Sample records for vacuum energy spectral

  1. Effects of vacuum exposure on stress and spectral shift of high reflective coatings

    NASA Astrophysics Data System (ADS)

    Stolz, C. J.; Taylor, J. R.; Eickelberg, W. K.; Lindh, J. D.

    1992-06-01

    The Atomic Vapor Laser Isotope Laser Separation (AVLIS) program operates the world's largest average power dye laser; the dye laser beams are combined, formatted, and transported in vacuum. The optical system is aligned at atmosphere, while the system must meet requirements in vacuum. Therefore, coating performance must be characterized in both atmosphere and vacuum. Changes in stress and spectral shift in ambient and vacuum environments are reported for conventional and dense multilayer dielectric coatings.

  2. Gravitational collapse and the vacuum energy

    NASA Astrophysics Data System (ADS)

    Campos, M.

    2014-03-01

    To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.

  3. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    NASA Astrophysics Data System (ADS)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  4. Vacuum Energy and Inflation: 4. An Inflationary Universe

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2013-01-01

    This is the fourth paper in a series of four. The first paper in the series, "Vacuum Energy and Inflation: 1. A Liter of Vacuum Energy" [EJ1024183] discusses an example of vacuum energy. Vacuum energy is explained as an energy with a negative pressure whose energy density remains constant in an expanding space. Paper 2, "Vacuum…

  5. Vacuum energy from noncommutative models

    NASA Astrophysics Data System (ADS)

    Mignemi, S.; Samsarov, A.

    2018-04-01

    The vacuum energy is computed for a scalar field in a noncommutative background in several models of noncommutative geometry. One may expect that the noncommutativity introduces a natural cutoff on the ultraviolet divergences of field theory. Our calculations show however that this depends on the particular model considered: in some cases the divergences are suppressed and the vacuum energy is only logarithmically divergent, in other cases they are stronger than in the commutative theory.

  6. Expanding space-time and variable vacuum energy

    NASA Astrophysics Data System (ADS)

    Parmeggiani, Claudio

    2017-08-01

    The paper describes a cosmological model which contemplates the presence of a vacuum energy varying, very slightly (now), with time. The constant part of the vacuum energy generated, some 6 Gyr ago, a deceleration/acceleration transition of the metric expansion; so now, in an aged Universe, the expansion is inexorably accelerating. The vacuum energy varying part is instead assumed to be eventually responsible of an acceleration/deceleration transition, which occurred about 14 Gyr ago; this transition has a dynamic origin: it is a consequence of the general relativistic Einstein-Friedmann equations. Moreover, the vacuum energy (constant and variable) is here related to the zero-point energy of some quantum fields (scalar, vector, or spinor); these fields are necessarily described in a general relativistic way: their structure depends on the space-time metric, typically non-flat. More precisely, the commutators of the (quantum field) creation/annihilation operators are here assumed to depend on the local value of the space-time metric tensor (and eventually of its curvature); furthermore, these commutators rapidly decrease for high momentum values and they reduce to the standard ones for a flat metric. In this way, the theory is ”gravitationally” regularized; in particular, the zero-point (vacuum) energy density has a well defined value and, for a non static metric, depends on the (cosmic) time. Note that this varying vacuum energy can be negative (Fermi fields) and that a change of its sign typically leads to a minimum for the metric expansion factor (a ”bounce”).

  7. Vacuum Energy and Inflation: 3. Newtonian Cosmology & GR

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2013-01-01

    This is paper #3 in a series of four papers on "vacuum energy" and inflation. In paper #1 [see EJ1024183] we discussed an example of what we have been calling vacuum energy. It is an energy with negative pressure whose energy density remains constant in an expanding space. We showed that an energy density with these properties exists…

  8. Negative vacuum energy densities and the causal diamond measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salem, Michael P.

    2009-07-15

    Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscapemore » - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.« less

  9. Comparison of work rates, energy expenditure, and perceived exertion during a 1-h vacuuming task with a backpack vacuum cleaner and an upright vacuum cleaner.

    PubMed

    Mengelkoch, Larry J; Clark, Kirby

    2006-03-01

    The purpose of this study was to evaluate two types of industrial vacuum cleaners, in terms of cleaning rates, energy expenditure, and perceived exertion. Twelve industrial cleaners (six males and six females, age 28-39 yr) performed two 1-h vacuuming tasks with an upright vacuum cleaner (UVC) and a backpack vacuum cleaner (BPVC). Measures for oxygen uptake (VO2) and ratings of perceived exertion (RPE) were collected continuously during the 1-h vacuuming tasks. Cleaning rates for the UVC and BPVC were 7.23 and 14.98 m2min(-1), respectively. On a separate day subjects performed a maximal treadmill exercise test to determine their maximal aerobic capacity (peak VO2). Average absolute energy costs (in Metabolic equivalents), relative energy costs of the vacuum task compared to the subjects' maximal aerobic capacity (% peak VO2), and RPE responses for the 1-h vacuuming tasks were similar between vacuum cleaners, but % peak VO2 and RPE values differed between genders. These results indicate that the BPVC was more efficient than the UVC. With the BPVC, experienced workers vacuumed at a cleaning rate 2.07 times greater than the UVC and had similar levels of energy expenditure and perceived effort, compared to the slower cleaning rate with the UVC.

  10. Post-Planck constraints on interacting vacuum energy

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Wands, David; Zhao, Gong-Bo; Xu, Lixin

    2014-07-01

    We present improved constraints on an interacting vacuum model using updated astronomical observations including the first data release from Planck. We consider a model with one dimensionless parameter, α, describing the interaction between dark matter and vacuum energy (with fixed equation of state w=-1). The background dynamics correspond to a generalized Chaplygin gas cosmology, but the perturbations have a zero sound speed. The tension between the value of the Hubble constant, H0, determined by Planck data plus WMAP polarization (Planck +WP) and that determined by the Hubble Space Telescope (HST) can be alleviated by energy transfer from dark matter to vacuum (α>0). A positive α increases the allowed values of H0 due to parameter degeneracy within the model using only cosmic microwave background data. Combining with additional data sets of including supernova type Ia (SN Ia) and baryon acoustic oscillation (BAO), we can significantly tighten the bounds on α. Redshift-space distortions (RSD), which constrain the linear growth of structure, provide the tightest constraints on vacuum interaction when combined with Planck+WP, and prefer energy transfer from vacuum to dark matter (α<0) which suppresses the growth of structure. Using the combined data sets of Planck +WP+Union2.1+BAO+RSD, we obtain the constraint on α to be -0.083<α<-0.006 (95% C.L.), allowing low H0 consistent with the measurement from 6dF Galaxy survey. This interacting vacuum model can alleviate the tension between RSD and Planck +WP in the ΛCDM model for α <0, or between HST measurements of H0 and Planck+WP for α>0, but not both at the same time.

  11. Sequestering the standard model vacuum energy.

    PubMed

    Kaloper, Nemanja; Padilla, Antonio

    2014-03-07

    We propose a very simple reformulation of general relativity, which completely sequesters from gravity all of the vacuum energy from a matter sector, including all loop corrections and renders all contributions from phase transitions automatically small. The idea is to make the dimensional parameters in the matter sector functionals of the 4-volume element of the Universe. For them to be nonzero, the Universe should be finite in spacetime. If this matter is the standard model of particle physics, our mechanism prevents any of its vacuum energy, classical or quantum, from sourcing the curvature of the Universe. The mechanism is consistent with the large hierarchy between the Planck scale, electroweak scale, and curvature scale, and early Universe cosmology, including inflation. Consequences of our proposal are that the vacuum curvature of an old and large universe is not zero, but very small, that w(DE) ≃ -1 is a transient, and that the Universe will collapse in the future.

  12. Vacuum energy density kicked by the electroweak crossover

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Volovik, G. E.

    2009-10-01

    Using q-theory, we show that the electroweak crossover can generate a remnant vacuum energy density Λ˜Eew8/EPlanck4, with effective electroweak energy scale Eew˜103GeV and reduced Planck-energy scale EPlanck˜1018GeV. The obtained expression for the effective cosmological constant Λ may be a crucial input for the suggested solution by Arkani-Hamed et al. of the triple cosmic coincidence puzzle (why the orders of magnitude of the energy densities of vacuum, matter, and radiation are approximately the same in the present Universe).

  13. Gravitational vacuum energy in our recently accelerating universe

    NASA Astrophysics Data System (ADS)

    Bludman, Sidney

    2009-04-01

    We review current observations of the homogeneous cosmological expansion which, because they measure only kinematic variables, cannot determine the dynamics driving the recent accelerated expansion. The minimal fit to the data, the flat ACDM model, consisting of cold dark matter and a cosmological constant, interprets 4? geometrically as a classical spacetime curvature constant of nature, avoiding any reference to quantum vacuum energy. (The observed Uehling and Casimir effects measure forces due to QED vacuum polarization, but not any quantum material vacuum energies.) An Extended Anthropic Principle, that Dark Energy and Dark Gravity be indistinguishable, selects out flat ACDM. Prospective cosmic shear and galaxy clustering observations of the growth of fluctuations are intended to test whether the 'dark energy' driving the recent cosmological acceleration is static or moderately dynamic. Even if dynamic, observational differences between an additional negative-pressure material component within general relativity (Dark Energy) and low-curvature modifications of general relativity (Dark Gravity) will be extremely small.

  14. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system II. Vacuum energy

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Nonperturbative vacuum polarization effects are explored for a supercritical Dirac-Coulomb system with Z > Zcr,1 in 2+1D, based on the original combination of analytical methods, computer algebra and numerical calculations, proposed recently in Refs. 1-3. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. Due to a lot of details of calculation the whole work is divided into two parts I and II. Taking account of results, obtained in the part I4 for ρV P, in the present part II, the evaluation of the vacuum energy ℰV P is investigated with emphasis on the renormalization and convergence of the partial expansion for ℰV P. It is shown that the renormalization via fermionic loop turns out to be the universal tool, which removes the divergence of the theory both in the purely perturbative and essentially nonperturbative regimes of the vacuum polarization. The main result of calculation is that for a wide range of the system parameters in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. To the end the similarity in calculations of ℰV P in 2+1 and 3+1D is discussed, and qualitative arguments are presented in favor of the possibility for complete screening of the classical electrostatic energy of the Coulomb source by the vacuum polarization effects for Z ≫ Zcr,1 in 3+1D.

  15. Quantum vacuum energy in general relativity

    NASA Astrophysics Data System (ADS)

    Henke, Christian

    2018-02-01

    The paper deals with the scale discrepancy between the observed vacuum energy in cosmology and the theoretical quantum vacuum energy (cosmological constant problem). Here, we demonstrate that Einstein's equation and an analogy to particle physics leads to the first physical justification of the so-called fine-tuning problem. This fine-tuning could be automatically satisfied with the variable cosmological term Λ (a)=Λ_0+Λ_1 a^{-(4-ɛ)}, 0 < ɛ ≪ 1, where a is the scale factor. As a side effect of our solution of the cosmological constant problem, the dynamical part of the cosmological term generates an attractive force and solves the missing mass problem of dark matter.

  16. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  17. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  18. Cosmic vacuum energy decay and creation of cosmic matter.

    PubMed

    Fahr, Hans-Jörg; Heyl, Michael

    2007-09-01

    In the more recent literature on cosmological evolutions of the universe, the cosmic vacuum energy has become a nonrenouncable ingredient. The cosmological constant Lambda, first invented by Einstein, but later also rejected by him, presently experiences an astonishing revival. Interestingly enough, it acts like a constant vacuum energy density would also do. Namely, it has an accelerating action on cosmic dynamics, without which, as it appears, presently obtained cosmological data cannot be conciliated with theory. As we are going to show in this review, however, the concept of a constant vacuum energy density is unsatisfactory for very basic reasons because it would claim for a physical reality that acts upon spacetime and matter dynamics without itself being acted upon by spacetime or matter.

  19. Cosmological constant problem and renormalized vacuum energy density in curved background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp

    The current vacuum energy density observed as dark energy ρ{sub dark}≅ 2.5×10{sup −47} GeV{sup 4} is unacceptably small compared with any other scales. Therefore, we encounter serious fine-tuning problem and theoretical difficulty to derive the dark energy. However, the theoretically attractive scenario has been proposed and discussed in literature: in terms of the renormalization-group (RG) running of the cosmological constant, the vacuum energy density can be expressed as ρ{sub vacuum}≅ m {sup 2} H {sup 2} where m is the mass of the scalar field and rather dynamical in curved spacetime. However, there has been no rigorous proof to derivemore » this expression and there are some criticisms about the physical interpretation of the RG running cosmological constant. In the present paper, we revisit the RG running effects of the cosmological constant and investigate the renormalized vacuum energy density in curved spacetime. We demonstrate that the vacuum energy density described by ρ{sub vacuum}≅ m {sup 2} H {sup 2} appears as quantum effects of the curved background rather than the running effects of cosmological constant. Comparing to cosmological observational data, we obtain an upper bound on the mass of the scalar fields to be smaller than the Planck mass, m ∼< M {sub Pl}.« less

  20. Spectroscopic ellipsometry in vacuum ultraviolet spectral area

    NASA Astrophysics Data System (ADS)

    Fuchs, Detlef

    An ellipsometer is developed and built, which allows the direct spectroscopic evaluation of dielectric function of solid bodies in the energy area 5 to 35 eV. A linear polarized synchrotron radiation was used as light source. The Stokes parameters and the Mueller matrices were used for the mathematical modeling, which take into account the properties of the synchrotron light and the analyzer, which depend on the wavelength. The crystals of the semiconductor bindings GaAs, GaP, InP and ZnS were examined. Ellipsometric measurements and reflection spectra show a displacement of spectral structures towards lower photon energies after the storage.

  1. Relaxation of vacuum energy in q-theory

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.

    2017-08-01

    The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.

  2. A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, M. D., E-mail: maciej.neumann@isas.de; Cobet, C.; Esser, N.

    2014-05-15

    A rotating analyzer spectroscopic polarimeter and ellipsometer with a wide-range θ-2θ goniometer installed at the Insertion Device Beamline of the Metrology Light Source in Berlin is presented. With a combination of transmission- and reflection-based polarizing elements and the inherent degree of polarization of the undulator radiation, this ellipsometer is able to cover photon energies from about 2 eV up to 40 eV. Additionally, a new compensator design based on a CaF{sub 2} Fresnel rhomb is presented. This compensator allows ellipsometric measurements with circular polarization in the vacuum ultraviolet spectral range and thus, for example, the characterization of depolarizing samples. The new instrumentmore » was initially used for the characterization of the polarization of the beamline. The technical capabilities of the ellipsometer are demonstrated by a cohesive wide-range measurement of the dielectric function of epitaxially grown ZnO.« less

  3. Running of the spectral index in deformed matter bounce scenarios with Hubble-rate-dependent dark energy

    NASA Astrophysics Data System (ADS)

    Arab, M.; Khodam-Mohammadi, A.

    2018-03-01

    As a deformed matter bounce scenario with a dark energy component, we propose a deformed one with running vacuum model (RVM) in which the dark energy density ρ _{Λ } is written as a power series of H^2 and \\dot{H} with a constant equation of state parameter, same as the cosmological constant, w=-1. Our results in analytical and numerical point of views show that in some cases same as Λ CDM bounce scenario, although the spectral index may achieve a good consistency with observations, a positive value of running of spectral index (α _s) is obtained which is not compatible with inflationary paradigm where it predicts a small negative value for α _s. However, by extending the power series up to H^4, ρ _{Λ }=n_0+n_2 H^2+n_4 H^4, and estimating a set of consistent parameters, we obtain the spectral index n_s, a small negative value of running α _s and tensor to scalar ratio r, which these reveal a degeneracy between deformed matter bounce scenario with RVM-DE and inflationary cosmology.

  4. Vacuum Energy Induced by AN Impenetrable Flux Tube of Finite Radius

    NASA Astrophysics Data System (ADS)

    Gorkavenko, V. M.; Sitenko, Yu. A.; Stepanov, O. B.

    2011-06-01

    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.

  5. Vacuum Energy Induced by AN Impenetrable Flux Tube of Finite Radius

    NASA Astrophysics Data System (ADS)

    Gorkavenko, V. M.; Sitenko, Yu. A.; Stepanov, O. B.

    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.

  6. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    NASA Astrophysics Data System (ADS)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S.; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D.

    2015-09-01

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350-810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  7. Technically natural vacuum energy at the tip of a supersymmetric teardrop

    NASA Astrophysics Data System (ADS)

    Williams, Matthew

    2014-04-01

    A minimal supersymmetric braneworld model is presented which has (i) zero classical four-dimensional vacuum curvature, despite the large naive vacuum energy due to contributions from Standard Model particles and (ii) one-(bulk)-loop quantum corrections to the vacuum energy with a size set by the radius of the extra-dimensional spheroid. These corrections are technically natural because a Bogomol'nyi-Prasad-Sommerfield-like relation between the brane tension and R charge—which would have preserved (half of) the bulk supersymmetry—is violated by the requirement that the stabilizing R-symmetry gauge flux be quantized. The extra-dimensional geometry is similar to previous rugby-ball geometries, but is simpler in that there is only one brane and so fewer free parameters. Although the sign of the renormalized vacuum energy ends up being the unphysical one for this model (in the limit considered here, where the massive bulk loop is the leading contribution), it serves as an illustrative example of the relevant physics.

  8. High-Energy Vacuum Birefringence and Dichroism in an Ultrastrong Laser Field

    NASA Astrophysics Data System (ADS)

    Bragin, Sergey; Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino

    2017-12-01

    A long-standing prediction of quantum electrodynamics, yet to be experimentally observed, is the interaction between real photons in vacuum. As a consequence of this interaction, the vacuum is expected to become birefringent and dichroic if a strong laser field polarizes its virtual particle-antiparticle dipoles. Here, we derive how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. Furthermore, we consider an experimental scheme to measure these effects in the nonperturbative high-energy regime, where the Euler-Heisenberg approximation breaks down. By employing circularly polarized high-energy probe photons, as opposed to the conventionally considered linearly polarized ones, the feasibility of quantitatively confirming the prediction of nonlinear QED for vacuum birefringence at the 5 σ confidence level on the time scale of a few days is demonstrated for upcoming 10 PW laser systems. Finally, dichroism and anomalous dispersion in vacuum are shown to be accessible at these facilities.

  9. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S., E-mail: gorchakov@inp-greifswald.de, E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution wasmore » used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.« less

  10. Static black hole and vacuum energy: thin shell and incompressible fluid

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming; Matsuo, Yoshinori

    2018-03-01

    With the back reaction of the vacuum energy-momentum tensor consistently taken into account, we study static spherically symmetric black-hole-like solutions to the semi-classical Einstein equation. The vacuum energy is assumed to be given by that of 2-dimensional massless scalar fields, as a widely used model in the literature for black holes. The solutions have no horizon. Instead, there is a local minimum in the radius. We consider thin shells as well as incompressible fluid as the matter content of the black-hole-like geometry. The geometry has several interesting features due to the back reaction of vacuum energy. In particular, Buchdahl's inequality can be violated without divergence in pressure, even if the surface is below the Schwarzschild radius. At the same time, the surface of the star can not be far below the Schwarzschild radius for a density not much higher than the Planck scale, and the proper distance from its surface to the origin can be very short even for very large Schwarzschild radius. The results also imply that, contrary to the folklore, in principle the Boulware vacuum can be physical for black holes.

  11. Vacuum system of the compact Energy Recovery Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gasmore » interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.« less

  12. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)

    2004-01-01

    An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.

  13. An étude on global vacuum energy sequester

    DOE PAGES

    D’Amico, Guido; Kaloper, Nemanja; Padilla, Antonio; ...

    2017-09-18

    Recently two of the authors proposed a mechanism of vacuum energy sequester as a means of protecting the observable cosmological constant from quantum radiative corrections. The original proposal was based on using global Lagrange multipliers, but later a local formulation was provided. Subsequently other interesting claims of a different non-local approach to the cosmological constant problem were made, based again on global Lagrange multipliers. We examine some of these proposals and find their mutual relationship. We explain that the proposals which do not treat the cosmological constant counterterm as a dynamical variable require fine tunings to have acceptable solutions. Furthermore,more » the counterterm often needs to be retuned at every order in the loop expansion to cancel the radiative corrections to the cosmological constant, just like in standard GR. These observations are an important reminder of just how the proposal of vacuum energy sequester avoids such problems.« less

  14. The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid

    NASA Astrophysics Data System (ADS)

    Campos, M.

    2014-02-01

    To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.

  15. High energy density capacitors for vacuum operation with a pulsed plasma load

    NASA Technical Reports Server (NTRS)

    Guman, W. J.

    1976-01-01

    Results of the effort of designing, fabricating, and testing of a 40 joules/lb (88.2 joules/Kg) high voltage energy storage capacitor suitable for operating a pulsed plasma thruster in a vacuum environment for millions of pulses are presented. Using vacuum brazing and heli-arc welding techniques followed by vacuum and high pressure helium leak tests it was possible to produce a hermetically sealed relatively light weight enclosure for the dielectric system. An energy density of 40 joules/lb was realized with a KF-polyvinylidene fluoride dielectric system. One capacitor was D.C. life tested at 4 KV (107.8 joules/lb) for 2,000 hours before it failed. Another exceeded 2,670 hours without failure at 38.3 joules/lb. Pulse life testing in a vacuum exceeded 300,000 discharges with testing still in progress. The D.C. life test data shows a small decrease in capacitance and an increase in dissipation factor with time. Heat transfer from the load to the capacitor must also be considered besides the self-heat generated by the capacitor.

  16. Sequestration of vacuum energy and the end of the universe.

    PubMed

    Kaloper, Nemanja; Padilla, Antonio

    2015-03-13

    Recently, we proposed a mechanism for sequestering the standard model vacuum energy that predicts that the Universe will collapse. Here we present a simple mechanism for bringing about this collapse, employing a scalar field whose potential is linear and becomes negative, providing the negative energy density required to end the expansion. The slope of the potential is chosen to allow for the expansion to last until the current Hubble time, about 10^{10} years, to accommodate our Universe. Crucially, this choice is technically natural due to a shift symmetry. Moreover, vacuum energy sequestering selects radiatively stable initial conditions for the collapse, which guarantee that immediately before the turnaround the Universe is dominated by the linear potential which drives an epoch of accelerated expansion for at least an e fold. Thus, a single, technically natural choice for the slope ensures that the collapse is imminent and is preceded by the current stage of cosmic acceleration, giving a new answer to the "why now?"

  17. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    PubMed

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  18. The Spectral Energy Distribution of Fermi Bright Blazars

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; hide

    2010-01-01

    We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray /gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log v-log v Fv representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(sub ro) , and optical to X-ray, alpha(sub ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (v(sup S) (sub peak)) is positioned between 10(exp 12.5) and 10(exp 14) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(exp 13) and 10(exp 17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than

  19. The Spectral Energy Distribution of Fermi bright blazars

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Agudo, I.; ...

    2010-05-13

    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν F ν representation, the typical broadband spectral signaturesmore » normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. Here, we have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, α ro, and optical to X-ray, α ox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (ν S peak) is positioned between 10 12.5 and 10 14.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 10 17 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked

  20. Energy-Discriminative Performance of a Spectral Micro-CT System

    PubMed Central

    He, Peng; Yu, Hengyong; Bennett, James; Ronaldson, Paul; Zainon, Rafidah; Butler, Anthony; Butler, Phil; Wei, Biao; Wang, Ge

    2013-01-01

    Experiments were performed to evaluate the energy-discriminative performance of a spectral (multi-energy) micro-CT system. The system, designed by MARS (Medipix All Resolution System) Bio-Imaging Ltd. (Christchurch, New Zealand), employs a photon-counting energy-discriminative detector technology developed by CERN (European Organization for Nuclear Research). We used the K-edge attenuation characteristic of some known materials to calibrate the detector’s photon energy discrimination. For tomographic analysis, we used the compressed sensing (CS) based ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) to reconstruct sample images, which is effective to reduce noise and suppress artifacts. Unlike conventional CT, the principal component analysis (PCA) method can be applied to extract and quantify additional attenuation information from a spectral CT dataset. Our results show that the spectral CT has a good energy-discriminative performance and provides more attenuation information than the conventional CT. PMID:24004864

  1. Apparent Endless Extraction of Energy from the Vacuum by Cyclic Manipulation of Casimir Cavity Dimensions

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    In 1983, Ambjorn and Wolfram produced plots of the energy density of the quantum mechanical electromagnetic fluctuations in a volume of vacuum bounded by perfectly conducting walls in the shape of a rectangular cavity of dimensions a(1), a(2), and a(3), as a function of the ratios a(2)/a(1) and a(3)/a(1). Portions of these plots are double-valued, in that they allow rectangular cavities with the same, value of a(2)/a(1), but different values of a(3)/a(1), to have the saint total energy. Using these double-valued regions of the plots, I show that it is possible to define a "Casimir Vacuum Energy Extraction Cycle" which apparently would allow for the endless extraction of energy from the vacuum in the Casimir cavity by cyclic manipulation of the Casimir cavity dimensions.

  2. Mellin-Barnes approach to hadronic vacuum polarization and gμ-2

    NASA Astrophysics Data System (ADS)

    Charles, Jérôme; de Rafael, Eduardo; Greynat, David

    2018-04-01

    It is shown that with a precise determination of a few derivatives of the hadronic vacuum polarization (HVP) self-energy function Π (Q2) at Q2=0 , from lattice QCD (LQCD) or from a dedicated low-energy experiment, one can obtain an evaluation of the lowest order HVP contribution to the anomalous magnetic moment of the muon aμHVP with an accuracy comparable to the one reached using the e+e- annihilation cross section into hadrons. The technique of Mellin-Barnes approximants (MBa) that we propose is illustrated in detail with the example of the two loop vacuum polarization function in QED. We then apply it to the first few moments of the hadronic spectral function obtained from experiment and show that the resulting MBa evaluations of aμHVP converge very quickly to the full experimental determination.

  3. The source of multi spectral energy of solar energetic electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdiwijaya, Dhani

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare andmore » CME phenomena. However, we also found that high energetic electron comes from coronal hole.« less

  4. Image enhancement by spectral-error correction for dual-energy computed tomography.

    PubMed

    Park, Kyung-Kook; Oh, Chang-Hyun; Akay, Metin

    2011-01-01

    Dual-energy CT (DECT) was reintroduced recently to use the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between low and high energy images or measurements, so that it is difficult to acquire accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, an image enhancement technique for DECT is proposed, based on the fact that the attenuation of a higher density material decreases more rapidly as X-ray energy increases. We define as spectral error the case when a pixel pair of low and high energy images deviates far from the expected attenuation trend. After analyzing the spectral-error sources of DECT images, we propose a DECT image enhancement method, which consists of three steps: water-reference offset correction, spectral-error correction, and anti-correlated noise reduction. It is the main idea of this work that makes spectral errors distributed like random noise over the true attenuation and suppressed by the well-known anti-correlated noise reduction. The proposed method suppressed noise of liver lesions and improved contrast between liver lesions and liver parenchyma in DECT contrast-enhanced abdominal images and their two-material decomposition.

  5. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation

  6. An explanation for the tiny value of the cosmological constant and the low vacuum energy density

    NASA Astrophysics Data System (ADS)

    Nassif, Cláudio

    2015-09-01

    The paper aims to provide an explanation for the tiny value of the cosmological constant and the low vacuum energy density to represent the dark energy. To accomplish this, we will search for a fundamental principle of symmetry in space-time by means of the elimination of the classical idea of rest, by including an invariant minimum limit of speed in the subatomic world. Such a minimum speed, unattainable by particles, represents a preferred reference frame associated with a background field that breaks down the Lorentz symmetry. The metric of the flat space-time shall include the presence of a uniform vacuum energy density, which leads to a negative pressure at cosmological length scales. Thus, the equation of state for the cosmological constant [ p(pressure) (energy density)] naturally emerges from such a space-time with an energy barrier of a minimum speed. The tiny values of the cosmological constant and the vacuum energy density will be successfully obtained, being in agreement with the observational results of Perlmutter, Schmidt and Riess.

  7. Prediction and Measurement of X-Ray Spectral and Intensity Distributions from Low Energy Electron Impact Sources

    NASA Technical Reports Server (NTRS)

    Edwards, David L.

    1999-01-01

    In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose

  8. Static black holes with back reaction from vacuum energy

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming; Matsuo, Yoshinori

    2018-03-01

    We study spherically symmetric static solutions to the semi-classical Einstein equation sourced by the vacuum energy of quantum fields in the curved space-time of the same solution. We found solutions that are small deformations of the Schwarzschild metric for distant observers, but without horizon. Instead of being a robust feature of objects with high densities, the horizon is sensitive to the energy–momentum tensor in the near-horizon region.

  9. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  10. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  11. High-energy vacuum birefringence and dichroism in an ultrastrong laser field

    NASA Astrophysics Data System (ADS)

    Meuren, Sebastian; Bragin, Sergey; Keitel, Christoph H.; di Piazza, Antonino

    2017-10-01

    The interaction between real photons in vacuum is a long-standing prediction of quantum electrodynamics, which has never been observed experimentally. Upcoming 10 PW laser systems like the Extreme Light Infrastructure (ELI) will provide laser pulses with unprecedented intensities. If combined with highly energetic gamma photons - obtainable via Compton backscattering from laser-wakefield accelerated electron beams - the QED critical field becomes accessible. In we have derived how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. We put forward an experimental scheme to measure these effects in the nontrivial high-energy regime, where the QED critical field is reached and the Euler-Heisenberg approximation, valid for low-frequency electromagnetic fields, breaks down. Our results suggest the feasibility of verifying/rejecting the QED prediction for vacuum birefringence/dichroism at the 3 σ confidence level on the time scale of a few days at several upcoming laser facilities. Now at Princeton University, Princeton, NJ.

  12. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less

  13. Study of Vacuum Energy Physics for Breakthrough Propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Technical Monitor); Maclay, G. Jordan; Hammer, Jay; Clark, Rod; George, Michael; Kim, Yeong; Kir, Asit

    2004-01-01

    This report summarizes the accomplishments during a three year research project to investigate the use of surfaces, particularly in microelectromechanical systems (MEMS), to exploit quantum vacuum forces. During this project, we developed AFM instrumentation to repeatably measure Casimir forces in the nanoNewton range at 10 6 torr, designed an experiment to measure attractive and repulsive quantum vacuum forces, developed a QED based theory of Casimir forces that includes non-ideal material properties for rectangular cavities and for multilayer slabs, developed theoretical models for a variety of microdevices utilizing vacuum forces, applied vacuum physics to a gedanken spacecraft, and investigated a new material with a negative index of refraction.

  14. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  15. Research on vacuum utraviolet calibration technology

    NASA Astrophysics Data System (ADS)

    Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang

    2014-11-01

    Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.

  16. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  17. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less

  18. Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek; Scalo, Carlo

    2017-11-01

    Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.

  19. Cosmological implications of the transition from the false vacuum to the true vacuum state

    NASA Astrophysics Data System (ADS)

    Stachowski, Aleksander; Szydłowski, Marek; Urbanowski, Krzysztof

    2017-06-01

    We study cosmology with running dark energy. The energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. We use the Breit-Wigner energy distribution function to model the quantum unstable systems and obtain the energy density of the dark energy parametrization ρ _ {de}(t). We also use Krauss and Dent's idea linking properties of the quantum mechanical decay of unstable states with the properties of the observed Universe. In the cosmological model with this parametrization there is an energy transfer between dark matter and dark energy. The intensity of this process, measured by a parameter α , distinguishes two scenarios. As the Universe starts from the false vacuum state, for the small value of α (0<α <0.4) it goes through an intermediate oscillatory (quantum) regime of the density of dark energy, while for α > 0.4 the density of the dark energy jumps down. In both cases the present value of the density of dark energy is reached. From a statistical analysis we find this model to be in good agreement with the astronomical data and practically indistinguishable from the Λ CDM model.

  20. Nonthermal X-ray Spectral Flattening toward Low Energies in Early Impulsive Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2007-01-01

    The determination of the low-energy cutoff to nonthermal electron distributions is critical to the calculation of the nonthermal energy in solar flares. The most direct evidence for low-energy cutoffs is flattening of the power-law, nontherma1 X-ray spectra at low energies. However, because of the plasma preheating often seen in flares, the thermal emissions at low energies may hide such spectral flattening of the nonthermal component. We select a category of flares, which we call "early impulsive flares", in which the > 25 keV hard X-ray (HXR) flux increase is delayed by less than 30 s after the flux increase at lower energies. Thus, the plasma preheating in these flares is minimal, so the nonthermal spectrum can be determined to lower energies than in flares with significant preheating. Out of a sample of 33 early impulsive flares observed by the Ramaty High Energy Solar Spectroscopy Imager (RHESSI), 9 showed spectral flattening toward low energies. In these events, the break energy of the double power-law fit to the HXR spectra lies in the range of 10-50 keV, significantly lower than the value we have seen for other flares that do not show such early impulsive emissions. In particular, it correlates with the HXR flux. After correcting the spatially-integrated spectra for albedo from isotropically emitted X-rays and using RHESSI imaging spectroscopy to exclude the extended albedo halo, we find that albedo associated with isotropic or nearly isotropic electrons can only account for the spectral flattening in 3 flares near Sun center. The spectral flattening in the remaining 6 flares is found to be consistent with the existence of a low-energy cutoff in the electron spectrum, falling in the range of 15-50 keV, which also correlates with the HXR flux.

  1. The Spectral Energy Distribution of the Seyfert Galaxy Ton S180

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.; hide

    2001-01-01

    We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.

  2. Possibility of using sources of vacuum ultraviolet irradiation to solve problems of space material science

    NASA Technical Reports Server (NTRS)

    Verkhoutseva, E. T.; Yaremenko, E. I.

