg grating sensors for real-time monitoring of evacuation process
NASA Astrophysics Data System (ADS)
Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.
2010-03-01
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
de Diego-Castilla, Graciela; Cruz-Gil, Patricia; Mateo-Martí, Eva; Fernández-Calvo, Patricia; Rivas, Luis A; Parro, Víctor
2011-10-01
Antibody microarrays are becoming frequently used tools for analytical purposes. A key factor for optimal performance is the stability of the immobilized (capturing) antibodies as well as those that have been fluorescently labeled to achieve the immunological test (tracers). This is especially critical for long-distance transport, field testing, or planetary exploration. A number of different environmental stresses may affect the antibody integrity, such as dryness, sudden temperature shift cycles, or, as in the case of space science, exposure to large quantities of the highly penetrating gamma radiation. Here, we report on the effect of certain stabilizing solutions for long-term storage of printed antibody microarrays under different conditions. We tested the effect of gamma radiation on printed and freeze- or vacuum-dried fluorescent antibodies at working concentrations (tracer antibodies), as well as the effect of multiple cycles of sudden and prolonged temperature shifts on the stability of fluorescently labeled tracer antibody cocktails. Our results show that (i) antibody microarrays are stable at room temperature when printed on stabilizing spotting solutions for at least 6 months, (ii) lyophilized and vacuum-dried fluorescently labeled tracer antibodies are stable for more than 9 months of sudden temperature shift cycles (-20°C to 25°C and 50°C), and (iii) both printed and freeze- or vacuum-dried fluorescent tracer antibodies are stable after several-fold excess of the dose of gamma radiation expected during a mission to Mars. Although different antibodies may exhibit different susceptibilities, we conclude that, in general, antibodies are suitable for use in planetary exploration purposes if they are properly treated and stored with the use of stabilizing substances.
Takeda, Koji; Gotoda, Yuto; Hirota, Daichi; Hidaka, Fumihiro; Sato, Tomo; Matsuura, Tsutashi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi
2017-03-06
The technique for homogeneously dispersing hydrophobic drugs in a water-soluble solid matrix (solid dispersion) is a subject that has been extensively investigated in the pharmaceutical industry. Herein, a novel technique for dispersing a solid, without the need to use a surfactant, is reported. A freeze-dried amorphous sugar sample was dissolved in an organic solvent, which contained a soluble model hydrophobic component. The suspension of the sugar and the model hydrophobic component was vacuum foam dried to give a solid powder. Four types of sugars and methanol were used as representative sugars and the organic medium. Four model drugs (indomethacin, ibuprofen, gliclazide, and nifedipine) were employed. Differential scanning calorimetry analyses indicated that the sugar and model drug (100:1) did not undergo segregation during the drying process. The dissolution of the hydrophobic drugs in water from the solid dispersion was then evaluated, and the results indicated that the C max and AUC 0-60 min of the hydrophobic drug in water were increased when the surfactant-free solid dispersion was used. Palatinose and/or α-maltose were superior to the other tested carbohydrates in increasing C max and AUC 0-60 min for all tested model drugs, and the model drug with a lower water solubility tended to exhibit a greater extent of over-dissolution.
Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R
2009-05-01
Nowadays, graft copolymers are being used as an interesting option when developing a direct compression excipient for controlled release matrix tablets. New graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS) were synthesised by free radical polymerization and alternatively dried in a vacuum oven (OD) or freeze-dried (FD). This paper evaluates the performance of these new macromolecules and discusses the effect of the carbohydrate nature and drying process on their physicochemical and technological properties. Grafting of EMA on the carbohydrate backbone was confirmed by IR and NMR spectroscopy, and the grafting yields revealed that graft copolymers present mainly a hydrophobic character. The graft copolymerization also leads to more amorphous materials with larger particle size and lower apparent density and water content than carbohydrates (MS, MHS). All the products show a lack of flow, except MHSEMA derivatives. MSEMA copolymers underwent much plastic flow and less elastic recovery than MHSEMA copolymers. Concerning the effect of drying method, FD derivatives were characterised by higher plastic deformation and less elasticity than OD derivatives. Tablets obtained from graft copolymers showed higher crushing strength and disintegration time than tablets obtained from raw starches. This behaviour suggests that these copolymers could be used as excipients in matrix tablets obtained by direct compression and with a potential use in controlled release.
RTM: Cost-effective processing of composite structures
NASA Technical Reports Server (NTRS)
Hasko, Greg; Dexter, H. Benson
1991-01-01
Resin transfer molding (RTM) is a promising method for cost effective fabrication of high strength, low weight composite structures from textile preforms. In this process, dry fibers are placed in a mold, resin is introduced either by vacuum infusion or pressure, and the part is cured. RTM has been used in many industries, including automotive, recreation, and aerospace. Each of the industries has different requirements of material strength, weight, reliability, environmental resistance, cost, and production rate. These requirements drive the selection of fibers and resins, fiber volume fractions, fiber orientations, mold design, and processing equipment. Research is made into applying RTM to primary aircraft structures which require high strength and stiffness at low density. The material requirements are discussed of various industries, along with methods of orienting and distributing fibers, mold configurations, and processing parameters. Processing and material parameters such as resin viscosity, perform compaction and permeability, and tool design concepts are discussed. Experimental methods to measure preform compaction and permeability are presented.
NASA Technical Reports Server (NTRS)
White, D. R.
1976-01-01
A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.
Method for simultaneous use of a single additive for coal flotation, dewatering, and reconstitution
Wen, Wu-Wey; Gray, McMahan L.; Champagne, Kenneth J.
1995-01-01
A single dose of additive contributes to three consecutive fine coal unit operations, i.e., flotation, dewatering and reconstitution, whereby the fine coal is first combined with water in a predetermined proportion so as to formulate a slurry. The slurry is then mixed with a heavy hydrocarbon-based emulsion in a second predetermined proportion and at a first predetermined mixing speed and for a predetermined period of time. The conditioned slurry is then cleaned by a froth flotation method to form a clean coal froth and then the froth is dewatered by vacuum filtration or a centrifugation process to form reconstituted products that are dried to dust-less clumps prior to combustion.
Consumer sensory acceptance and value of wet-aged and dry-aged beef steaks.
Sitz, B M; Calkins, C R; Feuz, D M; Umberger, W J; Eskridge, K M
2006-05-01
To determine sensory preference and value of fresh beef steak differing in aging technique, strip steaks were evaluated by consumers in Denver (n = 132 consumers) and Chicago (n = 141 consumers). Wet-aged Choice strip loins were matched with dry-aged Choice strip loins, whereas wet-aged Prime strip loins were matched with dry-aged Prime strip loins. Dry-aged strip loins were commercially aged in air in a controlled environment for 30 d and vacuum-aged for 7 d during shipping and storage. Wet-aged strip loins were vacuum-packaged and aged for 37 d in a 1 degrees C cooler. Pairs of strip loins were matched to similar Warner-Bratzler shear force values and marbling scores. Twelve sensory evaluation panels (of 12 scheduled panelists each) were conducted over a 3-d period in each city. Individual samples from a pair of steaks were evaluated by the panelists for sensory traits. Bids were placed on the samples after sensory traits were obtained utilizing a variation of the Vickery auction with silent, sealed bids. No significant differences for sensory traits of flavor, juiciness, tenderness, or overall acceptability were detected between wet-aged Choice samples and dry-aged Choice samples. Although wet-aged Choice samples were numerically superior for all sensory traits, consumers placed similar bid values (P = 0.12) on wet- and dry-aged Choice samples ($3.82 per 0.45 kg and $3.57 per 0.45 kg, respectively). Wet-aged Prime samples were rated more desirable (P < 0.001) for flavor, tenderness, and overall acceptability than dry-aged Prime samples. Wet-aged Prime samples were valued at $4.02 per 0.45 kg, whereas dry-aged Prime samples brought $3.58 per 0.45 kg (P = 0.008). Consumers (29.3%) who preferred the dry-aged Choice samples over the wet-aged Choice samples were willing to pay $1.99/0.45 kg more (P < 0.001) for dry-aged samples. The consumers who preferred the wet-aged Choice over the dry-aged Choice samples (39.2%) were willing to pay $1.77/0.45 kg more (P < 0.0001). Consumers who preferred wet-aged Prime over dry-aged Prime samples (45.8%) paid $1.92/0.45 kg more (P < 0.0001). Consumers who preferred dry-aged Prime samples (27.5%) were willing to pay $1.92/0.45 kg more than for the wet-aged Prime samples. Although more consumers preferred wet-aged samples, markets do exist for dry-aged beef, and consumers are willing to pay a premium for this product.
Tube suction test for evaluating durability of cementitiously stabilized soils.
DOT National Transportation Integrated Search
2011-06-01
In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (F-T/W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moisture ...
Tube suction test for evaluating durability of cementitiously stabilized soils.
DOT National Transportation Integrated Search
2011-06-01
In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (FT/ : W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moistur...
EVALUATION OF TWO CLEANING METHODS FOR THE REMOVAL OF ASBESTOS FIBERS FROM CARPET
This research study examined the effectiveness of dry vacuuming and wet cleaning for the removal of asbestos fibers from carpet, and evaluated the potential for fiber reentrainment during carpet cleaning activities. outine carpet cleaning operations using high-efficiency particul...
Development of a large low-cost double-chamber vacuum laminator
NASA Technical Reports Server (NTRS)
Burger, D. R.
1983-01-01
A double-chamber vacuum laminator was required to investigate the processing and control of the fabrication of large terrestrial photovoltaic modules, and economic problems arising therefrom. Major design considerations were low cost, process flexibility and the exploration of novel equipment approaches. Spherical end caps for industrial tanks were used for the vacuum chambers. A stepping programmer and adjustable timers were used for process flexibility. New processing options were obtained by use of vacuum sensors. The upper vacuum chamber was provided with a diaphragm support to reduce diaphragm stress. A counterweight was used for handling ease and safety. Heat was supplied by a large electrical strip heater. Thermal isolation and mechanical support were provided inexpensively by a bed of industrial marbles. Operational testing disclosed the need for a differential vacuum gauge and proportional valve. Reprogramming of the process control system was simple and quick.
Incidence Study of Spores of Clostridium botulinum in Convenience Foods
Insalata, N. F.; Witzeman, S. J.; Fredericks, G. J.; Sunga, F. C. A.
1969-01-01
The objective of this study was to gather data on the incidence of Clostridium botulinum spores in selected consumer-convenience food products. The incidence of spores of C. botulinum in 100 samples of each of four categories of commercially available convenience foods was determined. These categories included (i) “boil-in-the-bag” foods, (ii) vacuum-packed foods, (iii) pressurized foods, and (iv) dehydrated and freeze-dried foods. Of the 400 samples analyzed, one was found to contain the spores of C. botulinum. This occurred in vacuum-packed frank-furters and was identified as type B. PMID:4890746
Cardona, Jorge A; Lee, Joon-Hee; Talcott, Stephen T
2009-09-23
The muscadine grape ( Vitis rotundifolia ) industry of the southern United States is largely devoid of value-added processes that capture the phytochemical content of wine and juice byproducts. Methods to recover and stabilize polyphenolics from muscadine grape pomace following juice manufacture were evaluated in laboratory-scale and pilot-scale trials. In laboratory-scale trials using osmotic equilibration, water-based extracts from juice pomace initially extracted 31-42% of total polyphenolics, 26-32% of total ellagic acid, and 36-62% of total anthocyanins. When adsorbed onto Amberlite XAD-4 resin to concentrate polyphenolics, these extracts lost 10.5% of their total ellagic acid from inefficient adsorption to the solid phase support. Subsequent pilot-scale trials were evaluated using hot water extracts from grape juice pomace followed by aerobic yeast fermentation to remove sugars and comparison to reversed phase C(18) and Amberlite XAD-4. Extracts were also concentrated using spray-drying and vacuum evaporation. Fermentation had a minor impact on the retention of most polyphenolic compounds evaluated, yet resulted in a 16.3% decrease in antioxidant capacity. Spray-drying resulted in a 30.3% loss in total anthocyanins, a 21.5% loss in total phenolics, and a 23.3% decrease in antioxidant activity, whereas vacuum evaporation had no deleterious impact on these parameters. The physiology of the muscadine grape and its unique phytochemical composition has limited utilization of pomace from wine and juice manufacture. However, these studies demonstrated the potential to extract and concentrate polyphenolic-rich extracts for use in value-added applications.
NASA Astrophysics Data System (ADS)
Schödel, René; Walkov, Alexander; Voigt, Michael; Bartl, Guido
2018-06-01
The refractive index of air is a major limiting factor in length measurements by interferometry, which are mostly performed under atmospheric conditions. Therefore, especially in the last century, measurement and description of the air refractive index was a key point in order to achieve accuracy in the realisation of the length by interferometry. Nevertheless, interferometric length measurements performed in vacuum are much more accurate since the wavelength of the light is not affected by the air refractive index. However, compared with thermal conditions in air, in high vacuum heat conduction is missing. In such a situation, dependent on the radiative thermal equilibrium, a temperature distribution can be very inhomogeneous. Using a so-called contact gas instead of high vacuum is a very effective way to enable heat conduction on nearly the same level as under atmospheric pressure conditions whereby keeping the effect of the air refractive index on a small level. As physics predicts, and as we have demonstrated previously, helium seems like the optimal contact gas because of its large heat conduction and its refractive index that can be calculated from precisely known parameters. On the other hand, helium gas situated in a vacuum chamber could easily be contaminated, e.g. by air leakage from outside. Above the boiling point of oxygen (‑183 °C) it is therefore beneficial to use dry air as a contact gas. In such an approach, the air refractive index could be calculated based on measured quantities for pressure and temperature. However, existing formulas for the air refractive index are not valid in the low-pressure regime. Although it seems reasonable that the refractivity (n ‑ 1) of dry air simply downscales with the pressure, to our knowledge there is no experimental evidence for the applicability of any empirical formula. This evidence is given in the present paper which reports on highly accurate measurements of the air refractive index for the wavelengths 532 nm, 633 nm and 780 nm in the low-pressure regime from 0 Pa to 1300 Pa. In our approach, using a vacuum cell, n ‑ 1 is obtained from the comparison of optical path lengths in vacuum and air along the same path by imaging interferometry. These measured values are compared with the ones obtained from Bönsch’s formula. An agreement of ±10‑9 is found in the low-pressure regime. Accordingly, this formula could be applied for the accurate determination of the refractive index of dry air even at low pressures, provided that the pressure is measured with high accuracy.
Correia, Roberta; Grace, Mary H; Esposito, Debora; Lila, Mary Ann
2017-11-15
Particulate colloidal aggregate food ingredients were prepared by complexing wheat flour, chickpea flour, coconut flour and soy protein isolate with aqueous wild blueberry pomace extracts, then spray drying, freeze drying, or vacuum oven drying to prepare dry, flour-like matrices. Physico-chemical attributes, phytochemical content and stability during storage were compared. Eighteen anthocyanins peaks were identified for samples. Spray dried matrices produced with soy protein isolate had the highest concentration of polyphenols (156.2mg GAE/g) and anthocyanins (13.4mg/g) and the most potent DPPH scavenging activity (714.1μmolesTE/g). Spray dried blueberry polyphenols complexed with protein were protected from degradation during 16weeks at 4°C and 20°C. Soy protein isolate more efficiently captured and stabilized wild blueberry pomace phytochemicals than other protein sources. Overall, spray drying the blueberry extracts complexed with protein proved to be an environment-friendly strategy to produce stable functional ingredients with multiple applications for the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Denry, Isabelle; Goudouri, Ourania-Menti; Harless, Jeffrey; Holloway, Julie A
2018-01-01
Macroporous bioceramic scaffolds are often fabricated via the foam replica technique, based on polymeric foam impregnation with a glass slurry, followed by slow heat treatment to allow for drying, polymeric burnout, and sintering of the glass particles. As a consequence, the process is time consuming and complicated by concurrent crystallization of the glass, often leading to incomplete sintering. Our goal was to investigate the effect of heating rate on sintering behavior, architecture, and mechanical properties of fluorapatite-based glass and glass-ceramic scaffolds. Glass scaffolds were prepared and sintered by rapid vacuum sintering (RVS) at 785°C under vacuum at a fast heating rate (55°C/min.) or without vacuum at a slow heating rate (2°C/min.). Two additional groups were further crystallized at 775°C/1 h. XRD confirmed the presence of fluorapatite for crystallized scaffolds. All groups presented interconnected porosity with a pore size in the 500 μm range. Scaffolds produced by RVS exhibited an excellent degree of sintering while scaffolds produced by slow sintering were incompletely sintered. The mean compressive strength was significantly higher for the RVS groups (1.52 ± 0.55 and 1.72 ± 0.61 MPa) compared to the slow-sintered groups (0.54 ± 0.30 and 0.45 ± 0.26 MPa). Meanwhile, the total production time was reduced by more than 12 h by using the RVS technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 291-299, 2018. © 2017 Wiley Periodicals, Inc.
Powder processing of hybrid titanium neural electrodes
NASA Astrophysics Data System (ADS)
Lopez, Jose Luis, Jr.
A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.
Effects of stepwise dry/wet-aging and freezing on meat quality of beef loins.
Kim, Yuan H Brad; Meyers, Brandon; Kim, Hyun-Wook; Liceaga, Andrea M; Lemenager, Ronald P
2017-01-01
The objective of this study was to evaluate the effects of stepwise dry/wet-aging and freezing method on quality attributes of beef loins. Paired loins (M. Longissimus lumborum) from eight carcasses were assigned to either stepwise dry/wet-aging (carcass dry-aging for 10days then further wet-aging for 7days in vacuum bags) or carcass dry-aging only for 17days. Then, each loin was divided into three sections for freezing (never-frozen, blast or cryogenic freezing). Stepwise dry/wet-aged loin had lower purge/drip loss and shear force than conventionally dry-aged loin (P<0.05), but similar color and sensory characteristics (P>0.05). The cryogenic freezing resulted in a significant decrease in shear force values and a significant improvement in water-holding capacity (WHC). These findings indicate that the stepwise dry/wet-aging coupled with cryogenic freezing could provide beneficial impacts to the local meat industry by providing equivalent quality attributes as conventional dry-aging and improving WHC of frozen/thawed meat, while reducing the time needed for dry-aging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pancam Mast Assembly on Mars Rover
NASA Technical Reports Server (NTRS)
Warden, Robert M.; Cross, Mike; Harvison, Doug
2004-01-01
The Pancam Mast Assembly (PMA) for the 2003 Mars Rover is a deployable structure that provides an elevated platform for several cameras. The PMA consists of several mechanisms that enable it to raise the cameras as well as point the cameras in all directions. This paper describes the function of the various mechanisms as well as a description of the mechanisms and some test parameters. Designing these mechanisms to operate on the surface of Mars presented several challenges. Typical spacecraft mechanisms must operate in zero-gravity and high vacuum. These mechanisms needed to be designed to operate in Martian gravity and atmosphere. Testing conditions were a little easier because the mechanisms are not required to operate in a vacuum. All of the materials are vacuum compatible, but the mechanisms were tested in a dry nitrogen atmosphere at various cold temperatures.
