Ultrahigh vacuum process for the deposition of nanotubes and nanowires
Das, Biswajit; Lee, Myung B
2015-02-03
A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.
Vacuum-isolation vessel and method for measurement of thermal noise in microphones
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Ngo, Kim Chi T. (Inventor)
1992-01-01
The vacuum isolation vessel and method in accordance with the present invention are used to accurately measure thermal noise in microphones. The apparatus and method could be used in a microphone calibration facility or any facility used for testing microphones. Thermal noise is measured to determine the minimum detectable sound pressure by the microphone. Conventional isolation apparatus and methods have been unable to provide an acoustically quiet and substantially vibration free environment for accurately measuring thermal noise. In the present invention, an isolation vessel assembly comprises a vacuum sealed outer vessel, a vacuum sealed inner vessel, and an interior suspension assembly coupled between the outer and inner vessels for suspending the inner vessel within the outer vessel. A noise measurement system records thermal noise data from the isolation vessel assembly. A vacuum system creates a vacuum between an internal surface of the outer vessel and an external surface of the inner vessel. The present invention thus provides an acoustically quiet environment due to the vacuum created between the inner and outer vessels and a substantially vibration free environment due to the suspension assembly suspending the inner vessel within the outer vessel. The thermal noise in the microphone, effectively isolated according to the invention, can be accurately measured.
Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.
Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu
2011-01-01
This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.
Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping
2013-12-01
Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment under vacuum environment.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Vacuum stability requirements of polymeric material for spacecraft application
NASA Technical Reports Server (NTRS)
Craig, J. W.
1984-01-01
The purpose of this document is to establish outgassing requirements and test guidelines for polymeric materials used in the space thermal/vacuum environment around sensitive optical or thermal control surfaces. The scope of this document covers the control of polymeric materials used near or adjacent to optical or thermal control surfaces that are exposed to the thermal/vacuum environment of space. This document establishes the requirements and defines the test method to evaluate polymeric materials used in the vicinity of these surfaces in space applications.
The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane
NASA Astrophysics Data System (ADS)
Sharma, H. N.; McLean, W.; Maxwell, R. S.; Dinh, L. N.
2016-09-01
A silica-filled polydimethylsiloxane (PDMS) composite M9787 was investigated for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environment applications at room temperature (˜300 K). The main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (˜30 ppm by volume of H2O) for even a couple of days was the formation, on the silica surface fillers, of ˜60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. The presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.
Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.
We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less
Filter forensics: microbiota recovery from residential HVAC filters.
Maestre, Juan P; Jennings, Wiley; Wylie, Dennis; Horner, Sharon D; Siegel, Jeffrey; Kinney, Kerry A
2018-01-30
Establishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health. High-throughput DNA sequencing of dust samples provides valuable insights into the microbiome present in human-occupied spaces. However, the effect that different sampling methods have on the microbial community recovered from dust samples is not well understood across sample types. Heating, ventilation, and air conditioning (HVAC) filters hold promise as long-term, spatially integrated, high volume samplers to characterize the airborne microbiome in homes and other climate-controlled spaces. In this study, the effect that dust recovery method (i.e., cut and elution, swabbing, or vacuuming) has on the microbial community structure, membership, and repeatability inferred by Illumina sequencing was evaluated. The results indicate that vacuum samples captured higher quantities of total, bacterial, and fungal DNA than swab or cut samples. Repeated swab and vacuum samples collected from the same filter were less variable than cut samples with respect to both quantitative DNA recovery and bacterial community structure. Vacuum samples captured substantially greater bacterial diversity than the other methods, whereas fungal diversity was similar across all three methods. Vacuum and swab samples of HVAC filter dust were repeatable and generally superior to cut samples. Nevertheless, the contribution of environmental and human sources to the bacterial and fungal communities recovered via each sampling method was generally consistent across the methods investigated. Dust recovery methodologies have been shown to affect the recovery, repeatability, structure, and membership of microbial communities recovered from dust samples in the built environment. The results of this study are directly applicable to indoor microbiota studies utilizing the filter forensics approach. More broadly, this study provides a better understanding of the microbial community variability attributable to sampling methodology and helps inform interpretation of data collected from other types of dust samples collected from indoor environments.
Nondestructive equipment study
NASA Technical Reports Server (NTRS)
1985-01-01
Identification of existing nondestructive Evaluation (NDE) methods that could be used in a low Earth orbit environment; evaluation of each method with respect to the set of criteria called out in the statement of work; selection of the most promising NDE methods for further evaluation; use of selected NDE methods to test samples of pressure vessel materials in a vacuum; pressure testing of a complex monolythic pressure vessel with known flaws using acoustic emissions in a vacuum; and recommendations for further studies based on analysis and testing are covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, H. N.; McLean, W.; Maxwell, R. S.
We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less
The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane
Sharma, H. N.; McLean, W.; Maxwell, R. S.; ...
2016-09-21
We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less
Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber
NASA Technical Reports Server (NTRS)
Klenhenz, Julie; Linne, Diane
2013-01-01
In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.
NASA Astrophysics Data System (ADS)
Scaduto, Lucimara C. N.; Malavolta, Alexandre T.; Modugno, Rodrigo G.; Vales, Luiz F.; Carvalho, Erica G.; Evangelista, Sérgio; Stefani, Mario A.; de Castro Neto, Jarbas C.
2017-11-01
The first Brazilian remote sensing multispectral camera (MUX) is currently under development at Opto Eletronica S.A. It consists of a four-spectral-band sensor covering a 450nm to 890nm wavelength range. This camera will provide images within a 20m ground resolution at nadir. The MUX camera is part of the payload of the upcoming Sino-Brazilian satellites CBERS 3&4 (China-Brazil Earth Resource Satellite). The preliminary alignment between the optical system and the CCD sensor, which is located at the focal plane assembly, was obtained in air condition, clean room environment. A collimator was used for the performance evaluation of the camera. The preliminary performance evaluation of the optical channel was registered by compensating the collimator focus position due to changes in the test environment, as an air-to-vacuum environment transition leads to a defocus process in this camera. Therefore, it is necessary to confirm that the alignment of the camera must always be attained ensuring that its best performance is reached for an orbital vacuum condition. For this reason and as a further step on the development process, the MUX camera Qualification Model was tested and evaluated inside a thermo-vacuum chamber and submitted to an as-orbit vacuum environment. In this study, the influence of temperature fields was neglected. This paper reports on the performance evaluation and discusses the results for this camera when operating within those mentioned test conditions. The overall optical tests and results show that the "in air" adjustment method was suitable to be performed, as a critical activity, to guarantee the equipment according to its design requirements.
Wolf, Heinz; Stauffer, Tony; Chen, Shu-Chen Y; Lee, Yoojin; Forster, Ronald; Ludzinski, Miron; Kamat, Madhav; Mulhall, Brian; Guazzo, Dana Morton
2009-01-01
Part 1 of this series demonstrated that a container closure integrity test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method using a VeriPac 325/LV vacuum decay leak tester by Packaging Technologies & Inspection, LLC (PTI) is capable of detecting leaks > or = 5.0 microm (nominal diameter) in rigid, nonporous package systems, such as prefilled glass syringes. The current study compared USP, Ph.Eur. and ISO dye ingress integrity test methods to PTI's vacuum decay technology for the detection of these same 5-, 10-, and 15-microm laser-drilled hole defects in 1-mL glass prefilled syringes. The study was performed at three test sites using several inspectors and a variety of inspection conditions. No standard dye ingress method was found to reliably identify all holed syringes. Modifications to these standard dye tests' challenge conditions increased the potential for dye ingress, and adjustments to the visual inspection environment improved dye ingress detection. However, the risk of false positive test results with dye ingress tests remained. In contrast, the nondestructive vacuum decay leak test method reliably identified syringes with holes > or = 5.0 microm.
Double Vacuum Bag Process for Resin Matrix Composite Manufacturing
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)
2007-01-01
A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.
Method of mounting a PC board to a hybrid
NASA Technical Reports Server (NTRS)
O'Coin, James R. (Inventor)
1999-01-01
A system for mounting a hybrid electronic component to a PC board is disclosed. The system includes a set of brackets for mutually engaging a first surface of the PC board and a cover surface of the hybrid electronic component, wherein the cover surface has an arcuate shape when in a vacuum environment. The brackets are designed with legs having lengths and thicknesses for providing clearance between the cover surface of the hybrid and the first surface of the PC board for use when the hybrid electronic component is in a vacuum environment.
NASA Astrophysics Data System (ADS)
Cheng, Shaoyong; Xiu, Shixin; Wang, Jimei; Shen, Zhengchao
2006-11-01
The greenhouse effect of SF6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters.
Robot design for a vacuum environment
NASA Technical Reports Server (NTRS)
Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.
1987-01-01
The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.
Development of Modal Test Techniques for Validation of a Solar Sail Design
NASA Technical Reports Server (NTRS)
Gaspar, James L.; Mann, Troy; Behun, Vaughn; Wilkie, W. Keats; Pappa, Richard
2004-01-01
This paper focuses on the development of modal test techniques for validation of a solar sail gossamer space structure design. The major focus is on validating and comparing the capabilities of various excitation techniques for modal testing solar sail components. One triangular shaped quadrant of a solar sail membrane was tested in a 1 Torr vacuum environment using various excitation techniques including, magnetic excitation, and surface-bonded piezoelectric patch actuators. Results from modal tests performed on the sail using piezoelectric patches at different positions are discussed. The excitation methods were evaluated for their applicability to in-vacuum ground testing and to the development of on orbit flight test techniques. The solar sail membrane was tested in the horizontal configuration at various tension levels to assess the variation in frequency with tension in a vacuum environment. A segment of a solar sail mast prototype was also tested in ambient atmospheric conditions using various excitation techniques, and these methods are also assessed for their ground test capabilities and on-orbit flight testing.
NASA Astrophysics Data System (ADS)
Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
NASA Technical Reports Server (NTRS)
Nuss, H. E.
1975-01-01
The measuring and evaluation procedure for the determination of leak rates of satellite subsystems with a quadrupole mass spectrometer, and the results of the residual gas analysis are described. The method selected for leak rate determination was placing the system into a vacuum chamber and furnishing the chamber with a mass spectrometer and calibrated leaks. The residual gas of a thermal vacuum test facility, in which the thermal balance test radiation input was simulated by a heated canister, was analyzed with the mass spectrometer in the atomic mass unit range up to 300 amu. In addition to the measurements during the space environment tests, mass spectrometric studies were performed with samples of spacecraft materials. The studies were carried out during tests for the projects HELIOS, AEROS B and SYMPHONIE.
Fiber Bragg grating sensors for real-time monitoring of evacuation process
NASA Astrophysics Data System (ADS)
Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.
2010-03-01
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
High specific surface area aerogel cryoadsorber for vacuum pumping applications
Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.
2000-01-01
A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2009-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities varying pressure environments.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2010-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities at varying pressure environments.
NASA Astrophysics Data System (ADS)
Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan
2018-01-01
To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).
NASA Technical Reports Server (NTRS)
Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo
1989-01-01
The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.
Tests of 38 Ball-Bearing Greases
NASA Technical Reports Server (NTRS)
Mcmurtrey, E. L.
1982-01-01
Report presents interim results in program of long-term tests of ball-bearing greases in vacuum, oxidizing, and otherwise hostile environment. Program is motivated by need for mechanisms that will operate for long periods in spacecraft or space stations. Class of lubricants based on perfluoroalkylpolyether (PFPE) with fluorotelomer thickeners has given best results in vacuum tests completed thus far. Test methods and performances of various lubricants could be of interest in automotive and industrial communities.
Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Yao, S. C.
2015-01-01
Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.
Improved methods for nightside time domain Lunar Electromagnetic Sounding
NASA Astrophysics Data System (ADS)
Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.
2017-12-01
Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to any driving transient event for any specified 3D conductivity profile. Our models fit the analytic solutions to a Root-Mean-Square Error of better than 1%. Solutions are non-unique, however, serve to better understand and constrain the global interior composition and 3D structure of the Moon. [1] Dyal & Parkin (1971) JGR; [2] Fatemi et al. (2013) GRL.
40 CFR 1065.644 - Vacuum-decay leak rate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak rate...
40 CFR 1065.644 - Vacuum-decay leak rate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak rate...
40 CFR 1065.644 - Vacuum-decay leak rate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak rate...
40 CFR 1065.644 - Vacuum-decay leak rate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak rate...
40 CFR 1065.644 - Vacuum-decay leak rate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak rate...
Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum.
Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W; D'Urso, Brian
2016-07-22
Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.
Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum
Hsu, Jen -Feng; Ji, Peng; Lewandowski, Charles W.; ...
2016-07-22
Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamondmore » nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. Furthermore, we demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.« less
Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum
Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W.; D’Urso, Brian
2016-01-01
Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K. PMID:27444654
Pump for molten metal or other fluid
Horton, James A.; Brown, Donald L.
1994-01-01
A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.
Apparatus and method for rapid cooling of large area substrates in vacuum
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2012-11-06
The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.
Self-Contained Stud Adhesive Bonding Apparatus and Method of Use
NASA Technical Reports Server (NTRS)
Graves, Russell (Inventor)
2018-01-01
A self-contained stud adhesive bonding apparatus enables an externally threaded stud to be adhesively attached to a separate surface in an adverse environment for an adhesive, such as the vacuum of space.
Method of physical vapor deposition of metal oxides on semiconductors
Norton, David P.
2001-01-01
A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.
A literature review and inventory of the effects of environment on the fatigue behavior of metals
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Seward, S. K.
1976-01-01
The current state of knowledge of the effects of gas environments (at atmospheric pressure and below) on the fatigue behavior of metals is reviewed. Among the topics considered are the mechanisms proposed to explain the differences observed in the fatigue behavior of vacuum- and air-tested specimens, the effects of environment on the surface topography of fatigue cycled specimens, the effect of environment on the various phases of the fatigue phenomenon, the effect of prolonged exposure to vacuum on fatigue life, the variation of fatigue life with decreasing gas pressure, and gas evolution during fatigue cycling. Analysis of the findings of this review indicates that hydrogen embrittlement is primarily responsible for decreased fatigue resistance in humid environments, and that dislocations move more easily during tests in vacuum than during test in air. It was found that fatigue cracks generally initiated and propagated more rapidly in air than in vacuum. Prolonged exposure to vacuum does not adversely affect fatigue resistance. The variation of fatigue life with decreasing gas pressure is sometimes stepped and sometimes continuous.
Development of Electromagnetically Actuated Vacuum Circuit Breaker for 72kV Rated Switchgear
NASA Astrophysics Data System (ADS)
Kim, Tae-Hyun; Tsukima, Mitsuru; Maruyama, Akihiko; Takahara, Osamu; Haruna, Kazushi; Yano, Tomotaka; Matsunaga, Toshihiro; Imamura, Kazuaki; Arioka, Masahiro; Takeuchi, Toshie
A new electromagnetically actuated vacuum circuit breaker (VCB) has been developed for a 72kV rated switchgear. Each phase of this VCB has a plurality of compact electromagnetic actuators linked mechanically providing the required driving energy. The mechanical linkage working as a lever magnifies an actuator stroke to the required stroke of a 72kV rated vacuum interrupter. An electromagnetic analysis coupled with motion, which considers the mechanical linkage of the plural actuators, has been developed for designing the driving behavior of this VCB. Using this analytical method and a quality engineering method known as the Taguchi method, we have clarified effective parameters to reduce the time difference of the driving behavior for tolerance specifications. Moreover, analyzing the oscillatory behavior closing the contacts, a structure of this VCB has been designed to reduce the bounce duration. The developed new VCB has been confirmed that a time difference is short enough and bounce duration is reduced. This VCB is highly reliable against variations in manufacturing and environment.
Innovative Vacuum Distillation for Magnesium Recycling
NASA Astrophysics Data System (ADS)
Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang
Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.
Remote vacuum or pressure sealing device and method for critical isolated systems
Brock, James David [Newport News, VA; Keith, Christopher D [Newport News, VA
2012-07-10
A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.
NASA Astrophysics Data System (ADS)
Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun
2018-01-01
In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.
NASA Technical Reports Server (NTRS)
Milam, Laura J.
1990-01-01
The Cosmic Background Explorer Observatory (COBE) underwent a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.
NASA Technical Reports Server (NTRS)
Milam, Laura J.
1991-01-01
The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.
The Effect of Temperature on the Survival of Microorganisms in a Deep Space Vacuum
NASA Technical Reports Server (NTRS)
Hagen, C. A.; Godfrey, J. F.; Green, R. H.
1971-01-01
A space molecular sink research facility (Molsink) was used to evaluate the ability of microorganisms to survive the vacuum of outer space. This facility could be programmed to simulate flight spacecraft vacuum environments at pressures in the .1 nanotorr range and thermal gradients (30 to 60 C) closely associated to surface temperatures of inflight spacecraft. Initial populations of Staphylococcus epidermidis and a Micrococcus sp. were reduced approximately 1 log while exposed to -105 and 34 C, and approximately 2 logs while exposed to 59 C for 14 days in the vacuum environment. Spores of Bacillus subtilis var. niger were less affected by the environment. Initial spore populations were reduced 0.2, 0.3, and 0.8 log during the 14-day vacuum exposure at -124, 34, and 59 C, respectively.
26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward
NASA Technical Reports Server (NTRS)
Packard, Edward A.
2010-01-01
Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation Thermal Vacuum Control System; Robotic Lunar Lander Development Project: Three-Dimensional Dynamic Stability Testing and Analysis; Thermal Physical Properties of Thermal Coatings for Spacecraft in Wide Range of Environmental Conditions: Experimental and Theoretical Study; Molecular Contamination Generated in Thermal Vacuum Chambers; Preventing Cross Contamination of Hardware in Thermal Vacuum Chambers; Towards Validation of Particulate Transport Code; Updated Trends in Materials' Outgassing Technology; Electrical Power and Data Acquisition Setup for the CBER 3 and 4 Satellite TBT; Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations; and Thermal Vacuum Testing with Scalable Software Developed In-House.
Use of space ultra-vacuum for high quality semiconductor thin film growth
NASA Technical Reports Server (NTRS)
Ignatiev, A.; Sterling, M.; Sega, R. M.
1992-01-01
The utilization of space for materials processing is being expanded through a unique concept of epitaxial thin film growth in the ultra-vacuum of low earth orbit (LEO). This condition can be created in the wake of an orbiting space vehicle; and assuming that the vehicle itself does not pertub the environment, vacuum levels of better than 10 exp -14 torr can be attained. This vacuum environment has the capacity of greatly enhancing epitaxial thin film growth and will be the focus of experiments conducted aboard the Wake Shield Facility (WSF) currently being developed by the Space Vacuum Epitaxy Center (SVEC), Industry, and NASA.
Vacuum Arc Vapor Deposition Method and Apparatus for Applying Identification Symbols to Substrates
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Roxby, Donald L. (Inventor); Weeks, Jack L. (Inventor)
2002-01-01
An apparatus for applying permanent markings onto products using a Vacuum Arc Vapor Deposition (VAVD) marker by accelerating atoms or molecules from a vaporization source onto a substrate to form human and/or machine-readable part identification marking that can be detected optically or via a sensing device like x-ray, thermal imaging, ultrasound, magneto-optic, micro-power impulse radar, capacitance, or other similar sensing means. The apparatus includes a housing with a nozzle having a marking end. A chamber having an electrode, a vacuum port and a charge is located within the housing. The charge is activated by the electrode in a vacuum environment and deposited onto a substrate at the marking end of the nozzle. The apparatus may be a hand-held device or be disconnected from the handle and mounted to a robot or fixed station.
Vaccum Gas Tungsten Arc Welding, phase 1
NASA Astrophysics Data System (ADS)
Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.
1995-03-01
This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.
Vaccum Gas Tungsten Arc Welding, phase 1
NASA Technical Reports Server (NTRS)
Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.
1995-01-01
This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.
NASA Technical Reports Server (NTRS)
Wang, J. T.
1972-01-01
A flight test was conducted and compared with ground test data. Sixteen typical spacecraft material couples were mounted on an experimental research satellite in which a motor intermittently drove the spherical moving specimens across the faces of the fixed flat specimens in an oscillating motion. Friction coefficients were measured over a period of 14-month orbital time. Surface-to-surface sliding was found to be the controlling factor of generating friction in a vacuum environment. Friction appears to be independent of passive vacuum exposure time. Prelaunch and postlaunch tests identical to the flight test were performed in an oil-diffusion-pumped ultrahigh vacuum chamber. Only 50% of the resultant data agreed with the flight data owing to pump oil contamination. Identical ground tests were run in an ultrahigh vacuum facility and a ion-pumped vacuum chamber. The agreement (90%) between data from these tests and flight data established the adequacy of these test environments and facilities.
Research of vacuum polymer film on three-dimension surface (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bau, Yung-Han
2016-09-01
This study focused on UV-curable acrylic hybrid of solute in vacuum-deposited on the surface and make it smooth. On the surface coating of the entire process, including the pre-treatment of organic solutes, vacuum, nozzle pressure, airflow, frequency ratio, the surface of the rotation rate, nozzle angle, UV light irradiation time, waste solute recycling.Organic solutes through a flow meter and precise measured,by high pressure or vibration of a piezoelectric material, spray our organic solute in a certain degree of vacuum,leaving nozzle of tiny micro-mist volatiles in a vacuum to form secondary atomization,deposited our surface,Since no UV light irradiation, the surface is a liquid having fluidity, so the non-planar substrates can have good performance, finally it is irradiated by UV light of sufficient energy solidify to form a solid film.The advantage of this approach is that a smooth surface,Strong adhesion, low-cost equipment, low temperature, a wide range of high deposition rate can be combined with other deposition method,Under vacuum have not waste because excess paint can be recycled.Avoid solute direct contact with human, relative to the environment-friendly.
Assessment of penetration through vacuum cleaners and recommendation of wet cyclone technology.
Seo, Youngjin; Han, Taewon
2013-04-01
In many commercial vacuum cleaners, the captured aerosol particles contained in the dust collector may accidentally release from the exhaust filtration owing to leakage or penetration. Vacuum cleaners may cause dust to become airborne by exhausting air that is not completely filtered. This may cause the operator to inhale dust, in turn causing health problems. This study aimed to investigate the dust penetration rates from three commercial vacuum cleaners and suggest the best technique for completely filtering exhaust air using a combination of cyclonic separation and water filtration. The commercial vacuum cleaners were tested inside a custom-built hood, and the exhausted particles were monitored using a sampling probe in conjunction with an aerosol particle sizer Quartzose mineral dusts were added to each vacuum cleaner through the dust transport line. A 2400 L/min wet cyclone was employed as the proposed vacuum cleaner It was designed using Stokes scaling, and its collection characteristics were evaluated using polystyrene latex beads. Surprisingly, the conventional vacuum cleaners failed to capture an overall average of approximately 14% of the particles in the given size range. However, only approximately 3.8% of the collected particles escaped from the vacuum cleaner that used the wet cyclone technology. Thus, the proposed vacuum cleaner should potentially be an effective method for vacuuming household dust. The successful investigation of conventional vacuum cleaners is useful for both manufacturers and users. As an effective vacuum cleaning mechanism, household dust is able to migrate along the thin water, film that forms on the inner walls of the cyclone vacuum cleaner. It collects dust in a small water inflow (3 mL/min), which allows it to capture a higher percentage of contaminants than most of the currently available vacuum cleaners. The significantly low accidental exposure rates achieved by this new vacuum cleaner enable healthy conditions in various environments, including indoors.
NASA Astrophysics Data System (ADS)
E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.
2017-12-01
Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer - solid conduction, radiation, gas conduction, and convection - are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.
Friction behavior of glass and metals in contact with glass in various environments
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.
A Novel Method to Decontaminate Surgical Instruments for Operational and Austere Environments.
Knox, Randy W; Demons, Samandra T; Cunningham, Cord W
2015-12-01
The purpose of this investigation was to test a field-expedient, cost-effective method to decontaminate, sterilize, and package surgical instruments in an operational (combat) or austere environment using chlorhexidine sponges, ultraviolet C (UVC) light, and commercially available vacuum sealing. This was a bench study of 4 experimental groups and 1 control group of 120 surgical instruments. Experimental groups were inoculated with a 10(6) concentration of common wound bacteria. The control group was vacuum sealed without inoculum. Groups 1, 2, and 3 were first scrubbed with a chlorhexidine sponge, rinsed, and dried. Group 1 was then packaged; group 2 was irradiated with UVC light, then packaged; group 3 was packaged, then irradiated with UVC light through the bag; and group 4 was packaged without chlorhexidine scrubbing or UVC irradiation. The UVC was not tested by itself, as it does not grossly clean. The instruments were stored overnight and tested for remaining colony forming units (CFU). Data analysis was conducted using analysis of variance and group comparisons using the Tukey method. Group 4 CFU was statistically greater (P < .001) than the control group and groups 1 through 3. There was no statistically significant difference between the control group and groups 1 through 3. Vacuum sealing of chlorhexidine-scrubbed contaminated instruments with and without handheld UVC irradiation appears to be an acceptable method of field decontamination. Chlorhexidine scrubbing alone achieved a 99.9% reduction in CFU, whereas adding UVC before packaging achieved sterilization or 100% reduction in CFU, and UVC through the bag achieved disinfection. Published by Elsevier Inc.
Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and operational concepts verification, as well as demonstration of vehicular interfaces, consumables sizing and recharge, and water quality control.
Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA
NASA Astrophysics Data System (ADS)
Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.
2013-12-01
TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.
1992-01-01
In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.
NASA Technical Reports Server (NTRS)
Glenn, D. C.
1966-01-01
Rolling element bearing with stainless steel races and rolling elements and a porous bronze cage successfully operates in ultrahigh vacuum environments at a low torque and with small temperature rise. All components are burnished in molybdenum disulfide.
Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.
1985-01-01
A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.
Panayotou, N.F.; Green, D.R.; Price, L.S.
A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.
Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments
NASA Astrophysics Data System (ADS)
Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.
2012-11-01
Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.
40 CFR 417.110 - Applicability; description of the SO3 solvent and vacuum sulfonation subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the SO3 solvent and vacuum sulfonation subcategory. 417.110 Section 417.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...
40 CFR 417.110 - Applicability; description of the SO3 solvent and vacuum sulfonation subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the SO3 solvent and vacuum sulfonation subcategory. 417.110 Section 417.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...
40 CFR 417.110 - Applicability; description of the SO3 solvent and vacuum sulfonation subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the SO3 solvent and vacuum sulfonation subcategory. 417.110 Section 417.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...
40 CFR 417.110 - Applicability; description of the SO3 solvent and vacuum sulfonation subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the SO3 solvent and vacuum sulfonation subcategory. 417.110 Section 417.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...
40 CFR 417.110 - Applicability; description of the SO3 solvent and vacuum sulfonation subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the SO3 solvent and vacuum sulfonation subcategory. 417.110 Section 417.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...
Tribological properties of polymer films and solid bodies in a vacuum environment
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1988-01-01
The tribological properties of ten different polymer based materials were evaluated in a vacuum environment to determine their suitability for possible lubrication applications in a space environment, such as might be encountered on the proposed Space Station. A pin-on-disk tribometer was used and the polymer materials were evaluated either as solid body disks or as films applied to 440C HT stainless steel disks. A 440C HT stainless steel hemispherically tipped pin was slid against the polymer materials. For comparison, similar tests were conducted in a controlled air atmosphere of 50 percent relative humidity air. In most instances, the polymer materials lubricated much better under vacuum conditions than in air. Thus, several of the materials show promise as lubricants for vacuum applications. Friction coefficients of 0.05 or less and polymer material wear rates of up to 2 orders of magnitude less than in air were obtained. One material showed considerable promise as a traction drive material. Relative high friction coefficients (0.36 to 0.52) and reasonably low wear rates were obtained in vacuum.
Tribological properties of polymer films and solid bodies in a vacuum environment
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1987-01-01
The tribological properties of ten different polymer based materials were evaluated in a vacuum environment to determine their suitability for possible lubrication applications in a space environment, such as might be encountered on the proposed space station. A pin-on-disk tribometer was used and the polymer materials were evaluated either as solid body disks or as films applied to 440C HT stainless steel disks. A 440C HT stainless steel hemispherically tipped pin was slid against the polymer materials. For comparison, similar tests were conducted in a controlled air atmosphere of 50 percent relative humidity air. In most instances, the polymer materials lubricated much better under vacuum conditions than in air. Thus, several of the materials show promise as lubricants for vacuum applications. Friction coefficients of 0.05 or less and polymer material wear rates of up to 2 orders of magnitude less than in air were obtained. One material showed considerable promise as a traction drive material. Relatively high friction coefficients (0.36 to 0.52) and reasonably low wear rates were obtained in vacuum.
NASA Technical Reports Server (NTRS)
Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.
2016-01-01
In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.
Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Wilkinson, R. Allen
2014-01-01
For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.
ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Wilkinson, Allen
2012-01-01
Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.
Robust Multilayer Insulation for Cryogenic Systems
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.
2007-01-01
New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.
LETS: Lunar Environments Test System
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey
2008-01-01
The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.
Effects of vacuum exposure on stress and spectral shift of high reflective coatings
NASA Astrophysics Data System (ADS)
Stolz, C. J.; Taylor, J. R.; Eickelberg, W. K.; Lindh, J. D.
1992-06-01
The Atomic Vapor Laser Isotope Laser Separation (AVLIS) program operates the world's largest average power dye laser; the dye laser beams are combined, formatted, and transported in vacuum. The optical system is aligned at atmosphere, while the system must meet requirements in vacuum. Therefore, coating performance must be characterized in both atmosphere and vacuum. Changes in stress and spectral shift in ambient and vacuum environments are reported for conventional and dense multilayer dielectric coatings.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.
Lifetime prediction of materials exposed to the natural space environment
NASA Technical Reports Server (NTRS)
Zee, Ralph
1993-01-01
The goal of this study is to model the lifetime of different types of seal materials based on results obtained from accelerated experiments. A semi-mechanistic approach was taken. Thermal aging data were taken from the literature whereas experiments were conducted at Auburn under this contract for selected environments. The seal materials of interest are Silicone 383, Silicone 650, Viton 835, and Viton 747. The relevant conditions include thermal, oxygen, inert gas, vacuum, and gamma radiation. Compression set data available from NASA were used to examine the thermal effect. Experiments were conducted at Auburn University and at NASA to isolate the role of thermal, oxygen, inert gas, vacuum, gamma irradiation, and proton irradiation. A simple discrete stress relaxation method was developed to determine the relaxation response of the elastomers. Dynamic mechanical thermal analysis was also used to characterize the mechanical response of the specimens. These provide a more meaningful correlation between mechanisms and degradation.
Characterization of wafer-level bonded hermetic packages using optical leak detection
NASA Astrophysics Data System (ADS)
Duan, Ani; Wang, Kaiying; Aasmundtveit, Knut; Hoivik, Nils
2009-07-01
For MEMS devices required to be operated in a hermetic environment, one of the main reliability issues is related to the packaging methods applied. In this paper, an optical method for testing low volume hermetic cavities formed by anodic bonding between glass and SOI (silicon on insulator) wafer is presented. Several different cavity-geometry structures have been designed, fabricated and applied to monitor the hermeticity of wafer level anodic bonding. SOI wafer was used as the cap wafer on which the different-geometry structures were fabricated using standard MEMS technology. The test cavities were bonded using SOI wafers to glass wafers at 400C and 1000mbar pressure inside a vacuum bonding chamber. The bonding voltage varies from 200V to 600V. The bonding strength between glass and SOI wafer was mechanically tested using shear tester. The deformation amplitudes of the cavity cap surface were monitored by using an optical interferometer. The hermeticity of the glass-to-SOI wafer level bonding was characterized through observing the surface deformation in a 6 months period in atmospheric environment. We have observed a relatively stable micro vacuum-cavity.