    1974-01-01

    An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.

  3. Comment on "How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe"

    NASA Astrophysics Data System (ADS)

    Mazzitelli, Francisco D.; Trombetta, Leonardo G.

    2018-03-01

    In a recent paper [Q. Wang, Z. Zhu, and W. G. Unruh, Phys. Rev. D 95, 103504 (2017), 10.1103/PhysRevD.95.103504] it was argued that, due to the fluctuations around its mean value, vacuum energy gravitates differently from what was previously assumed. As a consequence, the Universe would accelerate with a small Hubble expansion rate, solving the cosmological constant and dark energy problems. We point out here that the results depend on the type of cutoff used to evaluate the vacuum energy. In particular, they are not valid when one uses a covariant cutoff such that the zero-point energy density is positive definite.

  4. Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rohit; Luding, Stefan

    2017-04-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress

  5. Killing approximation for vacuum and thermal stress-energy tensor in static space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Zel'nikov, A.I.

    1987-05-15

    The problem of the vacuum polarization of conformal massless fields in static space-times is considered. A tensor T/sub ..mu..//sub ..nu../ constructed from the curvature, the Killing vector, and their covariant derivatives is proposed which can be used to approximate the average value of the stress-energy tensor /sup ren/ in such spaces. It is shown that if (i) its trace T /sub epsilon//sup epsilon/ coincides with the trace anomaly /sup ren/, (ii) it satisfies the conservation law T/sup ..mu..//sup epsilon/ /sub ;//sub epsilon/ = 0, and (iii) it has the correct behavior under the scale transformations, then it is uniquely definedmore » up to a few arbitrary constants. These constants must be chosen to satisfy the boundary conditions. In the case of a static black hole in a vacuum these conditions single out the unique tensor T/sub ..mu..//sub ..nu../ which provides a good approximation for /sup ren/ in the Hartle-Hawking vacuum. The relation between this approach and the Page-Brown-Ottewill approach is discussed.« less

  6. Sonoluminescence Explained by the Standpoint of Coherent Quantum Vacuum Dynamics and its Prospects for Energy Production

    NASA Astrophysics Data System (ADS)

    Maxmilian Caligiuri, Luigi; Musha, Takaaki

    Sonoluminescence, or its more frequently studied version known as Single Bubble Sonoluminescence, consisting in the emission of light by a collapsing bubble in water under ultrasounds, represents one of the most challenging and interesting phenomenon in theoretical physics. In fact, despite its relatively easy reproducibility in a simple laboratory, its understanding within the commonly accepted picture of condensed matter remained so far unsatisfactory. On the other hand, the possibility to control the physical process involved in sonoluminescence, representing a sort of nuclear fusion on small scale, could open unthinkable prospects of free energy production from water. Different explanations has been proposed during the past years considering, in various way, the photoemission to be related to electromagnetic Zero Point Field energy dynamics, by considering the bubble surface as a Casimir force boundary. More recently a model invoking Cherenkov radiation emission from superluminal photons generated in quantum vacuum has been successfully proposed. In this paper it will be shown that the same results can be more generally explained and quantitative obtained within a QED coherent dynamics of quantum vacuum, according to which the electromagnetic energy of the emitted photons would be related to the latent heat involved in the phase transition from water's vapor to liquid phase during the bubble collapse. The proposed approach could also suggest an explanation of a possible mechanism of generation of faster than light (FTL) photons required to start Cherenkov radiation as well as possible applications to energy production from quantum vacuum.

  7. Quantum vacuum effects from boundaries of designer potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Tomasz

    2009-04-15

    Vacuum energy in quantum field theory, being the sum of zero-point energies of all field modes, is formally infinite but yet, after regularization or renormalization, can give rise to finite observable effects. One way of understanding how these effects arise is to compute the vacuum energy in an idealized system such as a large cavity divided into disjoint regions by pistons. In this paper, this type of calculation is carried out for situations where the potential affecting a field is not the same in all regions of the cavity. It is shown that the observable parts of the vacuum energymore » in such potentials do not fall off to zero as the region where the potential is nontrivial becomes large. This unusual behavior might be interesting for tests involving quantum vacuum effects and for studies on the relation between vacuum energy in quantum field theory and geometry.« less

  8. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Matsui, Hiroki

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ phi 2 > enlarge in proportion to the Hubble scale H2. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ phi 2 > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ phi 2 >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field phi determined by the effective potential V eff( phi ) in curved space-time and the renormalized vacuum fluctuations < δ phi 2 >ren via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field phi, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H< ΛI .

  9. Magnet system optimization for segmented adaptive-gap in-vacuum undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitegi, C., E-mail: ckitegi@bnl.gov; Chubar, O.; Eng, C.

    2016-07-27

    Segmented Adaptive Gap in-vacuum Undulator (SAGU), in which different segments have different gaps and periods, promises a considerable spectral performance gain over a conventional undulator with uniform gap and period. According to calculations, this gain can be comparable to the gain achievable with a superior undulator technology (e.g. a room-temperature in-vacuum hybrid SAGU would perform as a cryo-cooled hybrid in-vacuum undulator with uniform gap and period). However, for reaching the high spectral performance, SAGU magnetic design has to include compensation of kicks experienced by the electron beam at segment junctions because of different deflection parameter values in the segments. Wemore » show that such compensation to large extent can be accomplished by using a passive correction, however, simple correction coils are nevertheless required as well to reach perfect compensation over a whole SAGU tuning range. Magnetic optimizations performed with Radia code, and the resulting undulator radiation spectra calculated using SRW code, demonstrating a possibility of nearly perfect correction, are presented.« less

  10. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system I. Vacuum charge density

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Based on the original combination of analytical methods, computer algebra tools and numerical calculations, proposed recently in Refs. 1-3, the nonperturbative vacuum polarization effects in the 2+1D supercritical Dirac-Coulomb system with Z > Zcr,1 are explored. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. The main result of the work is that in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. Due to a lot of details of calculation the whole work is divided into two parts I and II. In the present part I, we consider the evaluation and behavior of the vacuum density ρV P, which further is used in part II for evaluation of the vacuum energy, with emphasis on the renormalization, convergence of the partial expansion for ρV P and behavior of the integral induced charge QV P in the overcritical region.

  11. REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    2001-11-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.

  12. Integrated and spectral energy flows of the GLAS GCM

    NASA Technical Reports Server (NTRS)

    Tennebaum, J.

    1981-01-01

    Methods to analyze the generation, transport, and dissipation of energy to study geophysical fluid flows are discussed. Energetics analyses are pursued in several directions: (1) the longitudinal and time dependence on the energy flow to the stratosphere was examined as a function of geographical sector; (2) strong and weak energy flows were correlated by medium range forecasts; (3) the one dimensional spectral results (Fourier services around latitude circles) were extended to spherical harmonics over a global domain; (4) the validity of vertical velocities derived from mass convergence was examined for their effect on the conversion of eddy available potential energy to eddy kinetic energy.

  13. Vacuum stress energy density and its gravitational implications

    NASA Astrophysics Data System (ADS)

    Estrada, Ricardo; Fulling, Stephen A.; Kaplan, Lev; Kirsten, Klaus; Liu, Zhonghai; Milton, Kimball A.

    2008-04-01

    In nongravitational physics the local density of energy is often regarded as merely a bookkeeping device; only total energy has an experimental meaning—and it is only modulo a constant term. But in general relativity the local stress-energy tensor is the source term in Einstein's equation. In closed universes, and those with Kaluza-Klein dimensions, theoretical consistency demands that quantum vacuum energy should exist and have gravitational effects, although there are no boundary materials giving rise to that energy by van der Waals interactions. In the lab there are boundaries, and in general the energy density has a nonintegrable singularity as a boundary is approached (for idealized boundary conditions). As pointed out long ago by Candelas and Deutsch, in this situation there is doubt about the viability of the semiclassical Einstein equation. Our goal is to show that the divergences in the linearized Einstein equation can be renormalized to yield a plausible approximation to the finite theory that presumably exists for realistic boundary conditions. For a scalar field with Dirichlet or Neumann boundary conditions inside a rectangular parallelepiped, we have calculated by the method of images all components of the stress tensor, for all values of the conformal coupling parameter and an exponential ultraviolet cutoff parameter. The qualitative features of contributions from various classes of closed classical paths are noted. Then the Estrada-Kanwal distributional theory of asymptotics, particularly the moment expansion, is used to show that the linearized Einstein equation with the stress-energy near a plane boundary as source converges to a consistent theory when the cutoff is removed. This paper reports work in progress on a project combining researchers in Texas, Louisiana and Oklahoma. It is supported by NSF Grants PHY-0554849 and PHY-0554926.

  14. Electron impact excitation of argon in the extreme vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mentall, J. E.; Morgan, H. D.

    1976-01-01

    Polarization-free excitation cross sections in the extreme vacuum ultraviolet have been measured for electron impact on Ar. Observed spectral features were those lines of Ar I and Ar II which lie between 700 and 1100 A. Excitation functions were measured for the Ar I resonance line at 1048 A and the Ar II resonance line at 920 A. Peak cross sections for these two lines were found to be (39.4 plus or minus 7.9) x 10 to the -18th and (6.9 plus or minus 1.4) x 10 to the -18th, respectively. At low energies, excitation of the Ar II resonance line is dominated by an electron exchange transition.

  15. Wave propagation of spectral energy content in a granular chain

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-06-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  16. The Influence of Forming Companions on the Spectral Energy Distributions of Stars with Circumstellar Discs

    NASA Astrophysics Data System (ADS)

    Zakhozhay, Olga V.

    2017-04-01

    We study a possibility to detect signatures of brown dwarf companions in a circumstellar disc based on spectral energy distributions. We present the results of spectral energy distribution simulations for a system with a 0.8 M⊙ central object and a companion with a mass of 30 M J embedded in a typical protoplanetary disc. We use a solution to the one-dimensional radiative transfer equation to calculate the protoplanetary disc flux density and assume, that the companion moves along a circular orbit and clears a gap. The width of the gap is assumed to be the diameter of the brown dwarf Hill sphere. Our modelling shows that the presence of such a gap can initiate an additional minimum in the spectral energy distribution profile of a protoplanetary disc at λ = 10-100 μm. We found that it is possible to detect signatures of the companion when it is located within 10 AU, even when it is as small as 3 M J. The spectral energy distribution of a protostellar disc with a massive fragment (of relatively cold temperature 400 K) might have a similar double peaked profile to the spectral energy distribution of a more evolved disc that contains a gap.

  17. Constraining Anisotropic Lorentz Violation via the Spectral-lag Transition of GRB 160625B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jun-Jie; Wu, Xue-Feng; Shao, Lang

    Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons with different energies arising from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-definedmore » transition from positive lags to negative lags, providing a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including the first bounds on Lorentz-violating effects from operators of mass dimension 10 in the photon sector.« less

  18. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, andmore » therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .« less

  19. Breakdown-Resistant RF Connectors for Vacuum

    NASA Technical Reports Server (NTRS)

    Caro, Edward R.; Bonazza, Walter J.

    1987-01-01

    Resilient inserts compensate for insulation shrinkage. Coaxial-cable connector for radio-frequency (RF) energy resists electrical breakdown in vacuum. Used on RF equipment in vacuum chambers as well as in spaceborne radar and communication gear.

  20. Damage induced to DNA by low-energy (0-30 eV) electrons under vacuum and atmospheric conditions.

    PubMed

    Brun, Emilie; Cloutier, Pierre; Sicard-Roselli, Cécile; Fromm, Michel; Sanche, Léon

    2009-07-23

    In this study, we show that it is possible to obtain data on DNA damage induced by low-energy (0-30 eV) electrons under atmospheric conditions. Five monolayer films of plasmid DNA (3197 base pairs) deposited on glass and gold substrates are irradiated with 1.5 keV X-rays in ultrahigh vacuum and under atmospheric conditions. The total damage is analyzed by agarose gel electrophoresis. The damage produced on the glass substrate is attributed to energy absorption from X-rays, whereas that produced on the gold substrate arises from energy absorption from both the X-ray beam and secondary electrons emitted from the gold surface. By analysis of the energy of these secondary electrons, 96% are found to have energies below 30 eV with a distribution peaking at 1.4 eV. The differences in damage yields recorded with the gold and glass substrates is therefore essentially attributed to the interaction of low-energy electrons with DNA under vacuum and hydrated conditions. From these results, the G values for low-energy electrons are determined to be four and six strand breaks per 100 eV, respectively.

  1. Dual-energy contrast-enhanced spectral mammography (CESM).

    PubMed

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  2. Dynamical dark energy: Scalar fields and running vacuum

    NASA Astrophysics Data System (ADS)

    Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier

    2017-03-01

    Recent analyses in the literature suggest that the concordance ΛCDM model with rigid cosmological term, Λ = const. may not be the best description of the cosmic acceleration. The class of “running vacuum models”, in which Λ = Λ(H) evolves with the Hubble rate, has been shown to fit the string of SNIa + BAO + H(z) + LSS + CMB data significantly better than the ΛCDM. Here, we provide further evidence on the time-evolving nature of the dark energy (DE) by fitting the same cosmological data in terms of scalar fields. As a representative model, we use the original Peebles and Ratra potential, V ∝ ϕ-α. We find clear signs of dynamical DE at ˜ 4σ c.l., thus reconfirming through a nontrivial scalar field approach the strong hints formerly found with other models and parametrizations.

  3. A fixed collector employing reversible vee-trough concentrator and a vacuum tube receiver for high temperature solar energy systems

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1976-01-01

    A solar heat collection system employing non-tracking reflectors integrated with a fixed vacuum tube receiver which achieves modest year-round concentration (about 2) of the sunlight at low capital costs is discussed. The axis of the vee-trough reflector lies in a east-west direction and requires reversal of the reflector surfaces only twice a year without disturbing the receiver tubes and associated plumbing. It collects most of the diffuse flux. The vacuum tube receiver with selective absorber has no convection losses while radiation and conduction losses are minimal. Significant cost reductions are offered since the vee-trough can be fabricated from inexpensive polished or plastic reflector laminated sheet metal covering 2/3 of the collection area, and only about 1/3 of the area is covered with the more expensive vacuum tube receivers. Thermal and economic performance of the vee-trough vacuum tube system, year-round variation of the concentration factor, incident flux, useful heat per unit area at various operation temperatures and energy cost estimates are presented. The electrical energy cost is estimated to be 77 mills/kWh, and the system construction cost is estimated to be $1140/kWe.

  4. A Spectral Library of Emissivity Spectra for MERTIS on BepiColombo

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Helbert, J.; Varatharajan, I.; D'Amore, M.; Hiesinger, H.

    2018-05-01

    At PSL we measured emissivity spectra in vacuum for a suite of Mercury surface analogues for temperatures from 100°C to >400°C. The spectral library is completed by reflectance on samples fresh and post-heating (0.2 to 200 µm spectral range).

  5. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach.

    PubMed

    Camporeale, E; Sorriso-Valvo, L; Califano, F; Retinò, A

    2018-03-23

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  6. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.

    2018-03-01

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  7. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  8. Langmuir vacuum and superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veklenko, B. A.

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  9. The trace anomaly and dynamical vacuum energy in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mottola, Emil

    2010-04-30

    The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effectivemore » action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.« less

  10. SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

    NASA Astrophysics Data System (ADS)

    Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

    2018-05-01

    SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

  11. Spectral energy distributions and colours of hot subluminous stars

    NASA Astrophysics Data System (ADS)

    Heber, Ulrich; Irrgang, Andreas; Schaffenroth, Johannes

    2018-02-01

    Photometric surveys at optical, ultraviolet, and infrared wavelengths provide ever-growing datasets as major surveys proceed. Colour-colour diagrams are useful tools to identify classes of star and provide large samples. However, combining all photometric measurements of a star into a spectral energy distribution will allow quantitative analyses to be carried out. We demonstrate how to construct and exploit spectral energy distributions and colours for sublumious B (sdB) stars. The aim is to identify cool companions to hot subdwarfs and to determine atmospheric parameters of apparently single sdB stars as well as composite spectrum sdB binaries.We analyse two sdB stars with high-quality photometric data which serve as our benchmarks, the apparently single sdB HD205805 and the sdB + K5 binary PG 0749+658, briefly present preliminary results for the sample of 142 sdB binaries with known orbits, and discuss future prospects from ongoing all-sky optical space- (Gaia) and ground-based (e.g. SkyMapper) as well as NIR surveys.

  12. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  13. Developing the Effective Method of Spectral Harmonic Energy Ratio to Analyze the Arterial Pulse Spectrum

    PubMed Central

    Huang, Chin-Ming; Wei, Ching-Chuan; Liao, Yin-Tzu; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung

    2011-01-01

    In this article, we analyze the arterial pulse in the spectral domain. A parameter, the spectral harmonic energy ratio (SHER), is developed to assess the features of the overly decreased spectral energy in the fourth to sixth harmonic for palpitation patients. Compared with normal subjects, the statistical results reveal that the mean value of SHER in the patient group (57.7 ± 27.9) is significantly higher than that of the normal group (39.7 ± 20.9) (P-value = .0066 < .01). This means that the total energy in the fourth to sixth harmonic of palpitation patients is significantly less than it is in normal subjects. In other words, the spectral distribution of the arterial pulse gradually decreases for normal subjects while it decreases abruptly in higher-order harmonics (the fourth, fifth and sixth harmonics) for palpitation patients. Hence, SHER is an effective method to distinguish the two groups in the spectral domain. Also, we can thus know that a “gradual decrease” might mean a “balanced” state, whereas an “abrupt decrease” might mean an “unbalanced” state in blood circulation and pulse diagnosis. By SHER, we can determine the ratio of energy distribution in different harmonic bands, and this method gives us a novel viewpoint from which to comprehend and quantify the spectral harmonic distribution of circulation information conveyed by the arterial pulse. These concepts can be further applied to improve the clinical diagnosis not only in Western medicine but also in traditional Chinese medicine (TCM). PMID:21845200

  14. Vacuum fluctuations of the supersymmetric field in curved background

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Guberina, Branko

    2012-01-01

    We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.

  15. The influence of compressibility on nonlinear spectral energy transfer - Part 1: Fundamental mechanisms

    NASA Astrophysics Data System (ADS)

    Praturi, Divya Sri; Girimaji, Sharath

    2017-11-01

    Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.

  16. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    has instituted the `IVS- Professor D Y Phadke Memorial Prize' in memory of our founder president, the late Professor D Y Phadke at the University of Mumbai. The prize is given every year to the student ranked top in the MSc (PHY.) examination conducted by the university. The IVS Kolkata Chapter has established the Dr A S Divatia Memorial Trust with the objective of organizing the Dr A S Divatia Memorial Lecture and a seminar once a year and to set up a vacuum testing and calibration facility. IVS has instituted an award in memory of the late Shri C Ambasankaran, its past president and pioneer of vacuum technology in India. This award is given to one of the best papers presented in the national symposium conducted by IVS. One more best paper award `Smt. Shakuntalabai Vyawahare Memorial Prize' is established from a donation given by Shri Mohan R Vyawahare, a life member and a present EC member of the society, in memory of his mother. During the symposia, IVS felicitates two of its members, one from Industry and one from an R & D Institution for their lifetime contribution to vacuum science and technology. Dr A K Gupta, Ex BARC, Ex Generla Manager, IBP, Head, Energy Group, Shapoorji Pallonji & Co Ltd (Industry), and Dr S R Gowariker, Ex BARC, Ex Director, CSIO, Chandigarh, Director, Tolani Education Foundation (R & D) are being honoured this year. T K Saha Geneneral Secretary, IVS

  17. Double Higgs mechanisms, supermassive stable particles and the vacuum energy

    NASA Astrophysics Data System (ADS)

    Santillán, Osvaldo P.; Gabbanelli, Luciano

    2016-07-01

    In the present work, a hidden scenario which cast a long-lived superheavy particle A0 and simultaneously an extremely light particle a with mass ma ˜ 10-32-10-33 eV is presented. The potential energy V (a) of the particle a models the vacuum energy density of the universe ρc ≃ 10-47GeV4. On the other hand, the A0 particle may act as superheavy dark matter at present times and the products of its decay may be observed in high energy cosmic ray events. The hidden sector proposed here include light fermions with masses near the neutrino mass mν ˜ 10-2 eV and superheavy ones with masses of the order of the GUT scale, interacting through a hidden SU(2)L interaction which also affects the ordinary sector. The construction of such combined scenario is nontrivial since the presence of light particles may spoil the stability of the heavy particle A0. However, double Higgs mechanisms may be helpful for overcoming this problem. In this context, the stability of the superheavy particle A0 is ensured due to chiral symmetry arguments elaborated in the text.

  18. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    NASA Astrophysics Data System (ADS)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  19. Optimizing indoor illumination quality and energy efficiency using a spectrally tunable lighting system to augment natural daylight.

    PubMed

    Hertog, W; Llenas, A; Carreras, J

    2015-11-30

    This article demonstrates the benefits of complementing a daylight-lit environment with a spectrally tunable illumination system. The spectral components of daylight present in the room are measured by a low-cost miniature spectrophotometer and processed through a number of optimization algorithms, carefully trading color fidelity for energy efficiency. Spectrally-tunable luminaires provide only those wavelengths that ensure that either the final illumination spectrum inside the room is kept constant or carefully follows the dynamic spectral pattern of natural daylight. Analyzing the measured data proves that such a hybrid illumination system brings both unprecendented illumination quality and significant energy savings.

  20. Derivation of the cut-off length from the quantum quadratic enhancement of a mass in vacuum energy constant Lambda

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Sato, Hikaru

    2018-04-01

    Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.

  1. Pauli-Zeldovich cancellation of the vacuum energy divergences, auxiliary fields and supersymmetry

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Starobinsky, Alexei A.; Tronconi, Alessandro; Vardanyan, Tereza; Venturi, Giovanni

    2018-03-01

    We have considered the Pauli-Zeldovich mechanism for the cancellation of the ultraviolet divergences in vacuum energy. This mechanism arises because bosons and fermions give contributions of the opposite signs. In contrast with the preceding papers devoted to this topic wherein mainly free fields were studied, here we have taken their interactions into account to the lowest order of perturbation theory. We have constructed some simple toy models having particles with spin 0 and spin 1 / 2, where masses of the particles are equal while the interactions can be quite non-trivial.

  2. Spectral binning for energy production calculations and multijunction solar cell design

    DOE PAGES

    Garcia, Iván; McMahon, William E.; Habte, Aron; ...

    2017-09-14

    Currently, most solar cells are designed for and evaluated under standard spectra intended to represent typical spectral conditions. However, no single spectrum can capture the spectral variability needed for annual energy production (AEP) calculations, and this shortcoming becomes more significant for series-connected multijunction cells as the number of junctions increases. For this reason, AEP calculations are often performed on very detailed yearlong sets of data, but these pose 2 inherent challenges: (1) These data sets comprise thousands of data points, which appear as a scattered cloud of data when plotted against typical parameters and are hence cumbersome to classify andmore » compare, and (2) large sets of spectra bring with them a corresponding increase in computation or measurement time. Here, we show how a large spectral set can be reduced to just a few 'proxy' spectra, which still retain the spectral variability information needed for AEP design and evaluation. The basic 'spectral binning' methods should be extensible to a variety of multijunction device architectures. In this study, as a demonstration, the AEP of a 4-junction device is computed for both a full set of spectra and a reduced proxy set, and the results show excellent agreement for as few as 3 proxy spectra. This enables much faster (and thereby more detailed) calculations and indoor measurements and provides a manageable way to parameterize a spectral set, essentially creating a 'spectral fingerprint,' which should facilitate the understanding and comparison of different sites.« less

  3. Spectral binning for energy production calculations and multijunction solar cell design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Iván; McMahon, William E.; Habte, Aron

    Currently, most solar cells are designed for and evaluated under standard spectra intended to represent typical spectral conditions. However, no single spectrum can capture the spectral variability needed for annual energy production (AEP) calculations, and this shortcoming becomes more significant for series-connected multijunction cells as the number of junctions increases. For this reason, AEP calculations are often performed on very detailed yearlong sets of data, but these pose 2 inherent challenges: (1) These data sets comprise thousands of data points, which appear as a scattered cloud of data when plotted against typical parameters and are hence cumbersome to classify andmore » compare, and (2) large sets of spectra bring with them a corresponding increase in computation or measurement time. Here, we show how a large spectral set can be reduced to just a few 'proxy' spectra, which still retain the spectral variability information needed for AEP design and evaluation. The basic 'spectral binning' methods should be extensible to a variety of multijunction device architectures. In this study, as a demonstration, the AEP of a 4-junction device is computed for both a full set of spectra and a reduced proxy set, and the results show excellent agreement for as few as 3 proxy spectra. This enables much faster (and thereby more detailed) calculations and indoor measurements and provides a manageable way to parameterize a spectral set, essentially creating a 'spectral fingerprint,' which should facilitate the understanding and comparison of different sites.« less

  4. Advanced Photon Source accelerator ultrahigh vacuum guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS.

  5. Solitons of shallow-water models from energy-dependent spectral problems

    NASA Astrophysics Data System (ADS)

    Haberlin, Jack; Lyons, Tony

    2018-01-01

    The current work investigates the soliton solutions of the Kaup-Boussinesq equation using the inverse scattering transform method. We outline the construction of the Riemann-Hilbert problem for a pair of energy-dependent spectral problems for the system, which we then use to construct the solution of this hydrodynamic system.

  6. In-vacuum exposure shutter

    DOEpatents

    Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.

    2004-06-01

    An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.

  7. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies.

    PubMed

    Mostafazadeh, Ali

    2009-06-05

    Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.

  8. Spectral Singularities of Complex Scattering Potentials and Infinite Reflection and Transmission Coefficients at Real Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2009-06-05

    Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.

  9. Moment analysis of hadronic vacuum polarization. Proposal for a lattice QCD evaluation of gμ - 2

    NASA Astrophysics Data System (ADS)

    de Rafael, Eduardo

    2014-09-01

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  10. Multilayer Coatings for UV Spectral Range

    NASA Astrophysics Data System (ADS)

    Miloushev, Ilko; Tenev, Tihomir; Peyeva, Rumiana; Panajotov, Krassimir

    2010-01-01

    Optical coatings for the UV spectral range play currently a significant role in the modern optical devices. For reducing of manufacturing cost the reliable design is essential. Therefore, better understanding of the optical properties of the used materials is indispensable for the proper design and manufacturing of the multilayer UV coatings. In this work we present some results on the preparation of reflective UV coatings. The implemented materials are magnesium fluoride and lanthanum fluoride. Their optical constants are determined from spectral characteristics of single layers in the 200-800 nm spectral range, obtained by thermal boat evaporation in high vacuum conditions. These results are subsequently used for the analysis of high reflection (HR) stack made of 40 layers deposited by the same deposition process.

  11. Spectral unfolding of fast neutron energy distributions

    NASA Astrophysics Data System (ADS)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  12. Effects of Low-Energy Excitations on Spectral Properties at Higher Binding Energy: The Metal-Insulator Transition of VO2

    NASA Astrophysics Data System (ADS)

    Gatti, Matteo; Panaccione, Giancarlo; Reining, Lucia

    2015-03-01

    The effects of electron interaction on spectral properties can be understood in terms of coupling between excitations. In transition-metal oxides, the spectral function close to the Fermi level and low-energy excitations between d states have attracted particular attention. In this work we focus on photoemission spectra of vanadium dioxide over a wide (10 eV) range of binding energies. We show that there are clear signatures of the metal-insulator transition over the whole range due to a cross coupling of the delocalized s and p states with low-energy excitations between the localized d states. This coupling can be understood by advanced calculations based on many-body perturbation theory in the G W approximation. We also advocate the fact that tuning the photon energy up to the hard-x-ray range can help to distinguish fingerprints of correlation from pure band-structure effects.

  13. Laboratory Simulations and Spectral Analyses of Space Weathering of Non-Ice Materials on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Wing, B. R.; Shusterman, M. L.; Irvin, B. L.; Hibbitts, C.

    2016-12-01

    Airless solar system bodies are subjected to bombardment by high-energy particles from the solar wind and for Galilean satellites, from the Jovian magnetosphere. These keV-MeV electrons and ions damage the upper microns of the exposed surface, resulting in physical, chemical, and spectral alterations that may confound interpretations of mineralogical properties. We conducted experiments simulating space weathering by energetic electrons for characterizing the spectral effects from the UV through the mid-IR; wavelengths commonly used to determine compositions of airless bodies. We bombarded analog non-ice materials with 40 keV electrons under high vacuum conditions for a period of 48-96 hours at a fluence of 80 μA. Spectral measurements were obtained at UV, VIS-SWIR, and NIR-MIR ranges from 0.14-5.0 μm using a McPherson 302 monochrometer, an SVC fiber-fed point spectrometer, and a Bruker Vertex 70 FTIR, respectively. The monochrometer and FTIR measurements were obtained before, during, and after irradiation, while the sample was under vacuum at 1e-7 torr. SVC measurements were obtained in a separate apparatus under an N2-purged environment before and after irradiation. The experiments were conducted to develop a better understanding of how exposure to particulate bombardment may affect the spectral features of airless bodies and subsequent interpretation of composition. Our results characterize the spectral nature of radiation-induced color centers, or Farbe-centers, that are active in the NUV-VIS-NIR wavelength range and inactive in the SWIR-MIR wavelength range. We confirmed the discoloration is due to the formation of F-centers rather than trace contamination such as iron, by analyzing samples under scanning electron microscope and X-ray spectrometer.

  14. Dyonic Flux Tube Structure of Nonperturbative QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Pandey, H. C.

    We study the flux tube structure of the nonperturbative QCD vacuum in terms of its dyonic excitations by using an infrared effective Lagrangian and show that the dyonic condensation of QCD vacuum has a close connection with the process of color confinement. Using the fiber bundle formulation of QCD, the magnetic symmetry condition is presented in a gauge covariant form and the gauge potential has been constructed in terms of the magnetic vectors on global sections. The dynamical breaking of the magnetic symmetry has been shown to lead the dyonic condensation of QCD vacuum in the infrared energy sector. Deriving the asymptotic solutions of the field equations in the dynamically broken phase, the dyonic flux tube structure of QCD vacuum is explored which has been shown to lead the confinement parameters in terms of the vector and scalar mass modes of the condensed vacuum. Evaluating the charge quantum numbers and energy associated with the dyonic flux tube solutions, the effect of electric excitation of monopole is analyzed using the Regge slope parameter (as an input parameter) and an enhancement in the dyonic pair correlations and the confining properties of QCD vacuum in its dyonically condensed mode has been demonstrated.

  15. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  16. Dynamical emergence of the Universe into the false vacuum

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann; Birrell, Jeremiah

    2015-11-01

    We study how the hot Universe evolves and acquires the prevailing vacuum state, demonstrating that in specific conditions which are believed to apply, the Universe becomes frozen into the state with the smallest value of Higgs vacuum field v=langle hrangle, even if this is not the state of lowest energy. This supports the false vacuum dark energy Λ-model. Under several likely hypotheses we determine the temperature in the evolution of the Universe at which two vacuua v1, v2 can swap between being true and false. We evaluate the dynamical surface pressure on domain walls between low and high mass vaccua due to the presence of matter and show that the low mass state remains the preferred vacuum of the Universe.

  17. Vacuum instability in Kaluza–Klein manifolds

    NASA Astrophysics Data System (ADS)

    Fucci, Guglielmo

    2018-05-01

    The purpose of this work in to analyze particle creation in spaces with extra dimensions. We consider, in particular, a massive scalar field propagating in a Kaluza–Klein manifold subject to a constant electric field. We compute the rate of particle creation from vacuum by using techniques rooted in the spectral zeta function formalism. The results we obtain show explicitly how the presence of the extra-dimensions and their specific geometric characteristics, influence the rate at which pairs of particles and anti-particles are generated.

  18. Dark matter as an effect of the quantum vacuum

    NASA Astrophysics Data System (ADS)

    Santos, Emilio

    2018-04-01

    The interaction between the quantum vacuum and a weak gravitational field is calculated for the vacuum fields of quantum electrodynamics. The result shows that the vacuum state is modified by the gravitational field, giving rise to a nonzero interaction energy. This suggests a model that fits in the main properties of the hypothetical dark matter in galactic haloes.

  19. Cosmic vacuum and galaxy formation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2006-04-01

    It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red shift z≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the subsequent epoch of the vacuum domination. At the zrrV={M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation between the largest mass condensations and their spatial scales. All the real large-scale systems follow this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that there is a strong correspondence between the global design of the Universe as a whole and the cosmic structures of various masses and spatial scales.

  20. Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions

    NASA Astrophysics Data System (ADS)

    Valentine, John S.

    2013-09-01

    By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.

  1. Quantum vacuum polarization, nanotechnology and a robotic mission to Proxima Centauri

    NASA Astrophysics Data System (ADS)

    de Morais Mendonca Teles, Antonio

    In order to achieve an interstellar flight mission it is necessary powerful propulsion technologies. The space between stars and the time for a flight are highly vast. As an example, the closest star to the Sun is α Cen C (known as Proxima Centauri) distant 4.2 light-years. It is a star with spectral type dM5e (a "reddish dwarf"), which makes part of a quasi-triple gravitational star system -together with α Cen A and α Cen B. Based on theoretical models and observa-tional data on stellar and planetary systems evolution, Proxima Centauri has the possibility of having a non-stellar companion (perhaps a Mars or Moon-sized object) orbiting close to it. So, here in this paper, I propose as a first interstellar flight reconnaissance mission, for testing new technologies and gathering of scientific data, it would be interesting a flyby-and-rendezvous mission to Proxima Centauri. . . Such mission, using nanotechnology and solar energy, could be achieved by one mini-spacecraft (the carrier with the propulsion mini-motors) and three smaller mini-spacecrafts inside -one for a flyby inside the star system, other (lighter) for orbital in-sertion around Proxima Centauri, and the other (attached to the lighter one) for landing on a possible Proxima Centauri's companion, based on observational data from the one in orbit. The reason for the use of nanotechnology is that it provides a large number of equipment inside a spacecraft, uses few energy for the internal processes of the mini-spacecrafts, can repair them-selves (nanotechnology-built materials are also shown as "intelligent" materials), and makes them with small inertial mass -important for relativistic matters. Solar energy is a powerful energy source -there are 3 stars making the α Cen system. Such technologies can obviously be also used to explore the Solar System. A mission to Proxima Centauri with a speed of 0.1 c takes 42 Earth years to arrive there. Knowing that the mini-spacecraft has to decelerate and the

  2. Spectral Characterization of the Wave Energy Resource for Puerto Rico (PR) and the United States Virgin Islands (USVI)

    NASA Astrophysics Data System (ADS)

    Garcia, C. G.; Canals, M.; Irizarry, A. A.