Meeting today's requirements for large thermal vacuum test facilities
NASA Technical Reports Server (NTRS)
Corinth, R. L.; Rouse, J. A.
1986-01-01
The Lockheed Thermal Vacuum Facility at Sunnyvale, California, completed in late 1986, one of the largest multi-program facilities constructed to date is described. The horizontal 12.2 m diameter by 24.4 m long chamber has removable heads at each end and houses a thermal shroud providing a test volume 10.4 m diameter by 24.4 m long. The chamber and thermal shroud are configured to permit the insertion of a 6.1 m wide by 24.4 m long vibration isolated optical bench. The pumpimg system incorporates an internal cryopumping array, turbomolecular pumps and cryopumps to handle multi-program needs and ranges of gas loads. The high vacuum system is capable of achieving clean, dry and empty pressures below 1.3 times 10 to the minus 6 power Pa (10 to the minus 8 power torr.)
Accelerated vacuum testing of long life ball bearings and sliprings
NASA Technical Reports Server (NTRS)
Meeks, C. R.; Christy, R. I.; Cunningham, A. C.
1971-01-01
Extensive analytical studies and testing have been conducted on bearings and sliprings in vacuum at temperatures from 30 to 130 F. Thirty-six bearings lubricated with two types of oil were tested in vacuum of less than 10 to the minus 8th power torr at speeds from 55 to 180 rpm. Temperatures, load, speed, and oil viscosity were varied to evaluate the effects on life and wear. All bearings performed successfully during a 7-month test, and the potential merits of the two oils were compared. Over 25 different, dry-lubricated brush/slipring material combinations have been tested, with variations of brush and ring design and surface speed. Test results indicate the probability of 10 years or more of slipring and brush lifetime with properly designed brushes for 1-in.-diameter ring rotating at 60 rpm.
Porsby, Cisse Hedegaard; Vogel, Birte Fonnesbech; Mohr, Mona; Gram, Lone
2008-03-20
Cold-smoked salmon is a ready-to-eat product in which Listeria monocytogenes sometimes can grow to high numbers. The bacterium can colonize the processing environment and it is believed to survive or even grow during the processing steps. The purpose of the present study was to determine if the steps in the processing of cold-smoked salmon affect survival and subsequent growth of a persistent strain of L. monocytogenes to a lesser degree than presumed non-persistent strains. We used a sequence of experiments increasing in complexity: (i) small salmon blocks salted, smoked or dried under model conditions, (ii) fillets of salmon cold-smoked in a pilot plant and finally, (iii) assessment of the bacterial levels before and after processing during commercial scale production. L. monocytogenes proliferated on salmon blocks that were brined or dipped in liquid smoke and left at 25 degrees C in a humidity chamber for 24 h. However, combining brining and liquid smoke with a drying (25 degrees C) step reduced the bacterium 10-100 fold over a 24 h period. Non-salted, brine injected or dry salted salmon fillets were surface inoculated with L. monocytogenes and cold-smoked in a pilot plant. L. monocytogenes was reduced from 10(3) to 10-10(2) CFU/cm(2) immediately after cold-smoking. The greatest reductions were observed in dry salted and brine injected fillets as compared to cold-smoking of non-salted fresh fillets. Levels of L. monocytogenes decreased further when the cold-smoked fish was vacuum-packed and stored at 5 degrees C. A similar decline was seen when inoculating brine injected fillets after cold-smoking. High phenol concentrations are a likely cause of this marked growth inhibition. In a commercial production facility, the total viable count of salmon fillets was reduced 10-1000 fold by salting, cold-smoking and process-freezing (a freezing step after smoking and before slicing). The prevalence of L. monocytogenes in the commercial production facility was too low to determine any quantitative effects, however, one of nine samples was positive before processing and none after. Taken together, the processing steps involved in cold-smoking of salmon are bactericidal and reduce, but do not eliminate L. monocytogenes. A persistent strain was no less sensitive to the processing steps than a clinical strain or strain EGD.
Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1994-01-01
Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine-grain diamond films can be effectively used as wear-resistant, self-lubricating coatings not only in air and dry nitrogen, but also in ultrahigh vacuum. The wear mechanism of diamond films is that of small fragments chipping off the surface. The size of wear particles is related to the extent of wear rates.
Self-Lubricating, Wear-Resistant Diamond Films Developed for Use in Vacuum Environment
NASA Technical Reports Server (NTRS)
1996-01-01
Diamond's outstanding properties--extreme hardness, chemical and thermal inertness, and high strength and rigidity--make it an ideal material for many tribological applications, such as the bearings, valves, and engine parts in the harsh environment found in internal-combustion engines, jet engines, and space propulsion systems. It has been demonstrated that chemical-vapor-deposited diamond films have low coefficients of friction (on the order of 0.01) and low wear rates (less than 10(sup -7) mm (sup 3/N-m)) both in humid air and dry nitrogen but that they have both high coefficients of friction (greater than 0.4) and high wear rates (on the order of 1(sup -4) mm sup 3/N-m)) in vacuum. It is clear that surface modifications that provide acceptable levels of friction and wear properties will be necessary before diamond films can be used for tribological applications in a space-like, vacuum environment. Previously, it was found that coatings of amorphous, non-diamond carbon can provide low friction in vacuum. Therefore, to reduce the friction and wear of diamond film in vacuum, carbon ions were implanted in an attempt to form a surface layer of amorphous carbon phases on the diamond films.
New approach for dry formulation techniques for rhizobacteria
NASA Astrophysics Data System (ADS)
Elchin, A. A.; Mashinistova, A. V.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Jorobekova, Sh. J.
2009-04-01
Two beneficial Pseudomonas isolates selected from rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski have been found to have biocontrol activity. An adequate biocontrol effect requires high yield and long stability of the bacterial preparation [1], which could be achieved by an effective and stable formulation. This study was aimed to test various approaches to dry formulation techniques for Pseudomonas- based preparations. To reach this goal, two drying formulation techniques have been tested: the first one, spray drying and the second, low-temperature contact-convective drying in fluidized bed. The optimal temperature parameters for each technique were estimated. Main merits of the selected approach to dry technique are high yield, moderate specific energy expenditures per 1 kg of evaporated moisture, minimal time of contact of the drying product with drying agent. The technological process for dry formulation included the following stages: the obtaining of cell liquids, the low-temperature concentrating and the subsequent drying of a concentrate. The preliminary technological stages consist in cultivation of the rhizobacteria cultures and concentrating the cell liquids. The following requirements for cultivation regime in laboratory conditions were proposed: optimal temperatures are 26-28°С in 3 days, concentration of viable cells in cell liquid makes 1010-1011 cell/g of absolutely dry substance (ADS). For concentrating the cell liquids the method of a vacuum evaporation, which preserves both rhizobacteria cells and the secondary metabolites of cell liquid, has been used. The process of concentrating was conducted at the minimum possible temperature, i.e. not above 30-33°С. In this case the concentration of viable cells has decreased up to 109-1010 cell/g of ADS. For spray drying the laboratory up-dated drier BUCHI 190, intended for the drying of thermolabile products, was used. The temperatures of an in- and outcoming air did not exceed 50°С and 38°С, respectively. To enrich of dry product yield, 20% of sodium humate [2] was used as filling agent. As a result, concentration of viable cells in yield makes 105-106 cell/g of ADS. Low-temperature contact-convective drying in fluidized bed with use of preliminarily dried heat-carrier was evaluated at 25-30°С. Granules of humic acids (d 3 mm) served as inert carrying agent. So, the concentration of viable cells in dry product makes 108-109 cell/g of ADS. The results presented demonstrated that fluidized bed drying technique applied on rhizobacteria-based BCA had higher beneficial effect in terms of high yield as compared to spray drying. Acknowledgement. This research was supported by the grant of ISTC KR-993.2. 1. Levenfors, J.R., et al. Biological control of snow mould (Microdochium nivale) in winter cereals by Pseudomonas brassicacearum MA250. Biocontrol 2007. 2. Orlov, D.S. (1990) Soil Humic Acids and General Theory of Humification, MSU Publisher, Moscow
Effect of vacuum roasting on acrylamide formation and reduction in coffee beans.
Anese, Monica; Nicoli, Maria Cristina; Verardo, Giancarlo; Munari, Marina; Mirolo, Giorgio; Bortolomeazzi, Renzo
2014-02-15
Coffea arabica beans were roasted in an oven at 200 °C for increasing lengths of time under vacuum (i.e. 0.15 kPa). The samples were then analysed for colour, weight loss, acrylamide concentration and sensory properties. Data were compared with those obtained from coffee roasted at atmospheric pressure (i.e. conventional roasting), as well as at atmospheric pressure for 10 min followed by vacuum treatment (0.15 kPa; i.e. conventional-vacuum roasting). To compare the different treatments, weight loss, colour and acrylamide changes were expressed as a function of the thermal effect received by the coffee beans during the different roasting processes. Vacuum-processed coffee with medium roast degree had approximately 50% less acrylamide than its conventionally roasted counterpart. It was inferred that the low pressure generated inside the oven during the vacuum process exerted a stripping effect preventing acrylamide from being accumulated. Vacuum-processed coffee showed similar colour and sensory properties to conventionally roasted coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1984-01-01
An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1982-01-01
The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.
Contreras, M; Benedito, J; Bon, J; Garcia-Perez, J V
2018-03-01
The application of power ultrasound (PuS) could be used as a novel technology with which to intensify thermal treatments using hot air. Mild thermal treatments have been applied to improve the soft texture of dry-cured ham caused by defective processing. In this regard, the aim of this study was to assess the kinetic intensification linked to the application of airborne PuS in the mild thermal treatment using hot air of dry-cured ham. For this purpose, vacuum packed cylindrical samples (2.52±0.11cm in diameter and 1.90±0.14cm in height) of dry-cured ham were heated using hot air at different temperatures (40, 45, 50°C) and air velocities (1, 2, 3, 4, 6m/s) with (22.3kHz, 50W) and without PuS application. Heat transfer was analyzed by considering that it was entirely controlled by conduction and the apparent thermal diffusivity was identified by fitting the model to the heating kinetics. The obtained results revealed that PuS application sped up the heat transfer, showing an increase in the apparent thermal diffusivity (up to 37%). The improvement in the apparent thermal diffusivity produced by PuS application was greater at high temperatures (50°C) but negligible at high air velocities (6m/s). Heating caused an increase in the hardness and elasticity of dry-cured ham, which would correct ham pastiness defects, while the influence of PuS on such textural parameters was negligible. Copyright © 2017 Elsevier B.V. All rights reserved.
1981-01-08
lithium perchlorate was dried at -180°C for several days. Tetraethylammonium perchlorate was recrystallized from water and dried in a vacuum oven at...cases the electrolyte composition p, was chosen to be 0.1 M lithium perchlorate or 0.1 M tetraethyl ammonium perchlorate (TEAP). These electrolytes...perchlorate specific adsorption is quite noticeable. Hexafluorophosphate adsorption is sufficiently weak so that small positive values of the potential across
Micellar Drug Delivery and Proteomics Analysis for Effective Treatment of Resistant Prostate Cancer
2015-12-01
22.4 g, 0.1 mol) dissolved in pyridine (50 mL) and CH2Cl2 (200 mL), and chilled to −78°C over dry ice. A solution of triphosgene (50 mmol, 14.8 g...chloroform, and precipitate in large amount of isopropanol and diethyl ether, followed by drying under vacuum for 48 h. Purified copolymer (100 mg...immunoassay. Biosens. Bioelectron. 2013, 39 (1), 296−9. (146) Shields, N.; Dodd, K. J.; Abblitt, C. Do children with Down Syndrome perform sufficient
AGE Bio Diesel Emissions Evaluation
2003-12-01
329 44 788 Vratd) Standard Meter Volume, m° 1.336 1.214 1.255 1,268 am Average Sampling Rate, dscfm 0786 0 714 0 739 0 746 P, Stack Pressure, inches...sat) Moisture (at saturation), % by volume 70864 248 8 36676 V.d Standard Water Vapor Volume, ft’ 2.198 1 624 1 911 1-B• Dry Mole Fraction 0 941 0946...Clock Meter Dry Gas Sample Time, Volume, Rotameter Meter Temp., Vacuum, Probe Time (min) (24-hr) (liter) Setting (OF) (in.Hg) jTpr, OF /o5 f / 52 / 6 14V_
Trace contaminant adsorption and sorbent regeneration in closed ecological systems
NASA Technical Reports Server (NTRS)
Arnold, C. R.; Kersels, G. J.; Merrill, R. P.; Robell, A. J.; Wheeler, A.
1972-01-01
Correlation was obtained for determining sorptive capacity of carbon for pure and mixed contaminants under dry and humid conditions at various temperatures. Vacuum desorption rates were investigated for single particles and for sorbent beds. For sorbent beds, rate-determining step is Knudsen diffusion through interparticle voids.
NASA Astrophysics Data System (ADS)
Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol
2014-09-01
Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties
NASA Astrophysics Data System (ADS)
Hoshino, Masato; Aoki, Sadao
2006-02-01
A laser plasma soft X-ray microscope with Wolter mirrors was developed so that specimens could be set in the atmosphere. Silicon nitride membranes 100 nm thick were used as vacuum-tight windows. Using relatively large windows (0.46× 0.46 mm2), an adequate working distance for samples, which was approximately 1.2 mm, was assured. The endurance of the vacuum-tight window was measured briefly. Dry biological cells could be observed with resolution better than 100 nm. A preliminary observation of wet biological cells was carried out using a wet environmental sample holder which was composed of only two sheets of silicon nitride membrane. An X-ray micrograph of wet red blood cells from a chicken was obtained without apparent effects of radiation damage. The properties of a vacuum-tight window and a wet sample holder are discussed.
Díez, J García; Patarata, L
2013-04-01
Portuguese chouriço de vinho is made by drying coarsely minced meat and fat that has been previously marinated with wine (usually red), salt, and garlic for 1 to 2 days at a low temperature (4 to 8 °C). This procedure may improve the microbiological safety of the product. The aim of this study was to evaluate the behavior of three pathogens in this product, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus, to establish the minimum period of drying and maturation necessary to render safe products. The pathogens were inoculated in the chouriço de vinho batter. A factorial design was used to study the following variables in the fermentation process: (i) the presence or absence of an indigenous Lactobacillus sakei starter culture; (ii) the presence or absence of fermentable carbohydrates; and (iii) the salt level (1.5 or 3%). The samples were analyzed 24 h after the preparation of the batter (at stuffing); after 7, 15, and 30 days of drying; and after 30 days of storage at 4 °C under vacuum. Under all of the conditions studied, the levels of the three pathogens decreased during the drying period. In the early stages of drying, the addition of L. sakei starter culture and/or carbohydrates resulted in lower levels of gram-positive pathogens. After 15 days of drying, populations of all pathogens decreased by ca. 2 log in all samples. At that sampling time, L. monocytogenes was undetectable in the chouriço de vinho with L. sakei starter culture and carbohydrates. The mean count of S. aureus after 15 days of drying was below 1 log CFU/g. After 30 days of drying, no pathogens were detected. The drying period could be shortened to 15 days when considering only the gram-positive pathogens studied and the use of a starter culture and carbohydrates. Due to the low infective dose of Salmonella spp., the product should be considered safe after 30 days, when this pathogen became undetectable.
Formation of protein sub-visible particles during vacuum degassing of etanercept solutions.
Wang, Haibin; Zheng, Hong-Jian; Wang, Zhao; Bai, Hua; Carpenter, John F; Chen, Shuqing; Fang, Wei-Jie
2014-05-01
The main purpose of this manuscript is to describe a phenomenon in which vacuum degassing a reconstituted freeze-dried fusion protein etanercept formulation caused a significant amount of protein sub-visible particles (SbVP). Physical stability of etanercept was monitored by micro-flow imaging (MFI), dynamic light scattering (DLS), size-exclusion high pressure liquid chromatography (SE-HPLC) and far- and near-ultraviolet circular dichroism (far- and near-UV CD). One potential explanation of this phenomenon is that bubble collapses when the vacuum is applied, leads to substantial heat formation, and ultimately free radical formation. Subsequently, the effect of a free-radical scavenger (ascorbic acid, AA) on SbVP formation was also evaluated. Degassing of etanercept solution by applying vacuum caused substantial increase of SbVP, as detected by MFI and DLS. However, traditional techniques such as SE-HPLC could not detect any change. The addition of free-radical scavenger had minimal effect on SbVP formation, therefore the formation of free radicals was probably not the main cause for this effect. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Wenbin; Zou, Xiaoping; Bai, Xiao; Yang, Ying; Chen, Dan
2018-01-01
Herein, we report a modified vapor-assisted deposition method to fabricate CH3NH3PbI3 film at 70 °C in a vacuum drying oven. The modified method has excellent operability and expandability in preparing perovskite solar cells. The CH3NH3I treatment temperature is 130 °C or 150 °C in conventional method, but we reduced the temperature to 70 °C in the modified vapor-assisted method. Meanwhile, the quality of CH3NH3PbI3 films prepared via the modified method is superior to that of CH3NH3PbI3 films of solution-processed method.
Radappertization of ready-to-eat shelf-stable, traditional Indian bread - Methi Paratha
NASA Astrophysics Data System (ADS)
Bhoir, Shraddha A.; Muppalla, Shobita R.; Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun
2015-06-01
Shelf-stable ready-to-eat (RTE) Methi Paratha (flavored Indian unleavened flat bread) was developed using combination of hurdles including radiation processing. The Methi Paratha was prepared using dough containing wheat flour, dried fenugreek leaves and spices. The samples were vacuum packed in multi-layered pouches and irradiated at 25 kGy in frozen conditions. Samples were evaluated for microbiological counts, lipid peroxidation and sensory attributes during storage under ambient conditions. Samples were found to be devoid of any viable microorganism throughout the storage period of 180 days. The thiobarbituric acid reactive substances (TBARS) value which indicates lipid peroxidation of samples did not show any significant increase with time. The Methi Paratha was found to be acceptable by the evaluating panelists.