Advanced Space Propulsion System Flowfield Modeling
NASA Technical Reports Server (NTRS)
Smith, Sheldon
1998-01-01
Solar thermal upper stage propulsion systems currently under development utilize small low chamber pressure/high area ratio nozzles. Consequently, the resulting flow in the nozzle is highly viscous, with the boundary layer flow comprising a significant fraction of the total nozzle flow area. Conventional uncoupled flow methods which treat the nozzle boundary layer and inviscid flowfield separately by combining the two calculations via the influence of the boundary layer displacement thickness on the inviscid flowfield are not accurate enough to adequately treat highly viscous nozzles. Navier Stokes models such as VNAP2 can treat these flowfields but cannot perform a vacuum plume expansion for applications where the exhaust plume produces induced environments on adjacent structures. This study is built upon recently developed artificial intelligence methods and user interface methodologies to couple the VNAP2 model for treating viscous nozzle flowfields with a vacuum plume flowfield model (RAMP2) that is currently a part of the Plume Environment Prediction (PEP) Model. This study integrated the VNAP2 code into the PEP model to produce an accurate, practical and user friendly tool for calculating highly viscous nozzle and exhaust plume flowfields.
Thermal Performance Testing of Cryogenic Insulation Systems
NASA Technical Reports Server (NTRS)
Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.
2007-01-01
Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.
Vacuum Technology Considerations For Mass Metrology
Abbott, Patrick J.; Jabour, Zeina J.
2011-01-01
Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593
Delicious Low GL space foods by using Low GI materials -IH and Vacuum cooking -
NASA Astrophysics Data System (ADS)
Katayama, Naomi; Nagasaka, Sanako; Murasaki, Masahiro; Space Agriculture Task Force, J.
Enough life-support systems are necessary to stay in space for a long term. The management of the meal for astronauts is in particular very important. When an astronaut gets sick in outer space, it means death. To astronauts, the delicious good balance space foods are essential for their work. This study was aimed at making balance space foods menu for the healthy space-life. The kitchen utensil has a limit in the space environment. And a method to warm is only heater without fire. Therefore purpose of this study, we make the space foods which make by using vacuum cooking device and the IH heater We made space foods menu to referred to Japanese nutrition standard in 2010. We made space foods menu which are using "brown rice, wheat, soy bean, sweet potato and green-vegetable" and " loach and insects which are silkworm pupa, snail, mud snail, turmait, fly, grasshopper, bee". We use ten health adults as subjects. Ten subjects performed the sensory test of the questionnaire method. There was the sensuality examination in the item of "taste, a fragrance, color, the quantity" and acquired a mark at ten points of perfect scores.. We could make the space foods which we devised with vacuum cooking and IH deliciously. As a result of sensuality examination, the eight points in ten points of perfect scores was appeared. This result showed, our space food menu is delicious. We can store these space foods with a refrigerator for 20 days by making vacuum cooking. This thing is at all important result so that a save is enabled when surplus food was done in future by performing vacuum cooking. We want to make delicious space foods menu with vacuum cooking and IH heater more in future.
Transfer orbit stage mechanisms thermal vacuum test
NASA Technical Reports Server (NTRS)
Oleary, Scott T.
1990-01-01
A systems level mechanisms test was conducted on the Orbital Sciences Corp.'s Transfer Orbit Stage (TOS). The TOS is a unique partially reusable transfer vehicle which will boost a satellite into its operational orbit from the Space Shuttle's cargo bay. The mechanical cradle and tilt assemblies will return to earth with the Space Shuttle while the Solid Rocket Motor (SRM) and avionics package are expended. A mechanisms test was performed on the forward cradle and aft tilting assemblies of the TOS under thermal vacuum conditions. Actuating these assemblies under a 1 g environment and thermal vacuum conditions proved to be a complex task. Pneumatic test fixturing was used to lift the forward cradle, and tilt the SRM, and avionics package. Clinometers, linear voltage displacement transducers, and load cells were used in the thermal vacuum chamber to measure the performance and characteristics of the TOS mechanism assembly. Incorporation of the instrumentation and pneumatic system into the test setup was not routine since pneumatic actuation of flight hardware had not been previously performed in the facility. The methods used are presented along with the problems experienced during the design, setup and test phases.
Self-Lubricating, Wear-Resistant Diamond Films Developed for Use in Vacuum Environment
NASA Technical Reports Server (NTRS)
1996-01-01
Diamond's outstanding properties--extreme hardness, chemical and thermal inertness, and high strength and rigidity--make it an ideal material for many tribological applications, such as the bearings, valves, and engine parts in the harsh environment found in internal-combustion engines, jet engines, and space propulsion systems. It has been demonstrated that chemical-vapor-deposited diamond films have low coefficients of friction (on the order of 0.01) and low wear rates (less than 10(sup -7) mm (sup 3/N-m)) both in humid air and dry nitrogen but that they have both high coefficients of friction (greater than 0.4) and high wear rates (on the order of 1(sup -4) mm sup 3/N-m)) in vacuum. It is clear that surface modifications that provide acceptable levels of friction and wear properties will be necessary before diamond films can be used for tribological applications in a space-like, vacuum environment. Previously, it was found that coatings of amorphous, non-diamond carbon can provide low friction in vacuum. Therefore, to reduce the friction and wear of diamond film in vacuum, carbon ions were implanted in an attempt to form a surface layer of amorphous carbon phases on the diamond films.
Extended Operation of Stirling Convertors in a Thermal Vacuum Environment
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2006-01-01
A 110 watt Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA exploration missions. The development effort is being performed by Lockheed Martin under contract to the Department of Energy (DOE). Infinia, Corp. supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been initiated at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG110, however the requirement for low mass was not considered. This test demonstrates the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The status of the test as well as the data gathered will be presented in this paper.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2006-01-01
Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.
NASA Technical Reports Server (NTRS)
Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert
2000-01-01
Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.
Vojta, P J; Randels, S P; Stout, J; Muilenberg, M; Burge, H A; Lynn, H; Mitchell, H; O'Connor, G T; Zeldin, D C
2001-01-01
House dust mite allergen exposure is a postulated risk factor for allergic sensitization, asthma development, and asthma morbidity; however, practical and effective methods to mitigate these allergens from low-income, urban home environments remain elusive. The purpose of this study was to assess the feasibility and effectiveness of physical interventions to mitigate house dust mite allergens in this setting. Homes with high levels of house dust mite allergen (Der f 1 + Der p 1 > or = 10 microg/g dust by enzyme-linked immunosorbent assay) in the bed, bedroom carpet, and/or upholstered furniture were enrolled in the study. Carpets and upholstered furniture were subjected to a single treatment of either dry steam cleaning plus vacuuming (carpet only) or intensive vacuuming alone. Bed interventions consisted of complete encasement of the mattress, box spring, and pillows plus either weekly professional or in-home laundering of nonencased bedding. Dust samples were collected at baseline and again at 3 days (carpet and upholstery only) and 2, 4, and 8 weeks posttreatment. We compared pretreatment mean allergen concentrations and loads to posttreatment values and performed between-group analyses after adjusting for differences in the pretreatment means. Both dry steam cleaning plus vacuuming and vacuuming alone resulted in a significant reduction in carpet house dust mite allergen concentration and load (p < 0.05). Levels approached pretreatment values by 4 weeks posttreatment in the intensive vacuuming group, whereas steam cleaning plus vacuuming effected a decrease that persisted for up to 8 weeks. Significant decreases in bed house dust mite allergen concentration and load were obtained in response to encasement and either professional or in-home laundering (p < 0.001). Between-group analysis revealed significantly less postintervention house dust mite allergen load in professionally laundered compared to home-laundered beds (p < 0.05). Intensive vacuuming and dry steam cleaning both caused a significant reduction in allergen concentration and load in upholstered furniture samples (p < 0.005). Based on these data, we conclude that physical interventions offer practical, effective means of reducing house dust mite allergen levels in low-income, urban home environments. PMID:11564617
Evaluation and prediction of long-term environmental effects of nonmetallic materials
NASA Technical Reports Server (NTRS)
Papazian, H.
1985-01-01
The properties of a number of nonmetallic materials were evaluated experimentally in simulated space environments in order to develop models for accelerated test methods useful for predicting such behavioral changes. Graphite-epoxy composites were exposed to thermal cycling. Adhesive foam tapes were subjected to a vacuum environment. Metal-matrix composites were tested for baseline data. Predictive modeling designed to include strength and aging effects on composites, polymeric films, and metals under such space conditions (including the atomic oxygen environment) is discussed. The Korel 8031-00 high strength adhesive foam tape was shown to be superior to the other two tested.
500(deg)C electronics for harsh environments
NASA Technical Reports Server (NTRS)
Sadwick, Laurence P.; Hwu, R. Jennifer; Chern, J. H. Howard; Lin, Ching-Hsu; Castillo, Linda Del; Johnson, Travis
2005-01-01
Solid state vacuum devices (SSVDs) are a relatively new class of electronic devices. Innosys is a leading producer of high frequency SSVDs for a number of applications, including RF communications. SSVDs combine features inherent to both solid state and vacuum transistors. Electron transport can be by solid state or vacuum or both. The focus of this talk is on thermionic SSVDs, in which the primary vacuum transport is by thermionically liberated electron emission.
40 CFR Table 31 to Subpart G of... - Typical Number of Vacuum Breakers, NF6 and Roof Drains, a NF7
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Typical Number of Vacuum Breakers, NF6..., and Wastewater Pt. 63, Subpt. G, Table 31 Table 31 to Subpart G of Part 63—Typical Number of Vacuum Breakers, NF6 and Roof Drains, a NF7 Tank diameter D (feet) b No. of vacuum breakers, NF6 Pontoon roof...
Latest Trends of Vacuum Circuit Breaker and Related Technologies
NASA Astrophysics Data System (ADS)
Kozono, Hideaki; Tanimizu, Toru
Vacuum Circuit Breakers (VCBs) have been widely used for medium voltage level, because of their performance: compact size, light weight, maintenance free operations and environment-friendly characteristics. They become most comfortable breakers for our needs from other breakers: oil, air, magnetic blast and gas. In this paper the history of vacuum, and latest trends of circuit breakers and related technologies are described, as well as merits or demerits of using vacuum technologies.
Vacuum melting and mechanical testing of simulated lunar glasses
NASA Technical Reports Server (NTRS)
Carsley, J. E.; Blacic, J. D.; Pletka, B. J.
1992-01-01
Lunar silicate glasses may possess superior mechanical properties compared to terrestrial glasses because the anhydrous lunar environment should prevent hydrolytic weakening of the strong Si-O bonds. This hypothesis was tested by melting, solidifying, and determining the fracture toughness of simulated mare and highlands composition glasses in a high vacuum chamber. The fracture toughness, K(IC), of the resulting glasses was obtained via microindentation techniques. K(IC) increased as the testing environment was changed from air to a vacuum of 10 exp -7 torr. However, this increase in toughness may not result solely from a reduction in the hydrolytic weakening effect; the vacuum-melting process produced both the formation of spinel crystallites on the surfaces of the glass samples and significant changes in the compositions which may have contributed to the improved K(IC).
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Ajori, S; Ansari, R; Darvizeh, M
2016-03-01
The adsorption of biomolecules on the walls of carbon nanotubes (CNTs) in an aqueous environment is of great importance in the field of nanobiotechnology. In this study, molecular dynamics (MD) simulations were performed to understand the mechanical vibrational behavior of single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) under the physical adsorption of four important biomolecules (L-alanine, guanine, thymine, and uracil) in vacuum and an aqueous environment. It was observed that the natural frequencies of these CNTs in vacuum reduce under the physical adsorption of biomolecules. In the aqueous environment, the natural frequency of each pure CNT decreased as compared to its natural frequency in vacuum. It was also found that the frequency shift for functionalized CNTs as compared to pure CNTs in the aqueous environment was dependent on the radius and the number of walls of the CNT, and could be positive or negative.
Study of critical defects in ablative heat shield systems for the space shuttle
NASA Technical Reports Server (NTRS)
Miller, C. C.; Rummel, W. D.
1974-01-01
Experimental results are presented for a program conducted to determine the effects of fabrication-induced defects on the performance of an ablative heat shield material. Exposures representing a variety of space shuttle orbiter mission environments-humidity acoustics, hot vacuum and cold vacuum-culuminating in entry heating and transonic acoustics, were simulated on large panels containing intentional defects. Nondestructive methods for detecting the defects, were investigated. The baseline materials were two honeycomb-reinforced low density, silicone ablators, MG-36 and SS-41. Principal manufacturing-induced defects displaying a critical potential included: off-curing of the ablator, extreme low density, undercut (or crushed) honeycomb reinforcements, and poor wet-coating of honeycomb.
Development of the GPM Observatory Thermal Vacuum Test Model
NASA Technical Reports Server (NTRS)
Yang, Kan; Peabody, Hume
2012-01-01
A software-based thermal modeling process was documented for generating the thermal panel settings necessary to simulate worst-case on-orbit flight environments in an observatory-level thermal vacuum test setup. The method for creating such a thermal model involved four major steps: (1) determining the major thermal zones for test as indicated by the major dissipating components on the spacecraft, then mapping the major heat flows between these components; (2) finding the flight equivalent sink temperatures for these test thermal zones; (3) determining the thermal test ground support equipment (GSE) design and initial thermal panel settings based on the equivalent sink temperatures; and (4) adjusting the panel settings in the test model to match heat flows and temperatures with the flight model. The observatory test thermal model developed from this process allows quick predictions of the performance of the thermal vacuum test design. In this work, the method described above was applied to the Global Precipitation Measurement (GPM) core observatory spacecraft, a joint project between NASA and the Japanese Aerospace Exploration Agency (JAXA) which is currently being integrated at NASA Goddard Space Flight Center for launch in Early 2014. From preliminary results, the thermal test model generated from this process shows that the heat flows and temperatures match fairly well with the flight thermal model, indicating that the test model can simulate fairly accurately the conditions on-orbit. However, further analysis is needed to determine the best test configuration possible to validate the GPM thermal design before the start of environmental testing later this year. Also, while this analysis method has been applied solely to GPM, it should be emphasized that the same process can be applied to any mission to develop an effective test setup and panel settings which accurately simulate on-orbit thermal environments.
Apollo telescope mount thermal systems unit thermal vacuum test
NASA Technical Reports Server (NTRS)
Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.
1971-01-01
The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.
Supplemental multilayer insulation research facility
NASA Technical Reports Server (NTRS)
Dempsey, P. J.; Stochl, R. J.
1995-01-01
The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.
NASA Astrophysics Data System (ADS)
Teerikorpi, P.; Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.
2008-05-01
Context: Type Ia supernova observations on scales of thousands of Mpc show that the global expansion of the universe is accelerated by antigravity produced by the enigmatic dark energy contributing 3/4 of the total energy of the universe. Aims: Does antigravity act on small scales as well as large? As a continuation of our efforts to answer this crucial question we combine high accuracy observations of the galaxy flows around the Local Group and the nearby M 81 and CenA groups to observe the effect of the dark energy density on local scales of a few Mpc. Methods: We use an analytical model to describe non-uniform static space-time regions around galaxy groups. In this context it is useful to present the Hubble flow in a normalized Hubble diagram V/Hv Rv vs. r/R_v, where the vacuum Hubble constant Hv depends only on the cosmological vacuum density and the zero-gravity distance Rv depends on the vacuum density and on the mass of the galaxy group. We have prepared the normalized Hubble diagrams for the LG, M 81 and CenA group environments for different values of the assumed vacuum energy density, using a total of about 150 galaxies, for almost all of which the distances have been measured by the HST. Results: The normalized Hubble diagram, where we identify dynamically different regions, is in agreement with the standard vacuum density (Ωv = 0.77~h_70-2), the out-flow of galaxies clearly being controlled by the minimum energy condition imposed by the central mass plus the vacuum density. A high vacuum density 1.6~h_70-2 violates the minimum energy limit, while a low density 0.1~h_70-2 leaves the start of the Hubble flow around 1-2 Mpc with the slope close to the global value obscure. We also consider the subtle relation of the zero-gravity radius Rv to the zero-velocity distance R0 appearing in the usual retarded expansion around a mass M: in a vacuum-dominated flat universe R0 ≈ 0.76 R_v. Conclusions: The normalized Hubble diagram appears to be a good way to present and analyze physically different regions around mass clumps embedded in cosmological vacuum. The most natural interpretation of the diagram is that the local density of the dark energy is approximately equal to the density known from studies on global scales.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1999-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
NASA Technical Reports Server (NTRS)
Lundquist, Ray A.; Leidecker, Henning
1998-01-01
The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.
Silicon solar cells by ion implantation and pulsed energy processing
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.
1976-01-01
A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.
On thermionic emission and the use of vacuum tubes in the advanced physics laboratory
NASA Astrophysics Data System (ADS)
Angiolillo, Paul J.
2009-12-01
Two methods are outlined for measuring the charge-to-mass ratio e /me of the electron using thermionic emission as exploited in vacuum tube technology. One method employs the notion of the space charge in the vacuum tube diode as described by the Child-Langmuir equation; the other method uses the electron trajectories in vacuum tube pentodes with cylindrical electrodes under conditions of orthogonally related electric and magnetic fields (the Hull magnetron method). The vacuum diode method gave e /me=1.782±0.166×10+11 C/kg (averaged over the vacuum diodes studied), and the Hull magnetron method gave e /me=1.779±0.208×10+11 C/kg (averaged over both pentodes and the anode voltages studied). These methods afford opportunities for students to determine the e /me ratio without using the Bainbridge tube method and to become familiar with phenomena not normally covered in a typical experimental methods curriculum.
TESTING OF A 20-METER SOLAR SAIL SYSTEM
NASA Technical Reports Server (NTRS)
Gaspar, J. L.; Behun, V.; Mann, T.; Murphy D.; Macy, B.
2005-01-01
This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program1-3. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance4. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods were evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.
TESTING OF A 20-METER SOLAR SAIL SYSTEM
NASA Technical Reports Server (NTRS)
Gaspar, Jim L.; Behun, Vaughan; Mann, Troy; Murphy, Dave; Macy, Brian
2005-01-01
This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods are evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.
Deformation mechanism of the Cryostat in the CADS Injector II
NASA Astrophysics Data System (ADS)
Yuan, Jiandong; Zhang, Bin; Wan, Yuqin; Sun, Guozhen; Bai, Feng; Zhang, Juihui; He, Yuan
2018-01-01
Thermal contraction and expansion of the Cryostat will affect its reliability and stability. To optimize and upgrade the Cryostat, we analyzed the heat transfer in a cryo-vacuum environment from the theoretical point first. The simulation of cryo-vacuum deformation based on a finite element method was implemented respectively. The completed measurement based on a Laser Tracker and a Micro Alignment Telescope was conducted to verify its correctness. The monitored deformations were consistent with the simulated ones. After the predictable deformations in vertical direction have been compensated, the superconducting solenoids and Half Wave Resonator cavities approached the ideal "zero" position under liquid helium conditions. These guaranteed the success of 25 MeV@170 uA continuous wave protons of Chinese accelerator driven subcritical system Injector II. By correlating the vacuum and cryo-deformation, we have demonstrated that the complete deformation was the superposition effect of the atmospheric pressure, gravity and thermal stress during both the process of cooling down and warming up. The results will benefit to an optimization for future Cryostat's design.
Advanced Photonic Sensors Enabled by Semiconductor Bonding
2010-05-31
a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system
Technical Trend of Environment-friendly High Voltage Vacuum Circuit Breaker (VCB)
NASA Astrophysics Data System (ADS)
Okubo, Hitoshi
Vacuum Circuit Breakers (VCBs) have widely been used for low and medium voltage level, because of their high current interruption performance, maintenance free operations and environment-friendly characteristics. The VCB is now going to be applied to higher voltage systems for transmission and substation use. In this paper, the recent technical trend and future perspectives of high voltage VCBs are described, as well as their technical background.
NASA Astrophysics Data System (ADS)
Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo
2017-11-01
Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.
2002-01-01
Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the Sun in the space environment can degrade polymer films, producing changes in their optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultralightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. The NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of combined or sequential simulated space environmental exposures to determine combined damaging effects with other aspects of the space environment, which include solar ultraviolet radiation, solar flare x-rays, electron and proton radiation, atomic oxygen (for low-Earth-orbit missions), and temperature effects. Because the wavelength sensitivity of VUV damage is not well known for most materials, Glenn's VUV facility uses a broad-spectrum deuterium lamp with a magnesium fluoride window that provides output between 115 and 200 nm. Deuterium lamps of this type were characterized by the National Institute of Standards and Technology and through measurements at Glenn. Spectral irradiance measurements show that from approximately 115 to 160 nm, deuterium lamp irradiance can be many times that of air mass zero solar irradiance, and as wavelength increases above approximately 160 nm, deuterium lamp irradiance decreases in comparison to the Sun. The facility is a cryopumped vacuum chamber that achieves a system pressure of approximately 5310(exp -6) torr. It contains four individual VUV-exposure compartments in vacuum, separated by water-cooled copper walls to minimize VUV radiation and any sample contamination cross interactions between compartments. Each VUV-exposure compartment contains a VUV deuterium lamp, a motor-controlled sample stage coupled with a moveable cesium iodide VUV phototube, and two thermocouples for temperature measurement. The vacuum chamber and exterior equipment is shown. Each VUV lamp is located at the top of the chamber with its projection-tube pushed through an O-ring compression fitting. The lamp assemblies are located on ports that can be isolated from the rest of the vacuum chamber, permitting maintenance or replacement of the lamps without breaking vacuum in the main chamber where the samples are located. A view of two of the four interior VUV-exposure compartments, including the moveable sample stages and detector holders is also shown. Glenn is using this facility to support testing of Next Generation Space Telescope sunshield materials that is being led by the NASA Goddard Space Flight Center and to develop an understanding of the wavelength, intensity, and temperature dependence of VUV-induced polymer degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simimol, A.; Department of Physics, National Institute of Technology, Calicut 673601; Manikandanath, N. T.
Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantlymore » by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.« less
NASA Astrophysics Data System (ADS)
Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.
2007-02-01
The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.
NASA Technical Reports Server (NTRS)
Chen, Yuan-Liang Albert
1999-01-01
The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.
Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters
Calfee, M. Worth; Rose, Laura J.; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal
2016-01-01
The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37 mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p ≤ 0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p > 0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. PMID:24184312
Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters.
Calfee, M Worth; Rose, Laura J; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal
2014-01-01
The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p≤0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p>0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Qian, Gang; Feng, Yi; Li, Bin; Huang, Shiyin; Liu, Hongjuan; Ding, Kewang
2013-03-01
As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5 N/cm2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2, elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.
MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications
NASA Technical Reports Server (NTRS)
Theiler, Geraldine; Gradt, Thomas
2010-01-01
At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.
NASA Astrophysics Data System (ADS)
Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.
2017-12-01
One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.
Systems and Methods of Laser Texturing of Material Surfaces and Their Applications
NASA Technical Reports Server (NTRS)
Gupta, Mool C. (Inventor); Nayak, Barada K. (Inventor)
2014-01-01
The surface of a material is textured and by exposing the surface to pulses from an ultrafast laser. The laser treatment causes pillars to form on the treated surface. These pillars provide for greater light absorption. Texturing and crystallization can be carried out as a single step process. The crystallization of the material provides for higher electric conductivity and changes in optical and electronic properties of the material. The method may be performed in vacuum or a gaseous environment. The gaseous environment may aid in texturing and/or modifying physical and chemical properties of the surfaces. This method may be used on various material surfaces, such as semiconductors, metals and their alloys, ceramics, polymers, glasses, composites, as well as crystalline, nanocrystalline, polycrystalline, microcrystalline, and amorphous phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeki, Hiroshi, E-mail: saeki@spring8.or.jp; Magome, Tamotsu, E-mail: saeki@spring8.or.jp
2014-10-06
To compensate pressure-measurement errors caused by a synchrotron radiation environment, a precise method using a hot-cathode-ionization-gauge head with correcting electrode, was developed and tested in a simulation experiment with excess electrons in the SPring-8 storage ring. This precise method to improve the measurement accuracy, can correctly reduce the pressure-measurement errors caused by electrons originating from the external environment, and originating from the primary gauge filament influenced by spatial conditions of the installed vacuum-gauge head. As the result of the simulation experiment to confirm the performance reducing the errors caused by the external environment, the pressure-measurement error using this method wasmore » approximately less than several percent in the pressure range from 10{sup −5} Pa to 10{sup −8} Pa. After the experiment, to confirm the performance reducing the error caused by spatial conditions, an additional experiment was carried out using a sleeve and showed that the improved function was available.« less
Growth of cyanobacteria on Martian Regolith Simulant after exposure to vacuum
NASA Astrophysics Data System (ADS)
Arai, Mayumi; Sato, Seigo; Ohmori, Masayuki; Tomita-Yokotani, Kaori; Hashimoto, Hirofumi; Yamashita, Masamichi
Habitation on Mars is one of our challenges in this century. The growth of cyanobacteria on Martian Regolith Simulant (MRS) was studied with two species of terrestrial cyanobacteria, Nostoc, and one species of other cyanobacterium, Synechosystis. Their vacuum tolerances was examined in order to judge feasibility of the use of cyanobacteria to creat habitable environment on a distant planet. The viability of cyanobacteria tested was evaluated by the microscopic observation after staining by FDA (fluorescein diacetate). A part of them were also re-incubated again in a liquid culture medium, and viability and the chlorophyll production were examined in detail. Nostoc was found to grow for over 140 days with their having normal function of chlorophyll synthesis on the MRS. After the exposure to high vacuum environment (10-5 Pa) for a year, Nostoc sp. started growth. Chlorophyll was produced after this vacuum exposure as well. The A'MED (Arai's Mars Ecosystem Dome, A'MED) is designed to install on Mars for conducting agricultural production in it. We performed the fundamental experiment with MRS. These results show a possibility that cyanobacteria could adapt to MRS, and grow under the low pressure environment expected on Mars.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1993-11-09
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1995-03-07
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1993-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, John D.
1996-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1995-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Manuel, M J-E; Rosenberg, M J; Sinenian, N; Rinderknecht, H; Zylstra, A B; Séguin, F H; Frenje, J; Li, C K; Petrasso, R D
2011-09-01
When used at facilities like OMEGA and the NIF, CR-39 is exposed to high vacuum environments before and after irradiation by charged particles and neutrons. Using an electrostatic linear accelerator at MIT, studies have been conducted to investigate the effects of high vacuum exposure on the sensitivity of CR-39 to fusion protons in the ~1-9 MeV energy range. High vacuum conditions, of order 10(-5) Torr, experienced by CR-39 samples at these facilities were emulated. It is shown that vacuum exposure times longer than ~16 h before proton irradiation result in a decrease in proton sensitivity, whereas no effect was observed for up to 67 h of vacuum exposure after proton irradiation. CR-39 sensitivity curves are presented for samples with prolonged exposure to high vacuum before and after proton irradiation. © 2011 American Institute of Physics
NASA Technical Reports Server (NTRS)
Clevenson, S. A.; Roussos, L. A.
1984-01-01
A small cylindrical tank was used to study the effect on the noise environment within a tank of conditions of atmospheric (sea level) pressure or vacuum environments on the exterior. Experimentally determined absorption coefficients were used to calculate transmission loss, transmissibility coefficients and the sound pressure (noise) level differences in the interior. The noise level differences were also measured directly for the two exterior environments and compared to various analytical approximations with limited agreement. Trend study curves indicated that if the tank transmission loss is above 25 dB, the difference in interior noise level between the vacuum and ambient pressure conditions are less than 2 dB.
Fluid leakage detector for vacuum applications
NASA Technical Reports Server (NTRS)
Nguyen, Bich Ngoc (Inventor); Farkas, Tibor (Inventor); Kim, Brian Byungkyu (Inventor)
2002-01-01
A leak detection system for use with a fluid conducting system in a vacuum environment, such as space, is described. The system preferably includes a mesh-like member substantially disposed about the fluid conducting system, and at least one sensor disposed within the mesh-like member. The sensor is capable of detecting a decrease in temperature of the mesh-like member when a leak condition causes the fluid of the fluid conducting system to freeze when exposed to the vacuum environment. Additionally, a signal processor in preferably in communication with the sensor. The sensor transmits an electrical signal to the signal processor such that the signal processor is capable of indicating the location of the fluid leak in the fluid conducting system.
Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.
2017-01-01
In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
In Situ Fiber-Optic Reflectance Monitor
NASA Technical Reports Server (NTRS)
Linton, Roger C.; Gray, Perry A.
1996-01-01
In situ fiber-optic reflectance monitor serves as simple means of monitoring changes in reflectance of specimen exposed to simulated outerspace or other environments in vacuum chamber. Eliminates need to remove specimen from vacuum chamber, eliminating optical changes and bleaching such removal causes in coatings.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1982-01-01
The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.
Characteristics of ring type traveling wave ultrasonic motor in vacuum.
Qu, Jianjun; Zhou, Ningning; Tian, Xiu; Jin, Long; Xu, Zhike
2009-03-01
The characteristics of ultrasonic motor strongly depend on the properties of stator/rotor contact interface which are affected by ambient environment. With the developed apparatus, load properties of two ring type traveling wave ultrasonic motors in atmosphere, low vacuum and high vacuum were studied, respectively. Wear of friction material, variations of vacuum degree and the temperature of motor during the experiment were also measured. The results show that load properties of motor A in vacuum were poorer than those in atmosphere, when load torque M(f) was less than 0.55 N m. Compared to motor A, load properties of motor B were affected a little by environmental pressure. Wear of friction material in vacuum was more severe than wear in atmosphere. The temperature of motor in vacuum rose more quickly than it in atmosphere and had not reached equilibrium in 2 h experiment. However, the temperature of motor in atmosphere had reached equilibrium in about forth minutes. Furthermore, outgas was also observed during experiment under vacuum conditions.
Han, Yimo; Nguyen, Kayla X; Ogawa, Yui; Park, Jiwoong; Muller, David A
2016-12-14
Scanning electron microscopes (SEMs) require a high vacuum environment to generate and shape an electron beam for imaging; however, the vacuum conditions greatly limit the nature of specimens that can be examined. From a purely scattering physics perspective, it is not necessary to place the specimen inside the vacuum chamber-the mean free paths (MFPs) for electron scattering in air at typical SEM beam voltages are 50-100 μm. This is the idea behind the airSEM, which removes the specimen vacuum chamber from the SEM and places the sample in air. The thickness of the gas layer is less than a MFP from an electron-transparent window to preserve the shape and resolution of the incident beam, resulting in comparable imaging quality to an all-vacuum SEM. Present silicon nitride windows scatter far more strongly than the air gap and are currently the contrast and resolution limiting factor in the airSEM. Graphene windows have been used previously to wrap or seal samples in vacuum for imaging. Here we demonstrate the use of a robust bilayer graphene window for sealing the electron optics from the room environment, providing an electron transparent window with only a 2% drop in contrast. There is a 5-fold-increase in signal/noise ratio for imaging compared to multi-MFP-thick silicon nitride windows, enabling high contrast in backscattered, transmission, and surface imaging modes for the new airSEM geometry.
A thermal vacuum-UV solar simulator test system for assessing microbiological viability
NASA Technical Reports Server (NTRS)
Ross, D. S.; Wardle, M. D.; Taylor, D. M.
1975-01-01
Microorganisms were exposed to a simulated space environment in order to assess the photobiological effect of broad spectrum, nonionizing solar electromagnetic radiation in terms of viability. A thermal vacuum chamber capable of maintaining a vacuum of 0.000133n/sq m and an ultraviolet rich solar simulator were the main ingredients of the test system. Results to date indicate the system to be capable of providing reliable microbiological data.
Cleaning Spectralon(TM) To Maintain Reflectance Properties
NASA Technical Reports Server (NTRS)
Stiegman, Albert; Bruegge, Carl; Plett, Gary
1996-01-01
Hydrocarbon impurities removed and stability of Spectralon(TM) towards ultraviolet and vacuum-ultraviolet radiation greatly enhanced by baking material at 90 degrees C for 24 h in vacuum of 10 to negative 5th power torr. After vacuum bake, material handled with white cotton, lint-free gloves in clean environment (preferably cleanroom). As material has tendency to reabsorb volatile organic compounds, stored and transported only in clean, air-tight (preferably glass or oil-free metal) containers.