    2016-02-01

    Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.

  3. Dynamical emergence of the Universe into the false vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafelski, Johann; Birrell, Jeremiah, E-mail: rafelski@physics.arizona.edu, E-mail: jbirrell@email.arizona.edu

    We study how the hot Universe evolves and acquires the prevailing vacuum state, demonstrating that in specific conditions which are believed to apply, the Universe becomes frozen into the state with the smallest value of Higgs vacuum field v=( h), even if this is not the state of lowest energy. This supports the false vacuum dark energy Λ-model. Under several likely hypotheses we determine the temperature in the evolution of the Universe at which two vacuua v{sub 1}, v{sub 2} can swap between being true and false. We evaluate the dynamical surface pressure on domain walls between low and high mass vaccuamore » due to the presence of matter and show that the low mass state remains the preferred vacuum of the Universe.« less

  4. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  5. Spectral CT Reconstruction with Image Sparsity and Spectral Mean

    PubMed Central

    Zhang, Yi; Xi, Yan; Yang, Qingsong; Cong, Wenxiang; Zhou, Jiliu

    2017-01-01

    Photon-counting detectors can acquire x-ray intensity data in different energy bins. The signal to noise ratio of resultant raw data in each energy bin is generally low due to the narrow bin width and quantum noise. To address this problem, here we propose an image reconstruction approach for spectral CT to simultaneously reconstructs x-ray attenuation coefficients in all the energy bins. Because the measured spectral data are highly correlated among the x-ray energy bins, the intra-image sparsity and inter-image similarity are important prior acknowledge for image reconstruction. Inspired by this observation, the total variation (TV) and spectral mean (SM) measures are combined to improve the quality of reconstructed images. For this purpose, a linear mapping function is used to minimalize image differences between energy bins. The split Bregman technique is applied to perform image reconstruction. Our numerical and experimental results show that the proposed algorithms outperform competing iterative algorithms in this context. PMID:29034267

  6. Polarized vacuum ultraviolet and X-radiation

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1978-01-01

    The most intense source of polarized vacuum UV and X radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarization of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect of monochromators (i.e., diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. Experimental evidence is presented which shows that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization.

  7. Running vacuum cosmological models: linear scalar perturbations

    NASA Astrophysics Data System (ADS)

    Perico, E. L. D.; Tamayo, D. A.

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ(H2) or Λ(R). Such models assume an equation of state for the vacuum given by bar PΛ = - bar rhoΛ, relating its background pressure bar PΛ with its mean energy density bar rhoΛ ≡ Λ/8πG. This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely bar rhoΛ = Σibar rhoΛi. Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ(H2) scenario the vacuum is coupled with every matter component, whereas the Λ(R) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  8. Optical investigation of vacuum evaporated Se80-xTe20Sbx (x = 0, 6, 12) amorphous thin films

    NASA Astrophysics Data System (ADS)

    Deepika; Singh, Hukum

    2017-09-01

    Amorphous thin films of Se80-xTe20Sbx (x = 0, 6, 12) chalcogenide glasses has been deposited onto pre-cleaned glass substrate using thermal evaporation technique under a vacuum of 10-5 Torr. The absorption and transmission spectra of these thin films have been recorded using UV spectrophotometer in the spectral range 400-2500 nm at room temperature. Swanepoel envelope method has been employed to obtain film thickness and optical constants such as refractive index, extinction coefficient and dielectric constant. The optical band gap of the samples has been calculated using Tauc relation. The study reveals that optical band gap decreases on increase in Sb content. This is due to decrease in average single bond energy calculated using chemical bond approach. The values of urbach energy has also been computed to support the above observation. Variation of refractive index has also been studies in terms of wavelength and energy using WDD model and values of single oscillator energy and dispersion energy has been obtained.

  9. Solar energy converters based on multi-junction photoemission solar cells.

    PubMed

    Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V

    2017-11-23

    Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias  = 0 in transmission and reflection modes, while, at V bias  = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

  10. Optical Analysis Of The Vacuum Arc Plasma Generated In Cup-Shape Contacts

    NASA Astrophysics Data System (ADS)

    Pavelescu, G.; Pavelescu, D.; Dumitrescu, G.; Anghelita, P.; Gherendi, F.

    2007-04-01

    In this paper are presented the results of the optical analysis on the rotating arc plasma, generated in the vacuum low voltage circuit breaker with cup-shaped contacts. An adequate experimental setup was used for single shot time and spatial resolved spectroscopy in order to analyze the evolution of the vacuum arc plasma. Different current interruption situations are correlated with plasma spectral diagnosis. The study is aimed to contribute to a better understanding of the complex phenomena that take place in the interruption process of high currents that appears in the short-circuit regime of electrical networks.

  11. Time evolution of the spectral break in the high-energy extra component of GRB 090926A

    NASA Astrophysics Data System (ADS)

    Yassine, M.; Piron, F.; Mochkovitch, R.; Daigne, F.

    2017-10-01

    Aims: The prompt light curve of the long GRB 090926A reveals a short pulse 10 s after the beginning of the burst emission, which has been observed by the Fermi observatory from the keV to the GeV energy domain. During this bright spike, the high-energy emission from GRB 090926A underwent a sudden hardening above 10 MeV in the form of an additional power-law component exhibiting a spectral attenuation at a few hundreds of MeV. This high-energy break has been previously interpreted in terms of gamma-ray opacity to pair creation and has been used to estimate the bulk Lorentz factor of the outflow. In this article, we report on a new time-resolved analysis of the GRB 090926A broadband spectrum during its prompt phase and on its interpretation in the framework of prompt emission models. Methods: We characterized the emission from GRB 090926A at the highest energies with Pass 8 data from the Fermi Large Area Telescope (LAT), which offer a greater sensitivity than any data set used in previous studies of this burst, particularly in the 30-100 MeV energy band. Then, we combined the LAT data with the Fermi Gamma-ray Burst Monitor (GBM) in joint spectral fits to characterize the time evolution of the broadband spectrum from keV to GeV energies. We paid careful attention to the systematic effects that arise from the uncertainties on the LAT response. Finally, we performed a temporal analysis of the light curves and we computed the variability timescales from keV to GeV energies during and after the bright spike. Results: Our analysis confirms and better constrains the spectral break, which has been previously reported during the bright spike. Furthermore, it reveals that the spectral attenuation persists at later times with an increase of the break characteristic energy up to the GeV domain until the end of the prompt phase. We discuss these results in terms of keV-MeV synchroton radiation of electrons accelerated during the dissipation of the jet energy and inverse Compton

  12. Wave spectral energy variability in the northeast Pacific

    USGS Publications Warehouse

    Bromirski, P.D.; Cayan, D.R.; Flick, R.E.

    2005-01-01

    The dominant characteristics of wave energy variability in the eastern North Pacific are described from NOAA National Data Buoy Center (NDBC) buoy data collected from 1981 to 2003. Ten buoys at distributed locations were selected for comparison based on record duration and data continuity. Long-period (LP) [T > 12] s, intermediate-period [6 ??? T ??? 12] s, and short-period [T < 6] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along the West Coast from Alaska to southern California, as indicated by composites of the 700 hPa height field. The second EOF mode reveals a distinct El Nin??o-Southern Oscillation (ENSO)-associated spatial distribution of wave energy, which occurs when the North Pacific storm track is extended unusually far south or has receded to the north. Monthly means and principal components (PCs) of wave energy levels indicate that the 1997-1998 El Nin??o winter had the highest basin-wide wave energy within this record, substantially higher than the 1982-1983 El Nin??o. An increasing trend in the dominant PC of LP wave energy suggests that storminess has increased in the northeast Pacific since 1980. This trend is emphasized at central eastern North Pacific locations. Patterns of storminess variability are consistent with increasing activity in the central North Pacific as well as the tendency for more extreme waves in the south during El Nin??o episodes and in the north during La Nin??a. Copyright 2005 by the American Geophysical Union.

  13. Spectral characteristics and meridional variations of energy transformations during the first and second special observation periods of FGGE

    NASA Technical Reports Server (NTRS)

    Kung, E. C.; Tanaka, H.

    1984-01-01

    The global features and meridional spectral energy transformation variations of the first and second special observation periods of the First Global GARP Experiment (FGGE) are investigated, together with the latitudinal distribution of the kinetic energy balance. Specific seasonal characteristics are shown by the spectral distributions of the global transformations between (1) zonal mean and eddy components of the available potential energy, (2) the zonal mean and eddy components of the kinetic energy, and (3) the available potential energy and the kinetic energy. Maximum kinetic energy production is found to occur at subtropical latitudes, with a secondary maximum at higher middle latitudes. Between these two regions, there is another region characterized by the adiabatic destruction of kinetic energy above the lower troposphere.

  14. A systematization of spectral data on the methanol molecule

    NASA Astrophysics Data System (ADS)

    Akhlyostin, A. Yu.; Voronina, S. S.; Lavrentiev, N. A.; Privezentsev, A. I.; Rodimova, O. B.; Fazliev, A. Z.

    2015-11-01

    Problems underlying a systematization of spectral data on the methanol molecule are formulated. Data on the energy levels and vacuum wavenumbers acquired from the published literature are presented in the form of information sources imported into the W@DIS information system. Sets of quantum numbers and labels used to describe the CH3OH molecular states are analyzed. The set of labels is different from universally accepted sets. A system of importing the data sources into W@DIS is outlined. The structure of databases characterizing transitions in an isolated CH3OH molecule is introduced and a digital library of the relevant published literature is discussed. A brief description is given of an imported data quality analysis and representation of the results obtained in the form of ontologies for subsequent computer processing.

  15. On Quadratic Divergences in Supergravity, Vacuum Energy and theSupersymmetric Flavor Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, Mary K.; Nelson, Brent D.

    2005-11-18

    We examine the phenomenological consequences ofquadratically divergent contributions to the scalar potential insupergravity effective Lagrangians. We focus specifically on the effectof these corrections on the vacuum configurationof scalar fields insoftly-broken supersymmetric theory is and the role these correctionsplay in generating non-diagonal soft scalar masses. Both effects can onlybe properly studied when the divergences are regulated in a manifestlysupersymmetric manner -- something which has ths far been neglected inpast treatments. We show how a supersymmetric regularization can impactpast conclusions about both types of phenomena and discuss what types ofhigh-energy theories are likely to be safe from unwanted flavor-changingneutral current interactions inmore » the context of supergravity theoriesderived from heterotic string compactifications.« less

  16. Induced vacuum energy-momentum tensor in the background of a cosmic string

    NASA Astrophysics Data System (ADS)

    Sitenko, Yu A.; Vlasii, N. D.

    2012-05-01

    A massive scalar field is quantized in the background of a cosmic string which is generalized to a static flux-carrying codimension-2 brane in the locally flat multidimensional spacetime. We find that the finite energy-momentum tensor is induced in the vacuum. The dependence of the tensor components on the brane flux and tension, as well as on the coupling to the spacetime curvature scalar, is comprehensively analyzed. The tensor components are holomorphic functions of space dimension, decreasing exponentially with the distance from the brane. The case of the massless quantized scalar field is also considered, and the relevance of Bernoulli’s polynomials of even order for this case is discussed.

  17. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum.

    PubMed

    Magdaong, Nikki M; LaFountain, Amy M; Hacking, Kirsty; Niedzwiedzki, Dariusz M; Gibson, George N; Cogdell, Richard J; Frank, Harry A

    2016-02-01

    Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.

  18. Spectral energy distribution of Markarian 501: Quiescent state versus extreme outburst

    DOE PAGES

    Acciari, V. A.; Arlen, T.; Aune, T.; ...

    2011-02-03

    Here, the very high energy (VHE; E > 100 GeV) blazar Markarian 501 (Mrk 501) has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Mrk 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Mrk 501 was coordinated in 2009 March, focusing around a multi-day observation with the Suzaku X-ray satellite and including γ-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing amore » well-sampled multiwavelength baseline measurement of Mrk 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of 1997 April 16, with the goal of examining variability of the spectral energy distribution (SED) between the two states. The derived broadband SED shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina (KN) regime. Synchrotron self-Compton models are matched to the data and the implied KN effects are explored.« less

  19. Latittudinal and energy dependence of energetic neutral atom spectral indices measured by the Interstellar Boundary Explorer

    DOE PAGES

    Desai, M. I.; Allegrini, F.; Dayeh, M. A.; ...

    2015-03-30

    Here, we investigate the latitudinal and energy dependence of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 3 yrs of the mission. Our results are: (1) the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ~2.29 and ~3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. (2) The latitudinal dependence of the spectral indices at different energies can be represented bymore » the cosine function γ =a 0 + a 1 cos (a 2θ) with unique offsets, amplitudes, and phase angles; the higher energy ENA indices transition to successively larger amplitudes within ±45° of the equator. The results confirm the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere. And while earlier studies showed that the ~0.5-6 keV globally distributed ENA spectral indices could be represented as single power laws over much of the sky, our new results indicate that this is an over-simplification because the spectral indices have an energy and latitude dependence. Furthermore, this dependence is an important factor that must be taken into consideration by models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.« less

  20. Latitudinal and Energy Dependence of Energetic Neutral Atom Spectral Indices Measured by the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Allegrini, F.; Dayeh, M. A.; Funsten, H.; Heerikhuisen, J.; McComas, D. J.; Fuselier, S. A.; Pogorelov, N.; Schwadron, N. A.; Zank, G. P.; Zirnstein, E. J.

    2015-04-01

    We investigate the latitudinal and energy dependence of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 3 yrs of the mission. Our results are: (1) the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. (2) The latitudinal dependence of the spectral indices at different energies can be represented by the cosine function γ ={{a}0}+{{a}1}cos ({{a}2}θ ) with unique offsets, amplitudes, and phase angles; the higher energy ENA indices transition to successively larger amplitudes within ±45° of the equator. Our results confirm the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere. While earlier studies showed that the ˜0.5-6 keV globally distributed ENA spectral indices could be represented as single power laws over much of the sky, our new results indicate that this is an over-simplification because the spectral indices have an energy and latitude dependence. This dependence is an important factor that must be taken into consideration by models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  1. Vacuum statistics and stability in axionic landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masoumi, Ali; Vilenkin, Alexander, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2016-03-01

    We investigate vacuum statistics and stability in random axionic landscapes. For this purpose we developed an algorithm for a quick evaluation of the tunneling action, which in most cases is accurate within 10%. We find that stability of a vacuum is strongly correlated with its energy density, with lifetime rapidly growing as the energy density is decreased. On the other hand, the probability P(B) for a vacuum to have a tunneling action B greater than a given value declines as a slow power law in B. This is in sharp contrast with the studies of random quartic potentials, which foundmore » a fast exponential decline of P(B). Our results suggest that the total number of relatively stable vacua (say, with B>100) grows exponentially with the number of fields N and can get extremely large for N∼> 100. The problem with this kind of model is that the stable vacua are concentrated near the absolute minimum of the potential, so the observed value of the cosmological constant cannot be explained without fine-tuning. To address this difficulty, we consider a modification of the model, where the axions acquire a quadratic mass term, due to their mixing with 4-form fields. This results in a larger landscape with a much broader distribution of vacuum energies. The number of relatively stable vacua in such models can still be extremely large.« less

  2. Carbon nanotubes based vacuum gauge

    NASA Astrophysics Data System (ADS)

    Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  3. Fluoride coatings for vacuum ultraviolet reflection filters.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Li, Bincheng

    2015-12-10

    LaF3/MgF2 reflection filters with a high spectral-discrimination capacity of the atomic-oxygen lines at 130.4 and 135.6 nm, which were employed in vacuum ultraviolet imagers, were prepared by molybdenum-boat thermal evaporation. The optical properties of reflection filters were characterized by a high-precision vacuum ultraviolet spectrophotometer. The vulnerability of the filter's microstructures to environmental contamination and the recovery of the optical properties of the stored filter samples with ultraviolet ozone cleaning were experimentally demonstrated. For reflection filters with the optimized nonquarter-wave multilayer structures, the reflectance ratios R135.6 nm/R130.4 nm of 92.7 and 20.6 were achieved for 7° and 45° angles of incidence, respectively. On the contrary, R135.6 nm/R130.4 nm ratio of 12.4 was obtained for a reflection filter with a standard π-stack multilayer structure with H/L=1/4 at 7° AOI.

  4. Running vacuum cosmological models: linear scalar perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perico, E.L.D.; Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interactionmore » between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.« less

  5. Dynamics of vacuum-sealed, double-leaf partitions

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  6. Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection.

    PubMed

    Leng, Shuai; Yu, Lifeng; Wang, Jia; Fletcher, Joel G; Mistretta, Charles A; McCollough, Cynthia H

    2011-09-01

    Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i) numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without

  7. Casimir switch: steering optical transparency with vacuum forces.

    PubMed

    Liu, Xi-Fang; Li, Yong; Jing, H

    2016-06-03

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  8. Chiral vacuum fluctuations in quantum gravity.

    PubMed

    Magueijo, João; Benincasa, Dionigi M T

    2011-03-25

    We examine tensor perturbations around a de Sitter background within the framework of Ashtekar's variables and its cousins parameterized by the Immirzi parameter γ. At the classical level we recover standard cosmological perturbation theory, with illuminating insights. Quantization leads to real novelties. In the low energy limit we find a second quantized theory of gravitons which displays different vacuum fluctuations for right and left gravitons. Nonetheless right and left gravitons have the same (positive) energies, resolving a number of paradoxes suggested in the literature. The right-left asymmetry of the vacuum fluctuations depends on γ and the ordering of the Hamiltonian constraint, and it would leave a distinctive imprint in the polarization of the cosmic microwave background, thus opening quantum gravity to observational test.

  9. Decay of the de Sitter vacuum

    NASA Astrophysics Data System (ADS)

    Anderson, Paul R.; Mottola, Emil; Sanders, Dillon H.

    2018-03-01

    The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a uniform electric field is reviewed and Schwinger's result for the vacuum decay rate is recovered by this same real time analysis. The vacuum decay rate in each case is also calculated by switching the background field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again. In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E -field case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of their backreaction effects on the background field estimated. Possible consequences of the Hubble scale instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological "constant" problem are discussed.

  10. Enhancing inhibition-induced plasticity in tinnitus--spectral energy contrasts in tailor-made notched music matter.

    PubMed

    Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts.

  11. Overview of High Power Vacuum Dry RF Load Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less

  12. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  13. Effects of distributions of energy of transfer rates on spectral hole burning in photosynthetic pigment-protein complexes

    NASA Astrophysics Data System (ADS)

    Ahmouda, Somaya

    To perform photosynthesis, plants, algae and bacteria possess well organized and closely coupled photosynthetic pigment-protein complexes. Information on energy transfer in photosynthetic complexes is important to understand their functioning and possibly to design new and improved photovoltaic devices. The information on energy transfer processes contained in the narrow zero-phonon lines at low temperatures is hidden under the inhomogeneous broadening. Thus, it has been proven difficult to analyze the spectroscopic properties of these complexes in sufficient detail by conventional spectroscopy methods. In this context the high resolution spectroscopy techniques such as Spectral Hole Burning are powerful tools designed to get around the inhomogeneous broadening. Spectral Hole Burning involves selective excitation by a laser which removes molecules with the zero-phonon transitions resonant with this laser. This thesis focuses on the effects of the distributions of the energy transfer rates (homogeneous line widths) on the evolution of spectral holes. These distributions are a consequence of the static disorder in the photosynthetic pigment-protein complexes. The qualitative effects of different types of the line width distributions on the evolution of spectral holes have been and explored by numerical simulations, an example of analysis of the original experimental data has been presented as well.

  14. Spectral Diffusion: An Algorithm for Robust Material Decomposition of Spectral CT Data

    PubMed Central

    Clark, Darin P.; Badea, Cristian T.

    2014-01-01

    Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piece-wise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg/mL), gold (0.9 mg/mL), and gadolinium (2.9 mg/mL) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen. PMID:25296173

  15. Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.

    PubMed

    Clark, Darin P; Badea, Cristian T

    2014-11-07

    Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.

  16. Spectral methods for coupled channels with a mass gap

    NASA Astrophysics Data System (ADS)

    Weigel, H.; Quandt, M.; Graham, N.

    2018-02-01

    We develop a method to compute the vacuum polarization energy for coupled scalar fields with different masses scattering off a background potential in one space dimension. As an example we consider the vacuum polarization energy of a kinklike soliton built from two real scalar fields with different mass parameters.

  17. Modelling of nectarine drying under near infrared - Vacuum conditions.

    PubMed

    Alaei, Behnam; Chayjan, Reza Amiri

    2015-01-01

    Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour

  18. Redistribution of carbonyl stretch mode energy in isolated and solvated N-methylacetamide: kinetic energy spectral density analyses.

    PubMed

    Jeon, Jonggu; Cho, Minhaeng

    2011-12-07

    The vibrational energy transfer from the excited carbonyl stretch mode in N-deuterated N-methylacetamide (NMA-d), both in isolation and in a heavy water cluster, is studied with nonequilibrium molecular dynamics (NEMD) simulations, employing a quantum mechanical/molecular mechanical (QM∕MM) force field at the semiempirical PM3 level. The nonequilibrium ensemble of vibrationally excited NMA-d is prepared by perturbing the positions and velocities of the carbonyl C and O atoms and its NEMD trajectories are obtained with a leap-frog algorithm properly modified for the initial perturbation. In addition to the time-domain analysis of the kinetic and potential energies, a novel method for the spectral analysis of the atomic kinetic energies is developed, in terms of the spectral density of kinetic energy, which provides the time-dependent changes of the frequency-resolved kinetic energies without the complications of normal mode analysis at every MD time step. Due to the QM description of the solute electronic structure, the couplings among the normal modes are captured more realistically than with classical force fields. The energy transfer in the isolated NMA-d is found to proceed first from the carbonyl bond to other modes with time scales of 3 ps or less, and then among the other modes over 3-21 ps. In the solvated NMA-d, most of the excess energy is first transferred to other intramolecular modes within 5 ps, which is subsequently dissipated to solvent with 7-19 ps time scales. The contribution of the direct energy transfer from the carbonyl bond to solvent was only 5% with ~7 ps time scale. Solvent reorganization that leads to destabilization of the electrostatic interactions is found to be crucial in the long time relaxation of the excess energy, while the water intramolecular modes do not contribute significantly. Detailed mode-specific energy transfer pathways are deduced for the isolated and solvated NMA-d and they show that the energy transfer in NMA-d is a

  19. Deep multi-spectral ensemble learning for electronic cleansing in dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Näppi, Janne J.; Hironaka, Toru; Kim, Se Hyung; Yoshida, Hiroyuki

    2017-03-01

    We developed a novel electronic cleansing (EC) method for dual-energy CT colonography (DE-CTC) based on an ensemble deep convolution neural network (DCNN) and multi-spectral multi-slice image patches. In the method, an ensemble DCNN is used to classify each voxel of a DE-CTC image volume into five classes: luminal air, soft tissue, tagged fecal materials, and partial-volume boundaries between air and tagging and those between soft tissue and tagging. Each DCNN acts as a voxel classifier, where an input image patch centered at the voxel is generated as input to the DCNNs. An image patch has three channels that are mapped from a region-of-interest containing the image plane of the voxel and the two adjacent image planes. Six different types of spectral input image datasets were derived using two dual-energy CT images, two virtual monochromatic images, and two material images. An ensemble DCNN was constructed by use of a meta-classifier that combines the output of multiple DCNNs, each of which was trained with a different type of multi-spectral image patches. The electronically cleansed CTC images were calculated by removal of regions classified as other than soft tissue, followed by a colon surface reconstruction. For pilot evaluation, 359 volumes of interest (VOIs) representing sources of subtraction artifacts observed in current EC schemes were sampled from 30 clinical CTC cases. Preliminary results showed that the ensemble DCNN can yield high accuracy in labeling of the VOIs, indicating that deep learning of multi-spectral EC with multi-slice imaging could accurately remove residual fecal materials from CTC images without generating major EC artifacts.

  20. Latitude, Energy, and Time Variations of Energetic Neutral Atom Spectral indices Measured by IBEX

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; McComas, D. J.; Dayeh, M. A.; Funsten, H. O.; Schwadron, N.; Heerikhuisen, J.; Fuselier, S. A.; Allegrini, F.; Pogorelov, N.; Zank, G. P.

    2015-12-01

    We investigate the latitude, energy, and time variations of the globally distributed ~0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 5 years of the mission. Our previous results based on the first 3 years of IBEX observations showed that the ENA spectral indices at the two lowest energies (~0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ~2.29 and ~3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. While these results confirmed the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere, we also showed that, unlike previous reports, the ~0.5-6 keV globally distributed ENA spectral indices could not be represented as single power laws over much of the sky, and that they depend on energy and latitude. In this work we extend the above results to include years 4 and 5 of IBEX observations and investigate if the spectral indices vary as a function of time. Finally, we discuss implications of our results on models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  1. Latitude, Energy, and Time Variations of Energetic Neutral Atom Spectral indices Measured by IBEX

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Heerikhuisen, Jacob; McComas, David; Funsten, Herbert; Pogorelov, Nikolai; Zank, Gary; Schwadron, Nathan; Fuselier, Stephen; Allegrini, Frederic; Dayeh, Maher A.

    2016-07-01

    We investigate the latitude, energy, and time variations of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 5 years of the mission. Our previous results based on the first 3 years of IBEX observations showed that the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur within ±30° of the equator. While these results confirmed the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere, we also showed that, unlike previous reports, the ˜0.5-6 keV globally distributed ENA spectral indices could not be represented as single power laws over much of the sky, and that they depend on energy and latitude. In this paper we extend the above results to include years 4 and 5 of IBEX observations and investigate if the spectral indices vary as a function of time. Finally, we discuss implications of our results on models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  2. The ISPM experiment for spectral, composition and anistropy measurements of charged particles at low energie

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1983-01-01

    The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.

  3. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    NASA Astrophysics Data System (ADS)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  4. Thermodynamic performance of multi-stage gradational lead screw vacuum pump

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun

    2018-02-01

    As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.

  5. Rayleigh imaging in spectral mammography

    NASA Astrophysics Data System (ADS)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  6. Enhancing Inhibition-Induced Plasticity in Tinnitus – Spectral Energy Contrasts in Tailor-Made Notched Music Matter

    PubMed Central

    Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts. PMID:25951605

  7. Average radio spectral energy distribution of highly star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Tisanić, K.; Smolčić, V.; Delhaize, J.; Novak, M.; Intema, H.; Delvecchio, I.; Schinnerer, E.; Zamorani, G.

    2018-05-01

    The infrared-radio correlation (IRRC) offers a way to assess star formation from radio emission. Multiple studies found the IRRC to decrease with increasing redshift. This may in part be due to the lack of knowledge about the possible radio spectral energy distributions (SEDs) of star-forming galaxies. We constrain the radio SED of a complete sample of highly star-forming galaxies (SFR > 100 M⊙/ yr) based on the VLA-COSMOS 1.4 GHz Joint and 3 GHz Large Project catalogs. We reduce archival GMRT 325 MHz and 610 MHz observations, broadening the rest-frame frequency range to 0.3-15 GHz. Employing survival analysis and fitting a double power law SED, we find that the slope steepens from a spectral index of α1 = 0.51+/-0.04 below 4.5 GHz to α2 = 0.98+/-0.07 above 4.5 GHz. Our results suggest that the use of a K-correction assuming a single power-law radio SED for star forming galaxies is likely not the root cause of the IRRC trend.

  8. IDEN2-A program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules

    NASA Astrophysics Data System (ADS)

    Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.

    2018-04-01

    The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.

  9. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  10. Optimal Monochromatic Energy Levels in Spectral CT Pulmonary Angiography for the Evaluation of Pulmonary Embolism

    PubMed Central

    Wu, Huawei; Zhang, Qing; Hua, Jia; Hua, Xiaolan; Xu, Jianrong

    2013-01-01

    Background The aim of this study was to determine the optimal monochromatic spectral CT pulmonary angiography (sCTPA) levels to obtain the highest image quality and diagnostic confidence for pulmonary embolism detection. Methods The Institutional Review Board of the Shanghai Jiao Tong University School of Medicine approved this study, and written informed consent was obtained from all participating patients. Seventy-two patients with pulmonary embolism were scanned with spectral CT mode in the arterial phase. One hundred and one sets of virtual monochromatic spectral (VMS) images were generated ranging from 40 keV to 140 keV. Image noise, clot diameter and clot to artery contrast-to-noise ratio (CNR) from seven sets of VMS images at selected monochromatic levels in sCTPA were measured and compared. Subjective image quality and diagnostic confidence for these images were also assessed and compared. Data were analyzed by paired t test and Wilcoxon rank sum test. Results The lowest noise and the highest image quality score for the VMS images were obtained at 65 keV. The VMS images at 65 keV also had the second highest CNR value behind that of 50 keV VMS images. There was no difference in the mean noise and CNR between the 65 keV and 70 keV VMS images. The apparent clot diameter correlated with the keV levels. Conclusions The optimal energy level for detecting pulmonary embolism using dual-energy spectral CT pulmonary angiography was 65–70 keV. Virtual monochromatic spectral images at approximately 65–70 keV yielded the lowest image noise, high CNR and highest diagnostic confidence for the detection of pulmonary embolism. PMID:23667583

  11. Latitude, Energy, and Time Variations of Energetic Neutral Atom Spectral indices Measured by IBEX

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; McComas, David; Dayeh, Maher; Funsten, Herbert; Schwadron, Nathan; Heerikhuisen, Jacob; Fuselier, Stephen; Pogorelov, Nikolai; Zank, Gary; Allegrini, Frederic

    2016-04-01

    We investigate the latitude, energy, and time variations of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 5 years of the mission. Our previous results based on the first 3 years of IBEX observations showed that the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. While these results confirmed the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere, we also showed that, unlike previous reports, the ˜0.5-6 keV globally distributed ENA spectral indices could not be represented as single power laws over much of the sky, and that they depend on energy and latitude. In this work we extend the above results to include years 4 and 5 of IBEX observations and investigate if the spectral indices vary as a function of time. Finally, we discuss implications of our results on models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere. We also discuss the implications of these new results for observational requirements for upcoming missions like IMAP.

  12. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  13. Kinetics of scrap tyre pyrolysis under vacuum conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martin

    2009-10-15

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less

  14. Kinetics of scrap tyre pyrolysis under vacuum conditions.

    PubMed

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier

    2009-10-01

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.

  15. Dual energy spectral CT imaging for the evaluation of small hepatocellular carcinoma microvascular invasion.

    PubMed

    Yang, Chuang-Bo; Zhang, Shuang; Jia, Yong-Jun; Yu, Yong; Duan, Hai-Feng; Zhang, Xi-Rong; Ma, Guang-Ming; Ren, Chenglong; Yu, Nan

    2017-10-01

    To study the clinical value of dual-energy spectral CT in the quantitative assessment of microvascular invasion of small hepatocellular carcinoma. This study was approved by our ethics committee. 50 patients with small hepatocellular carcinoma who underwent contrast enhanced spectral CT in arterial phase (AP) and portal venous phase (VP) were enrolled. Tumour CT value and iodine concentration (IC) were measured from spectral CT images. The slope of spectral curve, normalized iodine concentration (NIC, to abdominal aorta) and ratio of IC difference between AP and VP (RIC AP-VP : [RIC AP-VP =(IC AP -IC VP )/IC AP ]) were calculated. Tumours were identified as either with or without microvascular invasion based on pathological results. Measurements were statistically compared using independent samples t test. The receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of tumours microvascular invasion assessment. The 70keV images were used to simulate the results of conventional CT scans for comparison. 56 small hepatocellular carcinomas were detected with 37 lesions (Group A) with microvascular invasion and 19 (Group B) without. There were significant differences in IC, NIC and slope in AP and RIC AP-VP between Group A (2.48±0.70mg/ml, 0.23±0.05, 3.39±1.01 and 0.28±0.16) and Group B (1.65±0.47mg/ml, 0.15±0.05, 2.22±0.64 and 0.03±0.24) (all p<0.05). Using 0.188 as the threshold for NIC, one could obtain an area-under-curve (AUC) of 0.87 in ROC to differentiate between tumours with and without microvascular invasion. AUC was 0.71 with CT value at 70keV and improved to 0.81 at 40keV. Dual-energy Spectral CT provides additional quantitative parameters than conventional CT to improve the differentiation between small hepatocellular carcinoma with and without microvascular invasion. Quantitative iodine concentration measurement in spectral CT may be used to provide a new method to improve the evaluation for small

  16. Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime

    NASA Astrophysics Data System (ADS)

    Chassagneux, Yannick; Jeantet, Adrien; Claude, Théo; Voisin, Christophe

    2018-05-01

    We develop a theoretical frame to investigate the spectral dependence of the brightness of a single-photon source made of a solid-state nanoemitter embedded in a high-quality factor microcavity. This study encompasses the cases of localized excitons embedded in a one-, two-, or three-dimensional matrix. The population evolution is calculated based on a spin-boson model, using the noninteracting blip approximation. We find that the spectral dependence of the single-photon source brightness (hereafter called spectral efficiency) can be expressed analytically through the free-space emission and absorption spectra of the emitter, the vacuum Rabi splitting, and the loss rates of the system. In other words, the free-space spectrum of the emitter encodes all the relevant information on the interaction between the exciton and the phonon bath to obtain the dynamics of the cavity-coupled system. We compute numerically the spectral efficiency for several types of localized emitters differing by the phonon bath dimensionality. In particular, in low-dimensional systems where this interaction is enhanced, a pronounced asymmetric energy exchange between the emitter and the cavity on the phonon sidebands yields a considerable extension of the tuning range of the source through phonon-assisted cavity feeding, possibly surpassing that of a purely resonant system.