Impact of vacuum cooking process on the texture degradation of selected apple cultivars.
Bourles, E; Mehinagic, E; Courthaudon, J L; Jourjon, F
2009-01-01
Thermal treatments are known to affect the textural properties of fruits and vegetables. This study was conducted to evaluate the influence of vacuum cooking process on the mechanical properties of various apple cultivars. A total of 10 apple cultivars were industrially processed by vacuum pasteurization at 95 degrees C for 25 min. The raw material was characterized by penetrometry, uniaxial double compression, soluble solid content, and titrable acidity. Textural properties of processed apples were analyzed by uniaxial double compression. As expected, for all cultivars, fruit resistance was lower after processing than before. Results showed that texture degradation due to vacuum pasteurization was different from one cultivar to another. Indeed, some cultivars, initially considered as the most resistant ones, such as Braeburn, were less suitable for processing, and became softer than others after thermal treatment. Consequently, it is worth noting that the texture classification of the investigated apple cultivars was changed by the vacuum-cooking process.
NASA Astrophysics Data System (ADS)
El-Ashram, Saeed; Suo, Xun
2017-02-01
Several methods have been proposed for separation of eimerian oocysts and trichostronglyid eggs from extraneous debris; however, these methods have been considered to be still inconvenient in terms of time and wide-ranging applications. We describe herein an alternative way using the combination of electrical cream separator and vacuum filtration for harvesting and purifying eimerian oocysts and haemonchine eggs on large-scale applications with approximately 81% and 92% recovery rates for oocysts and nematode eggs obtained from avian and ovine faeces, correspondingly. The sporulation percentages as a measure of viability in the harvested oocysts and eggs from dry faecal materials are nearly 68% and 74%, respectively, and 12 liters of faecal suspension can be processed in approximately 7.5 min. The mode of separation in terms of costs (i.e. simple laboratory equipments and comparably cheap reagents) and benefits renders the reported procedure an appropriate pursuit to harvest and purify parasite oocysts and eggs on a large scale in the shortest duration from diverse volumes of environmental samples compared to the modified traditional sucrose gradient, which can be employed on a small scale.
El-Ashram, Saeed; Suo, Xun
2017-01-01
Several methods have been proposed for separation of eimerian oocysts and trichostronglyid eggs from extraneous debris; however, these methods have been considered to be still inconvenient in terms of time and wide-ranging applications. We describe herein an alternative way using the combination of electrical cream separator and vacuum filtration for harvesting and purifying eimerian oocysts and haemonchine eggs on large-scale applications with approximately 81% and 92% recovery rates for oocysts and nematode eggs obtained from avian and ovine faeces, correspondingly. The sporulation percentages as a measure of viability in the harvested oocysts and eggs from dry faecal materials are nearly 68% and 74%, respectively, and 12 liters of faecal suspension can be processed in approximately 7.5 min. The mode of separation in terms of costs (i.e. simple laboratory equipments and comparably cheap reagents) and benefits renders the reported procedure an appropriate pursuit to harvest and purify parasite oocysts and eggs on a large scale in the shortest duration from diverse volumes of environmental samples compared to the modified traditional sucrose gradient, which can be employed on a small scale. PMID:28233853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Restivo, M.
SRNL Environmental and Chemical Process Technology (E&CPT) was requested to perform testing of vacuum pumps per a verbal request from the Customer, SRNL Hydrogen Processing Technology. Tritium Operations is currently having difficulties procuring the Normetex™® Model 15 m 3/hr (9 CFM) vacuum pump (formerly Normetex Pompes, now Eumeca SARL). One possible solution proposed by Hydrogen Processing Technology personnel is to use two Senior Aerospace Metal Bellows MB-601 vacuum pumps piped with the heads in series, and the pumps in series (Figure 1 below). This memorandum documents the ultimate vacuum testing that was performed to determine if this concept was amore » viable alternate vacuum pump strategy. This testing dovetails with previous pump evaluations documented in references 1 and 2.« less
Ion distribution in dry polyelectrolyte multilayers: a neutron reflectometry study.
Ghoussoub, Yara E; Zerball, Maximilian; Fares, Hadi M; Ankner, John F; von Klitzing, Regine; Schlenoff, Joseph B
2018-02-28
Ultrathin films of complexed polycation poly(diallyldimethylammonium), PDADMA, and polyanion poly(styrenesulfonate), PSS, were prepared on silicon wafers using the layer-by-layer adsorption technique. When terminated with PDADMA, all films had excess PDADMA, which was balanced by counterions. Neutron reflectivity of these as-made multilayers was compared with measurements on multilayers which had been further processed to ensure 1 : 1 stoichiometry of PDADMA and PSS. The compositions of all films, including polymers and counterions, were determined experimentally rather than by fitting, reducing the number of fit parameters required to model the reflectivity. For each sample, acetate, either protiated, CH 3 COO - , or deuterated, CD 3 COO - , served as the counterion. All films were maintained dry under vacuum. Scattering length density profiles were constrained to fit reflectivity data from samples having either counterion. The best fits were obtained with uniform counterion concentrations, even for stoichiometric samples that had been exposed to PDADMA for ca. 5 minutes, showing that surprisingly fast and complete transport of excess cationic charge occurs throughout the multilayer during its construction.
Near-Net-Shape Processing of Sintered Fibrous Ceramics Achieved
NASA Technical Reports Server (NTRS)
Angel, Paul W.
2000-01-01
A variety of sintered fibrous ceramic (SFC) materials have been developed over the last 50 years as thermal barrier materials for reentry applications. SFC materials typically exhibit very low thermal conductivities combined with low densities and good thermal stability up to 2500 F. These materials have flown successfully on the space shuttle orbiters since the 1960's. More recently, the McDonnell Douglas Corporation successfully used SFC tiles as a heat shield on the underside of its DC X test vehicle. For both of these applications, tiles are machined from blocks of a specific type of SFC called an alumina-enhanced thermal barrier (AETB). The sizes of these blocks have been limited by the manufacturing process. In addition, as much as 80 to 90 percent of the material can be lost during the machining of tiles with significant amounts of curvature. To address these problems, the NASA Glenn Research Center at Lewis Field entered a cooperative contract with the Boeing Company to develop a vacuum-assisted forming process that can produce large (approximately 4 square feet), severely contoured panels of AETB while saving costs in comparison to the conventional cast-and-machine billet process. For shuttle use, AETB is slurry cast, drained, and fired to form square billets conforming to the shape of the filtration box. The billets are then cut into tiles of the appropriate size for thermally protecting the space shuttle. Processing techniques have limited the maximum size of AETB billets to 21.5 square inches by 6.5-in. thick, but the space shuttles use discrete heat shield tiles no more than 8 to 12 square inches. However, in other applications, large, complex shapes are needed, and the tiling approach is undesirable. For such applications, vacuum-assisted forming can produce large parts with complex shapes while reducing machining waste and eliminating cemented joints between bonded billets. Because it allows contoured shapes to be formed, material utilization is inherently high. Initial estimates show that the amount of material lost during machining can be reduced by 50 percent or more. In addition, a fiber alignment favorable for minimum heat transfer is maintained for all panel shapes since the fibers are aligned parallel to the contoured surface of the forming tool or mold. The vacuum-assisted forming process can complete the entire forming operation in a matter of minutes and can produce multiple parts whose size is limited only by the size of the forming tool. To date, panels as large as 2 square feet have been demonstrated The vacuum-assisted forming process starts with the fabrication of a permeable forming tool, or mold, with the proper part contour. This reusable tool is mounted over an internal rib support structure, as depicted in the diagram, such that a vacuum can be pulled on the bottom portion of the tool. AETB slurry is then poured over and around the tool, liquid is drawn from the slurry, and the part forms over the tool surface. The part is then dried, fired, and finished machined. Future plans include an evaluation of the need for additional coatings and surface-toughness treatments to extend the durability and performance of this material.
Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy.
Psenicka, Martin; Tesarová, Martina; Tesitel, Jakub; Nebesárová, Jana
2010-07-01
In this study three types of scanning electron microscopes were used for the size determination of spermatozoa of sterlet Acipenser ruthenus - high vacuum scanning electron microscope (SEM, JEOL 6300), environmental scanning electron microscope (ESEM, Quanta 200 FEG), field emission scanning electron microscope (FESEM, JEOL 7401F) with cryoattachment Alto 2500 (Gatan) and transmission electron microscope (TEM, JEOL 1010). The use of particular microscopes was tied with different specimen preparation techniques. The aim of this study was to evaluate to what degree the type of used electron microscope can influence the size of different parts of spermatozoa. For high vacuum SEM the specimen was prepared using two slightly different procedures. After chemical fixation with 2.5% glutaraldehyde in 0.1M phosphate buffer and post-fixation by 1% osmium tetroxide, the specimen was dehydrated by acetone series and dried either by critical point method or by means of t-butylalcohol. For ESEM fresh, unfixed material was used, which was dropped on microscopic copper grids. In FESEM working in cryo-mode the specimen was observed in a frozen state. Ultrathin sections from chemically fixed and Epon embedded specimens were prepared for TEM observation. Distinct parts of sterlet spermatozoa were measured in each microscope and the data obtained was statistically processed. Results confirmed that the classical chemical procedure of specimen preparation for SEM including critical point drying method led to a significant contraction of all measured values, which could deviate up to 30% in comparison with values measured on the fresh chemically untreated specimen in ESEM. Surprisingly sperm dimensions determinated on ultrathin sections by TEM are comparable with values obtained in ESEM or FESEM. Copyright 2010 Elsevier Ltd. All rights reserved.
40 CFR 63.5460 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... use include: toggling, hanging, pasting, and vacuum drying. Finish add-on means the amount of solid material deposited on the leather substrate due to finishing operations. Typically, the solid deposition is a dye or other chemical used to enhance the color and performance of the leather. Finish add-on is...
40 CFR 63.5460 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... use include: toggling, hanging, pasting, and vacuum drying. Finish add-on means the amount of solid material deposited on the leather substrate due to finishing operations. Typically, the solid deposition is a dye or other chemical used to enhance the color and performance of the leather. Finish add-on is...
2008-10-27
was repeated twice, dissolving the product in chloroform and diethyl ether, respectively. The polymer was dried at 60 °C under vacuum overnight...the Tg of the i Bu remains the same. Table 1. Tg for Butyl Methacrylate-co- Propyl Methacryl POSS Polymers with Various POSS Substituents
How to Guarantee Long Life for your Carpeting.
ERIC Educational Resources Information Center
Gilliland, John W.
1968-01-01
Carpeting must be maintained through a proper maintenance program so as to extend the carpet's life and allow for continued sound control. Four types of common soils or stains are discussed--(1) dry soils, (2) water soluble stains, (3) petroleum soluble stains, and (4) other stains. Various cleaning methods, such as, vacuuming, spot removal, wet…
Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/Unity
2005-04-17
ISS011-E-05161 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, uses the ISS wet/dry vacuum cleaner assembly to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).
Ion-Implanted Diamond Films and Their Tribological Properties
NASA Technical Reports Server (NTRS)
Wu, Richard L. C.; Miyoshi, Kazuhisa; Korenyi-Both, Andras L.; Garscadden, Alan; Barnes, Paul N.
1993-01-01
This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 microns) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C(+) (m/e = 12) at an ion energy of 160 eV and a fluence of 6.72 x 10(exp 17) ions/sq cm. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10(exp -7)Pa), dry nitrogen and humid air (40% RH) environments. The effects of C(+) ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments.
Qian, Junfeng; Yang, Qiuhui; Sun, Fuan; He, Mingyang; Chen, Qun; Yun, Zhi; Qin, Lizhen
2013-01-01
In-situ alkaline transesterification of rapeseed oil with methanol for the production of biodiesel and nontoxic rapeseed meal was carried out. Water removal from milled rapeseed by methanol washing was more effective than vacuum drying. The conversion rate of rapeseed oil into FAME was 92%, FAME mass was 8.81 g, glucosinolates content in remaining rapeseed meal was 0.12% by methanol washing, while by vacuum drying the values were 46%, 4.44 g, 0.58%, respectively. In the presence of 0.10 mol/L NaOH in methanol, with methanol/oil molar ratio of 180:1 and a 3h reaction at 40 °C, a conversion rate of 98% was achieved, and the glucosinolates content was reduce to 0.07%, a value which below the GB/T 22514-2008 standard in China. Thus the rapeseed meal can be used as a source of protein in animal feed. The FAME prepared through in-situ alkaline transesterification met the ASTM specifications for biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhao, Yingting; Jiang, Yajun; Zheng, Baodong; Zhuang, Weijing; Zheng, Yafeng; Tian, Yuting
2017-08-01
This study investigated the effects of microwave power density on effective moisture diffusion coefficient (D eff ), glass transition temperature (T g ), gelatinization temperature (T P ), physical and chemical qualities of lotus seeds during microwave vacuum drying. D eff increased by 42% and 127% at 15W/g and 20W/g, respectively, when compared with 10W/g. T P was negatively correlated with the relaxation times of T 21 and T 22 , while T g was negatively correlated with the relative areas A 22 . The rates of change of color were observed to be divided roughly into two periods, consisting of a rapid change caused by enzymatic browning and a slow change caused by non-enzymatic browning. An equation is provided to illustrate the relationship of k 1 and k 2 of Peleg's model depending on power density during rehydration kinetics. The samples at 20W/g exhibited the higher content of amino acid (540.19mg/100gd.b.) while lower starch (17.53g/100gd.b.). Copyright © 2017 Elsevier Ltd. All rights reserved.
Recovery of Retained Tritium from Graphite Tile of JT-60U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeishi, Toshiharu; Katayama, Kazunari; Nishikawa, Masabumi
Tritium thermal release and full combustion with oxygen were performed on isotropic graphite tiles used for plasma facing material of JT-60U. Approximately 50-80 % of tritium was released by dry argon gas purge and 20-50 % of tritium was released by humid argon gas purge up to 800-1200 deg. C within one day, respectively. Further several percent of tritium was released by full combustion with oxygen. It was experimentally confirmed that all retained tritium is not released by thermal dry gas purge and by use of isotope exchange reaction at high temperature in such a short period. In the fullmore » combustion operation, isotropic graphite begins to combust at higher temperature than 650 deg. C, but effective combustion temperature was higher than 700 deg. C. Since it is very difficult to heat the graphite tile attached on the wall of vacuum vessel at higher than 700 deg. C, it is considered to be not easy to recover all the tritium retained in the graphite while in the vacuum vessel.« less
[Effectiveness of different maintenance methods for codonopsis radix].
Shi, Yan-Bin; Wang, Yu-Ping; Li, Yan; Liu, Cheng-Song; Li, Hui-Li; Zhang, Xiao-Yun; Li, Shou-Tang
2014-05-01
To observe different maintenance methods including vacuum-packing, storage together with tobacco, storage together with fennel, ethanol steam and sulfur fumigation for the protection of Codonopsis Radix against mildew and insect damage, and to analyze the content of polysaccharide and flavonoids of Codonopsis Radix tested in this studies, so as to look for the scientific maintenance methods replacing traditional sulfur fumigation. Except for the sulfur fumigation, naturally air-dried Codonopsis Radix was used to investigate the maintenance effectiveness of the above methods, respectively. Mildew was observed by visual inspection, and the content of polysaccharide and flavonoids were determined by ultra-violet and visible spectrophotometer. Comprehensive evaluation was given based on the results of the different maintenance methods. Low-temperature vacuum-packing, ambient-temperature vacuum-packing and sulfur fumigation could keep Codonopsis Radix from mildew and insect damage for one year, but ambient-temperature vacuum-packing showed flatulent phenomenon; ethanol steam could keep Codonopsis Radix from mildew and insects for over half a year; storage together with tobacco or fennel did not have maintenance effect. The difference of polysaccharide and flavonoids contents of all tested Codonopsis Radix was not statistically significant. Low temperature vacuum-packing maintenance can replace traditional sulfur fumigation, and it can maintain the quality of Codonopsis Radix to a certain extent.
Optimization of a method for preparing solid complexes of essential clove oil with β-cyclodextrins.
Hernández-Sánchez, Pilar; López-Miranda, Santiago; Guardiola, Lucía; Serrano-Martínez, Ana; Gabaldón, José Antonio; Nuñez-Delicado, Estrella
2017-01-01
Clove oil (CO) is an aromatic oily liquid used in the food, cosmetics and pharmaceutical industries for its functional properties. However, its disadvantages of pungent taste, volatility, light sensitivity and poor water solubility can be solved by applying microencapsulation or complexation techniques. Essential CO was successfully solubilized in aqueous solution by forming inclusion complexes with β-cyclodextrins (β-CDs). Moreover, phase solubility studies demonstrated that essential CO also forms insoluble complexes with β-CDs. Based on these results, essential CO-β-CD solid complexes were prepared by the novel approach of microwave irradiation (MWI), followed by three different drying methods: vacuum oven drying (VO), freeze-drying (FD) or spray-drying (SD). FD was the best option for drying the CO-β-CD solid complexes, followed by VO and SD. MWI can be used efficiently to prepare essential CO-β-CD complexes with good yield on an industrial scale. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, W.G.; Longanbach, J.R.; Muralidhara, H.S.