The Evaluation of Carpet Steam/Heat Cleaners as Biological Sampling Device
2011-12-08
Vacuum Cleaner Evaluation as sampling Device Test Plan DHS Page 16 of 16 Fumigants , and Issues Related to Laboratory-scale Studies. Appl. Environ...ECBC Wet/dry Vacuum Cleaner Evaluation as sampling Device Test Plan DHS Page 1 of 16 Test Plan for The Evaluation of Carpet Steam...b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ECBC Wet/dry Vacuum Cleaner
Experimentally derived resistivity for dielectric samples from the CRRES internal discharge monitor
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Frederickson, A. Robb; Dennison, J. R.
2005-01-01
Resistivity values were experimentally determined using charge storage methods for six samples remaining from the construction of the Internal Discharge Monitor (IDM) flown on the Combined Release and Radiation Effects Satellite (CRRES). Three tests were performed over a period of four to five weeks each in a vacuum of -5x10^-6 torr with an average temperature of -25 (deg)C to simulate a space environment.
Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments
NASA Astrophysics Data System (ADS)
Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.
2010-02-01
This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.
EPS (Electric Particulate Suspension) Microgravity Technology Provides NASA with New Tools
NASA Technical Reports Server (NTRS)
Colver, Gerald M.; Greene, Nate; Xu, Hua
2004-01-01
The Electric Particulate Suspension is a fire safety ignition test system being developed at Iowa State University with NASA support for evaluating combustion properties of powders, powder-gas mixtures, and pure gases in microgravity and gravitational atmospheres (quenching distance, ignition energy, flammability limits). A separate application is the use of EPS technology to control heat transfer in vacuum and space environment enclosures. In combustion testing, ignitable powders (aluminum, magnesium) are introduced in the EPS test cell and ignited by spark, while the addition of inert particles act as quenching media. As a combustion research tool, the EPS method has potential as a benchmark design for quenching powder flames that would provide NASA with a new fire safety standard for powder ignition testing. The EPS method also supports combustion modeling by providing accurate measurement of flame-quenching distance as an important parameter in laminar flame theory since it is closely related to characteristic flame thickness and flame structure. In heat transfer applications, inert powder suspensions (copper, steel) driven by electric fields regulate heat flow between adjacent surfaces enclosures both in vacuum (or gas) and microgravity. This simple E-field control can be particularly useful in space environments where physical separation is a requirement between heat exchange surfaces.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.
Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging
NASA Astrophysics Data System (ADS)
Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
NASA Technical Reports Server (NTRS)
Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.
1974-01-01
Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.
Transfer of nonclassical features in quantum teleportation via a mixed quantum channel
NASA Astrophysics Data System (ADS)
Lee, Jinhyoung; Kim, M. S.; Jeong, Hyunseok
2000-09-01
Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the quantum channel is separable, any nonclassical features, which may be imposed in an original unknown state, cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode squeezed vacuum, is separable if and only if a positive well-defined P function can be assigned to it. The fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found that quantum teleportation may give more noise than direct transmission of a field under the thermal environment, which is due to the fragile nature of quantum entanglement of the quantum channel.
A study of fatigue and fracture in 7075-T6 aluminum alloy in vacuum and air environments
NASA Technical Reports Server (NTRS)
Hudson, C. M.
1973-01-01
Axial load fatigue life, fatigue-crack propagation, and fracture toughness experiments were conducted on sheet specimens made of 7075-T6 aluminum alloy. These experiments were conducted at pressures ranging from atmospheric to 5 x 10 to the minus 8th torr. Analysis of the results from the fatigue life experiments indicated that for a given stress level, lower air pressures produced longer fatigue lives. At a pressure of 5 x 10 to the minus 8th torr fatigue lives were 15 or more times as long as at atmospheric pressure. Analysis of the results from the fatigue crack propagation experiments indicated that for small stress intensity factor ranges the fatigue crack propagation rates were up to twice as high at atmospheric pressure as in vacuum. The fracture toughness of 7075-T6 was unaffected by the vacuum environment. Fractographic examination showed that specimens tested in both vacuum and air developed fatigue striations. Considerably more striations developed on specimens tested at atmospheric pressure, however.
Design and Fabrication of a Stirling Thermal Vacuum Test
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Schreiber, Jeffrey G.
2004-01-01
A Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA space science missions. The development effort is being conducted by Lockheed Martin under contract to the Department of Energy (DOE). The Stirling Technology Company supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to the currently used alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been conceived at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG, however the requirement for low mass was not considered. This test will demonstrate the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The analysis, design, and fabrication of the test article will be described in this paper.
Diffuser/ejector system for a very high vacuum environment
NASA Technical Reports Server (NTRS)
Riggs, K. E.; Wojciechowski, C. J. (Inventor)
1984-01-01
Turbo jet engines are used to furnish the necessary high temperature, high volume, medium pressure gas to provide a high vacuum test environment at comparatively low cost for space engines at sea level. Moreover, the invention provides a unique way by use of the variable area ratio ejectors with a pair of meshing cones are used. The outer cone is arranged to translate fore and aft, and the inner cone is interchangeable with other cones having varying angles of taper.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, J.D.
1996-08-20
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface. 3 figs.
[Vacuum-assisted therapy for various wound types including diabetic foot ulcer].
Farah, Raymond; Gantus, Maher; Kogan, Leonid
2011-03-01
Vacuum is a noninvasive system that creates a localized controlled negative pressure environment. In this study, vacuum was provided by the V.A.C. Therapy system, which promotes wound healing by delayed primary or secondary intention through creating a moist wound environment, preparing the wound bed for closure, reducing edema, and promoting formation and perfusion of granulation tissue. Vacuum-assisted closure therapy is indicated for use in all care settings and for a variety of wound types including diabetic foot ulcers. The purpose of this study was to evaluate safety and clinical efficacy of negative pressure wound therapy (NPWT) compared with advanced moist wound therapy and standard treatment to treat foot ulcers in diabetic patients. This trial enrolled 43 patients; most of them were diabetic patients at any age with various skin ulcers and diabetic foot. These patients were divided into two groups, 17 patients were treated with vacuum and the 26 patients in the control group were treated with standard therapy including debridement. A greater proportion of foot and skin ulcers achieved complete ulcer closure with vacuum-assisted therapy p<0.001 compared with the standard therapy. Vacuum therapy significantly decreased the duration and frequency of admission p=0.032 and decreased the rate of amputation p<0.001. Results of our trial support other studies and demonstrate that vacuum is as safe as and more efficacious than standard therapy in the treatment of diabetic foot ulcers. A significantly greater number of patients achieved complete ulcer closure and granulation tissue formation with this therapy. The study group showed a significant reduction in the median time needed to heal ulcers, reduction of the number of admissions and amputation frequency.
Installing scientific instruments into a cold LHe dewar - The Gravity Probe B approach
NASA Technical Reports Server (NTRS)
Parmley, Richard T.; Kusunic, Keith; Reynolds, Gary; Stephenson, Sam; Alexander, Keith
1990-01-01
Gravity Probe B is an orbital test of Einstein's general theory of relativity using gyroscopes. The precession of the gyroscopes will measure both the geodetic effect (6.6 arcsec/yr) through the curved space-time surrounding the earth and the motional effect (0.042 arcsec/yr) due to the rotating earth dragging space-time around with it. To achieve the extraordinary accuracies needed to measure these small precessions, it is necessary to have the gyroscopes operating in the following environments: a vacuum of less than 10 exp -10 torr; an acceleration level of less than 10 exp -10 g's; a magnetic field of less than 10 exp -7 gauss; and a temperature near 2 K. This paper discusses designs that allow scientific instruments to be installed into a dewar at 4.2 K. Methods for structurally supporting the instruments, transferring heat across joints at low temperature in vacuum, and excluding air during the insertion process are discussed. The structural support method is designed for Shuttle launch loads.
NASA Technical Reports Server (NTRS)
Koenig, Dieter
1994-01-01
Development of a new test method suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecraft is given in view-graph format. The equipment can be easily adapted for tests at different realistic electrical network conditions incorporating circuit protection and the test system works equally well whatever the test atmosphere. Test results confirm that pure Kapton insulated wire has bad arcing characteristics and ETFE insulated wire is considerably better in air. For certain wires, arc tracking effects are increased at higher oxygen concentrations and significantly increased under vacuum. All tests on different cable insulation materials and in different environments, including enriched oxygen atmospheres, resulted in a more or less rapid extinguishing of all high temperature effects at the beginning of the post-test phase. In no case was a self-maintained fire initiated by the arc.
Interior of Vacuum Tank at the Electric Propulsion Laboratory
1961-08-21
Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.
Friction, Wear, and Evaporation Rates of Various Materials in Vacuum to 10(exp -7) mm Hg
NASA Technical Reports Server (NTRS)
Buckley, Donald H.; Swikert, Max; Johnson, Robert L.
1961-01-01
The requirements for bearings and seals to operate in the environment of space dictate a new area for lubrication research. The low ambient pressures encountered in space can be expected to influence the behavior of oil, grease, and solid-film lubricants. The property of these materials most significantly affected by low ambient pressures is the evaporation rate. Various investigators have therefore measured the evaporation rates of oils and greases in vacuum as one method of establishing their relative merit for space applications (1-3). The results of this work have given some indication as to the oils and greases with the greatest stability at reduced ambient pressures. Only limited experimental work, however, has been reported in the literature for inorganic solids and soft metals which have potential use as solid lubricant films or coatings for hard alloy substrates [e.g. Reference ( 4 )]. In general, the evaporation rates of these materials would be lower than those of oils and greases. These films might therefore be very attractive as lubricants for high vacuum service.
NASA Technical Reports Server (NTRS)
Buecker, H.; Horneck, G.; Wollenhaupt, H.
1973-01-01
Bacillus subtilis spores are highly resistant to harsh environments. Therefore, in the Apollo 16 Microbial Response to Space Environment Experiment (M191), these spores were exposed to space vacuum or solar ultraviolet irradiation, or both, to estimate the change of survival for terrestrial organisms in space. The survival of the spores was determined in terms of colony-forming ability. Comparison of the flight results with results of simulation experiments on earth applying high vacuum or ultraviolet irradiation, or both, revealed no remarkable difference. Simultaneous exposure to both these space factors resulted in a synergistic effect (that is, an ultraviolet supersensitivity). Therefore, the change of survival in space is assumed to depend on the degree of protection against solar ultraviolet irradiation.
Simulating Extraterrestrial Ices in the Laboratory
NASA Astrophysics Data System (ADS)
Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.
2017-12-01
Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.
Vacuum leak detector and method
Edwards, Jr., David
1983-01-01
Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.
A squeezed light source operated under high vacuum
Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.
2015-01-01
Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616
A squeezed light source operated under high vacuum
NASA Astrophysics Data System (ADS)
Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.
2015-12-01
Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vacuum fumigation by an approved method or without vacuum fumigation when the covers are to be moved to... northern port for vacuum fumigation thereat or for movement to a mill or plant for utilization such... California port where approved vacuum fumigation facilities are available for vacuum fumigation thereat by an...
Code of Federal Regulations, 2011 CFR
2011-01-01
... vacuum fumigation by an approved method or without vacuum fumigation when the covers are to be moved to... northern port for vacuum fumigation thereat or for movement to a mill or plant for utilization such... California port where approved vacuum fumigation facilities are available for vacuum fumigation thereat by an...
Code of Federal Regulations, 2014 CFR
2014-01-01
... vacuum fumigation by an approved method or without vacuum fumigation when the covers are to be moved to... northern port for vacuum fumigation thereat or for movement to a mill or plant for utilization such... California port where approved vacuum fumigation facilities are available for vacuum fumigation thereat by an...
Code of Federal Regulations, 2012 CFR
2012-01-01
... vacuum fumigation by an approved method or without vacuum fumigation when the covers are to be moved to... northern port for vacuum fumigation thereat or for movement to a mill or plant for utilization such... California port where approved vacuum fumigation facilities are available for vacuum fumigation thereat by an...
Xiao, Xiaohua; Song, Wei; Wang, Jiayue; Li, Gongke
2012-01-27
In this study, low temperature vacuum microwave-assisted extraction, which simultaneous performed microwave-assisted extraction (MAE) in low temperature and in vacuo environment, was proposed. The influencing parameters including solid/liquid ratio, extraction temperature, extraction time, degree of vacuum and microwave power were discussed. The predominance of low temperature vacuum microwave-assisted extraction was investigated by comparing the extraction yields of vitamin C, β-carotene, aloin A and astaxanthin in different foods with that in MAE and solvent extraction, and 5.2-243% increments were obtained. On the other hand, the chemical kinetics of vitamin C and aloin A, which composed two different steps including the extraction step of analyte transferred from matrix into solvent and the decomposition step of analyte degraded in the extraction solvent, were proposed. All of the decomposition rates (K(2)) for the selected analyte in low temperature, in vacuo and in nitrogen atmosphere decreased significantly comparing with that in conventional MAE, which are in agreement with that obtained from experiments. Consequently, the present method was successfully applied to extract labile compound from different food samples. These results showed that low temperature and/or in vacuo environment in microwave-assisted extraction system was especially important to prevent the degradation of labile components and have good potential on the extraction of labile compound in foods, pharmaceutical and natural products. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boyer, Craig N.; Osterman, Steven N.; Thonnard, Stefan E.; McCoy, Robert P.; Williams, J. Z.; Parker, S. E.
1994-09-01
A facility for calibrating far ultraviolet and extreme ultraviolet instruments has recently been completed at the Naval Research Laboratory. Our vacuum calibration vessel is 2-m in length, 1.67-m in diameter, and can accommodate optical test benches up to 1.2-m wide by 1.5-m in length. A kinematically positioned frame with four axis precision pointing capability of 10 microns for linear translation and .01 degrees for rotation is presently used during vacuum optical calibration of SSULI. The chamber was fabricated from 304 stainless steel and polished internally to reduce surface outgassing. A dust-free environment is maintained at the rear of the vacuum chamber by enclosing the 2-m hinged vacuum access door in an 8 ft. by 8 ft. class 100 clean room. Every effort was made to obtain an oil-free environment within the vacuum vessel. Outgassing products are continually monitored with a 1 - 200 amu residual gas analyzer. An oil-free claw and vane pump evacuates the chamber to 10-2 torr through 4 in. diameter stainless steel roughing lines. High vacuum is achieved and maintained with a magnetically levitated 480 l/s turbo pump and a 3000 l/s He4 cryopump. Either of two vacuum monochrometers, a 1-m f/10.4 or a 0.2-m f/4.5 are coaxially aligned with the optical axis of the chamber and are used to select single UV atomic resonance lines from a windowless capillary or penning discharge UV light source. A calibrated channeltron detector is coaxially mounted with the SSULI detector during calibration. All vacuum valves, the cooling system for the cryopump compressor, and the roughing pump are controlled through optical fibers which are interfaced to a computer through a VME board. Optical fibers were chosen to ensure that complete electrical isolation is maintained between the computer and the vacuum system valves-solenoids and relays.
Improvements for rotary viscous dampers used in spacecraft deployment mechanisms
NASA Technical Reports Server (NTRS)
Stewart, Alphonso; Powers, Charles; Lyons, Ron
1998-01-01
During component level thermal-vacuum deployment testing of eight rotary viscous dampers for the Tropical Rainfall Measuring Mission (TRMM) satellite, all the dampers failed to provide damping during a region of the deployment. Radiographic examination showed that air in the damping fluid caused the undamped motion when the dampers were operated in a vacuum environment. Improvements in the procedure used to fill the dampers with damping fluid, the installation of a Viton vacuum seal in the damper cover, and improved screening techniques eliminated the problem.
NASA Technical Reports Server (NTRS)
Patterson, Jonathan D.
1993-01-01
Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.
Convenient mounting method for electrical measurements of thin samples
NASA Technical Reports Server (NTRS)
Matus, L. G.; Summers, R. L.
1986-01-01
A method for mounting thin samples for electrical measurements is described. The technique is based on a vacuum chuck concept in which the vacuum chuck simultaneously holds the sample and established electrical contact. The mounting plate is composed of a glass-ceramic insulating material and the surfaces of the plate and vacuum chuck are polished. The operation of the vacuum chuck is examined. The contacts on the sample and mounting plate, which are sputter-deposited through metal masks, are analyzed. The mounting method was utilized for van der Pauw measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, D., E-mail: daniele.fulvio@uni-jena.de, E-mail: dfu@oact.inaf.it; Brieva, A. C.; Jäger, C.
2014-07-07
Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to mostmore » experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O{sub 2} actinometry experiments allow us to estimate the quantum yield (QY) values QY{sub 122} = 0.44 ± 0.16 and QY{sub 160} = 0.87 ± 0.30 for solid-phase O{sub 2} actinometry.« less
Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.
Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan
2013-05-07
We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.
NASA Astrophysics Data System (ADS)
Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao
In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.
Drying performance of fermented cassava (fercaf) using a convective multiple flash dryer
NASA Astrophysics Data System (ADS)
Handojo, Lienda A.; Zefanya, Samuel; Christanto, Yohanes
2017-05-01
Fermented cassava (fercaf) is a tropical versatile carbohydrate source flour which is produced by modifying the characteristics of cassava. Drying process is one of the processes that could influence the quality of fercaf. In general, for food application, convective and vacuum drying were used, however recently another advanced method using combination of both convective and vacuum, i.e. convective multiple flash drying (CMFD), was proposed. This method is conducted by repeating cycles of convective and vacuum drying in intermittent manner. Cassava chips with thickness of 0.1-0.2 cm were fermented for 24 hours at room condition. Then, the drying process was conducted by using 3 techniques, i.e. convective, vacuum, and combined method (CMFD), with operation temperatures between 50 and 70°C for 10 hours or until fermented cassava reached a moisture content of less than 20%. The study shows that CMFD was the fastest drying method with only 5-6 hours period compared to 8-10 hours using vacuum and more than 10 hours using convective method. CMFD also produces harder fercaf chips than those of vacuum and convective methods. Moreover, this research also proves that the operating pressure and temperature influence the moisture content.
Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.
2012-01-01
The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.
Amine Swingbed Payload Technology Demonstration
NASA Technical Reports Server (NTRS)
Sweterlitsch, Jeffrey
2014-01-01
The Amine Swingbed is an amine-based, vacuum-regenerated adsorption technology for removing carbon dioxide and humidity from a habitable spacecraft environment, and is the baseline technology for the Orion Program’s Multi-Purpose Crew Vehicle (MPCV). It uses a pair of interleaved-layer beds filled with SA9T, the amine sorbent, and a linear multiball valve rotates 270° back and forth to control the flow of air and vacuum to adsorbing and desorbing beds. One bed adsorbs CO2 and H2O from cabin air while the other bed is exposed to vacuum for regeneration by venting the CO2 and H2O. The two beds are thermally linked, so no additional heating or cooling is required. The technology can be applied to habitable environments where recycling CO2 and H2O is not required such as short duration missions.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
2011-01-01
The destruction rates of a perfluoropolyether (PFPE) lubricant, Krytox 143AC, subjected to rolling contact with 440C steel in a spiral orbit tribometer at room temperature have been evaluated as a function of test environment. The rates in ultrahigh vacuum, 0.213 kPa (1.6 torr) oxygen and one atmosphere of dry nitrogen were about the same. Water vapor in the test environment-a few ppm in one atmosphere of nitrogen-reduced the destruction rate by up to an order of magnitude. A similar effect of water vapor was found for the destruction rate of Pennzane 2001A, an unformulated multiply alkylated cyclopentane (MAC) hydrocarbon oil.
Flexible radiator thermal vacuum test report
NASA Technical Reports Server (NTRS)
Oren, J. A.; Hixon, C. W.
1982-01-01
Two flexible, deployable/retraction radiators were designed and fabricated. The two radiator panels are distinguishable by their mission life design. One panel is designed with a 90 percent probability of withstanding the micrometeoroid environment of a low earth orbit for 30 days. This panel is designated the soft tube radiator after the PFA Teflon tubes which distribute the transport fluid over the panel. The second panel is designed with armored flow tubes to withstand the same micrometeoroid environment for 5 years. It is designated the hard tube radiator after its stainless steel flow tubes. The thermal performance of the radiators was tested under anticipated environmental conditions. The two deployment systems of the radiators were evaluated in a thermal vacuum environment.
NASA Technical Reports Server (NTRS)
Frank, H. A.; Uchiyama, A. A.
1973-01-01
Water vapor loss rates were determined from simulated and imperfectly sealed alkaline cells in the vacuum environment. The observed rates were found to be in agreement with a semi-empirical equation employed in vacuum technology. Results thereby give support for using this equation for the prediction of loss rates of battery gases and vapors to the aerospace environment. On this basis it was shown how the equation can be applied to the solution of many heretofore unresolved questions regarding leaks in batteries. Among these are the maximum permissible leak size consistent with a given cell life or conversely the maximum life consistent with a given leak size. It was also shown that loss rates of these cells in the terrestrial environment are several orders of magnitude less than the corresponding loss rates in the aerospace environment.
Nicholson, Wayne L; Schuerger, Andrew C; Setlow, Peter
2005-04-01
The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.
Vacuum storage of yellow-poplar pollen
James R. Wilcox
1966-01-01
Vacuum-drying, followed by storage in vacuo or in an inert gas, is effective for storing pollen of many species. It permits storage at room environments without rigid controls of either temperature or humidity, an advantage that becomes paramount during long-distance transfers of pollen when critical storage conditions are impossible to maintain. In...
Brayton Cycle Power System in the Space Power Facility
1969-07-21
Set up of a Brayton Cycle Power System test in the Space Power Facility’s massive vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft, but it was never used for that purpose. The Space Power Facility was first used to test a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the tests. Lewis researchers studied the Brayton power system extensively in the 1960s and 1970s. The Brayton engine converted solar thermal energy into electrical power. The system operated on a closed-loop Brayton thermodynamic cycle with a helium-xenon gas mixture as its working fluid. A space radiator was designed to serve as the system’s waste heat rejecter. The radiator was later installed in the vacuum chamber and tested in a simulated space environment to determine its effect on the power conversion system. The Brayton system was subjected to simulated orbits with 62 minutes of sun and 34 minutes of shade.
NASA Astrophysics Data System (ADS)
Mateo-Marti, Eva
2014-08-01
The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.
Heat Pipe and Thermal Energy Storage and Corrosion Studies (1988)
1989-06-01
of air environment melting and end cap TIG welding [2]. Because of its severity, vacuum thermal cycling of the salt clad capsules between salt eutectic...melting of the salt under an inert gas atmosphere and welding of the specimen capsules by electron beam welding in contrast to previously used methods...electron beam welding . However, no ill effects were believed to have occurred on the overall testing program. Ultrapure fluoride salts LiF, MgF2, NaF
[The evolution of vacuum extraction in obstetrics].
Nikolov, A
2010-01-01
Vacuum extraction is one of the methods for assisted vaginal delivery. In this article the evolution of vacuum extraction in obstetrics is been discussed. Historical facts and data from the invention up to state-of-the-art vacuum systems in modern obstetrics are presented.
Slówko, Witold; Wiatrowski, Artur; Krysztof, Michał
2018-01-01
The paper considers some major problems of adapting the multi-detector method for three-dimensional (3D) imaging of wet bio-medical samples in Variable Pressure/Environmental Scanning Electron Microscope (VP/ESEM). The described method pertains to "single-view techniques", which to create the 3D surface model utilise a sequence of 2D SEM images captured from a single view point (along the electron beam axis) but illuminated from four directions. The basis of the method and requirements resulting from them are given for the detector systems of secondary (SE) and backscattered electrons (BSE), as well as designs of the systems which could work in variable conditions. The problems of SE detection with application of the Pressure Limiting Aperture (PLA) as the signal collector are discussed with respect to secondary electron backscattering by a gaseous environment. However, the authors' attention is turned mainly to the directional BSE detection, realized in two ways. The high take off angle BSE were captured through PLA with use of the quadruple semiconductor detector placed inside the intermediate chamber, while BSE starting at lower angles were detected by the four-folded ionization device working in the sample chamber environment. The latter relied on a conversion of highly energetic BSE into low energetic SE generated on walls and a gaseous environment of the deep discharge gap oriented along the BSE velocity direction. The converted BSE signal was amplified in an ionising avalanche developed in the electric field arranged transversally to the gap. The detector system operation is illustrated with numerous computer simulations and examples of experiments and 3D images. The latter were conducted in a JSM 840 microscope with its combined detector-vacuum equipment which could extend capabilities of this high vacuum instrument toward elevated pressures (over 1kPa) and environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.
2012-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.
Evaluation of supercapacitors for space applications under thermal vacuum conditions
NASA Astrophysics Data System (ADS)
Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.
2018-03-01
Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.
NASA Technical Reports Server (NTRS)
Berkebile, Stephen; Gaier, James R.
2012-01-01
During the Apollo missions, the adhesion of dust to critical spacecraft systems was a greater problem than anticipated and resulted in functional degradation of thermal control surfaces, spacesuit seals, and other spacecraft components. Notably, Earth-based simulation efforts did not predict the magnitude and effects of dust adhesion in the lunar environment. Forty years later, we understand that the ultrahigh vacuum (UHV) environment, coupled with micrometeorite impacts and constant ion and photon bombardment from the sun result in atomically clean and high surface energy dust particles and spacecraft surfaces. However, both the dominant mechanism of adhesion in airless environments and the conditions for high fidelity simulation tests have still to be determined. The experiments presented in here aim to aid in the development of dust mitigation techniques for airless bodies (e.g., lunar surface, asteroids, moons of outer planets). The approach taken consists of (a) quantifying the adhesion between common polymer and metallic spacecraft materials and a synthetic noritic volcanic glass, as a function of surface cleanliness and of triboelectric charge transfer in a UHV environment, and (b) determining parameters for high fidelity tests through investigation of adhesion dependence on vacuum environment and sample treatment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is generally observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10. Furthermore, electrostatically-induced adhesion is found to decrease rapidly above pressures of 10-6 torr. It is concluded that high-fidelity tests should be conducted in high to ultrahigh vacuum and include an ionized surface cleaning process.
Overview of Fabrication Techniques and Lessons Learned with Accelerator Vacuum Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ader, C. R.; McGee, M. W.; Nobrega, L. E.
Vacuum thin windows have been used in Fermilab's accelerators for decades and typically have been overlooked in terms of their criticality and fragility. Vacuum windows allow beam to pass through while creating a boundary between vacuum and air or high vacuum and low vacuum areas. The design of vacuum windows, including Titanium and Beryllium windows, will be discussed as well as fabrication, testing, and operational concerns. Failure of windows will be reviewed as well as safety approaches to mitigating failures and extending the lifetimes of vacuum windows. Various methods of calculating the strengths of vacuum windows will be explored, includingmore » FEA.« less
Space shuttle orbiter mechanical refrigeration system
NASA Technical Reports Server (NTRS)
Williams, J. L.
1974-01-01
A radiator/condenser was designed which is efficient in both condensation (refrigeration) and liquid phase (radiator) operating modes, including switchover from the refrigeration mode to the radiator mode and vice versa. A method for predicting the pressure drop of a condensing two-phase flow in zero-gravity was developed along with a method for predicting the flow regime which would prevail along the condensation path. The hybrid refrigeration system was assembled with the two radiator/condenser panels installed in a space environment simulator. The system was tested under both atmospheric and vacuum conditions. Results of the tests are presented.
Germanium detector vacuum encapsulation
NASA Technical Reports Server (NTRS)
Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.
1991-01-01
This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.
Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong
2016-04-15
Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (p<0.05) increase in the content of total free amino acids and the relative content of sulfur compounds of dried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preparation of Morpheus Vehicle for Vacuum Environment Testing
NASA Technical Reports Server (NTRS)
Sandoval, Armando
2016-01-01
The main objective for this summer 2016 tour was to prepare the Morpheus vehicle for its upcoming test inside Plum Brook's vacuum chamber at NASA John H. Glenn Research Center. My contributions towards this project were mostly analytical in nature, providing numerical models to validate test data, generating computer aided analyses for the structure support of the vehicle's engine, and designing a vacuum can that is to protect the high speed camera used during testing. Furthermore, I was also tasked with designing a tank toroidal spray bar system.
Thermal/vacuum vs. thermal atmospheric testing of space flight electronic assemblies
NASA Technical Reports Server (NTRS)
Gibbel, Mark
1990-01-01
For space flight hardware, the thermal vacuum environmental test is the best test of a system's flight worthiness. Substituting an atmospheric pressure thermal test for a thermal/vacuum test can effectively reduce piece part temperatures by 20 C or more, even for low power density designs. Similar reductions in test effectiveness can also result from improper assembly level T/V test boundary conditions. The net result of these changes may reduce the effective test temperatures to the point where there is zero or negative margin over the flight thermal environment.
NASA Technical Reports Server (NTRS)
Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)
2002-01-01
The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.
Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen
2018-01-01
Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.
Night vision imaging system design, integration and verification in spacecraft vacuum thermal test
NASA Astrophysics Data System (ADS)
Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing
2015-08-01
The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.
Laboratory Simulation of Electrical Discharge in Surface Lunar Regolith
NASA Astrophysics Data System (ADS)
Shusterman, M.; Izenberg, N.; Wing, B. R.; Liang, S.
2016-12-01
Physical, chemical, and optical characteristics of space-weathered surface materials on airless bodies are produced primarily from bombardment by solar energetic particles and micrometeoroid impacts. On bodies such as the Moon and Mercury, soils in permanently shadowed regions (PSRs) are very cold, have low electrical conductivities, and are subjected to a high flux of incoming energetic particles accelerated by solar events. Theoretical models predict that up to 25% of gardened soils in the lunar polar regions are altered by dielectric breakdown; a potentially significant weathering process that is currently unconfirmed. Although electrical properties of lunar soils have been studied in relation to flight electronics and spacecraft safety, no studies have characterized potential alterations to soils resulting from electrical discharge. To replicate the surface charge field in PSRs, lunar regolith simulant JSC-1A was placed between two parallel plane electrodes under both low and high vacuum environments, 10e-3 torr and 2.5e-6 torr, respectively. Voltage was increased until discharge occurred within the sample. Grains were analyzed using an SVC fiber-fed point spectrometer, Olympus BX51 upright metallurgical microscope, and a Hitachi TM3000 scanning electron microscope with Bruker Quantax-70 X-ray spectrometer. Discharges occurring in samples under low vacuum resulted in surficial melting, silicate vapor deposition, coalescence of metallic iron, and micro-scale changes to surface topography. Samples treated under a high vacuum environment showed similar types of effects, but fewer in number compared to low vacuum samples. The variation in alteration abundances between the two environments implies that discharges may be occurring across surface contaminants, even at high vacuum conditions, inhibiting dielectric breakdown in our laboratory simulations.
Space Research Results Purify Semiconductor Materials
NASA Technical Reports Server (NTRS)
2010-01-01
While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.
Comparative Evaluation of Vacuum-based Surface Sampling ...
Journal Article Following a biological contamination incident, collection of surface samples is necessary to determine the extent and level of contamination, and to deem an area safe for reentry upon decontamination. Current sampling strategies targeting Bacillus anthracis spores prescribe vacuum-based methods for rough and/or porous surfaces. In this study, four commonly-used B. anthracis spore sampling devices (vacuum socks, 37 mm 0.8 µm MCE filter cassettes, 37 mm 0.3 µm PTFE filter cassettes, and 3MTM forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. The vacuum sock device was evaluated at two sampling speeds (slow and fast), resulting in five total methods evaluated. Aerosolized spores (~105 cm-2) of a surrogate Bacillus species (Bacillus atrophaeus) were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each of the three material types. In addition, stainless steel (i.e., nonporous) surfaces inoculated simultaneously were sampled with pre-moistened wipes. Recoveries from wipes of steel surfaces were utilized to verify the inoculum, and to normalize vacuum-based recoveries across trials. Recovery (CFU cm-2) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Relative recoveries were compared by one-way and three-way ANOVA. Data analysis by one-
Friction, wear, and lubrication in vacuum
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1971-01-01
A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.