  17. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  18. The spectral energy distribution of Zeta Puppis and HD 50896

    NASA Technical Reports Server (NTRS)

    Holm, A. V.; Cassinelli, J. P.

    1977-01-01

    The ultraviolet spectral energy distribution of the O5f star Zeta Pup and the WN5 star HD 50896 are derived from OAO-2 observations with the calibration of Bless, Code, and Fairchild (1976). An estimate of the interstellar reddening (0.12 magnitude) of the Wolf-Rayet star is determined from the size of the characteristic interstellar extinction bump at 4.6 inverse microns. After correction for extinction, both stars show a flat energy distribution in the ultraviolet. The distribution of HD 50896 from 1100 A to 2 microns is in good agreement with results of extended model atmospheres, but some uncertainty remains because of the interstellar-extinction correction. The absolute energy distribution of Zeta Pup is fitted by a 42,000-K plane-parallel model if the model's flux is adjusted for the effects of electron scattering in the stellar wind and for UV line blanketing that was determined empirically from high-resolution Copernicus satellite observations. To achieve this fit, it is necessary to push both the spectroscopically determined temperature and the ultraviolet calibration to the limits of their probable errors.

  19. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema

    Haase, Andy

    2018-05-11

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  20. SLAC All Access: Vacuum Microwave Device Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, Andy

    2012-10-09

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  1. Comments on real tachyon vacuum solution without square roots

    NASA Astrophysics Data System (ADS)

    Arroyo, E. Aldo

    2018-01-01

    We analyze the consistency of a recently proposed real tachyon vacuum solution without square roots in open bosonic string field theory. We show that the equation of motion contracted with the solution itself is satisfied. Additionally, by expanding the solution in the basis of the curly ℒ0 and the traditional L 0 eigenstates, we evaluate numerically the vacuum energy and obtain a result in agreement with Sen's conjecture.

  2. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    NASA Astrophysics Data System (ADS)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  3. Comparison Study of Regularizations in Spectral Computed Tomography Reconstruction

    NASA Astrophysics Data System (ADS)

    Salehjahromi, Morteza; Zhang, Yanbo; Yu, Hengyong

    2018-12-01

    The energy-resolving photon-counting detectors in spectral computed tomography (CT) can acquire projections of an object in different energy channels. In other words, they are able to reliably distinguish the received photon energies. These detectors lead to the emerging spectral CT, which is also called multi-energy CT, energy-selective CT, color CT, etc. Spectral CT can provide additional information in comparison with the conventional CT in which energy integrating detectors are used to acquire polychromatic projections of an object being investigated. The measurements obtained by X-ray CT detectors are noisy in reality, especially in spectral CT where the photon number is low in each energy channel. Therefore, some regularization should be applied to obtain a better image quality for this ill-posed problem in spectral CT image reconstruction. Quadratic-based regularizations are not often satisfactory as they blur the edges in the reconstructed images. As a result, different edge-preserving regularization methods have been adopted for reconstructing high quality images in the last decade. In this work, we numerically evaluate the performance of different regularizers in spectral CT, including total variation, non-local means and anisotropic diffusion. The goal is to provide some practical guidance to accurately reconstruct the attenuation distribution in each energy channel of the spectral CT data.

  4. [Laser-induced breakdown spectroscopy system for elements analysis in high-temperature and vacuum environment].

    PubMed

    Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping

    2013-12-01

    Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment

  5. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Neutral Vanadium (V i)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saloman, Edward B.; Kramida, Alexander

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of the neutral vanadium atom, V i, have been compiled. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g -factors and leading percentage compositions for the levels are included where available, as well as wavelengths calculated from the energy levels (Ritz wavelengths). Wavelengths are reported for 3985 transitions, and 549 energy levels are determined. The observed relative intensities normalized to a common scale are provided.

  6. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical frameworkmore » that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.« less

  7. Analysis of background irradiation in thermal IR hyper-spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Yuan, Liyin; Lin, Ying; He, Zhiping; Shu, Rong; Wang, Jianyu

    2010-04-01

    Our group designed a thermal IR hyper-spectral imaging system in this paper mounted in a vacuum encapsulated cavity with temperature controlling equipments. The spectral resolution is 80 nm; the spatial resolution is 1.0 mrad; the spectral channels are 32. By comparing and verifying the theoretical simulated calculation and experimental results for this system, we obtained the precise relationship between the temperature and background irradiation of optical and mechanical structures, and found the most significant components in the optic path for improving imaging quality that should be traded especially, also we had a conclusion that it should cool the imaging optics and structures to about 100K if we need utilize the full dynamic range and capture high quality of imagery.

  8. Small dark energy and stable vacuum from Dilaton-Gauss-Bonnet coupling in TMT

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo I.; Nishino, Hitoshi; Rajpoot, Subhash

    2017-04-01

    In two measures theories (TMT), in addition to the Riemannian measure of integration, being the square root of the determinant of the metric, we introduce a metric-independent density Φ in four dimensions defined in terms of scalars \\varphi _a by Φ =\\varepsilon ^{μ ν ρ σ } \\varepsilon _{abcd} (partial _{μ }\\varphi _a)(partial _{ν }\\varphi _b) (partial _{ρ }\\varphi _c) (partial _{σ }\\varphi _d). With the help of a dilaton field φ we construct theories that are globally scale invariant. In particular, by introducing couplings of the dilaton φ to the Gauss-Bonnet (GB) topological density {√{-g}} φ ( R_{μ ν ρ σ }^2 - 4 R_{μ ν }^2 + R^2 ) we obtain a theory that is scale invariant up to a total divergence. Integration of the \\varphi _a field equation leads to an integration constant that breaks the global scale symmetry. We discuss the stabilizing effects of the coupling of the dilaton to the GB-topological density on the vacua with a very small cosmological constant and the resolution of the `TMT Vacuum-Manifold Problem' which exists in the zero cosmological-constant vacuum limit. This problem generically arises from an effective potential that is a perfect square, and it gives rise to a vacuum manifold instead of a unique vacuum solution in the presence of many different scalars, like the dilaton, the Higgs, etc. In the non-zero cosmological-constant case this problem disappears. Furthermore, the GB coupling to the dilaton eliminates flat directions in the effective potential, and it totally lifts the vacuum-manifold degeneracy.

  9. Carbon nanotube vacuum gauges utilizing long, dissipative tubes

    NASA Astrophysics Data System (ADS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-04-01

    A carbon nanotube-based thermal conductivity vacuum gauge is described which utilizes 5-10 μm long diffusively contacted SWNTs for vacuum sensing. By etching the thermal SiO II beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward higher vacuums. The pressure response of unannealed and annealed devices was compared to that of released devices. The released devices showed sensitivity to pressure as low as 1 x 10 -6 Torr. The sensitivity increased more dramatically with power for the released device compared to that of the unreleased device. Low temperature electronic transport measurements of the tubes were suggestive of a thermally activated hopping mechanism where the activation energy for hopping was calculated to be ~ 39 meV.

  10. Comparison of vacuum and non-vacuum urine tubes for urinary sediment analysis.

    PubMed

    Topcuoglu, Canan; Sezer, Sevilay; Kosem, Arzu; Ercan, Mujgan; Turhan, Turan

    2017-12-01

    Urine collection systems with aspiration system for vacuum tubes are becoming increasingly common for urinalysis, especially for microscopic examination of the urine. In this study, we aimed to examine whether vacuum aspiration of the urine sample has any adverse effect on sediment analysis by comparing results from vacuum and non-vacuum urine tubes. The study included totally 213 urine samples obtained from inpatients and outpatients in our hospital. Urine samples were collected to containers with aspiration system for vacuum tubes. Each sample was aliquoted to both vacuum and non-vacuum urine tubes. Urinary sediment analysis was performed using manual microscope. Results were evaluated using chi-square test. Comparison of the sediment analysis results from vacuum and non-vacuum urine tubes showed that results were highly concordant for erythrocyte, leukocyte and epithelial cells (gamma values 1, 0.997, and 0.994, respectively; p < .001). Results were also concordant for urinary casts, crystals and yeast (kappa values 0.815, 0.945 and 1, respectively; p < .001). The results show that in urinary sediment analysis, vacuum aspiration has no adverse effect on the cellular components except on casts.

  11. Spectral tailoring device

    DOEpatents

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  12. Vector and Axial-Vector Current Correlators Within the Instanton Model of QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Dorokhov, A. E.

    2005-08-01

    The pion electric polarizability, α {π ^ ± }E , the leading order hadronic contribution to the muon anomalous magnetic moment, aμ hvp(1) , and the ratio of the V - A and V + A correlators are found within the instanton model of QCD vacuum. The results are compared with phenomenological estimates of these quantities from the ALEPH and OPAL data on vector and axial-vector spectral densities.

  13. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmissionmore » and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.« less

  14. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  15. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  16. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows.

    PubMed

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-10-16

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.

  17. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  18. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaraman, B.; Nair, B. G.; Mason, N. J.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110more » K and 120 K.« less

  19. Variational methods in supersymmetric lattice field theory: The vacuum sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, A.; Meyer-Ortmanns, H.; Roskies, R.

    1987-12-15

    The application of variational methods to the computation of the spectrum in supersymmetric lattice theories is considered, with special attention to O(N) supersymmetric sigma models. Substantial cancellations are found between bosonic and fermionic contributions even in approximate Ansa$uml: tze for the vacuum wave function. The nonlinear limit of the linear sigma model is studied in detail, and it is shown how to construct an appropriate non-Gaussian vacuum wave function for the nonlinear model. The vacuum energy is shown to be of order unity in lattice units in the latter case, after infinite cancellations.

  20. From radio to TeV: the surprising spectral energy distribution of AP Librae

    DOE PAGES

    Sanchez, D. A.; Giebels, B.; Fortin, P.; ...

    2015-10-17

    Following the discovery of high-energy (HE; E > 10 MeV) and very-high-energy (VHE; E > 100 GeV) γ-ray emission from the low-frequency-peaked BL Lac (LBL) object AP Librae, its electromagnetic spectrum is studied over 60 octaves in energy. Contemporaneous data in radio, optical and UV together with the (non-simultaneous) γ-ray data are used to construct the most precise spectral energy distribution of this source. We found that the data was modelled with difficulties with single-zone homogeneous leptonic synchrotron self-Compton (SSC) radiative scenarios due to the unprecedented width of the HE component when compared to the lower-energy component. Furthermore, the twomore » other LBL objects also detected at VHE appear to have similar modelling difficulties. Nevertheless, VHE γ-rays produced in the extended jet could account for the VHE flux observed by HESS.« less

  1. An achromatic four-mirror compensator for spectral ellipsometers

    NASA Astrophysics Data System (ADS)

    Kovalev, V. I.; Rukovishnikov, A. I.; Kovalev, S. V.; Kovalev, V. V.; Rossukanyi, N. M.

    2017-07-01

    Measurement and calculation results are presented that confirm that design four-mirror compensators can be designed for the spectral range of 200-2000 nm that is widely used in modern spectral ellipsometers. Measurements and calculations according to standard ellipsometric programs have been carried out on a broadband LED spectral ellipsometer with switching of orthogonal polarization states. Mirrors with the structure of glass substrate/Al2O3 layer (20-30 nm thick)/Al layer (150 nm thick)/upper Al2O3 layer (with specified thickness d) have been prepared by vacuum-evaporation method. It is shown that the phase-shift spectra of a four-mirror compensator, two mirrors of which have a native oxide 5.5 nm thick and the two others of which have an oxide layer 36 nm thick, measured on the ellipsometer, are flattened in comparison with similar spectra of a compensator, all four mirrors of which have a native oxide, especially in the short-wavelength spectral region. The results of calculating the phase-shift spectra of the four-mirror compensator with six variable parameters (angles of incidence of radiation on the mirrors and thicknesses of oxide layers on four mirrors) are presented. High-quality achromatization in a wide spectral range can be achieved for certain sets of parameters.

  2. Vacuum polarization in Coulomb field revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamastil, J., E-mail: zamastil@karlov.mff.cuni.cz; Šimsa, D.

    2017-04-15

    Simplified derivation of Wichmann–Kroll term is presented. The derivation uses two formulas for hypergeometric functions, but otherwise is elementary. It is found that Laplace transform of the vacuum charge density diverges at zero momentum transfer. This divergence has nothing to do with known ultraviolet divergence. The latter is related to the large momentum behavior of the pertinent integral, while the former to the small momentum behavior. When these divergences are removed, the energy shift caused by vacuum polarization for an ordinary hydrogen obtained here is in an exact agreement with the result obtained by Wichmann and Kroll. Also, for muonicmore » hydrogen the result obtained here reasonably agrees with that given in literature.« less

  3. Spectral Energy Distribution and Bolometric Luminosity of the Cool Brown Dwarf Gliese 229B

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Nakajima, T.; Kulkarni, S. R.; Oppenheimer, B. R.

    1996-01-01

    Infrared broadband photometry of the cool brown dwarf Gliese 229B extending in wavelength from 0.8 to 10.5 micron is reported. These results are derived from both new data and reanalyzed, previously published data. Existing spectral data reported have been rereduced and recalibrated. The close proximity of the bright Gliese 229A to the dim Gliese 229B required the use of special techniques for the observations and also for the data analysis. We describe these procedures in detail. The observed luminosity between 0.8 and 10.5 micron is (4.9 +/- 0.6) x 10(exp -6) solar luminosity. The observed spectral energy distribution is in overall agreement with a dust-free model spectrum by Tsuji et al. for T(eff) approx. equal to 900 K. If this model is used to derive the bolometric correction, the best estimate of the bolometric luminosity is 6.4 x 10(exp -6) solar luminosity and 50% of this luminosity ties between 1 and 2.5 microns. Our best estimate of the effective temperature is 900 K. From the observed near-infrared spectrum and the spectral energy distribution, the brightness temperatures (T(sub B) are estimated. The highest, T(sub B) = 1640 K, is seen at the peak of the J band spectrum, while the lowest, T(sub B) is less than or equal to 600 K, is at 3.4 microns, which corresponds to the location of the fundamental methane band.

  4. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems. (a) Vacuum brake assist unit integrity. The vacuum brake assist unit shall demonstrate integrity as... maintained on the pedal. (1) Inspection procedure. Stop the engine and apply service brake several times to...

  5. Spectral K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Samadi, N.; Martinson, M.; Bassey, B.; Wei, Z.; Belev, G.; Chapman, D.

    2014-05-01

    We describe a spectral x-ray transmission method to provide images of independent material components of an object using a synchrotron x-ray source. The imaging system and process is similar to K-edge subtraction (KES) imaging where two imaging energies are prepared above and below the K-absorption edge of a contrast element and a quantifiable image of the contrast element and a water equivalent image are obtained. The spectral method, termed ‘spectral-KES’ employs a continuous spectrum encompassing an absorption edge of an element within the object. The spectrum is prepared by a bent Laue monochromator with good focal and energy dispersive properties. The monochromator focuses the spectral beam at the object location, which then diverges onto an area detector such that one dimension in the detector is an energy axis. A least-squares method is used to interpret the transmitted spectral data with fits to either measured and/or calculated absorption of the contrast and matrix material-water. The spectral-KES system is very simple to implement and is comprised of a bent Laue monochromator, a stage for sample manipulation for projection and computed tomography imaging, and a pixelated area detector. The imaging system and examples of its applications to biological imaging are presented. The system is particularly well suited for a synchrotron bend magnet beamline with white beam access.

  6. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast.

    PubMed

    Patel, B N; Thomas, J V; Lockhart, M E; Berland, L L; Morgan, D E

    2013-02-01

    To evaluate lesion contrast in pancreatic adenocarcinoma patients using spectral multidetector computed tomography (MDCT) analysis. The present institutional review board-approved, Health Insurance Portability and Accountability Act of 1996 (HIPAA)-compliant retrospective study evaluated 64 consecutive adults with pancreatic adenocarcinoma examined using a standardized, multiphasic protocol on a single-source, dual-energy MDCT system. Pancreatic phase images (35 s) were acquired in dual-energy mode; unenhanced and portal venous phases used standard MDCT. Lesion contrast was evaluated on an independent workstation using dual-energy analysis software, comparing tumour to non-tumoural pancreas attenuation (HU) differences and tumour diameter at three energy levels: 70 keV; individual subject-optimized viewing energy level (based on the maximum contrast-to-noise ratio, CNR); and 45 keV. The image noise was measured for the same three energies. Differences in lesion contrast, diameter, and noise between the different energy levels were analysed using analysis of variance (ANOVA). Quantitative differences in contrast gain between 70 keV and CNR-optimized viewing energies, and between CNR-optimized and 45 keV were compared using the paired t-test. Thirty-four women and 30 men (mean age 68 years) had a mean tumour diameter of 3.6 cm. The median optimized energy level was 50 keV (range 40-77). The mean ± SD lesion contrast values (non-tumoural pancreas - tumour attenuation) were: 57 ± 29, 115 ± 70, and 146 ± 74 HU (p = 0.0005); the lengths of the tumours were: 3.6, 3.3, and 3.1 cm, respectively (p = 0.026); and the contrast to noise ratios were: 24 ± 7, 39 ± 12, and 59 ± 17 (p = 0.0005) for 70 keV, the optimized energy level, and 45 keV, respectively. For individuals, the mean ± SD contrast gain from 70 keV to the optimized energy level was 59 ± 45 HU; and the mean ± SD contrast gain from the optimized energy level to 45 keV was 31 ± 25 HU (p = 0

  7. Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2017-12-01

    To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST) we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe) is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic structure. If preons are

  8. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  9. Spectrally-engineered solar thermal photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenert, Andrej; Bierman, David; Chan, Walker

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies belowmore » the bandgap.« less

  10. Measurement of energy contrast of amplified ultrashort pulses using cross-polarized wave generation and spectral interferometry.

    PubMed

    Iliev, Marin; Meier, Amanda K; Galloway, Benjamin; Adams, Daniel E; Squier, Jeff A; Durfee, Charles G

    2014-07-28

    We present a method using spectral interferometry (SI) to characterize a pulse in the presence of an incoherent background such as amplified spontaneous emission (ASE). The output of a regenerative amplifier is interfered with a copy of the pulse that has been converted using third-order cross-polarized wave generation (XPW). The ASE shows as a pedestal background in the interference pattern. The energy contrast between the short-pulse component and the ASE is retrieved. The spectra of the interacting beams are obtained through an improvement to the self-referenced spectral interferometry (SRSI) analysis.

  11. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    NASA Astrophysics Data System (ADS)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  12. Boiling process modelling peculiarities analysis of the vacuum boiler

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  13. Probing the quantum vacuum with petawatt lasers

    NASA Astrophysics Data System (ADS)

    Hill, W. T., III; Roso, L.

    2017-07-01

    Due to the bosonic nature of the photon, increasing the peak intensity through a combination of raising the pulse energy and decreasing the pulse duration will pile up more and more photons within the same finite region of space. In the absence of material, this continues until the vacuum is stressed to the point of breakdown and virtual particles become real. The critical intensity where this occurs for electrons and positrons - the so-called Schwinger limit - is predicted to be ˜ 1029 W/cm2. At substantially lower intensities, however, nonlinear aspects of the quantum vacuum associated with polarization of the vacuum can be explored. These studies become viable at the petawatt level where 1023 W/cm2 and above can be reached. This is an era into which we are just embarking that will provide critical tests of QED and theories beyond the Standard Model of particle physics.

  14. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  15. The effect of pair cascades on the high-energy spectral cut-off in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Gill, Ramandeep; Granot, Jonathan

    2018-03-01

    The highly luminous and variable prompt emission in gamma-ray bursts (GRBs) arises in an ultra-relativistic outflow. The exact underlying radiative mechanism shaping its non-thermal spectrum is still uncertain, making it hard to determine the outflow's bulk Lorentz factor Γ. GRBs with spectral cut-off due to pair production (γγ → e+e-) at energies Ec ≳ 10 MeV are extremely useful for inferring Γ. We find that when the emission region has a high enough compactness, then as it becomes optically thick to scattering, Compton downscattering by non-relativistic e±-pairs can shift the spectral cut-off energy well below the self-annihilation threshold, Esa = Γmec2/(1 + z). We treat this effect numerically and show that Γ obtained assuming Ec = Esa can underpredict its true value by as much as an order of magnitude.

  16. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    NASA Astrophysics Data System (ADS)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  17. Improved Vacuum Bazooka

    NASA Astrophysics Data System (ADS)

    Cockman, John

    2003-04-01

    This apparatus is a modification to the well-known "vacuum bazooka" (PIRA 2B30.70). My vacuum bazooka is easy to construct and demonstrate, requires no precise fittings, foil, or vacuum grease, and propels ping-pong balls at a tremendous velocity!

  18. Medipix-based Spectral Micro-CT.

    PubMed

    Yu, Hengyong; Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2012-12-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT.

  19. Particle radiation near the orbit of the Vacuum Wake Shield

    NASA Technical Reports Server (NTRS)

    Bering, Edgar A., III; Ignatiev, Alex

    1990-01-01

    The particle populations that are expected to inflict the most damage on thin film materials grown on the vacuum Wake Shield Facility (WSF) are ions and energetic neutral atoms with energies in the range of 100 eV to 20 keV. The production of films that have an order of magnitude fewer defects than are now available requires that the 1-keV particle flux be kept lower than 1000 particles/(sq cm s sr keV) (assuming a reasonable spectral shape). WSF will be flown on orbits with an inclination of 28 deg at altitudes of 300-700 km. Because of the background counting rate produced by the about 100 MeV trapped protons in the inner belt, obtaining accurate measurements of the particles of interest is very difficult. The quiet-time background fluxes of the relevant particles are not presently known. At times of magnetic activity, fluxes of 0.1-17 keV O(+) ions as great as 10 million ions/(sq cm s sr keV) have been observed flowing out of the ionosphere at these latitudes. It appears that instrumentation for detailed assessment is essential for the proof-of-concept flight(s) and that real-time monitoring of low-energy ion and energetic neutral radiation will be required for the production flights.

  20. Vacuum-polarization effects in global monopole space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzitelli, F.D.; Lousto, C.O.

    1991-01-15

    The gravitational effect produced by a global monopole may be approximated by a solid deficit angle. As a consequence, the energy-momentum tensor of a quantum field will have a nonzero vacuum expectation value. Here we study this vacuum-polarization effect'' around the monopole. We find explicit expressions for both {l angle}{phi}{sup 2}{r angle}{sub ren} and {l angle}{ital T}{sub {mu}{nu}}{r angle}{sub ren} for a massless scalar field. The back reaction of the quantum field on the monopole metric is also investigated.

  1. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  2. CFD Analysis of Evaporation-Condensation Phenomenon In an Evaporation Chamber of Natural Vacuum Solar Desalination

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-01-01

    Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.

  3. Determination of the Spectral Index in the Fission Spectrum Energy Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Amy Sarah

    2016-05-16

    Neutron reaction cross sections play a vital role in tracking the production and destruction of isotopes exposed to neutron fluence. They are central to the process of reconciling the initial and final atom inventories. Measurements of irradiated samples by radiochemical methods in tangent with an algorithm are used to evaluate the fluence a sample is exposed to over the course of the irradiation. This algorithm is the Isotope Production Code (IPC) created and used by the radiochemistry data assessment team at Los Alamos National Laboratory (LANL). An integral result is calculated by varying the total neutron fluence seen by amore » sample. A sample, irradiated in a critical assembly, will be exposed to a unique neutron flux defined by the neutron source and distance of the sample from the source. Neutron cross sections utilized are a function of the hardness of the neutron spectrum at the location of irradiation. A spectral index is used an indicator of the hardness of the neutron spectrum. Cross sections fit forms applied in IPC are collapsed from a LANL 30-group energy structure. Several decades of research and development have been performed to formalize the current IPC cross section library. Basis of the current fission spectrum neutron reaction cross section library is rooted in critical assembly experiments performed from the 1950’s through the early 1970’s at LANL. The focus of this report is development of the spectral index used an indicator of the hardness of the neutron spectrum in the fission spectrum energy regime.« less

  4. Majorana neutrino and the vacuum of Bogoliubov quasiparticle

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2018-06-01

    The Lagrangian of the seesaw mechanism is C violating but the same Lagrangian when re-written in terms of Majorana neutrinos is manifestly C invariant. To resolve this puzzling feature, a relativistic analogue of Bogoliubov transformation, which preserves CP but explicitly breaks C and P separately, was introduced together with the notions of a Bogoliubov quasiparticle and an analogue of the energy gap in BCS theory. The idea of Majorana neutrino as Bogoliubov quasiparticle was then suggested. In this paper, we study the vacuum structure of the Bogoliubov quasiparticle which becomes heavy by absorbing the C-breaking. By treating an infinitesimally small C violating term as an analogue of the chiral symmetry breaking nucleon mass in the model of Nambu and Jona-Lasinio, we construct an explicit form of the vacuum of the Bogoliubov quasiparticle which defines Majorana neutrinos in seesaw mechanism. The vacuum of the Bogoliubov quasiparticle thus constructed has an analogous condensate structure as the vacuum of the quasiparticle (nucleon) in the Nambu-Jona-Lasinio model.

  5. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  6. The vacuum system reform and test of the super-critical 600mw unit

    NASA Astrophysics Data System (ADS)

    Yan, Tao; Wan, Zhonghai; Lu, Jin; Chen, Wen; Cai, Wen

    2017-11-01

    The deficiencies of the designed vacuum system of the super-critical unit is pointed out in this paper, and then it is reformed by the steam ejector. The experimental results show that the vacuum of the condenser can be improved, the coal consumption can be reduced and the plant electricity consumption can be lowered dramatically at a small cost of the steam energy consumption. Meanwhile, the water-ring vacuum pumps cavitation problems can be solved.

  7. Vacuum electron acceleration by coherent dipole radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a planemore » wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}« less

  8. Characterization of pulsed metallic hydride vacuum arc discharge plasmas by optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Deng, Chunfeng; Wu, Chunlei; Lu, Biao; Hu, Yonghong

    2017-12-01

    The characteristics of plasmas in a titanium hydride vacuum arc ion source were experimentally investigated by a temporally- and spatially-integrated optical emission spectroscopy method. A plasma emission spectral fitting model was developed to calculate the plasmas temperature and relative density of each particle component, assuming plasmas were in local thermodynamic equilibrium state and optical thin in this study. The good agreement was founded between the predicted and measured spectra in the interesting regions of 330-340 nm and 498-503 nm for Ti+ ion and Ti atom respectively, while varying the plasma temperature and density. Compared with conventional Boltzmann plot method, this method, therefore, made a significant improvement on the plasma diagnosis in dealing with the spectral profile with many lines overlapped. At the same time, to understand the mechanism of the occluded-gas vacuum arc discharge plasmas, the plasmas emission spectra, ion relative density, and temperature with different discharge conditions were studied. The results indicated that the rate of Ti metal evaporation and H desorption from the electrode would be enhanced with arc current, and the ionization temperature increased with the feed-in power of arc discharge, leading more H+ and Ti+ ions, but reducing the H+ proportion in arc discharged plasmas.

  9. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows

    PubMed Central

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-01-01

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m2 mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890

  10. Data on total and spectral solar irradiance

    NASA Technical Reports Server (NTRS)

    Mecherikunnel, A. T.; Gatlin, J. A.; Richmond, J. C.

    1983-01-01

    This paper presents a brief survey of the data available on solar constant and extraterrestrial solar spectral irradiance. The spectral distribution of solar radiation at ground surface, computed from extraterrestrial solar spectral irradiance for several air mass values and for four levels of atmospheric pollution, is also presented. The total irradiance at ground level is obtained by integration of the area under the spectral irradiance curves. It is significant that, as air mass increases or as turbidity increases, the amount of energy in the infrared relative to the total increases and that the energy in the UV and visible decreases.

  11. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  12. The spectral properties of uranium hexafluoride and its thermal decomposition products

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.

  13. Energy, Vacuum, Gas Fueling, and Security Systems for the Spherical Tokamak MEDUSA-CR

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jeferson; Soto, Christian; Carvajal, Johan; Ribeiro, Celso

    2013-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5 T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We present here the energy, vacuum, gas fueling, and security systems for MEDUSA-CR device. The interface with the control and data acquisition systems based on National Instruments (NI) software (LabView) and hardware (on loan to our laboratory via NI-Costa Rica) are also presented. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.

  14. Possible form of vacuum deformation by heavy particles

    NASA Technical Reports Server (NTRS)

    Mackenzie, R.; Wilczek, F.; Zee, A.

    1984-01-01

    The possibility is discussed that the lowest-energy state for certain quantum numbers involves a Higgs field polarized into a skyrmion-type configuration. In some models a new type of vacuum instability arises. Phenomenological consequences are indicated schematically.

  15. Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration.

    PubMed

    Thomas, Christoph; Krauss, Bernhard; Ketelsen, Dominik; Tsiflikas, Ilias; Reimann, Anja; Werner, Matthias; Schilling, David; Hennenlotter, Jörg; Claussen, Claus D; Schlemmer, Heinz-Peter; Heuschmid, Martin

    2010-07-01

    In dual energy (DE) computed tomography (CT), spectral shaping by additional filtration of the high energy spectrum can theoretically improve dual energy contrast. The aim of this in vitro study was to examine the influence of an additional tin filter for the differentiation of human urinary calculi by dual energy CT. A total of 36 pure human urinary calculi (uric acid, cystine, calciumoxalate monohydrate, calciumoxalate dihydrate, carbonatapatite, brushite, average diameter 10.5 mm) were placed in a phantom and imaged with 2 dual source CT scanners. One scanner was equipped with an additional tin (Sn) filter. Different combinations of tube voltages (140/80 kV, 140/100 kV, Sn140/100 kV, Sn140/80 kV, with Sn140 referring to 140 kV with the tin filter) were applied. Tube currents were adapted to yield comparable dose indices. Low- and high energy images were reconstructed. The calculi were segmented semiautomatically in the datasets and DE ratios (attenuation@low_kV/attenuation@high_kV) and were calculated for each calculus. DE contrasts (DE-ratio_material1/DE-ratio_material2) were computed for uric acid, cystine and calcified calculi and compared between the combinations of tube voltages. Using exclusively DE ratios, all uric acid, cystine and calcified calculi (as a group) could be differentiated in all protocols; the calcified calculi could not be differentiated among each other in any examination protocol. The highest DE ratios and DE contrasts were measured for the Sn140/80 protocol (53%-62% higher DE contrast than in the 140/80 kV protocol without additional filtration). The DE ratios and DE contrasts of the 80/140 kV and 100/Sn140 kV protocols were comparable. Uric acid, cystine and calcified calculi could be reliably differentiated by any of the protocols. A dose-neutral gain of DE contrast was found in the Sn-filter protocols, which might improve the differentiation of smaller calculi (Sn140/80 kV) and improve image quality and calculi differentiation in

  16. Development of High Interruption Capability Vacuum Circuit Breaker -Technology of Vacuum Arc Control-

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshimitsu; Kaneko, Eiji

    Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.

  17. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software.

    PubMed

    Lee, Young Han; Park, Kwan Kyu; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck

    2012-06-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. • Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). • Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution • GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. • However image quality is influenced by the prosthesis composition and other parameters. • We should be aware about potential overcorrection when using GSI-MARs.

  18. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Weaver, Olivia A.; Anderson, Miguel Ricardo; Wally, Muhammad; James, Olivia; Falcone, Julia; Liu, Allen; Wallack, Nicole; Liu, Charles; SDSS Collaboration

    2017-01-01

    Utilizing data from the Mapping Nearby Galaxies at APO (MaNGA) Survey (MaNGA Product Launch-4, or MPL-4), of the latest generation of the Sloan Digital Sky Survey (SDSS-IV), we identified nine post-starburst (E+A) systems that lie within the Green Valley transition zone. We identify the E+A galaxies by their SDSS single fiber spectrum and u-r color, then confirmed their classification as post-starburst by coding/plotting methods and spectral synthesis codes (FIREFLY and PIPE3D), as well as with their Spectral Energy Distributions (SEDs) from 0.15 µm to 22 µm, using GALEX, SDSS, 2MASS, and WISE data. We produced maps of gaussian-fitted fluxes, equivalent widths, stellar velocities, metallicities and age. We also produced spectral line ratio diagrams to classify regions of stellar populations of the galaxies. We found that our sample of E+As retain their post-starburst properties across the entire galaxy, not just at their center. We detected matching a trend line in the ultraviolet and optical bands, consistent with the expected SEDs for an E+A galaxy, and also through the J, H and Ks bands, except for one object. We classified one of the nine galaxies as a luminous infrared galaxy, unusual for a post-starburst object. Our group seeks to further study stellar population properties, spectral energy distributions and quenching properties in E+A galaxies, and investigate their role in galaxy evolution as a whole. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through from National Science Foundation.

  19. Iris: Constructing and Analyzing Spectral Energy Distributions with the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Laurino, O.; Budynkiewicz, J.; Busko, I.; Cresitello-Dittmar, M.; D'Abrusco, R.; Doe, S.; Evans, J.; Pevunova, O.