Standard reaction conditions of 427 C, 5 minutes reaction time, 2:1 solvent/coal ratio and 1000 psig (r.t.) hydrogen overpressure result in good, but not maximum, conversions to THF soluble with both Illinois No. 6 and Wyodak (upper seam) coals. The cumulative effects of the pretreatment steps were also examined using feedstocks which were dried in a vacuum oven at room temperature under nitrogen before liquefaction to remove the effects of moisture. Chloride removal followed by drying had a positive effect on liquefaction. Oil agglomeration followed by drying also improved liquefaction reactivity significantly. Solvent drying also resulted in a small increasemore » in liquefaction reactivity. The overall reactivity of coal treated in sequence with each pretreatment step was slightly less than that of the dry ground coal. Liquefaction under a high partial pressure of hydrogen sulfide in hydrogen also results in a significant increase in conversion to THF solubles. 1 reference, 12 figures, 7 tables.« less
NASA Astrophysics Data System (ADS)
Ma, Qing; Zhao, Zijian; Yi, Songlin; Wang, Tianlong
In this study, Chinese Fir was impregnated with unsaturated polyester resin to enhance its properties. Samples 20 mm × 20 mm × 20 mm in size were split into different sections with epoxy resin and tinfoil and subjected to an impregnation experiment under various parameters. Vacuum degree was -0.04 MPa, -0.06 MPa or -0.08 MPa and vacuum duration was 15 min, 30 min, or 45 min. The results indicated that impregnation weight percent gain is linearly dependent on curing weight percent gain. Vacuum duration appears to have less influence on the curing weight percent gain than vacuum degree, and impregnation was most successful at the transverse section compared to other sections. The optimal impregnation parameters were 30 min modification under -0.08 MPa vacuum followed by 120 min at atmospheric pressure for samples 200 mm × 100 mm × 20 mm in size. Uneven distribution of weight percent gain and cracking during the curing process suggested that 30 min post-processing at -0.09 MPa vacuum was the most effective way to complete the impregnation process. The sample's bending strength and modulus of elasticity increased after impregnation treatment. Bending strength after impregnation without post-processing reached 112.85%, but reached 71.65% with vacuum-processing; modulus of elasticity improved 67.13% and 58.28% without and with post-processing, respectively.
Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.
1995-09-12
A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.
Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.
1995-01-01
A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.
The feasibility study of hot cell decontamination by the PFC spray method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon
2008-01-15
The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to bemore » reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation module. A performance test on each module was executed and the results have been reported. A combined test of the four modules, however, has not been performed as yet. The main objective of the present study is to demonstrate the feasibility of the full PFC spray decontamination process. Decontamination of the inside of the IMEF hot cell by the PFC spray method was also performed. PFC spray decontamination process was demonstrated by using a surrogate wall contaminated with Eu{sub 2}O{sub 3} powder. The spray pressure was 41 kgf/cm{sup 2}, the orifice diameter was 0.2 mm and the spray velocity was 0.2 L/min. And, the decontaminated area was 100 cm{sup 2}. From previous test results, we found that the decontamination factor of the PFC spray method was in the range from 9.6 to 62.4. When the decontamination efficiency of Co-60 was high, then the decontamination efficiency of Cs-137 was also high. As the surface roughness of the specimen increased, the PFC spray decontamination efficiency decreased. Inferring from the previous results, the surface of the surrogate wall was cleaned by the PFC spray method. The vacuum cup of the collection module operated well and gathered more than 99 % of the PFC solution. Also, filtration and distillation modules operated well. All the filtered PFC solution flowed to the storage chamber where some of the PFC solution was distilled. The coolant of the distillation module was a dry ice. And, the recycled solution was transferred to the spray module by a high pressure pump. To evaluate the PFC spray decontamination efficiency, a smear device was fabricated and operated by a manipulator. Before and after decontamination, a smear test was performed. The tested area was 100 cm{sup 2} and the radioactivity was estimated indirectly by measuring the radioactivity of the filter paper. The average decontamination factor was in the range between 10 and 15. One application time was 2 minutes. The sprayed PFC solution was collected by the vacuum cup and it was stored in the collection equipment. After the termination of the decontamination test, the flexible hose was cut near a toboggan. The collection equipment that contained the spent PFC solution, vacuum cup, spray nozzle and the flexible hose was stored in a radioactive waste storage tank. A feasibility study for the PFC spray decontamination method for an application to a hot cell surface was performed. The decontamination equipment that consisted of four modules operated well in the hot cell. The collection module gathered the sprayed PFC solution. The solution was purified in the filtration or distillation modules. The main characteristic of the distillation module is the use of dry ice as a coolant. The decontamination factor of IMEF hot cell was in the range from 10 to 15. It was difficult to measure the radioactivity accurately at a given time. We, however, concluded that the PFC spray decontamination method is a promising technology. It generated a small amount of secondary waste and used a non-toxic and non-conducting material. Decontamination work was performed with a little loss of the main decontamination agent. Based on the test results, we are developing an improved PFC spray decontamination process.« less
Improvements in the shelf life of commercial corn dry masa flour (CMF) by reducing lipid oxidation.
Márquez-Castillo, A; Vidal-Quintanar, R L
2011-03-01
To improve the shelf life of commercial nixtamalized corn dry masa flour (CMF), the modified atmosphere packaging (MAP) was used. Pouches (20 × 20 cm) of ethyl vinyl alcohol (EVOH) with 180 g of CMF were stored at 55 °C, and a(w) of 0.45; under Light and Dark conditions, antioxidants (0.02% TBHQ), Vacuum, and N(2) and CO(2), and used as treatments. Thereafter, changes in their linoleic acid (LA) concentration by GC, peroxide (PV), and anisidine values (p-A), which were monitored for 180 d. EVOH showed a significantly lower consumption of LA by autoxidation (11.7% ± 0.2% in 117 d) than polyethylene film (70.5% ± 0.3% in 113 d) under the same storage temperature. The elimination of oxygen by vacuum in each pouch allowed a low consumption (16.4% ± 0.1%) of LA. PV (14.5 ± 0.09 mEq/kg of fat), and p-A (63 ± 0.16 mmol/kg) were low, and generated over 121 d of storage. CMF stored under MAP had 100% protection against oxidation of LA. A combination of Vacuum and EVOH packaging extended the shelf life of CMF to 108 d with only 10% of LA loss. For retail stores, the EVOH packaging will reduce lipid oxidation of CMF and safety related to off odors and flavors from the oxidation of tortillas will increase dramatically.
Single phase space laundry development
NASA Technical Reports Server (NTRS)
Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold
1993-01-01
This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro
2000-01-01
To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of magnetron-sputtered diamondlike carbon (MS DLC) and plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DLC) films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of L-2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7x10(exp -7) Pa), humid air (relative humidity, approx.20 percent), and dry nitrogen (relative humidity, <1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the DLC films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the DLC films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N-m or less, respectively. MS DLC films and PACVD DLC films met the criteria in humid air and dry nitrogen but failed in ultrahigh vacuum, where the coefficients of friction were greater than the criterion, 0.3. In sliding contact with 440C stainless steel balls in all three environments the PACVD DLC films exhibited better tribological performance (i.e., lower friction and wear) than the MS DLC films. All sliding involved adhesive transfer of wear materials: transfer of DLC wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart DLC film.
Nanocomposite tribological coatings with "chameleon" surface adaptation
NASA Astrophysics Data System (ADS)
Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.
2002-07-01
Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept. copyright 2002 American Vacuum Society.
Friction and Wear Properties of Selected Solid Lubricating Films. Part 2; Ion-Plated Lead Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro
2000-01-01
To evaluate commercially developed dry solid film lubricants for aerospace bearing applications, an investigation was conducted to examine the friction and wear behavior of ion-plated lead films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Hertzian contact pressure of 0.79 GPa (maximum Hertzian contact pressure of 1.2 GPa), and a sliding velocity of 0.2 m/s. The experiments were conducted at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7 x 10(exp -7 Pa), humid air (relative humidity, approx. 20 percent), and dry nitrogen (relative humidity, less then 1 percent). The resultant films were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and surface profilometry. Marked differences in the friction and wear of the ion-plated lead films investigated herein resulted from the environmental conditions. The main criteria for judging the performance of the ion-plated lead films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 1(exp -6) cu mm/N.m or less, respectively. The ion-plated lead films met both criteria only in ultrahigh vacuum but failed in humid air and in dry nitrogen, where the coefficient of friction was higher than the criterion. Both the lead film wear rate and the ball wear rate met that criterion in all three environments. Adhesion and plastic deformation played important roles in the friction and wear of the ion-plated lead films in contact with 440C stainless steel balls in the three environments. All sliding involved adhesive transfer of materials: transfer of lead wear debris to the counterpart 440C stainless steel and transfer of 440C stainless steel wear debris to the counterpart lead.
Kong, Kelvin Jia Wey; Alçiçek, Zayde; Balaban, Murat O
2015-03-15
Aquacultured King salmon (Oncorhynchus tshawytscha) pieces were dry brined with a salt/brown sugar mix, dipped in liquid smoke for 3 min, vacuum packed, high hydrostatic pressure (HHP) treated at 600 or 200 MPa for 5 min and stored at 4 °C for up to 40 days. The surface redness (average a*) of the samples increased after dry brining, then decreased after liquid smoke treatment. HHP did not change the outside color of liquid-smoked samples. However, the inside color changed depending on pressure. HHP-treated control samples without dry brining and liquid smoking changed to a pale pink color. HHP at 600 MPa resulted in a significant increase in hardness. Compared with fresh samples, dry-brined samples had reduced water activity, while samples dipped in liquid smoke had lower pH values. Dry brining and liquid smoking protect the outside color of salmon against changes caused by HHP. The increase in hardness may counteract the softening of the smoked salmon tissue over time. © 2014 Society of Chemical Industry.
Cano-Lamadrid, Marina; Lech, Krzysztof; Michalska, Anna; Wasilewska, Malwina; Figiel, Adam; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A
2017-10-01
"Mollar de Elche" is the most popular Spanish pomegranate cultivar (intense sweetness and easy-to-chew arils); however, arils have pale pink colour and flat sensory profile. "Mollar the Elche" arils first underwent an osmotic dehydration pre-treatment (OD) with concentrated juices: (i) chokeberry, (ii) apple, and/or (iii) pomegranate cultivar "Wonderful", to improve their antioxidant capacity, colour, and sensory profile complexity, and later the arils were dried by a combined method (convective pre-drying+vacuum microwave finish drying). The use of OD provided dried arils with characteristic sweetness, and improved colour and aromatic complexity. The recommended OD methods were those using (i) pomegranate, and (ii) pomegranate with chokeberry juices; they improved the total anthocyanin content (mean of 368mgkg -1 ), red colour (a ∗ coordinate 15.6), and antioxidant capacity (e.g. ABTS mean of 5.7mmolTrolox100g -1 ). However, further research is still needed because freeze-dried arils had the highest anthocyanin content. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of hydrogen peroxide technique for bioburden reduction
NASA Astrophysics Data System (ADS)
Rohatgi, N.; Schwartz, L.; Stabekis, P.; Barengoltz, J.
In order to meet the National Aeronautics and Space Administration (NASA) Planetary Protection microbial reduction requirements for Mars in-situ life detection and sample return missions, entire planetary spacecraft (including planetary entry probes and planetary landing capsules) may have to be exposed to a qualified sterilization process. Presently, dry heat is the only NASA approved sterilization technique available for spacecraft application. However, with the increasing use of various man-made materials, highly sophisticated electronic circuit boards, and sensors in a modern spacecraft, compatibility issues may render this process unacceptable to design engineers and thus impractical to achieve terminal sterilization of the entire spacecraft. An alternative vapor phase hydrogen peroxide sterilization process, which is currently used in various industries, has been selected for further development. Strategic Technology Enterprises, Incorporated (STE), a subsidiary of STERIS Corporation, under a contract from the Jet Propulsion Laboratory (JPL) is developing systems and methodologies to decontaminate spacecraft using vaporized hydrogen peroxide (VHP) technology. The VHP technology provides an effective, rapid and low temperature means for inactivation of spores, mycobacteria, fungi, viruses and other microorganisms. The VHP application is a dry process affording excellent material compatibility with many of the components found in spacecraft such as polymers, paints and electronic systems. Furthermore, the VHP process has innocuous residuals as it decomposes to water vapor and oxygen. This paper will discuss the approach that is being used to develop this technique and will present lethality data that have been collected to establish deep vacuum VHP sterilization cycles. In addition, the application of this technique to meet planetary protection requirements will be addressed.
A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.
Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul
2015-12-01
A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower detection rate than the double process with Lumicyano 4%. Furthermore, the double process with conventional cyanoacrylate did not provide any benefit. Scanning electron microscopy was also performed to investigate the morphology of the cyanoacrylate polymer under different conditions. The atmospheric/humidity process appears to be superior to the vacuum process for both the two-step and one-step cyanoacrylate fuming, although the two-step process performed better in comparison to the one-step process under vacuum conditions. Nonetheless, the use of vacuum cyanoacrylate fuming may have certain operational advantages and its use does not adversely affect subsequent cyanoacrylate fuming with atmospheric/humidity conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Shang, Hongmei; Zhou, Haizhu; Duan, Mengying; Li, Ran; Wu, Hongxin; Lou, Yujie
2018-06-01
This study was designed to investigate the extraction conditions of polysaccharides from comfrey (Symphytum officinale L.) root (CRPs) using response surface methodology (RSM). The effects of three variables including liquid-solid ratio, extraction time and extraction temperature on the extraction yield of CRPs were taken into consideration. Moreover, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the physicochemical properties and antioxidant activities of CRPs were evaluated. The optimal conditions to extract the polysaccharides were as follows: liquid-solid ratio (15mL/g), extraction time (74min), and extraction temperature (95°C), allowed a maximum polysaccharides yield of 22.87%. Different drying methods had significant effects on the physicochemical properties of CRPs such as the chemical composition (contents of total polysaccharides and uronic acid), relative viscosity, solubility and molecular weight. CRPs drying with FD method showed stronger reducing power and radical scavenging capacities against DPPH and ABTS radicals compared with CRPs drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharides from comfrey root. Copyright © 2018 Elsevier B.V. All rights reserved.
Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu
2016-04-01
Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P < 0.05) values of water solubility (45.26%), soluble solid (63.46%), hygroscopicity (18.06%), color parameters and anthocyanin retention (60.70%) of raspberry powder compared with other drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.
Jung, Jooyeoun; Wang, Wenjie; McGorrin, Robert J; Zhao, Yanyun
2018-02-01
Moisture adsorption isotherms and storability of dried hazelnut inshells and kernels produced in Oregon were evaluated and compared among cultivars, including Barcelona, Yamhill, and Jefferson. Experimental moisture adsorption data fitted to Guggenheim-Anderson-de Boer (GAB) model, showing less hygroscopic properties in Yamhill than other cultivars of inshells and kernels due to lower content of carbohydrate and protein, but higher content of fat. The safe levels of moisture content (MC, dry basis) of dried inshells and kernels for reaching kernel water activity (a w ) ≤0.65 were estimated using the GAB model as 11.3% and 5.0% for Barcelona, 9.4% and 4.2% for Yamhill, and 10.7% and 4.9% for Jefferson, respectively. Storage conditions (2 °C at 85% to 95% relative humidity [RH], 10 °C at 65% to 75% RH, and 27 °C at 35% to 45% RH), times (0, 4, 8, or 12 mo), and packaging methods (atmosphere vs. vacuum) affected MC, a w , bioactive compounds, lipid oxidation, and enzyme activity of dried hazelnut inshells or kernels. For inshells packaged at woven polypropylene bag, MC and a w of inshells and kernels (inside shells) increased at 2 and 10 °C, but decreased at 27 °C during storage. For kernels, lipid oxidation and polyphenol oxidase activity also increased with extended storage time (P < 0.05), and MC and a w of vacuum packaged samples were more stable during storage than those atmospherically packaged ones. Principal component analysis showed correlation of kernel qualities with storage condition, time, and packaging method. This study demonstrated that the ideal storage condition or packaging method varied among cultivars due to their different moisture adsorption and physicochemical and enzymatic stability during storage. Moisture adsorption isotherm of hazelnut inshells and kernels is useful for predicting the storability of nuts. This study found that water adsorption and storability varied among the different cultivars of nuts, in which Yamhill was less hygroscopic than Barcelona and Jefferson, thus more stable during storage. For ensuring food safety and quality of nuts during storage, each cultivar of kernels should be dried to a certain level of MC. Lipid oxidation and enzyme activity of kernel could be increased with extended storage time. Vacuum packaging was recommended to kernels for reducing moisture adsorption during storage. © 2018 Institute of Food Technologists®.
Vaporizable Scaffolds for Fabricating Thermoelectric Modules
NASA Technical Reports Server (NTRS)
Sakamoto, Jeffrey; Yen, Shiao-pin; Fleurial, Jean-Pierre; Paik, Jong-Ah
2006-01-01
A process for fabricating thermoelectric modules with vacuum gaps separating the thermoelectric legs has been conceived, and the feasibility of some essential parts of the process has been demonstrated. The vacuum gaps are needed to electrically insulate the legs from each other. The process involves the use of scaffolding in the form of sheets of a polymer to temporarily separate the legs by the desired distance, which is typically about 0.5 mm. During a bonding subprocess that would take place in a partial vacuum at an elevated temperature, the polymer would be vaporized, thereby creating the vacuum gaps.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
2011-01-01
The destruction rates of a perfluoropolyether (PFPE) lubricant, Krytox 143AC, subjected to rolling contact with 440C steel in a spiral orbit tribometer at room temperature have been evaluated as a function of test environment. The rates in ultrahigh vacuum, 0.213 kPa (1.6 torr) oxygen and one atmosphere of dry nitrogen were about the same. Water vapor in the test environment-a few ppm in one atmosphere of nitrogen-reduced the destruction rate by up to an order of magnitude. A similar effect of water vapor was found for the destruction rate of Pennzane 2001A, an unformulated multiply alkylated cyclopentane (MAC) hydrocarbon oil.
Transformation of phosphorus during drying and roasting of sewage sludge.
Li, Rundong; Yin, Jing; Wang, Weiyun; Li, Yanlong; Zhang, Ziheng
2014-07-01
Sewage sludge (SS), a by-product of wastewater treatment, consists of highly concentrated organic and inorganic pollutants, including phosphorus (P). In this study, P with different chemical fractions in SS under different drying and roasting temperatures was investigated with the use of appropriate standards, measurements, and testing protocol. The drying and roasting treatment of SS was conducted in a laboratory-scale furnace. Two types of SS samples under different treatment temperatures were analyzed by (31)P NMR spectroscopy. These samples were dried by a vacuum freeze dryer at -50°C and a thermoelectric thermostat drying box at 105°C. Results show that the inorganic P (IP) content increased as the organic P content decreased, and the bio-availability of P increased because IP is a form of phosphorousthat can be directly absorbed by plants. (31)P NMR analysis results indicate the change in P fractions at different temperatures. Non-apatite P was the dominant form of P under low-temperature drying and roasting, whereas apatite P was the major one under high-temperature drying and roasting. Results indicate that temperature affects the transformation of P. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.
Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less
Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.; ...
2017-07-19
Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stannett, V.T.
1989-01-04
Hexachlorophosphazene was irradiated in bulk and in solution after various methods of purification. When rigorously dried and purified, good yields of polymer were obtained. Poor reproducibility was found in the bulk but reasonably good results were obtained in decalin solution. The best yields and highest molecular weights were obtained after the addition of small amounts of the bulky electron acceptor pyromellitic dianhydride. Hexachlorocyclotriphosphazene was purified by recrystallization for various times from dried heptane. The trimer was then further purified by repeated sublimation steps under high vacuum. Finally the trimer was dried in the melt over rigorously baked out barium oxide.more » The monomer was then transferred to ampules or the NMR tubes for radiation and subsequent determination of the polymer content.« less
NASA Astrophysics Data System (ADS)
Niu, Deliang; Liu, Qingcai; Wang, Zhu; Ren, Shan; Lan, Yuanpei; Xu, Minren
Removal of gas is the major function of RH degasser. To optimize the RH refining craft in Chongqing Iron and Steel Co. Ltd, the degassing effect of RH degasser at different degrees of vacuum was investigated using a vacuum induction furnace. In addition, the effect of processing time on the gas content dissolved in molten steel was also studied. The results showed that degree of vacuum was one of the important factors that determined the degassing efficiency in RH refining process. High vacuum degree is helpful in the removal of gas, especially in the removal of [H] dissolved in molten steel. The processing time could be reduced from 25-30 min to 15 minutes and gas content could also meet the demand of RH refining.
Failure of non-vacuum steam sterilization processes for dental handpieces.
Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B
2017-12-01
Dental handpieces are used in critical and semi-critical operative interventions. Although some dental professional bodies recommend that dental handpieces are sterilized between patient use there is a lack of clarity and understanding of the effectiveness of different steam sterilization processes. The internal mechanisms of dental handpieces contain narrow lumens (0.8-2.3 mm) which can impede the removal of air and ingress of saturated steam required to achieve sterilization conditions. To identify the extent of sterilization failure in dental handpieces using a non-vacuum process. In-vitro and in-vivo investigations were conducted on widely used UK bench-top steam sterilizers and three different types of dental handpieces. The sterilization process was monitored inside the lumens of dental handpieces using thermometric (TM; dataloggers), chemical indicator (CI), and biological indicator (BI) methods. All three methods of assessing achievement of sterility within dental handpieces that had been exposed to non-vacuum sterilization conditions demonstrated a significant number of failures [CI: 8/3024 (fails/no. of tests); BI: 15/3024; TM: 56/56] compared to vacuum sterilization conditions (CI: 2/1944; BI: 0/1944; TM: 0/36). The dental handpiece most likely to fail sterilization in the non-vacuum process was the surgical handpiece. Non-vacuum sterilizers located in general dental practice had a higher rate of sterilization failure (CI: 25/1620; BI: 32/1620; TM: 56/56) with no failures in vacuum process. Non-vacuum downward/gravity displacement, type N steam sterilizers are an unreliable method for sterilization of dental handpieces in general dental practice. The handpiece most likely to fail sterilization is the type most frequently used for surgical interventions. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Services provided in support of the planetary quarantine requirements
NASA Technical Reports Server (NTRS)
Favero, M. S.
1972-01-01
Tests were conducted to determine the dry heat resistance at 125 C of a naturally occurring bacterial spore population in a mixture of sieved vacuum cleaner dusts from Cape Kennedy. The dust was aerosolized in a special chamber and was allowed to settle on 32 Teflon ribbons to provide approximately 500,000 spores per ribbon.
NASA Technical Reports Server (NTRS)
1979-01-01
At Valley Forge, Pennsylvania, General Electric Company's Space Division has a large environmental chamber for simulating the conditions under which an orbiting spacecraft operates. Normally it is used to test company-built space systems, such as NASA's Landsat and Nimbus satellites. It is also being used in a novel spinoff application-restoring water-damaged books and other paper products and textiles.
Dry etch method for texturing silicon and device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershon, Talia S.; Haight, Richard A.; Kim, Jeehwan
2017-07-25
A method for texturing silicon includes loading a silicon wafer into a vacuum chamber, heating the silicon wafer and thermal cracking a gas to generate cracked sulfur species. The silicon wafer is exposed to the cracked sulfur species for a time duration in accordance with a texture characteristic needed for a surface of the silicon wafer.
Rapid and Stereoselective Conversion of a "trans"-Cinnamic Acid to a beta-Bromostyrene
ERIC Educational Resources Information Center
Evans, Thomas A.
2006-01-01
The stereoselective synthesis of an aryl vinyl bromide is accomplished in a rapid microscale reaction of "trans"-4-methoxycinnamic acid with N-bromosuccinimide in dichloromethane. The product is purified by dry column vacuum chromatography and its stereochemistry is determined by [superscript 1]H NMR. TLC, GC and GC-MSD can also be used. This…
Consortium for Nanomaterials for Aerospace Commerce and Technology (CONTACT)
2013-02-01
108 47 Absorption mechanism in tandem OPVs and absorption spectra of common organic materials...different protection mechanisms in the humid air of terrestrial environments and the dry vacuum of space. From these initial successes, a range of...confinement based materials enable the ability to manipulate and enhance the optical, electrical, thermal and noise mechanisms to optimize device
Particle monitoring and control in vacuum processing equipment
NASA Astrophysics Data System (ADS)
Borden, Peter G., Dr.; Gregg, John
1989-10-01
Particle contamination during vacuum processes has emerged as the largest single source of yield loss in VLSI manufacturing. While a number of tools have been available to help understand the sources and nature of this contamination, only recently has it been possible to monitor free particle levels within vacuum equipment in real-time. As a result, a better picture is available of how particle contamination can affect a variety of processes. This paper reviews some of the work that has been done to monitor particles in vacuum loadlocks and in processes such as etching, sputtering and ion implantation. The aim has been to make free particles in vacuum equipment a measurable process parameter. Achieving this allows particles to be controlled using statistical process control. It will be shown that free particle levels in load locks correlate to wafer surface counts, device yield and process conditions, but that these levels are considerable higher during production than when dummy wafers are run to qualify a system. It will also be shown how real-time free particle monitoring can be used to monitor and control cleaning cycles, how major episodic events can be detected, and how data can be gathered in a format suitable for statistical process control.
Ajayi, Oluwakemi; Obadina, Adewale; Idowu, Micheal; Adegunwa, Mojisola; Kajihausa, Olatundun; Sanni, Lateef; Asagbra, Yemisi; Ashiru, Bolanle; Tomlins, Keith
2015-07-01
Edible fungi such as mushrooms are highly perishable and deteriorate few days after harvest due to its high moisture content and inability to maintain their physiological status. In this study, the effect of packaging materials on the nutritional composition of mushroom cultivated from cassava peels was investigated. Mushroom samples were dried at 50°C in a cabinet dryer for 8 h. The dried mushroom samples packaged in four different packaging materials; high density polyethylene (HDPE), polypropylene (PP), laminated aluminum foil (LAF), high density polyethylene under vacuum (HDPEV) were stored at freezing (0°C) temperatures for 12 weeks. Samples were collected at 2-week intervals and analyzed for proximate composition (carbohydrate, protein, fat, fiber, ash, moisture), mineral content (calcium, potassium), vitamin C content, and microbiological qualities (total aerobic count, Pseudomonal count, Coliform count, Staphylococcal count, Salmonella count) using the standard laboratory procedures. Carbohydrate, protein, fat content of dried mushrooms packaged in HDPE at freezing temperature ranged from 45.2% to 53.5%, 18.0% to 20.3%, and 3.2% to 4.3%, while mushrooms in polypropylene ranged from 45.2% to 53.5%, 18.5% to 20.3%, 2.6% to 4.3%. Carbohydrate, protein, fat of mushroom in LAF ranged from 47.8% to 53.5%, 17.3% to 20.3%, and 3.3% to 4.3%, respectively, while carbohydrate, protein, fat of mushroom in HDPEV ranged from 51.1% to 53.5%, 19.5% to 20.3%, and 3.5% to 4.3%. Microbiological analysis showed that total aerobic count, Pseudomonal count, and Staphyloccocal count of dried mushroom ranged from 2.3 to 3.8 log cfu/g, 0.6 to 1.1 log cfu/g, and 0.4 to 0.5 log cfu/g, respectively. In conclusion, dried mushroom in HDPE packaged under vacuum at freezing temperature retained the nutritional constituents than those packaged with other packaging materials.
Ajayi, Oluwakemi; Obadina, Adewale; Idowu, Micheal; Adegunwa, Mojisola; Kajihausa, Olatundun; Sanni, Lateef; Asagbra, Yemisi; Ashiru, Bolanle; Tomlins, Keith
2015-01-01
Edible fungi such as mushrooms are highly perishable and deteriorate few days after harvest due to its high moisture content and inability to maintain their physiological status. In this study, the effect of packaging materials on the nutritional composition of mushroom cultivated from cassava peels was investigated. Mushroom samples were dried at 50°C in a cabinet dryer for 8 h. The dried mushroom samples packaged in four different packaging materials; high density polyethylene (HDPE), polypropylene (PP), laminated aluminum foil (LAF), high density polyethylene under vacuum (HDPEV) were stored at freezing (0°C) temperatures for 12 weeks. Samples were collected at 2-week intervals and analyzed for proximate composition (carbohydrate, protein, fat, fiber, ash, moisture), mineral content (calcium, potassium), vitamin C content, and microbiological qualities (total aerobic count, Pseudomonal count, Coliform count, Staphylococcal count, Salmonella count) using the standard laboratory procedures. Carbohydrate, protein, fat content of dried mushrooms packaged in HDPE at freezing temperature ranged from 45.2% to 53.5%, 18.0% to 20.3%, and 3.2% to 4.3%, while mushrooms in polypropylene ranged from 45.2% to 53.5%, 18.5% to 20.3%, 2.6% to 4.3%. Carbohydrate, protein, fat of mushroom in LAF ranged from 47.8% to 53.5%, 17.3% to 20.3%, and 3.3% to 4.3%, respectively, while carbohydrate, protein, fat of mushroom in HDPEV ranged from 51.1% to 53.5%, 19.5% to 20.3%, and 3.5% to 4.3%. Microbiological analysis showed that total aerobic count, Pseudomonal count, and Staphyloccocal count of dried mushroom ranged from 2.3 to 3.8 log cfu/g, 0.6 to 1.1 log cfu/g, and 0.4 to 0.5 log cfu/g, respectively. In conclusion, dried mushroom in HDPE packaged under vacuum at freezing temperature retained the nutritional constituents than those packaged with other packaging materials. PMID:26288720
NASA Astrophysics Data System (ADS)
Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm
2016-06-01
Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.
Management self assessment plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debban, B.L.
Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled tomore » begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.« less
Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications.
Su, Li Fen; Miao, Lei; Tanemura, Sakae; Xu, Gang
2012-06-01
Nanoporous silica cryogels with a high specific surface area of 1095 m 2 g -1 were fabricated using tert-butyl alcohol as a reaction solvent, via a cost-effective sol-gel process followed by vacuum freeze drying. The total time of cryogel production was reduced markedly to one day. The molar ratio of solvent/precursor, which was varied from 5 to 13, significantly affected the porous structure and thermal insulating properties of the cryogels. The silica cryogels with low densities in the range of 0.08-0.18 g cm -3 and thermal conductivities as low as 6.7 mW (m·K) -1 at 100 Pa and 28.3 mW (m·K) -1 at 10 5 Pa were obtained using this new technique.
A characterization NMR of secondary metabolites from lichen Parmotrema praesorediosum
NASA Astrophysics Data System (ADS)
Azman, Anis Asmi; Khalid, Rozida; Bakar, Muntaz Abu
2018-04-01
The research study was carried out to extract, isolate and characterize the secondary metabolites of lichen Parmotrema praesorediosum. Most of the lichen samples were obtained from betel nut trees and needle flowers which were collected from 17 different places around UKM Bangi campus. Each lichen sample was dried before being grinded and extracted in methanol for nine days. This process was repeated three times at room temperature. Subsequently, the resulting residues were filtered to obtain the crude extracts and further analysed using Thin Layer Chromatography (TLC) and Vacuum Column Chromatography (VLC). In order to derive the pure compounds, the isolation step was proceeded using Radial Chromatography (RC). These isolated compounds were determined by Nuclear Magnetic Resonances (NMR) and identified as methyl haematomatte (1), methyl chlorohaematomatte (2) and methyl β-orsellinate (3).
Troubleshooting crude vacuum tower overhead ejector systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, J.R.; Frens, L.L.
1995-03-01
Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, andmore » process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.« less
Vacuum pull down method for an enhanced bonding process
Davidson, James C.; Balch, Joseph W.
1999-01-01
A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.
Vacuum casting of thick polymeric films
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Moacanin, J.
1979-01-01
Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2014-07-01
Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2014-07-01
Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.
Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.
Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya
2018-05-01
TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.
Low Cost Processing of Commingled Thermoplastic Composites
NASA Astrophysics Data System (ADS)
Chiasson, Matthew Lee
A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.
NASA Astrophysics Data System (ADS)
Dinh, L. N.; Grant, D. M.; Schildbach, M. A.; Smith, R. A.; Siekhaus, W. J.; Balazs, B.; Leckey, J. H.; Kirkpatrick, J. R.; McLean, W.
2005-12-01
Due to the exothermic reaction of lithium hydride (LiH) salt with water during transportation and handling, there is always a thin film of lithium hydroxide (LiOH) present on the LiH surface. In dry or vacuum storage, this thin LiOH film slowly decomposes. The technique of temperature-programmed reaction/decomposition (TPR) was employed in combination with the isoconversion method of thermal analysis to determine the outgassing kinetics of H 2O from pure LiOH and H 2 and H 2O from this thin LiOH film. H 2 production via the reaction of LiH with LiOH, forming a lithium oxide (Li 2O) interlayer, is thermodynamically favored, with the rate of further reaction limited by diffusion through the Li 2O and the stability of the decomposing LiOH. Lithium hydroxide at the LiOH/vacuum interface also decomposes easily to Li 2O, releasing H 2O which subsequently reacts with LiH in a closed system to form H 2. At the onset of dry decomposition, where H 2 is the predominant product, the activation energy for outgassing from a thin LiOH film is lower than that for bulk LiOH. However, as the reactions at the LiH/Li 2O/LiOH and at the LiOH/vacuum interfaces proceed, the overall activation energy barrier for the outgassing approaches that of bulk LiOH decomposition. The kinetics developed here predict a hydrogen evolution profile in good agreement with hydrogen release observed during long term isothermal storage.
Breakdown Conditioning Chacteristics of Precision-Surface-Treatment-Electrode in Vacuum
NASA Astrophysics Data System (ADS)
Kato, Kastumi; Fukuoka, Yuji; Inagawa, Yukihiko; Saitoh, Hitoshi; Sakaki, Masayuki; Okubo, Hitoshi
Breakdown (BD) characteristics in vacuum are strongly dependent on the electrode surface condition, like the surface roughness etc. Therefore, in order to develop a high voltage vacuum circuit breaker, it is important to optimize the surface treatment process. This paper discusses about the effect of precision-surface-treatment of the electrode on breakdown conditioning characteristics under non-uniform electric field in vacuum. Experimental results reveal that the electrode surface treatment affects the conditioning process, especially the BD voltage and the BD field strength at the initial stage of the conditioning.
Yang, Yi; Wang, Zhongwu; Xu, Zeyang; Wu, Kunjie; Yu, Xiaoqin; Chen, Xiaosong; Meng, Yancheng; Li, Hongwei; Qiu, Song; Jin, Hehua; Li, Liqiang; Li, Qingwen
2017-04-26
Electrical hysteresis in carbon nanotube thin-film transistor (CNTTFT) due to surface adsorption of H 2 O/O 2 is a severe obstacle for practical applications. The conventional encapsulation methods based on vacuum-deposited inorganic materials or wet-coated organic materials have some limitations. In this work, we develop a general and highly efficient dry-laminating encapsulation method to reduce the hysteresis of CNTTFTs, which may simultaneously realize the construction and encapsulation of CNTTFT. Furthermore, by virtue of dry procedure and wide compatibility of PMMA, this method is suitable for the construction of CNTTFT on diverse surface including both inorganic and organic dielectric materials. Significantly, the dry-encapsulated CNTTFT exhibits very low or even negligible hysteresis with good repeatability and air stability, which is greatly superior to the nonencapsulated and wet-encapsulated CNTTFT with spin-coated PMMA. The dry-laminating encapsulation strategy, a kind of technological innovation, resolves a significant problem of CNTTFT and therefore will be promising in facile transferring and packaging the CNT films for high-performance optoelectronic devices.
Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/ Unity
2005-04-17
ISS011-E-05163 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, poses for a photo with the ISS wet/dry vacuum cleaner assembly he used to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).
NASA Technical Reports Server (NTRS)
Huebner, L. G.; Kisieleski, W. E.
1969-01-01
Dry catalytic combustion at high temperatures is used for assaying biological materials labeled carbon-14 and tritium, or double-labeled. A modified oxygen-flask technique is combined with standard vacuum-line techniques and includes convenience of direct in-vial collection of final combustion products, giving quantitative recovery of tritium and carbon-14.
Rodríguez-Garcia, M E; de Lira, C; Hernández-Becerra, E; Cornejo-Villegas, M A; Palacios-Fonseca, A J; Rojas-Molina, I; Reynoso, R; Quintero, L C; Del-Real, A; Zepeda, T A; Muñoz-Torres, C
2007-09-01
This paper presents the physicochemical and nutrimental characterization of fresh nopal (Opuntia ficus indica, Redonda variety) and nopal powder produced at different stages of development. Nopal powder was obtained by dry vacuum technique using 10(2) Torr and low temperature (40 degrees C). The results showed that the nutrimental and mineral composition of nopal changes as a function of the maturation as follow: The ash content increases from 18.41 for nopalitos (60 g of weight) to 23.24% (nopal pads 200 g); calcium content increases from 1.52 to 3.72%, while phosphorous exhibits an opposite trend: 0.43 to 0.27%, respectively. Calcium oxalate was determined by X-ray diffraction and SEM microscopy and quantified by using atomic absorption spectroscopy. Calcium oxalate decreases from 7.95 to 3.47 mg/g and the Ca/P ratio varies from 3.6 to 11. The soluble fibre decreases from 25.22 to 14.91%, while insoluble fibre increases from 29.87 to 41.65%. These results suggest that nopal could be an important source of minerals within the diets of people in Mexico and the rest of Latin America.