USC/AIAA student get away special project liquid droplet collector experiment
NASA Technical Reports Server (NTRS)
Levesque, Raymond J., II
1987-01-01
This experimental payload was developed in order to observe, in a micro-gravity vacuum environment, the characteristics and stability of a thin fluid film flowing across a slightly curved surface. The test apparatus was designed based upon various ground-based thin film investigations, combined with the constraints imposed by the rigors of launch and the space environment. Testing of the fluid test article at atmospheric pressure and in vacuum verified the design provisions employed concerning ultra-low inlet pressure pump construction, as well as confirming expected pressure losses in the system. During the course of hardware development and construction modifications were required; however, the overall payload configuration remained largely unchanged. This will allow for modification and reflight of the apparatus based upon the findings of the initial flight. The specific applications of this experiment include Liquid Droplet Radiator development and various forms of material transport in vacuum.
NASA Technical Reports Server (NTRS)
Lingbloom, Mike; Plaia, Jim; Newman, John
2006-01-01
Laser Shearography is a viable inspection method for detection of de-bonds and voids within the external TPS (thermal protection system) on to the Space Shuttle RSRM (reusable solid rocket motors). Cork samples with thicknesses up to 1 inch were tested at the LTI (Laser Technology Incorporated) laboratory using vacuum-applied stress in a vacuum chamber. The testing proved that the technology could detect cork to steel un-bonds using vacuum stress techniques in the laboratory environment. The next logical step was to inspect the TPS on a RSRM. Although detailed post flight inspection has confirmed that ATK Thiokol's cork bonding technique provides a reliable cork to case bond, due to the Space Shuttle Columbia incident there is a great interest in verifying bond-lines on the external TPS. This interest provided and opportunity to inspect a RSRM motor with Laser Shearography. This paper will describe the laboratory testing and RSRM testing that has been performed to date. Descriptions of the test equipment setup and techniques for data collection and detailed results will be given. The data from the test show that Laser Shearography is an effective technology and readily adaptable to inspect a RSRM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahangir, S.; Cheng, Xuan; Huang, H. H.
2014-10-28
Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less
Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)
2015-01-01
Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.
NASA Technical Reports Server (NTRS)
Mcshane, J. W.; Coursen, C. D.
1984-01-01
Three experiments are described which use space processing technology in the formation of and coating of bubbles and spheres to be orbited as sculptures visible from Earth. In one experiment, a 22,000 m1 sphere is to ride into orbit containing a 15 psi Earth atmosphere. Once in orbit, a controller directs a valve to open, linking the sphere to a vacuum of space. Technologies used in the fabrication of these art forms include vacuum film deposition and large bubble formation in the space environment.
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
2006-01-01
The destruction rates of a perfluoropolyether (PFPE) lubricant, Krytox 143AC(TradeMark), subjected to rolling contact with 440C steel in a spiral orbit tribometer at room temperature have been evaluated as a function of test environment. The rates in ultrahigh vacuum, 0.21 3 kPa (1.6 Torr) oxygen and one atmosphere of dry nitrogen were about the same. Water vapor in the test environment - a few ppm in one atmosphere of nitrogen - reduced the destruction rate by up to an order of magnitude. A similar effect of water vapor was found for the destruction rate of Pennzane(Registered TradeMark) 2001A , an unformulated multiply alkylated cyclopentane (MAC) hydrocarbon oil.
Walker, Matthew; Godin, Michel; Pelling, Andrew E
2018-05-28
Although our understanding of cellular behavior in response to extracellular biological and mechanical stimuli has greatly advanced using conventional 2D cell culture methods, these techniques lack physiological relevance. To a cell, the extracellular environment of a 2D plastic petri dish is artificially flat, extremely rigid, static and void of matrix protein. In contrast, we developed the microtissue vacuum-actuated stretcher (MVAS) to probe cellular behavior within a 3D multicellular environment composed of innate matrix protein, and in response to continuous uniaxial stretch. An array format, compatibility with live imaging and high-throughput fabrication techniques make the MVAS highly suited for biomedical research and pharmaceutical discovery. We validated our approach by characterizing the bulk microtissue strain, the microtissue strain field and single cell strain, and by assessing F-actin expression in response to chronic cyclic strain of 10%. The MVAS was shown to be capable of delivering reproducible dynamic bulk strain amplitudes up to 13%. The strain at the single cell level was found to be 10.4% less than the microtissue axial strain due to cellular rotation. Chronic cyclic strain produced a 35% increase in F-actin expression consistent with cytoskeletal reinforcement previously observed in 2D cell culture. The MVAS may further our understanding of the reciprocity shared between cells and their environment, which is critical to meaningful biomedical research and successful therapeutic approaches.
Space environment effects on polymers in low earth orbit
NASA Astrophysics Data System (ADS)
Grossman, E.; Gouzman, I.
2003-08-01
Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment.
The Potential and Equipotentiality of Spacecraft
NASA Astrophysics Data System (ADS)
Afonin, V. V.
2004-01-01
The problem of maintenance of the equipotentiality of spacecraft surfaces is considered. The method under examination is the use of the ``conductive thermal-vacuum multilayer blanket'' (CMLB), whose outer surface represents a fabric woven of threads of glass fiber type with interwoven metal threads. The process of spacecraft potential formation and methods of the potential calculation are described, and the results of such a calculation for the illuminated and shadowed parts of spacecraft surfaces in some characteristic near-Earth plasma environments are presented. The CMLB model is described, and the potential distribution near the CMLB surface is calculated. The conclusion was drawn that the conductive thermal-vacuum multilayer blanket used in some cases on Russian spacecraft does not ensure the equipotentiality of spacecraft surfaces, and in the case of using CMLB, the differential spacecraft charging in outer regions of the Earth's magnetosphere may reach a dangerous level for onboard electronic systems. In spite of the fact that CMLB guards against large-scale powerful discharges, one cannot exclude discharges completely, what may result in broadband noise enhancement and cause onboard systems failures.
Analytical techniques and instrumentation, a compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Procedures for conducting materials tests and structural analyses of aerospace components are presented as a part of the NASA technology utilization program. Some of the subjects discussed are as follows: (1) failures in cryogenic tank insulation, (2) friction characteristics of graphite and graphite-metal combinations, (3) evaluation of polymeric products in thermal-vacuum environment, (4) erosion of metals by multiple impacts with water, (5) mass loading effects on vibrated ring and shell structures, (6) nonlinear damping in structures, and (7) method for estimating reliability of randomly excited structures.
Requirements and Designs for Mars Rover RTGs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, Alfred; Shirbacheh, M; Sankarankandath, V
The current-generation RTGs (both GPHS and MOD) are designed for operation in a vacuum environment. The multifoil thermal insulation used in those RTGs only functions well in a good vacuum. Current RTGs are designed to operate with an inert cover gas before launch, and to be vented to space vacuum after launch. Both RTGs are sealed with a large number of metallic C-rings. Those seals are adequate for retaining the inert-gas overpressure during short-term launch operations, but would not be adequate to prevent intrusion of the Martian atmospheric gases during long-term operations there. Therefore, for the Mars Rover application, thosemore » RTGs just be modified to prevent the buildup of significant pressures of Mars atmosphere or of helium (from alpha decay of the fuel). In addition, a Mars Rover RTG needs to withstand a long-term dynamic environment that is much more severe than that seen by an RTG on an orbiting spacecraft or on a stationary planetary lander. This paper describes a typical Rover mission, its requirements, the environment it imposes on the RTG, and a design approach for making the RTG operable in such an environment. Specific RTG designs for various thermoelectric element alternatives are presented.; Reference CID #9268 and CID #9276.« less
Commercial aspects of epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.
Effects of long duration exposure to simulated space environment on nonmetallic materials properties
NASA Technical Reports Server (NTRS)
Peacock, C. L., Jr.; Whitaker, A. F.
1983-01-01
Nonmetallic materials specimens from the Viking program were tested in situ invacuo after continuous thermal vacuum exposure from 1971/1972 to the present. Eleven tests were done on appropriate specimens of 30 materials; however, no single material received all the tests. Some specimens also were exposed to 1 or 2.5 MeV electrons at differing fluences before testing. Baseline exposure data is reported for graphite/epoxy specimens that were exposed to vacuum since 1974. These materials were transferred to the thermal vacuum storage facility for future in situ testing and irradiation. Thin G/E specimens were tensile tested after thermal-vacuum cycling exposure. Photomicrographic examinations and SEM analyses were done on the failed specimens.
Vacuum Outgassing of High Density Polyethylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinh, L N; Sze, J; Schildbach, M A
A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368more » K for a few hours prior to device assembly.« less
Preparation of W/CuCrZr mono-block test mock-up using vacuum brazing technique
NASA Astrophysics Data System (ADS)
Premjit Singh, K.; Khirwadkar, S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash
2017-04-01
Development of the joining for W/CuCrZr mono-block PFC test mock-up is an interesting area in Fusion R&D. W/Cu bimetallic material has been prepared using OFHC Copper casting approach on the radial surface of W mono-block tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970°C for 10 min using NiCuMn-37 filler material under deep vacuum environment (10-6 mbar). Graphite fixture was used for OFHC Copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr mono-block mock-up of W/Cu and Cu-CuCrZr interface has been checked using ultrasonic immersion technique. The result of the experimental work is presented in the paper.
Vacuum and low oxygen pressure influence on BaFe12O19 film deposited by pulse laser deposition
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Gaur, Anurag; Choudhary, R. J.
2018-05-01
BaFe12O19 hexaferrite thin films are deposited on Si (111) substrate by the pulse laser deposition (PLD) technique in high vacuum 10-6 Torr and low oxygen pressure (10 mTorr) at 650°C substrate temperature. The effects of high vacuum and low pressure on magnetic and optical properties are studied. These films are characterized by the x-ray diffractometer (XRD), SQUID-VSM magnetometer, and Photo-luminescence spectroscopy. XRD pattern reveals that the BaFe12O19 film well formed in both environments without any impurity pick. High magnetic saturazation 317 emu/cm3 and coercivity 130 Oe are observed for the film deposited in vacuum. Photoluminescence emission spectrum of BaFe12O19 film reveals that the higher intensity emission peak at ˜372 nm under the excitation wavelength of 270 nm is observed for the film grown in vacuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conder, A.; Mummolo, F. J.
The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.
Solar cells for lunar applications by vacuum evaporation of lunar regolith materials
NASA Technical Reports Server (NTRS)
Ignatiev, Alex
1991-01-01
The National Space Exploration Initiative, specifically the Lunar component, has major requirements for technology development of critical systems, one of which is electrical power. The availability of significant electrical power on the surface of the Moon is a principal driver defining the complexity of the lunar base. Proposals to generate power on the Moon include both nuclear and solar (photovoltaic) systems. A more efficient approach is to attempt utilization of the existing lunar resources to generate the power systems. Synergism may occur from the fact that there have already been lunar materials processing techniques proposed for the extraction of oxygen that would have, as by-products, materials that could be specifically used to generate solar cells. The lunar environment is a vacuum with pressures generally in the 1 x 10(exp -10) torr range. Such conditions provide an ideal environment for direct vacuum deposition of thin film solar cells using the waste silicon, iron, and TiO2 available from the lunar regolith processing meant to extract oxygen. It is proposed, therefore, to grow by vacuum deposition, thin film silicon solar cells from the improved regolith processing by-products.
MINERVA: A facility to study Microstructure and INterface Evolution in Realtime under VAcuum
NASA Astrophysics Data System (ADS)
Nicklin, Chris; Martinez-Hardigree, Josue; Warne, Adam; Green, Stephen; Burt, Martin; Naylor, John; Dorman, Adam; Wicks, Dean; Din, Salahud; Riede, Moritz
2017-10-01
A sample environment to enable real-time X-ray scattering measurements to be recorded during the growth of materials by thermal evaporation in vacuum is presented. The in situ capabilities include studying microstructure development with time or during exposure to different environmental conditions, such as temperature and gas pressure. The chamber provides internal slits and a beam stop, to reduce the background scattering from the X-rays passing through the entrance and exit windows, together with highly controllable flux rates of the evaporants. Initial experiments demonstrate some of the possibilities by monitoring the growth of bathophenanthroline (BPhen), a common molecule used in organic solar cells and organic light emitting diodes, including the development of the microstructure with time and depth within the film. The results show how BPhen nanocrystal structures coarsen at room temperature under vacuum, highlighting the importance of using real time measurements to understand the as-deposited pristine film structure and its development with time. More generally, this sample environment is versatile and can be used for investigation of structure-property relationships in a wide range of vacuum deposited materials and their applications in, for example, optoelectronic devices and energy storage.
Opto-mechanical design of vacuum laser resonator for the OSQAR experiment
NASA Astrophysics Data System (ADS)
Hošek, Jan; Macúchová, Karolina; Nemcová, Šárka; Kunc, Štěpán.; Šulc, Miroslav
2015-01-01
This paper gives short overview of laser-based experiment OSQAR at CERN which is focused on search of axions and axion-like particles. The OSQAR experiment uses two experimental methods for axion search - measurement of the ultra-fine vacuum magnetic birefringence and a method based on the "Light shining through the wall" experiment. Because both experimental methods have reached its attainable limits of sensitivity we have focused on designing a vacuum laser resonator. The resonator will increase the number of convertible photons and their endurance time within the magnetic field. This paper presents an opto-mechanical design of a two component transportable vacuum laser resonator. Developed optical resonator mechanical design allows to be used as a 0.8 meter long prototype laser resonator for laboratory testing and after transportation and replacement of the mirrors it can be mounted on the LHC magnet in CERN to form a 20 meter long vacuum laser resonator.
Arcing in Leo and Geo Simulated Environments: Comparative Analysis
NASA Technical Reports Server (NTRS)
Vayner, Boris V.; Ferguson, Dale C.; Galofaro, Joel TY.
2006-01-01
Comprehensive tests of two solar array samples in simulated Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) environments have demonstrated that the arc inception voltage was 2-3 times lower in the LEO plasma than in the GEO vacuum. Arc current pulse wave forms are also essentially different in these environments. Moreover, the wide variations of pulse forms do not allow introducing the definition of a "standard arc wave form" even in GEO conditions. Visual inspection of the samples after testing in a GEO environment revealed considerable damage on coverglass surfaces and interconnects. These harmful consequences can be explained by the discharge energy being one order of magnitude higher in vacuum than in background plasma. The tests also revealed a potential danger of powerful electrostatic discharges that could be initiated on the solar array surface of a satellite in GEO during the ignition of an arcjet thruster.
Development of a modified dry curing process for beef.
Hayes, J E; Kenny, T A; Ward, P; Kerry, J P
2007-11-01
The development of a dry curing process using physical treatments to promote the diffusion of the cure ingredients was studied. Vacuum pulsing with and without tumbling, continuous vacuum, and tumbling only treatments were compared with a conventional static dry cure control method on beef M. supraspinatus. Vacuum tumble and tumble only treatments gave highest core salt content after 7 days conditioning (3.3% and 3.1%, respectively). All test treatments resulted in higher colour uniformity and lower % cook loss in comparison to control (P<0.001). The control and vacuum pulsed samples were tougher (P<0.001). Vacuum tumble and tumble only treatments gave higher acceptability (P<0.001). Based on these findings for M. supraspinatus, indicating that the vacuum tumble treatments gave the best results, further testing of this method was conducted using the M. biceps femoris in addition to the M. supraspinatus. Cured beef slices were stored in modified atmosphere packs (MAP) (80%N(2):20%CO(2)) for up to 28 day at 4°C. Redness (a(∗), P<0.001) decreased over storage time in M. biceps femoris. Vacuum tumble treatment increased (P<0.05) redness in M. supraspinatus. Results obtained demonstrate the benefits of vacuum tumbling over the other physical treatments as a method for accelerating the dry curing process, producing dry cured beef products with enhanced organoleptic quality and increased yields.
Method of radiation degradation of PTFE under vacuum conditions
NASA Astrophysics Data System (ADS)
Korenev, Sergey
2004-09-01
A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.
State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
Zhan, Lu; Xu, Zhenming
2014-12-16
In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.
NASA Technical Reports Server (NTRS)
Hebert, Phillip W.
2008-01-01
NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.
An evaluation of grease type ball bearing lubricants operating in various environments
NASA Technical Reports Server (NTRS)
Mcmurtrey, E. L.
1984-01-01
Because many future spacecraft or space stations will require mechanisms to operate for long periods of time in environments which are adverse to most bearing lubricants, a series of tests has been completed to evaluate 38 grease type lubricants in R-4 size bearings in five different environments for a 1 year period. Four repetitions of each test were made to provide statistical samples. These tests were also used to select four lubricants for 5 year tests in selected environments with five repetitions of each test for statistical samples. In this completed program, 172 test sets have been completed. The three 5 year tests in: (1) continuous operation and (2) start stop operation, with both in vacuum at ambient temperatures, and (3) continuous vacuum operation at 93.3 C have been completed. In both the 1 year and 5 year tests, the best results in all environments have been obtained with a high viscosity index perfluoroalkylpolyether (PFPE) grease.
An evaluation of grease-type ball bearing lubricants operation in various environments
NASA Technical Reports Server (NTRS)
Mcmurtrey, E. L.
1983-01-01
Because many future spacecraft or space stations will require mechanisms to operate for long periods of time in environments which are adverse to most bearing lubricants, a series of tests is continuing to evaluate 38 grease type lubricants in R-4 size bearings in five different environments for a 1 year period. Four repetitions of each test are made to provide statistical samples. These tests have also been used to select four lubricants for 5 year tests in selected environments with five repetitions of each test for statistical samples. At the present time, 142 test sets have been completed and 30 test sets are underway. The three 5 year tests in (1) continuous operation and (2) start stop operation, with both in vacuum at ambient temperatures, and (3) continuous vacuum operation at 93.3 C are now completed. To date, in both the 1 year and 5 year tests, the best results in all environments have been obtained with a high viscosity index perfluoroalkylpolyether (PFPE) grease.
NASA Astrophysics Data System (ADS)
Khanal, Lokendra Raj; Williams, Thomas; Qiang, You
2018-06-01
Iron/iron-oxide (Fe–Fe3O4) core–shell nanoclusters (NCs) synthesized by a cluster deposition technique were subjected to a study of their high temperature structural and morphological behavior. Annealing effects have been investigated up to 800 °C in vacuum, oxygen and argon environments. The ~18 nm average size of the as-prepared NCs increases slowly in temperatures up to 500 °C in all three environments. The size increases abruptly in the argon environment but slowly in vacuum and oxygen when annealed at 800 °C. The x-ray diffraction (XRD) studies have shown that the iron core remains in the core–shell NCs only when they were annealed in the vacuum. A dramatic change in the surface morphology, an island like structure and/or a network like pattern, was observed at the elevated temperature. The as-prepared and annealed samples were analyzed using XRD, scanning electron microscopy and imageJ software for a close inspection of the temperature aroused properties. This work presents the temperature induced size growth mechanism, oxidation kinetics and phase transformation of the NCs accompanied by cluster aggregation, particle coalescence, and diffusion.
Apparatus for performing high-temperature fiber push-out testing
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I. (Inventor); Ebihara, Ben T. (Inventor)
1994-01-01
The apparatus disclosed in the present invention measures the force at which a fiber resist the motion of an indenter driven at constant speed. This apparatus conducts these test in a vacuum of about 10(exp -6) tort and at temperatures up to 1100 C. Temperature and vacuum environment are maintained while controlling indenter motion, sample position, and providing magnified visual inspection during the test.
Variational methods in supersymmetric lattice field theory: The vacuum sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.; Meyer-Ortmanns, H.; Roskies, R.
1987-12-15
The application of variational methods to the computation of the spectrum in supersymmetric lattice theories is considered, with special attention to O(N) supersymmetric sigma models. Substantial cancellations are found between bosonic and fermionic contributions even in approximate Ansa$uml: tze for the vacuum wave function. The nonlinear limit of the linear sigma model is studied in detail, and it is shown how to construct an appropriate non-Gaussian vacuum wave function for the nonlinear model. The vacuum energy is shown to be of order unity in lattice units in the latter case, after infinite cancellations.
Kapton pyrolysis, the space environment and wiring requirements
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
1994-01-01
New Low Earth Orbit (LEO) requirements of space environment wiring are compared with traditional requirements. The pyrolysis of Kapton is reviewed for the LeRc vacuum chamber and the 1989 SSF. SEEB modeling of Kapton pyrolysis is also presented.
NASA Technical Reports Server (NTRS)
Skevington, Jennifer L.
2010-01-01
Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.
Bottom-up heating method for producing polyethylene lunar concrete in lunar environment
NASA Astrophysics Data System (ADS)
Lee, Jaeho; Ann, Ki Yong; Lee, Tai Sik; Mitikie, Bahiru Bewket
2018-07-01
The Apollo Program launched numerous missions to the Moon, Earth's nearest and only natural satellite. NASA is now planning new Moon missions as a first step toward human exploration of Mars and other planets. However, the Moon has an extreme environment for humans. In-situ resource utilization (ISRU) construction must be used on the Moon to build habitable structures. Previous studies on polymeric lunar concrete investigated top-down heating for stabilizing the surface. This study investigates bottom-up heating with manufacturing temperatures as low as 200 °C in a vacuum chamber that simulates the lunar environment. A maximum compressive strength of 5.7 MPa is attained; this is suitable for constructing habitable structures. Furthermore, the bottom-up heating approach achieves solidification two times faster than does the top-down heating approach.
In-Vacuum Photogrammetry of a Ten-Meter Square Solar Sail
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Jones, Thomas W.; Lunsford, Charles B.; Meyer, Christopher G.
2006-01-01
Solar sailing is a promising, future in-space propulsion method that uses the small force of reflecting sunlight to accelerate a large, reflective membrane without expendable propellants. One of two solar sail configurations under development by NASA is a striped net approach by L'Garde, Inc. This design uses four inflatably deployed, lightweight booms supporting a network of thin strings onto which four quadrants of ultrathin aluminized membranes are attached. The NASA Langley Research Center (LaRC) provided both experimental and analytical support to L'Garde for validating the structural characteristics of this unique, ultralightweight spacecraft concept. One of LaRC's responsibilities was to develop and apply photogrammetric methods to measure sail shape. The deployed shape provides important information for validating the accuracy of finite-element modeling techniques. Photogrammetry is the science and art of calculating 3D coordinates of targets or other distinguishing features on structures using images. A minimum of two camera views of each target is required for 3D determination, but having four or more camera views is preferable for improved reliability and accuracy. Using retroreflective circular targets typically provides the highest measurement accuracy and automation. References 3 and 4 provide details of photogrammetry technology, and reference 5 discusses previous experiences with photogrammetry for measuring gossamer spacecraft structures such as solar sails. This paper discusses the experimental techniques used to measure a L Garde 10-m solar sail test in vacuum with photogrammetry. The test was conducted at the NASA-Glenn Space Power Facility (SPF) located at Plum Brook Station in Sandusky, Ohio. The SPF is the largest vacuum chamber in the United States, measuring 30 m in diameter by 37 m in height. High vacuum levels (10(exp -6) torr) can be maintained inside the chamber, and cold environments (-195 C) are possible using variable-geometry cryogenic cold walls. This test used a vacuum level of approximately 1 torr (sufficient for structural static/dynamic characterization) and instead of using the cryogenic cold walls, used local LN2 cold plates underneath each of the four cold-rigidizable solar sail booms instead.
Cox, Jennie; Indugula, Reshmi; Vesper, Stephen; Zhu, Zheng; Jandarov, Roman; Reponen, Tiina
2017-10-18
Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample collected with a Button™ inhalable aerosol sampler and four types of dust samples: a vacuumed floor dust sample, newly settled dust collected for four weeks onto two types of electrostatic dust cloths (EDCs) in trays, and a wipe sample of dust from above floor surfaces. The samples were obtained in the bedrooms of asthmatic children (n = 14). Quantitative polymerase chain reaction (qPCR) was used to analyze the dust and air samples for the 36 fungal species that make up the Environmental Relative Moldiness Index (ERMI). The results from the samples were compared by four matrices: total concentration of fungal cells, concentration of fungal species associated with indoor environments, concentration of fungal species associated with outdoor environments, and ERMI values (or ERMI-like values for air samples). The ERMI values for the dust samples and the ERMI-like values for the 48 hour air samples were not significantly different. The total cell concentrations of the 36 species obtained with the four dust collection methods correlated significantly (r = 0.64-0.79, p < 0.05), with the exception of the vacuumed floor dust and newly settled dust. In addition, fungal cell concentrations of indoor associated species correlated well between all four dust sampling methods (r = 0.68-0.86, p < 0.01). No correlation was found between the fungal concentrations in the air and dust samples primarily because of differences in concentrations of Cladosporium cladosporioides Type 1 and Epicoccum nigrum. A representative type of dust sample and a 48 hour air sample might both provide useful information about fungal exposures.
Sealed vacuum canister and method for pick-up and containment of material
Stoutenburgh, Roger R.
1996-01-01
A vacuum canister including a housing with a sealed vacuum chamber having a predetermined vacuum pressure therein and a valve having a first port for fluid communication with the vacuum chamber and a second port for receiving at least one of a fluid and a particulate material. The valve is operable between a first position to seal the vacuum chamber and retain the predetermined vacuum within the vacuum chamber, and a second position to access the vacuum chamber to permit vacuum fluid flow through the valve from the second port into the vacuum chamber. In operation of the vacuum canister to pick up material with the valve in the second position, when the second port is located adjacent at least one of a fluid and a particulate material, is effective to displace through the valve at least one of a fluid and a particulate material into the housing. The vacuum canister is desirably suitable for picking up and containing hazardous material such as radioactive material, in which the vacuum canister includes a protective layer of lead having a predetermined thickness that is effective to shield radiation emitted from the radioactive material contained within the housing. Advantageously, the vacuum canister includes a vacuum means for establishing a predetermined vacuum pressure within the vacuum chamber.
Sealed vacuum canister and method for pick-up and containment of material
Stoutenburgh, R.R.
1996-02-13
A vacuum canister is described including a housing with a sealed vacuum chamber having a predetermined vacuum pressure therein and a valve having a first port for fluid communication with the vacuum chamber and a second port for receiving at least one of a fluid and a particulate material. The valve is operable between a first position to seal the vacuum chamber and retain the predetermined vacuum within the vacuum chamber, and a second position to access the vacuum chamber to permit vacuum fluid flow through the valve from the second port into the vacuum chamber. The vacuum canister, in the operation to pick up material with the valve in the second position, when the second port is located adjacent at least one of a fluid and a particulate material, is effective to displace through the valve at least one of a fluid and a particulate material into the housing. The vacuum canister is desirably suitable for picking up and containing hazardous material such as radioactive material, in which the vacuum canister includes a protective layer of lead having a predetermined thickness that is effective to shield radiation emitted from the radioactive material contained within the housing. Advantageously, the vacuum canister includes a vacuum means for establishing a predetermined vacuum pressure within the vacuum chamber. 6 figs.
Thermal Vacuum Testing of the Crew and Equipment Translation Aid for the International Space Station
NASA Technical Reports Server (NTRS)
Blanco, Raul A.; Montz, Michael; Gill, Mark
1998-01-01
The Crew and Equipment Translation Aid (CETA) is a human powered cart that will aid astronauts in conducting extra-vehicular activity (EVA) maintenance on the International Space Station (ISS). There are two critical EVA tasks relevant to the successful operation of the CETA. These are the removal of the launch restraint bolts during its initial deployment from the Space Shuttle payload bay and the manual deceleration of the cart, its two onboard astronauts, and a payload. To validate the launch restraint and braking system designs, the hardware engineers needed to verify their performance in an environment similar to that in which it will be used. This environment includes the vacuum of low earth orbit and temperatures as low as -11O F and as high as +200 F. The desire for quantitative data, as opposed to subjective information which could be provided by a suited astronaut, coupled with test scheduling conflicts resulted in an unmanned testing scenario. Accommodating these test objectives in an unmanned test required a solution that would provide remotely actuated thermal vacuum compatible torque sources of up to 25 ft-lbs at four horizontally oriented and four vertically oriented bolts, a variable input force of up to 125 lbs at the four brake actuators, and thermal vacuum compatible torque and force sensors. The test objectives were successfully met in both the thermal Chamber H and the thermal vacuum Chamber B at NASA's Johnson Space Center.
Noninvasive vacuum integrity tests on fast warm-up traveling-wave tubes
NASA Astrophysics Data System (ADS)
Dallos, A.; Carignan, R. G.
1989-04-01
A method of tube vacuum monitoring that uses the tube's existing internal electrodes as an ion gage is discussed. This method has been refined using present-day instrumentation and has proved to be a precise, simple, and fast method of tube vacuum measurement. The method is noninvasive due to operation of the cathode at low temperature, which minimizes pumping or outgassing. Because of the low current levels to be measured, anode insulator leakage must be low, and the leads must be properly shielded to minimize charging effects. A description of the method, instrumentation used, limitations, and data showing results over a period of 600 days are presented.
Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B
2017-12-01
Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Evaluation of Vacuum Blasting and Heat Guns as Methods for Abating Lead- Based Paint on Buildings
1993-09-01
INCOMPATIBILITY - Contact with powerful oxidizing agents such as FLUORINE, CHLORINE TRIFLUORIDE , MANGANESE TRIOXIDE, OXYGEN DIFLUORIDE, MANGANESE...investigating new technologies for lead-based paint abatement. This research evaluates the effectiveness , safety, LEC1L•.T• and cost of vacuum abrasive...paint abatement. This research evaluates the effectiveness , safety, and cost of vacuum abrasive units and heat guns as methods of removing lead-based
Vacuum-assisted fluid flow in microchannels to pattern substrates and cells.
Shrirao, Anil B; Kung, Frank H; Yip, Derek; Cho, Cheul H; Townes-Anderson, Ellen
2014-09-01
Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon et al 1999 Adv. Mater 11 946) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm(2). Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology.
Vacuum-assisted Fluid Flow in Microchannels to Pattern Substrates and Cells
Shrirao, Anil B.; Kung, Frank H.; Yip, Derek; Cho, Cheul H.; Townes-Anderson, Ellen
2014-01-01
Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon, Choi et al. 1999) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm2. Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology. PMID:24989641
NASA Astrophysics Data System (ADS)
Soliman, Ahmed I. A.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki
2017-09-01
Vacuum ultraviolet light irradiation in dry air generates active oxygen species, which have powerful oxidation abilities. These active oxygen species (O) can oxidize the alkyl moieties of polymers, and generate new oxygenated groups such as OH, CHO and COOH groups. Reducing the oxygen content in the exposure environment decreases the rate of oxidation processes. In this study, we examined the influences of the 172 nm VUV irradiation in a high vacuum (HV, < 10-3 Pa) environment on the chemical constituents, surface properties and morphological structure of well-defined VUV/(O)-modified hexadecyl (HD-) self-assembled monolayer (SAM) prepared on hydrogen-terminated silicon (H-Si) substrate. After VUV light irradiation in a HV environment (HV-VUV), the chemical constituents and surface properties were changed in two distinct stages. At short irradiation time (the first stage), the Csbnd O and COO groups decreased rapidly, while the Cdbnd O groups slightly changed. The dissociation of nonderivatizable groups (such as ether (Csbnd Osbnd C) and ester (Csbnd COOsbnd C) groups) compensated the dissociated OH, CHO, Csbnd COsbnd C and COOH groups. With further irradiation (the second stage), the quantities of the oxygenated groups slightly decreased. The carbon skeleton (Csbnd C) of SAM was scarcely dissociated during the HV-VUV treatment. These chemical changes affected the surface properties, such as wettability and morphology.
Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report
NASA Technical Reports Server (NTRS)
Fuller, Robert L.
2010-01-01
A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.
NASA Technical Reports Server (NTRS)
Scharfstein, Gregory; Cox, Russell
2012-01-01
A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.
Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography.
Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A
2016-07-22
A prototype vacuum-based (10(-6)Torr) column housing was built to thermally isolate the chromatographic column from the external air environment. The heat transfer mechanism is solely controlled by surface radiation, which was minimized by wrapping the column with low-emissivity aluminum tape. The adiabaticity of the column housing was quantitatively assessed from the measurement of the operational pressure and fluid temperature at the outlet of a 2.1mm×100mm column (sub-2 μm particles). The pressure drop along the column was raised up to 1kbar. The enthalpy balance of the eluent (water, acetonitrile, and one water/acetonitrile mixture, 70/30, v/v) showed that less than 1% of the viscous heat generated by friction of the fluid against the packed bed was lost to the external air environment. Such a vacuum-based column oven minimizes the amplitude of the radial temperature gradients across the column diameter and maximizes its resolving power. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 420.51 Section 420.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Vacuum Degassing Subcategory § 420.51 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 420.57 Section 420.57 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Vacuum Degassing Subcategory § 420.57 [Reserved] ...
40 CFR 417.111 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Specialized definitions. 417.111 Section 417.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
40 CFR 417.111 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 417.111 Section 417.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
40 CFR 417.111 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Specialized definitions. 417.111 Section 417.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
40 CFR 417.111 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Specialized definitions. 417.111 Section 417.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
40 CFR 417.111 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Specialized definitions. 417.111 Section 417.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
Isothermal Decomposition of Hydrogen Peroxide Dihydrate
NASA Technical Reports Server (NTRS)
Loeffler, M. J.; Baragiola, R. A.
2011-01-01
We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.
Vacuum Deposition From A Welding Torch
NASA Technical Reports Server (NTRS)
Poorman, R. M.
1993-01-01
Process derived from arc welding produces films of high quality. Modified gas/tungsten-arc welding process developed for use in outer space. Welding apparatus in process includes hollow tungsten electrode through which inert gas flows so arc struck between electrode and workpiece in vacuum of space. Offers advantages of fast deposition, possibility of applying directional impetus to flow of materials, very low pressure at surface being coated, and inert environment.
Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A
2016-08-01
A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin
2016-07-25
Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less
NASA Astrophysics Data System (ADS)
Wu, Xuelian; Zhang, Wuyi; Liu, Yanju; Leng, Jinsong
2007-07-01
Thermally activated shape memory polymers (SMPs) receive increasing attention in recent years. Different from those reported in the literature, in this paper we propose a new approach, i.e., using infrared light, for heating SMPs for shape recovery. We compare this approach with the traditional water bath method in terms of shape recovery speed in bending at both vacuum and no vacuum conditions. The results reveal that the shape recovery speed in infrared heating at vacuum condition is about eight times slower than that by hot water. However, the recovery time is more than doubled if without vacuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu
We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.
Long-life micro vacuum chamber for a micromachined cryogenic cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Haishan, E-mail: H.Cao@utwente.nl, E-mail: HaishanCao@gmail.com; Vermeer, Cristian H.; Vanapalli, Srinivas
2015-11-15
Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has to be maintained at a pressure of 0.01 Pa or lower. In this paper, the challenge of maintaining a vacuum chamber with a volume of 3.6 × 10{sup −5} m{sup 3} and an inner wall area of 8.1 × 10{sup −3} m{sup 2} at a pressure no higher than 0.01 Pa for five years is theoretically analyzed. The possiblemore » sources of gas, the mechanisms by which these gases enter the vacuum space and their effects on the pressure in the vacuum chamber are discussed. In a long-duration experiment with four stainless steel chambers of the above dimensions and equipped with a chemical getter, the vacuum pressures were monitored for a period of two years. In that period, the measured pressure increase stayed within 0.01 Pa. This study can be used to guide the design of long-lifetime micro vacuum chambers that operate without continuous mechanical pumping.« less
7 CFR 319.8-8 - Lint, linters, and waste.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vacuum fumigation by approved methods at any port where approved fumigation facilities are available. (ii... facilities are available, for the required vacuum fumigation. (iii) Such lint, linters, and waste compressed... where approved fumigation facilities are available, there to receive the required vacuum fumigation...
7 CFR 319.8-8 - Lint, linters, and waste.
Code of Federal Regulations, 2014 CFR
2014-01-01
... vacuum fumigation by approved methods at any port where approved fumigation facilities are available. (ii... facilities are available, for the required vacuum fumigation. (iii) Such lint, linters, and waste compressed... where approved fumigation facilities are available, there to receive the required vacuum fumigation...
Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave
NASA Technical Reports Server (NTRS)
Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)
2016-01-01
Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up themore » system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.« less
Exact density functional and wave function embedding schemes based on orbital localization
NASA Astrophysics Data System (ADS)
Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály
2016-08-01
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods
Chung, Bong Geun; Park, Jeong Won; Hu, Jia Sheng; Huang, Carlos; Monuki, Edwin S; Jeon, Noo Li
2007-01-01
Background Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. Results We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. Conclusion This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols. PMID:17883868
Preparation and Characterization of C60/Graphene Hybrid Nanostructures.
Chen, Chuanhui; Mills, Adam; Zheng, Husong; Li, Yanlong; Tao, Chenggang
2018-05-15
Physical thermal deposition in a high vacuum environment is a clean and controllable method for fabricating novel molecular nanostructures on graphene. We present methods for depositing and passively manipulating C60 molecules on rippled graphene that advance the pursuit of realizing applications involving 1D C60/graphene hybrid structures. The techniques applied in this exposition are geared towards high vacuum systems with preparation areas capable of supporting molecular deposition as well as thermal annealing of the samples. We focus on C60 deposition at low pressure using a homemade Knudsen cell connected to a scanning tunneling microscopy (STM) system. The number of molecules deposited is regulated by controlling the temperature of the Knudsen cell and the deposition time. One-dimensional (1D) C60 chain structures with widths of two to three molecules can be prepared via tuning of the experimental conditions. The surface mobility of the C60 molecules increases with annealing temperature allowing them to move within the periodic potential of the rippled graphene. Using this mechanism, it is possible to control the transition of 1D C60 chain structures to a hexagonal close packed quasi-1D stripe structure.
Sozzy: a hormone-driven autonomous vacuum cleaner
NASA Astrophysics Data System (ADS)
Yamamoto, Masaki
1994-02-01
Domestic robots are promising examples of the application of robotics to personal life. There have been many approaches in this field, but no successful results exist. The problem is that domestic environments are more difficult for robots than other environments, such as factory floors or office floors. Consequently, conventional approaches using a model of human intelligence to design robots have not been successful. In this paper, we report on a prototyped domestic vacuum-cleaning robot that is designed to be able to handle complex environments. The control software is composed of two layers, both of which are generally inspired by behaviors of living creatures. The first layer corresponds to a dynamically reconfigurable system of behaviors implemented in the subsumption architecture. The ability of the robot to support alternate configurations of its behaviors provides the robot with increased robustness. We have conveniently labeled particular configurations as specific `emotions' according to the interpretation of observers of the robot's behavior. The second layer simulates the hormone system. The hormone system is modeled using state variables, increased or decreased by stimuli from the environment. The hormone condition selects the robot's most suitable emotion, according to the changing environments. The robot hardware is built of off-the-shelf parts, such as an embedded CPU, inexpensive home-appliance sensors, and small motors. These parts keep the total building cost to a minimum. The robot also has a vacuum cleaning function to demonstrate its capability to perform useful tasks. We tested the robot in our laboratory, and successfully videotaped its robust behaviors. We also confirmed the hormone system to enhance the robot's plasticity and lifelike quality.
Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.
Lee, Woo Rim; Eom, Yujin; Lee, Tai Gyu
2017-02-01
Mercury (Hg)-containing waste from various industrial facilities is commonly treated by incineration or stabilization/solidification and retained in a landfill at a managed site. However, when highly concentrated Hg waste is treated using these methods, Hg is released into the atmosphere and soil environment. To eliminate these risks, Hg recovery technology using thermal treatment has been developed and commercialized to recover Hg from Hg-containing waste for safe disposal. Therefore, we developed Hg recovery equipment to treat Hg-containing waste under a vacuum of 6.67kPa (abs) at 400°C and recover the Hg. In addition, the dust generated from the waste was separated by controlling the temperature of the dust filtration unit to 230°C. Additionally, water and Hg vapors were condensed in a condensation unit. The Hg removal rate after waste treatment was 96.75%, and the Hg recovery rate as elemental Hg was 75.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mundupuzhakal, J K; Biswas, R H; Chauhan, S; Varma, V; Acharya, Y B; Chakrabarty, B S
2015-12-01
Nano-CaF2, prepared by the co-precipitation method, was annealed under different annealing conditions to improve its thermoluminescence (TL) characteristics. Different annealing parameters, such as temperature (400-700°C), duration (1-4 h) and environment (vacuum and air), were explored. The effect on TL sensitivity, peak position (Tm) and full-width at half-maximum (FWHM) with respect to the different annealing conditions are discussed as they are the measure of crystallinity of the material. Annealing temperature of 500°C with annealing duration of two and a half hours in vacuum provided the highest luminescence response (i.e. maximum sensitivity, minimum peak temperature and FWHM). Wide detectable dose range (5 mGy to 2 kGy), absence of thermal quenching and sufficient activation energy (1.04 eV) of this phosphor make it suitable for dosimetric applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Simulated Space Vacuum Ultraviolet (VUV) Exposure Testing for Polymer Films
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.
2002-01-01
Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the sun in the space environment can cause degradation to polymer films producing changes in optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultra-lightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of sequential simulated space environmental exposures to determine combined damaging effects. This paper will describe the effects of VUV on polymer films and the necessity for ground testing. Testing practices used at Glenn Research Center for VUV exposure testing will be described including characterization of the VUV radiation source used, calibration procedures traceable to the National Institute of Standards and Technology (NIST), and testing techniques for VUV exposure of polymer surfaces.
40 CFR 420.54 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true New source performance standards (NSPS). 420.54 Section 420.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Vacuum Degassing Subcategory...
40 CFR 420.55 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources (PSES). 420.55 Section 420.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Vacuum Degassing...
40 CFR 420.56 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources (PSNS). 420.56 Section 420.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Vacuum Degassing...
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Macmurphy, Shawn; Friedberg, Patricia; Day, John H. (Technical Monitor)
2002-01-01
Presented here is the second set of testing conducted by the Technology Validation Laboratory for Photonics at NASA Goddard Space Flight Center on the 12 optical fiber ribbon cable with MTP array connector for space flight environments. In the first set of testing the commercial 62.5/125 cable assembly was characterized using space flight parameters. The testing showed that the cable assembly would survive a typical space flight mission with the exception of a vacuum environment. Two enhancements were conducted to the existing technology to better suit the vacuum environment as well as the existing optoelectronics and increase the reliability of the assembly during vibration. The MTP assembly characterized here has a 100/140 optical commercial fiber and non outgassing connector and cable components. The characterization for this enhanced fiber optic cable assembly involved vibration, thermal and radiation testing. The data and results of this characterization study are presented which include optical in-situ testing.
2013-07-01
Vacuum Heat Capacity: Test Method: Conventional MCDS Heating Rate 2 oC/min Temperature(oC): -75 -50 -25 0 25 50 75 100 Average (J/goC): 0.5555...PreConditioning Time-Duration: 24hrs at 125oC and -29inch Vacuum Heat Capacity: Test Method: Conventional MCDS Heating Rate 2 oC/min Temperature(oC...29inch Vacuum Heat Capacity: Test Method: Conventional MCDS Heating Rate 2 oC/min Temperature(oC): -75 -50 -25 0 - - - - Average (J/goC
NASA Astrophysics Data System (ADS)
Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.
2013-07-01
A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.
[Effectiveness of different maintenance methods for codonopsis radix].
Shi, Yan-Bin; Wang, Yu-Ping; Li, Yan; Liu, Cheng-Song; Li, Hui-Li; Zhang, Xiao-Yun; Li, Shou-Tang
2014-05-01
To observe different maintenance methods including vacuum-packing, storage together with tobacco, storage together with fennel, ethanol steam and sulfur fumigation for the protection of Codonopsis Radix against mildew and insect damage, and to analyze the content of polysaccharide and flavonoids of Codonopsis Radix tested in this studies, so as to look for the scientific maintenance methods replacing traditional sulfur fumigation. Except for the sulfur fumigation, naturally air-dried Codonopsis Radix was used to investigate the maintenance effectiveness of the above methods, respectively. Mildew was observed by visual inspection, and the content of polysaccharide and flavonoids were determined by ultra-violet and visible spectrophotometer. Comprehensive evaluation was given based on the results of the different maintenance methods. Low-temperature vacuum-packing, ambient-temperature vacuum-packing and sulfur fumigation could keep Codonopsis Radix from mildew and insect damage for one year, but ambient-temperature vacuum-packing showed flatulent phenomenon; ethanol steam could keep Codonopsis Radix from mildew and insects for over half a year; storage together with tobacco or fennel did not have maintenance effect. The difference of polysaccharide and flavonoids contents of all tested Codonopsis Radix was not statistically significant. Low temperature vacuum-packing maintenance can replace traditional sulfur fumigation, and it can maintain the quality of Codonopsis Radix to a certain extent.
Strategies to Sustain and Enhance Performance in Stressful Environments
1990-03-14
Pressure Switch in his left hand which controlled power to the vacuum source which was only active when the subject was pressing on the Page 6 positive... pressure switch . Internal LBNP chamber vacuum was calibrated with a Wallace & Tierman 1500 Hi-Performance Gauge (Model 61A-1D-0800, Wallace & Tierman...pressure release when the subject released the positive pressure switch without warning. Behavioral testing continued regardless of when LBNP was returned to
Method and apparatus for filling thermal insulating systems
Arasteh, Dariush K.
1992-01-01
A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.
Method for producing an atomic oxygen beam
NASA Technical Reports Server (NTRS)
Outlaw, Ronald A. (Inventor)
1989-01-01
A method for producing an atomic oxygen beam is provided by the present invention. First, a material 10' is provided which dissociates molecular oxygen and dissolves atomic oxygen into its bulk. Next, molecular oxygen is exposed to entrance surface 11' of material 10'. Next, material 10' is heated by heater 17' to facilitate the permeation of atomic oxygen through material 10' to the UHV side 12'. UHV side 12' is interfaced with an ultra-high vacuum (UHV) environment provided by UHV pump 15'. The atomic oxygen on the UHV side 12' is excited to a non-binding state by exciter 14' thus producing the release of atomic oxygen to form an atomic oxygen beam 35'.
Boiling process modelling peculiarities analysis of the vacuum boiler
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.
2017-06-01
The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.
Zeng, Shu-Rong; Jiang, Bo; Xiao, Xiao-Rong
2007-06-01
Discuss sterilization effect of B-class pulsation table top vacuum pressure steam sterilizer for dental handpiece. Analysis selection of sterilizer for dental handpiece and sterilization management processes and sterilization effect monitoring, evaluation of monitoring result and effective sterilization method. The B-class pulsation table top vacuum pressure steam sterilizer to dental handpiece in West China Stomatological Hospital of Sichuan University met the requirement of the chemical and biological monitoring. Its efficiency of sterilization was 100%. The results of aerobic culture, anaerobic culture, B-type hepatitis mark monitoring to sterilized dental handpiece were negative. It is effective method for dental handpiece sterilization to use B-class pulsation table top vacuum pressure steam sterilizer.
Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Rowan W. G.; Lee, Lucie A.; Findlay, Elizabeth A.
2015-09-15
The lifetime of an atom trap is often limited by the presence of residual background gases in the vacuum chamber. This leads to the lifetime being inversely proportional to the pressure. Here, we use this dependence to estimate the pressure and to obtain pressure rate-of-rise curves, which are commonly used in vacuum science to evaluate the performance of a system. We observe different rates of pressure increase in response to different levels of outgassing in our system. Therefore, we suggest that this is a sensitive method which will find useful applications in cold atom systems, in particular, where the inclusionmore » of a standard vacuum gauge is impractical.« less
Fast MRI-guided vacuum-assisted breast biopsy: initial experience.
Liberman, Laura; Morris, Elizabeth A; Dershaw, D David; Thornton, Cynthia M; Van Zee, Kimberly J; Tan, Lee K
2003-11-01
The purpose of this study was to evaluate a new method for performing MRI-guided vacuum-assisted breast biopsy in a study of lesions that had subsequent surgical excision. SUBJECTS AND METHODS. Twenty women scheduled for MRI-guided needle localization and surgical biopsy were prospectively entered in the study. MRI-guided biopsy was performed with a vacuum-assisted probe, followed by placement of a localizing clip, and then needle localization for surgical excision. Vacuum-assisted biopsy and surgical histology were correlated. Vacuum-assisted biopsy was successfully performed in 19 (95%) of the 20 women. The median size of 27 MRI-detected lesions that had biopsy was 1.0 cm (range, 0.4-6.4 cm). Cancer was present in eight (30%) of 27 lesions and in six (32%) of 19 women; among these eight cancers, five were infiltrating and three were ductal carcinoma in situ (DCIS). Among these 27 lesions, histology was benign at vacuum-assisted biopsy and at surgery in 19 (70%), cancer at vacuum-assisted biopsy in six (22%), atypical ductal hyperplasia at vacuum-assisted biopsy and DCIS at surgery in one (4%), and benign at vacuum-assisted biopsy with surgery showing microscopic DCIS that was occult at MRI in one (4%). The median time to perform vacuum-assisted biopsy of a single lesion was 35 min (mean, 35 min; range, 24-48 min). Placement of a localizing clip, attempted in 26 lesions, was successful in 25 (96%) of 26, and the clip was retrieved on specimen radiography in 22 (96%) of 23. One complication occurred: a hematoma that resolved with compression. MRI-guided vacuum-assisted biopsy is a fast, safe, and accurate alternative to surgical biopsy for breast lesions detected on MRI.
Purifying Aluminum by Vacuum Distillation
NASA Technical Reports Server (NTRS)
Du Fresne, E. R.
1985-01-01
Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.
Shih, Fu-Yu; Wu, Yueh-Chun; Shih, Yi-Siang; Shih, Ming-Chiuan; Wu, Tsuei-Shin; Ho, Po-Hsun; Chen, Chun-Wei; Chen, Yang-Fang; Chiu, Ya-Ping; Wang, Wei-Hua
2017-03-21
Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires inextricable fabrication processes. Alternatively, it is intriguing to explore methods to control transport properties in the circumstance of no encapsulated layer. This is very challenging because of the ubiquitous presence of adsorbents, which can lead to charged-impurity scattering sites, charge traps, and recombination centers. Here, we show that the short-circuit photocurrent originated from the built-in electric field at the MoS 2 junction is surprisingly insensitive to the gaseous environment over the range from a vacuum of 1 × 10 -6 Torr to ambient condition. The environmental insensitivity of the short-circuit photocurrent is attributed to the characteristic of the diffusion current that is associated with the gradient of carrier density. Conversely, the photocurrent with bias exhibits typical persistent photoconductivity and greatly depends on the gaseous environment. The observation of environment-insensitive short-circuit photocurrent demonstrates an alternative method to design device structure for 2D-material-based optoelectronic applications.
2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility
NASA Technical Reports Server (NTRS)
1995-01-01
Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.
Space Environmental Effects on Thermal Control Coatings
NASA Technical Reports Server (NTRS)
OBrien, Susan K.; Workman, Gary L.
1997-01-01
The study of long term near ultra-violet (NUV) effects in a vacuum atmosphere, is a crucial element for space applications. NUV radiation causes significant changes in the reflectance of many coatings and types of materials. An ultra high vacuum NUV system was assembled in order to investigate various coatings and materials in this hostile environment. The vacuum is an ion pump that maintains a minimum vacuum in the mid 10(exp -9) range. The system has a base pressure of 10(exp -9) torr and this base pressure is maintained with the ion pump. The NUV exposure was maintained at 2-3 suns which allows accelerated NUV exposure without overheating the samples. The goal of this test was to maintain an intensity of 3.4 x 10(exp -2) Watts/cm(exp 2) which equals 2.9 NUV suns. An NUV sun is defined as 1.16 Watts/cm(exp 2) integrated over wavelength of 200-400 nanometers.
Effects of pulse durations and environments on femtosecond laser ablation of stainless steel
NASA Astrophysics Data System (ADS)
Xu, Shizhen; Ding, Renjie; Yao, Caizhen; Liu, Hao; Wan, Yi; Wang, Jingxuan; Ye, Yayun; Yuan, Xiaodong
2018-04-01
The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.
VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS
An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)
was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Method
performance was evaluated for dimethylselenide (DMSe), dimethyldisel...
Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah
2016-06-17
The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.
Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment
NASA Astrophysics Data System (ADS)
Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.
2002-01-01
The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by high pressure Xenon lamps to simulate the direct solar irradiation and a cryogenic heat exchanger to reproduce the earth shadowing of sunlight. The temperature of the thermal cycles ranges from -80°C up to 100°C: the thermo-elastic response of the antenna has been surveyed by employing strain gauges place on the structures at several different locations. The structure has been subjected to 100 thermal cycles, each of which lasting two hours: the total duration of the exposition to the vacuum environment has been equal to 300 hours. Finally the antenna has been disassembled and its elements have been examined to evaluate the effects of the simulated exposition on each of them: the total mass loss and the final thermo-mechanical properties of the polymeric based materials which constitute the structural core of the antenna have been surveyed. The experimental results have been compared to numerical simulation performed by the NASTRAN code: the basic FEM model, developed for the unexposed antenna, has been updated to take into account the thermo-mechanical degradation of the structural elements and materials. This has allowed to obtain, by extrapolation, a FEM based prevision of the antenna thermo-elastic response for long-term operative conditions. References. [1] D. Hastings, H. Garret "Spacecraft environment interactions", Cambridge University Press, Atmospheric Series, Cambridge, 1996. [2] IAF-01-I.6.05 "On the Reliability of Honeycomb Core Bonding Joint in Sandwich Composite Materials for Space Applications" G. Allegri, U. Lecci, M. Marchetti, F. Poscente, 52° IAF Congress, 2001. [3] Meguro A. and alii, "Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII", Acta Astronautica, Volume: 47, Issue: 2-9, July - November, 2000, pp. 147-152. [4] Novikov L. S. "Contemporary state of spacecraft/environment interaction research" Radiation Measurements, Volume: 30, Issue: 5, October, 1999, pp. 661-667. [5] IAF-01-I.1.02 "Development of High Performance Large Single Shaped Reflectors" Paul Archer, C. Abegg, T. Le Goff, EADS/LV, Les Mureaux, France.
40 CFR 417.116 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources. 417.116 Section 417.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
40 CFR 417.116 - Pretreatment standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Pretreatment standards for new sources. 417.116 Section 417.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
40 CFR 417.116 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Pretreatment standards for new sources. 417.116 Section 417.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
40 CFR 417.116 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Pretreatment standards for new sources. 417.116 Section 417.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
40 CFR 417.116 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for new sources. 417.116 Section 417.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY SO3 Solvent and Vacuum...
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, G.T.; Jackson, J.W.
1990-03-19
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, Gordon T.; Jackson, John W.
1991-01-01
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.
Kitagawa, Fumihiko; Nakagawara, Syo; Nukatsuka, Isoshi; Hori, Yusuke; Sueyoshi, Kenji; Otsuka, Koji
2015-01-01
A simple and rapid vacuum-drying modification method was applied to several neutral and charged polymers to obtain coating layers for controlling electroosmotic flow (EOF) and suppressing sample adsorption on poly(dimethyl siloxane) (PDMS)-glass hybrid microchips. In the vacuum-dried poly(vinylpyrrolidone) coating, the electroosmotic mobility (μeo) was suppressed from +2.1 to +0.88 × 10(-4) cm(2)/V·s, and the relative standard deviation (RSD) of μeo was improved from 10.2 to 2.5% relative to the bare microchannel. Among several neutral polymers, poly(vinylalcohol) (PVA) and poly(dimethylacrylamide) coatings gave more suppressed and repeatable EOF with RSDs of less than 2.3%. The vacuum-drying method was also applicable to polyanions and polycations to provide accelerated and inversed EOF, respectively, with acceptable RSDs of less than 4.9%. In the microchip electrophoresis (MCE) analysis of bovine serum albumin (BSA) in the vacuum-dried and thermally-treated PVA coating channel, an almost symmetric peak of BSA was obtained, while in the native microchannel a significantly skewed peak was observed. The results demonstrated that the vacuum-dried polymer coatings were effective to control the EOF, and reduced the surface adsorption of proteins in MCE.
2007-03-28
Photos for Web Feature by Victoria (Tori) Woods; Micro-Electro Mechanical Systems (MEMS) using vacuum technology; fabricating High Temperature Electronics for Harsh Environments using silicon carbide substrates
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.
2009-01-01
Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.
High energy density capacitors for vacuum operation with a pulsed plasma load
NASA Technical Reports Server (NTRS)
Guman, W. J.
1976-01-01
Results of the effort of designing, fabricating, and testing of a 40 joules/lb (88.2 joules/Kg) high voltage energy storage capacitor suitable for operating a pulsed plasma thruster in a vacuum environment for millions of pulses are presented. Using vacuum brazing and heli-arc welding techniques followed by vacuum and high pressure helium leak tests it was possible to produce a hermetically sealed relatively light weight enclosure for the dielectric system. An energy density of 40 joules/lb was realized with a KF-polyvinylidene fluoride dielectric system. One capacitor was D.C. life tested at 4 KV (107.8 joules/lb) for 2,000 hours before it failed. Another exceeded 2,670 hours without failure at 38.3 joules/lb. Pulse life testing in a vacuum exceeded 300,000 discharges with testing still in progress. The D.C. life test data shows a small decrease in capacitance and an increase in dissipation factor with time. Heat transfer from the load to the capacitor must also be considered besides the self-heat generated by the capacitor.
Lee, Ho Nyung; Ambrose Seo, Sung S.; Choi, Woo Seok; Rouleau, Christopher M.
2016-01-01
In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO3 (STO) thin films on single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Therefore, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but expands the utility of pulsed laser epitaxy of other materials as well. PMID:26823119
Raju, Muralikrishna; van Duin, Adri C T; Fichthorn, Kristen A
2014-01-01
Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. We perform molecular dynamics simulations using a recently developed ReaxFF reactive force field to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. In vacuum, the nanocrystals merge along their direction of approach, resulting in a polycrystalline material. By contrast, in the presence of water vapor the nanocrystals reorient themselves and aggregate via the OA mechanism to form a single or twinned crystal. They accomplish this by creating a dynamic network of hydrogen bonds between surface hydroxyls and surface oxygens of aggregating nanocrystals. We determine that OA is dominant on surfaces that have the greatest propensity to dissociate water. Our results are consistent with experiment, are likely to be general for aqueous oxide systems, and demonstrate the critical role of solvent in nanocrystal aggregation. This work opens up new possibilities for directing nanocrystal growth to fabricate nanomaterials with desired shapes and sizes.
Chao, P.J.
1974-01-01
A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)
Method and apparatus for filling thermal insulating systems
Arasteh, D.K.
1992-01-14
A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.
Brushless tachometer gives speed and direction
NASA Technical Reports Server (NTRS)
Nola, F. J.
1977-01-01
Brushless electronic tachometer measures rotational speed and rotational direction, maintaining accuracy at high or low speeds. Unit is particularly useful in vacuum environments requiring low friction.
Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Carruth, Ralph (Technical Monitor)
2001-01-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.
NASA Technical Reports Server (NTRS)
Edwards, David L.
1999-01-01
In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.
Failure of non-vacuum steam sterilization processes for dental handpieces.
Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B
2017-12-01
Dental handpieces are used in critical and semi-critical operative interventions. Although some dental professional bodies recommend that dental handpieces are sterilized between patient use there is a lack of clarity and understanding of the effectiveness of different steam sterilization processes. The internal mechanisms of dental handpieces contain narrow lumens (0.8-2.3 mm) which can impede the removal of air and ingress of saturated steam required to achieve sterilization conditions. To identify the extent of sterilization failure in dental handpieces using a non-vacuum process. In-vitro and in-vivo investigations were conducted on widely used UK bench-top steam sterilizers and three different types of dental handpieces. The sterilization process was monitored inside the lumens of dental handpieces using thermometric (TM; dataloggers), chemical indicator (CI), and biological indicator (BI) methods. All three methods of assessing achievement of sterility within dental handpieces that had been exposed to non-vacuum sterilization conditions demonstrated a significant number of failures [CI: 8/3024 (fails/no. of tests); BI: 15/3024; TM: 56/56] compared to vacuum sterilization conditions (CI: 2/1944; BI: 0/1944; TM: 0/36). The dental handpiece most likely to fail sterilization in the non-vacuum process was the surgical handpiece. Non-vacuum sterilizers located in general dental practice had a higher rate of sterilization failure (CI: 25/1620; BI: 32/1620; TM: 56/56) with no failures in vacuum process. Non-vacuum downward/gravity displacement, type N steam sterilizers are an unreliable method for sterilization of dental handpieces in general dental practice. The handpiece most likely to fail sterilization is the type most frequently used for surgical interventions. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
A model for the effect of real leaks on the transport of microorganisms into a vacuum freeze-dryer.
Jennings, T A
1990-01-01
This paper proposes a model for determining the effect that real leaks, whose flow is viscous in nature, could have on the microorganism density in a vacuum freeze-dryer during a drying process. The model considers the entry of microorganisms to result from real leaks stemming from an environment containing a known bioburden. A means for determining the relationship between the rate of pressure rise of the system (ROR) and the density of microorganisms in a system, stemming from an environment of a known bioburden, is examined. The model also considers the change in the bioburden of the dryer with respect to variations in the primary and secondary drying process.
The self-assembled behavior of DNA bases on the interface.
Liu, Lei; Xia, Dan; Klausen, Lasse H; Dong, Mingdong
2014-01-27
A successful example of self-assembly in a biological system is that DNA can be an excellent agent to self-assemble into desirable two and three-dimensional nanostructures in a well-ordered manner by specific hydrogen bonding interactions between the DNA bases. The self-assembly of DNA bases have played a significant role in constructing the hierarchical nanostructures. In this review article we will introduce the study of nucleic acid base self-assembly by scanning tunneling microscopy (STM) at vacuum and ambient condition (the liquid/solid interface), respectively. From the ideal condition to a more realistic environment, the self-assembled behaviors of DNA bases are introduced. In a vacuum system, the energetic advantages will dominate the assembly formation of DNA bases, while at ambient condition, more factors such as conformational freedom and the biochemical environment will be considered. Therefore, the assemblies of DNA bases at ambient condition are different from the ones obtained under vacuum. We present the ordered nanostructures formed by DNA bases at both vacuum and ambient condition. To construct and tailor the nanostructure through the interaction between DNA bases, it is important to understand the assembly behavior and features of DNA bases and their derivatives at ambient condition. The utilization of STM offers the advantage of investigating DNA base self-assembly with sub-molecular level resolution at the surface.
The Self-Assembled Behavior of DNA Bases on the Interface
Liu, Lei; Xia, Dan; Klausen, Lasse H.; Dong, Mingdong
2014-01-01
A successful example of self-assembly in a biological system is that DNA can be an excellent agent to self-assemble into desirable two and three-dimensional nanostructures in a well-ordered manner by specific hydrogen bonding interactions between the DNA bases. The self-assembly of DNA bases have played a significant role in constructing the hierarchical nanostructures. In this review article we will introduce the study of nucleic acid base self-assembly by scanning tunneling microscopy (STM) at vacuum and ambient condition (the liquid/solid interface), respectively. From the ideal condition to a more realistic environment, the self-assembled behaviors of DNA bases are introduced. In a vacuum system, the energetic advantages will dominate the assembly formation of DNA bases, while at ambient condition, more factors such as conformational freedom and the biochemical environment will be considered. Therefore, the assemblies of DNA bases at ambient condition are different from the ones obtained under vacuum. We present the ordered nanostructures formed by DNA bases at both vacuum and ambient condition. To construct and tailor the nanostructure through the interaction between DNA bases, it is important to understand the assembly behavior and features of DNA bases and their derivatives at ambient condition. The utilization of STM offers the advantage of investigating DNA base self-assembly with sub-molecular level resolution at the surface. PMID:24473140
NASA Astrophysics Data System (ADS)
Whittenberger, J. D.