    2014-05-01

    We present Iris 2.0, the latest release of the Virtual Astronomical Observatory application for building and analyzing Spectral Energy Distributions (SEDs). With Iris, users may read in and display SEDs inspect and edit any selection of SED data, fit models to SEDs in arbitrary spectral ranges, and calculate confidence limits on best-fit parameters. SED data may be loaded into the application from VOTable and FITS files compliant with the International Virtual Observatoy Alliance interoperable data models, or retrieved directly from NED or the Italian Space Agency Science Data Center; data in non-standard formats may also be converted within the application. Users may seamlessy exchange data between Iris and other Virtual Observatoy tools using the Simple Application Messaging Protocol. Iris 2.0 also provides a tool for redshifting, interpolating, and measuring integratd fluxes, and allows simple aperture corrections for individual points and SED segments. Custom Python functions, template models and template libraries may be imported into Iris for fitting SEDs. Iris may be extended through Java plugins; users can install third-party packages, or develop their own plugin using Iris' Software Development Kit. Iris 2.0 is available for Linux and Mac OS X systems.

  20. Intensity and Energy Level Analysis of the Vacuum Ultraviolet Spectrum of Four Times Ionize Nickel (Ni V)

    NASA Astrophysics Data System (ADS)

    Ward, Jacob Wolfgang; Nave, Gillian

    2016-01-01

    Recent measurements of four times ionized iron and nickel (Fe V & Ni V) wavelengths in the vacuum ultraviolet (VUV) have been taken using the National Institute for Standards and Technology (NIST) Normal Incidence Vacuum Spectrograph (NIVS) with a sliding spark light source with invar electrodes. The wavelengths observed in those measurements make use of high resolution photographic plates with the majority of observed lines having uncertainties of approximately 3mÅ. In addition to observations made with photographic plates, the same wavelength region was observed with phosphor image plates, which have been demonstrated to be accurate as a method of intensity calibration when used with a deuterium light source. This work will evaluate the use of phosphor image plates and deuterium lamps as an intensity calibration method for the Ni V spectrum in the 1200-1600Å region of the VUV. Additionally, by pairing the observed wavelengths of Ni V with accurate line intensities, it is possible to create an energy level optimization for Ni V providing high accuracy Ritz wavelengths. This process has previously been applied to Fe V and produced Ritz wavelengths that agreed with the above experimental observations.

  1. The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Schinnerer, E.; Krause, M.; Dumas, G.; Meidt, S.; Damas-Segovia, A.; Beck, R.; Murphy, E. J.; Mulcahy, D. D.; Groves, B.; Bolatto, A.; Dale, D.; Galametz, M.; Sandstrom, K.; Boquien, M.; Calzetti, D.; Kennicutt, R. C.; Hunt, L. K.; De Looze, I.; Pellegrini, E. W.

    2017-02-01

    We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ({S}ν ˜ {ν }-{α {nt}}) and the thermal fraction ({f}{th}) with mean values of {α }{nt}=0.97 +/- 0.16(0.79 +/- 0.15 for the total spectral index) and {f}{th} = (10 ± 9)% at 1.4 GHz. The MRC luminosity changes over ˜3 orders of magnitude in the sample, 4.3× {10}2 {L}⊙ < MRC < 3.9× {10}5 {L}⊙ . The thermal emission is responsible for ˜23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.

  2. Vacuum-induced coherence in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  3. Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.

    The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less

  4. Quantum Mechanics, vacuum, particles, Gödel-Cohen incompleteness and the Universe

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2017-12-01

    Are the standard laws of Physics really fundamental principles? Does the physical vacuum have a more primordial internal structure? Are quarks, leptons, gauge bosons… ultimate elementary objects? These three basic questions are actually closely related. If the deep vacuum structure and dynamics turn out to be less trivial than usually depicted, the conventional "elementary" particles will most likely be excitations of such a vacuum dynamics that remains by now unknown. We then expect relativity and quantum mechanics to be low-energy limits of a more fundamental dynamical pattern that generates them at a deeper level. It may even happen that vacuum drives the expansion of the Universe from its own inner dynamics. Inside such a vacuum structure, the speed of light would not be the critical speed for vacuum constituents and propagating signals. The natural scenario would be the superbradyon (superluminal preon) pattern we postulated in 1995, with a new critical speed cs much larger than the speed of light c just as c is much larger than the speed of sound. Superbradyons are assumed to be the bradyons of a super-relativity associated to cs (a Lorentz invariance with cs as the critical speed). Similarly, the standard relativistic space-time with four real coordinates would not necessarily hold beyond low-energy and comparatively local distance scales. Instead, the spinorial space-time (SST) with two complex coordinates we introduced in 1996-97 may be the suitable one to describe the internal structure of vacuum and standard "elementary" particles and, simultaneously, Cosmology at very large distance scales. If the constituents of the preonic vacuum are superluminal, quantum entanglement appears as a natural property provided cs ≫ c . The value of cs can even be possibly found experimentally by studying entanglement at large distances. It is not excluded that preonic constituents of vacuum can exist in our Universe as free particles ("free" superbradyons), in which

  5. iSEDfit: Bayesian spectral energy distribution modeling of galaxies

    NASA Astrophysics Data System (ADS)

    Moustakas, John

    2017-08-01

    iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone. After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

  6. The Renormalization-Group Method in the Problem on Calculation of the Spectral Energy Density of Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Teodorovich, E. V.

    2018-03-01

    In order to find the shape of energy spectrum within the framework of the model of stationary homogeneous isotropic turbulence, the renormalization-group equations, which reflect the Markovian nature of the mechanism of energy transfer along the wavenumber spectrum, are used in addition to the dimensional considerations and the energy balance equation. For the spectrum, the formula depends on three parameters, namely, the wavenumber, which determines the upper boundary of the range of the turbulent energy production, the spectral flux through this boundary, and the fluid kinematic viscosity.

  7. The value of energy spectral CT in the differential diagnosis between benign and malignant soft tissue masses of the musculoskeletal system.

    PubMed

    Sun, Xin; Shao, Xiaodong; Chen, Haisong

    2015-06-01

    To explore the value of energy spectral CT in the differential diagnosis between benign and malignant tumor of the musculoskeletal system. Energy spectral CT scan was performed on 100 patients with soft tissue mass caused by musculoskeletal tumors found by MRI. Solid areas with homogenous density were chosen as region of interests (ROI), avoiding necrosis, hemorrhage and calcification region. Select the optimal keV on single energy images, and then the keV-CT curve was automatically generated. All 100 cases of tumors proved by histological examination were divided into four groups, 38 cases were in benign group, 10 cases in borderline group, 49 cases in malignant group, and 3 cases of lipoma (that were analyzed separately since its curve was arc shaped, significantly different from other curves). The formula used to calculate the slope of spectral curve was as follows: slope=(Hu40 keV-Hu80 keV)/40. As the slope was steep within the range of 40-80 keV based on preliminary observations, 40 keV and 80 keV were used as the reference points to calculate the slope value of the energy spectral curve. Kruskal-Wallis rank sum test was applied for statistical analysis, and P<0.05 was considered to indicate a statistically significant difference. The spectral curve of benign group was gradually falling type with a mean slope of 0.75 ± 0.30, that of malignant group was sharply falling type with a mean slope of 1.64 ± 1.00, and that of borderline group was a falling type between the above two groups with a mean slope of 1.34 ± 0.45. The differences of slopes between benign and malignant group, benign and borderline group were of statistical significance (P<0.05) respectively. The spectral curves of 3 cases of lipoma showed arc shaped rising type with a mean slope of -2.00. Spectral curve is useful in the differential diagnosis of benign and malignant tumor of the musculoskeletal system. Arc shaped curve is a specific sign for tumors containing abundant fat. Copyright © 2015

  8. Vacuum insulation of the high energy negative ion source for fusion application.

    PubMed

    Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R

    2012-02-01

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s.

  9. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    PubMed

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  10. Faster extraction of heavy metals from soils using vacuum and ultrasonic energy.

    PubMed

    Pontes, Fernanda V M; Carneiro, Manuel C; de da Souza, Evelyn M F; da Silva, Lílian I D; Monteiro, Maria Inês C; Neto, Arnaldo A

    2013-01-01

    A fast vacuum- and ultrasound-assisted acid extraction of Co, Cu, Fe, Mn, Pb, and Zn from soils using a homemade system has been investigated. Preliminarily, a full factorial design with two levels and three variables (extracting agent, extraction temperature, and sonication time) was applied to optimize the extraction conditions (without vacuum) for some heavy metals (Cu, Mn, Pb, and Zn). The best results were obtained with a 3:1 HCI extraction solution, temperature of 80 degrees C, and time of 2 h. As this sonication time was too long, a vacuum pump was used to produce air bubbles in order to increase the contact between the sample and the extracting agent and to prevent the sample sedimentation. This improvement drastically reduced the sonication time to 2 min. Under these conditions, Co, Cu, Mn, and Zn were totally extracted (recoveries of 86-99%), while recoveries of 73-76 and 74% were obtained for Fe and Pb, respectively. The LOD values using flame atomic absorption spectrometry for determination of Co, Cu, Fe, Mn, Pb, and Zn were 3.2, 7.5, 37.5, 7.5, 22.5, and 3.8 micro glg, respectively. The RSDs were lower than 11% (n = 3).

  11. Measurement of the EBL spectral energy distribution using the VHE γ-ray spectra of H.E.S.S. blazars

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; de Wilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-10-01

    Very high-energy γ rays (VHE, E ≳ 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE γ rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5σ, and the intensity of the EBL obtained in different spectral bands is presented together with the associated γ-ray horizon.

  12. Complex technology of vacuum-arc processing of structural material surface

    NASA Astrophysics Data System (ADS)

    Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.

    2015-08-01

    The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.

  13. Well-posedness of the plasma-vacuum interface problem

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo; Trakhinin, Yuri

    2014-01-01

    We consider the free-boundary problem for the plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the pre-Maxwell dynamics for the magnetic field. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. The plasma-vacuum system is not isolated from the outside world, because of a given surface current on the fixed boundary that forces oscillations. Under a suitable stability condition satisfied at each point of the initial interface, stating that the magnetic fields on either side of the interface are not collinear, we show the existence and uniqueness of the solution to the nonlinear plasma-vacuum interface problem in suitable anisotropic Sobolev spaces. The proof is based on the results proved in the companion paper (Secchi and Trakhinin 2013 Interfaces Free Boundaries 15 323-57), about the well-posedness of the homogeneous linearized problem and the proof of a basic a priori energy estimate. The proof of the resolution of the nonlinear problem given in the present paper follows from the analysis of the elliptic system for the vacuum magnetic field, a suitable tame estimate in Sobolev spaces for the full linearized equations, and a Nash-Moser iteration.

  14. The spectral energy distributions of the entire Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, Laure

    2012-08-01

    We present the spectral energy distributions (SED) of the 323 galaxies of the Herschel Reference Survey. In order to provide templates for nearby galaxies calibrated on physical parameters, we computed mean SEDs per bin of morphological types and stellar masses. They will be very useful to study more distant galaxies and their evolution with redshift. This preliminary work aims to study how the most commonly used libraries (Chary & Elbaz 2001, Dale & Helou 2002 and Draine & Li 2007) reproduce the far-infrared emission of galaxies. First results show that they reproduce well the far-infrared part of mean SEDs. For single galaxies the Draine & Li (2007) models seem to reproduce very well the far-infrared emission, as does the Dale & Helou (2002).

  15. Big Bang Titanic: New Dark Energy (Vacuum Gravity) Cosmic Model Emerges Upon Falsification of The Big Bang By Disproof of Its Central Assumptions

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2011-04-01

    Physicists who identify the big bang with the early universe should have first noted from Hawking's A Brief History of Time, p. 42, that he ties Hubble's law to Doppler shifts from galaxy recession from a nearby center, not to bb's unvalidated and thus problematical expansion redshifts. Our PRL submission LJ12135 describes such a model, but in it Hubble's law is due to Doppler and vacuum gravity effects, the 2.73K CBR is vacuum gravity shifted blackbody cavity radiation from an outer galactic shell, and its (1 + z)-1 dilation and (M,z) relations closely fit high-z SNe Ia data; all this strongly implies our model's vacuum energy is the elusive dark energy. We also find GPS operation's GR effects falsify big bang's in-flight expansion redshift paradigm, and hence the big bang, by showing λ changes occur only at emission. Surprisingly we also discover big bang's CBR prediction is T < 2x10-8 K, not the observed 2.73K. So instead of the 2.73K affirming the big bang as cosmologists claim, it actually disproves it, to which the DAE's response is most enigmatic -- namely, CBR photons expand dλ/dt > 0, while galactic photons shrink dλ/dt < 0. Contrary to a PRL editor's claim, the above results show LJ12135 fits PRL guidelines for papers that replace established theories. For details see alphacosmos.net.

  16. Velocity map imaging using an in-vacuum pixel detector.

    PubMed

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J J

    2009-10-01

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256 x 256 square pixels, 55 x 55 microm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 micros. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

  17. Modified coulomb law in a strongly magnetized vacuum.

    PubMed

    Shabad, Anatoly E; Usov, Vladimir V

    2007-05-04

    We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.

  18. Vacuum quantum stress tensor fluctuations: A diagonalization approach

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Fewster, Christopher J.; Ford, L. H.

    2018-01-01

    Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its probability distribution. Here we focus on stress tensor operators which have been averaged with a sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator, but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous work using the moments of the distribution. Our results lend additional support to the conclusion that large vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have observable effects.

  19. Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System

    NASA Astrophysics Data System (ADS)

    Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.

    2018-01-01

    The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.

  20. Vacuum polarization and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  1. Vacuum insulation of the high energy negative ion source for fusion application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Inoue, T.

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A,more » 500 keV D{sup -} ion beams for 100 s.« less

  2. Dual-Energy Computed Tomography Gemstone Spectral Imaging: A Novel Technique to Determine Human Cardiac Calculus Composition.

    PubMed

    Cheng, Ching-Li; Chang, Hsiao-Huang; Ko, Shih-Chi; Huang, Pei-Jung; Lin, Shan-Yang

    2016-01-01

    Understanding the chemical composition of any calculus in different human organs is essential for choosing the best treatment strategy for patients. The purpose of this study was to assess the capability of determining the chemical composition of a human cardiac calculus using gemstone spectral imaging (GSI) mode on a single-source dual-energy computed tomography (DECT) in vitro. The cardiac calculus was directly scanned on the Discovery CT750 HD FREEdom Edition using GSI mode, in vitro. A portable fiber-optic Raman spectroscopy was also applied to verify the quantitative accuracy of the DECT measurements. The results of spectral DECT measurements indicate that effective Z values in 3 designated positions located in this calculus were 15.02 to 15.47, which are close to values of 15.74 to 15.86, corresponding to the effective Z values of calcium apatite and hydroxyapatite. The Raman spectral data were also reflected by the predominant Raman peak at 960 cm for hydroxyapatite and the minor peak at 875 cm for calcium apatite. A potential single-source DECT with GSI mode was first used to examine the morphological characteristics and chemical compositions of a giant human cardiac calculus, in vitro. The CT results were consistent with the Raman spectral data, suggesting that spectral CT imaging techniques could be accurately used to diagnose and characterize the compositional materials in the cardiac calculus.

  3. Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.

    PubMed

    Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya

    2018-05-01

    TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.

  4. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  5. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  6. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie

    2014-01-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  7. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    NASA Astrophysics Data System (ADS)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  8. Uncovering the Spectral Energy Distribution in Active Galaxies Using High Ionization Mid-Infrared Emission Lines

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Kraemer, S. B.; Weaver, K. A.; Mushotzky, R. F.

    2011-01-01

    The shape of the spectral energy distribution of active galaxies in the EUV soft X-ray band (13.6 eV to 1 keV) is uncertain because obscuration by dust and gas can hamper our view of the continuum. To investigate the shape of the spectral energy distribution in this energy band, we have generated a set of photoionization models which reproduce the small dispersion found in correlations between high-ionization mid-infrared emission lines in a sample of hard X-ray selected AGN. Our calculations show that a broken power-law continuum model is sufficient to reproduce the [Ne V]14.32 microns/[Ne III], [Ne V]24.32 microns/[O IV]25.89 micron and [O IV] 25.89 microns/[Ne III] ratios, and does not require the addition of a "big bump" EUV model component. We constrain the EUV-soft X-ray slope, alpha(sub i), to be between 1.5 - 2.0 and derive a best fit of alpha(sub i) approx. 1.9 for Seyfert 1 galaxies, consistent with previous studies of intermediate redshift quasars. If we assume a blue bump model, most sources in our sample have derived temperatures between T(sub BB) = 10(exp 5.18) K to 10(exp 5.7) K, suggesting that the peak of this component spans a large range of energies extending from approx. (Lambda)600 A to > (Lambda)1900 A. In this case, the best fitting peak energy that matches the mid-infrared line ratios of Seyfert 1 galaxies occurs between approx. (Lambda)700-(Lambda)1000 A. Despite the fact that our results do not rule out the presence of an EUV bump, we conclude that our power-law model produces enough photons with energies > 4 Ry to generate the observed amount of mid-infrared emission in our sample of BAT AGN.

  9. Experimental investigation on the energy deposition and expansion rate under the electrical explosion of aluminum wire in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zongqian; Wang, Kun; Shi, Yuanjie

    Experimental investigations on the electrical explosion of aluminum wire using negative polarity current in vacuum are presented. Current pulses with rise rates of 40 A/ns, 80 A/ns, and 120 A/ns are generated for investigating the influence of current rise rate on energy deposition. Experimental results show a significant increase of energy deposition into the wire before the voltage breakdown with the increase of current rise rate. The influence of wire dimension on energy deposition is investigated as well. Decreasing the wire length allows more energy to be deposited into the wire. The energy deposition of a 0.5 cm-long wire explosion ismore » ∼2.5 times higher than the energy deposition of a 2 cm-long wire explosion. The dependence of the energy deposition on wire diameter demonstrates a maximum energy deposition of 2.7 eV/atom with a diameter of ∼18 μm. Substantial increase in energy deposition is observed in the electrical explosion of aluminum wire with polyimide coating. A laser probe is applied to construct the shadowgraphy, schlieren, and interferometry diagnostics. The morphology and expansion trajectory of exploding products are analyzed based on the shadowgram. The interference phase shift is reconstructed from the interferogram. Parallel dual wires are exploded to estimate the expansion velocity of the plasma shell.« less

  10. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs.

    PubMed

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F J; Cummer, Steven A

    2018-01-16

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 10 3 .

  11. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F. J.; Cummer, Steven A.

    2018-01-01

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.

  12. Recent progress of push-broom infrared hyper-spectral imager in SITP

    NASA Astrophysics Data System (ADS)

    Wang, Yueming; Hu, Weida; Shu, Rong; Li, Chunlai; Yuan, Liyin; Wang, Jianyu

    2017-02-01

    In the past decades, hyper-spectral imaging technologies were well developed in SITP, CAS. Many innovations for system design and key parts of hyper-spectral imager were finished. First airborne hyper-spectral imager operating from VNIR to TIR in the world was emerged in SITP. It is well known as OMIS(Operational Modular Imaging Spectrometer). Some new technologies were introduced to improve the performance of hyper-spectral imaging system in these years. A high spatial space-borne hyper-spectral imager aboard Tiangong-1 spacecraft was launched on Sep.29, 2011. Thanks for ground motion compensation and high optical efficiency prismatic spectrometer, a large amount of hyper-spectral imagery with high sensitivity and good quality were acquired in the past years. Some important phenomena were observed. To diminish spectral distortion and expand field of view, new type of prismatic imaging spectrometer based curved prism were proposed by SITP. A prototype of hyper-spectral imager based spherical fused silica prism were manufactured, which can operate from 400nm 2500nm. We also made progress in the development of LWIR hyper-spectral imaging technology. Compact and low F number LWIR imaging spectrometer was designed, manufactured and integrated. The spectrometer operated in a cryogenically-cooled vacuum box for background radiation restraint. The system performed well during flight experiment in an airborne platform. Thanks high sensitivity FPA and high performance optics, spatial resolution and spectral resolution and SNR of system are improved enormously. However, more work should be done for high radiometric accuracy in the future.

  13. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

    NASA Astrophysics Data System (ADS)

    Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong

    2016-06-01

    The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

  14. Spectral distribution of solar radiation

    NASA Technical Reports Server (NTRS)

    Mecherikunnel, A. T.; Richmond, J.

    1980-01-01

    Available quantitative data on solar total and spectral irradiance are examined in the context of utilization of solar irradiance for terrestrial applications of solar energy. The extraterrestrial solar total and spectral irradiance values are also reviewed. Computed values of solar spectral irradiance at ground level for different air mass values and various levels of atmospheric pollution or turbidity are presented. Wavelengths are given for computation of solar, absorptance, transmittance and reflectance by the 100 selected-ordinate method and by the 50 selected-ordinate method for air mass 1.5 and 2 solar spectral irradiance for the four levels of atmospheric pollution.

  15. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods.

    PubMed

    Chen, Zhi-Gang; Guo, Xiao-Yu; Wu, Tao

    2016-05-01

    A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41-53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model. Copyright © 2015. Published by Elsevier B.V.

  16. Matter-antimatter asymmetry induced by a running vacuum coupling

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Singleton, D.

    2017-12-01

    We show that a CP-violating interaction induced by a derivative coupling between the running vacuum and a non-conserving baryon current may dynamically break CPT and trigger baryogenesis through an effective chemical potential. By assuming a non-singular class of running vacuum cosmologies which provides a complete cosmic history (from an early inflationary de Sitter stage to the present day quasi-de Sitter acceleration), it is found that an acceptable baryon asymmetry is generated for many different choices of the model parameters. It is interesting that the same ingredient (running vacuum energy density) addresses several open cosmological questions/problems: avoids the initial singularity, provides a smooth exit for primordial inflation, alleviates both the coincidence and the cosmological constant problems, and, finally, is also capable of explaining the generation of matter-antimatter asymmetry in the very early Universe.

  17. Velocity map imaging using an in-vacuum pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256x256 square pixels, 55x55 {mu}m{sup 2}) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 {mu}s. Results of the first time application of the Medipix2 detector to VMImore » are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.« less

  18. Moduli vacuum bubbles produced by evaporating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, J. R.

    2007-10-15

    We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4D effective potential with one-loop contributions due to the Casimir effect, along with a 5D cosmological constant. The forms of the effective potential at low and high temperatures indicate a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys.more » Rev. D 74, 024004 (2006)]. The black hole bubble can be highly opaque to lower-energy particles and photons, and thereby entrap them within. For high-temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I. G. Moss, Phys. Rev. D 32, 1333 (1985)], tending to reflect low-energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.« less

  19. The TANAMI Multiwavelength Program: Dynamic spectral energy distributions of southern blazars

    DOE PAGES

    Krauß, F.; Wilms, J.; Kadler, M.; ...

    2016-06-28

    Simultaneous broadband spectral and temporal studies of blazars are an important tool for investigating active galactic nuclei (AGN) jet physics. Aims. Here, we study the spectral evolution between quiescent and flaring periods of 22 radio-loud AGN through multiepoch, quasi-simultaneous broadband spectra. For many of these sources these are the first broadband studies. We also use a Bayesian block analysis of Fermi/LAT light curves to determine time ranges of constant flux for constructing quasi-simultaneous spectral energy distributions (SEDs). The shapes of the resulting 81 SEDs are described by two logarithmic parabolas and a blackbody spectrum where needed. The peak frequencies andmore » luminosities agree well with the blazar sequence for low states with higher luminosity implying lower peak frequencies. This is not true for sources in high states. The γ-ray photon index in Fermi/LAT correlates with the synchrotron peak frequency in low and intermediate states. No correlation is present in high states. The black hole mass cannot be determined from the SEDs. Surprisingly, the thermal excess often found in FSRQs at optical/UV wavelengths can be described by blackbody emission and not an accretion disk spectrum. The so-called harder-when-brighter trend, typically seen in X-ray spectra of flaring blazars, is visible in the blazar sequence. Furthermore, our results for low and intermediate states, as well as the Compton dominance, are in agreement with previous results. Black hole mass estimates using recently published parameters are in agreement with some of the more direct measurements. For two sources, estimates disagree by more than four orders of magnitude, possibly owing to boosting effects. The shapes of the thermal excess seen predominantly in flat spectrum radio quasars are inconsistent with a direct accretion disk origin.« less

  20. Fermi energy 5f spectral weight variation in uranium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denlinger, J.D.; Clack, J.; Allen, J.W.

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varyingmore » degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.« less

  1. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  2. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    PubMed Central

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2018-01-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6–8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover. PMID:29675340

  3. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  4. Topics in Cosmic String Physics and Vacuum Stability of Field Theories

    NASA Astrophysics Data System (ADS)

    Dasgupta, Indranil

    1998-01-01

    In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first

  5. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  6. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  7. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    NASA Technical Reports Server (NTRS)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  8. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  9. Solid sulfur in vacuum: Sublimation effects on surface microtexture, color and spectral reflectance, and applications to planetary surfaces

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1987-01-01

    A form of sulfur that is white at room temperature and very fluffy in texture has been found in laboratory experiments on the effects of vacuum sublimation (evaporation) on solid sulfur. This work is an outgrowth of proton sputtering experiments on sulfur directed toward understanding Jovian magnetospheric effects on the surface of Io. Fluffy white sulfur is formed on the surface of solid yellow, tan, or brown sulfur melt freezes in vacuum by differential (fractional) evaporation of two or more sulfur molecular species present in the original sulfur; S(8) ring sulfur is thought to be the dominant sublimination phase lost to the vacuum sink, and polymeric chain sulfur S(u) the dominant residual phase that remains in place, forming the residual fluffy surface layer. The reflectance spectrum of the original sulfur surface is greaty modified by formation of the fluffy layer: the blue absorption band-edge and shoulder move 0.05 to 0.06 microns toward shorter wavelengths resulting in a permanent increase in reflectivity near 0.42 to 0.46 microns; the UV reflectivity below 0.40 microns is reduced. This form of sulfur should exist in large quantity on the surface of Io, especially in hotspot regions if there is solid free sulfur there that has solidified from a melt. Its color and spectra will indicate relative crystallization age on a scale of days to months and/or surface temperature distribution history.

  10. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  11. Influence of Gap Distance on Vacuum Arc Characteristics of Cup Type AMF Electrode in Vacuum Interrupters

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoyong; Xiu, Shixin; Wang, Jimei; Shen, Zhengchao

    2006-11-01

    The greenhouse effect of SF6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters.

  12. Photoelectron energy loss and spectral features deduced by the plasma line technique. [in topside F region

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Carlson, H. C.

    1977-01-01

    Plasma line data gathered at the Arecibo Observatory are used to examine relative variations in topside F region differential photoelectron fluxes in the 5- to 20-eV range. A spectral feature not found in present theoretically calculated spectra is noted near 15 eV. A new approach to the interpretation of the measured spectra is taken, which allows a qualitative estimate of the relative importance of different energy loss mechanisms. The altitude variation of the observed photoelectron flux energy spectra at the higher altitudes (above 350 km) and the lower energies (less than 10 eV) agrees quantitatively with the expected variation of the spectrum.

  13. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenz, M.; Babutzka, M.; Bahr, M.

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  14. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE PAGES

    Arenz, M.; Babutzka, M.; Bahr, M.; ...

    2016-04-07

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  15. The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Vargo, S. E.; Muntz, E. P.; Tang, W. C.

    2000-01-01

    Several lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.

  16. Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kunwar Pal, E-mail: k-psingh@yahoo.com; Department of Physics, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh 244236; Arya, Rashmi

    2015-09-14

    We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarizedmore » laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.« less

  17. Laser-induced damage and fracture in fused silica vacuum windows

    NASA Astrophysics Data System (ADS)

    Campbell, John H.; Hurst, Patricia A.; Heggins, Dwight D.; Steele, William A.; Bumpas, Stanley E.

    1997-05-01

    Laser induced damage, that initiates catastrophic fracture, has been observed in large, fused silica lenses that also serve as vacuum barriers in high-fluence positions on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lens. The damage can lead to catastrophic crack growth if the flaw size exceeds the critical flaw size for SiO2. If the elastic stored energy in the lens in high enough, the lens will fracture into many pieces resulting in an implosion. The consequences of such an implosion can be severe, particularly for large vacuum systems. Three parameters control the degree of fracture in the vacuum barrier window: (1) the elastic stored energy, (2) the ratio of the window thickness to flaw depth and (3) secondary crack propagation. Fracture experiments have ben carried our on 15-cm diameter fused silica windows that contain surface flaws caused by laser damage. The results of these experiments, combined with data from window failures on Beamlet and Nova have been sued to develop design criteria for a 'fail-safe' lens. Specifically the window must be made thick enough such that the peak tensile stress is less than 500 psi and the corresponding ratio of the thickness to critical flaw size is less than 6. Under these conditions a properly mounted window, upon failure, will break into only tow pieces and will not implode. One caveat to these design criteria is that the air leak through the window before secondary crack growth occurs. Finite element stress calculations of a window before and immediately following fracture into two pieces show that the elastic stored energy is redistributed if the fragments 'lock' in place and thereby bridge the opening. In such cases, the peak stresses at the flaw site can increase leading to further crack growth.

  18. Spectral simulations of an axisymmetric force-free pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Zhang, Li; Sun, Sineng

    2016-02-01

    A pseudo-spectral method with an absorbing outer boundary is used to solve a set of time-dependent force-free equations. In this method, both electric and magnetic fields are expanded in terms of the vector spherical harmonic (VSH) functions in spherical geometry and the divergence-free state of the magnetic field is enforced analytically by a projection method. Our simulations show that the Deutsch vacuum solution and the Michel monopole solution can be reproduced well by our pseudo-spectral code. Further, the method is used to present a time-dependent simulation of the force-free pulsar magnetosphere for an aligned rotator. The simulations show that the current sheet in the equatorial plane can be resolved well and the spin-down luminosity obtained in the steady state is in good agreement with the value given by Spitkovsky.

  19. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE PAGES

    Dorrer, C.; Consentino, A.; Cuffney, R.; ...

    2017-10-18

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  20. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Consentino, A.; Cuffney, R.

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  1. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    NASA Astrophysics Data System (ADS)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related

  2. Vacuum boilers developed heating surfaces technic and economic efficiency evaluation

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.

    2018-01-01

    The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.

  3. Spectral methods for time dependent problems

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1990-01-01

    Spectral approximations are reviewed for time dependent problems. Some basic ingredients from the spectral Fourier and Chebyshev approximations theory are discussed. A brief survey was made of hyperbolic and parabolic time dependent problems which are dealt with by both the energy method and the related Fourier analysis. The ideas presented above are combined in the study of accuracy stability and convergence of the spectral Fourier approximation to time dependent problems.

  4. Carbon Nanotube Vacuum Gauges Utilizing Long, Dissipative Tubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    CNT Vacuum Gauges: a) have a broad range of pressure response from 760 - 10(exp -6) Torr. b) have current changes approx. 100's nA in high vacuum regime (10(exp -6) Torr) and sensitivity increases with power and substrate removal. c) have a negative dR/dT (TCR negative) where a thermal hopping energy E(sub a) was determined to be approx. 40 meV. d) have compatible fabrication requirements for their integration with micromachined structures. e) can be operated at low power (nW - micro-W). f) have an active device region footprint of < 10 sq microns. g) are non-intrusive due to small size and passive operation.

  5. Spectral functions at small energies and the electrical conductivity in hot quenched lattice QCD.

    PubMed

    Aarts, Gert; Allton, Chris; Foley, Justin; Hands, Simon; Kim, Seyong

    2007-07-13

    In lattice QCD, the maximum entropy method can be used to reconstruct spectral functions from Euclidean correlators obtained in numerical simulations. We show that at finite temperature the most commonly used algorithm, employing Bryan's method, is inherently unstable at small energies and gives a modification that avoids this. We demonstrate this approach using the vector current-current correlator obtained in quenched QCD at finite temperature. Our first results indicate a small electrical conductivity above the deconfinement transition.

  6. Harmonics suppression of vacuum chamber eddy current induced fields with application to the Superconducting Super Collider (SSC) Low Energy Booster (LEB) Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlueter, R.D.; Halbach, K.

    1991-12-04

    This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.

  7. Integrated and spectral energetics of the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1982-01-01

    Integrated and spectral error energetics of the GLAS General circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level, particularly above strong initial jet streams associated in part with regions of steep terrain. The spectral error growth study represents the first comparison of general circulation model spectral energetics predictions with the corresponding observational spectra on a day by day basis. The major conclusion is that eddy kinetics energy can be correct while significant errors occur in the kinetic energy of wavenumber 3. Both the model and observations show evidence of single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetics and potential energy.

  8. Observer model optimization of a spectral mammography system

    NASA Astrophysics Data System (ADS)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  9. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  10. Breast tissue decomposition with spectral distortion correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Zhao, Bo; Baturin, Pavlo; Behroozi, Farnaz; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of an accurate measurement of water, lipid, and protein composition of breast tissue using a photon-counting spectral computed tomography (CT) with spectral distortion corrections. Methods: Thirty-eight postmortem breasts were imaged with a cadmium-zinc-telluride-based photon-counting spectral CT system at 100 kV. The energy-resolving capability of the photon-counting detector was used to separate photons into low and high energy bins with a splitting energy of 42 keV. The estimated mean glandular dose for each breast ranged from 1.8 to 2.2 mGy. Two spectral distortion correction techniques were implemented, respectively, on the raw images to correct the nonlinear detector response due to pulse pileup and charge-sharing artifacts. Dual energy decomposition was then used to characterize each breast in terms of water, lipid, and protein content. In the meantime, the breasts were chemically decomposed into their respective water, lipid, and protein components to provide a gold standard for comparison with dual energy decomposition results. Results: The accuracy of the tissue compositional measurement with spectral CT was determined by comparing to the reference standard from chemical analysis. The averaged root-mean-square error in percentage composition was reduced from 15.5% to 2.8% after spectral distortion corrections. Conclusions: The results indicate that spectral CT can be used to quantify the water, lipid, and protein content in breast tissue. The accuracy of the compositional analysis depends on the applied spectral distortion correction technique. PMID:25281953

  11. Vacuum polarization effects on flat branes due to a global monopole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra de Mello, E.R.