Boiling process modelling peculiarities analysis of the vacuum boiler
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.
2017-06-01
The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.
Microwave-Assisted Drying for the Conservation of Honeybee Pollen.
Canale, Angelo; Benelli, Giovanni; Castagna, Antonella; Sgherri, Cristina; Poli, Piera; Serra, Andrea; Mele, Marcello; Ranieri, Annamaria; Signorini, Francesca; Bientinesi, Matteo; Nicolella, Cristiano
2016-05-12
Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.
Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Gómez-Polo, C.; Larumbe, S.; Pastor, J. M.
2013-05-01
Room-temperature ferromagnetism in non-magnetic doped TiO2 semiconductor nanoparticles is analyzed in the present work. Undoped and N-doped TiO2 nanoparticles were obtained employing sol-gel procedure using urea as the nitrogen source. The obtained gels were first dried at 70 °C and afterwards calcined in air at 300 °C. A residual carbon concentration was retained in the samples as a consequence of the organic decomposition process. Post-annealing treatments at 300 °C under air and vacuum conditions were also performed. The crystallographic structure of nanoparticles was analyzed by X-ray diffraction, obtaining a single anatase crystalline phase after the calcinations (mean nanoparticle diameters around 5-8 nm). SQUID magnetometry was employed to analyze the magnetic response of the samples. Whereas for the undoped samples synthesized with hydrolysis rate h = 6, paramagnetic like behavior is observed at room temperature, the N-doped nanoparticles (h = 3) show a weak ferromagnetic response (saturation magnetization ≈10-3 emu/g). Moreover, a clear reinforcement of the room-temperature ferromagnetism response is found with the post-annealing treatments, in particular that performed in vacuum. Thus, the results indicate the dominant role of the oxygen stoichiometry and the oxygen vacancies in the room temperature ferromagnetic response of these TiO2 nanoparticles.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
2006-01-01
The destruction rates of a perfluoropolyether (PFPE) lubricant, Krytox 143AC(TradeMark), subjected to rolling contact with 440C steel in a spiral orbit tribometer at room temperature have been evaluated as a function of test environment. The rates in ultrahigh vacuum, 0.21 3 kPa (1.6 Torr) oxygen and one atmosphere of dry nitrogen were about the same. Water vapor in the test environment - a few ppm in one atmosphere of nitrogen - reduced the destruction rate by up to an order of magnitude. A similar effect of water vapor was found for the destruction rate of Pennzane(Registered TradeMark) 2001A , an unformulated multiply alkylated cyclopentane (MAC) hydrocarbon oil.
Vacuum powder injector and method of impregnating fiber with powder
NASA Astrophysics Data System (ADS)
Working, Dennis C.
1993-05-01
A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.
Vacuum powder injector and method of impregnating fiber with powder
NASA Technical Reports Server (NTRS)
Working, Dennis C. (Inventor)
1993-01-01
A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.
Tests of a sputtered MoS2 lubricant film in various environments
NASA Technical Reports Server (NTRS)
Vest, C. E.
1976-01-01
This paper discusses conditions and results of several tests of a DC sputtered MoS2 dry lubricant film. The test components were miniature precision ball bearings and rings and blocks; the surrounding atmospheres were laboratory air, pure helium, vacuum to 10 to the -8th power torr, and a perfluoroalkylpolyether oil. The results showed that the lubricant would perform satisfactorily under lightly loaded (450 gm) ball bearings in vacuum and would not perform well under a 66-kg load in air, a 132-kg load in helium, or a 330-kg load under oil. These tests and others show that the sputtered MoS2 film has some desirable features for space applications as well as some definite limitations.
Plates for vacuum thermal fusion
Davidson, James C.; Balch, Joseph W.
2002-01-01
A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.
Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications
NASA Technical Reports Server (NTRS)
Denis, Kevin L.; Brown, Ari D.; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward J.
2016-01-01
The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication. ?
Dietary citrus pulp reduces lipid oxidation in lamb meat.
Inserra, L; Priolo, A; Biondi, L; Lanza, M; Bognanno, M; Gravador, R; Luciano, G
2014-04-01
This study investigated the effect of replacing cereal concentrates with high levels of dried citrus pulp in the diet on lamb meat oxidative stability. Over 56 days, lambs were fed a barley-based concentrate (Control) or concentrates in which 24% and 35% dried citrus pulp were included to partially replace barley (Citrus 24% and Citrus 35%, respectively). Meat was aged under vacuum for 4 days and subsequently stored aerobically at 4 °C. The Control diet increased the redness, yellowness and saturation of meat after blooming (P<0.01). Regardless of the level of supplementation, dietary dried citrus pulp strongly reduced meat lipid oxidation over 6 days of aerobic storage (P<0.001), while colour parameters did not change noticeably over storage and their variation rate was not affected by the diet. In conclusion, replacing cereals with dried citrus pulp in concentrate-based diets might represent a feasible strategy to naturally improve meat oxidative stability and to promote the exploitation of this by-product. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass.
Raposo, Maria Filomena J; Morais, Alcina M M B; Morais, Rui M S C
2012-03-01
The main objective of this study was to evaluate the stability of astaxanthin after drying and storage at different conditions during a 9-week period. Recovery of astaxanthin was evaluated by extracting pigments from the dried powders and analysing extracts by HPLC. The powders obtained were stored under different conditions of temperature and oxygen level and the effects on the degradation of astaxanthin were examined. Under the experimental conditions conducted in this study, the drying temperature that yielded the highest content of astaxanthin was 220°C, as the inlet, and 120°C, as the outlet temperature of the drying chamber. The best results were obtained for biomass dried at 180/110°C and stored at -21°C under nitrogen, with astaxanthin degradation lower than 10% after 9 weeks of storage. A reasonable preservation of astaxanthin can be achieved by conditions 180/80°C, -21°C nitrogen, 180/110°C, 21°C nitrogen, and 220/80°C, 21°C vacuum: the ratio of astaxanthin degradation is equal or inferior to 40%. In order to prevent astaxanthin degradation of Haematococcus pluvialis biomass, it is recommended the storage of the spray dried carotenized cells (180/110ºC) under nitrogen and -21°C.
Enhanced dissolution of sildenafil citrate as dry foam tablets.
Sawatdee, Somchai; Atipairin, Apichart; Sae Yoon, Attawadee; Srichana, Teerapol; Changsan, Narumon
2017-01-30
Dry foam formulation technology is alternative approach to enhance dissolution of the drug. Sildenafil citrate was suspended in sodium dodecyl sulfate solution and adding a mixture of maltodextrin and mannitol as diluent to form a paste. Sildenafil citrate paste was passed through a nozzle spray bottle to obtain smooth foam. The homogeneous foam was dried in a vacuum oven and sieved to obtain dry foam granules. The granules were mixed with croscarmellose sodium, magnesium stearate and compressed into tablet. All formulations were evaluated for their physicochemical properties and dissolution profiles. All the tested excipients were compatible with sildenafil citrate by both differential scanning calorimetry (DSC) and infrared (IR) analysis. There are no X-ray diffraction (XRD) peaks representing crystals of sildenafil citrate observed form dry foam formulations. The hardness of tablets was about 5 kg, friability test <1% with a disintegration time <5 min. The sildenafil citrate dry foam tablet had higher dissolution rate in 0.1 N HCl in comparison with commercial sildenafil citrate tablet, sildenafil citrate prepared by direct compression and wet granulation method. Sildenafil citrate dry foam tablet with the high-level composition of surfactant, water and diluent showed enhanced dissolution rate than that of the lower-level composition of these excipients. This formulation was stable under accelerated conditions for at least 6 months.
Vacuum pumps and systems: A review of current practice
NASA Technical Reports Server (NTRS)
Giles, Stuart
1986-01-01
A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.
Vacuum Brazing of Accelerator Components
NASA Astrophysics Data System (ADS)
Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.
2012-11-01
Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.
Double Vacuum Bag Process for Resin Matrix Composite Manufacturing
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)
2007-01-01
A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.
Evaluation of Double-Vacuum-Bag Process For Composite Fabrication
NASA Technical Reports Server (NTRS)
Hou, T. H.; Jensen, B. J.
2004-01-01
A non-autoclave vacuum bag process using atmospheric pressure alone that eliminates the need for external pressure normally supplied by an autoclave or a press is an attractive method for composite fabrication. This type of process does not require large capital expenditures for tooling and processing equipment. In the molding cycle (temperature/pressure profile) for a given composite system, the vacuum application point has to be carefully selected to achieve the final consolidated laminate net shape and resin content without excessive resin squeeze-out. The traditional single-vacuum- bag (SVB) process is best suited for molding epoxy matrix based composites because of their superior flow and the absence of reaction by-products or other volatiles. Other classes of materials, such as polyimides and phenolics, generate water during cure. In addition, these materials are commonly synthesized as oligomers using solvents to facilitate processability. Volatiles (solvents and reaction byproducts) management therefore becomes a critical issue. SVB molding, without additional pressure, normally fails to yield void-free quality composites for these classes of resin systems. A double-vacuum- bag (DVB) process for volatile management was envisioned, designed and built at the NASA Langley Research Center. This experimental DVB process affords superior volatiles management compared to the traditional SVB process. Void-free composites are consistently fabricated as measured by C-scan and optical photomicroscopy for high performance polyimide and phenolic resins.
Rose, Devin J; Inglett, George E
2010-05-26
Two-stage hydrothermal processing was employed to obtain feruloylated arabinoxylooligosaccharides (AXOS) from wheat bran. First, wheat bran in water (10% w/w solids) was heated to 130 degrees C, releasing 36.3% of total solids, 70.3% of starch, and 6.06% of pentose sugars. Wheat bran was then heated to 170-220 degrees C. Heating to 200 and 210 degrees C released the most AXOS (70% of the insoluble arabinoxylan) and esterified ferulate (30% of the initial ferulic acid). Treatment of 200 degrees C retained a higher proportion of high molecular weight (>1,338) compounds than 210 degrees C and was the preferred treatment temperature because autohydrolysate liquors contained lower concentrations of many contaminants. Purification of this autohydrolysate liquor with ethyl acetate extraction, vacuum concentration, and ion exchange resulted in a product containing 32.0% AXOS and 4.77% esterified ferulate, accompanied by 36.0% other oligosaccharides and free sugars, with an antioxidant activity of 29.7 micromol Trolox equivalents/g dry matter.
NASA Astrophysics Data System (ADS)
Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong
2016-06-01
The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Katharina; Raupp, Sebastian, E-mail: sebastian.raupp@kit.edu; Scharfer, Philip
2016-06-15
Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processedmore » with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.« less
Effect of dairy powders fortification on yogurt textural and sensorial properties: a review.
Karam, Marie Celeste; Gaiani, Claire; Hosri, Chadi; Burgain, Jennifer; Scher, Joël
2013-11-01
Yogurts are important dairy products that have known a rapid market growth over the past few decades. Industrial yogurt manufacture involves different processing steps. Among them, protein fortification of the milk base is elemental. It greatly enhances yogurt nutritional and functional properties and prevents syneresis, an undesirable yogurt textural defect. Protein enrichment can be achieved by either concentration process (evaporation under vacuum and membrane processing: reverse osmosis and/or ultrafiltration) or by addition of dairy ingredients. Traditionally, skim milk powder (SMP) is used to enrich the milk base before fermentation. However, increased quality and availability of other dairy ingredients such as milk protein isolates (MPI), milk protein concentrates (MPC) whey protein isolates (WPI) and concentrates (WPC), micellar casein (MC) and caseinates have promoted their use as alternatives to SMP. Substituting different dry ingredients for skim milk powder in yogurt making affects the yogurt mix protein composition and subsequent textural and sensorial properties. This review focuses on various type of milk protein used for fortification purposes and their influence on these properties.
Li, Ran; Duan, Meng-Ying; Wu, Hong-Xin
2017-01-01
Response surface methodology (RSM) was used to investigate the extraction condition of polysaccharide from cup plant (Silphium perfoliatum L.) (named CPP). Water to raw material ratio (10–30 mL/g), extraction time (40–80 min) and extraction temperature (60–100°C) were set as the 3 independent variables, and their effects on the extraction yield of CPP were measured. In addition, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the antioxidant activities of CPP were evaluated. The results showed that the optimal condition to extract CPP was: water to raw material ratio (15 mL/g), extraction time (61 min), and extraction temperature (97°C), a maximum CPP yield of 6.49% was obtained under this condition. CPP drying with FD method showed stronger reducing power (0.943 at 6 mg/mL) and radical scavenging capacities against DPPH radical (75.71% at 1.2 mg/mL) and ABTS radical (98.06 at 1.6 mg/mL) than CPP drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharide from cup plant. The polysaccharide from cup plant has potential to use as a natural antioxidant. PMID:28837625
Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications
Su, Li Fen; Miao, Lei; Tanemura, Sakae; Xu, Gang
2012-01-01
Nanoporous silica cryogels with a high specific surface area of 1095 m2 g−1 were fabricated using tert-butyl alcohol as a reaction solvent, via a cost-effective sol–gel process followed by vacuum freeze drying. The total time of cryogel production was reduced markedly to one day. The molar ratio of solvent/precursor, which was varied from 5 to 13, significantly affected the porous structure and thermal insulating properties of the cryogels. The silica cryogels with low densities in the range of 0.08–0.18 g cm−3 and thermal conductivities as low as 6.7 mW (m·K)−1 at 100 Pa and 28.3 mW (m·K)−1 at 105 Pa were obtained using this new technique. PMID:27877491
108. DETAIL OF DENVER DISC FILTER IN CO91107, SUCTION END. ...
108. DETAIL OF DENVER DISC FILTER IN CO-91-107, SUCTION END. NOTE BEARING HOUSING WITH CAST LOGO, SUCTION PIPE GOING OFF TO THE RIGHT, AND FILTER DISC IN BACKGROUND. VACUUM INSIDE DISCS FURTHER DEWATERED CONCENTRATE. AS DISC SLOWLY ROTATED A BAR SCRAPED DRIED CONCENTRATE FROM OUTSIDE OF FILTER CLOTH. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO
2005-03-17
Is1 maglev pump (Osaka Vacuum; TG2003 and TG430) to the low 10. torr region; the operation of pulsed and continuous sources increases the pressure to...about 10-5 torr and 10.4 torr, respectively. All maglev pumps require no maintenance and are hydrocarbon free. A dry roots pump (Leybold WS505; 140 s
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Smith, J. E., Jr.; Kaukler, W. F.
1985-01-01
Treatment reverses wettability of glassware: Liquids that normally wet glass no longer do, and those that do not wet glass are made to do so. Useful in research on container effects in nucleation and growth of secondary phase from solution. Treatment consists of spreading 3 percent (by weight) solution of silicone oil in hexane isomers over glass, drying in air, and curing at 300 degrees C in vacuum for one hour.
Beryllium Metal Supply Options
1989-01-01
vacuum evaporator treatment to form ABF crystals, which are separated in a horizontal bowl centrifuge and dried. Formation of Beryllium Fluoride The...addition, the high viscosity of the slag may cause poor pebble formation and yield. Thus, the following programs to improve efficiency have been suggested...and avoiding the formation of beryllium fines, which are difficult to recover. The production of a readily manageable beryllium sponge is desired, which
A Science-Based Understanding of Cermet Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesarano, III, Joseph; Roach, Robert Allen; Kilgo, Alice C.
2006-04-01
This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Duemore » to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper, slurry injection rate, via prewetting, slurry injection angle, filter paper prewetting, and slurry mixing time. Many of these factors did not have an influence on defect formation. In order of decreasing importance, critical factors for defect formation by slurry filling are vacuum time (20 sec. optimal), slurry solids loading (20.0 g of cermet with 13.00 g of DGBEA solvent (21.2 vol%)), filling with the pipette in a vertical position, and faster injection rates (%7E765 l/s) as preferable to slower. No further recommendations for improvement to this process can be suggested. All findings of the slurry filling process have been transferred to CeramTec, the supplier. Paste filling methods appear to show more promise of increasing production yields. The types of flaws commonly found in slurry-filled vias were identified and followed throughout the entire source feedthru process. In general, all sizes of cracks healed during isopressing and firing steps. Additionally, small to medium sized voids (less than 1/3 the via diameter) can be healed. Porosity will usually lead to via necking, which may cause the part to be out of specification. Large voids (greater 4 than 1/3 of the diameter) and partial fills are not healed or produce significant necking. 2.Viability of High-Solids-Loading-Cermet Paste for Filling Source Feedthru ViaThe paste-filling process is easy to implement and easier to use. The high solids loading (>40 vol %) reduces the incidence of drying defects, which are seen in slurry filled (%7E23 vol %) vias. Additionally, the way in which the vias are filled (the paste is pushed from entrance to exit, displacing air as the paste front progresses), reduces the chance of entrapped voids, which are common in the slurry filling process. From the fair number of samples already filled, the likelihood of this process being a viable and reliable process is very good. Issues of concern for the paste process, as with any new process, are any problems that may arise in subsequent manufacturing stages of the neutron tube that may be affected by subtle changes in microstructure. Both MC4277 and MC4300-type source feedthrus were paste-filled by hand. X-ray analysis showed a much lower existence of voids in the green parts as compared to slurry-filled parts. The paste shows improvements in shelf life (weeks) as compared to slurry (minutes). This method of introducing the cermet to the via also lends itself very well to an automated filling process where a machine can either drill vias or, with the aid of a vision system, find pre-drilled vias and fill them with paste. The pastes used in this work prove the concept of this automated filling process as MC4277 sources have been filled using such a prototype machine, however, better performing pastes can be developed which are less hazardous (aqueous systems). The paste process was also used to successfully fill MC4300 "dogleg" type sources.3.Optimize CND50 Two methods of creating granulated cermet powder for comparison with dry-ball milled CND50 were explored. The first method, non-aqueous spray drying, was performed at Niro Inc. used a 40/60 (wt %) ethanol/toluene solvent and three binder systems; polyvinyl butyral (B79), ethylcellulose (Ethocel), and hydroxypropylcellulose (Klucel). Due to the nature of small spray-dry systems, an excess amount of fines was present in the granulated powder, which may have contributed to the low angles of repose (68 to 78). This is a moderate increase in 5 flowability as standard dry-ball milled powder possesses an angle of repose of 79-89. Mist granulated powders were produced with a tert-butanol solvent and polyvinyl butyral binder system. The angles of repose were more promising (28). More investigation into the mist granulation method is required. Also, aqueous spray drying may be possible with cermet and should be explored. Compaction of all granulated powders is much closer to a proven pressing powder (Sandi94 - angle of repose 29) which should allow cermet to be pressed to near net shape where die filling is difficult for non-flowing powders.4.Microstructure Characterization An analytical technique was developed to numerically characterize microstructures in terms of molybdenum dispersion, homogeneity, and percolation indices. This technique was applied to dry-ball-milled samples of various ball-milling times (0.5 to 20 hours). Significant change in the microstructure could be seen with milling time. Increased milling time caused agglomeration of molybdenum particles, increasing the percolation index, whereas short milling times promoted higher dispersion indices. This phenomenon is contrary to conventional understanding of mixing. However, conventional ball milling does not usually incorporate granules with binder and separate particles. This discrepancy may explain the odd mixing behavior. It is important to note that the high percolation index possessed by long ball mill times showed lower electrical resistance than low-percolation-index microstructures. However, machinability of high percolation, low-dispersion-index microstructures were poor as compared to microstructures with high dispersion indices and moderate percolation indices. This trade-off between dispersion and percolation (at constant molybdenum levels) suggests that microstructures can be achieved that posses good mechanical and electrical properties. Coincidentally, microstructures that satisfy this condition are produced by the standard dry-ball-milled CND50 (4 hour ball mill time). The performance and sensitivity of the microstructure characterization technique should be evaluated, specifically for electrical conductivity. Processing techniques to decrease the percolation index (lowering molybdenum content, excess ball milling, 6 larger molybdenum particles, etc.) should be employed to determine the point where cermet is not conductive or falls below electrical conduction specifications.7« less
Spacecraft thermal blanket cleaning: Vacuum bake of gaseous flow purging
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1990-01-01
The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours, In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.