1994-02-01
The 77 to 1200 K tensile properties of approximately 1.3 mm thick wrought sheet Co-base Haynes alloy 188 and Ni-base Haynes alloy 230 and Inconel 617 have been measured after heat treatment in air and vacuum for periods up to 22,500 h at 1093 K. Significant changes in structure were produced by prior exposures, including precipitation of second phases and, in the case of heat treatment in air, oxide scale and surface-connected grain boundary pits/oxides, as deep as 50 to 70 µm, in all three superalloys. Due to the geometry of the experiment, the vacuum-exposed samples were protected from loss of volatile elements by evaporation; hence, such specimens were simply given 1093 K anneals in an innocuous environment, which produced very little surface attack. Compared to the properties of as-received alloys, prior exposure tended to reduce both the yield strength and ultimate tensile strength, with the greatest reductions at 77 and 298 K. The most dramatic effect of heat treatment was found in the low-temperature residual tensile elongation, where decreases from 40 to 5% at 77 K were found. Ductility is the only property that was found to have a consistent dependency on environment, with air exposure always yielding less tensile elongation than vacuum exposure.
Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology
NASA Technical Reports Server (NTRS)
Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.
2011-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.
Vacuum Gas Tungsten Arc Welding
NASA Technical Reports Server (NTRS)
Weeks, J. L.; Todd, D. T.; Wooten, J. R.
1997-01-01
A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.
Continuous Manufacturing of Nitrocellulose by Magnesium Nitrate Method. Volume 1
1979-06-01
enters a scrubber . The scrubber removes entrained acid, water, and NC fines from the air before it enters a Roots water sealed (lobe type) vacuum pump...and is exhausted to the atmosphere. The air enters the bottom of the scrubber and is forced (by vacuum) sequentially through two weir arrangements...the panel from left to right, the Eimco dewatering filter drive, vacuum pressure, receiver, vacuum scrubber , and pump controls may be seen along with
Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2017-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
Facile generation of cell microarrays using vacuum degassing and coverslip sweeping.
Wang, Min S; Luo, Zhen; Cherukuri, Sundar; Nitin, Nitin
2014-07-15
A simple method to generate cell microarrays with high-percentage well occupancy and well-defined cell confinement is presented. This method uses a synergistic combination of vacuum degassing and coverslip sweeping. The vacuum degassing step dislodges air bubbles from the microwells, which in turn enables the cells to enter the microwells, while the physical sweeping step using a glass coverslip removes the excess cells outside the microwells. This low-cost preparation method provides a simple solution to generating cell microarrays that can be performed in basic research laboratories and point-of-care settings for routine cell-based screening assays. Copyright © 2014 Elsevier Inc. All rights reserved.
Study on vacuum packaging reliability of micromachined quartz tuning fork gyroscopes
NASA Astrophysics Data System (ADS)
Fan, Maoyan; Zhang, Lifang
2017-09-01
Packaging technology of the micromachined quartz tuning fork gyroscopes by vacuum welding has been experimentally studied. The performance of quartz tuning fork is influenced by the encapsulation shell, encapsulation method and fixation of forks. Alloy solder thick film is widely used in the package to avoid the damage of the chip structure by the heat resistance and hot temperature, and this can improve the device performance and welding reliability. The results show that the bases and the lids plated with gold and nickel can significantly improve the airtightness and reliability of the vacuum package. Vacuum packaging is an effective method to reduce the vibration damping, improve the quality factor and further enhance the performance. The threshold can be improved nearly by 10 times.
Analysis of the effects of simulated synergistic LEO environment on solar panels
NASA Astrophysics Data System (ADS)
Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.
2007-02-01
The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.
Recycling of waste lead storage battery by vacuum methods.
Lin, Deqiang; Qiu, Keqiang
2011-07-01
Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1984-01-01
An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.
Method and apparatus for in-cell vacuuming of radiologically contaminated materials
Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.
1987-01-01
A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.
Silicon crystal growth in vacuum
NASA Technical Reports Server (NTRS)
Khattak, C. P.; Schmid, F.
1982-01-01
The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.
MEANS AND METHOD FOR PRODUCING A VACUUM
Otavka, M.A.
1960-08-01
A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.
Zhang, Lingen; Xu, Zhenming
2017-06-16
Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.
Space Power Facility at NASA’s Plum Brook Station
1969-02-21
Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.
Xu, Linfeng; Lee, Hun; Jetta, Deekshitha; Oh, Kwang W
2015-10-21
Suitable pumping methods for flow control remain a major technical hurdle in the path of biomedical microfluidic systems for point-of-care (POC) diagnostics. A vacuum-driven power-free micropumping method provides a promising solution to such a challenge. In this review, we focus on vacuum-driven power-free microfluidics based on the gas solubility or permeability of polydimethylsiloxane (PDMS); degassed PDMS can restore air inside itself due to its high gas solubility or gas permeable nature. PDMS allows the transfer of air into a vacuum through it due to its high gas permeability. Therefore, it is possible to store or transfer air into or through the gas soluble or permeable PDMS in order to withdraw liquids into the embedded dead-end microfluidic channels. This article provides a comprehensive look at the physics of the gas solubility and permeability of PDMS, a systematic review of different types of vacuum-driven power-free microfluidics, and guidelines for designing solubility-based or permeability-based PDMS devices, alongside existing applications. Advanced topics and the outlook in using micropumping that utilizes the gas solubility or permeability of PDMS will be also discussed. We strongly recommend that microfluidics and lab-on-chip (LOC) communities harness vacuum energy to develop smart vacuum-driven microfluidic systems.
Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan
2009-02-25
The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.
Materials separation by dielectrophoresis
NASA Technical Reports Server (NTRS)
Sagar, A. D.; Rose, R. M.
1988-01-01
The feasibility of vacuum dielectrophoresis as a method for particulate materials separation in a microgravity environment was investigated. Particle separations were performed in a specially constructed miniature drop-tower with a residence time of about 0.3 sec. Particle motion in such a system is independent of size and based only on density and dielectric constant, for a given electric field. The observed separations and deflections exceeded the theoretical predictions, probably due to multiparticle effects. In any case, this approach should work well in microgravity for many classes of materials, with relatively simple apparatus and low weight and power requirements.
[The induction current, an ideal resource for the smelting of dental alloys].
Ionescu, G; Chiper, C; Teofănescu, L; Brezulianu, C
1996-01-01
The authors present an electrical furnace for melting dental alloys, made by the German company BEGO. This furnace uses electrical current of high frequency. The advantages of this melting method are the possibility of controlling the adequate melting temperature for a specific type of alloy, the fusion in a protective environment of rare gas and casting by associating the centrifugation with the vacuum. This leads to exact castings without any defects. The authors describe as a personal contribution an external cooling system capable of maintaining the furnace's parameters even when the water pressure is low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; SOKENDAI
The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.
Rapid Ascent Simulation at NASA-MSFC
NASA Technical Reports Server (NTRS)
Sisco, Jimmy D.
2004-01-01
The Environmental Test Facility (ETF), located at NASA-Marshall Space Flight Center, Huntsville, Alabama, has provided thermal vacuum testing for several major programs since the 1960's. The ETF consists of over 13 thermal vacuum chambers sized and configured to handle the majority of test payloads. The majority of tests require a hard vacuum with heating and cryogenics. NASA's Return-to-Flight program requested testing to simulate a launch from the ground to flight using vacuum, heating and cryogenics. This paper describes an effective method for simulating a launch.
Spectral methods for coupled channels with a mass gap
NASA Astrophysics Data System (ADS)
Weigel, H.; Quandt, M.; Graham, N.
2018-02-01
We develop a method to compute the vacuum polarization energy for coupled scalar fields with different masses scattering off a background potential in one space dimension. As an example we consider the vacuum polarization energy of a kinklike soliton built from two real scalar fields with different mass parameters.
Inactivation of dust mites, dust mite allergen, and mold from carpet.
Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin
2014-01-01
Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p < 0.05) when compared to other methods. The two physical methods, steam vapor and vacuuming, have no statistically significant efficacy in inactivating dust mite allergens (p = 0.084), but have higher efficacy when compared to the chemical method on dust mite allergens (p = 0.002). There is no statistically significant difference in the efficacy for reducing mold in carpet (p > 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.
Biological samples on the ISS-EXPOSE facility for the ROSE/PUR experiment
NASA Astrophysics Data System (ADS)
Rontó, Gy.; Bérces, A.; Fekete, A.; Kerékgyártó, T.; Lammer, H.; Kargl, G.; Kömle, N. I.
2002-11-01
Three types of samples, bacteriophage T7, isolated phage DNA, polycrystalline uracil thin films were prepared in sandwich form that were closed vacuum-tightly with inert gaseous environment. The response of the samples to the following selected space environmental conditions was investigated: temperature (-20 - +40°C), vacuum, short wavelength UV irradiation. Uracil thin layer samples proved to be insensitive for temperature. In the vacuum chamber the structure of the samples in sandwich arrangement did not change. Irradiation with germicidal and Deuterium lamps caused a decrease in the optical density of the uracil layers and the decrease showed a saturation tendency in both cases. The dose-effect curves at germicidal lamp possess a saturation level at a lower optical density than at Deuterium.
Management of hidradenitis suppurativa wounds with an internal vacuum-assisted closure device.
Chen, Y Erin; Gerstle, Theodore; Verma, Kapil; Treiser, Matthew D; Kimball, Alexandra B; Orgill, Dennis P
2014-03-01
Hidradenitis suppurativa is a chronic, debilitating disease that is difficult to treat. Once medical management fails, wide local excision offers the best chance for cure. However, the resultant wound often proves too large or contaminated for immediate closure. The authors performed a retrospective chart review of hidradenitis cases managed surgically between 2005 and 2010. Data collected included patient characteristics, management method, and outcomes. Approximately half of the patients received internal vacuum-assisted closure therapy using the vacuum-assisted closure system and delayed closure and half of the patients received immediate primary closure at the time of their excision. Delayed closure consisted of closing the majority of the wound in a linear fashion following internal vacuum-assisted closure while accepting healing by means of secondary intention for small wound areas. Patients managed with internal vacuum-assisted closure had wounds on average four times larger in area than patients managed without internal vacuum-assisted closure. In both groups, all wounds were eventually closed primarily. Healing times averaged 2.2 months with internal vacuum-assisted closure and 2.7 months without. At an average follow-up time of 2.3 months, all patients with internal vacuum-assisted closure had no recurrence of their local disease. Severe hidradenitis presents a treatment challenge, as surgical excisions are often complicated by difficult closures and unsatisfactory recurrence rates. This study demonstrates that wide local excision with reasonable outcomes can be achieved using accelerated delayed primary closure. This method uses internal vacuum-assisted closure as a bridge between excision and delayed primary closure, facilitating closure without recurrence in large, heavily contaminated wounds. Therapeutic, III.
Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber
2002-10-18
try to quantify these effects, the direct simulation Monte Carlo method is applied to model a cold flow of xenon gas expanding from a Hall thruster into...a vacuum chamber. The simulations are performed for the P5 Hall thruster operating in a large vacuum tank at the University of Michigan. Comparison
Review and test of chilldown methods for space-based cryogenic tanks
NASA Astrophysics Data System (ADS)
Chato, David J.; Sanabria, Rafael
The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.
Review and test of chilldown methods for space-based cryogenic tanks
NASA Technical Reports Server (NTRS)
Chato, David J.; Sanabria, Rafael
1991-01-01
The literature for tank chilldown methods applicable to cryogenic tankage in the zero gravity environment of earth orbit is reviewed. One method is selected for demonstration in a ground based test. The method selected for investigation was the charge-hold-vent method which uses repeated injection of liquid slugs, followed by a hold to allow complete vaporization of the liquid and a vent of the tank to space vacuum to cool tankage to the desired temperature. The test was conducted on a 175 cubic foot, 2219 aluminum walled tank weighing 329 pounds, which was previously outfitted with spray systems to test nonvented fill technologies. To minimize hardware changes, a simple control-by-pressure scheme was implemented to control injected liquid quantities. The tank cooled from 440 R sufficiently in six charge-hold-vent cycles to allow a complete nonvented fill of the test tank. Liquid hydrogen consumed in the process is estimated at 32 pounds.
Pishvar, Maya; Amirkhosravi, Mehrad; Altan, M Cengiz
2018-05-17
This work demonstrates a protocol to improve the quality of composite laminates fabricated by wet lay-up vacuum bag processes using the recently developed magnet assisted composite manufacturing (MACM) technique. In this technique, permanent magnets are utilized to apply a sufficiently high consolidation pressure during the curing stage. To enhance the intensity of the magnetic field, and thus, to increase the magnetic compaction pressure, the magnets are placed on a magnetic top plate. First, the entire procedure of preparing the composite lay-up on a magnetic bottom steel plate using the conventional wet lay-up vacuum bag process is described. Second, placement of a set of Neodymium-Iron-Boron permanent magnets, arranged in alternating polarity, on the vacuum bag is illustrated. Next, the experimental procedures to measure the magnetic compaction pressure and volume fractions of the composite constituents are presented. Finally, methods used to characterize microstructure and mechanical properties of composite laminates are discussed in detail. The results prove the effectiveness of the MACM method in improving the quality of wet lay-up vacuum bag laminates. This method does not require large capital investment for tooling or equipment and can also be used to consolidate geometrically complex composite parts by placing the magnets on a matching top mold positioned on the vacuum bag.
Vacuum chamber for containing particle beams
Harvey, A.
1985-11-26
A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.
NASA Technical Reports Server (NTRS)
Fantano, Louis
2015-01-01
Thermal and Fluids Analysis Workshop Silver Spring, MD NCTS 21070-15 The Landsat 8 Data Continuity Mission, which is part of the United States Geologic Survey (USGS), launched February 11, 2013. A Landsat environmental test requirement mandated that test conditions bound worst-case flight thermal environments. This paper describes a rigorous analytical methodology applied to assess refine proposed thermal vacuum test conditions and the issues encountered attempting to satisfy this requirement.
Fundamental investigation of ultraviolet radiation effects in polymeric film-forming materials
NASA Technical Reports Server (NTRS)
Giori, C.; Yamauchi, T.; Llewellen, P.; Gilligan, J.
1974-01-01
A literature search from 1958 to present was conducted on the effect of ultraviolet radiation on polymeric materials, with particular emphasis on vacuum photolysis, mechanisms of degradation, and energy transfer phenomena. The literature from 1958 to 1968 was searched manually, while the literature from 1968 to present was searched by using a computerized keyword system. The primary objective was to provide the necessary background information for the design of new or modified materials with improved stability to the vacuum-radiation environment of space.
NASA Technical Reports Server (NTRS)
Yew, Calinda; Stephens, Matt
2015-01-01
The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.
Method for producing titanium aluminide weld rod
Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.
1995-01-01
A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.
Measurement of Outgassing Rates of Steels.
Park, Chongdo; Kim, Se-Hyun; Ki, Sanghoon; Ha, Taekyun; Cho, Boklae
2016-12-13
Steels are commonly used materials in the fabrication of vacuum systems because of their good mechanical, corrosion, and vacuum properties. A variety of steels meet the criterion of low outgassing required for high or ultrahigh vacuum applications. However, a given material can present different outgassing rates depending on its manufacturing process or the various pretreatment processes involved during the fabrication. Thus, the measurement of outgassing rates is highly desirable for a specific vacuum application. For this reason, the rate-of-pressure rise (RoR) method is often used to measure the outgassing of hydrogen after bakeout. In this article, a detailed description of the design and execution of the experimental protocol involved in the RoR method is provided. The RoR method uses a spinning rotor gauge to minimize errors that stem from outgassing or the pumping action of a vacuum gauge. The outgassing rates of two ordinary steels (stainless steel and mild steel) were measured. The measurements were made before and after the heat pretreatment of the steels. The heat pretreatment of steels was performed to reduce the outgassing. Extremely low rates of outgassing (on the order of 10 - 11 Pa m 3 sec - 1 m - 2 ) can be routinely measured using relatively small samples.
NASA Technical Reports Server (NTRS)
Yang, Kan; Glazer, Stuart; Ousley, Wes; Burt, William
2017-01-01
The James Webb Space Telescope (JWST), set to launch in 2018, is NASAs next-generation flagship telescope. The Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) contain all of the optical surfaces and instruments to capture and analyze the telescopes infrared targets. The integrated OTE and ISIM are denoted as OTIS, and will be tested as a single unit in a critical thermal-vacuum test in mid-2017 at NASA Johnson Space Centers Chamber A facility. The payload will be evaluated for workmanship and functionality in a 20K simulated flight environment during this thermal-vacuum test. However, the sheer thermal mass of the OTIS payload as well as the restrictive gradient, rate, and contamination-related constraints placed on test components precludes rapid cooldown or warmup to its steady-state cryo-balance condition. Hardware safety considerations precludes injection of helium gas for free molecular heat transfer. Initial thermal analysis predicted that transient radiative cooldown from ambient temperatures, while meeting all limits and constraints, would take 33.3 days; warmup similarly would take 28.4 days. This paper discusses methods used to reduce transition times from the original predictions through modulation of boundary temperatures and environmental conditions. By optimizing helium shroud transition rates and heater usage, as well as rigorously re-examining previously imposed constraints, savings of up to three days on cooldown and up to a week on warmup can be achieved. The efficiencies gained through these methods allow the JWST thermal test team to create faster cooldown and warmup profiles, thus reducing the overall test duration and cost, while keeping all of the required test operations.
Dueik, V; Bouchon, P
2011-03-01
Consumers look for products that contribute to their wellness and health, however, even health-conscious consumers are not willing to sacrifice organoleptic properties, and intense full-flavor snacks remain an important trend. The objective of this study was to examine most important quality parameters of vacuum (1.92 inHg) and atmospheric-fried carrot, potato, and apple slices to determine specific advantages of vacuum technology. Slices were fried using equivalent thermal driving forces, maintaining a constant difference between oil temperature and the boiling point of water at the working pressure (ΔT = 60 and 80 °C). This resulted in frying temperatures of 160 and 180 °C, and 98 and 118 °C, for atmospheric and vacuum frying, respectively. Vacuum-fried carrot and potato chips absorbed about 50% less oil than atmospheric-fried chips, whereas vacuum-fried apple chips reduced oil absorption by 25%. Total carotenoids and ascorbic acid (AA) were greatly preserved during vacuum frying. Carrot chips vacuum fried at 98 °C retained about 90% of total carotenoids, whereas potato and apple slices vacuum fried at 98 °C, preserved around 95% of their initial AA content. Interestingly, results showed that the antioxidant capacity of chips may be related to both the presence of natural antioxidants and brown pigments developed at elevated temperatures. A way to reduce detrimental effects of deep-fat frying is through operating-pressure reduction, the essence behind vacuum deep-fat frying. In this way, it is possible to remove product moisture at a low temperature in a low-oxygen environment. The objective of this research was to study the effect of oil temperature reduction when vacuum frying traditional (potatoes) and nontraditional products (carrots and apples) on most important quality attributes (vitamins, color, and oil uptake). Results are promising and show that vacuum frying can be an alternative to produce nutritious and novel snacks with desired quality attributes, since vitamins and color were greatly preserved and oil absorption could be substantially reduced.
NASA Astrophysics Data System (ADS)
Abdurohman, K.; Siahaan, Mabe
2018-04-01
Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.
Analysis of high vacuum systems using SINDA'85
NASA Technical Reports Server (NTRS)
Spivey, R. A.; Clanton, S. E.; Moore, J. D.
1993-01-01
The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.
Lepper-Blilie, A N; Berg, E P; Buchanan, D S; Keller, W L; Maddock-Carlin, K R; Berg, P T
2014-03-01
A 3×3×2 factorial was utilized to determine if roast size (small, medium, large), cooking method (open-pan, oven bag, vacuum bag), and heating process (fresh, reheated) prevented warmed-over flavor (WOF) in beef clod roasts. Fresh vacuum bag and reheated open-pan roasts had higher cardboardy flavor scores compared with fresh open-pan roast scores. Reheated roasts in oven and vacuum bags did not differ from fresh roasts for cardboardy flavor. Brothy and fat intensity were increased in reheated roasts in oven and vacuum bags compared with fresh roasts in oven and vacuum bags. Differences in TBARS were found in the interaction of heating process and roast size with the fresh and reheated large, and reheated medium roasts having the lowest values. Based on TBARS data, to prevent WOF in reheated beef roasts, a larger size roast in a cooking bag is the most effective method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang
2013-09-01
We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.
Computer assisted thermal-vacuum testing
NASA Technical Reports Server (NTRS)
Petrie, W.; Mikk, G.
1977-01-01
In testing complex systems and components under dynamic thermal-vacuum environments, it is desirable to optimize the environment control sequence in order to reduce test duration and cost. This paper describes an approach where a computer is utilized as part of the test control operation. Real time test data is made available to the computer through time-sharing terminals at appropriate time intervals. A mathematical model of the test article and environmental control equipment is then operated on using the real time data to yield current thermal status, temperature analysis, trend prediction and recommended thermal control setting changes to arrive at the required thermal condition. The data acquisition interface and the time-sharing hook-up to an IBM-370 computer is described along with a typical control program and data demonstrating its use.
Medical abortion or vacuum aspiration? Two year follow up of a patient preference trial.
Howie, F L; Henshaw, R C; Naji, S A; Russell, I T; Templeton, A A
1997-07-01
To describe and compare health outcomes two years after medical abortion or vacuum aspiration in women recruited into a patient preference trial during 1990 to 1991. Women recruited to the original, partially randomised study were contacted for assessment using a structured interview. Grampian region of Scotland, UK. One hundred and forty women who had participated in a partially randomised study of first trimester abortion two years previously. Vacuum aspiration or medical abortion using mifepristone and gemeprost. Long-term general, reproductive and psychological health; acceptability of procedure; perceived value of choice of method of termination. There were no significant differences between women who had undergone medical abortion or vacuum aspiration two years previously in general, reproductive or psychological health. Almost all women placed a high value on the provision of choice of method of termination. There was a significant difference in perception of long term procedure acceptability among women who had been randomised to a method of termination. Women should have the opportunity to choose the method of termination. This opportunity will result in high levels of acceptability, particularly at gestations under 50 days of amenorrhoea.
Lightweight evacuated multilayer insulation systems for the space shuttle vehicle
NASA Technical Reports Server (NTRS)
Barclay, D. L.; Bell, J. E.; Zimmerman, D. K.
1973-01-01
The elements in the evacuated multilayer insulation system were investigated, and the major weight contributors for optimization selected. Outgassing tests were conducted on candidate vacuum jacket materials and experiments were conducted to determine the vacuum and structural integrity of selected vacuum jacket configurations. A nondestructive proof test method, applicable to externally pressurized shells, was validated on this program.
Waste to wealth concept: Disposable RGO filter paper for flexible temperature sensor applications
NASA Astrophysics Data System (ADS)
Neella, Nagarjuna; Kedambaimoole, Vaishakh; Gaddam, Venkateswarlu; Nayak, M. M.; Rajanna, K.
2018-04-01
We have developed a flexible reduced graphene oxide (RGO) temperature sensor on filter paper based cellulose substrate using vacuum filtration method. One of the most commonly used synthesized methods for RGO thin films is vacuum filtration process. It has several advantages such as simple operation and good controllability. The structural analysis was carried out by FE-SEM, in which the surface morphology images confirm the formation of RGO nanostructures on the filter paper substrate. It was observed that the pores of the filter paper were completely filled with the RGO material during the filtration process, subsequently the formation of continuous RGO thin films. As a results, the RGO films exhibits a piezoresistive property. The resulted RGO based films on the filter paper reveals the semiconducting behavior having sensitivity of 0.278 Ω /°C and negative temperature coefficient (NTC) about -0.00254 Ω/ Ω / °C. Thus, we demonstrate a simplified way for the fabrication of RGO films on filter paper that possesses better and easier measurable macroscopic electrical properties. Our approach is for easy way of electronics, cost-effective and environment friendly fabrication route for flexible conducting graphene films on filter paper. This will enable for the potential applications in flexible electronics in various fields including biomedical, automobile and aerospace engineering.
Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility
NASA Astrophysics Data System (ADS)
Zheng, Hongru; Cai, Guobiao; Liu, Lihui; Shang, Shengfei; He, Bijiao
2017-03-01
The back-sputtering deposition on thruster surface caused by ion bombardment on chamber wall material affects the performance of thrusters during the ground based electric propulsion endurance tests. In order to decrease the back-sputtering deposition, most of vacuum chambers applied in electric propulsion experiments are equipped with anti-sputtering targets. In this paper, a three-dimensional model of plume experimental system (PES) including double layer anti-sputtering target is established. Simulation cases are made to simulate the plasma environment and sputtering effects when an ion thruster is working. The particle in cell (PIC) method and direct simulation Monte Carlo (DSMC) method is used to calculate the velocity and position of particles. Yamamura's model is used to simulate the sputtering process. The distribution of sputtered anti-sputtering target material is presented. The results show that the double layer anti-sputtering target can significantly reduce the deposition on thruster surface. The back-sputtering deposition rates on thruster exit surface for different cases are compared. The chevrons on the secondary target are rearranged to improve its performance. The position of secondary target has relation with the ion beam divergence angle, and the radius of the vacuum chamber. The back-sputtering deposition rate is lower when the secondary target covers the entire ion beam.
Investigation on the storage of benzotriazole corrosion inhibitor in TiO2 nanotube
NASA Astrophysics Data System (ADS)
Nguyen, Thi Dieu Hang; Tiep Nong, Thanh; Quang Nguyen, Van; Quyen Nguyen, The; Le, Quang Trung
2018-06-01
The present paper describes different methods for storing the benzotriazole (BTA) corrosion inhibitor in the titanium dioxide nanotubes (TNT) as nanocontainers. Three methods were used, including the vacuum impregnation at ambient temperature, the vacuum impregnation at cooling temperature () and the rotary vacuum evaporation. TNT, BTA and BTA/TNT products were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. nanotube powder was synthesized by hydrothermal treatment from the inexpensive spherical commercial precursor. The results obtained from SEM, TEM images and BET values showed the successful synthesis of TNT with a homogeneous morphology of nano size tubes and a large specific surface . The existence of BTA in TNT was demonstrated. The BTA/TNT obtained via the rotary vacuum evaporation contained a very significant amount of BTA (66.6 weight %) but BTA existed mostly outside the nanotubes. Two processes of vacuum impregnation at ambient temperature and vacuum impregnation at cooling temperature revealed that there was about 8 weight % BTA stored in BTA/TNT product and BTA was present mostly inside the nanotubes.
Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility
NASA Technical Reports Server (NTRS)
Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.
2011-01-01
The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.
Lonely GPFUTV-the movement of water under the action of unknown vacuum
NASA Astrophysics Data System (ADS)
Lin, Weiyi
2013-11-01
In this paper, firstly, the experiment on the flow resistance of the aerated pipe flow is introduced. The experimental research on comparison between different volumes of air entrained is presented. Secondly, the characteristics of gravity pipe flow under the action of Torricelli's vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle, etc. Under the joint action of an unknown vacuum energy and the formation of non-aerated flow the water flow is full-pipe and continuous, high-speed and non-rotational as distinguished from turbulent flow. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, experimental study of Torricelli's experiment phenomenon in the vacuum environment, applied study of the potential for GPFUTV to be developed for deep seawater suction technology and lifting technology for deep ocean mining, theoretical study of flow stability and flow resistance under GPFUTV condition, etc. At last, the famous GPFUTV project is illustrated. 12 years of rigorous and independent survey research.
Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems
NASA Technical Reports Server (NTRS)
Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph
2012-01-01
Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a dispersive media, the effect of both phase and group indices have to be considered. Taking all these factors into account, a method was developed to measure targets through multiple regions of different materials and produce results that are absolute measurements of target position in three-dimensional space, rather than simply relative position. The environment in which the lidar measurements are taken must be broken down into separate regions of interest and each region solved for separately. In this case, there were three regions of interest: air, fused silica, and vacuum. The angular position of the target inside the chamber is solved using only phase index and phase velocity, while the ranging effects due to travel from air to glass to vacuum/air are solved with group index and group velocity. When all parameters are solved simultaneously, an absolute knowledge of the position of each target within an environmental chamber can be derived. Novel features of this innovation include measuring absolute position of targets through multiple dispersive and non-dispersive media, deconstruction of lidar raw data from a commercial off-the-shelf unit into reworkable parameters, and use of group velocities to reduce range data. Measurement of structures within a vacuum chamber or other harsh environment, such as a furnace, may now be measured as easily as if they were in an ambient laboratory. This analysis permits transformation of the raw data into absolute spatial units (e.g., mm). This technique has also been extended to laser tracker, theodolite, and cathetometer measurements through refractive media.
Methods of Testing Thermal Insulation and Associated Test Apparatus
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)
2004-01-01
The system and method for testing thermal insulation uses a cryostatic insulation tester having a vacuum chamber and a cold mass including a test chamber and upper and lower guard chambers adjacent thereto. The thermal insulation is positioned within the vacuum chamber and adjacent the cold mass. Cryogenic liquid is supplied to the test chamber, upper guard and lower guard to create a first gas layer in an upper portion of the lower guard chamber and a second gas layer in an upper portion of the test chamber. Temperature are sensed within the vacuum chamber to test the thermal insulation.
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Hixson, R. S.; King, N. S. P.; Olson, R. T.; Rigg, P. A.; Zellner, M. B.; Routley, N.; Rimmer, A.
2007-04-01
The authors consider a mathematical method to separate and determine the amount of ejecta produced in a second-shock material-fragmentation process. The technique is theoretical and assumes that a material undergoing a shock release at a vacuum interface ejects particulate material or fragments as the initial shock unloads and reflects at the vacuum-surface interface. In this case it is thought that the reflected shock may reflect again at the source of the shock and return to the vacuum-surface interface and eject another amount of fragments or particulate material.
Quantum Field Energy Sensor based on the Casimir Effect
NASA Astrophysics Data System (ADS)
Ludwig, Thorsten
The Casimir effect converts vacuum fluctuations into a measurable force. Some new energy technologies aim to utilize these vacuum fluctuations in commonly used forms of energy like electricity or mechanical motion. In order to study these energy technologies it is helpful to have sensors for the energy density of vacuum fluctuations. In today's scientific instrumentation and scanning microscope technologies there are several common methods to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with silicon cantilevers, there are a large number of reports on the use of quartz tuning forks to get high-resolution force measurements or to create new force sensors. Both methods have certain advantages and disadvantages over the other. In this report the two methods are described and compared towards their usability for Casimir force measurements. Furthermore a design for a quantum field energy sensor based on the Casimir force measurement will be described. In addition some general considerations on extracting energy from vacuum fluctuations will be given.
Lee, Ho Nyung; Ambrose Seo, Sung S.; Choi, Woo Seok; ...
2016-01-29
In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO 3 (STO) thin films onmore » single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Thus, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but it expands the utility of pulsed laser epitaxy of other materials as well.₃« less
Mechanisms of boron fiber strengthening by thermal treatment
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1979-01-01
The fracture strain for boron on tungsten fibers can be improved by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanisms responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 + or - 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.
First environmental data from the EUV engineering test stand
NASA Astrophysics Data System (ADS)
Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.
2001-08-01
The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.
Multiple hydrogen-bonded complexes based on 2-ureido-4[1H]-pyrimidinone: a theoretical study.
Sun, Hao; Lee, Hui Hui; Blakey, Idriss; Dargaville, Bronwin; Chirila, Traian V; Whittaker, Andrew K; Smith, Sean C
2011-09-29
In the present work, the electronic structures and properties of a series of 2-ureido-4[1H]-pyrimidinone(UPy)-based monomers and dimers in various environments (vacuum, chloroform, and water) are studied by density functional theoretical methods. Most dimers prefer to form a DDAA-AADD (D, H-bond donor; A, H-bond acceptor) array in both vacuum and solvents. Topological analysis proved that intramolecular and intermolecular hydrogen bonds coexist in the dimers. Frequency and NBO calculations show that all the hydrogen bonds exhibit an obvious red shift in their stretching vibrational frequencies. Larger substituents at position 6 of the pyrimidinone ring with stronger electron-donating ability favor the total binding energy and free energy of dimerization. Calculations on the solvent effect show that dimerization is discouraged by the stronger polarity of the solvent. Further computations show that Dimer-1 may be formed in chloroform, but water molecules may interact with the donor or acceptor sites and hence disrupt the hydrogen bonds of Dimer-1. © 2011 American Chemical Society
Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da
2017-06-26
Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.