    2006-05-15

    In this paper we analyze the vacuum polarization effects associated with a massless scalar field in the higher-dimensional spacetime. Specifically we calculate the renormalized vacuum expectation value of the square of the field, <{phi}{sup 2}(x)>{sub Ren}, induced by a global monopole in the 'braneworld' scenario. In this context the global monopole lives in a n=3-dimensional submanifold of the higher-dimensional (bulk) spacetime, and our universe is represented by a transverse flat (p-1)-dimensional brane. In order to develop this analysis we calculate the general Green function admitting that the scalar field propagates in the bulk. Also a general curvature coupling parameter betweenmore » the field and the geometry is assumed. We explicitly show that the vacuum polarization effects depend crucially on the values attributed to p. We also investigate the general structure of the renormalized vacuum expectation value of the energy-momentum tensor, {sub Ren}, for p=3.« less

  12. Vacuum polarization of the electromagnetic field near a rotating black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-12-15

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor givesmore » a result which coincides at the event horizon with the exact value of /sup ren/. .AE« less

  13. Total spectral distributions from Hawking radiation

    NASA Astrophysics Data System (ADS)

    Broda, Bogusław

    2017-11-01

    Taking into account the time dependence of the Hawking temperature and finite evaporation time of the black hole, the total spectral distributions of the radiant energy and of the number of particles have been explicitly calculated and compared to their temporary (initial) blackbody counterparts (spectral exitances).

  14. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian

    2010-06-10

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbonmore » and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman- region) in the interstellar medium.« less

  15. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian

    2010-03-02

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbonmore » and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.« less

  16. Life cycle environmental impacts of vacuum cleaners and the effects of European regulation.

    PubMed

    Gallego-Schmid, Alejandro; Mendoza, Joan Manuel F; Jeswani, Harish Kumar; Azapagic, Adisa

    2016-07-15

    Energy efficiency of vacuum cleaners has been declining over the past decades while at the same time their number in Europe has been increasing. The European Commission has recently adopted an eco-design regulation to improve the environmental performance of vacuum cleaners. In addition to the existing directive on waste electrical and electronic equipment (WEEE), the regulation could potentially have significant effects on the environmental performance of vacuum cleaners. However, the scale of the effects is currently unknown, beyond scant information on greenhouse gas emissions. Thus, this paper considers for the first time life cycle environmental impacts of vacuum cleaners and the effects of the implementation of these regulations at the European level. The effects of electricity decarbonisation, product lifetime and end-of-life disposal options are also considered. The results suggest that the implementation of the eco-design regulation alone will reduce significantly the impacts from vacuum cleaners (37%-44%) by 2020 compared with current situation. If business as usual continued and the regulation was not implemented, the impacts would be 82%-109% higher by 2020 compared to the impacts with the implementation of the regulation. Improvements associated with the implementation of the WEEE directive will be much smaller (<1% in 2020). However, if the WEEE directive did not exist, then the impacts would be 2%-21% higher by 2020 relative to the impacts with the implementation of the directive. Further improvements in most impacts (6%-20%) could be achieved by decarbonising the electricity mix. Therefore, energy efficiency measures must be accompanied by appropriate actions to reduce the environmental impacts of electricity generation; otherwise, the benefits of improved energy efficiency could be limited. Moreover, because of expected lower life expectancy of vacuum cleaners and limited availability of some raw materials, the eco-design regulation should be

  17. Single-energy pediatric chest computed tomography with spectral filtration at 100 kVp: effects on radiation parameters and image quality.

    PubMed

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Kaup, Moritz; Beeres, Martin; Vogl, Thomas J; Scholtz, Jan-Erik

    2017-06-01

    Most of the applied radiation dose at CT is in the lower photon energy range, which is of limited diagnostic importance. To investigate image quality and effects on radiation parameters of 100-kVp spectral filtration single-energy chest CT using a tin-filter at third-generation dual-source CT in comparison to standard 100-kVp chest CT. Thirty-three children referred for a non-contrast chest CT performed on a third-generation dual-source CT scanner were examined at 100 kVp with a dedicated tin filter with a tube current-time product resulting in standard protocol dose. We compared resulting images with images from children examined using standard single-source chest CT at 100 kVp. We assessed objective and subjective image quality and compared radiation dose parameters. Radiation dose was comparable for children 5 years old and younger, and it was moderately decreased for older children when using spectral filtration (P=0.006). Effective tube current increased significantly (P=0.0001) with spectral filtration, up to a factor of 10. Signal-to-noise ratio and image noise were similar for both examination techniques (P≥0.06). Subjective image quality showed no significant differences (P≥0.2). Using 100-kVp spectral filtration chest CT in children by means of a tube-based tin-filter on a third-generation dual-source CT scanner increases effective tube current up to a factor of 10 to provide similar image quality at equivalent dose compared to standard single-source CT without spectral filtration.

  18. Research of vacuum polymer film on three-dimension surface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bau, Yung-Han

    2016-09-01

    This study focused on UV-curable acrylic hybrid of solute in vacuum-deposited on the surface and make it smooth. On the surface coating of the entire process, including the pre-treatment of organic solutes, vacuum, nozzle pressure, airflow, frequency ratio, the surface of the rotation rate, nozzle angle, UV light irradiation time, waste solute recycling.Organic solutes through a flow meter and precise measured,by high pressure or vibration of a piezoelectric material, spray our organic solute in a certain degree of vacuum,leaving nozzle of tiny micro-mist volatiles in a vacuum to form secondary atomization,deposited our surface,Since no UV light irradiation, the surface is a liquid having fluidity, so the non-planar substrates can have good performance, finally it is irradiated by UV light of sufficient energy solidify to form a solid film.The advantage of this approach is that a smooth surface,Strong adhesion, low-cost equipment, low temperature, a wide range of high deposition rate can be combined with other deposition method,Under vacuum have not waste because excess paint can be recycled.Avoid solute direct contact with human, relative to the environment-friendly.

  19. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  20. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  1. Possible signals of vacuum dynamics in the Universe

    NASA Astrophysics Data System (ADS)

    Peracaula, Joan Solà; de Cruz Pérez, Javier; Gómez-Valent, Adrià

    2018-05-01

    We study a generic class of time-evolving vacuum models which can provide a better phenomenological account of the overall cosmological observations as compared to the ΛCDM. Among these models, the running vacuum model (RVM) appears to be the most motivated and favored one, at a confidence level of ˜3σ. We further support these results by computing the Akaike and Bayesian information criteria. Our analysis also shows that we can extract fair signals of dynamical dark energy (DDE) by confronting the same set of data to the generic XCDM and CPL parametrizations. In all cases we confirm that the combined triad of modern observations on Baryonic Acoustic Oscillations, Large Scale Structure formation, and the Cosmic Microwave Background, provide the bulk of the signal sustaining a possible vacuum dynamics. In the absence of any of these three crucial data sources, the DDE signal can not be perceived at a significant confidence level. Its possible existence could be a cure for some of the tensions existing in the ΛCDM when confronted to observations.

  2. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    NASA Astrophysics Data System (ADS)

    Tanaka, Koichi; Han, Liang; Zhou, Xue; Anders, André

    2015-08-01

    Charge-state-resolved ion energy-time distributions of pulsed Cu arc plasma were obtained by using direct (time-dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu+ ions in the later part of the pulse, measured by the increase of Cu+ signal intensity and an associated slight reduction of the mean charge state, points to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) are observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an electric field. This field is directed away from the cathode, indicative of a potential hump. Measurements by a floating probe suggest that potential structures travel, and ions moving in the traveling field can gain high energies up to a few hundred electron-volts. Later in the pulse, the approximate proportionality is lost, which is related to increased smearing out of different energies due to collisions with neutrals, and/or to a change of the acceleration character from electrostatic to ‘gas-dynamic’, i.e. dominated by pressure gradient.

  3. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    NASA Astrophysics Data System (ADS)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  4. The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses

    NASA Astrophysics Data System (ADS)

    Burgess, A. B. H.; Erler, A. R.; Shepherd, T. G.

    2012-04-01

    We present spectra, nonlinear interaction terms, and fluxes computed for horizontal wind fields from high-resolution meteorological analyses made available by ECMWF for the International Polar Year. Total kinetic energy spectra clearly show two spectral regimes: a steep spectrum at large scales and a shallow spectrum in the mesoscale. The spectral shallowing appears at ~200 hPa, and is due to decreasing rotational power with height, which results in the shallower divergent spectrum dominating in the mesoscale. The spectra we find are steeper than those observed in aircraft data and GCM simulations. Though the analyses resolve total spherical harmonic wavenumbers up to n = 721, effects of dissipation on the fluxes and spectra are visible starting at about n = 200. We find a weak forward energy cascade and a downscale enstrophy cascade in the mesoscale. Eddy-eddy nonlinear kinetic energy transfers reach maximum amplitudes at the tropopause, and decrease with height thereafter; zonal mean-eddy transfers dominate in the stratosphere. In addition, zonal anisotropy reaches a minimum at the tropopause. Combined with strong eddy-eddy interactions, this suggests flow in the tropopause region is very active and bears the greatest resemblance to isotropic turbulence. We find constant enstrophy flux over a broad range of wavenumbers around the tropopause and in the upper stratosphere. A relatively constant spectral enstrophy flux at the tropopause suggests a turbulent inertial range, and that the enstrophy flux is resolved. A main result of our work is its implications for explaining the shallow mesoscale spectrum observed in aircraft wind measurements, GCM studies, and now meteorological analyses. The strong divergent component in the shallow mesoscale spectrum indicates unbalanced flow, and nonlinear transfers decreasing quickly with height are characteristic of waves, not turbulence. Together with the downscale flux of energ y through the shallow spectral range, these

  5. Living beyond the edge: Higgs inflation and vacuum metastability

    DOE PAGES

    Bezrukov, Fedor; Rubio, Javier; Shaposhnikov, Mikhail

    2015-10-13

    The measurements of the Higgs mass and top Yukawa coupling indicate that we live in a very special universe, at the edge of the absolute stability of the electroweak vacuum. If fully stable, the Standard Model (SM) can be extended all the way up to the inflationary scale and the Higgs field, nonminimally coupled to gravity with strength ξ, can be responsible for inflation. We show that the successful Higgs inflation scenario can also take place if the SM vacuum is not absolutely stable. This conclusion is based on two effects that were overlooked previously. The first one is associatedmore » with the effective renormalization of the SM couplings at the energy scale M P/ξ, where M P is the Planck scale. Lastly, the second one is a symmetry restoration after inflation due to high temperature effects that leads to the (temporary) disappearance of the vacuum at Planck values of the Higgs field.« less

  6. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  7. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    PubMed

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  8. High-Energy Spectral and Temporal Characteristics of GRO J1008-57

    NASA Astrophysics Data System (ADS)

    Shrader, C. R.; Sutaria, F. K.; Singh, K. P.; Macomb, D. J.

    1999-02-01

    A transient X-ray source, GRO J1008-57, was discovered by the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) in 1993 July. It reached a maximum intensity of about 1.4 times that of the Crab, in the 20-60 keV energy band. Pulsations in the X-ray intensity were detected at a period of 93.5 s. It has subsequently been determined to be a member of the Be star subclass of X-ray transients. In addition to BATSE, GRO J1008-57 was observed during its outburst by several pointed high-energy experiments: ROSAT, ASCA, and CGRO/OSSE. These nonsimultaneous but contemporaneous observations took place near and shortly after the peak of the outburst light curve. We report for the first time on a combined analysis of the CGRO and ASCA data sets. We have attempted to model the broadband high-energy continuum distribution and phase-resolved spectra. The broadband, phase-averaged continuum is well approximated by a power law with an exponential cutoff. Evidence for 6.4 keV line emission due to Fe is presented based on our spectral analysis. The energy dependence of the pulse profiles is examined in order to determine the energy at which the low-energy double-peaked profile detected by ASCA evolves into single-peaked pulse profile detected by BATSE. We discuss the implications of this pulse profile for the magnetic field and beam distribution for GRO J1008-57. Analysis of the BATSE and Rossi X-Ray Timing Explorer/ASM flux histories suggests that Porbital~135 days. We further suggest that a transient disk is likely to form during episodes of outbursts.

  9. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.

    PubMed

    Sekone, Abdoul Karim; Chen, Yu-Bin; Lu, Ming-Chang; Chen, Wen-Kai; Liu, Chia-An; Lee, Ming-Tsang

    2016-12-01

    Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

  10. Numerical research of the swirling supersonic gas flows in the self-vacuuming vortex tube

    NASA Astrophysics Data System (ADS)

    Volov, V. T.; Lyaskin, A. S.

    2018-03-01

    This article presents the results of simulation for a special type of vortex tubes – self-vacuuming vortex tube (SVVT), for which extreme values of temperature separation and vacuum are realized. The main results of this study are the flow structure in the SVVT and energy loss estimations on oblique shock waves, gas friction, instant expansion and organization of vortex bundles in SVVT.

  11. Quantum vacuum interaction between two cosmic strings revisited

    NASA Astrophysics Data System (ADS)

    Muñoz-Castañeda, J. M.; Bordag, M.

    2014-03-01

    We reconsider the quantum vacuum interaction energy between two straight parallel cosmic strings. This problem was discussed several times in an approach treating both strings perturbatively and treating only one perturbatively. Here we point out that a simplifying assumption made by Bordag [Ann. Phys. (Berlin) 47, 93 (1990).] can be justified and show that, despite the global character of the background, the perturbative approach delivers a correct result. We consider the applicability of the scattering methods, developed in the past decade for the Casimir effect, for the cosmic string and find it not applicable. We calculate the scattering T-operator on one string. Finally, we consider the vacuum interaction of two strings when each carries a two-dimensional delta function potential.

  12. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  13. Spectral and Atomic Physics Analysis of Xenon L-Shell Emission From High Energy Laser Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.

    2016-10-01

    The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  14. Preliminary study on the differentiation between parapelvic cyst and hydronephrosis with non-calculous using only pre-contrast dual-energy spectral CT scans

    PubMed Central

    Han, Dong; Ma, Guangming; Wei, Lequn; Ren, Chenglong; Zhou, Jieli; Shen, Chen

    2017-01-01

    Objective: To investigate the value of using the quantitative parameters from only the pre-contrast dual-energy spectral CT imaging for distinguishing between parapelvic cyst and hydronephrosis with non-calculous (HNC). Methods: This retrospective study was approved by the institutional review board. 28 patients with parapelvic cyst and 24 patients with HNC who underwent standard pre-contrast and multiphase contrast-enhanced dual-energy spectral CT imaging were retrospectively identified. The parapelvic cyst and HNC were identified using the contrast-enhanced scans, and their CT number in the 70-keV monochromatic images, effective atomic number (Zeff), iodine concentration (IC) and water concentration in the pre-contrast images were measured. The slope of the spectral curve (λ) was calculated. The difference in the measurements between parapelvic cyst and HNC was statistically analyzed using SPSS® v. 19.0 (IBM Corp., New York, NY; formerly SPSS Inc., Chicago, IL) statistical software. Receiver-operating characteristic analysis was performed to assess the diagnostic performance. Results: The CT numbers in the 70-keV images, Zeff and IC values were statistically different between parapelvic cyst and HNC (all p < 0.05). The sensitivity, specificity and accuracy of these parameters for distinguishing between parapelvic cyst and HNC were 89.2%, 73.3% and 82.1%; 86.5%, 43.3% and 67.2%; 91.9%, 40.0% and 68.7%; and 64.9%, 73.3% and 83.6%, respectively, and the combined specificity was 92.9%. There was no statistical difference in λ between the two groups (p > 0.05). Conclusion: The quantitative parameters obtained in the pre-contrast dual-energy spectral CT imaging may be used to differentiate between parapelvic cyst and HNC. Advances in knowledge: The pre-contrast dual-energy spectral CT scans may be used to screen parapelvic cysts for patients who are asymptomatic, thereby avoiding contrast-enhanced CT or CT urography examination for these patients to reduce

  15. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  16. Divertor electron temperature and impurity diffusion measurements with a spectrally resolved imaging radiometer.

    PubMed

    Clayton, D J; Jaworski, M A; Kumar, D; Stutman, D; Finkenthal, M; Tritz, K

    2012-10-01

    A divertor imaging radiometer (DIR) diagnostic is being studied to measure spatially and spectrally resolved radiated power P(rad)(λ) in the tokamak divertor. A dual transmission grating design, with extreme ultraviolet (~20-200 Å) and vacuum ultraviolet (~200-2000 Å) gratings placed side-by-side, can produce coarse spectral resolution over a broad wavelength range covering emission from impurities over a wide temperature range. The DIR can thus be used to evaluate the separate P(rad) contributions from different ion species and charge states. Additionally, synthetic spectra from divertor simulations can be fit to P(rad)(λ) measurements, providing a powerful code validation tool that can also be used to estimate electron divertor temperature and impurity transport.

  17. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution.

  18. Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity

    NASA Astrophysics Data System (ADS)

    Basilakos, Spyros; Mavromatos, Nick; Solà, Joan

    2016-07-01

    We describe the primeval inflationary phase of the early Universe within a quantum field theoretical (QFT) framework that can be viewed as the effective action of vacuum decay in the early times. Interestingly enough, the model accounts for the "graceful exit" of the inflationary phase into the standard radiation regime. The underlying QFT framework considered here is Supergravity (SUGRA), more specifically an existing formulation in which the Starobinsky-type inflation (de-Sitter background) emerges from the quantum corrections to the effective action after integrating out the gravitino fields in their (dynamically induced) massive phase. We also demonstrate that the structure of the effective action in this model is consistent with the generic idea of renormalization group (RG) running of the cosmological parameters, specifically it follows from the corresponding RG equation for the vacuum energy density as a function of the Hubble rate, $\\rho_{\\Lambda}(H)$. Overall our combined approach amounts to a concrete-model realization of inflation triggered by vacuum decay in a fundamental physics context which, as it turns out, can also be extended for the remaining epochs of the cosmological evolution until the current dark energy era.

  19. NSLS II Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.; Doom, L.; Hseuh, H.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning andmore » mounting the chambers are given.« less

  20. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    PubMed

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  1. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    NASA Astrophysics Data System (ADS)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  2. Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Rui-Yun; Li, Yun-He; Zhang, Jing-Fei

    We constrain the neutrino mass in the scenario of vacuum energy interacting with cold dark matter by using current cosmological observations. To avoid the large-scale instability problem in interacting dark energy models, we employ the parameterized post-Friedmann (PPF) approach to do the calculation of perturbation evolution, for the Q = β H ρ{sub c} and Q = β H ρ{sub Λ} models. The current observational data sets used in this work include Planck (cosmic microwave background), BSH (baryon acoustic oscillations, type Ia supernovae, and Hubble constant), and LSS (redshift space distortions and weak lensing). According to the constraint results, wemore » find that β > 0 at more than 1σ level for the Q = β H ρ{sub c} model, which indicates that cold dark matter decays into vacuum energy; while β = 0 is consistent with the current data at 1σ level for the Q = β H ρ{sub Λ} model. Taking the ΛCDM model as a baseline model, we find that a smaller upper limit, ∑ m {sub ν} < 0.11 eV (2σ), is induced by the latest BAO BOSS DR12 data and the Hubble constant measurement H {sub 0} = 73.00 ± 1.75 km s{sup −1} Mpc{sup −1}. For the Q = β H ρ{sub c} model, we obtain ∑ m {sub ν}<0.20 eV (2σ) from Planck+BSH. For the Q = β H ρ{sub Λ} model, ∑ m {sub ν}<0.10 eV (2σ) and ∑ m {sub ν}<0.14 eV (2σ) are derived from Planck+BSH and Planck+BSH+LSS, respectively. We show that these smaller upper limits on ∑ m {sub ν} are affected more or less by the tension between H {sub 0} and other observational data.« less

  3. Effective Porosity Measurements by Wet- and Dry-type Vacuum Saturations using Process-Programmable Vacuum Saturation System

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.

    2017-12-01

    One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.

  4. Stability of stationary-axisymmetric black holes in vacuum general relativity to axisymmetric electromagnetic perturbations

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik; Wald, Robert M.

    2018-01-01

    We consider arbitrary stationary and axisymmetric black holes in general relativity in (d +1) dimensions (with d ≥slant 3 ) that satisfy the vacuum Einstein equation and have a non-degenerate horizon. We prove that the canonical energy of axisymmetric electromagnetic perturbations is positive definite. This establishes that all vacuum black holes are stable to axisymmetric electromagnetic perturbations. Our results also hold for asymptotically de Sitter black holes that satisfy the vacuum Einstein equation with a positive cosmological constant. Our results also apply to extremal black holes provided that the initial perturbation vanishes in a neighborhood of the horizon.

  5. Vacuum Potentials for the Two Only Permanent Free Particles, Proton and Electron. Pair Productions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2012-02-01

    The two only species of isolatable, smallest, or unit charges +e and -e present in nature interact with the universal vacuum in a polarisable dielectric representation through two uniquely defined vacuum potential functions. All of the non-composite subatomic particles containing one-unit charges, +e or -e, are therefore formed in terms of the IED model of the respective charges, of zero rest masses, oscillating in either of the two unique vacuum potential fields, together with the radiation waves of their own charges. In this paper we give a first principles treatment of the dynamics of charge in a dielectric vacuum, based on which, combined with solutions for the radiation waves obtained previously, we subsequently derive the vacuum potential function for a given charge q, which we show to be quadratic and consist each of quantised potential levels, giving therefore rise to quantised characteristic oscillation frequencies of the charge and accordingly quantised, sharply-defined masses of the IED particles. By further combining with relevant experimental properties as input information, we determine the IED particles built from the charges +e, -e at their first excited states in the respective vacuum potential wells to be the proton and the electron, the observationally two only stable (permanently lived) and "free" particles containing one-unit charges. Their antiparticles as produced in pair productions can be accordingly determined. The characteristics of all of the other more energetic single-charged non-composite subatomic particles can also be recognised. We finally discuss the energy condition for pair production, which requires two successive energy supplies to (1) first disintegrate the bound pair of vaculeon charges +e, -e composing a vacuuon of the vacuum and (2) impart masses to the disintegrated charges.

  6. The Far-Infrared Spectral Energy Distributions of Quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; West, Donald K. (Technical Monitor)

    2001-01-01

    The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultraviolet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO's contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.

  7. High Energy Emission of V404 Cygni during 2015 outburst with INTEGRAL/SPI: Spectral analysis results, issues and solutions

    NASA Astrophysics Data System (ADS)

    Jourdain, Elisabeth; Roques, Jean-Pierre

    2016-04-01

    A strong outburst of the X-ray transient V404 Cygni (= GS2023-338) was observed in 2015 June/July up to a level of 50 Crab in the hard X-ray domain.We have used the INTEGRAL/SPI data to investigate the spectral behavior of the source between 20 and 1000 keV during its maximum of activity. We have found striking variability patterns at all timescales. For the 20-200 keV energy band, the huge signal to noise ratio allows us to scrutinize the source evolution on a never reached timescale (30 s). At higher energy, the spectral shape can be determined on a timescale < 1 h.However, we note that at this level of photon flux, instrument's behavior may be severely tested and that some instrumental artifacts could affect the data analysis. We have performed thorough checks to ensure a correct handling of the SPI data and present how to obtain reliable spectral results on the emission of V404 Cyg. We demonstrate that, with the correct configuration, the hard X-ray emission, up to the MeV region, is well described by a two component model (Comptonisation law + cutoff power law) as observed in Cyg X-1 and for V404 Cygni itself at lower flux levels.

  8. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio, E-mail: ruben.nunez@ies-def.upm.es; Askins, Steve, E-mail: ruben.nunez@ies-def.upm.es

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatchmore » Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.« less

  9. A Programmable Cellular-Automata Polarized Dirac Vacuum

    NASA Astrophysics Data System (ADS)

    Osoroma, Drahcir S.

    2013-09-01

    We explore properties of a `Least Cosmological Unit' (LCU) as an inherent spacetime raster tiling or tessellating the unique backcloth of Holographic Anthropic Multiverse (HAM) cosmology as an array of programmable cellular automata. The HAM vacuum is a scale-invariant HD extension of a covariant polarized Dirac vacuum with `bumps' and `holes' typically described by extended electromagnetic theory corresponding to an Einstein energy-dependent spacetime metric admitting a periodic photon mass. The new cosmology incorporates a unique form of M-Theoretic Calabi-Yau-Poincaré Dodecadedral-AdS5-DS5space (PDS) with mirror symmetry best described by an HD extension of Cramer's Transactional Interpretation when integrated also with an HD extension of the de Broglie-Bohm-Vigier causal interpretation of quantum theory. We incorporate a unique form of large-scale additional dimensionality (LSXD) bearing some similarity to that conceived by Randall and Sundrum; and extend the fundamental basis of our model to the Unified Field, UF. A Sagnac Effect rf-pulsed incursive resonance hierarchy is utilized to manipulate and ballistically program the geometric-topological properties of this putative LSXD space-spacetime network. The model is empirically testable; and it is proposed that a variety of new technologies will arise from ballistic programming of tessellated LCU vacuum cellular automata.

  10. A vacuum spark ion source: High charge state metal ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less

  11. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shuntingmore » breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.« less

  12. Two-photon absorption by spectrally shaped entangled photons

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2018-03-01

    We theoretically investigate two-photon excitation by spectrally shaped entangled photons with energy anticorrelation in terms of how the real excitation of an intermediate state affects two-photon absorption by entangled photons. Spectral holes are introduced in the entangled photons around the energy levels of an intermediate state so that two-step excitation via the real excitation of the intermediated state can be suppressed. Using a three-level atomic system as an example, we show that the spectral holes well suppress the real excitation of the intermediate state and recover two-photon absorption via a virtual state. Furthermore, for a short pulse close to a monocycle, we show that the excitation efficiency by the spectrally shaped entangled photons can be enhanced a thousand times as large as that by uncorrelated photons.

  13. Statistical distribution of the vacuum energy density in racetrack Kähler uplift models in string theory

    NASA Astrophysics Data System (ADS)

    Sumitomo, Yoske; Tye, S.-H. Henry; Wong, Sam S. C.

    2013-07-01

    We study a racetrack model in the presence of the leading α'-correction in flux compactification in Type IIB string theory, for the purpose of getting conceivable de-Sitter vacua in the large compactified volume approximation. Unlike the Kähler Uplift model studied previously, the α'-correction is more controllable for the meta-stable de-Sitter vacua in the racetrack case since the constraint on the compactified volume size is very much relaxed. We find that the vacuum energy density Λ for de-Sitter vacua approaches zero exponentially as the volume grows. We also analyze properties of the probability distribution of Λ in this class of models. As in other cases studied earlier, the probability distribution again peaks sharply at Λ = 0. We also study the Racetrack Kähler Uplift model in the Swiss-Cheese type model.

  14. Integrated and spectral energetics of the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1981-01-01

    Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.

  15. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  16. SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES

    NASA Astrophysics Data System (ADS)

    Ceamanos, X.; Doute, S.

    2009-12-01

    sharpening for every Θi is determined thanks to a loop of sharpening procedures, which is assessed by the examination of an estimation of the smile energy (the MNF-smile eigenvalue). As a matter of fact, a higher sharpening is performed on Θi as long as the smile energy decreases. Experiments on CRISM data show remarkable results regarding the decrease of smile energy (up to 80%) and the spectral shape preservation. In fact, initial smile-affected spectra do no longer show shifting nor smoothing (see Fig. 2). Line-averaged spectra and band 155 of FRT5AE3_07 showing spectral smile effects Line-averaged spectra and band 155 of smile-corrected FRT5AE3_07

  17. Contrast-enhanced spectral mammography with a photon-counting detector.

    PubMed

    Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats

    2010-05-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  18. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  19. Robot design for a vacuum environment

    NASA Technical Reports Server (NTRS)

    Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.

    1987-01-01

    The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.

  20. Glow discharge cleaning of vacuum switch tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, T.; Toya, H.

    1991-10-01

    This paper reports that glow discharge cleaning has ben advancing as a means of degassing vacuum chambers constructed for a large accelerator or for nuclear fusion research. To clean the whole surface of parts inside a vacuum switch tube (VST), a new technique is tried which generates glow discharge between the inner electrodes and copper grid surrounding it. Photographic observation reveals that the glow discharge spreads out and cleans the whole surface inside the VST. A breakdown test between the inner electrodes shows the effect of the cleaning with this technique. Higher breakdown voltage between the inner electrodes is attainedmore » by performing this glow discharge cleaning in argon rather than hydrogen gas. The difference of the cleaning effect seems to be attributed to that of the energy transfer from ion species to the absorbed molecules and microprotrusions on the surfaces.« less

  1. Weak stability of the plasma-vacuum interface problem

    NASA Astrophysics Data System (ADS)

    Catania, Davide; D'Abbicco, Marcello; Secchi, Paolo

    2016-09-01

    We consider the free boundary problem for the two-dimensional plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region, the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the Maxwell system for the electric and the magnetic fields. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. We study the linear stability of rectilinear plasma-vacuum interfaces by computing the Kreiss-Lopatinskiĭ determinant of an associated linearized boundary value problem. Apart from possible resonances, we obtain that the piecewise constant plasma-vacuum interfaces are always weakly linearly stable, independently of the size of tangential velocity, magnetic and electric fields on both sides of the characteristic discontinuity. We also prove that solutions to the linearized problem obey an energy estimate with a loss of regularity with respect to the source terms, both in the interior domain and on the boundary, due to the failure of the uniform Kreiss-Lopatinskiĭ condition, as the Kreiss-Lopatinskiĭ determinant associated with this linearized boundary value problem has roots on the boundary of the frequency space. In the proof of the a priori estimates, a crucial part is played by the construction of symmetrizers for a reduced differential system, which has poles at which the Kreiss-Lopatinskiĭ condition may fail simultaneously.

  2. Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus

    NASA Astrophysics Data System (ADS)

    Nash, D. B.

    1987-10-01

    The author has found from laboratory experiments that vacuum sublimation has a profound effect on the molecular composition, microtexture, bulk density (porosity), and the UV/visible spectral reflectance of the surface of solid sulfur samples, both when the sulfur is in the form of frozen or quenched melts and as laboratory-grade sulfur powder. These sublimation effects produce a unique surface material, the understanding of which may have important implications for deciphering the many enigmatic optical and textural properties of the surface of Jupiter's satellite Io. This planetary body is thought to have a surface greatly enriched in volcanically produced elemental sulfur and sulfur compounds and to have a surface atmospheric pressure with an upper limit of ≡10-7atm, comparable to a good laboratory vacuum, and surface hotspots at temperatures of about 300K covering about 0.3% of its global surface.

  3. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    PubMed Central

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  4. Fermionic vacuum polarization in a higher-dimensional global monopole spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra de Mello, E. R.

    2007-12-15

    In this paper we analyze the vacuum polarization effects associated with a massless fermionic field in a higher-dimensional global monopole spacetime in the 'braneworld' scenario. In this context we admit that our Universe, the bulk, is represented by a flat (n-1)-dimensional brane having a global monopole in an extra transverse three-dimensional submanifold. We explicitly calculate the renormalized vacuum average of the energy-momentum tensor, {sub Ren}, admitting the global monopole as being a pointlike object. We observe that this quantity depends crucially on the value of n, and provide explicit expressions to it for specific values attributed to n.

  5. Differential diagnosis between benign and malignant pleural effusion with dual-energy spectral CT

    PubMed Central

    Zhang, Xirong; Duan, Haifeng; Yu, Yong; Ma, Chunling; Ren, Zhanli; Lei, Yuxin

    2018-01-01

    factors, one could obtain sensitivity of 100% and specificity of 71.4% with area-under-curve of 0.933 for differentiating benign from malignant effusion. Conclusion The CT value measurement at both high and low energy levels and the effective atomic number obtained in a single spectral CT scan can assist the differential diagnosis of benign from malignant pleural effusion.Combining them with patient age and disease history can further improve diagnostic performance. Clinical relevance/Application Clinical findings and Spectral CT imaging can provide significant evidences about the nature of pleural effusion. PMID:29641601

  6. Differential diagnosis between benign and malignant pleural effusion with dual-energy spectral CT.

    PubMed

    Zhang, Xirong; Duan, Haifeng; Yu, Yong; Ma, Chunling; Ren, Zhanli; Lei, Yuxin; He, Taiping; Zhang, Ming

    2018-01-01

    of 100% and specificity of 71.4% with area-under-curve of 0.933 for differentiating benign from malignant effusion. The CT value measurement at both high and low energy levels and the effective atomic number obtained in a single spectral CT scan can assist the differential diagnosis of benign from malignant pleural effusion.Combining them with patient age and disease history can further improve diagnostic performance. Clinical findings and Spectral CT imaging can provide significant evidences about the nature of pleural effusion.