Spacecraft thermal blanket cleaning - Vacuum baking or gaseous flow purging
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1992-01-01
The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours. In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.
MMS Observatory TV Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese
2014-01-01
The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.
Critically safe vacuum pickup for use in wet or dry cleanup of radioactive materials
Zeren, Joseph D.
1994-01-01
A vacuum pickup of critically safe quantity and geometric shape is used in cleanup of radioactive materials. Collected radioactive material is accumulated in four vertical, parallel, equally spaced canisters arranged in a cylinder configuration. Each canister contains a filter bag. An upper intake manifold includes four 90 degree spaced, downward facing nipples. Each nipple communicates with the top of a canister. The bottom of each canister communicates with an exhaust manifold comprising four radially extending tubes that meet at the bottom of a centrally located vertical cylinder. The top of the central cylinder terminates at a motor/fan power head. A removable HEPA filter is located intermediate the top of the central cylinder and the power head. Four horizontal bypass tubes connect the top of the central cylinder to the top of each of the canisters. Air enters the vacuum cleaner via a hose connected to the intake manifold. Air then travels down the canisters, where particulate material is accumulated in generally equal quantities in each filter bag. Four air paths of bag filtered air then pass radially inward to the bottom of the central cylinder. Air moves up the central cylinder, through the HEPA filter, through a vacuum fan compartment, and exits the vacuum cleaner. A float air flow valve is mounted at the top of the central cylinder. When liquid accumulates to a given level within the central cylinder, the four bypass tubes, and the four canisters, suction is terminated by operation of the float valve.
Chong, Chien Hwa; Law, Chung Lim; Figiel, Adam; Wojdyło, Aneta; Oziembłowski, Maciej
2013-12-15
The objective of this study was to improve product quality of dehydrated fruits (apple, pear, papaya, mango) using combined drying techniques. This involved investigation of bioactivity, colour, and sensory assessment on colour of the dried products as well as the retention of the bio-active ingredients. The attributes of quality were compared in regard to the quality of dehydrated samples obtained from continuous heat pump (HP) drying technique. It was found that for apple, pear and mango the total colour change (ΔE) of samples dried using continuous heat pump (HP) or heat pump vacuum-microwave (HP/VM) methods was lower than of samples dried by other combined methods. However, for papaya, the lowest colour change exhibited by samples dried using hot air-cold air (HHC) method and the highest colour change was found for heat pump (HP) dehydrated samples. Sensory evaluation revealed that dehydrated pear with higher total colour change (ΔE) is more desirable because of its golden yellow appearance. In most cases the highest phenol content was found from fruits dried by HP/VM method. Judging from the quality findings on two important areas namely colour and bioactivity, it was found that combined drying method consisted of HP pre-drying followed by VM finish drying gave the best results for most dehydrated fruits studied in this work as the fruits contain first group of polyphenol compounds, which preferably requires low temperature followed by rapid drying strategy. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Papapostolou, Harris; Servetas, Yiannis; Bosnea, Loulouda A; Kanellaki, Maria; Koutinas, Athanasios A
2012-12-01
A novel technology development based on the production of a low-cost starter culture for ripening of cheeses and baking is reported in the present study. The starter culture comprises thermally dried cells of Kluyveromyces marxianus encapsulated in micro- and nano-tubular cellulose. For production of a low-cost and effective biocatalyst, whey was used as raw material for biomass production and thermal drying methods (convective, conventional, and vacuum) were applied and evaluated at drying temperatures ranging from 35 to 60 °C. The effect of drying temperature of biocatalysts on fermentability of lactose and whey was evaluated. Storage stability and suitability of biocatalysts as a commercial starter cultures was also assessed and evaluated. All thermally dried biocatalysts were found to be active in lactose and whey fermentation. In all cases, there was sugar conversion ranging from 92 to 100 %, ethanol concentration of up to 1.47 % (v/v), and lactic acid concentrations ranged from 4.1 to 5.5 g/l. However, convective drying of the encapsulated cells of K. marxianus in micro- and nano-tubular cellulose was faster and a more effective drying method while drying at 42 °C appear to be the best drying temperature in terms of cell activity, ethanol, and lactic acid formation. Storage of the biocatalysts for 3 months at 4 °C proved maintenance of its activity even though fermentation times increased by 50-100 % compared with the fresh dried ones.
Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates
NASA Astrophysics Data System (ADS)
Schimmel, M.; Hangx, S.; Spiers, C. J.
2016-12-01
Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Scheld, H. W.; Magnuson, J. W.
1989-01-01
Self-contained seed-sprouting system provides environment for sprouting seeds quickly and easily. Sprouting container standard 6-oz package for dehydrated food and drink mixes in Space Shuttle. About 4 g of dry alfalfa or radish seeds vacuum-sealed in each cup, like freeze-dried foods. Sixteen cups suspended in tray. Air-and-water inlet tube links each cup to system of tubes and solenoid valves alternately furnish air and water and remove stale air. Peristaltic pump supplies water from vinyl medical-fluid bag. Small diaphragm pump supplies and exhausts air. Small circuit board times movements of air and water. Kit offers advantages to home gardeners. Apartment dwellers use it for steady production of homegrown sprouts even though they have no garden space.
Extraction and characterization of the auricularia auricular polysaccharide
NASA Astrophysics Data System (ADS)
Zhang, Q. T.
2016-07-01
To study a new protein drugs carrier, the Auricularia auricular polysaccharide (AAP) was extracted and purified from Auricularia auricular, and then characterized by the micrOTOF-Q mass spectrometer, UV/Vis spectrophotometer, moisture analyzer and SEM. The results showed that the AAP sample was water- soluble and white flocculence, its molecular weight were 20506.9 Da∼⃒63923.7 Da, and the yield, moisture, and total sugar contents of the AAP were 4.5%, 6.2% and 90.12%(w/w), respectively. The results of the SEM revealed that the AAP dried by vacuum were spherical particles with a smooth surface, and the AAP freeze-dried had continuous porous sheet shape with the loose structure.
Patulin Production by Penicillium urticae Bainier in Batch Culture1
Norstadt, Fred A.; McCalla, T. M.
1969-01-01
A still, batch-culture method, with potato dextrose medium and Penicillium urticae Bainier, produced patulin yields of 1.2 to 1.7 g/liter of medium. Incubation was at 25 C for 14 days. Ethyl acetate extraction of condensed culture filtrate and drying with anhydrous MgSO4, followed by solvent change to dry ethyl ether and purification on alumina (pH 4.5), produced pure crystalline patulin. The use of 2-liter, round-bottom flasks and a rotating vacuum evaporator provided versatile equipment and easy manipulation in the operations. Soil from wheat fields provided a convenient natural P. urticae source. Potato dextrose medium was superior to potato sucrose or Raulin-Thom media. Images PMID:5775903
Lai, Lung-Shiang; Wang, Yi-Mei; Lin, Chin-Hsien
2011-06-01
Botulism type E intoxication is a rare condition among human botulism. We aim to describe a first case of botulism type E intoxication in Taiwan. We report a 36-year-old young man with foodborne botulism type E associated with commercially vacuum packaged dried bean curd. He developed bilateral ptosis, diplopia and dysphagia 4 days after taking the dried bean curd. Electrophysiologic findings demonstrated waxing responses to 3 Hz repetitive nerve stimulation and decreased compound muscle action potentials on peripheral nerve conduction study. A bioassay for botulism in mice demonstrated that the patient had botulism caused by type E botulinum toxin. Antibodeis to C. botulinum type E were identified from his serum, confirming the diagnosis. This is the first known case of foodborne type E botulism in Taiwan. The potential source of this foodborne botulism should consider contaminated food made of soy beans.
Smulders, F J M; Hiesberger, J; Hofbauer, P; Dögl, B; Dransfield, E
2006-09-01
Beef has a requirement for refrigerated storage up to 14 d to achieve adequate aging and a tender product. To achieve this aging with little spoilage and no surface drying, vacuum packaging is attractive, because it is inherently simple and offers a clear indication to the packer when the process has failed or there is risk of spoilage. However, there is increasing pressure on the meat industry to limit the use of packaging materials in view of their cost and the cost involved in their recovery and recycling. The purpose of this report was to evaluate an alternative storage system in containers using modified atmospheres at reduced pressure (approximately 25 kPa). The quality of the meat for both container- and vacuum-packed treatments was measured during chilled storage for up to 3 wk. Storage time had the most significant effect on quality characteristics, irrespective of the packaging method. Storage in containers under a 70%N2:30%CO2 gas mixture gave characteristics similar to beef stored under vacuum. Storage in containers under 100% CO2 produced less drip loss than under 70%N2:30%CO2, but generally container storage produced 3 times as much drip loss as vacuum packaging. Shear force of the LM was unaffected by the type of packaging, and at d 2 after slaughter (i.e., before the storage trial was begun), sarcomere lengths of muscles intended for container storage were similar to those destined for vacuum storage. During the packaging treatment, the comparison between the storage systems was always done within 1 animal using one carcass-half for container storage and the other half for vacuum packaging; all bulls were shackled from the left hindleg during bleeding. The majority of the muscles from the left sides had lower shear force values than those from the right sides at the earlier storage times (2 and 9 d after slaughter) but had similar values after longer storage (16 and 23 d after slaughter). This is the first report that shackling beef carcasses from the left side can result in more tender meat in the LM from that side. The increased tenderness in the LM from the shackled side probably resulted from an early decrease in pH and an increase in calpain activity after mechanical strain of the muscles on the shackled side. This effect of shackling should be taken into account when designing systematic comparisons of tenderness in beef.
Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences
NASA Astrophysics Data System (ADS)
Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.
2018-01-01
The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.
Vacuum Technology Considerations For Mass Metrology
Abbott, Patrick J.; Jabour, Zeina J.
2011-01-01
Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593
Apparatus and processes for the mass production of photovoltaic modules
Barth, Kurt L [Ft. Collins, CO; Enzenroth, Robert A [Fort Collins, CO; Sampath, Walajabad S [Fort Collins, CO
2007-05-22
An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.
Apparatus and processes for the mass production of photovotaic modules
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2002-07-23
An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.
Condensed milk storage and evaporation affect the flavor of nonfat dry milk.
Park, Curtis W; Drake, MaryAnne
2016-12-01
Unit operations in nonfat dry milk (NFDM) manufacture influence sensory properties, and consequently, its use and acceptance in ingredient applications. Condensed skim milk may be stored at refrigeration temperatures for extended periods before spray drying due to shipping or lack of drying capacity. Currently, NFDM processors have 2 options for milk concentration up to 30% solids: evaporation (E) or reverse osmosis (RO). The objective of this study was to determine the effect of condensed milk storage and milk concentration method (E vs. RO) on the flavor of NFDM and investigate mechanisms behind flavor differences. For experiment 1, skim milk was pasteurized and concentrated to 30% solids by E or RO and then either stored for 24h at 4°C or concentrated to 50% solids by E and spray dried immediately. To investigate mechanisms behind the results from experiment 1, experiment 2 was constructed. In experiment 2, pasteurized skim milk was subjected to 1 of 4 treatments: control (no E), heated in the evaporator without vacuum, E concentration to 30% solids, or E concentration to 40% solids. The milks were then diluted to the same solids content and evaluated. Volatile compounds were also measured during concentration in the vapor separator of the evaporator. Sensory properties were evaluated by descriptive sensory analysis and instrumental volatile compound analysis was conducted to evaluate volatile compounds. Interaction effects between storage and method of concentration were investigated. In experiment 1, E decreased sweet aromatic flavor and many characteristic milk flavor compounds and increased cardboard and cooked flavors in NFDM compared with RO. Liquid storage increased cardboard flavor and hexanal and octanal and decreased sweet aromatic flavors and vanillin concentration. Results from experiment 2 indicated that the characteristic milk flavors and their associated volatile compounds were removed by the vapor separator in the evaporator due to the heat and vacuum applied during concentration. These results demonstrate that off-flavors are significantly reduced when RO is used in place of E and storage of condensed milk is avoided. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Carbothermic Synthesis of ~820- m UN Kernels. Investigation of Process Variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindemer, Terrence; Silva, Chinthaka M; Henry, Jr, John James
2015-06-01
This report details the continued investigation of process variables involved in converting sol-gel-derived, urainia-carbon microspheres to ~820-μm-dia. UN fuel kernels in flow-through, vertical refractory-metal crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO 2:2UC in the same gases and vacuum, and its conversion in N 2 to in UC 1-xN x. The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UC kernel of ~96% theoretical densitymore » was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Decreasing the UC 1-xN x kernel carbide component via HCN evolution was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.« less
Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage.
Tyburcy, Andrzej; Kozyra, Daniel
2010-10-01
Coating of dry sausages with renewable materials could be an alternative to vacuum packaging. In this study kabanosy dry sausage was coated with a composite emulsion and stored for 7 or 15 days at 4-6 degrees C. Effects of different emulsion formulas (0.5 or 1% w/w of kappa-carrageenan and 5 or 10% w/w of glycerol) and pre-drying of coated sausages (at 50 degrees C for 1.5h) were investigated. Carrageenan concentration had a significant effect (P=0.05) on the amount of emulsion adsorbed on the sausage surface but little influence on the barrier properties of the coatings. At both glycerol concentration levels, coatings had no visible cracks and were easily removed from the sausage surface after 7 and 15 days of storage. The colour values of coatings (L*, a*, and b*) changed along with the decreasing water activity during storage. Pre-drying of coated sausages reduced peeled product weight loss after storage. The financial analysis showed that among coatings tested the best proved to be the emulsion containing (w/w): 5% glycerol, 5% gelatin, 0.5% carrageenan, 20% lard, 20% beeswax, and 50% water. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Regenerative Gas Dryer for In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Paz, Aaron
2017-01-01
Rocket propellant can be produced anywhere that water is found by splitting it into hydrogen and oxygen, potentially saving several tons of mass per mission and enabling the long term presence of humans in space beyond LEO. When water is split into hydrogen and oxygen, the gaseous products can be very humid (several thousand ppm). Propellant-grade gases need to be extremely dry before being converted into cryogenic liquids (less than 26 ppm water for grade B Oxygen). The primary objective of this project is to design, build and test a regenerative gas drying system that can take humid gas from a water electrolysis system and provide dry gas (less than 26ppm water) to the inlet of a liquefaction system for long durations. State of the art work in this area attempted to use vacuum as a means to regenerate desiccant, but it was observed that water would migrate to the dry zone without a sweep gas present to direct the desorbed vapor. Further work attempted to use CO2 as a sweep gas, but this resulted in a corrosive carbonic acid. In order for in-situ propellant production to work, we need a way to continuously dry humid gas that addresses these issues.
Effects of yeast, fermentation time, and preservation methods on tarhana.
Gurbuz, Ozan; Gocmen, Duygu; Ozmen, Nese; Dagdelen, Fatih
2010-01-01
The physicochemical properties of tarhana soup produced with different dough treatments, fermentation times, and preservation methods were examined. Tarhana doughs were prepared with yogurt (control) or baker's yeast (Saccharomyces cerevisiae) and fermented for 3 days. Samples were taken at 24, 48, and 72 hr. Samples were then preserved via one of four methods: sun dried, dried in the shade, vacumn dried, and frozen. Frozen samples produced lower organic acid levels after 72 hr of fermentation in both control (0.68 g/100 g) and yeast (0.61 g/100 g) applications than samples that were dried (0.94 g/100 g control samples; 0.81 g/100 g samples with yeast). Increasing fermentation time resulted in a significant effect on the formation of organic acid in the tarhana (p < .01). At 72 hr of fermentation, total acidity increased 11%, 17%, and 23% for tarhana samples vacumn-dried, sun-dried, and dried in the shade, respectively. Preservation methods also affected the moisture, ash, crude protein, total acidity, pH, salt, fat, reducing sugar levels, and the sensory assestment of tarhana soup (p < .01). Sensory characteristics were not significantly affected by baker's yeast in any of the preservation methods used (p > .01). However, sensory scores for tarhana prepared from the samples dried in a sheltered area showed a reduction in color desireablilty as the fermentation time increased. The soup prepared from frozen tarhana (72 hr fermentation, with yeast) had the highest scores with respect to color, mouth feel, flavor, and overall acceptability. Vacuum-dried samples' scores in these areas were also high in comparison to the two other drying methods.
Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P; Figiel, Adam
2017-01-17
Among popular crops, plum ( Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar "Valor") juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders.
Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P.; Figiel, Adam
2017-01-01
Among popular crops, plum (Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar “Valor”) juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders. PMID:28106740
Inexpensive Method for Coating the Interior of Silica Growth Ampoules with Pyrolytic Boron Nitride
NASA Technical Reports Server (NTRS)
Wang, Jianbin; Regel, Liya L.; Wilcox, William R.
2003-01-01
An inexpensive method was developed for coating the interior of silica ampoules with hexagonal boron nitride. An aqueous solution of boric acid was used to coat the ampoule prior to drying in a vacuum at 200 C. This coating was converted to transparent boron nitride by heating in ammonia at 1000 C. Coated ampoules were used to achieve detached solidification of indium antimonide on earth.
Tribological Characteristics and Applications of Superhard Coatings: CVD Diamond, DLC, and c-BN
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Wu, Richard L. C.
1999-01-01
Results of fundamental research on the tribological properties of chemical-vapor-deposited (CVD) diamond, diamondlike carbon, and cubic boron nitride films in sliding contact with CVD diamond in ultrahigh vacuum, dry nitrogen, humid air, and water are discussed. Furthermore, the actual and potential applications of the three different superhard coatings in the field of tribology technology, particularly for wear parts and tools, are reviewed.
Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua
2016-11-04
A fluorimetric Hg 2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the "coffee stains" toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized "coffee stains". On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg 2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of "coffee stains" on test strips may expand the scope of applications of test strips-based "point-of-care" analysis methods or detection devices in the biomedical and environmental fields.
NASA Astrophysics Data System (ADS)
Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie
2016-03-01
Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.
Multipurpose Vacuum Induction Processing System
NASA Astrophysics Data System (ADS)
Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.
2012-11-01
Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.
NASA Astrophysics Data System (ADS)
Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul
The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.
Mason, W T; Lewis, P A; Weber, C I
1983-03-01
Evaluation of analytical methods employed for wet weight (live or preserved samples) of benthic macroinvertebrates reveals that centrifugation at 140 x gravity for one minute yields constant biomass estimates. Less relative centrifugal force increases chance of incomplete removal of body moisture and results in weighing error, while greater force may rupture fragile macroinvertebrates, such as mayflies. Duration of specimen exposure in ethanol, formalin, and formol (formaling-ethanol combinations) causes significant body weight loss with within 48 hr formalin and formol cause less body weight loss than ethanol. However, as all preservatives tested cause body weight loss, preservation time of samples collected for comparative purposes should be treated uniformly. Dry weight estimates of macroinvertebrates are not significantly affected by kind of preservative or duration of exposure. Constant dry weights are attained by oven drying at 103 °C at a minimum of four hours or vacuum oven drying (15 inches of mercury pressure) at 103 °C for a minimum of one hour. Although requiring more time in preparation than oven drying and inalterably changing specimen body shape, freeze drying (10 microns pressure, -55 °C, 24 hr) provides constant dry weights and is advantageous for long term sample storage by minimizing curatorial attention. Constant ash-free dry weights of macroinvertebrate samples are attained by igniting samples at 500-550 °C for a minimum of one hour with slow cooling to room temperature in desiccators before weighing.
Container materials in environments of corroded spent nuclear fuel
NASA Astrophysics Data System (ADS)
Huang, F. H.
1996-07-01
Efforts to remove corroded uranium metal fuel from the K Basins wet storage to long-term dry storage are underway. The multi-canister overpack (MCO) is used to load spent nuclear fuel for vacuum drying, staging, and hot conditioning; it will be used for interim dry storage until final disposition options are developed. Drying and conditioning of the corroded fuel will minimize the possibility of gas pressurization and runaway oxidation. During all phases of operations the MCO is subjected to radiation, temperature and pressure excursions, hydrogen, potential pyrophoric hazard, and corrosive environments. Material selection for the MCO applications is clearly vital for safe and efficient long-term interim storage. Austenitic stainless steels (SS) such as 304L SS or 316L SS appear to be suitable for the MCO. Of the two, Type 304L SS is recommended because it possesses good resistance to chemical corrosion, hydrogen embrittlement, and radiation-induced corrosive species. In addition, the material has adequate strength and ductility to withstand pressure and impact loading so that the containment boundary of the container is maintained under accident conditions without releasing radioactive materials.
U.S. Army Oxygen Generation System Development
2010-04-01
engines), scroll pumps , and rotary vane pumps . The turbo compressor is a design that trades the size and weight of the low speed compressors for a...is exposed to water. A guard bed of silica gel is used to protect the bed from moisture. A variation of the process ends the cycle using a vacuum ...phase. With the vacuum assist the total change of pressure is the same as the PSA process, but the maximum pressure is lower. Not only does the vacuum
Zbik, Marek S; Frost, Ray L
2010-04-15
In paper has been to investigate the morphological patterns and kinetics of PDMS spreading on silicon wafer using combination of techniques like ellipsometry, atomic force microscope (AFM), scanning electron microscope (SEM) and optical microscopy. A macroscopic silicone oil drops as well as PDMS water based emulsions were studied after deposition on a flat surface of silicon wafer in air, water and vacuum. Our own measurements using an imaging ellipsometer, which also clearly shows the presence of a precursor film. The diffusion constant of this film, measured with a 60,000 cS PDMS sample spreading on a hydrophilic silicon wafer is D(f)=1.4x10(-11) m(2)/s. Regardless of their size, density and method of deposition, droplets on both types of wafer (hydrophilic and hydrophobic) flatten out over a period of many hours, up to 3 days. During this process neighbouring droplets may coalesce, but there is strong evidence that some of the PDMS from the droplets migrates into a thin, continuous film that covers the surface in between droplets. The thin film appears to be ubiquitous if there has been any deposition of PDMS. However, this statement needs further verification. One question is whether the film forms immediately after forced drying, or whether in some or all cases it only forms by spreading from isolated droplets as they slowly flatten out. 2010 Elsevier Inc. All rights reserved.
Genesis Ultrapure Water Megasonic Wafer Spin Cleaner
NASA Technical Reports Server (NTRS)
Allton, Judith H.; Stansbery, Eileen K.; Calaway, Michael J.; Rodriquez, Melissa C.
2013-01-01
A device removes, with high precision, the majority of surface particle contamination greater than 1-micron-diameter in size from ultrapure semiconductor wafer materials containing implanted solar wind samples returned by NASA's Genesis mission. This cleaning device uses a 1.5-liter/minute flowing stream of heated ultrapure water (UPW) with 1- MHz oscillating megasonic pulse energy focused at 3 to 5 mm away from the wafer surface spinning at 1,000 to 10,000 RPM, depending on sample size. The surface particle contamination is removed by three processes: flowing UPW, megasonic cavitations, and centripetal force from the spinning wafer. The device can also dry the wafer fragment after UPW/megasonic cleaning by continuing to spin the wafer in the cleaning chamber, which is purged with flowing ultrapure nitrogen gas at 65 psi (.448 kPa). The cleaner also uses three types of vacuum chucks that can accommodate all Genesis-flown array fragments in any dimensional shape between 3 and 100 mm in diameter. A sample vacuum chuck, and the manufactured UPW/megasonic nozzle holder, replace the human deficiencies by maintaining a consistent distance between the nozzle and wafer surface as well as allowing for longer cleaning time. The 3- to 5-mm critical distance is important for the ability to remove particles by megasonic cavitations. The increased UPW sonication time and exposure to heated UPW improve the removal of 1- to 5-micron-sized particles.
Holloway, Paul H; Pritchard, David G
2017-08-01
The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.
Holloway, Paul H.; Pritchard, David G.
2017-01-01
Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID:28521045
Viking heat sterilization - Progress and problems
NASA Technical Reports Server (NTRS)
Daspit, L. P.; Cortright, E. M.; Stern, J. A.
1974-01-01
The Viking Mars landers to be launched in 1975 will carry experiments in biology, planetology, and atmospheric physics. A terminal dry-heat sterilization process using an inert gas was chosen to meet planetary quarantine requirements and preclude contamination of the biology experiment by terrestrial organisms. Deep sterilization is performed at the component level and terminal surface sterilization at the system level. Solutions to certain component problems relating to sterilization are discussed, involving the gyroscope, tape recorder, battery, electronic circuitry, and outgassing. Heat treatment placed special requirements on electronic packaging, including fastener preload monitoring and solder joints. Chemical and physical testing of nonmetallic materials was performed to establish data on their behavior in heat-treatment and vacuum environments. A Thermal Effects Test Model and a Proof Test Capsule were used. It is concluded that a space vehicle can be designed and fabricated to withstand heat sterilization requirements.
NASA Astrophysics Data System (ADS)
Nomura, Kazuya; Okada, Akiko; Shoji, Shuichi; Ogashiwa, Toshinori; Mizuno, Jun
2016-10-01
We propose hermetic sealing of a glass-to-glass structure with an I-structure through-glass interconnect via (TGV) filled with submicron Au particles. The top and bottom bumps and the TGV were formed by a simple filling process with a bump-patterned dry film resist. The sealing devices consisting of two glass substrates were bonded via Au interlayers. Vacuum ultraviolet irradiation in the presence of oxygen gas (VUV/O3) pretreatment was used for low-temperature Au-Au bonding at 200 °C. The bonded samples showed He leakage rates of less than 1.3 × 10-9 Pa m3 s-1. The cross-sectional scanning electron microscope images of the fabricated I-structure TGV showed perfect adhesion between the I-structure TGV and glass substrate. These results indicate that the proposed I-structure TGV is suitable for hermetic sealing devices.
Space Environmentally Durable Polyimides and Copolyimides
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)
2006-01-01
Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic &anhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides. The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.
Space Environmentally Durable Polyimides and Copolyimides
NASA Technical Reports Server (NTRS)
Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)
2005-01-01
Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.
Purifying Aluminum by Vacuum Distillation
NASA Technical Reports Server (NTRS)
Du Fresne, E. R.
1985-01-01
Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.
Chen, Ming-Xia; Zhang, Jian-Bao; Yu, Ji-Ping; Ye, Jing; Wei, Bao-Hong; Zhang, Yu-Jie
2013-06-01
To optimize the freeze-dried powder preparation technology of recombinate hirudin-2 (rHV2) nanoparticle which has bio-adhesive characteristic for nasal delivery, also to investigate its stability and permeability through nasal membrane in vitro. Taking the appearance, rediffusion of nanoparticle and rHV2 encapsulation efficiency as the evaluation indexes. Cryoprotector, the preparative technique and the effect of illumination and high temperature factors on its stability for rHV2 freeze-dried powder were investigated. Using Fraze diffusion cell technique, the permeability of rHV2 across rabbit nasal mucous membrane in chitosan solution, chitosan nanoparticle, and nanoparticle frozen-dried powder were compared with that in normal saline solution. The optimized preparation of rHV2 nanoparticle freeze-dried powder was as follows: 5% trehalose and glucose (1:1) was used as cryoprotector, nanoparticle solution was freezed for 24 h in vacuum frozen-dryer after being pre-freezed for 24 h. The content of rHV2 in the freeze-dried powder was 1.1 ug/mg. Illumination had little effect on the appearance, rediffusion and encapsulation efficiency of the rHV2 freeze-dried powder. High temperature could obviously influence the appearance of nanoparticle freeze-dried powder. The permeability coefficient (P) of nanoparticle was 5 times more than that in chictonson solution. It was indicated that chitosan nanoparticle has effect on increasing the permeability of rHV2. The freeze-dried powder of chitosan nanoparticle can be a good nasal preparation of rHV2.
An evaluation of fluid bed drying of aqueous granulations.
Hlinak, A J; Saleki-Gerhardt, A
2000-01-01
The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.
Method for the preparation of high surface area high permeability carbons
Lagasse, Robert R.; Schroeder, John L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.; Siebert, Mark
2002-01-01
Tribology experiments on different types of sputtered molybdenum disulfide (MoS2) coatings (obtained from different vendors) using accelerated testing techniques were conducted. The purpose was to determine which would be the best coating for use with auxiliary journal bearings for spacecraft energy storage flywheels. Experiments were conducted in moist air (50% relative humidity) and in dry air (<100 PPM water vapor content) on a Pin-on-Disk Tribometer to determine how well the coatings would perform in air. Experiments were also conducted on a Block-on-Ring Tribometer in dry nitrogen (<100 PPM water vapor) to simulate how well the coatings would perform in vacuum. Friction, counterface wear, coating wear, endurance life and surface morphology were investigated.
Complex technology of vacuum-arc processing of structural material surface
NASA Astrophysics Data System (ADS)
Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.
2015-08-01
The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.
Kinetics of scrap tyre pyrolysis under vacuum conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Gartzen; Aguado, Roberto; Olazar, Martin
2009-10-15
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less
Kinetics of scrap tyre pyrolysis under vacuum conditions.
Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier
2009-10-01
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.
NASA Astrophysics Data System (ADS)
Someya, Y.; Matsumoto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Goto, T.; Ogawa, Y.
2008-05-01
The neutronics analysis has been carried out for feasibility study of the FALCON-D concept by Monte Carlo N-paticle transport code (MCNP), in order to inspect the cooling performance of in-vessel and ex-vessel components, and a connection pipe between Vacuum Vessel and reactor room. The nuclear heating rate in the Vacuum Vessel was at the same level as that of NBI duct of the ITER. The temperature of the connection pipe was found to be 345·, ·which was smaller than the melting point of structure materials (F82H). Moreover, the radiation damage of the final optics was also investigated. We propose a sliding changer concept for replacement. This method could be adapted for the replacement of one FPY cycle in the final optics system.
Resin Permeation Through Compressed Glass Insulation for Iter Central Solenoid
NASA Astrophysics Data System (ADS)
Reed, R.; Roundy, F.; Martovetsky, N.; Miller, J.; Mann, T.
2010-04-01
Concern has been expressed about the ability of the resin system to penetrate the compressed dry glass of the turn and layer insulation during vacuum-pressure impregnation of ITER Central Solenoid (CS) modules. The stacked pancake layers of each module result in compression loads up to 9×104 kg (100 tons) on the lowest layers of each segment. The objective of this program was to assess the effects of this compressive load on resin permeation under resin-transfer conditions and with materials identical to that expected to be used in actual coil fabrication [45-50 °C, vacuum of 133 Pa (1 torr), DGEBF/anhydride epoxy resin system, E-glass satin weave, applied pressure of 125 kPa]. The experimental conditions and materials are detailed and the permeation results presented in this paper.
Processing and Properties of a Phenolic Composite System
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Bai, J. M.; Baughman, James M.
2006-01-01
Phenolic resin systems generate water as a reaction by-product via condensation reactions during curing at elevated temperatures. In the fabrication of fiber reinforced phenolic resin matrix composites, volatile management is crucial in producing void-free quality laminates. A commercial vacuum-bag moldable phenolic prepreg system was selected for this study. The traditional single-vacuum-bag (SVB) process was unable to manage the volatiles effectively, resulting in inferior voidy laminates. However, a double vacuum bag (DVB) process was shown to afford superior volatile management and consistently yielded void-free quality parts. The DVB process cure cycle (temperature /pressure profiles) for the selected composite system was designed, with the vacuum pressure application point carefully selected, to avoid excessive resin squeeze-outs and achieve the net shape and target resin content in the final consolidated laminate parts. Laminate consolidation quality was characterized by optical photomicrography for the cross sections and measurements of mechanical properties. A 40% increase in short beam shear strength, 30% greater flexural strength, 10% higher tensile and 18% higher compression strengths were obtained in composite laminates fabricated by the DVB process.
Ultrahigh vacuum focused ion beam micromill and articles therefrom
Lamartine, Bruce C.; Stutz, Roger A.
1998-01-01
An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.
Lubrication with sputtered MoS2 films: Principles, operation, limitations
NASA Technical Reports Server (NTRS)
Spalvins, T.
1991-01-01
The present practices, limitations, and understanding of thin sputtered MoS2 films are reviewed. Sputtered MoS2 films can exhibit remarkable tribological properties such as ultralow friction coefficients (0.01) and enhanced wear lives (millions of cycles) when used in vacuum or dry air. To achieve these favorable tribological characteristics, the sputtering conditions during deposition must be optimized for adequate film adherence and appropriate structure (morphology) and composition.
Preparation, Electromechanical, and Structural Study of Carbon Nanotube/Gelatin Nanocomposites
2008-01-15
surfactant sodium dodecyl sulfate (SDS). The swelling behavior and the bending mechanism of the composite and pure gelatin films were studied in order...vacuum-dried gels samples into a 0.1 M NaCl aqueous solution at room temperature. The incorporation of MWNT gradually decreased the swelling of the...ultrasonication in an aqueous medium with anionic surfactant sodium dodecyl sulfate (SDS). The swelling behavior and the bending mechanism of the
Preliminary Testing of Mycoleptodiscus terrestris Formulations
2009-03-01
Colletotrichum truncatum (Schw.) Andrus and Moore for management of hemp sesbania, Jackson (1997) found that carbon concentration in the medium...dry overnight. When the moisture content was between 5 and 10 percent, the granules were vacuum packed into plastic bags and stored at 4º C until...amended with ammonium chloride (0.5 g/L) and Esmigran (1.7 g/L). Four plastic cups (0.95 L) filled three-fourths with amended lake sediment were planted
Radappertized Meats for Aerospace Meals
1981-06-01
and canned bread made from irradiated wheat flour were used as emergency back-up foods in Skylab III. In response to a NASA request for foods for the...tt a,- /_ j .3 LIST OF TABLES PUge 1. Test Results of Vacuum Packaged Irradiated 10 Food Samples 2. Chemical Composition of Irradiated Food Samples...55 g Sodium nitrite .. ........ 1 g *Pickling spice mixture . . .... .... . 340 g (dry) The pumped briskets were stored at 30 C for 48 hours in
Microfabricated triggered vacuum switch
Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM
2010-05-11
A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.
Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates
NASA Technical Reports Server (NTRS)
Cano, Robert J.; Jensen, Brian J.
2013-01-01
The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.
Commercial aspects of epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.
State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
Zhan, Lu; Xu, Zhenming
2014-12-16
In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.
Wafer-Level Vacuum Packaging of Smart Sensors.
Hilton, Allan; Temple, Dorota S
2016-10-31
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.
Wafer-level vacuum/hermetic packaging technologies for MEMS
NASA Astrophysics Data System (ADS)
Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil
2010-02-01
An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.