In Situ Characterization of Shewanella oneidensis MR1 Biofilms by SALVI and ToF-SIMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komorek, Rachel; Wei, Wenchao; Yu, Xiaofei
Bacterial biofilms are surface-associated communities that are vastly studied to understand their self-produced extracellular polymeric substances (EPS) and their roles in environmental microbiology. This study outlines a method to cultivate biofilm attachment to the System for Analysis at the Liquid Vacuum Interface (SALVI) and achieve in situ chemical mapping of a living biofilm by time-of-flight secondary ion mass spectrometry (ToF-SIMS). This is done through the culturing of bacteria both outside and within the SALVI channel with our specialized setup, as well as through optical imaging techniques to detect the biofilm presence and thickness before ToF-SIMS analysis. Our results show themore » characteristic peaks of the Shewanella biofilm in its natural hydrated state, highlighting upon its localized water cluster environment, as well as EPS fragments, which are drastically different from the same biofilm’s dehydrated state. These results demonstrate the breakthrough capability of SALVI that allows for in situ biofilm imaging with a vacuum-based chemical imaging instrument.« less
Wide gap, permanent magnet biased magnetic bearing system
NASA Technical Reports Server (NTRS)
Boden, Karl
1992-01-01
The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.
Ott, Emanuel; Kawaguchi, Yuko; Kölbl, Denise; Chaturvedi, Palak; Nakagawa, Kazumichi; Yamagishi, Akihiko; Weckwerth, Wolfram; Milojevic, Tetyana
2017-01-01
The multiple extremes resistant bacterium Deinococcus radiodurans is able to withstand harsh conditions of simulated outer space environment. The Tanpopo orbital mission performs a long-term space exposure of D. radiodurans aiming to investigate the possibility of interplanetary transfer of life. The revealing of molecular machinery responsible for survivability of D. radiodurans in the outer space environment can improve our understanding of underlying stress response mechanisms. In this paper, we have evaluated the molecular response of D. radiodurans after the exposure to space-related conditions of UVC irradiation and vacuum. Notably, scanning electron microscopy investigations showed that neither morphology nor cellular integrity of irradiated cells was affected, while integrated proteomic and metabolomic analysis revealed numerous molecular alterations in metabolic and stress response pathways. Several molecular key mechanisms of D. radiodurans, including the tricarboxylic acid cycle, the DNA damage response systems, ROS scavenging systems and transcriptional regulators responded in order to cope with the stressful situation caused by UVC irradiation under vacuum conditions. These results reveal the effectiveness of the integrative proteometabolomic approach as a tool in molecular analysis of microbial stress response caused by space-related factors.
Ott, Emanuel; Kawaguchi, Yuko; Kölbl, Denise; Chaturvedi, Palak; Nakagawa, Kazumichi; Yamagishi, Akihiko; Weckwerth, Wolfram
2017-01-01
The multiple extremes resistant bacterium Deinococcus radiodurans is able to withstand harsh conditions of simulated outer space environment. The Tanpopo orbital mission performs a long-term space exposure of D. radiodurans aiming to investigate the possibility of interplanetary transfer of life. The revealing of molecular machinery responsible for survivability of D. radiodurans in the outer space environment can improve our understanding of underlying stress response mechanisms. In this paper, we have evaluated the molecular response of D. radiodurans after the exposure to space-related conditions of UVC irradiation and vacuum. Notably, scanning electron microscopy investigations showed that neither morphology nor cellular integrity of irradiated cells was affected, while integrated proteomic and metabolomic analysis revealed numerous molecular alterations in metabolic and stress response pathways. Several molecular key mechanisms of D. radiodurans, including the tricarboxylic acid cycle, the DNA damage response systems, ROS scavenging systems and transcriptional regulators responded in order to cope with the stressful situation caused by UVC irradiation under vacuum conditions. These results reveal the effectiveness of the integrative proteometabolomic approach as a tool in molecular analysis of microbial stress response caused by space-related factors. PMID:29244852
Low-Outgassing Photogrammetry Targets for Use in Outer Space
NASA Technical Reports Server (NTRS)
Gross, Jason N.; Sampler, Henry; Reed, Benjamin B.
2011-01-01
A short document discusses an investigation of materials for photogrammetry targets for highly sensitive optical scientific instruments to be operated in outer space and in an outer-space-environment- simulating thermal vacuum chamber on Earth. A key consideration in the selection of photogrammetry-target materials for vacuum environments is the need to prevent contamination that could degrade the optical responses of the instruments. Therefore, in addition to the high levels and uniformity of reflectivity required of photogrammetry-target materials suitable for use in air, the materials sought must exhibit minimal outgassing. Commercially available photogrammetry targets were found to outgas excessively under the thermal and vacuum conditions of interest; this finding prompted the investigators to consider optically equivalent or superior, lower-outgassing alternative target materials. The document lists several materials found to satisfy the requirements, but does not state explicitly whether the materials can be used individually or must be combined in the proper sequence into layered target structures. The materials in question are an aluminized polyimide tape, an acrylic pressure- sensitive adhesive, a 500-A-thick layer of vapor-deposited aluminum, and spherical barium titanate glass beads having various diameters from 20 to 63 microns..
NASA Astrophysics Data System (ADS)
Gesuele, F.; JJ Nivas, J.; Fittipaldi, R.; Altucci, C.; Bruzzese, R.; Maddalena, P.; Amoruso, S.
2018-02-01
We report a correlative imaging analysis of a crystalline silicon target after irradiation with a low number of 1055 nm, 850 fs laser pulses with several microscopy techniques (e.g., scanning electron microscopy, atomic force microscopy, Raman micro-imaging and confocal optical microscopy). The analysis is carried out on samples irradiated both in high vacuum and at atmospheric pressure conditions, evidencing interesting differences induced by the ambient environment. In high-vacuum conditions, the results evidence the formation of a halo, which is constituted by alternate stripes of amorphous and crystalline silicon, around the nascent ablation crater. In air, such an effect is drastically reduced, due to the significant back-deposition of nanoparticulate material induced by the larger ambient pressure.
Integrated structure vacuum tube
NASA Technical Reports Server (NTRS)
Dimeff, J.; Kerwin, W. J. (Inventor)
1976-01-01
High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.
Vacuum Processing Technique for Development of Primary Standard Blackbodies
Navarro, M.; Bruce, S. S.; Johnson, B. Carol; Murthy, A. V.; Saunders, R. D.
1999-01-01
Blackbody sources with nearly unity emittance that are in equilibrium with a pure freezing metal such as gold, silver, or copper are used as primary standard sources in the International Temperature Scale of 1990 (ITS-90). Recently, a facility using radio-frequency induction heating for melting and filling the blackbody crucible with the freeze metal under vacuum conditions was developed at the National Institute of Standards and Technology (NIST). The blackbody development under a vacuum environment eliminated the possibility of contamination of the freeze metal during the process. The induction heating, compared to a resistively heated convection oven, provided faster heating of crucible and resulted in shorter turn-around time of about 7 h to manufacture a blackbody. This paper describes the new facility and its application to the development of fixed-point blackbodies.
Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance
NASA Technical Reports Server (NTRS)
Morris, J. F. (Inventor)
1977-01-01
Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.
Low temperature ablation models made by pressure/vacuum application
NASA Technical Reports Server (NTRS)
Fischer, M. C.; Heier, W. C.
1970-01-01
Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.
Thermal Vacuum Control Systems Options for Test Facilities
NASA Technical Reports Server (NTRS)
Marchetti, John
2008-01-01
This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.
Practical quantum random number generator based on measuring the shot noise of vacuum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yong; Zou Hongxin; Tian Liang
2010-06-15
The shot noise of vacuum states is a kind of quantum noise and is totally random. In this paper a nondeterministic random number generation scheme based on measuring the shot noise of vacuum states is presented and experimentally demonstrated. We use a homodyne detector to measure the shot noise of vacuum states. Considering that the frequency bandwidth of our detector is limited, we derive the optimal sampling rate so that sampling points have the least correlation with each other. We also choose a method to extract random numbers from sampling values, and prove that the influence of classical noise canmore » be avoided with this method so that the detector does not have to be shot-noise limited. The random numbers generated with this scheme have passed ent and diehard tests.« less
Vacuum polarization in the field of a multidimensional global monopole
NASA Astrophysics Data System (ADS)
Grats, Yu. V.; Spirin, P. A.
2016-11-01
An approximate expression for the Euclidean Green function of a massless scalar field in the spacetime of a multidimensional global monopole has been derived. Expressions for the vacuum expectation values <ϕ2>ren and < T 00>ren have been derived by the dimensional regularization method. Comparison with the results obtained by alternative regularization methods is made.
Experimental Study on Vacuum Dynamic Consolidation Treatment of Soft Soil Foundation
NASA Astrophysics Data System (ADS)
Fu-lai, Ni; Xin, Wen; Xiao-bin, Zhang; Wei, Li
2017-11-01
In view of the deficiency of the saturated silt clay foundation reinforced by the dynamic consolidation method, combination the project of soft foundation treatment test area in Tangshan, the reaserch analysed indexes, included groundwater level, pore water pressure, settlement about soil layer and so on, by use of field tests and indoor geotechnical tests, The results showed that the whole reinforcement effect with vacuum dynamic compaction method to blow fill foundation is obvious, due to the result of vacuum precipitation, generally, the excess pore water pressure can be dissipated by 90% above in 2 days around and the effective compaction coefficient can reached more than 0.9,the research work in soft foundation treatment engineering provide a new method and thought to similar engineering.
1983-06-01
frequency with a vacuum environment. In work concerning nuclear steam generator design ; Brinkman, et al. [Ref. 13], investigated time dependent...Nuclear Steam Generator Design ," Journal of Nuclear Materials, Vol. 62, pp. 181-204, 1976. 14. K. D. Challenger, A. K. Miller, C. R. Brinkman, "An
Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.
Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard
2015-08-01
We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®
Design verification of large time constant thermal shields for optical reference cavities.
Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H
2016-02-01
In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.
Evolution of vacuum bubbles embedded in inhomogeneous spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannia, Florencia Anabella Teppa; Bergliaffa, Santiago Esteban Perez, E-mail: fteppa@fcaglp.unlp.edu.ar, E-mail: sepbergliaffa@gmail.com
We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.
Füzesi, F; Jornod, A; Thomann, P; Plimmer, M D; Dudle, G; Moser, R; Sache, L; Bleuler, H
2007-10-01
This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10(-8) mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.
The target vacuum storage facility at iThemba LABS
NASA Astrophysics Data System (ADS)
Neveling, R.; Kheswa, N. Y.; Papka, P.
2018-05-01
A number of nuclear physics experiments at iThemba LABS require target foils that consist of specific isotopes of elements which are reactive in air. Not only is it important to prepare these targets in a suitable environment to prevent oxidation, but consideration should also be given to the long term storage and handling facilities of such targets. The target vacuum storage facility at iThemba LABS, as well as additional hardware necessary to transport and install the target foils in the experimental chamber, will be discussed.
A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods.
Chen, Zhi-Gang; Guo, Xiao-Yu; Wu, Tao
2016-05-01
A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41-53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model. Copyright © 2015. Published by Elsevier B.V.
Inexpensive cryogenic insulation replaces vacuum jacketed line
NASA Technical Reports Server (NTRS)
Fuchs, C. E.
1967-01-01
Commercially available aluminized Mylar, cork and fiber glass form a multilayered sealed system and provide rugged and economical field installed insulation for cryogenic /liquid nitrogen or oxygen/ pipe lines in an exposed environment.
Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids
Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind
2012-01-01
Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531
Microwelding of various metallic materials under ultravacuum (A0138-10)
NASA Technical Reports Server (NTRS)
Assie, J. P.
1984-01-01
In the space vacuum environment, the spacecraft mechanisms are liable to sustain damaging effects from microwelds due to molecular diffusion of the spacecraft constituent metals. Such microwelds result in a continuing increase in the friction factors and are even liable to jam the mechanisms altogether. The object of this experiment is to check the metal surfaces representative of the mechanism constituent metals (treated or untreated, lubricated or unlubricated) for microwelds afater an extended stay in the space environment. The experimental approach is to passively expose inert metal specimens to the space vacuum and to conduct end-of-mission verification of the significance of microwelds between various pairs of metal washers. The experiment will be located in one of the FRECOPA boxes in a 12-in. -deep peripheral tray that contains nine other experiments from France.
Drift study of SU8 cantilevers in liquid and gaseous environments.
Tenje, Maria; Keller, Stephan; Dohn, Søren; Davis, Zachary J; Boisen, Anja
2010-05-01
We present a study of the drift, in terms of cantilever deflections without probe/target interactions, of polymeric SU8 cantilevers. The drift is measured in PBS buffer (pH 7.4) and under vacuum (1mbar) conditions. We see that the cantilevers display a large drift in both environments. We believe this is because the polymer matrix absorbs liquid in one situation whereas it is being degassed in the other. An inhomogeneous expansion/contraction of the cantilever is seen because one surface of the cantilever may still have remains of the release layer from the fabrication. To further study the effect, we coat the cantilevers with a hydrophobic coating, perfluorodecyltrichlorosilane (FDTS). Fully encapsulating the SU8 cantilever greatly reduces the drift in liquid whereas a less significant change is seen in vacuum.
NASA Technical Reports Server (NTRS)
Brady, J.; Banks, B.
1990-01-01
The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.
Design Optimization and Characterization of Helicoidal Composites with Enhanced Impact Resistance
2011-01-12
mitigating the delamination problem. The reinforcement can be achieved by many methods such as stitching, braiding , z-fibers/z-rods, fiber waviness or...that act perpendicular to the plane of the laminate. Some of these methods involve stitching, braiding , or weaving fibers together. Other methods use...temperature channels in the autoclave and attaching vacuum connector to the vacuum hose for inspecting the sealing system. For curing the composite, the
Simulating Pressure Profiles for the Free-Electron Laser Photoemission Gun Using Molflow+
NASA Astrophysics Data System (ADS)
Song, Diego; Hernandez-Garcia, Carlos
2012-10-01
The Jefferson Lab Free Electron Laser (FEL) generates tunable laser light by passing a relativistic electron beam generated in a high-voltage DC electron gun with a semiconducting photocathode through a magnetic undulator. The electron gun is in stringent vacuum conditions in order to guarantee photocathode longevity. Considering an upgrade of the electron gun, this project consists of simulating pressure profiles to determine if the novel design meets the electron gun vacuum requirements. The method of simulation employs the software Molflow+, developed by R. Kersevan at the Organisation Europ'eene pour la Recherche Nucl'eaire (CERN), which uses the test-particle Monte Carlo method to simulate molecular flows in 3D structures. Pressure is obtained along specified chamber axes. Results are then compared to measured pressure values from the existing gun for validation. Outgassing rates, surface area, and pressure were found to be proportionally related. The simulations indicate that the upgrade gun vacuum chamber requires more pumping compared to its predecessor, while it holds similar vacuum conditions. The ability to simulate pressure profiles through tools like Molflow+, allows researchers to optimize vacuum systems during the engineering process.
Leak test fixture and method for using same
Hawk, Lawrence S.
1976-01-01
A method and apparatus are provided which are especially useful for leak testing seams such as an end closure or joint in an article. The test does not require an enclosed pressurized volume within the article or joint section to be leak checked. A flexible impervious membrane is disposed over an area of the seamed surfaces to be leak checked and sealed around the outer edges. A preselected vacuum is applied through an opening in the membrane to evacuate the area between the membrane and the surface being leak checked to essentially collapse the membrane to conform to the article surface or joined adjacent surfaces. A pressure differential is concentrated at the seam bounded by the membrane and only the seam experiences a pressure differential as air or helium molecules are drawn into the vacuum system through a leak in the seam. A helium detector may be placed in a vacuum exhaust line from the membrane to detect the helium. Alternatively, the vacuum system may be isolated at a preselected pressure and leaks may be detected by a subsequent pressure increase in the vacuum system.
Method and apparatus for scientific analysis under low temperature vacuum conditions
Winefordner, James D.; Jones, Bradley T.
1990-01-01
A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.
Cermet insert high voltage holdoff improvement for ceramic/metal vacuum devices
Ierna, W.F.
1986-03-11
An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.
Cermet insert high voltage holdoff for ceramic/metal vacuum devices
Ierna, William F.
1987-01-01
An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.
REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FOERSTER,C.
Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not permitted upstream of the monochromator exit aperture. It will be the responsibility of users to demonstrate that their experiment will not degrade the pressure or quality of the storage ring vacuum. As a matter of operating policy, all beam lines will be monitored for prescribed pressure and the contribution of high mass gases to this pressure each time a beam line has been opened to ring vacuum.« less
NASA Technical Reports Server (NTRS)
Swaminathan, Prasanna; Dennison, J. R.; Sim, Alec; Brunson, Jerilyn; Crapo, Eric; Frederickson, A. R.
2004-01-01
Conductivity of insulating materials is a key parameter to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. Classical ASTM and IEC methods to measure thin film insulator conductivity apply a constant voltage to two electrodes around the sample and measure the resulting current for tens of minutes. However, conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator. Charge decay methods expose one side of the insulator in vacuum to sequences of charged particles, light, and plasma, with a metal electrode attached to the other side of the insulator. Data are obtained by capacitive coupling to measure both the resulting voltage on the open surface and emission of electrons from the exposed surface, as well monitoring currents to the electrode. Instrumentation for both classical and charge storage decay methods has been developed and tested at Jet Propulsion Laboratory (JPL) and at Utah State University (USU). Details of the apparatus, test methods and data analysis are given here. The JPL charge storage decay chamber is a first-generation instrument, designed to make detailed measurements on only three to five samples at a time. Because samples must typically be tested for over a month, a second-generation high sample throughput charge storage decay chamber was developed at USU with the capability of testing up to 32 samples simultaneously. Details are provided about the instrumentation to measure surface charge and current; for charge deposition apparatus and control; the sample holders to properly isolate the mounted samples; the sample carousel to rotate samples into place; the control of the sample environment including sample vacuum, ambient gas, and sample temperature; and the computer control and data acquisition systems. Measurements are compared here for a number of thin film insulators using both methods at both facilities. We have found that conductivity determined from charge storage decay methods is 102 to 104 larger than values obtained from classical methods. Another Spacecraft Charging Conference presentation describes more extensive measurements made with these apparatus. This work is supported through funding from the NASA Space Environments and Effects Program and the USU Space Dynamics Laboratory Enabling Technologies Program.
Isolation of high quality graphene from Ru by solution phase intercalation
NASA Astrophysics Data System (ADS)
Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.
2013-09-01
We introduce a method for isolating graphene grown on epitaxial Ru(0001)/α-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions.
Rich, David Q; Rhoads, George G; Yiin, Lih-Ming; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J
2002-01-01
High efficiency particulate air filter (HEPA) vacuums, which collect particles > 0.3 micro m, and trisodium phosphate (TSP), a detergent claimed to selectively remove lead, have been included in the HUD Guidelines for the Evaluation and Control of Lead Based Paint Hazards in Housing without systematic validation of their effectiveness. At the time the study was initiated, both HEPA vacuums and TSP were relatively expensive, they were not readily found in urban retail centers, and there were environmental concerns about the use and disposal of high-phosphate detergents. A randomized, controlled trial was conducted in urban high-risk homes in northern New Jersey to determine whether a more readily available and less expensive low-phosphate, non-TSP detergent and non-HEPA vacuum could perform as well as TSP and a HEPA vacuum in a cleaning protocol. Homes were randomized to one of three cleaning methods: TSP/HEPA vacuum, TSP/non-HEPA vacuum, or non-TSP/non-HEPA vacuum. Change in log-transformed lead loading was used in mixed models to compare the efficacy of the three cleaning techniques separately for uncarpeted floors, window sills, and window troughs. After we adjusted for baseline lead loading, the non-HEPA vacuum produced larger reductions on hard floors [19%; 95% confidence interval (CI), 3-38%], but the HEPA vacuum produced larger reductions on window sills (22%; 95% CI, 11-32%) and larger reductions on window troughs (16%; 95% CI, -4 to 33%). The non-TSP produced larger reductions on window troughs (21%; 95% CI, -2 to 50%), but TSP produced larger reductions on hard floors (5%; 95% CI, -12 to 19%) and window sills (8%; 95% CI, -5 to 20%). TSP/HEPA produced larger reductions on window sills (28%; 95% CI, 18-37%) and larger reductions on window troughs (2%; 95% CI, -24 to 23%), whereas the non-TSP/non-HEPA method produced larger reductions on hard floors (13%; 95% CI, -5 to 34%). Because neither vacuum nor detergent produced consistent results across surface types, the use of low-phosphate detergents and non-HEPA vacuums in a temporary control measure is supported. PMID:12204823
Rich, David Q; Rhoads, George G; Yiin, Lih-Ming; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J
2002-09-01
High efficiency particulate air filter (HEPA) vacuums, which collect particles > 0.3 micro m, and trisodium phosphate (TSP), a detergent claimed to selectively remove lead, have been included in the HUD Guidelines for the Evaluation and Control of Lead Based Paint Hazards in Housing without systematic validation of their effectiveness. At the time the study was initiated, both HEPA vacuums and TSP were relatively expensive, they were not readily found in urban retail centers, and there were environmental concerns about the use and disposal of high-phosphate detergents. A randomized, controlled trial was conducted in urban high-risk homes in northern New Jersey to determine whether a more readily available and less expensive low-phosphate, non-TSP detergent and non-HEPA vacuum could perform as well as TSP and a HEPA vacuum in a cleaning protocol. Homes were randomized to one of three cleaning methods: TSP/HEPA vacuum, TSP/non-HEPA vacuum, or non-TSP/non-HEPA vacuum. Change in log-transformed lead loading was used in mixed models to compare the efficacy of the three cleaning techniques separately for uncarpeted floors, window sills, and window troughs. After we adjusted for baseline lead loading, the non-HEPA vacuum produced larger reductions on hard floors [19%; 95% confidence interval (CI), 3-38%], but the HEPA vacuum produced larger reductions on window sills (22%; 95% CI, 11-32%) and larger reductions on window troughs (16%; 95% CI, -4 to 33%). The non-TSP produced larger reductions on window troughs (21%; 95% CI, -2 to 50%), but TSP produced larger reductions on hard floors (5%; 95% CI, -12 to 19%) and window sills (8%; 95% CI, -5 to 20%). TSP/HEPA produced larger reductions on window sills (28%; 95% CI, 18-37%) and larger reductions on window troughs (2%; 95% CI, -24 to 23%), whereas the non-TSP/non-HEPA method produced larger reductions on hard floors (13%; 95% CI, -5 to 34%). Because neither vacuum nor detergent produced consistent results across surface types, the use of low-phosphate detergents and non-HEPA vacuums in a temporary control measure is supported.
Sputtered pin amorphous silicon semi-conductor device and method therefor
Moustakas, Theodore D.; Friedman, Robert A.
1983-11-22
A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.
Simplified installation of thrust bearings
NASA Technical Reports Server (NTRS)
Sensenbaugh, N. D.
1980-01-01
Special handling sleeve, key to method of installing thrust bearings, was developed for assembling bearings on shaft of low-pressure oxygen turbo-pump. Method eliminates cooling and vacuum-drying steps which saves time, while also eliminating possibility of corrosion formation. Procedure saves energy because it requires no liquid nitrogen for cooling shaft and no natural gas or electric power for operating vacuum oven.
Systems and methods for analyzing liquids under vacuum
Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua
2013-10-15
Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.
Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite
NASA Astrophysics Data System (ADS)
Hashim, N.; Majid, D. L.; Uda, N.; Zahari, R.; Yidris, N.
2017-12-01
The vacuum assisted resin transfer moulding (VaRTM) or Vacuum Infusion (VI) is one of the fabrication methods used for composite materials. Compared to other methods, this process costs lower than using prepregs because it does not need to use the autoclave to cure. Moreover, composites fabricated using this VI method exhibit superior mechanical properties than those made through hand layup process. In this study, the VI method is used in fabricating woven carbon/Kevlar fibre cloth with epoxy matrix. This paper reports the detailed methods on fabricating the hybrid composite using VI process and several precautions that need to be taken to avoid any damage to the properties of the composite material. The result highlights that the successfully fabricated composite has approximately 60% of fibres weight fraction. Since the composites produced by the VI process have a higher fibre percentage, this process should be considered for composites used in applications that are susceptible to the conditions where the fibres need to be the dominant element such as in tension loading.
Dynamical Symmetry Breaking in Models of Spinor Fields with Quartic Interactions in (1+1) Dimensions
NASA Astrophysics Data System (ADS)
Wang, Rhung-tai; Ni, Guang-jiong
1982-07-01
A nonperturbative method, namely, variational method together with canonical transformations, is developed to study dynamical symmetry breaking. This method has been applied in the models of two dimensional massless fermion fields with quartic interactions. The results imply that the mechanism of dynamical symmetry breaking bears some analogy to the phenomenon of superconductivity. The new vacuum \\mid \\tilde{0}> is just a relativistic BCS groundstate, In this vacuum \\mid ^≈0>, we can observe a quasi-particle with mass "MF" Furthermore, correlative vacuum \\mid ^≈0> exists and the mesons emerge with masses "O" and "2MF". It is also shown that dynamical symmetry breaking always occurs in the models with infrared slavery and asymptotic freedom, while it is meaningless to discuss dynamical symmetry breaking in infrared stable theory.
Chemical-Vapor-Deposited Diamond Film
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
This chapter describes the nature of clean and contaminated diamond surfaces, Chemical-vapor-deposited (CVD) diamond film deposition technology, analytical techniques and the results of research on CVD diamond films, and the general properties of CVD diamond films. Further, it describes the friction and wear properties of CVD diamond films in the atmosphere, in a controlled nitrogen environment, and in an ultra-high-vacuum environment.
Yamaner, F Yalçın; Zhang, Xiao; Oralkan, Ömer
2015-05-01
This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative design is used to demonstrate immersion operation in conventional, collapse-snapback, and collapse modes. In collapsemode operation, an output pressure of 1.67 MPa pp is shown at 7 MHz on the surface of the transducer for 60-Vpp, 3-cycle sinusoidal excitation at 30-V dc bias.
Absorbed dose determination using experimental and analytical predictions of x-ray spectra
NASA Astrophysics Data System (ADS)
Edwards, David Lee
1999-10-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.
External Contamination Control of Attached Payloads on the International Space Station
NASA Technical Reports Server (NTRS)
Soares, Carlos E.; Mikatarian, Ronald R.; Olsen, Randy L.; Huang, Alvin Y.; Steagall, Courtney A.; Schmidl, William D.; Wright, Bruce D.; Koontz, Steven
2012-01-01
The International Space Station (ISS) is an on-orbit platform for science utilization in low Earth orbit with multiple sites for external payloads with exposure to the natural and induced environments. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. This paper describes the external contamination control requirements and integration process for externally mounted payloads on the ISS. The external contamination control requirements are summarized and a description of the integration and verification process is detailed to guide payload developers in the certification process of attached payloads on the vehicle. A description of the required data certification deliverables covers the characterization of contamination sources. Such characterization includes identification, usage and operational data for each class of contamination source. Classes of external contamination sources covered are vacuum exposed materials, sources of leakage, vacuum venting and thrusters. ISS system level analyses are conducted by the ISS Space Environments Team to certify compliance with external contamination control requirements. This paper also addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on ISS.
Kawai, Toshio; Sumino, Kimiaki; Ohashi, Fumiko; Ikeda, Masayuki
2011-01-01
To facilitate urine sample preparation prior to head-space gas-chromatographic (HS-GC) analysis. Urine samples containing one of the five solvents (acetone, methanol, methyl ethyl ketone, methyl isobutyl ketone and toluene) at the levels of biological exposure limits were aspirated into a vacuum tube via holder, a device commercially available for venous blood collection (the vacuum tube method). The urine sample, 5 ml, was quantitatively transferred to a 20-ml head-space vial prior to HS-GC analysis. The loaded tubes were stored at +4 ℃ in dark for up to 3 d. The vacuum tube method facilitated on-site procedures of urine sample preparation for HS-GC with no significant loss of solvents in the sample and no need of skilled hands, whereas on-site sample preparation time was significantly reduced. Furthermore, no loss of solvents was detected during the 3-d storage, irrespective of hydrophilic (acetone) or lipophilic solvent (toluene). In a pilot application, high performance of the vacuum tube method in sealing a sample in an air-tight space succeeded to confirm that no solvent will be lost when sealing is completed within 5 min after urine voiding, and that the allowance time is as long as 30 min in case of toluene in urine. The use of the holder-vacuum tube device not only saves hands for transfer of the sample to air-tight space, but facilitates sample storage prior to HS-GC analysis.
Small Vacuum Compatible Hyperthermal Atom Generator
NASA Technical Reports Server (NTRS)
Outlaw, Ronald A. (Inventor); Davidson, Mark R. (Inventor)
1998-01-01
A vacuum compatible hyperthermal atom generator includes a membrane having two sides. the membrane having the capability of dissolving atoms into the membrane's bulk. A first housing is furnished in operative association with the first side of the membrane to provide for the exposure of the first side of the membrane to a gas species. A second housing is furnished in operative association with the second side of the membrane to provide a vacuum environment having a pressure of less than 1 x 10(exp -3) Torr on the second side of the membrane. Exciting means excites atoms adsorbed on the second side of the membrane to a non-binding state so that a portion from 0% to 100% of atoms adsorbed on the second side of is the membrane are released from the second side of the membrane primarily as an atom beam.
Liu, Zhenbin; Zhang, Min; Wang, Yuchuan
2016-06-01
Old stalks of Asparagus officinalis, which account for one third of the total length of each spear, are always discarded as waste. To make full use of the resource, a kind of restructured Asparagus officinalis chip was made. The effects of pulse-spouted microwave-assisted vacuum drying (PSMVD), microwave-assisted vacuum drying (MVD) and vacuum drying (VD) on texture, color and other quality parameters of restructured chips were then studied to obtain high-quality dried chips. Results indicated that the drying time was significantly affected by drying methods, and PSMVD had much better drying uniformity than MVD. The expansion ratio and crispness of chips increased with increasing microwave power and vacuum degree. The browning reaction of samples in VD was more serious, which was confirmed by the results of color test and electronic nose. The PSMVD drying method showed much better drying uniformity than MVD. The dried chips obtained by PSMVD showed optimal quality and were more readily accepted by consumers. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Friction and Wear Properties of Selected Solid Lubricating Films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Iwaki, Masanori; Gotoh, Kenichi; Obara, Shingo; Imagawa, Kichiro
1999-01-01
To evaluate commercially developed solid film lubricants for aerospace bearing applications, we investigated the friction and wear behavior of bonded molybdenum disulfide (MoS2), magnetron-sputtered MoS2 and ion-plated silver films in sliding contact with 6-mm-diameter American Iron and Steel Institute (AISI) 440 C stainless steel balls. Unidirectional sliding friction experiments were conducted with a load of 5.9 N (600 g), a mean Herizian contact pressure of 0.79 GPa maximum 1.19 GPa), and a sliding velocity of 0.2 m/s at room temperature in three environments: ultrahigh vacuum (7x10 (exp -7Pa)), humid air (approx. 20 percent humidity), and dry nitrogen (less than 1 percent humidity). The resultant films were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and surface profilometry. Marked differences in friction and wear resulted front the environmental conditions and the film materials. The main criteria for judging the performance were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10 (exp -6mm exp 3/Nm or less), respectively. The bonded MoS2 and magnetron-sputtered MoS2 films met the criteria in all three environments. Also, the wear rates of the counterpart AISI 440 C stainless steel balls met that criterion in all three environments. The ion-plated silver films met the criteria only in ultrahigh vacuum. In ultrahigh vacuum the bonded MoS2 films were superior. In humid air the bonded MoS2 films had higher coefficient of friction and shorter wear life than did the magnetron-sputtered MoS2 films. The ion-plated silver films had a high coefficient of friction in humid air but relatively low coefficients of friction in the nonoxidative environments. Adhesion and plastic deformation played important roles in all three environments. All sliding involved adhesive transfer of materials.