  7. Revealing the spectral response of a plasmonic lens using low-energy electrons

    NASA Astrophysics Data System (ADS)

    Cao, Shuiyan; Le Moal, Eric; Bigourdan, Florian; Hugonin, Jean-Paul; Greffet, Jean-Jacques; Drezet, Aurélien; Huant, Serge; Dujardin, Gérald; Boer-Duchemin, Elizabeth

    2017-09-01

    Plasmonic lenses, even of simple design, may have intricate spectral behavior. The spectral response of a plasmonic lens to a local, broadband excitation has rarely been studied despite its central importance in future applications. Here we use the unique combination of scanning tunneling microscopy (STM) and angle-resolved optical spectroscopy to probe the spectral response of a plasmonic lens. Such a lens consists of a series of concentric circular slits etched in a thick gold film. Spectrally broad, circular surface plasmon polariton (SPP) waves are electrically launched from the STM tip at the plasmonic lens center, and these waves scatter at the slits into a narrow, out-of-plane, light beam. We show that the angular distribution of the emitted light results from the interplay of the size of the plasmonic lens and the spectral width of the SPP nanosource. We then propose simple design rules for optimized light beaming with the smallest possible footprint. The spectral distribution of the emitted light depends not only on the SPP nanosource, but on the local density of electromagnetic states (EM-LDOS) at the nanosource position, which in turn depends on the cavity modes of the plasmonic microstructure. The key parameters for tailoring the spectral response of the plasmonic lens are the period of the slits forming the lens, the number of slits, and the lens inner diameter.

  8. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael

    2013-01-01

    The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Δ) (f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d(z), we predict d(Δ) (f) for specific filter settings, a given level of detection-system noise spectral density d(z) (ds) and the cantilever-thermal-noise spectral density d(z) (th). We find an excellent agreement between the calculated and measured values for d(Δ) (f). Furthermore, we demonstrate that thermal noise in d(Δ) (f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.

  9. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika

    2013-01-01

    Summary The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d z at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d Δ f at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d z, we predict d Δ f for specific filter settings, a given level of detection-system noise spectral density d z ds and the cantilever-thermal-noise spectral density d z th. We find an excellent agreement between the calculated and measured values for d Δ f. Furthermore, we demonstrate that thermal noise in d Δ f, defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth. PMID:23400758

  10. Design and Fabrication of a Stirling Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Schreiber, Jeffrey G.

    2004-01-01

    A Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA space science missions. The development effort is being conducted by Lockheed Martin under contract to the Department of Energy (DOE). The Stirling Technology Company supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to the currently used alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been conceived at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG, however the requirement for low mass was not considered. This test will demonstrate the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The analysis, design, and fabrication of the test article will be described in this paper.

  11. Extended Operation of Stirling Convertors in a Thermal Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2006-01-01

    A 110 watt Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA exploration missions. The development effort is being performed by Lockheed Martin under contract to the Department of Energy (DOE). Infinia, Corp. supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been initiated at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG110, however the requirement for low mass was not considered. This test demonstrates the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The status of the test as well as the data gathered will be presented in this paper.

  12. Design and investigation of a multichannel laser-triggered vacuum switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Wenfang, E-mail: fwf1990@126.com; He, Zhenghao; Mao, Xiaopo

    2016-03-15

    A laser-triggered vacuum switch (LTVS) is an advanced closing switch with nanosecond delay and jitter. In order to enhance hold-off voltage and extend the service lifetime of an LTVS, we designed a multichannel laser-triggered vacuum switch (MLTVS) utilizing a cone-shaped target electrode placed on the cathode platform. The fabrication and testing of the MLTVS is described in this paper. Experimental results show that the working voltage of the MLTVS with a gap distance of 12 mm is from 30 V to 20 kV. The threshold energy for triggering the switch is 0.4 mJ corresponding to a peak power density ofmore » 27.9 MW/cm{sup 2}. The triggering lifetime of a spot can reach up to 18 000 shots. In addition, the relationship between triggering lifetime and target materials is analyzed using a field emission scanning electron microscope. A hypothesis of the vacuum gap’s triggering mechanism is discussed based on the measured results.« less

  13. Technical specification for vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaw, J.

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing andmore » designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)« less

  14. Acceleration of electron bunches by intense laser pulse in vacuum

    NASA Astrophysics Data System (ADS)

    Hua, J. F.; Ho, Y. K.; Lin, Y. Z.; Cao, N.

    2003-08-01

    This paper addresses the output characteristics of real electron bunches accelerated with ultra-intense laser pulse in vacuum by the capture & acceleration scenario (CAS) scheme (see, e.g., Phys. Rev. E66 (2002) 066501). Normally, the size of an electron bunch is much larger than that of a tightly focused and compressed laser pulse. We examine in detail the features of the intersection region, the distribution of electrons which can experience an intense laser field and be accelerated to high energy. Furthermore, the output properties of the accelerated CAS electrons, such as the energy spectra, the angular distributions, the energy-angle correlations, the acceleration gradient, the energy which can be reached with this scheme, the emittances of the outgoing electron bunches, and the dependence of the output properties on the incident electron beam qualities such as the emittance, focusing status, etc. were studied and explained. We found that with intense laser systems and electron beam technology currently available nowadays, the number of CAS electrons can reach 10 4-10 5, when the total number of incident electrons in the practical bunch reaches ˜10 8. These results demonstrate that CAS is promising to become a novel mechanism of vacuum laser accelerators.

  15. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palutke, S., E-mail: steffen.palutke@desy.de; Wurth, W.; Deutsches Elekronen Synchrotron

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emissionmore » process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators.« less

  16. Near-equipartition Jets with Log-parabola Electron Energy Distribution and the Blazar Spectral-index Diagrams

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.; Yan, Dahai; Zhang, Li; Finke, Justin D.; Lott, Benoit

    2015-08-01

    Fermi-LAT analyses show that the γ-ray photon spectral indices {{{Γ }}}γ of a large sample of blazars correlate with the ν {F}ν peak synchrotron frequency {ν }s according to the relation {{{Γ }}}γ =d-k{log} {ν }s. The same function, with different constants d and k, also describes the relationship between {{{Γ }}}γ and peak Compton frequency {ν }{{C}}. This behavior is derived analytically using an equipartition blazar model with a log-parabola description of the electron energy distribution (EED). In the Thomson regime, k={k}{EC}=3b/4 for external Compton (EC) processes and k={k}{SSC}=9b/16 for synchrotron self-Compton (SSC) processes, where b is the log-parabola width parameter of the EED. The BL Lac object Mrk 501 is fit with a synchrotron/SSC model given by the log-parabola EED, and is best fit away from equipartition. Corrections are made to the spectral-index diagrams for a low-energy power-law EED and departures from equipartition, as constrained by absolute jet power. Analytic expressions are compared with numerical values derived from self-Compton and EC scattered γ-ray spectra from Lyα broad-line region and IR target photons. The {{{Γ }}}γ versus {ν }s behavior in the model depends strongly on b, with progressively and predictably weaker dependences on γ-ray detection range, variability time, and isotropic γ-ray luminosity. Implications for blazar unification and blazars as ultra-high energy cosmic-ray sources are discussed. Arguments by Ghisellini et al. that the jet power exceeds the accretion luminosity depend on the doubtful assumption that we are viewing at the Doppler angle.

  17. Production of primordial gravitational waves in a simple class of running vacuum cosmologies

    NASA Astrophysics Data System (ADS)

    Tamayo, D. A.; Lima, J. A. S.; Bessada, D. F. A.

    The problem of cosmological production of gravitational waves (GWs) is discussed in the framework of an expanding, spatially homogeneous and isotropic FRW type universe with time-evolving vacuum energy density. The GW equation is established and its modified time-dependent part is analytically resolved for different epochs in the case of a flat geometry. Unlike the standard ΛCDM cosmology (no interacting vacuum), we show that GWs are produced in the radiation era even in the context of general relativity. We also show that for all values of the free parameter, the high frequency modes are damped out even faster than in the standard cosmology both in the radiation and matter-vacuum dominated epoch. The formation of the stochastic background of gravitons and the remnant power spectrum generated at different cosmological eras are also explicitly evaluated. It is argued that measurements of the CMB polarization (B-modes) and its comparison with the rigid ΛCDM model plus the inflationary paradigm may become a crucial test for dynamical dark energy models in the near future.

  18. Element-specific spectral imaging of multiple contrast agents: a phantom study

    NASA Astrophysics Data System (ADS)

    Panta, R. K.; Bell, S. T.; Healy, J. L.; Aamir, R.; Bateman, C. J.; Moghiseh, M.; Butler, A. P. H.; Anderson, N. G.

    2018-02-01

    This work demonstrates the feasibility of simultaneous discrimination of multiple contrast agents based on their element-specific and energy-dependent X-ray attenuation properties using a pre-clinical photon-counting spectral CT. We used a photon-counting based pre-clinical spectral CT scanner with four energy thresholds to measure the X-ray attenuation properties of various concentrations of iodine (9, 18 and 36 mg/ml), gadolinium (2, 4 and 8 mg/ml) and gold (2, 4 and 8 mg/ml) based contrast agents, calcium chloride (140 and 280 mg/ml) and water. We evaluated the spectral imaging performances of different energy threshold schemes between 25 to 82 keV at 118 kVp, based on K-factor and signal-to-noise ratio and ranked them. K-factor was defined as the X-ray attenuation in the K-edge containing energy range divided by the X-ray attenuation in the preceding energy range, expressed as a percentage. We evaluated the effectiveness of the optimised energy selection to discriminate all three contrast agents in a phantom of 33 mm diameter. A photon-counting spectral CT using four energy thresholds of 27, 33, 49 and 81 keV at 118 kVp simultaneously discriminated three contrast agents based on iodine, gadolinium and gold at various concentrations using their K-edge and energy-dependent X-ray attenuation features in a single scan. A ranking method to evaluate spectral imaging performance enabled energy thresholds to be optimised to discriminate iodine, gadolinium and gold contrast agents in a single spectral CT scan. Simultaneous discrimination of multiple contrast agents in a single scan is likely to open up new possibilities of improving the accuracy of disease diagnosis by simultaneously imaging multiple bio-markers each labelled with a nano-contrast agent.

  19. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  20. Ejector/liquid ring pump provides <0. 30 mm Hg vacuum for polymerization vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, A.; Gaines, A.

    1982-03-01

    Firestone Fibers and Textiles Company, a division of Firestone Tire and Rubber Company, manufactures tire and industrial yarns of polyester and nylon-6. Nylon-6 molding and extrusion resins are also produced at the plant in Hopewell, Virginia. The process for making polyester requires an extremely low vacuum on the polymerization reactor. A consistent polymerization vessel vacuum of 0.3 mm Hg is needed, but the existing vacuum source, a five-stage steam jet ejector, could only provide a 0.5 mm Hg level. Two options were considered when the company decided to replace the original system with a system designed for 0.15 mm Hgmore » with a non-condensible gas load of 10.8 lb/hr. A new five-stage jet ejector system to meet these requirements would use 1395 lb/hr of 100 psig steam. The other option was a hybrid vacuum source composed of a three-stage steam ejector system and a liquid ring vacuum pump that is more energy efficient than ejectors for low vacuum applications. The hybrid system was selected because the three-stage jet ejector would use only 1240 lb/hr of 100 psig steam. The liquid ring vacuum pump would increase the material and installation cost of the system by about $4000, but the savings in steam consumption would pay back the added cost in less than two years. The jet ejector/liquid ring vacuum pump system has provided both the capacity and the extremely low vacuum needed for the polyester polymerization vessel, after making a small modification. The hybrid vacuum source is reliable, requires only routine maintenance, and will contiue to save substantial amounts of steam each year compared to the five-stage steam jet ejector.« less

  1. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Śmiałek, M. A., E-mail: smialek@pg.gda.pl; Łabuda, M.; Guthmuller, J.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). Newmore » vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)« less

  2. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Singly Ionized Vanadium (V II)

    NASA Astrophysics Data System (ADS)

    Saloman, Edward B.; Kramida, Alexander

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V II, have been compiled. The experimentally derived energy levels belong to the configurations 3d 4, 3d 3 ns (n = 4, 5, 6), 3d 3 np, and 3d 3 nd (n = 4, 5), 3d 34f, 3d 24s 2, and 3d 24s4p. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g-factors and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm-1, corresponding to 14.634(7) eV. This is 130 cm-1 higher than the previously recommended value from Iglesias et al.

  3. Vacuum Surface Flashover Characteristics and Secondary Electron Emission Characteristics of Epoxy Resin and FRP Insulator

    NASA Astrophysics Data System (ADS)

    Yamano, Yasushi; Takahashi, Masahiro; Kobayashi, Shinichi; Hanada, Masaya; Ikeda, Yoshitaka

    Neutral beam injectors (NBI) used for JT-60 are required to generate negative ions of 500 keV energies. To produce such high-energy ions, the electrostatic accelerators consisting of 3-stage of electrodes and three insulator rings are applied. The insulators are made of Fiberglass Reinforced Plastic (FRP) which is composed of epoxy resin and glass fibers. The surface discharges along the insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP and epoxy resin insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for epoxy resin, FRP and Alumina samples under vacuum condition. In addition, the measurements of secondary electron emission (SEE) characteristics are also reported. These are important parameters to analyze surface discharge characteristics of insulators in vacuum.

  4. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James D.

    2016-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.

  5. Spacetime dynamics of a Higgs vacuum instability during inflation

    DOE PAGES

    East, William E.; Kearney, John; Shakya, Bibhushan; ...

    2017-01-31

    A remarkable prediction of the Standard Model is that, in the absence of corrections lifting the energy density, the Higgs potential becomes negative at large field values. If the Higgs field samples this part of the potential during inflation, the negative energy density may locally destabilize the spacetime. Here, we use numerical simulations of the Einstein equations to study the evolution of inflation-induced Higgs fluctuations as they grow towards the true (negative-energy) minimum. Our simulations show that forming a single patch of true vacuum in our past light cone during inflation is incompatible with the existence of our Universe; themore » boundary of the true vacuum region grows outward in a causally disconnected manner from the crunching interior, which forms a black hole. We also find that these black hole horizons may be arbitrarily elongated—even forming black strings—in violation of the hoop conjecture. Furthermore, by extending the numerical solution of the Fokker-Planck equation to the exponentially suppressed tails of the field distribution at large field values, we derive a rigorous correlation between a future measurement of the tensor-to-scalar ratio and the scale at which the Higgs potential must receive stabilizing corrections in order for the Universe to have survived inflation until today.« less

  6. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  7. Steep Decay Phase Shaped by the Curvature Effect. II. Spectral Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Da-Bin; Mu, Hui-Jun; Lu, Rui-Jing

    We derive a simple analytical formula to describe the evolution of spectral index β in the steep decay phase shaped by the curvature effect with the assumption that the spectral parameters and Lorentz factor of the jet shell are the same for different latitudes. Here, the value of β is estimated in the 0.3−10 keV energy band. For a spherical thin shell with a cutoff power-law (CPL) intrinsic radiation spectrum, the spectral evolution can be read as a linear function of observer time. For the situation with the Band function intrinsic radiation spectrum, the spectral evolution may be complex. Ifmore » the observed break energy of the radiation spectrum is larger than 10 keV, the spectral evolution is the same as that shaped by jet shells with a CPL spectrum. If the observed break energy is less than 0.3 keV, the value of β would be a constant. For others, the spectral evolution can be approximated as a logarithmal function of the observer time in general.« less

  8. Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Williams, D. J.; Mitchell, D. G.; Frank, L. A.; Huang, C. Y.

    1989-01-01

    The spectral characteristics of plasma-sheet ion and electron populations during periods of low geomagnetic activity were determined from the analysis of 127 one-hour average samples of central plasma sheet ions and electrons. Particle data from the ISEE-1 low-energy proton and electron differential energy analyzer and medium-energy particle instrument were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances above 12 earth radii. The relationships between the ion and electron spectral shapes and between the spectral shapes and the geomagnetic activity index were statistically investigated. It was found that the presence of interplanetary particle fluxes does not affect the plasma sheet particle spectral shape.

  9. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  10. Constructing the spectral web of rotating plasmas

    NASA Astrophysics Data System (ADS)

    Goedbloed, Hans

    2012-10-01

    Rotating plasmas are ubiquitous in nature. The theory of MHD stability of such plasmas, initiated a long time ago, has severely suffered from the wide spread misunderstanding that it necessarily involves non-self-adjoint operators. It has been shown (J.P. Goedbloed, PPCF 16, 074001, 2011; Goedbloed, Keppens and Poedts, Advanced Magnetohydrodynamics, Cambridge, 2010) that, on the contrary, spectral theory of moving plasmas can be constructed entirely on the basis of energy conservation and self-adjointness of the occurring operators. The spectral web is a further development along this line. It involves the construction of a network of curves in the complex omega-plane associated with the complex complementary energy, which is the energy needed to maintain harmonic time dependence in an open system. Vanishing of that energy, at the intersections of the mentioned curves, yields the eigenvalues of the closed system. This permits to consider the enormous diversity of MHD instabilities of rotating tokamaks, accretion disks about compact objects, and jets emitted from those objects, from a single view point. This will be illustrated with results obtained with a new spectral code (ROC).

  11. A gamma-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model.

    PubMed

    González, M M; Dingus, B L; Kaneko, Y; Preece, R D; Dermer, C D; Briggs, M S

    2003-08-14

    Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.

  12. Resolution of isomeric new designer stimulants using gas chromatography - Vacuum ultraviolet spectroscopy and theoretical computations.

    PubMed

    Skultety, Ludovit; Frycak, Petr; Qiu, Changling; Smuts, Jonathan; Shear-Laude, Lindsey; Lemr, Karel; Mao, James X; Kroll, Peter; Schug, Kevin A; Szewczak, Angelica; Vaught, Cory; Lurie, Ira; Havlicek, Vladimir

    2017-06-08

    Distinguishing isomeric representatives of "bath salts", "plant food", "spice", or "legal high" remains a challenge for analytical chemistry. In this work, we used vacuum ultraviolet spectroscopy combined with gas chromatography to address this issue on a set of forty-three designer drugs. All compounds, including many isomers, returned differentiable vacuum ultraviolet/ultraviolet spectra. The pair of 3- and 4-fluoromethcathinones (m/z 181.0903), as well as the methoxetamine/meperidine/ethylphenidate (m/z 247.1572) triad, provided very distinctive vacuum ultraviolet spectral features. On the contrary, spectra of 4-methylethcathinone, 4-ethylmethcathinone, 3,4-dimethylmethcathinone triad (m/z 191.1310) displayed much higher similarities. Their resolution was possible only if pure standards were probed. A similar situation occurred with the ethylone and butylone pair (m/z 221.1052). On the other hand, majority of forty-three drugs was successfully separated by gas chromatography. The detection limits for all the drug standards were in the 2-4 ng range (on-column amount), which is sufficient for determinations of seized drugs during forensics analysis. Further, state-of-the-art time-dependent density functional theory was evaluated for computation of theoretical absorption spectra in the 125-240 nm range as a complementary tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Switching Circuit for Shop Vacuum System

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1987-01-01

    No internal connections to machine tools required. Switching circuit controls vacuum system draws debris from grinders and sanders in machine shop. Circuit automatically turns on vacuum system whenever at least one sander or grinder operating. Debris safely removed, even when operator neglects to turn on vacuum system manually. Pickup coils sense alternating magnetic fields just outside operating machines. Signal from any coil or combination of coils causes vacuum system to be turned on.

  14. Spectral energy distribution of M-subdwarfs: A study of their atmospheric properties

    NASA Astrophysics Data System (ADS)

    Rajpurohit, A. S.; Reylé, C.; Allard, F.; Homeier, D.; Bayo, A.; Mousis, O.; Rajpurohit, S.; Fernández-Trincado, J. G.

    2016-11-01

    Context. M-type subdwarfs are metal-poor low-mass stars and are probes for the old populations in our Galaxy. Accurate knowledge of their atmospheric parameters and especially their composition is essential for understanding the chemical history of our Galaxy. Aims: The purpose of this work is to perform a detailed study of M-subdwarf spectra covering the full wavelength range from the optical to the near-infrared. It allows us to perform a more detailed analysis of the atmospheric composition in order to determine the stellar parameters, and to constrain the atmospheric models. The study will allow us to further understand physical and chemical processes such as increasing condensation of gas into dust, to point out the missing continuum opacities, and to see how the main band features are reproduced by the models. The spectral resolution and the large wavelength coverage used is a unique combination that can constrain the processes that occur in a cool atmosphere. Methods: We obtained medium-resolution spectra (R = 5000-7000) over the wavelength range 0.3-2.5 μm of ten M-type subdwarfs with X-shooter at VLT. These data constitute a unique atlas of M-subdwarfs from optical to near-infrared. We performed a spectral synthesis analysis using a full grid of synthetic spectra computed from BT-Settl models and obtained consistent stellar parameters such as effective temperature, surface gravity, and metallicity. Results: We show that state-of the-art atmospheric models correctly represent the overall shape of their spectral energy distribution, as well as atomic and molecular line profiles both in the optical and near-infrared. We find that the actual fitted gravities of almost all our sample are consistent with old objects, except for LHS 73 where it is found to be surprisingly low. Based on observations made with the ESO Very Large Telescope at the Paranal Observatory under programme 092.D-0600(A).

  15. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  16. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  17. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  18. Computational Simulation of Vibrational Overtone Spectral Regions: Sarin

    DTIC Science & Technology

    2006-12-01

    level have been used to determine the vapour phase local mode parameters, [ and Dx, for each oscillator in the two spectrally significant conformers...approach to spectral simulation reported herein should be undertaken by acquiring the experimental spectral regions of several CWAs in the vapour and liquid...33 viii DRDC Suffield TR 2006-220 List of figures Figure 1: The vapour phase structures of the three lowest energy conformers of sarin, calculated

  19. Apparatus and system for multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2003-06-24

    An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

  20. Cosmological implications of quantum mechanics parametrization of dark energy

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof

    2017-08-01

    We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.

  1. Aluminum/vacuum multilayer configuration for spatial high-energy electron shielding via electron return effects induced by magnetic field.

    PubMed

    Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da

    2017-06-26

    Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.

  2. Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe

    2017-06-01

    After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.

  3. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1980-01-01

    A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.

  4. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  5. Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation

    NASA Astrophysics Data System (ADS)

    Phillips, Nicholas G.; Hu, B. L.

    2000-10-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.

  6. Investigation of Dielectric Breakdown Characteristics for Double-break Vacuum Interrupter and Dielectric Breakdown Probability Distribution in Vacuum Interrupter

    NASA Astrophysics Data System (ADS)

    Shioiri, Tetsu; Asari, Naoki; Sato, Junichi; Sasage, Kosuke; Yokokura, Kunio; Homma, Mitsutaka; Suzuki, Katsumi

    To investigate the reliability of equipment of vacuum insulation, a study was carried out to clarify breakdown probability distributions in vacuum gap. Further, a double-break vacuum circuit breaker was investigated for breakdown probability distribution. The test results show that the breakdown probability distribution of the vacuum gap can be represented by a Weibull distribution using a location parameter, which shows the voltage that permits a zero breakdown probability. The location parameter obtained from Weibull plot depends on electrode area. The shape parameter obtained from Weibull plot of vacuum gap was 10∼14, and is constant irrespective non-uniform field factor. The breakdown probability distribution after no-load switching can be represented by Weibull distribution using a location parameter. The shape parameter after no-load switching was 6∼8.5, and is constant, irrespective of gap length. This indicates that the scatter of breakdown voltage was increased by no-load switching. If the vacuum circuit breaker uses a double break, breakdown probability at low voltage becomes lower than single-break probability. Although potential distribution is a concern in the double-break vacuum cuicuit breaker, its insulation reliability is better than that of the single-break vacuum interrupter even if the bias of the vacuum interrupter's sharing voltage is taken into account.

  7. Investigation of the cylindrical vacuum hohlraum energy in the first implosion experiment at the SGIII laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Huasen; Jiang, Wei; Ge, Fengjun; Song, Peng; Zou, Shiyang; Huang, Tianxuan; Li, Sanwei; Yang, Dong; Li, Zhichao; Hou, Lifei; Guo, Liang; Che, Xingsen; Du, Huabing; Xie, Xufei; He, Xiaoan; Li, Chaoguang; Zha, Weiyi; Xu, Tao; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Chen, Zhongjing; Zhang, Xing; Yan, Ji; Pu, Yudong; Peng, Xiaoshi; Li, Yulong; Gu, Peijun; Zheng, Wudi; Liu, Jie; Ding, Yongkun; Zhu, Shaoping

    2018-02-01

    The cylindrical vacuum hohlraum energy at the SGIII laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007) and W. Zheng et al., High Power Laser Sci. Eng. 4, e21 (2016)] is investigated for the first time. The hohlraum size and the laser energy are intermediate between the Nova and NIF typical hohlraum experiments. It is found that the SGIII hohlraum exhibits an x-ray conversion efficiency of about 85%, which is more close to that of the NIF hohlraum. The LARED simulations of the SGIII hohlraum underestimate about 15% of the radiation flux measured from the laser entrance hole, while the capsule radiation drive inferred from the x-ray bangtime is roughly consistent with the experiments. The underestimation of the SGIII hohlraum radiation flux is mainly caused by the more enclosed laser entrance hole in the LARED simulation. The comparison between the SGIII and NIF hohlraum simulations by LARED indicates that the LARED generally underestimates the measured radiation flux by 15% for the high x-ray conversion efficiency hohlraums, while it can roughly predict the capsule radiation drive inside the hohlraum.

  8. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  9. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  10. Spectral purity study for IPDA lidar measurement of CO2

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Liu, Dong; Xie, Chen-Bo; Tan, Min; Deng, Qian; Xu, Ji-Wei; Tian, Xiao-Min; Wang, Zhen-Zhu; Wang, Bang-Xin; Wang, Ying-Jian

    2018-02-01

    A high sensitivity and global covered observation of carbon dioxide (CO2) is expected by space-borne integrated path differential absorption (IPDA) lidar which has been designed as the next generation measurement. The stringent precision of space-borne CO2 data, for example 1ppm or better, is required to address the largest number of carbon cycle science questions. Spectral purity, which is defined as the ratio of effective absorbed energy to the total energy transmitted, is one of the most important system parameters of IPDA lidar which directly influences the precision of CO2. Due to the column averaged dry air mixing ratio of CO2 is inferred from comparison of the two echo pulse signals, the laser output usually accompanied by an unexpected spectrally broadband background radiation would posing significant systematic error. In this study, the spectral energy density line shape and spectral impurity line shape are modeled as Lorentz line shape for the simulation, and the latter is assumed as an unabsorbed component by CO2. An error equation is deduced according to IPDA detecting theory for calculating the system error caused by spectral impurity. For a spectral purity of 99%, the induced error could reach up to 8.97 ppm.

  11. Primordial perturbations in a rainbow universe with running Newton constant

    NASA Astrophysics Data System (ADS)

    Brighenti, Francesco; Gubitosi, Giulia; Magueijo, Joao

    2017-03-01

    We compute the spectral index of primordial perturbations in a rainbow universe. We allow the Newton constant G to run at (super-) Planckian energies and we consider both vacuum and thermal perturbations. If the rainbow metric is the one associated to a generalized Horava-Lifshitz dispersion relation, we find that only when G tends asymptotically to 0 can one match the observed value of the spectral index and solve the horizon problem, both for vacuum and thermal perturbations. For vacuum fluctuations the observational constraints imply that the primordial universe expansion can be both accelerating or decelerating, while in the case of thermal perturbations only decelerating expansion is allowed.

  12. Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, E.; Gomoiu, I.; Kollia, Z.; Cefalas, A. C.

    2011-01-01

    This work is a part of ESA/EU SURE project aiming to quantify the survival probability of fungal spores in space under solar irradiation in the vacuum ultraviolet (VUV) (110-180 nm) spectral region. The contribution and impact of VUV photons, vacuum, low temperature and their synergies on the survival probability of Aspergillus terreus spores is measured at simulated space conditions on Earth. To simulate the solar VUV irradiation, the spores are irradiated with a continuous discharge VUV hydrogen photon source and a molecular fluorine laser, at low and high photon intensities at 10 15 photon m -2 s -1 and 3.9×10 27 photons pulse -1 m -2 s -1, respectively. The survival probability of spores is independent from the intensity and the fluence of photons, within certain limits, in agreement with previous studies. The spores are shielded from a thin carbon layer, which is formed quickly on the external surface of the proteinaceous membrane at higher photon intensities at the start of the VUV irradiation. Extrapolating the results in space conditions, for an interplanetary direct transfer orbit from Mars to Earth, the spores will be irradiated with 3.3×10 21 solar VUV photons m -2. This photon fluence is equivalent to the irradiation of spores on Earth with 54 laser pulses with an experimental ˜92% survival probability, disregarding the contribution of space vacuum and low temperature, or to continuous solar VUV irradiation for 38 days in space near the Earth with an extrapolated ˜61% survival probability. The experimental results indicate that the damage of spores is mainly from the dehydration stress in vacuum. The high survival probability after 4 days in vacuum (˜34%) is due to the exudation of proteins on the external membrane, thus preventing further dehydration of spores. In addition, the survival probability is increasing to ˜54% at 10 K with 0.12 K/s cooling and heating rates.

  13. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  14. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  15. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS).

    PubMed

    Xu, Linfeng; Lee, Hun; Jetta, Deekshitha; Oh, Kwang W

    2015-10-21

    Suitable pumping methods for flow control remain a major technical hurdle in the path of biomedical microfluidic systems for point-of-care (POC) diagnostics. A vacuum-driven power-free micropumping method provides a promising solution to such a challenge. In this review, we focus on vacuum-driven power-free microfluidics based on the gas solubility or permeability of polydimethylsiloxane (PDMS); degassed PDMS can restore air inside itself due to its high gas solubility or gas permeable nature. PDMS allows the transfer of air into a vacuum through it due to its high gas permeability. Therefore, it is possible to store or transfer air into or through the gas soluble or permeable PDMS in order to withdraw liquids into the embedded dead-end microfluidic channels. This article provides a comprehensive look at the physics of the gas solubility and permeability of PDMS, a systematic review of different types of vacuum-driven power-free microfluidics, and guidelines for designing solubility-based or permeability-based PDMS devices, alongside existing applications. Advanced topics and the outlook in using micropumping that utilizes the gas solubility or permeability of PDMS will be also discussed. We strongly recommend that microfluidics and lab-on-chip (LOC) communities harness vacuum energy to develop smart vacuum-driven microfluidic systems.

  16. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...

  17. A generalized analytical model for radiative transfer in vacuum thermal insulation of space vehicles

    NASA Astrophysics Data System (ADS)

    Krainova, Irina V.; Dombrovsky, Leonid A.; Nenarokomov, Aleksey V.; Budnik, Sergey A.; Titov, Dmitry M.; Alifanov, Oleg M.

    2017-08-01

    The previously developed spectral model for radiative transfer in vacuum thermal insulation of space vehicles is generalized to take into account possible thermal contact between a fibrous spacer and one of the neighboring aluminum foil layers. An approximate analytical solution based on slightly modified two-flux approximation for radiative transfer in a semi-transparent fibrous spacer is derived. It was shown that thermal contact between the spacer and adjacent foil may decrease significantly the quality of thermal insulation because of an increase in radiative flux to/from the opposite aluminum foil. Theoretical predictions are confirmed by comparison with new results of laboratory experiments.

  18. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  19. Gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, Ram C.

    This dissertation describes the propagation of near atmospheric nitrogen gas that rushes into a liquid helium cooled vacuum tube after the tube suddenly loses vacuum. The loss-of-vacuum scenario resembles accidental venting of atmospheric air to the beam-line of a superconducting radio frequency particle accelerator and is investigated to understand how in the presence of condensation, the in-flowing air will propagate in such geometry. In a series of controlled experiments, room temperature nitrogen gas (a substitute for air) at a variety of mass flow rates was vented to a high vacuum tube immersed in a bath of liquid helium. Pressure probes and thermometers installed on the tube along its length measured respectively the tube pressure and tube wall temperature rise due to gas flooding and condensation. At high mass in-flow rates a gas front propagated down the vacuum tube but with a continuously decreasing speed. Regression analysis of the measured front arrival times indicates that the speed decreases nearly exponentially with the travel length. At low enough mass in-flow rates, no front propagated in the vacuum tube. Instead, the in-flowing gas steadily condensed over a short section of the tube near its entrance and the front appeared to `freeze-out'. An analytical expression is derived for gas front propagation speed in a vacuum tube in the presence of condensation. The analytical model qualitatively explains the front deceleration and flow freeze-out. The model is then simplified and supplemented with condensation heat/mass transfer data to again find the front to decelerate exponentially while going away from the tube entrance. Within the experimental and procedural uncertainty, the exponential decay length-scales obtained from the front arrival time regression and from the simplified model agree.

  20. Developing a vacuum cooking equipment prototype to produce strawberry jam and optimization of vacuum cooking conditions.

    PubMed

    Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen

    2018-01-01

    Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.

  1. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a.... (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...