MOEMS deformable mirror testing in cryo for future optical instrumentation
NASA Astrophysics Data System (ADS)
Zamkotsian, Frederic; Lanzoni, Patrick; Barette, Rudy; Grassi, Emmanuel; Vors, Patrick; Helmbrecht, Michael; Marchis, Franck; Teichman, Alex
2017-02-01
MOEMS Deformable Mirrors (DM) are key components for next generation optical instruments implementing innovative adaptive optics systems, in existing telescopes as well as in the future ELTs. Due to the wide variety of applications, these DMs must perform at room temperature as well as in cryogenic and vacuum environment. Ideally, the MOEMS-DMs must be designed to operate in such environment. This is unfortunately usually not the case. We will present some major rules for designing / operating DMs in cryo and vacuum. Next step is to characterize with high accuracy the different DM candidates. We chose to use interferometry for the full characterization of these devices, including surface quality measurement in static and dynamical modes, at ambient and in vacuum/cryo. Thanks to our previous set-up developments, we are placing a compact cryo-vacuum chamber designed for reaching 10-6 mbar and 160K, in front of our custom Michelson interferometer, able to measure performances of the DM at actuator/segment level as well as whole mirror level, with a lateral resolution of 2μm and a sub-nanometric zresolution. Using this interferometric bench, we tested the PTT 111 DM from Iris AO: this unique and robust design uses an array of single crystalline silicon hexagonal mirrors with a pitch of 606μm, able to move in tip, tilt and piston with strokes from 5 to 7μm, and tilt angle in the range of +/- 5mrad. They exhibit typically an open-loop flat surface figure as good as < 20nm rms. A specific mount including electronic and opto-mechanical interfaces has been designed for fitting in the test chamber. Segment deformation, mirror shaping, open-loop operation are tested at room and cryo temperature and results are compared. The device could be operated successfully at 160K. An additional, mainly focus-like, 500 nm deformation is measured at 160K; we were able to recover the best flat in cryo by correcting the focus and local tip-tilts on some segments. Tests on DM with different mirror thicknesses (25μm and 50μm) and different coatings (silver and gold) are currently under way. Finally, the goal of these studies is to test DMs in cryo and vacuum conditions as well as to improve their architecture for staying efficient in harsh environment.
Skylab Shroud in the Space Power Facility
1970-12-21
The 56-foot tall, 24,400-pound Skylab shroud installed in the Space Power Facility’s vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. The Space Power Facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. Payload shrouds are aerodynamic fairings to protect the payload during launch and ascent to orbit. The Skylab mission utilized the largest shroud ever attempted. Unlike previous launches, the shroud would not be jettisoned until the spacecraft reached orbit. NASA engineers designed these tests to verify the dynamics of the jettison motion in a simulated space environment. Fifty-four runs and three full-scale jettison tests were conducted from mid-September 1970 to June 1971. The shroud behaved as its designers intended, the detonators all fired, and early design issues were remedied by the final test. The Space Power Facility continues to operate today. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.
Controlling electrode gap during vacuum arc remelting at low melting current
Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.
1997-01-01
An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.
NASA Astrophysics Data System (ADS)
Beltran, J.; Maia, N. T.; Pimentel, B. M.
2018-04-01
Scalar Quantum Electrodynamics is investigated in the Heisenberg picture via the Duffin-Kemmer-Petiau gauge theory. On this framework, a perturbative method is used to compute the vacuum polarization tensor and its corresponding induced current for the case of a charged scalar field in the presence of an external electromagnetic field. Charge renormalization is brought into discussion for the interpretation of the results for the vacuum polarization.
InP Transferred Electron Cathodes: Basic to Manufacturing Methods
2007-08-29
Source: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films ; January/February 2003; v.21, no.1, p.219-225 Optimization and...Vacuum, Surfaces and Films ; Sept/Oct 2007 V. 25, No. 5 List of papers submitted or published that acknowledge ARO support during this reporting period...technologies. Night vision devices gather existing ambient light (starlight, moonlight or infra-red light) through a front lens. This light goes into a
Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact
NASA Astrophysics Data System (ADS)
Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.
The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the recent DebrisLV and DebriSat hypervelocity impact experiments, while ablations in high-vacuum provide critical distinctions.
Wafer-level vacuum/hermetic packaging technologies for MEMS
NASA Astrophysics Data System (ADS)
Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil
2010-02-01
An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.
Mechanisms of boron fiber strengthening by thermal treatment
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.
1979-01-01
The fracture strain for boron on tungsten fibers was studied for improvement by heat treatment under vacuum or argon environments. The mechanical basis for this improvement is thermally-induced axial contraction of the entire fiber, whereby strength-controlling core flaws are compressed and fiber fracture strain increased by the value of the contraction strain. By highly sensitive measurements of fiber density and volume, the physical mechanism responsible for contraction under both environments was identified as boron atom diffusion out of the fiber sheath. The fiber contracts because the average volume of the resulting microvoid was determined to be only 0.26 plus or minus 0.09 the average atomic volume of the removed atom. The basic and practical implications of these results are discussed with particular emphasis on the theory, use, and limitations of heat-induced contraction as a simple cost-effective secondary processing method.
Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.
Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen G; Zou, Ji; Gaber, Youssef; Benn, Laura; Woolger, David; Attallah, Moataz M; Boyer, Vincent; Bongs, Kai; Holynski, Michael
2018-01-31
Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10 -10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1992-01-01
As part of a program to provide reassurance that the cobalt-base superalloy Haynes Alloy 188 can adequately contain a LiF-CaF2 eutectic thermal energy storage salt, 4900- and 10,000-hr exposures of Haynes Alloy 188 to LiF-22CaF2, its vapor, vacuum, and air at 1093 K have been undertaken. Following such exposures, the microstructure has been characterized and the 77 to 1200 K tensile properties measured. In addition, 1050 K vacuum creep-rupture testing of as-received and molten salt- and vacuum-exposed samples has been undertaken. Although slight degradation of the mechanical properties of Haynes Alloy 188 due to prior exposure was observed, basically none of the losses could be ascribed to a particular environment. Hence, observed decreases in properties are due to thermal aging effects, not corrosive attack. In view of these findings, Haynes Alloy 188 is still deemed to be suitable for containment of the eutectic LiF-CaF2 thermal energy storage media.
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-09-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
Magnetically suspended stepping motors for clean room and vacuum environments
NASA Technical Reports Server (NTRS)
Higuchi, Toshiro
1994-01-01
To answer the growing needs for super-clean or contact free actuators for uses in clean rooms, vacuum chambers, and space, innovative actuators which combine the functions of stepping motors and magnetic bearings in one body were developed. The rotor of the magnetically suspended stepping motor is suspended like a magnetic bearing and rotated and positioned like a stepping motor. The important trait of the motor is that it is not a simple mixture or combination of a stepping motor and conventional magnetic bearing, but an amalgam of a stepping motor and a magnetic bearing. Owing to optimal design and feed-back control, a toothed stator and rotor are all that are needed structurewise for stable suspension. More than ten types of motors such as linear type, high accuracy rotary type, two-dimensional type, and high vacuum type were built and tested. This paper describes the structure and design of these motors and their performance for such applications as precise positioning rotary table, linear conveyor system, and theta-zeta positioner for clean room and high vacuum use.
Ultra-high speed visualization of the flashing instability under vacuum conditions
NASA Astrophysics Data System (ADS)
Hernández Sánchez, Jose Federico; Al-Ghamdi, Tariq; Thoroddsen, Sigurdur T.
2017-11-01
We investigated experimentally the flashing instability of a jet of perfluoro-n-hexane (PFnH) released into a low-pressure environment. Using a ultra-high speed camera we observed the jet fragmentation occurring close to the nozzle. Using a fixed total driving pressure, we decreased systematically the vacuum pressure, investigating the transition from a laminar jet to a fully flashing jet. Our high temporal resolution allowed to visualize the detailed dynamics of external flash-boiling for the first time. We identified different mechanisms of jet break-up. At chamber pressures lower than the vapor pressure the laminar jet evolves to a meandering stream. In this stage, bubbles start to nucleate and violently expand upstream the nozzle. At lower vacuum pressures the initially cylindrical jet elongates, forming a liquid sheet that breaks in branches and later in drops. At very low pressures both mechanisms are responsible for the jet breaking. We calculated the size distribution of the ejected droplets, their individual trajectories, velocities as well as the spray angle as a function of the dimensionless vacuum pressure.
Oxidation-resisting technology of W-Re thermocouples and their industrial applications
NASA Astrophysics Data System (ADS)
Wang, K.; Dai, M.; Dong, J.; Wang, L.; Wang, T.
2013-09-01
We use DSC/TG, SEM and EPMA approaches to investigate the high temperature oxidation behaviors of the Type C W-Re thermocouple wires and W-Re powders which the wires were made from. To solve the oxidization of W-Re thermocouples the chemical method, other than the commonly used physical method, i.e. vacuum-pumping method, was developed. Several solid-packed techniques such as stuffing with inert material, chemical deoxidizing, gas-absorbing and sealing were employed to prevent the W-Re thermocouples from oxidizing. Based on comprehensive consideration of various parameters in process industries, a series of industrial W-Re thermocouples has been successfully used in oxidizing and reducing atmospheres, high temperature alkali and other harsh environments. The service life is 6 to 12 months in strong oxidizing atmosphere of Cr2O3-Al2O3 brick kiln and 2 to 3 months in high temperature alkali and in reducing atmosphere of CO.
Cryopumping of hydrogen in vacuum chambers is aided by catalytic oxidation of hydrogen
NASA Technical Reports Server (NTRS)
Childs, J. H.; Grobman, J.; Rayle, W.
1964-01-01
Vacuum test facilities are required for high speed cryopumping of gaseous hydrogen at low pressures. One method involves the catalytic oxidation of hydrogen and condensation of the resulting water on a liquid nitrogen-cooled surface.
EVALUATION OF A VACUUM DISTILLER FOR PERFORMING METHOD 8261 ANALYSES
Vacuum distillation uses a specialized apparatus. This apparatus has been developed and patented by the EPA. Through the Federal Technology Transfer Act this invention has been made available for commercialization. Available vendors for this instrumentation are being evaluated. ...
``Peeps,'' cream, heads, and food coloring in a vacuum jar
NASA Astrophysics Data System (ADS)
DePino, Andrew
2001-01-01
This note describes some methods of adding interest to the standard vacuum jar demonstrations. Marshmallow animals, shaving cream, doll heads, and food coloring add some spark to these demos. These new twists have been well received by the students.
Rotor dynamic simulation and system identification methods for application to vacuum whirl data
NASA Technical Reports Server (NTRS)
Berman, A.; Giansante, N.; Flannelly, W. G.
1980-01-01
Methods of using rotor vacuum whirl data to improve the ability to model helicopter rotors were developed. The work consisted of the formulation of the equations of motion of elastic blades on a hub using a Galerkin method; the development of a general computer program for simulation of these equations; the study and implementation of a procedure for determining physical parameters based on measured data; and the application of a method for computing the normal modes and natural frequencies based on test data.
NASA Astrophysics Data System (ADS)
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
Kiracofe, Daniel; Melcher, John; Raman, Arvind
2012-01-01
Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.
Cupping - is it reproducible? Experiments about factors determining the vacuum.
Huber, R; Emerich, M; Braeunig, M
2011-04-01
Cupping is a traditional method for treating pain which is investigated nowadays in clinical studies. Because the methods for producing the vacuum vary considerably we tested their reproducibility. In a first set of experiments (study 1) four methods for producing the vacuum (lighter flame 2 cm (LF1), lighter flame 4 cm (LF2), alcohol flame (AF) and mechanical suction with a balloon (BA)) have been compared in 50 trials each. The cupping glass was prepared with an outlet and stop-cock, the vacuum was measured with a pressure-gauge after the cup was set to a soft rubber pad. In a second series of experiments (study 2) we investigated the stability of pressures in 20 consecutive trials in two experienced cupping practitioners and ten beginners using method AF. In study 1 all four methods yielded consistent pressures. Large differences in magnitude were, however, observed between methods (mean pressures -200±30 hPa with LF1, -310±30 hPa with LF2, -560±30 hPa with AF, and -270±16 hPa with BA). With method BA the standard deviation was reduced by a factor 2 compared to the flame methods. In study 2 beginners had considerably more difficulty obtaining a stable pressure yield than advanced cupping practitioners, showing a distinct learning curve before reaching expertise levels after about 10-20 trials. Cupping is reproducible if the exact method is described in detail. Mechanical suction with a balloon has the best reproducibility. Beginners need at least 10-20 trials to produce stable pressures. Copyright © 2010 Elsevier Ltd. All rights reserved.
Braided Categories of Endomorphisms as Invariants for Local Quantum Field Theories
NASA Astrophysics Data System (ADS)
Giorgetti, Luca; Rehren, Karl-Henning
2018-01-01
We want to establish the "braided action" (defined in the paper) of the DHR category on a universal environment algebra as a complete invariant for completely rational chiral conformal quantum field theories. The environment algebra can either be a single local algebra, or the quasilocal algebra, both of which are model-independent up to isomorphism. The DHR category as an abstract structure is captured by finitely many data (superselection sectors, fusion, and braiding), whereas its braided action encodes the full dynamical information that distinguishes models with isomorphic DHR categories. We show some geometric properties of the "duality pairing" between local algebras and the DHR category that are valid in general (completely rational) chiral CFTs. Under some additional assumptions whose status remains to be settled, the braided action of its DHR category completely classifies a (prime) CFT. The approach does not refer to the vacuum representation, or the knowledge of the vacuum state.
NASA Technical Reports Server (NTRS)
Sommers, R. D.; Raquet, C. A.; Cassidy, J. F.
1972-01-01
Cat-a-lac Black, and S13G thermal control coatings were exposed to the exhaust of a thruster in a simulated space environment. Vacuum was maintained at less than 10 to the minus 5th power torr during thruster firing in the liquid helium cooled facility. The thruster was fired in a 50-millisecond pulse mode and the accumulated firing time was 224 seconds. Solar absorptance (alpha sub s) and thermal emittance (sigma) of the coatings were measured in-situ at intervals of 300 pulses. A calorimetric technique was used to measure alpha sub s and sigma. The tests, technique, and test results are presented. The Cat-a-lac Black coatings showed no change in alpha sub s or sigma. The S13G showed up to 25 percent increase in alpha sub s but no change in sigma.
NASA Astrophysics Data System (ADS)
Painter, Jonathon; Leighs, James; Appleby-Thomas, Gareth; Hazael, Rachael; McMillan, Paul; Kristensen, Reinhardt
2013-06-01
There have been many recent discoveries of life forms living in environments previously thought to be completely uninhabitable. One particularly interesting discovery of this na- ture is the space bear or tardigrade. The name space bear is a colloquialism applied to the tardigrades because of a recent investigation which saw them being exposed to the vacuum of space and intense solar radiation, and surviving. Tardigrades have the ability to dehy- drate themselves, entering a state called cryptobiosis. This state enables them to survive in the vacuum of space. A single stage gas gun has been employed to uniaxially shock load and subsequently recover tardigrades in both regular and cryptobiotic states. Loading histories were calculated via hydrocode modelling. Survival data is presented comparing shocked and control samples for tardigrades both in normal and cryptobiotic states.
Collisional and radiative processes in high-pressure discharge plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.
2002-05-01
Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.
Characterization of Commercial Li-ion Cells in Pouch Format
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith
2014-01-01
The li-ion pouch design cells exhibit similar behavior under off-nominal conditions as those in metal cans that do not have the internal safety devices. Safety should be well characterized before batteries are designed. Some of the li-ion pouch cell designs studied in this program reacted most violently to overcharge conditions at the medium rates but were tolerant to overcharge at very low rates. Some pouch cell designs have higher tolerance to vacuum exposures than some others. A comparison of the pouch material itself does not show a correlation between this tolerance and the number of layers or composition of the pouch indicating that this is a property of the electrode stack design inside the pouch. Reduced pressure (8 to 10 psi) test environments show that the extent of capacity degradation under reduced pressure environments is much less than that observed under vacuum conditions. Lithium-ion Pouch format cells are not necessarily true polymer cells.
Lubrication by Diamond and Diamondlike Carbon Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1997-01-01
Regardless of environment (ultrahigh vacuum, humid air, dry nitrogen, or water), ion-beam-deposited diamondlike carbon (DLC) and nitrogen-ion-implanted, chemical-vapor-deposited (CVD) diamond films had low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6)cu mm/N(dot)m). These films can be used as effective wear-resistant, self-lubricating coatings regardless of environment. On the other hand, as-deposited, fine-grain CVD diamond films; polished, coarse-grain CVD diamond films; and polished and then fluorinated, coarse-grain CVD diamond films can be used as effective wear-resistant, self-lubricating coatings in humid air, in dry nitrogen, and in water, but they had a high coefficient of friction and a high wear rate in ultrahigh vacuum. The polished, coarse-grain CVD diamond film revealed an extremely low wear rate, far less than 10(exp 10) cu mm/N(dot)m, in water.
Characterization and control of thread mould in cheese.
Basílico, J C; debasílico, M Z; Chiericatti, C; Vinderola, C G
2001-06-01
The origin of a mould responsible for the contamination of an Argentinian cheese factory was identified and several antifungal treatments were assessed. Moulds were isolated and identified from vacuum-packed hard cheeses, from the environment and from the surfaces of the factory. A suspension conidia test containing different fungicides was performed; another assay involved the fumigation with p-OH fenilsalicidamide. Only Phoma glomerata was found in all of the mouldy cheeses, and was also obtained from different environments and machine surfaces. The most effective treatments against P. glomerata isolates were 0.5% (w/v) natamycin and 2% (v/v) parabens. Fumigation with p-OH fenilsalicidamide showed no satisfactory results. P. glomerata is an important thread mould-contaminating agent in vacuum-packed hard cheeses. Taking into account the survival of the conidia of the P. glomerata isolates to different antifungal treatments, the sources of contamination need to be controlled by designing a good factory layout.
Radiation testing of composite materials, in situ versus ex situ effects
NASA Technical Reports Server (NTRS)
Kurland, R. M.; Thomasson, J. F.; Beggs, W. C.
1981-01-01
The effect of post irradiation test environments on tensile properties of representative advanced composite materials (T300/5208, T300/934, C6000/P1700) was investigated. Four ply (+ or - 45 deg/+ or - 45 deg) laminate tensile specimens were exposed in vacuum up to a bulk dose of 1 x 10 to the 10th power rads using a mono-energetic fluence of 700 keV electrons from a Van de Graaff accelerator. Post irradiation testing was performed while specimens were being irradiated (in situ data), in vacuum after cessation of irradiation (in vacuo data), and after exposure to air (ex situ data). Room temperature and elevated temperature effects were evaluated. The radiation induced changes to the tensile properties were small. Since the absolute changes in tensile properties were small, the existance of a post irradiation test environment effect was indeterminate.
Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions.
Bright, Nicholas J; Willson, Terry R; Driscoll, Daniel J; Reddy, Subrayal M; Webb, Roger P; Bleay, Stephen; Ward, Neil I; Kirkby, Karen J; Bailey, Melanie J
2013-07-10
The effect of vacuum exposure on latent fingerprint chemistry has been evaluated. Fingerprints were analysed using a quartz crystal microbalance to measure changes in mass, gas chromatography mass spectrometry to measure changes in lipid composition and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine changes in the content of water, fatty acids and their esters after exposure to vacuum. The results are compared with samples aged under ambient conditions. It was found that fingerprints lose around 26% of their mass when exposed to vacuum conditions, equivalent to around 5 weeks ageing under ambient conditions. Further exposure to vacuum causes a significant reduction in the lipid composition of a fingerprint, in particular with the loss of tetradecanoic and pentadecanoic acid, that was not observed in ambient aged samples. There are therefore implications for sequence in which fingerprint development procedures (for example vacuum metal deposition) are carried out, as well as the use of vacuum based methods such as secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption ionisation (MALDI) in the study of fingerprint chemistry. Copyright © 2013. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Davydov, A.; Sveshnikov, K.; Voronina, Yu.
2018-01-01
Based on the original combination of analytical methods, computer algebra tools and numerical calculations, proposed recently in Refs. 1-3, the nonperturbative vacuum polarization effects in the 2+1D supercritical Dirac-Coulomb system with Z > Zcr,1 are explored. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. The main result of the work is that in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. Due to a lot of details of calculation the whole work is divided into two parts I and II. In the present part I, we consider the evaluation and behavior of the vacuum density ρV P, which further is used in part II for evaluation of the vacuum energy, with emphasis on the renormalization, convergence of the partial expansion for ρV P and behavior of the integral induced charge QV P in the overcritical region.
Suppression of copper thin film loss during graphene synthesis.
Lee, Alvin L; Tao, Li; Akinwande, Deji
2015-01-28
Thin metal films can be used to catalyze the growth of nanomaterials in place of the bulk metal, while greatly reducing the amount of material used. A big drawback of copper thin films (0.5-1.5 μm thick) is that, under high temperature/vacuum synthesis, the mass loss of films severely reduces the process time due to discontinuities in the metal film, thereby limiting the time scale for controlling metal grain and film growth. In this work, we have developed a facile method, namely "covered growth" to extend the time copper thin films can be exposed to high temperature/vacuum environment for graphene synthesis. The key to preventing severe mass loss of copper film during the high temperature chemical vapor deposition (CVD) process is to have a cover piece on top of the growth substrate. This new "covered growth" method enables the high-temperature annealing of the copper film upward of 4 h with minimal mass loss, while increasing copper film grain and graphene domain size. Graphene was then successfully grown on the capped copper film with subsequent transfer for device fabrication. Device characterization indicated equivalent physical, chemical, and electrical properties to conventional CVD graphene. Our "covered growth" provides a convenient and effective solution to the mass loss issue of thin films that serve as catalysts for a variety of 2D material syntheses.
In-flight and laboratory vacuum-friction test results
NASA Technical Reports Server (NTRS)
Devine, E. J.; Evans, H. E.; Leasure, W. A.
1973-01-01
Coefficient of friction measurements were made for six unlubricated metal couples exposed to the space environment aboard the OV-1-13 spacecraft and exposed to laboratory vacuum. Materials studied included mutually soluble, partially soluble, and insoluble metal combinations. Two samples of each material couple were tested in space and in the laboratory using the disk and rider technique. Linear velocity was 0.10 cm/s (2.5 in/min) and rider normal load was 4.45 N (1 lb) for the gold versus silver couples and 8.90 N (2lb) for the other combinations. Results showed that friction data obtained in a clean ion-pumped laboratory vacuum of 10 to the minus 10 power materials with low mutual solubility can be correlated to operation in the vicinity of a typical scientific spacecraft that is exposed to an ambient pressure as low as 10 to the minus 12 power torr. The expected increase in coefficient of friction with solubility was shown. Material couples with high mutual solubility present the hazard of unpredictable drastic friction increase in orbit which may not be evident in laboratory testing at levels down to 10 to the minus 10 power torr. It was also shown that gross cold welding of unlubricated metals exposed to a satellite environment does not occur.
Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping
2016-09-01
Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bashkov, O. V.; Protsenko, A. E.; Bryanskii, A. A.; Romashko, R. V.
2017-09-01
The strength properties of glass-fiber-reinforced plastics produced by vacuum and vacuum autoclave molding techniques are studied. Based on acoustic emission data, a method of diagnostic and prediction of the bearing capacity of polymer composite materials by using data from three-point bending tests is developed. The method is based on evaluating changes in the exponent of a power function relating the total acoustic emission to the test stress.
Indigenous Manufacturing realization of TWIN Source
NASA Astrophysics Data System (ADS)
Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.
2017-04-01
TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.
Thermal Vacuum Integrated System Test at B-2
NASA Technical Reports Server (NTRS)
Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.
Performance modelling of plasma microthruster nozzles in vacuum
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.
Development of a Test Facility for Air Revitalization Technology Evaluation
NASA Technical Reports Server (NTRS)
Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su
2007-01-01
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.
Testing of a spacecraft model in a combined environment simulator
NASA Technical Reports Server (NTRS)
Staskus, J. V.; Roche, J. C.
1981-01-01
A scale model of a satellite was tested in a large vacuum facility under electron bombardment and vacuum ultraviolet radiation to investigate the charging of dielectric materials on curved surfaces. The model was tested both stationary and rotating relative to the electron sources as well as grounded through one megohm and floating relative to the chamber. Surface potential measurements are presented and compared with the predictions of computer modelling of the stationary tests. Discharge activity observed during the stationary tests is discussed and signals from sensing devices located inside and outside of the model are presented.
Yu, Chang Ho; Yiin, Lih-Ming; Fan, Zhi-Hua (Tina); Rhoads, George G.
2014-01-01
Dry steam cleaning, which has gained recent attention as an effective method to reduce house dust mite (HDM) allergen concentration and loading in carpets, was evaluated in this study for its efficacy in lowering levels of polycyclic aromatic hydrocarbons (PAHs) as well as HDM allergens. Fifty urban homes with wail-to-wall carpets, mostly low-income and with known lead contamination, were studied in 2003 and 2004. Two carpet-cleaning interventions were compared: Repeated HEPA (High Efficiency Particulate Air filtered) vacuuming alone and repeated HEPA vacuuming supplemented with dry steam cleaning. Vacuum samples were collected to measure carpet loading of dust and contaminants immediately before and after cleaning. Paired comparisons were conducted to evaluate the effectiveness of the cleaning protocols in reducing the levels of PAHs and HDM allergens in carpets. The results indicated that both cleaning methods substantially reduced the loading of PAHs and HDM allergens as well as dust in carpets (p < 0.0001). The reductions in loading of dust (64.4%), PAHs (69.1%), and HDM allergens (85.5%), by dry steam cleaning plus repetitive HEPA vacuuming were larger than the reductions by regular HEPA vacuuming alone: dust (55.5%), PAHs (58.6%), and HDM allergens (80.8%), although the difference was statistically significant only for dust and PAHs. We conclude that intensive HEPA vacuum cleaning substantially reduced the loading of PAHs and HDM allergens in carpets in these urban homes and that dry steam cleaning added modestly to cleaning effectiveness. PMID:19137159
Zhan, Lu; Xu, Zhenming
2014-12-01
Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes. © The Author(s) 2014.
Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum
NASA Astrophysics Data System (ADS)
Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.
2017-06-01
Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.
Vacuum fusion bonding of glass plates
Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.
2001-01-01
An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.
Vacuum fusion bonding of glass plates
Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.
2000-01-01
An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.
Vacuum fusion bonded glass plates having microstructures thereon
Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.
2001-01-01
An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.
Controlling electrode gap during vacuum arc remelting at low melting current
Williamson, R.L.; Zanner, F.J.; Grose, S.M.
1997-04-15
An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.
Physical sciences: Thermodynamics, cryogenics, and vacuum technology: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
Technological developments which have potential application outside the aerospace community are reported. A variety of thermodynamic devices including heat pipes and cooling systems are described along with methods of handling cryogenic fluids. Vacuum devices are also described. Pata et information is included.
A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems
NASA Astrophysics Data System (ADS)
Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.
2017-12-01
Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.
Method for synthesizing ultrafine powder materials
Buss, Richard J.; Ho, Pauline
1988-01-01
A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.
Worldline approach to helicity flip in plane waves
NASA Astrophysics Data System (ADS)
Ilderton, Anton; Torgrimsson, Greger
2016-04-01
We apply worldline methods to the study of vacuum polarization effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarization effects.
Vacuum polarization in the field of a multidimensional global monopole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grats, Yu. V., E-mail: grats@phys.msu.ru; Spirin, P. A.
2016-11-15
An approximate expression for the Euclidean Green function of a massless scalar field in the spacetime of a multidimensional global monopole has been derived. Expressions for the vacuum expectation values 〈ϕ{sup 2}〉{sub ren} and 〈T{sub 00}〉{sub ren} have been derived by the dimensional regularization method. Comparison with the results obtained by alternative regularization methods is made.
Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao
2015-08-01
There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. © 2015 Eur J Oral Sci.
Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.
2015-05-15
Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films depositedmore » by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.« less
In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides
NASA Astrophysics Data System (ADS)
Massimi, Lorenzo; Grazia Betti, Maria; Caramazza, Simone; Postorino, Paolo; Mariani, Carlo; Latini, Alessandro; Leardini, Fabrice
2016-10-01
High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.
MMS Observatory Thermal Vacuum Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos
2014-01-01
The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.
Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.
2004-06-01
An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, A. S.; Debefve, L. M.; Gates, B. C., E-mail: bcgates@ucdavis.edu
X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell andmore » a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.« less
In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides.
Massimi, Lorenzo; Betti, Maria Grazia; Caramazza, Simone; Postorino, Paolo; Mariani, Carlo; Latini, Alessandro; Leardini, Fabrice
2016-10-28
High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.
Processing of extraterrestrial materials by high temperature vacuum vaporization
NASA Technical Reports Server (NTRS)
Grimley, R. T.; Lipschutz, M. E.
1983-01-01
It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.
Vacuum Radiance-Temperature Standard Facility for Infrared Remote Sensing at NIM
NASA Astrophysics Data System (ADS)
Hao, X. P.; Song, J.; Xu, M.; Sun, J. P.; Gong, L. Y.; Yuan, Z. D.; Lu, X. F.
2018-06-01
As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors' uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers' blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.
SSME - Materials and Methods for Addressing High-Pressure Hydrogen Embrittlement
NASA Technical Reports Server (NTRS)
Matejczk, Daniel; Russell, Dale; Frandsen, Jon; Swanson, Greg
2010-01-01
From the humid, corrosion-friendly atmosphere of KSC, to the extreme heat of ascent, to the cold vacuum of space, the Space Shuttle faced one hostile environment after another. One of those harsh environments the hydrogen environment existed within the shuttle itself. Liquid hydrogen was the fuel that powered the shuttle s complex, powerful, and reusable main engine. Hydrogen provided the high specific impulse the bang per pound of fuel needed to perform the shuttle s heavy lifting duties. Hydrogen, however, was also a potential threat to the very metal of the propulsion system that used it. The diffusion of hydrogen atoms into a metal can make it more brittle and prone to cracking a process called hydrogen embrittlement. This effect can reduce the toughness of carefully selected and prepared materials. A concern that exposure to hydrogen might encourage crack growth was present from the beginning of the Space Shuttle Program, but the rationale for using hydrogen was compelling. This paper outlines the material characterization, anomaly resolution, and path to understanding of hydrogen embrittlement on superalloys through the course of the SSME program. Specific examples of nickel alloy turbine housings and single crystal turbine blades are addressed. The evolution of fracture mechanics analytical methods is also addressed.
Effects of decontamination, sterilization, and thermal vacuum on polymeric products
NASA Technical Reports Server (NTRS)
Roper, W. D.
1970-01-01
Adhesives, coatings, coated fabrics, elastomers, encapsulants, films, hardware and structural materials, and tapes are tested in a series of physical, mechanical, and electrical tests. Material properties are measured before and after exposure to the three environments.
Combined high vacuum/high frequency fatigue tester
NASA Technical Reports Server (NTRS)
Honeycutt, C. R.; Martin, T. F.
1971-01-01
Apparatus permits application of significantly greater number of cycles or equivalent number of cycles in shorter time than conventional fatigue test machines. Environment eliminates problems associated with high temperature oxidation and with sensitivity of refractory alloy behavior to atmospheric contamination.
Dark Energy and Gravity Experiment Explorer and Pathfinder
NASA Astrophysics Data System (ADS)
Chiow, S.-w.; Yu, N.
2018-02-01
We propose to utilize the unique gravity and vacuum environment in the orbits of the Deep Space Gateway for direct detections of dark energy using atom interferometers, and for pathfinder experiments for future gravitational wave and dark matter detections.
The principal properties related to analyte recovery in a vacuum distillate are boiling point and relative volatility. The basis for selecting compounds to measure the relationship between these properties and recovery for a vacuum distillation is presented. Surrogates are incorp...