  2. Analysis of Fe V and Ni V Wavelength Standards in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ward, Jacob Wolfgang; Nave, Gillian

    2015-01-01

    The recent publication[1] by J.C. Berengut et al. tests for a potential variation in the fine-structure constant in the presence of high gravitational potentials through spectral analysis of white-dwarf stars.The spectrum of the white-dwarf star studied in the paper, G191-B2B, has prominent Fe V and Ni V lines, which were used to determine any variation in the fine-structure constant via observed shifts in the wavelengths of Fe V and Ni V in the vacuum ultraviolet region. The results of the paper indicate no such variation, but suggest that refined laboratory values for the observed wavelengths could greatly reduce the uncertainty associated with the paper's findings.An investigation of Fe V and Ni V spectra in the vacuum ultraviolet region has been conducted to reduce wavelength uncertainties currently limiting modern astrophysical studies of this nature. The analyzed spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy, at peak currents of 750-2000 A. The use of invar ensures that systematic errors in the calibration are common to both species. The spectra were recorded with the NIST Normal Incidence Vacuum Spectrograph on phosphor image plate and photographic plate detectors. Calibration was done with a Pt II spectrum produced by a Platinum Neon Hollow Cathode lamp.[1] J. C. Berengut, V. V. Flambaum, A. Ong, et al Phys. Rev. Lett. 111, 010801 (2013)

  3. Visible spectral imager for occultation and nightglow (VISION) for the PICASSO Mission

    NASA Astrophysics Data System (ADS)

    Saari, Heikki; Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe; Dekemper, Emmanuel; Vanhellemont, Filip

    2015-10-01

    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT, Clyde Space Ltd. (UK), and the Centre Spatial de Liège (BE). VTT Technical Research Centre of Finland Ltd. will deliver the Visible Spectral Imager for Occultation and Nightglow (VISION) for the PICASSO mission. The VISION targets primarily the observation of the Earth's atmospheric limb during orbital Sun occultation. By assessing the radiation absorption in the Chappuis band for different tangent altitudes, the vertical profile of the ozone is retrieved. A secondary objective is to measure the deformation of the solar disk so that stratospheric and mesospheric temperature profiles are retrieved by inversion of the refractive raytracing problem. Finally, occasional full spectral observations of polar auroras are also foreseen. The VISION design realized with commercial of the shelf (CoTS) parts is described. The VISION instrument is small, lightweight (~500 g), Piezo-actuated Fabry-Perot Interferometer (PFPI) tunable spectral imager operating in the visible and near-infrared (430 - 800 nm). The spectral resolution over the whole wavelength range will be better than 10 nm @ FWHM. VISION has is 2.5° x 2.5° total field of view and it delivers maximum 2048 x 2048 pixel spectral images. The sun image size is around 0.5° i.e. ~500 pixels. To enable fast spectral data image acquisition VISION can be operated with programmable image sizes. VTT has previously developed PFPI tunable filter based AaSI Spectral Imager for the Aalto-1 Finnish CubeSat. In VISION the requirements of the spectral resolution and stability are tighter than in AaSI. Therefore the optimization of the of the PFPI gap control loop for the operating temperature range and vacuum conditions has to be improved. VISION optical, mechanical and electrical design is described.

  4. IRAS observations of the Rho Ophiuchi infrared cluster - Spectral energy distributions and luminosity function

    NASA Technical Reports Server (NTRS)

    Wilking, Bruce A.; Lada, Charles J.; Young, Eric T.

    1989-01-01

    High-sensitivity IRAS coadded survey data, coupled with new high-sensitivity near-IR observations, are used to investigate the nature of embedded objects over an 4.3-sq-pc area comprising the central star-forming cloud of the Ophiuchi molecular complex; the area encompasses the central cloud of the Rho Ophiuchi complex and includes the core region. Seventy-eight members of the embedded cluster were identified; spectral energy distributions were constructed for 53 objects and were compared with theoretical models to gain insight into their evolutionary status. Bolometric luminosities could be estimated for nearly all of the association members, leading to a revised luminosity function for this dust-embedded cluster.

  5. The spectral energy distributions of isolated neutron stars in the resonant cyclotron scattering model

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Xu, Renxin

    2013-03-01

    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.

  6. Vacuum status-display and sector-conditioning programs

    NASA Astrophysics Data System (ADS)

    Skelly, J.; Yen, S.

    1990-08-01

    Two programs have been developed for observation and control of the AGS vacuum system, which include the following notable features: (1) they incorporate a graphical user interface and (2) they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The status-display program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks and posts a graphical display of their status. The sector-conditioning program likewise invites sector selection, produces the same status display and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending several hours. As additional devices are installed in the vacuum system, the devices are added to the relational database; these programs then automatically include the new devices.

  7. Coupling of laser energy into plasma channels

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-04-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  8. Spectral and spread-spectral teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  9. First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Hohenberger, M.; Jones, O. S.; Kyrala, G.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D. N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Herrmann, H. W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Volegov, P. L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O. L.; Hsing, W.; Edwards, M. J.

    2015-05-01

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ˜3.5 ) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 ×1015 neutrons, with 20% calculated alpha heating at convergence ˜27 × .

  10. First high-convergence cryogenic implosion in a near-vacuum hohlraum

    DOE PAGES

    Berzak Hopkins, L.  F.; Meezan, N.  B.; Le Pape, S.; ...

    2015-04-29

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated inmore » a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.« less

  11. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  12. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J. H.; Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets withmore » a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.« less

  13. Arsenic interactions with a fullerene-like BN cage in the vacuum and aqueous phase.

    PubMed

    Beheshtian, Javad; Peyghan, Ali Ahmadi; Bagheri, Zargham

    2013-02-01

    Adsorption of arsenic ions, As (III and V), on the surface of fullerene-like B(12)N(12) cage has been explored in vacuum and aqueous phase using density functional theory in terms of Gibbs free energies, enthalpies, geometry, and density of state analysis. It was found that these ions can be strongly chemisorbed on the surface of the cluster in both vacuum and aqueous phase, resulting in significant changes in its electronic properties so that the cluster transforms from a semi-insulator to a semiconductor. The solvent significantly affects the geometry parameters and electronic properties of the As/B(12)N(12) complexes and the interaction between components is considerably weaker in the aqueous phase than that in the vacuum.

  14. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  15. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yurui; Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, Göteborg, SE 41296; Zhang, Zhenglong

    2016-03-15

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10{sup −7} Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 ×more » 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.« less

  16. GAS EXCHANGE OF ALGAE. I. EFFECTS OF TIME, LIGHT INTENSITY, AND SPECTRAL-ENERGY DISTRIBUTION ON THE PHOTOSYNTHETIC QUOTIENT OF CHLORELLA PYRENOIDOSA.

    PubMed

    AMMANN, E C; LYNCH, V H

    1965-07-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO(2)/O(2)) and O(2) values during 6 months of observations. The PQ for the entire study was 0.90 +/- 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O(2) production (0.90 +/- 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 +/- 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O(2) values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use.

  17. The Problem of Spectral Mimicry of Supergiants

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Chentsov, E. L.

    2018-01-01

    The phenomenon of spectral mimicry refers to the fact that hypergiants and post-AGB supergiants—stars of different masses in fundamentally different stages of their evolution—have similar optical spectra, and also share certain other characteristics (unstable extended atmospheres, expanding dust-gas envelopes, high IR excesses). As a consequence, it is not always possible to distinguish post-AGB stars from hypergiants based on individual spectral observations in the optical. Examples of spectral mimicry are analyzed using uniform, high-quality spectral material obtained on the 6-m telescope of the Special Astrophysical Observatory in the course of long-term monitoring of high-luminosity stars. It is shown that unambiguously resolving the mimicry problem for individual stars requires the determination of a whole set of parameters: luminosity, wind parameters, spectral energy distribution, spectral features, velocity field in the atmosphere and circumstellar medium, behavior of the parameters with time, and the chemical composition of the atmosphere.

  18. Time-resolved spectral investigations of laser light induced microplasma

    NASA Astrophysics Data System (ADS)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  19. General structure of fermion two-point function and its spectral representation in a hot magnetized medium

    NASA Astrophysics Data System (ADS)

    Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.

    2018-02-01

    We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.

  20. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; ...

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  1. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  2. Quantum vacuum noise in physics and cosmology.

    PubMed

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics.

  3. Quantum Field Energy Sensor based on the Casimir Effect

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    The Casimir effect converts vacuum fluctuations into a measurable force. Some new energy technologies aim to utilize these vacuum fluctuations in commonly used forms of energy like electricity or mechanical motion. In order to study these energy technologies it is helpful to have sensors for the energy density of vacuum fluctuations. In today's scientific instrumentation and scanning microscope technologies there are several common methods to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with silicon cantilevers, there are a large number of reports on the use of quartz tuning forks to get high-resolution force measurements or to create new force sensors. Both methods have certain advantages and disadvantages over the other. In this report the two methods are described and compared towards their usability for Casimir force measurements. Furthermore a design for a quantum field energy sensor based on the Casimir force measurement will be described. In addition some general considerations on extracting energy from vacuum fluctuations will be given.

  4. Wall-resolved spectral cascade-transport turbulence model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  5. Wall-resolved spectral cascade-transport turbulence model

    DOE PAGES

    Brown, C. S.; Shaver, D. R.; Lahey, R. T.; ...

    2017-07-08

    A spectral cascade-transport model has been developed and applied to turbulent channel flows (Reτ= 550, 950, and 2000 based on friction velocity, uτ ; or ReδΜ= 8,500; 14,800 and 31,000, based on the mean velocity and channel half-width). This model is an extension of a spectral model previously developed for homogeneous single and two-phase decay of isotropic turbulence and uniform shear flows; and a spectral turbulence model for wall-bounded flows without resolving the boundary layer. Data from direct numerical simulation (DNS) of turbulent channel flow was used to help develop this model and to assess its performance in the 1Dmore » direction across the channel width. The resultant spectral model is capable of predicting the mean velocity, turbulent kinetic energy and energy spectrum distributions for single-phase wall-bounded flows all the way to the wall, where the model source terms have been developed to account for the wall influence. We implemented the model into the 3D multiphase CFD code NPHASE-CMFD and the latest results are within reasonable error of the 1D predictions.« less

  6. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  7. Spectral function from Reduced Density Matrix Functional Theory

    NASA Astrophysics Data System (ADS)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  8. Vacuum phonon tunneling.

    PubMed

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  9. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... means of a suction cup attached to the scalp and is powered by an external vacuum source. This generic type of device may include the cup, hosing, vacuum source, and vacuum control. (b) Classification...

  10. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... means of a suction cup attached to the scalp and is powered by an external vacuum source. This generic type of device may include the cup, hosing, vacuum source, and vacuum control. (b) Classification...

  11. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  12. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    PubMed

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise.

  13. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  14. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  15. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-07-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  16. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  17. [Preparation and spectral analysis of a new type of blue light-emitting material delta-Alq3].

    PubMed

    Wang, Hua; Hao, Yu-ying; Gao, Zhi-xiang; Zhou, He-feng; Xu, Bing-she

    2006-10-01

    In the present article, delta-Alq3, a new type of blue light-emitting material, was synthesized and investigated by IR spectra, XRD spectra, UV-Vis absorption spectra, photoluminescence (PL) spectra, and electroluminescence (EL) spectra. The relationship between molecular spatial structure and spectral characteristics was studied by the spectral analysis of delta-Alq3 and alpha-Alq3. Results show that a new phase of Alq3 (delta-Alq3) can be obtained by vacuum heating alpha-Alq3, and the molecular spatial structure of alpha-Alq3 changes during the vacuum heating. The molecular spatial structure of delta-Alq3 lacks symmetry compared to alpha-Alq3. This transformation can reduce the electron cloud density on phenoxide of Alq3 and weaken the intermolecular conjugated interaction between adjacent Alq3 molecules. Hence, the pi--pi* electron transition absorption peak of delta-Alq3 shifts toward short wavelength in UV-Vis absorption spectra, and the maximum emission peak of delta-Alq3 (lamda max = 480 nm) blue-shifts by 35 nm compared with that of alpha-Alq3 (lamda max = 515 nm) in PL spectra. The maximum emission peaks of delta-Alq3 and alpha-Alq3 are all at 520 nm in EL spectra.

  18. Vacuum suppression of acousto-optic self-modulation in a broad-area Nd-doped yttrium-aluminum-garnet single-shot laser

    NASA Astrophysics Data System (ADS)

    Rus, M. Odín Soler; Cabrera-Granado, E.; Guerra Pérez, J. M.

    2013-07-01

    We report on the origin of an acousto-optic Raman-Nath self-modulation found in a broad-area Nd:YAG single-shot laser. Operating the laser device under vacuum conditions suppresses the spectral splitting associated with acousto-optic modulation by the shock waves produced by the discharge of the pumping flash lamps. This splitting is reproduced by a general class B laser model that takes into account the dynamical density grating generated by a stationary acoustic radial wave.

  19. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  20. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DOE PAGES

    Aatrokoski, J.

    2011-12-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativisticmore » jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.« less

  1. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Singly Ionized Vanadium (V ii)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saloman, Edward B.; Kramida, Alexander

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V ii, have been compiled. The experimentally derived energy levels belong to the configurations 3 d {sup 4}, 3 d {sup 3} ns ( n  = 4, 5, 6), 3 d {sup 3} np , and 3 d {sup 3} nd ( n  = 4, 5), 3 d {sup 3}4 f , 3 d {sup 2}4 s {sup 2}, and 3 d {sup 2}4 s 4 p . Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g -factorsmore » and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm{sup −1}, corresponding to 14.634(7) eV. This is 130 cm{sup −1} higher than the previously recommended value from Iglesias et al.« less

  2. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  3. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  4. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Permitted Tolerance for Conducting Radiative Tests E Table E-2 to Subpart E of Part 53 Protection of... Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance for...

  5. Troubleshooting crude vacuum tower overhead ejector systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, J.R.; Frens, L.L.

    1995-03-01

    Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, andmore » process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.« less

  6. Dual-Energy Contrast-Enhanced Spectral Mammography: Enhancement Analysis on BI-RADS 4 Non-Mass Microcalcifications in Screened Women.

    PubMed

    Cheung, Yun-Chung; Juan, Yu-Hsiang; Lin, Yu-Ching; Lo, Yung-Feng; Tsai, Hsiu-Pei; Ueng, Shir-Hwa; Chen, Shin-Cheh

    2016-01-01

    Mammography screening is a cost-efficient modality with high sensitivity for detecting impalpable cancer with microcalcifications, and results in reduced mortality rates. However, the probability of finding microcalcifications without associated cancerous masses varies. We retrospectively evaluated the diagnosis and cancer probability of the non-mass screened microcalcifications by dual-energy contrast-enhanced spectral mammography (DE-CESM). With ethical approval from our hospital, we enrolled the cases of DE-CESM for analysis under the following inclusion criteria: (1) referrals due to screened BI-RADS 4 microcalcifications; (2) having DE-CESM prior to stereotactic biopsy; (3) no associated mass found by sonography and physical examination; and (4) pathology-based diagnosis using stereotactic vacuum-assisted breast biopsy. We analyzed the added value of post-contrast enhancement on DE-CESM. A total of 94 biopsed lesions were available for analysis in our 87 women, yielding 27 cancers [19 ductal carcinoma in situ (DCIS), and 8 invasive ductal carcinoma (IDC)], 32 pre-malignant and 35 benign lesions. Of these 94 lesions, 33 showed associated enhancement in DE-CESM while the other 61 did not. All 8 IDC (100%) and 16 of 19 DCIS (84.21%) showed enhancement, but the other 3 DCIS (15.79%) did not. Overall sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 88.89%, 86.56%, 72.72%, 95.08% and 87.24%, respectively. The performances of DE-CESM on both amorphous and pleomorphic microcalcifications were satisfactory (AUC 0.8 and 0.92, respectively). The pleomorphous microcalcifications with enhancement showed higher positive predictive value (90.00% vs 46.15%, p = 0.013) and higher cancer probability than the amorphous microcalcifications (46.3% VS 15.1%). The Odds Ratio was 4.85 (95% CI: 1.84-12.82). DE-CESM might provide added value in assessing the non-mass screened breast microcalcification, with enhancement favorable to the

  7. Dual-Energy Contrast-Enhanced Spectral Mammography: Enhancement Analysis on BI-RADS 4 Non-Mass Microcalcifications in Screened Women

    PubMed Central

    Cheung, Yun-Chung; Juan, Yu-Hsiang; Lin, Yu-Ching; Lo, Yung-Feng; Tsai, Hsiu-Pei; Ueng, Shir-Hwa; Chen, Shin-Cheh

    2016-01-01

    Background Mammography screening is a cost-efficient modality with high sensitivity for detecting impalpable cancer with microcalcifications, and results in reduced mortality rates. However, the probability of finding microcalcifications without associated cancerous masses varies. We retrospectively evaluated the diagnosis and cancer probability of the non-mass screened microcalcifications by dual-energy contrast-enhanced spectral mammography (DE-CESM). Patients and Methods With ethical approval from our hospital, we enrolled the cases of DE-CESM for analysis under the following inclusion criteria: (1) referrals due to screened BI-RADS 4 microcalcifications; (2) having DE-CESM prior to stereotactic biopsy; (3) no associated mass found by sonography and physical examination; and (4) pathology-based diagnosis using stereotactic vacuum-assisted breast biopsy. We analyzed the added value of post-contrast enhancement on DE-CESM. Results A total of 94 biopsed lesions were available for analysis in our 87 women, yielding 27 cancers [19 ductal carcinoma in situ (DCIS), and 8 invasive ductal carcinoma (IDC)], 32 pre-malignant and 35 benign lesions. Of these 94 lesions, 33 showed associated enhancement in DE-CESM while the other 61 did not. All 8 IDC (100%) and 16 of 19 DCIS (84.21%) showed enhancement, but the other 3 DCIS (15.79%) did not. Overall sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 88.89%, 86.56%, 72.72%, 95.08% and 87.24%, respectively. The performances of DE-CESM on both amorphous and pleomorphic microcalcifications were satisfactory (AUC 0.8 and 0.92, respectively). The pleomorphous microcalcifications with enhancement showed higher positive predictive value (90.00% vs 46.15%, p = 0.013) and higher cancer probability than the amorphous microcalcifications (46.3% VS 15.1%). The Odds Ratio was 4.85 (95% CI: 1.84–12.82). Conclusion DE-CESM might provide added value in assessing the non-mass screened breast

  8. Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Fukuyama, T.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pearson, T. J.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Yang, Z.; Yatsu, Y.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi LAT Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; de Angelis, A.; De Cea del Pozo, E.; Delgado Mendez, C.; De Lotto, B.; De Maria, M.; De Sabata, F.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinovi, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, E.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, J.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, T.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L. O.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Chen, W. P.; Jordan, B.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; McBreen, B.; Larionov, V. M.; Lin, C. S.; Nikolashvili, M. G.; Reinthal, R.; Angelakis, E.; Capalbi, M.; Carramiñana, A.; Carrasco, L.; Cassaro, P.; Cesarini, A.; Falcone, A.; Gurwell, M. A.; Hovatta, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.; Krimm, H. A.; Lister, M. L.; Moody, J. W.; Maccaferri, G.; Mori, Y.; Nestoras, I.; Orlati, A.; Pace, C.; Pagani, C.; Pearson, R.; Perri, M.; Piner, B. G.; Ros, E.; Sadun, A. C.; Sakamoto, T.; Tammi, J.; Zook, A.

    2011-08-01

    We report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(> 0.3 GeV) = (7.23 ± 0.16) × 10-8 ph cm-2 s-1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  9. Data-driven spectral filters for decomposing the streamwise turbulent kinetic energy in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2017-11-01

    An organization in wall-bounded turbulence is evidenced by the classification of distinctly different flow structures, including large-scale motions such as hairpin packets and very large-scale motions or superstructures. In conjunction with less organized turbulence, these flow structures all contribute to the streamwise turbulent kinetic energy . Since different class structures comprise dissimilar scalings of their overlapping imprints in the streamwise velocity spectra, their coexistence complicates the interpretation of the wall-normal trend in and its Reynolds number dependence. Via coherence analyses of two-point data in boundary layers we derive spectral filters for stochastically decomposing the streamwise spectra into sub-components, representing different types of statistical flow structures. It is also explored how the decomposition reflects the spectral break-down following the modeling attempts of Perry et al. 1986 and Marusic & Perry 1995. In the process we reveal a universal wall-scaling for a portion of the outer-region turbulence that is coherent with the near-wall region for Reτ O(103) to O(106) , which is described as a wall-attached self-similar structure embedded within the logarithmic region.

  10. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  11. Sensitivity of hot-cathode ionization vacuum gages in several gases

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1972-01-01

    Four hot-cathode ionization vacuum gages were calibrated in 12 gases. The relative sensitivities of these gages were compared to several gas properties. Ionization cross section was the physical property which correlated best with gage sensitivity. The effects of gage accelerating voltage and ionization-cross-section energy level were analyzed. Recommendations for predicting gage sensitivity according to gage type were made.

  12. Successful Cleaning and Study of Contamination of Si(001) in Ultrahigh Vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheorghe, N. G.; Lungu, G. A.; Husanu, M. A.

    2011-10-03

    This paper presents the very first surface physics experiment performed in ultrahigh vacuum (UHV) in Romania, using a new molecular beam epitaxy (MBE) installation. Cleaning of a Si(001) wafer was achieved by using a very simple technique: sequences of annealing at 900-1000 deg. C in ultrahigh vacuum: low 10{sup -8} mbar, with a base pressure of 1.5x10{sup -10} mbar. The preparation procedure is quite reproducible and allows repeated cleaning of the Si(001) after contamination in ultrahigh vacuum. The Si(001) single crystal surface is characterized by low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopymore » (AES). The latter technique is utilized in order to investigate the sample contamination by the residual gas in the UHV chamber, as determined by a residual gas analyzer (RGA). Unambiguous assignment of oxidized and unoxidized silicon is provided; also, an important feature is that the LVV Auger peak at 90-92 eV cannot be solely attributed to clean Si (i.e. Si surrounded only by Si), but also to silicon atoms bounded with carbon. Even with a sum of partial pressures of oxygen and carbon containing molecules in the range of 5x10{sup -10} mbar, the sample is contaminated very quickly, having a (1/e) lifetime of about 76 minutes.« less

  13. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and maintained...

  14. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and maintained...

  15. Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Liao, Tianjun; Zhang, Yanchao

    2016-01-28

    A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gapmore » length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.« less

  16. Resolving the vacuum fluctuations of an optomechanical system using an artificial atom

    NASA Astrophysics Data System (ADS)

    Lecocq, F.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.

    2015-08-01

    Heisenberg’s uncertainty principle results in one of the strangest quantum behaviours: a mechanical oscillator can never truly be at rest. Even at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. However, direct energy detection of the oscillator in its ground state makes it seem motionless, and in linear position measurements detector noise can masquerade as mechanical fluctuations. Thus, how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. We monitor the photon/phonon-number distributions using a superconducting qubit, allowing us to resolve the quantum vacuum fluctuations of the macroscopic oscillator’s motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.

  17. Color Confinement and Screening in the θ Vacuum of QCD

    DOE PAGES

    Kharzeev, Dmitri E.; Levin, Eugene M.

    2015-06-16

    QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. In this paper, we propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a “glost.” We evaluate the glost propagator and find that it has the form G(p)=(p 2+χ top/p 2) -1 wheremore » χ top is the Yang-Mills topological susceptibility related to the η" mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ~χ top -1/4≃1 fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p 2>>√χtop, but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. In conclusion, our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.« less

  18. Color Confinement and Screening in the θ Vacuum of QCD.

    PubMed

    Kharzeev, Dmitri E; Levin, Eugene M

    2015-06-19

    QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. We propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a "glost." We evaluate the glost propagator and find that it has the form G(p)=(p(2)+χ(top)/p(2))(-1) where χ(top) is the Yang-Mills topological susceptibility related to the η' mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ∼χ(top)(-1/4)≃1  fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p(2)≫√[χ(top)], but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. Our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.

  19. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.

    PubMed

    Sawkey, D L; Faddegon, B A

    2009-03-01

    Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source

  20. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    NASA Astrophysics Data System (ADS)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  1. A TV-constrained decomposition method for spectral CT

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang

    2017-03-01

    Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.

  2. Spectral gamuts and spectral gamut mapping

    NASA Astrophysics Data System (ADS)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  3. Engineering Matter Interactions Using Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Zeytinoǧlu, Sina; Imamoǧlu, Ataç; Huber, Sebastian

    2017-04-01

    Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the vacuum fluctuations can be used to engineer the strength and the range of interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or wave guides, which modify the electromagnetic fluctuations. Here, we show theoretically that the enhanced fluctuations in the antisqueezed quadrature of a squeezed vacuum state allow for engineering interactions between electric dipoles without the need for a photonic structure. Thus, the strength and range of the interactions can be engineered in a time-dependent way by changing the spatial profile of the squeezed vacuum in a traveling-wave geometry, which also allows the implementation of chiral dissipative interactions. Using experimentally realized squeezing parameters and including realistic losses, we predict single-atom cooperativities C of up to 10 for the squeezed-vacuum-enhanced interactions.

  4. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  5. Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum

    NASA Astrophysics Data System (ADS)

    Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.

    2017-06-01

    Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.

  6. 7 CFR 305.29 - Vacuum heat treatment schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Vacuum heat treatment schedule. 305.29 Section 305.29... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.29 Vacuum heat treatment... vacuum at 8 hours. Maintain the vacuum until the end of the treatment. Gradually increase the temperature...

  7. [The evolution of vacuum extraction in obstetrics].

    PubMed

    Nikolov, A

    2010-01-01

    Vacuum extraction is one of the methods for assisted vaginal delivery. In this article the evolution of vacuum extraction in obstetrics is been discussed. Historical facts and data from the invention up to state-of-the-art vacuum systems in modern obstetrics are presented.

  8. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses

    PubMed Central

    Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania

    2015-01-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383

  9. Modeling the spectral energy distribution of the radio galaxy IC310

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Marinelli, A.; Galván-Gámez, A.; Aguilar-Ruiz, E.

    2017-03-01

    The radio galaxy IC310 located in the Perseus Cluster is one of the brightest objects in the radio and X-ray bands, and one of the closest active galactic nuclei observed in very-high energies. In GeV - TeV γ-rays, IC310 was detected in low and high flux states by the MAGIC telescopes from October 2009 to February 2010. Taking into account that the spectral energy distribution (SED) up to a few GeV seems to exhibit a double-peak feature and that a single-zone synchrotron self-Compton (SSC) model can explain all of the multiwavelength emission except for the non-simultaneous MAGIC emission, we interpret, in this work, the multifrequency data set of the radio galaxy IC310 in the context of homogeneous hadronic and leptonic models. In the leptonic framework, we present a multi-zone SSC model with two electron populations to explain the whole SED whereas for the hadronic model, we propose that a single-zone SSC model describes the SED up to a few GeVs and neutral pion decay products resulting from pγ interactions could describe the TeV - GeV γ-ray spectra. These interactions occur when Fermi-accelerated protons interact with the seed photons around the SSC peaks. We show that, in the leptonic model the minimum Lorentz factor of second electron population is exceedingly high γe ∼ 105 disfavoring this model, and in the hadronic model the required proton luminosity is not extremely high ∼1044 erg/s, provided that charge neutrality between the number of electrons and protons is given. Correlating the TeV γ-ray and neutrino spectra through photo-hadronic interactions, we find that the contribution of the emitting region of IC310 to the observed neutrino and ultra-high-energy cosmic ray fluxes are negligible.

  10. Gravitational baryogenesis in running vacuum models

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Pan, Supriya; Nunes, Rafael C.

    2017-08-01

    We study the gravitational baryogenesis mechanism for generating baryon asymmetry in the context of running vacuum models. Regardless of whether these models can produce a viable cosmological evolution, we demonstrate that they produce a nonzero baryon-to-entropy ratio even if the universe is filled with conformal matter. This is a sound difference between the running vacuum gravitational baryogenesis and the Einstein-Hilbert one, since in the latter case, the predicted baryon-to-entropy ratio is zero. We consider two well known and most used running vacuum models and show that the resulting baryon-to-entropy ratio is compatible with the observational data. Moreover, we also show that the mechanism of gravitational baryogenesis may constrain the running vacuum models.

  11. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.

    PubMed

    Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang

    2010-11-01

    In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  13. Electric Propulsion Laboratory Vacuum Chamber

    NASA Image and Video Library

    1964-06-21

    Engineer Paul Reader and his colleagues take environmental measurements during testing of a 20-inch diameter ion engine in a vacuum tank at the Electric Propulsion Laboratory (EPL). Researchers at the Lewis Research Center were investigating the use of a permanent-magnet circuit to create the magnetic field required power electron bombardment ion engines. Typical ion engines use a solenoid coil to create this magnetic field. It was thought that the substitution of a permanent magnet would create a comparable magnetic field with a lower weight. Testing of the magnet system in the EPL vacuum tanks revealed no significant operational problems. Reader found the weight of the two systems was similar, but that the thruster’s efficiency increased with the magnet. The EPL contained a series of large vacuum tanks that could be used to simulate conditions in space. Large vacuum pumps reduced the internal air pressure, and a refrigeration system created the cryogenic temperatures found in space.

  14. Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility.

    PubMed

    Shim, Hyun-Sub; Moon, Chang-Ki; Kim, Jihun; Wang, Chun-Kai; Sim, Bomi; Lin, Francis; Wong, Ken-Tsung; Seo, Yongsok; Kim, Jang-Joo

    2016-01-20

    The use of multiple donors in an active layer is an effective way to boost the efficiency of organic solar cells by broadening their absorption window. Here, we report an efficient vacuum-deposited ternary organic photovoltaic (OPV) using two donors, 2-((2-(5-(4-(diphenylamino)phenyl)thieno[3,2-b]thiophen-2-yl)thiazol-5-yl)methylene)malononitrile (DTTz) for visible absorption and 2-((7-(5-(dip-tolylamino)thiophen-2-yl)benzo[c]-[1,2,5]thiadiazol-4-yl)methylene)malononitrile (DTDCTB) for near-infrared absorption, codeposited with C70 in the ternary layer. The ternary device achieved a power conversion efficiency of 8.02%, which is 23% higher than that of binary OPVs. This enhancement is the result of incorporating two donors with complementary absorption covering wavelengths of 350 to 900 nm with higher hole mobility in the ternary layer than that of binary layers consisting of one donor and C70, combined with energy transfer from the donor with lower hole mobility (DTTz) to that with higher mobility (DTDCTB). This structure fulfills all the requirements for efficient ternary OPVs.

  15. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  16. Matter density perturbation and power spectrum in running vacuum model

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2017-01-01

    We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model, with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub-interaction and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behaviour as that in the Λ cold dark model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > (<)0 due to the couplings between radiation, matter and dark energy. It is clear that the observational data rule out the cases with ν < 0 and ν + σ < 0, while the allowed window for the model parameters is extremely narrow with ν , |σ | ≲ O(10^{-7}).

  17. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    PubMed Central

    Li, Zhengyang; Wu, Yanping; Meng, Xiandong; Zhang, Dongxu

    2018-01-01

    A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2), and O2) and vacuum conditions (1.05 and 1 × 10−4 Pa). Evolution of friction was assessed by coefficient of friction (COF) and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles. PMID:29659484

  18. Changes in CR-39 proton sensitivity due to prolonged exposure to high vacuums relevant to the National Ignition Facility and OMEGA.

    PubMed

    Manuel, M J-E; Rosenberg, M J; Sinenian, N; Rinderknecht, H; Zylstra, A B; Séguin, F H; Frenje, J; Li, C K; Petrasso, R D

    2011-09-01

    When used at facilities like OMEGA and the NIF, CR-39 is exposed to high vacuum environments before and after irradiation by charged particles and neutrons. Using an electrostatic linear accelerator at MIT, studies have been conducted to investigate the effects of high vacuum exposure on the sensitivity of CR-39 to fusion protons in the ~1-9 MeV energy range. High vacuum conditions, of order 10(-5) Torr, experienced by CR-39 samples at these facilities were emulated. It is shown that vacuum exposure times longer than ~16 h before proton irradiation result in a decrease in proton sensitivity, whereas no effect was observed for up to 67 h of vacuum exposure after proton irradiation. CR-39 sensitivity curves are presented for samples with prolonged exposure to high vacuum before and after proton irradiation. © 2011 American Institute of Physics

  19. Energy weighting improves dose efficiency in clinical practice: implementation on a spectral photon-counting mammography system

    PubMed Central

    Berglund, Johan; Johansson, Henrik; Lundqvist, Mats; Cederström, Björn; Fredenberg, Erik

    2014-01-01

    Abstract. In x-ray imaging, contrast information content varies with photon energy. It is, therefore, possible to improve image quality by weighting photons according to energy. We have implemented and evaluated so-called energy weighting on a commercially available spectral photon-counting mammography system. The technique was evaluated using computer simulations, phantom experiments, and analysis of screening mammograms. The CNR benefit of energy weighting for a number of relevant target-background combinations measured by the three methods fell in the range of 2.2 to 5.2% when using optimal weight factors. This translates to a potential dose reduction at constant CNR in the range of 4.5 to 11%. We expect the choice of weight factor in practical implementations to be straightforward because (1) the CNR improvement was not very sensitive to weight, (2) the optimal weight was similar for all investigated target-background combinations, (3) aluminum/PMMA phantoms were found to represent clinically relevant tasks well, and (4) the optimal weight could be calculated directly from pixel values in phantom images. Reasonable agreement was found between the simulations and phantom measurements. Manual measurements on microcalcifications and automatic image analysis confirmed that the CNR improvement was detectable in energy-weighted screening mammograms. PMID:26158045

  20. Vacuum energy density near static distorted black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Sanchez, N.

    1986-03-15

    We investigate the contribution of massless fields of spins 0, 1/2, and 1 to the vacuum polarization near the event horizon of static Ricci-flat space-times. We do not assume any particular spatial symmetry. Within the Page-Brown ''ansatz'' we calculate /sup ren/ and /sup ren/ near static distorted black holes, for both the Hartle-Hawking (Vertical Bar>/sub H/) and Boulware (Vertical Bar>/sub B/) vacua. Using Israel's description of static space-times, we express these quantities in an invariant geometric way. We obtain that /sub H//sup ren/ and /sub H//sup ren/ near the horizon depend only on the two-dimensional geometry of the horizon surface.more » We find /sub H//sup ren/ = (1/48..pi../sup 2/ )K/sub 0/, /sub H//sup ren/ = (7..cap alpha..+12..beta.. )K/sub 0/ /sup 2/-..cap alpha../sup(/sup 2/)..delta..K/sub 0/. $K sub 0: is the Gaussian curvature of the horizon, and ..cap alpha.. and ..beta.. are numerical coefficients depending on the spin of a field. The term in /sup(/sup 2/)..delta..K/sub 0/ is characteristic of the distortion of the black hole. When the event horizon is not distorted, K/sub 0/ is a constant and this term disappears.« less